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Abstract A small percentage of bladder cancers in the general population have been found to 
harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are 
at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor 
BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms 
of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome 
sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors 
from this patient population contained viral sequences. The most common were from BKPyV (N=9, 
21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque 
teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in 
BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In 
most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the 
host chromosome consistent with microhomology-mediated end joining and coincided with focal 
amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in 
host gene expression consistent with the functions of BKPyV Large T antigen were also observed 
in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable 
to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral 
drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, 
were also observed. The results suggest multiple pathways to carcinogenesis in solid organ trans-
plant recipients with a large fraction being virus-associated.
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Editor's evaluation
This work provides a compelling case that viral origins of bladder cancer should be more carefully 
considered. Specifically, the clonogenic expression of viral oncogenes in these tumors combined 
with the lower than expected prevalence of major tumor suppressor (p53 and pRB) provides strong 
evidence for the authors' assertions. Ultimately, it will be important to follow up this work and I look 
forward to seeing those next steps.

Introduction
At least 20% of all cancers are attributable to viral, bacterial, or parasitic infections (de Martel et al., 
2020). The advent of high-throughput deep sequencing has provided unprecedented opportunities 
to learn how infectious agents are involved in cancer in an unbiased manner. Several previous studies 
have searched for microbial nucleotide sequences in The Cancer Genome Atlas (TCGA), the Inter-
national Cancer Genome Consortium (ICGC), and PanCancer Analysis of Whole Genomes (PCAWG) 
datasets (Zapatka et al., 2020; Cantalupo et al., 2018). In addition to confirming known associations, 
such as the presence of human papillomaviruses (HPVs) in cervical cancer, these studies also uncov-
ered rare cases in which viral sequences were unexpectedly found in other major cancers affecting the 
general population (Cantalupo et al., 2018).

Despite the immense amount of tumor sequencing data generated to date, the identification of 
microorganisms in common cancers through these studies has been limited. A more focused assess-
ment of groups at increased risk for virus-associated cancers may be needed. In particular, oncogenic 
viruses may contribute to a larger fraction of cancer cases among immunosuppressed individuals, 
such as those with human immunodeficiency virus (HIV) infection and organ transplant recipients. 
These populations have been previously shown to be at increased risk for developing papillomavirus-
mediated cancers, and oncogenic viruses, such as Kaposi’s sarcoma-associated herpesvirus and 
Merkel cell polyomavirus (MCPyV), were discovered in these patient populations (Chang et al., 1994; 
Feng et al., 2008; D’Arcy et al., 2021).

Roughly a dozen ‘high-risk’ HPV types cause nearly all cervical cancers, a large majority of other 
anogenital cancers, and about half of all oropharyngeal cancers (Graham, 2017). The carcinogenic 
effects of these small circular double-stranded DNA viruses are primarily dependent on the expres-
sion of the E6 and E7 oncogenes which, among a wide range of other functions, inactivate the tumor 
suppressor proteins p53 and Rb, respectively (Rosty et  al., 2005; Crook et  al., 1991; Mirabello 
et al., 2017; DeCaprio, 2014; Barbosa et al., 1990).

Polyomaviruses share many biological features with papillomaviruses. In particular, polyomavirus T 
antigens perform many of the same functions as papillomavirus oncoproteins and are similarly onco-
genic in cellular and animal models (Moens and Macdonald, 2019). MCPyV has been identified as an 
etiological factor in a rare skin cancer, Merkel cell carcinoma (Feng et al., 2008; Shuda et al., 2008; 
Kassem et al., 2008). Another human polyomavirus, BKPyV, has a long-debated history as a candi-
date cancer-causing virus. Several case reports have described the detection of BKPyV in bladder 
cancers arising in transplant recipients, and kidney recipients who develop BKPyV viremia or BKPyV-
induced nephropathy (BKVN) after transplant are at increased risk of bladder cancer (Gupta et al., 
2018; Vajdic and van Leeuwen, 2009; Li et al., 2021; Papadimitriou et al., 2016).

Similar to HPV-induced cervical and oropharyngeal cancers, bladder cancers exhibit somatic 
point mutations that are largely attributable to the activity of APOBEC3 family cytosine deaminases 
(Robertson et al., 2017; Burns et al., 2013; Roberts et al., 2013). These enzymes normally function 
as innate immune defenses against viruses by deaminating cytosines in single-stranded DNA, leading 
to hypermutation of the viral genome (Poulain et al., 2020). Commonly, APOBEC3 enzymes, partic-
ularly APOBEC3A and APOBEC3B, can become dysregulated and cause carcinogenic damage to 
cellular DNA during the development of various types of cancer (Swanton et al., 2015). APOBEC3A 
and APOBEC3B are upregulated in response to the expression of HPV E6 and E7, and APOBEC3A 
can restrict HPV replication (Mori et al., 2017; Warren et al., 2017; Ahasan et al., 2015; Warren 
et al., 2015b; Vieira et al., 2014). The large T antigens (LTags) of BKPyV and JC polyomavirus (JCPyV, 
a close relative of BKPyV) also upregulate APOBEC3B expression and activity (Starrett et al., 2019; 
Peretti et al., 2018; Verhalen et al., 2016).

https://doi.org/10.7554/eLife.82690
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To characterize the mutational, transcriptomic, 
and viral landscapes of bladder cancers arising 
in immunosuppressed individuals, we evaluated 
archived tissues from 43 solid organ transplant 
recipients who developed this malignancy. We 
performed total RNA sequencing and whole 
genome sequencing (WGS) from these tissues. 
We utilized high-sensitivity methods and compre-
hensive reference databases of sequences for 
conserved viral proteins to identify known viral 
species and to search for divergent viruses. 
Once viruses were identified, we further evalu-
ated the sequence data for integration events, 
point mutations, mutation signatures, and differ-
entially expressed genes to identify differences 
correlating with the presence of these viruses and 
their integration state.

Results
Bladder cancers from transplant 
recipients
The study population was comprised of 43 U.S. 
cases from patients who developed bladder 
cancer after receiving solid organ transplantation 
(Table  1 and Supplementary file 1a). Seventy 
percent were male and 70% were non-Hispanic 
white. The median age at cancer diagnosis was 
65  years (range: 27–82). The most commonly 
transplanted organ was the kidney (56%), 
followed by the heart and/or lung (33%) and 
liver (9%). Primary tumors were roughly an equal 
mixture of high- and low-grade carcinomas diag-
nosed with a median of 5.7 years after transplan-
tation. Twelve cases were categorized as in situ 
as defined by the Surveillance, Epidemiology, and 
End Results (SEER) Program, with two of those 
cases being transitional cell carcinomas in situ 
and ten cases being noninvasive papillary transi-
tional cell carcinomas. Invasive cases were mostly 
categorized into the localized stage (n=20, 46%), 
which includes tumors that have invaded into the 
mucosa, submucosa, muscle, or subserosa. The 

11 remaining cases either had regional or distant invasion or metastasis. We successfully generated 
WGS data for 38 primary tumors, three metastases, and 10 normal (histologically non-malignant) 
tissues, with a median of 31 x coverage across the human genome (range: 14–55 x) (Supplementary 
file 1a). We generated total RNA sequencing data for 43 primary tumors, five metastases, and 14 
normal tissues, with a median of 30 million reads per sample (range: 4–65.5 million).

Detection of viruses in bladder cancers from transplant recipients
Analysis of WGS data for 38 primary tumors identified one or more virus species in 17 specimens (45%) 
(Figure 1A and Supplementary file 1a). RNA sequencing on tumor samples for which WGS data 
could not be obtained revealed three additional cases containing viral sequences (45% of samples 
overall). Among the 20 virus-positive primary tumors, the majority harbored BKPyV (n=9) or JCPyV 
(n=7). High-risk HPV genotypes 16 and 51 were detected in one and two tumors, respectively. A 

Table 1. Characteristics of post-transplant 
bladder cancer cases (N=43).

Characteristic Statistic

Median IQR

Age in years at diagnosis 65 60, 71

Years from transplant to 
diagnosis

5.8 3, 7

N %

Sex

Female 13 30

Male 30 70

Transplanted organ

Kidney 24 56

Liver 4 9

Heart and/or lung 14 33

Pancreas 1 2

Race

Non-Hispanic White 30 70

Asian/Pacific Islander 8 19

Hispanic 5 12

Summary stage

In situ 12 28

Localized 19 46

Regional 7 14

Distant 5 12

Grade

Low 20 47

High 22 51

Papillary urothelial 
neoplasm of low malignant 
potential

1 2

IQR: interquartile range.

https://doi.org/10.7554/eLife.82690
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low-risk papillomavirus, HPV28, was observed in TBC33. One BKPyV-containing tumor (case TBC05) 
also harbored relatively abundant amounts of HPV20. Only two reads mapped to HPV20 in the RNA 
dataset for case TBC05. Sequencing of metastases confirmed the presence of BKPyV in TBC06, JCPyV 
in TBC34, and HPV16 in TBC10. Additionally, sequencing of two separate tumor sections for TBC03 
and TBC09 confirmed the presence of BKPyV in both (Figure 1—figure supplement 1).

WGS from TBC16, TBC17, TBC18, TBC19, TBC20, TBC21, TBC22, TBC23, TBC24, TBC27 had low 
numbers of reads mapping to the BKPyV genome that was judged to be attributable to low levels of 
index-hopping from TBC01, a papillary urothelial neoplasm of low malignant potential (PUNLMP) that 
had extremely high BKPyV coverage and was sequenced in the same run. Considering this, along with 
the absence of RNA reads supporting the presence of BKPyV, we scored these tumors virus-negative.
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Figure 1. Detection of viral sequences. (A) Primary tumors. (B) Metastatic tumors. (C) Normal tissues. Viral species are shown on the rows, and each case 
in the cohort (represented with a TBC number) is a column. TBC numbers represent a single case and are consistent across primary, metastatic, and 
normal tissues. Circle size represents the breadth or fraction of the viral genome covered, and color represents the average depth of coverage of the 
viral k-mers with all coverages over 100 binned together. Specimens without sequencing data have a gray background.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. BK polyomavirus (BKPyV) DNA/RNA coverage plots.

Figure supplement 2. JC polyomavirus (JCPyV) DNA/RNA coverage plots.

Figure supplement 3. All human papillomavirus (HPV) DNA/RNA coverage plots.
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A separate set of searches aimed at identifying divergent members of other virus groups revealed 
that several tumors (TBC08, TBC14, TBC25, TBC28, and TBC35) and normal tissues (TBC35, TBC28, 
TBC39) harbored torque teno virus (TTV) sequences from either WGS or RNA sequencing (Supple-
mentary file 1c). Epstein-Barr virus was most strongly detected in one normal lymph node (TBC23) 
and, at low levels, in tumors TBC07 and TBC08. Considering the stronger epidemiological evidence 
for BKPyV and bladder cancer and its abundance in these specimens, we focused the majority of our 
analysis on characterizing these tumors.

Features of BKPyV-positive tumors
BKPyV sequences detected in this study came from every genotype except IV (Figure  2A). One 
patient with a BKPyV-positive tumor had a documented history of BKVN. BKPyV-positive tumors were 
found in two heart, two lung, one heart and lung, and four kidney transplant recipients. We identified 
unambiguous BKPyV integration sites in five of the nine BKPyV-positive tumors and in one normal 
tissue (Figure 2B & Table 2). For three tumors a single integration junction was identified, and in 
TBC02 three junctions were identified. In the case TBC03, two separate sections from separate blocks 
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of the primary tumor were sequenced. In 1 of the 2 sections, 11 integration junctions were identified 
across seven chromosomes. Only three of the junctions could be identified in the second section of 
the tumor, suggesting either that these junctions were not present throughout the tumor or there was 
insufficient tumor purity/sequencing depth to detect them.

Integration appeared consistent with a microhomology-mediated end-joining (MMEJ) model for 
integration, as 20 of 25 junctions (80%) had microhomology greater than or equal to 2 bp. In this 
model, which has previously been proposed for both HPV- and MCPyV-associated tumors (Starrett 
et al., 2020; Starrett et al., 2017; Akagi et al., 2014), microhomologies between the virus and host 
genomes initiate DNA repair processes that can, in some cases, lead to tandem head-to-tail concate-
meric repeats of the viral genome as well as focal amplifications of the flanking host chromosome. 
Consistent with this model, focal amplifications adjacent to BKPyV integration sites were identified 
in three patient tumors. In TBC03, amplification of a 17 kb region of chromosome 1 flanking a multi-
copy BKPyV integrant was observed in two tumor sections (Figure 2C). In TBC04, a 15 kb single-copy 
amplification of chromosome 3 was identified. Lastly, a 195 kb region of chromosome 6 was amplified 
next to the BKPyV integration junction in TBC08. Twenty-two of the identified 25 junctions (88%) inter-
sected protein-coding genes and thus might conceivably affect gene expression or function.

BKPyV RNA and DNA abundance by sequencing generally did not correspond to specimen tumor 
purity or the percentage of LTag + cells (Figure 3A and B). Gene-level analysis of the RNA sequencing 
data revealed that 7 of the 9 polyomavirus-positive tumors predominantly expressed the T antigens, 
with little to no expression of the late genes VP1 and VP2 (encoding the major and minor capsid 
proteins, respectively) (Figure 3A and C, Figure 3—figure supplement 1). The LTag open reading 
frames (ORFs) in these cases were truncated before the helicase domain through deletions, frame-
shifts, or point mutations. The exception was the BKPyV-positive PUNLMP case TBC01, which showed 
a balanced expression of both early and late regions.

BKPyV isolates found in cases of polyomavirus nephropathy typically have rearrangements in the 
regulatory region that enhance viral replication in cell culture. However, in this study, TBC01 was the 
only polyomavirus-positive tumor showing evidence of regulatory region rearrangements (Figure 3—
figure supplement 2).

Immunohistochemistry (IHC) for polyomavirus LTag was performed on 18 specimens suspected 
to contain polyomaviruses and two negative control specimens determined to be free of detectable 
viral sequences. Control sections were negative for Tag staining, whereas 11 of the 18 specimens that 
contained polyomavirus sequences showed at least some evidence for Tag positivity (Figure 3B and 
Figure 3—figure supplement 3). Three tumors scored as BKPyV sequence-positive had strong to 
moderate LTag staining in greater than 80% of tumor cells, but the other BKPyV-positive tumors had 
more variable staining. Moderate to weak staining was visible in less than 0.5% of cells in the primary 
tumor for TBC06 (Figure 3D), but strong staining was observed in about 25% of cells in the metas-
tasis. For TBC09, one sample of the tumor was >90% positive for LTag staining and another sample 
was less than 25% positive (Figure 3—figure supplement 3). The normal tissue for TBC09 showed 
BKPyV RNA and DNA coverage along a small portion of the regulatory region and small T antigen, 
but no staining for LTag. Although TBC01 had very high levels of BKPyV DNA and RNA reads, it had 
the lowest observed proportion of LTag-positive cells (<1% in a section that was >95% tumor as deter-
mined by cell morphology). LTag-positive cells in the TBC01 sample were almost entirely localized to 
the luminal margin of the tumor (Figure 3D).

Differential gene expression analysis for BKPyV-positive tumors versus virus-negative tumors 
revealed 1062 genes that were significantly differentially regulated in tumors harboring BKPyV 
(Figure 4A, Supplementary file 1e). Clustering all primary and metastatic tumors by genes with a 
greater than threefold difference of expression in the above comparison, we identified three major 
groups that loosely correspond to the amount of BKPyV DNA and RNA in a tumor (Figure 4C). A 
notable exception is the BKPyV-positive tumor TBC01, which falls into the cluster mostly containing 
virus-negative tumors.

The cluster exclusively containing tumors harboring integrated BKPyV is defined by high expres-
sion of genes involved in DNA damage responses, cell cycle progression, angiogenesis, chromatin 
organization, mitotic spindle assembly, and chromosome condensation/separation as well as some 
genes associated with neuronal differentiation. Overall, these tumors have relatively low expression of 
keratins and genes associated with cell adhesion. Genes previously shown to be associated with cell 

https://doi.org/10.7554/eLife.82690
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Figure 3. BK polyomavirus (BKPyV) DNA, RNA, and large T antigen (LTag) detection in tumors. (A) Barplots showing the abundance of BKPyV DNA and 
RNA reads standardized to human reads (B) Barplots of histologically estimated percent tumor purity and Immunohistochemistry (IHC)-positivity for 
polyomavirus LTag expression. N.D. indicates no IHC image data were generated. (C) Representative coverage plots for BKPyV DNA (gray) and RNA 

Figure 3 continued on next page
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proliferation in bladder cancer, such as FGFR3, had significantly lower expression in BKPyV-positive 
tumors relative to virus-negative tumors. Notably, tumors harboring BKPyV had significantly higher 
average APOBEC3B expression compared to both normal tissues and tumors not containing any 
virus (Figure 4B). This observation is maintained after stratifying the cases by the germline variant, 
rs1014971, known to associate with increased APOBEC3B expression and bladder cancer risk with 
the highest average APOBEC3B expression observed in tumors with both BKPyV and two copies of 
rs1014971 (Figure 4—figure supplement 1).

In TBC03, the observed BKPyV integration into BCAR3 results in increased expression of the host 
gene. Further evaluation of RNA reads covering this region revealed a general enrichment of sense 
and antisense reads mapping to positions 93,688,393–93,704,476, corresponding to the amplified 
chromosomal region observed in the WGS dataset (Figure 4—figure supplement 2). There is an 
even greater enrichment of mapped reads between positions 93,694,469–93,696,857. No increases 
in expression in nearby host genes were observed for other cases and integration events.

Aside from integration-related copy number variants (CNVs), large-scale CNVs overall differed 
between BKPyV-positive and virus-negative tumors (Figure  5; Supplementary file 1g). BKPyV-
positive tumors showed moderate enrichments for gains of chromosome segments 1q, 2 p, 3 p, 7q, 
20q, and 22q, while losses of chromosome 2q, 6q, and 10q were also observed more frequently in 
BKPyV-positive tumors versus virus-negative tumors. Similar differences in copy numbers have been 
observed for virus-positive and virus-negative Merkel cell carcinoma (Starrett et al., 2020).

Features of other virus-positive tumors
In the cases that were positive for JCPyV, DNA, and RNA coverage depth was much lower than 
observed for BKPyV-positive tumors, and in several DNA-positive cases, JCPyV transcription was 
not detected (Figure 1). JCPyV reads were detected in three samples from case TBC12 including 
the primary tumor, tumor-positive lymph node, and adjacent normal bladder wall (Figure 1—figure 
supplement 2). IHC detected sparse LTag staining in JCPyV-positive case TBC13, but not in any tissue 
samples for TBC12.

For 2 of 3 cases harboring HPV types known to cause cervical cancer (HPV16 and HPV51), tran-
scripts encoding the E6 and E7 oncogenes were detected (Figure 1—figure supplement 3). In one 
HPV16+ case (TBC10), viral oncogene RNA expression was detected in both the primary and meta-
static specimens. A possible HPV51 integration event in TBC11 appears to have involved simple 
repeat sequences and retroelements (Figure 1—figure supplement 3). Lastly, one case harbored 
DNA sequences aligning to HPV20 and a single case harbored DNA aligning to HPV28; however, no 
RNA reads were detected for these cutaneous HPV types (Figure 1—figure supplement 3).

For the five TTV-positive tumors, the WGS analyses did not show evidence of integration. However, 
we were unable to assemble complete circular genomes for any of the TTVs. The missing segments 
all overlapped the GC-rich origin of replication that forms stable hairpins and is, therefore, relatively 
resistant to sequencing with standard Illumina technology (Tisza et al., 2020). All observed TTV ORF1 
sequences belonged to the Alphatorquevirus genus and had 51–100% amino acid identity to previ-
ously reported TTV strains (Supplementary file 1d).

Mutation signature analysis
The overall tumor mutation burden, as measured by non-synonymous mutations per million bases, 
did not show a clear correlation with the presence of viral sequences (Figure 6A). We analyzed likely 
somatic point mutations from all tumors and deconvoluted mutation signatures (Figure 6B and C, 
Figure 6—figure supplement 1). As expected for bladder cancer, we commonly observed single-base 

(red) in BKPyV-positive tumors. Relative copy numbers are indicated by colored boxes and highlight the borders of duplications and deletions in the 
viral genome. (D) Selected images for LTag IHC highlighting positive staining for BKPyV-positive tumors with scale bars representing 500 microns.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. BK polyomavirus (BKPyV) gene expression.

Figure supplement 2. Diagrams of the assembled BK polyomavirus (BKPyV) NCCR structures and rearrangements in tumors.

Figure supplement 3. T antigen immunohistochemistry (IHC) in BK polyomavirus (BKPyV)-positive tumors.

Figure 3 continued
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Figure 4. Differential gene expression in BK polyomavirus (BKPyV)-positive tumors. (A) Volcano plot of differential 
gene expression between BKPyV-positive and virus-negative tumors. Significantly differentially expressed genes 
(q-value <0.05, DESeq2) with a fold change greater than two are in red, and genes with a fold change less than 
two are in pink. Non-significant genes are in gray. (B) Variance stabilized counts for APOBEC3B expression from 

Figure 4 continued on next page
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substitution 2 (SBS2) and SBS13 (both characteristic of APOBEC3 mutagenesis, N=13 cases) and SBS5 
(associated with smoking history and ERCC2 mutations, N=11 cases).

Four tumors (TBC16, TBC28, TBC31, TBC33) carried a predominant SBS22 signature, which is 
caused by the chemical aristolochic acid found in the birthwort family of plants. Cases with this signa-
ture showed a very high mutational burden (Figure 6A). In support of the idea that cases with strong 
SBS22 signatures arose through environmental exposure, one such case, a kidney recipient, was 
previously diagnosed with Chinese herbal medicine nephropathy. The final deconvoluted signature 
closely matched the mutation spectrum caused by the deoxy-guanosine analog ganciclovir, which 
was recently identified in hematopoietic stem cell transplant recipients (Figure 6B; de Kanter et al., 
2021).

Recurrent somatic mutations
First, to address the reproducibility of mutation calls in deep sequencing of FFPE samples, we analyzed 
the sequences from two independent sections from separate blocks for three tumors (Figure 6D). 
Comparing the variants called in these tumors, 77–82% of inferred somatic mutations were common 
to both sections. Furthermore, a similar comparison showed a large percentage of variants in common 
between primary tumors and their metastases (Figure 6D). In TBC06, 84% of the likely somatic muta-
tions in the metastasis were found in the primary tumor, whereas only 28% of the likely somatic 
variants in the primary tumor were found in the metastasis. In an additional primary-metastatic pair 
(TBC34), we identified a similar proportion of shared ‘trunk’ mutations but the metastasis had more 
unique, likely somatic variants.

Numerous cellular genes were found to recurrently harbor nonsynonymous, nonsense, and frame-
shift mutations (Figure 6E). The spectrum of frequently mutated genes is similar to those reported 
in various types of urothelial carcinoma (e.g. mutations in KMT2D, KDM6A, and ARID1A) (Supple-
mentary file 1f; Robertson et al., 2017; Nassar et al., 2019; Su et al., 2021). No nonsynonymous 
mutations were identified in FGFR3 or PIK3CA, even though these genes are commonly mutated 
in non-muscle invasive bladder cancer (NMIBC) (Cancer et al., 2014). Mutations in TP53, which are 
common in muscle-invasive bladder cancer (Robertson et al., 2017), were detected in four tumors 
(Figure 6E). None of the HPV-positive tumors with WGS harbored mutations in TP53 or RB1. Similarly, 
none of the polyomavirus-positive tumors harbored mutations in RB1 and only TBC08 had a frameshift 
mutation in TP53.

Discussion
This report presents a comprehensive molecular assessment of 43 bladder cancers arising in solid 
organ transplant recipients by WGS and total RNA sequencing. DNA and/or RNA sequences of human 
BK or JC polyomaviruses were detected in 16 tumors (37%). Expression of the polyomavirus LTag was 
documented immunohistochemically in 10 cases. HPV sequences were detected in six cases, including 
four cases with HPV types known to cause cervical cancer. Overall, this is a much higher frequency of 
small DNA tumor virus sequence detection compared to prior surveys of bladder cancers affecting 
the general population, where fewer than 5% of tumors harbor small DNA tumor virus sequences 
(Cantalupo et  al., 2018; Llewellyn et  al., 2018). The results suggest that human polyomaviruses 

DESeq2 grouped by normal tissues, virus-negative tumors, and BKPyV-positive tumors showing significantly 
increased expression in BKPyV-positive tumors (Mann-Whitney U test). TBC01 is indicated by a red dot. (C) 
Heatmap of Z-scores of significantly differentially expressed genes and genes relevant to bladder cancer grouped 
by gene ontology. High expression is red, low expression is blue. Tumors names are colored by likely etiology: 
BKPyV-positive, red; JC polyomavirus (JCPyV)-positive, goldenrod; HR-HPV-positive, blue; torque teno virus (TTV)-
positive, green; aristolochic acid, purple; undetermined, black; multiple colors reflect multiple detected viruses or 
etiologies. Tumors with evidence of integration are in italics. BKPyV LTag expression is shown as log10(transcripts 
per million [TPM]).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. APOBEC3B germline variant and expression by BK polyomavirus (BKPyV) status.

Figure supplement 2. Host transcripts from the BK polyomavirus (BKPyV) integration site at BCAR3.

Figure 4 continued
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Figure 5. Copy number variants. Frequency plots for large copy number variants in BK polyomavirus (BKPyV)-positive tumors (panel A) and virus-
negative tumors (panel C). Frequency of gains/amplifications is shown in red; losses/deletions are shown in blue. Sample level copy number variant 
spectra for BKPyV-positive tumors (panel B), virus-negative tumors (panel D), and all other tumors (panel E). Complete deletions are in dark blue and 
high copy amplifications are in red.
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Figure 6. Somatic point mutations and mutation signature analysis. (A) Tumor mutation burden (TMB, non-
synonymous mutations per million bases) for each tumor in this study. Bars are colored by viral positivity (red, 
BK polyomavirus (BKPyV); green, TTV; blue, HR-HPV; goldenrod, JC polyomavirus (JCPyV)) or etiologic agent 
(aristolochic acid, purple; black, undetermined). Multiple colors reflect multiple detected viruses or etiologies. (B) 

Figure 6 continued on next page
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and papillomaviruses can play a carcinogenic role in the development of bladder cancer, particularly 
among transplant recipients.

BKPyV infection in organotypic urothelial cell culture has been shown to promote cellular prolifer-
ation (Schneidewind et al., 2020). This is most likely through the transforming effects of viral T anti-
gens, as is supported here and in previous studies by the loss of late region transcripts and enrichment 
of early region transcription in primary tumors, and maintenance of these transcripts in metastatic 
lesions (Müller et al., 2018). Interestingly, we observed frequent clonal loss of the p53-inactivating 
helicase domain of BKPyV LTag due to deletions and point mutations in the integrated virus. While 
such deletions in LTag are commonly observed in MCPyV-positive Merkel cell carcinoma (Shuda et al., 
2008), MCPyV LTag lacks the p53-inactivating activity of the C-terminal helicase domain of BKPyV. 
One might thus have expected the C-terminal portion of BKPyV LTag to be preserved in tumor cells. 
We speculate that the loss of the BKPyV helicase domain is driven by negative selection against dele-
terious effects of LTag on tumor survival (e.g. LTag might unwind the integrated BKPyV origin of repli-
cation and initiate ‘onion skin’ DNA structures leading to chromosomal instability and cell death). The 
absence of the p53-binding domain may be compensated for in some BKPyV-positive tumors through 
the significantly increased expression of the ubiquitin ligase TRIM71 that we observed. TRIM71 has 
been shown to bind and poly-ubiquitinate p53 for proteasomal degradation and prevent apoptosis 
during stem cell differentiation (Nguyen et al., 2017).

We also observed amplification of the host genome surrounding BKPyV integration sites, consis-
tent with circular DNA intermediates and/or MMEJ break-induced replication. Similar findings have 
been reported for HPV and MCPyV-associated tumors (Starrett et al., 2020; Czech-Sioli et al., 2020). 
These amplification events result in a variable number of tandem head-to-tail copies of the virus 
and host genome that are thought to create super-enhancers affecting viral and host gene expres-
sion (Warburton et al., 2018; Dooley et al., 2016). In cervical cancer, frequently only one integra-
tion event is transcriptionally active; however, in tumors carrying integrated BKPyV sequences, the 
abundance of viral DNA and RNA are positively correlated, suggesting that each integrated copy 
produces viral transcripts. While the observed integration sites in this study are unique and have not 
been observed in Merkel cell carcinoma, HPV16 integration has been reported previously in BCAR3 
(Jeannot et al., 2018). Elevated expression of BCAR3 has been shown to increase the proliferation, 
motility, and invasiveness of estrogen receptor-positive breast cancer cells after treatment with anti-
estrogens (Wallez et al., 2014; Wilson et al., 2013).

In five tumors harboring integrated BKPyV sequences (TBC02, TBC03, TBC05, TBC06, and TBC08), 
we observed significant upregulation of genes associated with cell cycle progression, DNA damage, 
histones, and the mitotic spindle. Tumors with evidence of BKPyV integration also exhibited significant 
downregulation of keratins and cell adhesion genes. The latter may contribute to the high-grade and 
invasive behavior of BKPyV-positive tumors observed in this study and others (Alexiev et al., 2013; 
Sirohi et al., 2018; Kenan et al., 2015; Kenan et al., 2017; Nickeleit et al., 2018).

Many of the observed gene expression changes are consistent with known effects of BKPyV infec-
tion and the specific activities of LTag, which binds Rb-family proteins and alters the active pool of E2F 
transcription factors in the cell (Caller et al., 2019; Harris et al., 1996). Recent studies have shown that 
APOBEC3B expression is repressed by the DREAM complex (which is composed of Rb-family proteins 

Barplots of the contribution of each trinucleotide substitution for the four deconvoluted signatures with the likely 
mutation process indicated. (C) Proportion of each deconvoluted signature that contributes to each sample with 
virus status indicated by colored circles (red, BKPyV; green, TTV; blue, HR-HPV; goldenrod, JCPyV). (D) Number of 
unique and common trunk mutations in primary-metastatic tumor pairs and tumors with multi-region sequencing. 
For TBC03, TBC09, and TBC28, branches one and two refer to two separate areas of the same tumor. For TBC06 
and TBC34, branches P and M refer to the primary tumor and metastasis, respectively. (E) Oncoprint for the 
top mutated genes in bladder cancers of transplant patients. Tumors IDs are colored by likely etiology: BKPyV-
positive, red; JCPyV-positive, goldenrod; HR-HPV-positive, blue; TTV-positive, green; aristolochic acid, purple; 
undetermined, black. The percent of modified tumors is shown on the left and the count of the variants in each 
gene is represented by the barplot on the right.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Mutations signature deconvolution.

Figure 6 continued
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and E2F transcription factors Starrett et al., 2019) and, accordingly, we found that APOBEC3B is 
more highly expressed in BKPyV-positive tumors compared to normal tissues and tumors without 
tumor virus sequences, likely due to LTag activity. However, despite this increased expression, the 
mutation signature commonly attributed to APOBEC3B did not appear enriched in BKPyV-positive 
tumors. It is possible that tumors expressing BKPyV LTag and increased APOBEC3B manifested 
greater intratumor mutational heterogeneity, but we were unable to detect possible low-frequency 
APOBEC3-mediated variants from FFPE tissue without deeper and more accurate sequencing. Addi-
tionally, consistent with the disruption of the DREAM complex in these tumors, we observed higher 
expression of MYBL2, a key component of the MMB complex, and one of its targets, FOXM1, which 
regulates numerous genes required for G2/M progression. We also observed increased expression 
of FOXM1 downstream targets associated with the centromere and kinetochore, which have been 
shown to promote improper chromosome segregation and tumorigenesis (Fischer and Müller, 2017; 
Sadasivam et al., 2012; Schade et al., 2019).

BKPyV-positive tumors in our study had significantly higher expression of a number of genes that 
promote homologous recombination (e.g. RAD51, RAD54L, BRCA1, and BRCA2) and protect against 
replication fork stalling and collapse (e.g. RAD51, XRCC2, and FANCB) relative to virus-negative 
tumors (Tye et al., 2021). Claspin (CLSPN) and TIMELESS, which interact with replicative polymerases 
and helicases, are also highly expressed in BKPyV-positive tumors, further promoting replication fork 
progression and genome stability (Bianco et al., 2019). This expression pattern might promote cell 
survival in the face of genomic damage caused by viral genome integration, oncogene expression, 
and APOBEC3B upregulation.

While HPVs are not generally considered causative agents of bladder cancer, they have been 
detected in rare cases of bladder cancer affecting immunocompetent and immunosuppressed 
patients (Zapatka et al., 2020; Cantalupo et al., 2018; Guma et al., 2016). In the current study, we 
identified four tumors with carcinogenic Alphapapillomavirus sequences (HPV16 or HPV51). Alpha-
papillomaviruses are believed to cause cancer through the sustained expression of their E6 and E7 
oncoproteins, which is frequently associated with the integration of the papillomavirus genome into 
the tumor genome.

One case in the panel carried sequences of HPV20, a Betapapillomavirus that can cause cutaneous 
squamous cell carcinoma in animal model systems (Michel et al., 2006). The possible involvement of 
Betapapillomaviruses in skin cancer in the general population remains controversial (Viarisio et al., 
2018). In epidermodysplasia verruciformis, a rare syndrome caused by defects in zinc-binding proteins 
EVER1 and EVER2, patients frequently develop non-melanoma skin cancers containing Betapapil-
lomaviruses (Dell’Oste et al., 2009). Expression of E6 and E7 from Betapapillomaviruses has been 
shown to promote cell survival in the face of ultraviolet radiation damage and other carcinogenic 
insults (Michel et al., 2006; Viarisio et al., 2018; Viarisio et al., 2016). In the context of bladder 
cancer, it is possible that cutaneous papillomaviruses likewise enable the accumulation of carcinogenic 
DNA damage. Additionally, the identification of HPV28, an Alphapapillomavirus that is not generally 
associated with cervical cancer, suggests more abundant papillomavirus infections of the bladder than 
previously assumed, with unknown implications for carcinogenesis.

An explanation for the observation that viruses are more prevalent in bladder cancers affecting 
solid organ transplant recipients compared to cases in the general population is that, in combination 
with immune suppression, transplant recipients may often become newly infected through transmis-
sion from the donor graft at the time of transplantation, perhaps with a different viral genotype than 
present in the host previously. This phenomenon is commonly observed in kidney transplantation and 
is associated with BKVN (Solis et al., 2018), but has not been documented for heart, lung, or liver 
transplant recipients, who are also included in the current study. Additionally, this study and one prior 
study (Querido et al., 2020) identified JCPyV in bladder tumors. Based on the high degree of simi-
larity between JCPyV and BKPyV, it seems reasonable to expect that the two species would behave 
similarly. However, the low abundance of JCPyV RNA and DNA in these specimens and the absence 
of integration, together with the ubiquity of latent JCPyV infections in the urinary tract, raises the 
possibility that these observations reflect incidental detection events.

The data from this study and others suggest that in the context of strong immune the suppression 
BKPyV can cause bladder cancer through clonal integration but is rarely detected in tumors of the 
general population. While most adults are seropositive for BKPyV, with at least 10% having detectable 

https://doi.org/10.7554/eLife.82690
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BKPyV in the urine, BKPyV is only observed in upwards of 4% of NMIBC cases and less than 0.25% in 
muscle-invasive bladder cancers in the general population (Cantalupo et al., 2018; Llewellyn et al., 
2018). This implies that, while BKPyV LTag can provide a growth advantage to cells in culture, the large 
multi-domain antigen may be relatively immunogenic compared to the much smaller oncoproteins 
encoded by high-risk HPVs or the highly truncated MCPyV LTag isoforms typically observed in Merkel 
cell carcinomas. Immunologic recognition of these tumors may also be impacted by the increased 
expression of APOBEC3B, which can generate immunogenic neoantigens (Serebrenik et al., 2019; 
Chen et al., 2019). Several reports of regression of patients’ BKPyV-positive tumors after reduction 
of immune suppression support the idea that tumors constitutively expressing BKPyV gene products 
are readily targeted and controlled by the immune system (Meier et al., 2021; Cuenca et al., 2020; 
Fu et al., 2018). The theoretical immunological costs of viral gene expression for a nascent tumor cell 
raise the possibility of ‘hit-and-run’ carcinogenesis. The hit-and-run hypothesis invokes the idea that 
a virus may play a causal role in the early stages of carcinogenesis but then become undetectable at 
more advanced stages of tumor development. Infection of a premalignant cell may promote its growth 
and survival through the expression of the viral oncogenes. Additionally, the expression of viral onco-
genes may promote genome instability through the expression of the mutagenic APOBEC3 enzymes 
or other mechanisms that further push the cell towards transformation, as has been suggested by a 
recent study of BKPyV infection in differentiated urothelium (Baker et al., 2022).

The heterogeneous expression of LTag observed in this study could represent transcriptional 
silencing or loss of BKPyV DNA from one part of the tumor, supporting the idea that tumors can 
lose the need for LTag expression. Alternatively, our observations could be accounted for by a multi-
stage integration and carcinogenesis process proposed by other recent studies on BKPyV-positive 
urinary tumors from kidney transplant recipients (Jin et al., 2021; Wang et al., 2020). However, our 
sequencing experiments support a dominant clonally integrated form likely established early during 
tumor development in most BKPyV-positive tumors in this study. The only exception to this observa-
tion is TBC01, which appears to exhibit a viable BKPyV episome with a rearranged regulatory region 
present in a small subset of tumor cells. This tumor likely represents a passenger infection of an 
existing tumor (Dalianis and Hirsch, 2013). Future studies should investigate the hypothesis that 
passenger infections might play an oncomodulatory role in tumor development. This also suggests 
that archetypal BKPyV, rather than the more pathogenic rearranged strains found in cases of nephrop-
athy, is more likely to integrate and be preserved into nascent tumor cells. In support of the idea that 
integration may be a more common aspect of BKPyV infection than previously assumed, we identified 
a clonal BKPyV integrant in the normal bladder specimen from case TBC09 in both the RNA and WGS 
sequencing that was distinct from the BKPyV integrant observed in the tumor sample. The normal 
tissue integrant had multiple copies of small T antigen and a large deletion in the regulatory regions 
(Figure 1—figure supplement 1). Only a few reads from RNA sequencing mapped to the small T 
antigen region, and histology of the section indicates no tumor cells or LTag staining, suggesting that 
the virus did not integrate into the right genomic location or maintain the needed components to 
drive carcinogenesis.

It remains to be seen whether TTVs contribute to disease in the context of immune suppression. 
A general model is that these ubiquitous viruses establish a chronic infection that the immune system 
generally keeps in check, but immune suppression results in increases not only in the abundance 
but also in the diversity of TTVs observed in hosts (De Vlaminck et al., 2013). Indeed, the detection 
of TTVs can serve as an indicator of the degree of overall immune suppression in transplant recipi-
ents (Blatter et al., 2018). Interestingly, these viruses, like papillomaviruses and polyomaviruses, also 
appear to be depleted for APOBEC3 target motifs, consistent with the effects of an evolutionary virus-
host arms race (Poulain et al., 2020; Verhalen et al., 2016; Warren et al., 2015a).

Until recently, this type of molecular assessment from FFPE tissues would have been nearly impos-
sible or badly muddled by the highly damaging effects of formalin fixation and oxidation of nucleic 
acids over time. Recent advancements in the isolation of nucleic acids, such as low temperature 
and organic solvent-free deparaffinization, combined with efficient library preparation from low-
concentration highly degraded sources, yielded sufficiently high-quality material for WGS variant 
calling and total RNA sequencing (Robbe et al., 2018). To address the difficulty of accurately calling 
somatic variants (which can be problematic even from flash-frozen or fresh tissues), we called vari-
ants using the consensus of three modern variant callers. The lack of matched normal tissues for 
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most cases is a limitation of this work, but our analytical approach accounted for this by focusing the 
analysis on mutations with >10% allele frequency and those with potential functional effects, and by 
excluding known germline variants. Our methods were validated internally through the sequencing of 
separate regions from the same tumor and of primary-metastatic pairs, which reveal similar concor-
dance of mutations as has been reported from flash-frozen tissues (Zhang et al., 2014). Our variant 
calling approach was also validated by the observation that we detected four deconvoluted mutation 
signatures that match those expected from prior surveys of bladder cancer. However, the low overall 
coverage of our WGS remains a limitation of this study.

We identified four bladder cancers in kidney transplant recipients that exhibited abundant muta-
tions attributable to aristolochic acid-mediated DNA adducts. Aristolochic acid is a highly nephrotoxic 
and mutagenic compound produced by birthwort plants, which sometimes contaminates certain types 
of herbal medicines and grains (Poon et al., 2015). Exposure to this compound likely contributed to 
the patients’ need for kidney transplantation, as well as their eventual development of bladder cancer. 
Highlighting the highly mutagenic nature of this compound, the four cases with dominant aristolochic 
acid signatures were in the top seven for total mutation burden (Figure 6). None of the three tumors 
had detectable oncogenic viral sequences, but one had detectable TTV. We also identified likely 
ganciclovir-mediated mutations (de Kanter et al., 2021) in most patients indicating that this common 
treatment to prevent reactivation of cytomegalovirus in solid organ transplant recipients may promote 
mutagenesis in the urinary bladder. Unfortunately, ganciclovir treatment history was unavailable to 
confirm that this is the origin of this mutation signature in these cases. Ever-decreasing sequencing 
costs will facilitate additional studies of this type and shed light on rare and understudied tumor types, 
as well as analyses of lower-grade and pre-cancerous lesions.

Materials and methods
Sample acquisition and ethics
The Transplant Cancer Match (TCM) Study is a linkage of the US national solid organ transplant registry 
with multiple central cancer registries (https://transplantmatch.cancer.gov/). We used data from this 
linkage to identify cases of in situ or invasive bladder cancer diagnosed among transplant recipients. 
Staff at five participating cancer registries (California, Connecticut, Hawaii, Iowa, Kentucky) worked 
with hospitals in their catchment areas to retrieve archived pathology materials for selected cases.

We obtained twenty 10 micron sections from formal-fixed paraffin-embedded (FFPE) blocks for 
each specimen with available material. At each originating institution, the microtome blade was 
cleaned with nuclease-free water and ethanol between samples. Single 5  micron sections leading 
and trailing the twenty sections used for nucleic acid isolation were saved for histochemistry and one 
additional section was used for immunohistochemistry. Hematoxylin and eosin-stained sections were 
reviewed by a trained pathologist and tumor purity was determined by cellular morphology.

Nucleic acid isolation
Samples were simultaneously deparaffinized and digested using 400 µL molecular-grade mineral oil 
(Millipore-Sigma) and 255 µL Buffer ATL (Qiagen) supplemented with 45 µL of proteinase K (Qiagen). 
Samples were incubated overnight at 65 °C in a shaking heat block. Samples were spun at 16,000 × g 
in a tabletop microcentrifuge for one minute to separate the organic and aqueous phases. Depending 
on the presence of visible remaining tissue, some samples were subjected to one or two additional 2 
hr long digests by the addition of 25 µL of fresh proteinase K buffer. Lysates were stored at 4 °C until 
RNA or DNA isolation and processed within one month.

Lysates were spun at 16,000 × g in a tabletop microcentrifuge for one minute. For DNA isolation, 
150 µL of supernatant was moved to a new 1.5 mL tube. 490 µL of binding buffer PM (Qiagen) and 10 µL 
of 3 M sodium acetate were added to the lysate. The mixture was then added to a Qiaquick spin column 
and spun at 16,000 × g for 30 s. Flow-through was reapplied to the spin column for complete binding. 
The column was washed first with 750 µL of Buffer PE (Qiagen) and then 750 µL of 80% ethanol, spinning 
at 16,000 × g for 30 s and discarding flow-through each time. The column was dried by spinning it at 
16,000 × g for 5 min. Collection tubes were discarded, and the column was moved to a new microcen-
trifuge tube. 50 µL of pre-warmed, 65 °C 10% buffer EB was applied to the column and incubated for 
1 min. The tube was then spun at 16,000 x g for 2 min. DNA quantity and quality were assessed by Qubit 

https://doi.org/10.7554/eLife.82690
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(Thermo Fisher) and spectrophotometry (DeNovix). DNA was stored at –20  °C until used for library 
preparation. Only samples with greater than 50 ng of DNA were processed for library prep.

For RNA isolation, 150 µL of the remaining clarified lysate was moved to a new tube. 250 µL of 
buffer PKD (Qiagen) was added and vortexed to mix. The remainder of the RNA extraction process 
was carried out using an RNeasy FFPE Kit (Qiagen) according to the manufacturer’s protocol. RNA 
quantity and quality were assessed by spectrophotometry (DeNovix) and TapeStation (Agilent).

Immunohistochemistry
FFPE 5 µm thick tissue sections mounted on charged glass slides were stained with antibody against 
Large T Antigen, clone PAb416 (Sigma Millipore, cat. DP02), which detects LTag from multiple poly-
omaviruses, including SV40, BKPyV, JCPyV, WU, KI, 6, 7, 10, and 11 (Toptan et al., 2016). Slides were 
baked in a laboratory oven at 60  °C for 1 hr prior to immunostaining on Ventana Discovery Ultra 
automated IHC stainer upon following conditions: CC2 (pH9) antigen retrieval for 64 min at 96 °C, 
antibody at concentration 0.5 µg/ml in Agilent antibody diluent (cat. S3022) for 32 min at 36 °C, Anti-
Mouse HQ-Anti HQ HRP detection system for 12 min with DAB for 4 min and Hematoxylin II coun-
terstain for 8 min. After washing per manufacturer’s instructions, slides were incubated in tap water 
for 10  min, dehydrated in ethanol, cleared in xylene, coverslipped with Micromount media (Leica 
Biosystems), and scanned on AT2 slide scanner (Leica Biosystems) for pathology review. FFPE sections 
of cell pellets transfected with LTag and commercial slides of SV40 infected tissue (Sigma, cat. 351 S) 
were used as positive controls.

Library preparation and sequencing
50–250  ng of isolated DNA was fragmented in microtube-50 using a Covaris sonicator with the 
following settings: peak power: 100, duty factor: 30, cycles/burst: 1000, time: 108 s. End-repair and 
A-tailing were performed on fragmented DNA using the KAPA HyperPrep Kit (Roche). NEB/Illumina 
adaptors were ligated onto fragments with KAPA T4 DNA Ligase for 2 hr at 20 °C then treated with 
4 µL USER enzyme (NEB) for 15 min at 37 °C to digest uracil-containing fragments. Ligation reactions 
were cleaned up using 0.8 x AMPure XP beads using the KAPA protocol. NEB dual-index oligos were 
added to the adaptor-ligated fragments and amplified for 6–8 cycles (depending on the amount of 
input fragmented DNA) using KAPA HiFi HotStart ReadyMix (Roche). Final amplified libraries were 
cleaned using 1  x AMPure beads with the recommended KAPA protocol. Ribosomal sequence-
depleted cDNA libraries were prepared using 50 ng of total RNA with the SMARTer Stranded Total 
RNA-Seq Kit v2 – Pico Input Mammalian (Takara) following the manufacturer’s instructions for FFPE 
tissues. Final RNA and DNA libraries were assessed for size and quantity by Agilent TapeStation. Only 
samples that yielded libraries greater than 5 nM were sequenced.

DNA libraries were sequenced on the Illumina NovaSeq 6000 at the Center for Cancer Research 
(CCR) Sequencing Facility. RNA libraries were sequenced on the Illumina NovaSeq 6000 and NextSeq 
550 in high output mode at the CCR Genomics Core. Sequencing metrics are reported in Supplemen-
tary file 1b.

Sequence alignments
Reads were trimmed using Trim Galore 0.6.0 with default settings. RNA reads was initially aligned 
using STAR aligner 2.5.3ab (Dobin et al., 2013) against a fusion reference human genome containing 
hg38, all human viruses represented in RefSeq as of December 2018 (Supplementary file 1c), and all 
papillomavirus genomes from PaVE https://pave.niaid.nih.gov (Van Doorslaer et al., 2017). Default 
parameters were used with the following exceptions: chimSegmentMin = 50, outFilterMultimapNmax 
= 1200, outFilterMismatchNmax = 30, outFilterMismatchNoverLmax = 1. Any reads that had less than 
30 bp of perfect identity were excluded. Trimmed DNA reads were aligned with Bowtie2 (2.3.4.3) 
using the --very-sensitive setting to the same reference genome as mentioned above excluding 
RNA viruses (Langmead and Salzberg, 2012). Alignments were sorted and duplicate sequences were 
flagged using Picard 2.20.5. Indel realignments and base quality recalculations were conducted using 
GATK.

Virus detection and integration analysis
All WGS reads not mapping to the human genome were de novo assembled using MEGAHIT 
(1.1.4) with default parameters (Li et  al., 2015). All trimmed RNA reads were assembled using 

https://doi.org/10.7554/eLife.82690
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RNASPAdes (Bushmanova et al., 2019). Assembled contigs were annotated using BLASTn and 
BLASTx against the NCBI nt database (October 2021) for closely related species, and Cenote-
Taker2 version 2.1.2 (https://github.com/mtisza1/Cenote-Taker2; Tisza, 2021) was used to identify 
more divergent species in contigs ≥1000 bp (Tisza et al., 2021). Depth and breadth of coverage of 
viral species were normalized by the total number of human reads and length of the viral genome. 
Only species with ≥10% genome coverage and a normalized depth ≥10 for a viral genome in a 
given sample were considered as hits. Viral read k-mers were cross-compared against samples for 
uniqueness to identify index hopping or potential contamination between samples. Rearrange-
ments in the BKPyV regulatory region were analyzed and annotated using BKTyper (Martí-Carreras 
et al., 2020).

Bam alignments were input into Oncovirus Tools (https://github.com/gstarrett/oncovirus_tools) to 
call integration sites (Starrett et al., 2020; Starrett, 2020). It starts by extracting discordant read 
pairs (where one read aligns to a sequence of interest, i.e., virus, and the mated read aligns to the 
human genome) and any remaining reads aligned to the human genome that contain at least one 
25 bp k-mer from the input sequences of interest as determined by a Bloom filter. It uses the human 
genomic coordinates from the above reads to identify putative integration regions by merging their 
stranded mapping positions to find overlaps, counting the number of reads per stranded region. 
Oncovirus Tools then assembles the extracted reads, together with all unaligned reads, using Spades 
(Bankevich et  al., 2012). The resulting assembly graphs are annotated with the human and viral 
genomes using BLASTn and the annotated assembly graphs are plotted using the R package ggraph. 
The output is then screened for contigs containing both human and viral hits with BLASTn e-values 
below 1e-10. Based on these hits, integration junctions are called and overlaps in host-virus hit on the 
contigs are then screened for microhomology. All putative integration sites from Oncovirus Tools were 
manually validated by returning to the original alignment file.

Transcriptome clustering and differential gene expression analysis
Counts from STAR were input into R and normalized using the DESeq2 vst function (Love et al., 2014). 
The DESeq2 model was built using the following factor: tissue type (normal, primary, metastasis), 
grade, stage, and virus status to evaluate their effects on gene expression. Since the RNA seq libraries 
were prepared in different batches on different days and in different sequencing runs, batch effects 
were removed using the R package limma and the function RemoveBatchEffects. These normalized 
counts were input into the R package ConsensusClusterPlus. Pathway analysis was conducted using 
Enrichr (https://amp.pharm.mssm.edu/Enrichr) (Kuleshov et al., 2016; Chen et al., 2013).

Somatic point mutation, structural variant, and copy number variant 
calling
Point mutations were called using Mutect2, VarScan2, and lofreq with default parameters (Koboldt 
et al., 2012; Wilm et al., 2012). Consensus calls between these variant callers were performed using 
SomaticSeq (3.3.0) (Fang et al., 2015). Likely germline variants were annotated and removed using 
SnpSift and dbSNP v152. Likely somatic point mutations were further filtered by the following criteria: 
SomatiqSeq PASS filter, ≥10% allele frequency, ≥4 reads supporting the variant allele, and ≥8 reads 
of total coverage of that position. Common mutations in cancer were annotated using SnpSift and 
COSMIC. Somatic mutations enrichment by gene was determined using the R package dNdScv. Copy 
number variants in tumor WGS datasets were called using GATK4 CNV to compare them to a panel 
comprised of the normal-tissue WGS datasets generated in this study. Recurrent copy number vari-
ants within polyomavirus-containing tumors or tumors with no virus were determined using GISTIC2 
with default parameters. Visualization and variant calling for BKPyV were performed on alignments 
against a BKPyV genotype Ib-2 isolate (accession number: AB369087.1).

Mutation signature analysis
Mutation signature analysis was conducted using the likely somatic variants passing all the above 
criteria. Mutational Patterns and Somatic Signatures R packages were used for de novo somatic muta-
tions signature analysis.

https://doi.org/10.7554/eLife.82690
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Data visualization
All graphs were made in the R statistical environment (4.0.3) using the package ggplot2 or using 
GraphPad Prism.
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