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Abstract
Personal thermal comfort models are a paradigm shift in predicting how building oc-
cupants perceive their thermal environment. Previous work has critical limitations 
related to the length of the data collected and the diversity of spaces. This paper 
outlines a longitudinal field study comprising 20 participants who answered Right-
Here-Right-Now surveys using a smartwatch for 180 days. We collected more than 
1080 field-based surveys per participant. Surveys were matched with environmental 
and physiological measured variables collected indoors in their homes and offices. 
We then trained and tested seven machine learning models per participant to predict 
their thermal preferences. Participants indicated 58% of the time to want no change in 
their thermal environment despite completing 75% of these surveys at temperatures 
higher than 26.6°C. All but one personal comfort model had a median prediction accu-
racy of 0.78 (F1-score). Skin, indoor, near body temperatures, and heart rate were the 
most valuable variables for accurate prediction. We found that ≈250–300 data points 
per participant were needed for accurate prediction. We, however, identified strate-
gies to significantly reduce this number. Our study provides quantitative evidence on 
how to improve the accuracy of personal comfort models, prove the benefits of using 
wearable devices to predict thermal preference, and validate results from previous 
studies.

K E Y W O R D S
ecological momentary assessment, internet of things (IoT), machine learning, personal thermal 
comfort model, skin temperature

1  |  INTRODUC TION

Occupant thermal comfort significantly affects how people perceive 
their indoor environment, and thermal dissatisfaction is an ongoing 
challenge. Evidence shows that approximately 40% of the 90 000 
surveyed occupants in North America were dissatisfied with their 
thermal environment.1 Thermal comfort models are designed to 
predict comfort toward addressing this challenge. All major ther-
mal comfort standards have models that are considered aggregate 

in nature.2,3 All mainstream aggregate models aim to predict how 
a “typical” person or a group of people would perceive their ther-
mal environment in terms of given environmental (e.g., relative hu-
midity, indoor air temperature [ti]), and personal (i.e., clothing and 
metabolic rate) parameters. For example, the Predicted Mean Vote 
(PMV) predicts the average thermal sensation of a group of people 
sharing the same environment, as an outcome of the heat transfer 
balance model between the human body and its surrounding envi-
ronment. The PMV was developed through laboratory experiments 
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by Fanger,4 and is now included in both the ISO 7730:20052 and 
ASHRAE 55-2020 Standards.3

1.1  |  Limitations of aggregate models

Both the PMV and the adaptive models have several limitations 
when used to control the temperature in buildings,5-7 despite 
their successful adoption into international standards. (1) Required 
inputs—In real buildings, it is extremely challenging to accurately 
measure some input variables needed to calculate PMV, such as 
metabolic rate, clothing, airspeed, and mean radiant temperature.8 
(2) Prediction accuracy—Even when all input variables are accurately 
measured, these models have poor accuracy both in predicting 
group and individual thermal comfort.9 (3) Training—Aggregate mod-
els do not adapt or re-learn.6 They were developed using fixed and 
limited datasets and did not benefit from new feedback provided 
by people. They do not learn and adapt to specific conditions.5 (4) 
Limited inputs—Aggregate models only use a small set of input vari-
ables. They do not use variables, such as skin temperature (tsk), heart 
rate (HR), age, or health status, that may affect the thermal percep-
tions of people.5

1.2  |  The emergence of personal comfort models

Personal comfort models challenge the one-size-fits-all approach of 
aggregate models. Instead of an average response from a group of 
people, a single model is trained and tested for each participant. 
Personal comfort models are, however, not limited to predicting one 
person's thermal preference. Their aggregated outputs can be used 
to predict the thermal preference of a large group of people sharing 
the same environment.5 Since their introduction, personal comfort 
models have been expanded to leverage data collected using a wide 
array of sensors, including portable sensors and devices,10,11 build-
ing management systems,12,13 personal comfort systems,14 as well 
as onboard sensors in wearable devices and smartphones. This net-
work of sensors can remotely and non-intrusively measure, log and 
store spatiotemporal environmental and physiological data.

Wearable devices have increased the viability of personal model 
development due to the use of physiological sensors to improve 
model accuracy. For example, skin temperature (tsk) reflects the va-
somotor tone15 while heart rate correlates with activity levels. This 
is supported by previous research that has shown that the use of tsk 
as an independent variable can improve the prediction accuracy of 
thermal comfort models.16-21 In certain applications, tsk may be even 
determined using non-contact sensors like infrared.22-24 However, it 
is essential to emphasize that non-contact sensors are less accurate 
than those that are in direct contact with the skin; they can only 
monitor tsk from body areas that are in the line of sight to the camera 
and are expensive to install.6 They, however, do not require having a 
sensor to be worn by people. Experimental methodologies collect-
ing tsk are common and iButtons sensors are often used. They can 

accurately measure and log tsk.
25-27 Currently, most smartwatches 

on the market can measure HR with sufficient accuracy for thermal 
comfort research; however, none incorporate sufficiently accurate 
skin temperature sensors.18

1.3  |  Limitations of personal comfort models

Despite the momentum of personal comfort models, there are still 
several unknowns and limitations as outlined in a recent review.28 
This analysis pinpoints a lack of diversity in space types, climates, 
and conditions used to train personal comfort models. The review 
showed that only 3 out of 37 studies selected for analysis included 
data collection outside office spaces or lab-based thermal chambers 
used to emulate an office environment.28 Another limitation is that 
there was a wide range of the amount of longitudinal data collected 
in the studies, with anywhere between 8 and 416 points collected 
per person. Researchers placed little emphasis on whether the 
length and data amount were exhaustive in capturing the predict-
ability of an individual. In addition, in personal comfort model ex-
periments, it is not common or easy to log and measure information 
about the participant's dynamic personal factors such as clothing or 
activity levels.29 Addressing the lack of diversity and the amount of 
data is not easy due to experimental constraints.

One of the biggest challenges that researchers currently face 
is recording how people perceive their thermal environment over 
a long period of time while minimizing the fatigue of completing a 
Right-Here-Right-Now (RHRN) thermal comfort survey. To partially 
solve this issue, Kim et al.30 tried to infer occupants' thermal pref-
erences by analyzing specific behaviors, such as turning on and off 
heating and cooling devices. They then coupled these data with 
environmental readings to infer a user's preferences without them 
having to complete a survey. However, thermal actions may be trig-
gered by other reasons besides thermal discomfort; for example, 

Practical implications

In addition to demonstrating the advantages of employing 
wearable technology to gather subjective feedback from 
people, our study validates the findings from earlier re-
search and offers quantitative evidence on how to increase 
the precision of personal comfort models. Our methodol-
ogy and results can be used in buildings to develop and im-
plement occupants centric controls. This enables building 
operators to enhance thermal comfort conditions indoors 
while possibly reducing the overall energy consumption of 
the building. We made the decision to openly publish our 
data so that others might use it to test various assump-
tions or create personal comfort models utilizing various 
methodologies.



    |  3 of 16TARTARINI et al.

Kim et al.30 found that users turn on the heating element in their 
chair to mitigate back pain.

1.4  |  Improving personal comfort models through 
larger and more diverse longitudinal data

To address the limitations mentioned above, an emerging method-
ology focuses on the use of wearable devices to collect physiologi-
cal data and act as the subjective feedback collection interface. This 
method builds upon research in the area of Ecological Momentary 
Assessments (EMA), a form of collecting subjective information in di-
verse field-based settings.31 A style of this methodology emerging as 
a popular way to reduce the incidence of survey fatigue is micro-EMA, 
in which smartwatches are used to prompt a research participant to 
leave feedback in a fast and time-efficient manner.32 Micro-EMA has 
been shown to deliver higher response rates with a lower burden 
on research participants than a smartphone or computer-based sur-
vey.33 To build upon this foundation and help solve the issue of col-
lecting perception data from people, our team has contributed to the 
development of the micro-EMA Cozie project that targets indoor oc-
cupant data collection.34,35 Cozie is an open-source application that 
one can install on Fitbit (Versa 2 and Ionic) or Apple smartwatches. 
The platform has been utilized in previous studies to test the im-
plementation and modelling of smartwatch-based subjective data 
collection,36-38 study thermal preference, imbalanced classes,39 and 
create personal comfort models using building information model 
components as inputs.40 One can find more information about Cozie 
and the official documentation at https://cozie.app and https://cozie​
-apple.com. Cozie allows people to conveniently complete an RHRN 
survey via their smartwatches. Subjects' perceptions, preferences, 
and behaviors collected via Cozie can then be coupled with environ-
mental data collected from wireless sensing devices and physiologi-
cal data collected by the smartwatch.

1.5  |  Aim and objectives

Our research aims to resolve gaps in personal thermal comfort mod-
els by collecting field-based thermal preference data. Our methodol-
ogy is designed to enable us to address the following questions with 
resulting novel insights:

•	 How many data points per user must be collected to develop a 
reliable and robust personal comfort model? We collected data 
for 180 days resulting in more feedback responses per person (up 
to 1080) than in any previous study.28

•	 Are environmental and physiological data sufficient to train per-
sonal thermal comfort models while minimizing the impact on 
users? The methodology of this paper utilizes a novel framework 
of simple-to-use non-intrusive techniques to collect physiologi-
cal, environmental, and geospatial data using smartwatch-based 
micro-EMA.

•	 Can increasing the diversity of space types and conditions im-
prove the accuracy of personal comfort models? How can differ-
ent variables contribute to the overall model accuracy? This study 
is designed to collect data from diverse spaces, including the par-
ticipants' homes, where there is a lack of data in previous studies. 
In addition, this paper is novel in accurately monitoring whether 
the RHRN was completed during transitory conditions.

In addition, we decided to publicly share our data so other peo-
ple can use it to test different hypotheses or develop personal com-
fort models using a different methodology.

2  |  METHODOLOGY

We collected subjective responses and physiological data from 
human subjects using wearable devices, personal data using surveys, 
and environmental data using data loggers. We then applied super-
vised machine learning algorithms to train personal thermal comfort 
models for each study participant. Thermal preference votes from 
the RHRN survey (i.e., Q.1 Cozie Survey—Thermal preference—
please see Section 2.4) were utilized as the ground truth labels for 
model training and evaluation. The methodology and sensors we 
used to measure and log data are summarized in Figure 1, while a 
flowchart depicting the methodology we used to analyze the data 
is shown in Figure  A.2. The human subject experiment for this 
study was approved by the University of California Berkeley IRB 
(Institutional Review Board: 2020-01-12899). We compensated 
participants who completed the study with gift vouchers for a total 
amount of SGD 400.

2.1  |  Subjects

Participants were recruited through online posting. The inclu-
sion criteria were that the participant must: have lived for at least 
3 months in Singapore, be at least 21 years old, and be fluent in 
English. Personal information (e.g., sex, age, and education) about 
participants was collected using a web-based survey at the begin-
ning of the study.

2.2  |  Wearable sensors

Each participant received a Fitbit Versa (v1 or v2) and was asked to 
wear it daily for the whole duration of the study.

To measure and log wrist skin temperature (tsk,w) and wrist near 
body temperature (tnb,w) we installed two iButtons, model DS1925, 
on the Fitbit wristband. One iButton was installed on the inner side 
of the wristband and measured tsk,w in the front part of the wrist. The 
other was installed above the watch display and was used to mea-
sure tnb,w. Figure A.1 shows the exact location of where the iButtons 
were installed.

https://cozie.app
https://cozie-apple.com
https://cozie-apple.com
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More information about the rationale on why we used Fitbit and 
iButton can be found in Section 1 of the Appendix.

Participants were asked to complete the RHRN no sooner than 
10 min after either wearing the Fitbit or changing clothes or activities. 
This further limits the error in the measurement of tsk,w and ensured 
that they did not complete an RHRN survey during a transitory.

2.3  |  Environmental sensors

Environmental data were monitored and logged using three sensors. 
One was installed in the room of their house, where they spent the 
majority of their time indoors. This room corresponds to the “Home” 
location in question three of the Cozie survey as shown in Figure 2. 
Another was used to measure and log ti and relative humidity at the 
participant's workplace. This room corresponds to the “Work” loca-
tion in the Cozie survey. The workstation could be in their office or 
home if they were working from home. Finally, the third sensor on a 
bag/backpack of their choice. Participants were instructed to select 
“Portable” in question three when within a 2 m radius of this sensor. 

Detailed information about each sensor used is presented in Section 
1 of the Appendix and Table A.1.

2.4  |  Surveys

Participants were asked to complete, on average, a total of 42 RHRN 
surveys per week over a period of 180 days using the Cozie clock face. 
Figure 2 shows the flow of questions that were included in the RHRN 
survey.

Q.1—“Would you prefer to be?” assesses the thermal preference 
using a three-point scale. Q.2—“Are you?” logs if participants completed 
the survey either indoors or outdoors. Q.3—“Are you near a sensor?” de-
termines if a participant is in proximity to one of the three environmen-
tal sensors. Q.4—“What are you wearing?” participants reported their 
clothing level using a 4-point ordinal scale. Q.5—“Can you perceive air 
movement around you?” assesses if the air surrounding the participant 
was still. Q.6—“Activity last 10-min?” participants reported their activity 
level over the last 10 min. Q.7—logged if the survey is answered during 
a transitory situation or in a near “steady-state” environment.

F I G U R E  1 Methodology used to collect data in our study. Participants answered the RHRN surveys using the Fitbit Cozie clock face. 
Physiological data and RHRN responses were first sent to the Fitbit companion application and then synced with a cloud database. 
The HR data were downloaded from the Fitbit accounts. tsk,w and tnb,w were measured using two iButtons which were installed on the 
Fitbit wristband. Indoor location was monitored using two BLE beacons communicating with the BEARS Android application when each 
participant's phone was in their proximity. Environmental data were uploaded to the cloud database using Wi-Fi. Finally, participants were 
reminded to complete the RHRN surveys using Telegram, a messaging application.
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The questions flow was always displayed in the same order. A 
custom-made algorithm analyzed real-time environmental data and 
occupants' indoor location that was logged by an application we de-
veloped. Participants received a message when in the proximity of the 
two environmental sensors, and they had completed less than 10% of 
the total RHRN surveys in those environmental conditions.

2.5  |  Weather data

Weather data were obtained from the Singapore Government web-
site that provides 1-min interval data.41 Weather data was merged 
with the GPS information collected by the Cozie app and answers to 
question two of the RHRN survey.

2.6  |  Data analysis

The source code we used to analyze the data and the full dataset are 
publicly available at this URL: https://github.com/Feder​icoTa​rtari​ni/
dorn-longi​tudin​al-tc-study.

2.6.1  |  Data preparation

Participants completed surveys while performing a wide range of 
activities, wearing different clothing, being in multiple locations, and 
being exposed to a broad range of environmental conditions.

We aimed to develop a personal thermal comfort model for each 
participant, which could potentially be used to better control and op-
erate buildings. Consequently, we decided to exclude the responses 

that participants provided: (i) while exercising, (ii) when not in the 
proximity of either of the environmental sensors provided (answered 
“No” to Q.3), (iii) during a transitory situation (answered “Yes” to Q.7), 
(iv) when outdoors, and (v) while not wearing the smartwatch cor-
rectly. The rationale behind our decisions was that personal comfort 
models could mainly be used indoors to improve thermal comfort con-
ditions where environmental conditions can be controlled. We provide 
a detailed description of how we implemented the above-mentioned 
selection criteria in Section 2 of the Appendix.

2.6.2  |  Supervised machine learning algorithms

We used seven supervised machine learning classifiers to predict 
thermal preferences: Logistic Regression (LR), Random Forest (RDF), 
Extreme Gradient Boosting (XGB), Support Vector Machine (SVM), 
K-Nearest Neighbors (KN), Gaussian Naive Bayes (GNB), and Multi-
Layer Perceptron (MLP). We used the Kruskal–Wallis H-test to test 
the null hypothesis that the population median of all the groups is 
equal. The Kruskal–Wallis H-test was used since the ANOVA as-
sumptions were not satisfied, and it is a non-parametric version of 
ANOVA. The rejections of the null hypothesis do not indicate which 
of the groups differs. Comparisons between groups are required to 
determine which groups are different.

2.6.3  |  Training data size

One of our objectives was to determine how the number of training 
data points would affect the model accuracy. This has practical ap-
plications since it would inform us of the minimum required number 

F I G U R E  2 Right-Here-Right-Now (RHRN) survey questions displayed using the Cozie clock face

https://github.com/FedericoTartarini/dorn-longitudinal-tc-study
https://github.com/FedericoTartarini/dorn-longitudinal-tc-study
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of RHRN to be collected from each participant. The hypothesis is 
that a higher number of data for each participant would lead to more 
accurate results. To test this, we randomly selected 100 data points 
for testing and then trained the models using the first 42 RHRN sur-
veys (approximately 1 week of data) each participant completed. We 
then iteratively trained a new model for each increment which com-
prised additional 84 training data points.

2.6.4  |  Independent variable selection

The independent variables we used to train our models are shown 
in Table 1. Each column represents a sub-set of variables and each 
row the respective model. The variables were grouped as follows: 
environmental—outdoor air temperature, outdoor humidity ratio, 
indoor air temperature (ti), and humidity ratio indoors (Wi); clo–
met—self-reported clothing and activity as explained in Section 2.4; 
wearable—location, heart rate (HR), wrist skin temperature (tsk,w), and 
wrist near body temperature (tnb,w); time—hour of the day, weekday 
or weekend, and day of the week.

We also computed some variables (hist) to take into account how 
thermal history may have influenced how participants perceived their 
environment at the time of completing the RHRN survey. For each of 
the time-series data included in either the environmental or the wear-
able variable sets, we calculated the following additional variables: 
exponentially weighted moving average and gradient over a 20 and 
60 min period preceding the survey. The average and gradient for the 
weather data were calculated using timeframes of 1 and 8 h.

We used the SHapley Additive exPlainations (SHAP) method 
to determine how much each variable influences the output of the 
model. The primary idea behind Shapley's value-based explanations 
of machine learning models is to divide the credit for a model's out-
put among its input variables using fair allocation outcomes from co-
operative game theory.42,43 The use of the SHAP approach allowed 
us to understand and interpret how and why our complex models 
made specific predictions.

We included env, time, and wearable in all models since previous 
research has demonstrated that the inclusion of these variables into 
personal comfort models significantly increases their prediction ac-
curacy.18 We, therefore, decided only to test whether the use of his-
torical and self-reported clothing and activity would have improved 
the prediction accuracy in our case.

We have shared the data we collected publicly so other research-
ers may test different hypotheses or use a different approach from 
the one described in this paper.

Including indoor air temperature (ti), wrist skin temperature 
(tsk,w  ), and wrist near body temperature (tnb,w) in all models may in-
troduce multicollinearity. The environment to which a person is 
exposed, the clothing they wear, and the actions they perform, 
together which several other factors that affect how indoor air 
temperature (ti), wrist skin temperature (tsk,w), and wrist near body 
temperature (tnb,w) are correlated. We, therefore, decided to keep 
them all in the models since they allowed us to potentially capture 
all the above-mentioned interactions that cannot be measured but 
still play a significant role in how people perceive their thermal en-
vironment. For example, the near-body temperature may approxi-
mate the air temperature when a person is exposed to elevated air 
speeds. On the other hand, it will be more influenced by the skin 
temperature when the person is resting and the air in the room is 
still. It is worth mentioning that Apple in their latest smartwatch, 
the Apple Watch 8 released in October 2022, also included two 
temperature sensors, one that measures the skin temperature 
and one below the screen to isolate the body temperature from 
the outside environment. Apple claims that this allows them to 
get a more accurate estimate of the variables that they want to 
predict.44

2.7  |  PMV estimation

We used the measured environmental variables and personal fac-
tors, qualitatively logged by the participants to calculate the PMV 
using the following assumptions. The activity levels reported by the 
participants were mapped using the following values resting = 0.8 
met, sitting = 1.1 met, and standing = 1.4 met. While reported cloth-
ing values were mapped as follows very light = 0.3 clo, light = 0.5 
clo, medium = 0.7 clo, and heavy = 1.0 clo. These numbers were de-
termined by asking each participant which clothes on average they 
wore when selecting one of the above options. The mean radiant 
temperature was assumed to be equal to ti.

45 The relative airspeed 
value was calculated assuming the airspeed to be equal to 0.1 m/s 
and using the self-reported activity levels. We are fully aware that 
these assumptions have limitations and do affect PMV prediction 
accuracy; however, similar assumptions have been previously used 

TA B L E  1 Independent variables used to train the respective model

Variable sets

Model env time wear clo–met env-hist wear-hist

Thermal preference PCM x X x

Thermal preference PCM clo–met x X x x

Thermal preference PCM clo–met hist x X x x x x

Note: We used the following abbreviations in the table: self-reported clothing and activity (clo–met), environmental (env), wearable (wear), and 
historical (hist).
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in thermal comfort research.30 Finally, we mapped the PMV val-
ues into thermal preference votes using the following assumptions: 
“Warmer” for PMV <1.5, “Cooler” for PMV >1.5, and “No Change” 
for −1.5 ≤ PMV ≤ 1.5. This is the same assumption made by Fanger 
who considers dissatisfied those people who reported their abso-
lute value of thermal sensation to be either 2 or 3.4 This is based on 
the assumption that, for example, people who have a thermal sensa-
tion of “Warm” or “Hot” is highly probable that they may want to be 
“Cooler.” In this paper, we did not draw conclusions on the accuracy 
of the PMV model, but we only used it as a benchmark value to as-
sess the accuracy of the thermal personal comfort models.

2.7.1  |  Evaluation criteria

The model prediction accuracy was evaluated using the following 
metrics: F1-micro, F1-macro, and Cohen's kappa. We calculated 
all these metrics for a more precise interpretation of the results, 
however, we only reported the F1-micro scores unless there was a 
significant disagreement between the prediction accuracy scores 
of different metrics. F1-micro ranges between 0 and 1 where 1 
represents the optimal prediction value. F1-micro measures the 
prediction accuracy and gives equal importance to precision (true 
positives divided by all positive results) and recall (true positives di-
vided by the number of samples that should have been identified as 
positives). In multilabel classification, (i.e., in our case since thermal 
preference assumes three values) the F1-micro is calculated globally 
across all classes.

2.7.2  |  Training and testing

Hyper-parameters optimization is done using a random search and 
5-fold cross-validation. We tested 10 random combinations of hyper-
parameters in each of the 5-fold, and the best performing model, 
in terms of objective metric as specified in Section 2.7.1, is chosen. 
Table A.2 shows the parameters chosen for training the models and 
performing the random search. We repeated this entire process 100 
times for each model.

3  |  RESULTS

The longitudinal study commenced in April 2020 and ended in 
December 2020 in Singapore. A total of 20 participants (10 males 
and 10 females) took part in our study. Key information about each 
participant is presented in Table 2.

3.1  |  Dataset preparation and cleaning

Participants completed a total of 22212 RHRN. Of the total surveys 
collected, participants completed 2% of them while exercising, 6% 

while outdoors, and 12% while in transitory conditions. These sur-
veys were not included in the data analysis as previously explained 
in Section 2.6.1.

The tsk,w and tnb,w data we measured while the participants com-
pleted the RHRN are depicted in Figure 3A. In approximately 97% of 
the total completed surveys, the value of tsk,w was higher than tnb,w . 
This result was expected since the maximum value of ti that partici-
pants experienced throughout the study never exceeded 34°C. For 
example, the delta between tsk,w and tnb,w in participant 10 was as 
low as −0.7°C, while the average value across all participants was 
−3.2°C. We consequently remove the data using the methodology 
detailed in Section 2 of the Appendix. This removed more than 15% 
of the total number of surveys collected by the following partici-
pants 05, 10 (73% excluded), 12, 14, and 18.

This sub-set of the original dataset, which included 13 073 sur-
vey responses, was used in the data analysis. The filtered number of 
surveys for each participant is shown in Figure 3B.

3.2  |  Dataset overview

The 13 073 survey responses are summarized in Figure 4. Votes in 
Q.1—“Thermal preference” were mostly “No Change” (58%) followed 
by “Cooler” (35%). This study took part during the COVID-19 pan-
demic, and most of the participants had to work from home for the 
whole study duration. Participants in their homes had full control of 
the air-conditioning set-point and could use electric fans to increase 
airspeed in their surroundings.

Most of the participants reported being involved in sedentary 
activities in 77% of the cases. Participants perceived air movement 
only less than 30% of the time, and 69% of them wore “Light” clothes.

To better depict how participants perceive their thermal environ-
ment, in Figure 5 we plotted the distribution of the thermal prefer-
ence votes (Q.1) grouped by the participant. While the great majority 
voted “No Change,” two wanted to be “Cooler” more than 90% of the 
time. Even if participants had similar distributions of thermal pref-
erence votes, such as participants 05 and 13, they might have dif-
ferent thermal comfort needs, requirements, and preferences. This 
situation can be explained by the fact that the participants wore dif-
ferent clothes, engaged in different activities, and were exposed to 
different environmental conditions. The values of ti recorded when a 
participant completed the survey are shown in Figure 6. The Figure 
also depicts the outdoor temperature measured in Singapore during 
the entire study period. Singapore is characterized by a tropically 
hot and humid climate with limited seasonal temperature variation. 
Temperature variation mainly occurs intra-day.

The thermal preference votes grouped by the self-reported 
clothing and metabolic rates are shown in Figure 7. Participants ac-
tively adjusted clothing to improve their thermal comfort. They wore 
“Very light” clothes to compensate for warm indoor air tempera-
tures. Participants also actively increased their clothing levels when 
exposed to temperatures they deemed to be “Cold.” Thus, 67% of 
participants wearing “Heavy” clothing felt comfortable. Wearing 
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more clothes alone did not always suffice to compensate for cold 
indoor conditions. Overcooling indoors was the leading cause that 
27% of them wanted to be “Warmer,” even though participants wore 
“Heavy” clothing in a tropical climate. This is a common issue for 
buildings located in the tropics.46 Overcooling does not only neg-
atively impact building energy consumption, but in the tropics has 
also been shown to worsen occupants' cognitive performance.47 
Approximately 74% of the participants who reported to be “Resting” 
voted “No Change” in question Q.1.

3.3  |  Thermal preference personal comfort models

The prediction accuracy of the personal comfort model we devel-
oped is depicted in Figure 8. The figure shows the F1-micro scores 
for the three sets of variables grouped by the supervised machine 
learning model we used to train the personal comfort models. We 
also report the PMV model results.

The prediction accuracy of all the personal comfort models de-
veloped with the supervised machine learning algorithms was sig-
nificantly (p < 0.01) and substantially (excluding XGB) higher (≈37%) 
than the results obtained from the PMV model. In our study, we only 
qualitatively logged clothing levels and metabolic rates, and we did 
not measure airspeed as detailed in Section  2. Hence, we do not 
have sufficient evidence to prove that the PMV has low predic-
tion accuracy. We simply report the results of the PMV to provide 
a benchmark to show the increase in accuracy that personal com-
fort models can achieve. This is, however, a common issue in real 

buildings, hence these values must also be assumed to calculate the 
PMV.

One of the main objectives of this study was to determine how 
different sub-sets of variables would affect the accuracy of the mod-
els. Adding an increased number of variables to the model did not al-
ways improve its accuracy. In some cases, it had the opposite effect 
and led to a decreased F1-micro score. Similar results were also ob-
tained in previous studies.18 This can be partially explained because 
participants completed surveys in near-steady-state conditions. 
Hence, including historical data is not always beneficial. Moreover, 
self-reported clothing and activity may not have accurately enough 
represented participants' actual clothing ensembles or metabolic 
rates since their selection was limited to four choices. This is a pos-
itive result since in a real-life scenario we would not have access to 
this information.

The distribution of the F1-micro scores was significantly dif-
ferent when we compared the results of the following models: 
XGB, SVM, RDF, LR, MLP using different variable sets. However, 
the significant increase in model complexity would not justify the 
modest increase in prediction accuracy in most practical applica-
tions. On average, training one model once with the full variable 
set for each 20 users resulted took 83, 6, 620, 11, and 67 s for 
XGB, SVM, RDF, LR, MLP models, respectively. We consequently 
decided to present only the results from the SVM model trained 
with the environmental—wearable—time independent sets of vari-
ables in Figures 9 and 10. Firstly, because the SVM model is less 
computationally intensive to train and secondly because it is a lin-
ear model, hence it is better suited to predict thermal preference 
which is an ordinal variable. We are providing supporting evidence 
on this in Section 4. Linear models use a multidimensional hyper-
plane to classify the data, this may lead to lower prediction ac-
curacy if compared with non-linear models. Nevertheless, linear 
models ensure that as ti increases, all other variables being fixed, 
the prediction does not switch back and forth between “Warmer,” 
“No Change,” and “Cooler.” This issue is particularly relevant when 
personal comfort models are used in real-life applications to op-
erate buildings. Non-linear model predictions may be the cause of 
instabilities in the HVAC controller and limit the use of personal 
comfort models to control buildings.

3.3.1  |  Influence of data size on prediction power

Figure  9A depicts how the F1-micro score varies as a function of 
the number of training data points for each participant. The figure 
also shows the F1 mean score (black line) and its standard deviation 
(shaded area) across all participants.

The sample average accuracy mean score plateaued at around 
≈300 data points. This suggests that this may be the optimal number 
of points we may need to collect when training personalized comfort 
models. It should be noted that there was high variability when the 
curve plateaued for each individual. This is due to the inherited differ-
ences across the personal preferences of subjects and the conditions 

TA B L E  2 Information about the subjects

ID Sex Age Education BMI (kg/m2)

1 M 38 Doctoral degree 23.51

2 M 36 Doctoral degree 29.40

3 M 30 Doctoral degree 25.54

4 F 40 Master's degree 18.29

5 M 31 Doctoral degree 25.39

6 M 44 Doctoral degree 21.22

7 F 30 Bachelor's degree 25.93

8 M 35 Doctoral degree 25.10

9 F 24 Master's degree 23.24

10 M 24 High school graduate 23.05

11 F 29 Master's degree 20.20

12 M 34 Doctoral degree 28.20

13 M 31 Bachelor's degree 25.34

14 M 35 Bachelor's degree 23.03

15 F 33 Doctoral degree 18.34

16 F 26 Bachelor's degree 20.45

17 F 36 Doctoral degree 18.37

18 F 26 Bachelor's degree 22.04

19 F 24 Bachelor's degree 16.44

20 F 32 Doctoral degree 20.96
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they were exposed to. Figure 9B shows the overall accuracy of each 
personal comfort model over the 100 iterations. It can be observed 
that each personal comfort model converged to a stable value across 
all 100 iterations. The standard deviation of all 20 personal comfort 
models over all 100 iterations was similar across different partici-
pants, with a mean value of 0.035 and a standard deviation of 0.011. 
The same cannot be said about the overall accuracy of each personal 
comfort model, where the median F1 score for participant 14 was 
0.99 while for participant 7 was 0.56. This, in other words, means 
that not all personal comfort models performed equally. Some almost 

always correctly predicted the thermal preference vote reported by 
the participants, while others had a significantly lower accuracy.

3.3.2  |  Importance of independent variables

The absolute mean SHAP values across all six best-performing 
supervised machine learning models are shown in Figure 10. Sub-
variables groups defined in Section 2.6.4 are color-coded. While in-
door air temperature (ti), wrist near body temperature (tnb,w), heart 

F I G U R E  3 Wrist skin temperature (tsk,w) and wrist near body temperature (tnb,w) measured when the participants completed the RHRN 
survey. (A) Shows all the data collected from the participants while (B) shows the sub-set of the original dataset that was used in the data 
analysis. The inclusion criteria we used to filter the original dataset are detailed in Section 3.1. The number above each violin plot is the 
number of RHRN surveys completed by each participant.



10 of 16  |     TARTARINI et al.

F I G U R E  4 Distribution of the answers 
provided by all the participants.

F I G U R E  5 Distribution of the thermal 
preference responses (Q.1) provided by 
each participant throughout the study 
period.

F I G U R E  6 Indoor air temperature (ti
) measured when participants completed 
the RHRN survey. Data have been 
grouped by the participant. The last violin 
plot (purple) shows the average outdoor 
air temperature measured in Singapore 
(SG) throughout the whole duration of the 
study.
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rate (HR), wrist skin temperature (tsk,w), and humidity ratio indoors 
(Wi) contributed the most to the models' final predictions, we ob-
served a significant difference of SHAP values between different 
participants and across different models. In Figure A.3, we report 
the mean SHAP values across all participants for each supervised 
machine-learning model. A detailed discussion of these results is 
presented in Section 4.2.

4  |  DISCUSSION

The results of our study enabled us to draw several connections to 
the existing literature, discuss the usefulness and limitations of the 
methodology and results, and motivate future work.

4.1  |  Impact of training data size on 
model prediction

One novel aspect of our study was the duration of the data collec-
tion, which enabled us to gather the longest longitudinal data set 
so far among studies that aimed to develop personal thermal com-
fort models.28 We collected more than double the amount of points 
per participant and we made the dataset publicly available. Personal 
comfort models necessitate data for both testing and training. 

Hence, a sufficiently large number of data points from each par-
ticipant is required for the machine-learning algorithm to converge. 
Figure 9 illustrates how increasing the size of trained data improves 
the model prediction power based on the collected data set. Across 
all participants, the model prediction accuracy (F1-micro) stabilized 
to a plateau at around 300 data points. Individual personal models 
show varying degrees of sensitivity to dataset size. This insight high-
lights the diminishing return of collecting more than 250–300 data 
points for most test participants. This result is specific to our study 
and other authors may find a different range based on their study 
methodology. Our results agree and provide additional support-
ing evidence to validate those obtained by Liu et al.18 Arguably, the 
amount of data needed to characterize thermal comfort could be re-
duced even further with the development of targeted sampling that 
strategically requests feedback only when required to increase the 
model prediction power.48 In our study, we already implemented this 
strategy. Participants received a text message when exposed to en-
vironmental conditions that they rarely experienced before, to maxi-
mize the chances of obtaining a balanced dataset. However, we still 
asked them to complete, on average, a total of six surveys per day. 
This requirement can be significantly reduced or removed altogether 
in future studies thanks to targeted surveys. For some participants, 
the prediction accuracy slightly decreased as the trained data size 
increased from 42 to 126. This situation is expected since, as time 
passes, they may be exposed to a broader range of environmental 

F I G U R E  7 Distribution of the thermal 
preference responses (Q.1) provided by 
all participants throughout the study 
period grouped by their reported clothing 
insulation (Q.4) and metabolic rate (Q.6). 
The number above each bar shows the 
total number of responses collected for 
that specific answer.

F I G U R E  8 F1-micro scores for the 
thermal preference personal comfort 
models determined using the full dataset 
for each participant over 100 iterations. 
The light blue shaded area depicts the 
interquartile range for the PMV model. 
We used the following abbreviations: 
MLP, Multi-Layer Perceptron; RDF, 
Random Forest; SVM, Support Vector 
Machine; KN, K-Nearest Neighbors; GNB, 
Gaussian Naive Bayes; XGB, Extreme 
Gradient Boosting; LR, Logistic Regression
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factors and conditions that they did not experience before, and the 
model needs to learn how to predict participants' thermal prefer-
ences under these new sets of conditions. This result is a signifi-
cant advantage that personal comfort models have over aggregate 
models since they can be re-trained as new data are collected. This 
situation may be partially alleviated by the use of transfer learning, 
ensemble strategies, and domain adaptation which can be used to 
predict individual thermal preference even when there is a lack of 
data regarding a specific person.49,50

We also observed that, for some participants, the F1-micro curves 
did not vary much as a function of the data size (e.g., participants 9 
and 10). Some possible causes of this are that participants were con-
stantly exposed to warm temperatures and that some did not maintain 
compliance with experimental guidelines. The latter point is discussed 
in Section 4.3. For example, participant 10 was always exposed to 
temperatures above 27.5°C when completing the RHRN survey and 

reported wanting to be “cooler” 98% of the time. This scenario is ex-
pected in Singapore, where the recorded outdoor temperature over 
the 6-month study period was higher than 26.5°C for 75% of the time.

4.2  |  Independent variables' importance in thermal 
preference prediction

We used SHAP values to quantify of the impact that each independ-
ent variable had on the accuracy of the personal models. While the 
average magnitude for each variable varied in different models in-
door air temperature (ti), wrist near body temperature (tnb,w), heart 
rate (HR), wrist skin temperature (tsk,w), and humidity ratio indoors 
(Wi) contributed the most to the models' final predictions. This in-
sight is in line with the existing body of knowledge since ti is the 
primary driver of sensible heat loss or gain from the environment to 

F I G U R E  9 F1-micro scores for the thermal preference personal comfort models determined using the Support Vector Machine (SVM) 
algorithm. (A) Shows the mean F1-micro score for each participant, as well as the mean score (black line) and standard deviation across 
(shaded area) the whole study sample. The markers show the participant's mean F1-micro scores calculated by averaging the mean scores 
obtained across the 100 iterations, for that specific number of training data points. A different number of valid surveys were completed by 
different participants. The bar plot, in (A) over the chart, shows the number of answers that were used to calculate the sample mean score 
and the respective standard deviation. (B) Shows all the F1-micro scores determined using the full dataset for each participant over 100 
iterations

F I G U R E  1 0 Absolute mean SHAP 
value of the six best-performing 
supervised machine learning models. 
Variables are color-coded, environmental—
using shades of gray, wearable—using 
shades of purple, and time—using shades 
of orange. Where tout stands for outdoor 
air temperature and Wout stands for 
humidity ratio outdoors.
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the human body. Our results reinforce previous work.18 The HR is a 
proxy for the level of activity of the person, and it is positively corre-
lated with the metabolic rate. The value of tsk,w reflects the vasomo-
tor tone. The human body uses vasoconstriction and vasodilation for 
thermoregulation.15 Finally, Wi influences the latent heat loss toward 
the environment. On the other hand, the outdoor air temperature, 
occupant location, and outdoor humidity ratio only had a marginal 
contribution to the final prediction, which can be explained by the 
fact that these variables do not directly influence people's thermal 
sensation or preference, in particular during steady-state conditions. 
The value of the outdoor air temperature only indirectly affects oc-
cupants' thermal preferences since they may influence the type of 
clothing that participants decide to wear before leaving their homes. 
This result may, however, only be applicable to climates similar to the 
one in Singapore that are characterized by limited variability.

4.2.1  |  Self-reported clothing and activity

We found that including self-reported clothing and activity in some 
models did not significantly increment the model prediction accu-
racy. While this seems to be counterintuitive since both clothing and 
metabolic rate play a significant role in human thermoregulation, we 
believed that they did not increase the model prediction accuracy 
since they were reported qualitatively by participants who only had 
four options to choose from. Other measured variables like HR may 
better correlate with the participant's actual metabolic rate than 
self-reported activity. This result has positive implications since, in a 
real-world application, the building controller would not have access 
to information about clothing and activity levels.

4.2.2  |  Near-body temperature

While our results showed that tnb,w significantly contributed to the 
model prediction, it should be noted that tnb,w was strongly corre-
lated with both ti and tsk,w. Consequently, it would be sufficient to 
measure these two latter variables in most cases. On the other hand, 
only using tnb,w as a proxy for ti would decrease the complexity of 
the data collection, but at the same time, it would reduce the over-
all model accuracy. We decided to measure, log, and include in the 
models tnb,w since many people in warm climates use fans to cool 
themselves. Measuring airspeed in the proximity of the occupants 
in longitudinal studies is impractical, very expensive, and inaccurate. 
Battery-powered anemometers would need to be recharged fre-
quently, are very expensive, and are sensitive to direction. Airspeed 
varies significantly both spatially and temporally; consequently, ac-
curate readings can only be obtained in laboratories using scientific-
grade sensors installed on stands mounted near the subject. The 
value of wrist near body temperature can then be used as a proxy 
to partially compensate for the lack of airspeed data. When airspeed 
is low, tnb,w is significantly affected by the thermal plume of the par-
ticipant and in turn by tsk.

51 On the other hand, when participants 

are cooling themselves using electric fans, the airflow disrupts the 
thermal plume, and tnb,w is mainly influenced by ti.

4.2.3  |  Skin temperature

Participants did not report any significant discomfort by wearing the 
iButton for an extended period. At the end of the study, 16 par-
ticipants answered positively to the following question: “Would you 
wear the Fitbit and complete a few surveys per day for two weeks for 
no financial reward, if you knew that the information would improve 
your well-being indoors?” However, measuring tsk,w using an iBut-
ton adds complexity and maybe still a source of mild discomfort for 
some people. iButton cannot communicate wirelessly; hence data 
cannot be accessed in real time. There have been several announce-
ments from the leading smartwatch manufacturers to include a skin 
temperature sensor in their devices. Still, at the time of writing this 
manuscript, no smartwatch available on the market could measure 
it accurately. However, in September 2022 at the time of review-
ing this manuscript, Apple announced that they have released a new 
Apple Watch that can accurately measure skin temperature.

4.2.4  |  Historical variables

The increases in model accuracy when historical variables were added 
to the model did not justify the increased complexity. This situation 
can be partially explained by the fact that we carefully chose to ana-
lyze data collected when participants were in near “steady-state” con-
ditions. This choice was driven by the fact that people in their office, on 
average, spend most of their time at their desks in near “steady-state” 
conditions. Predicting how people perceive their thermal environment 
during transitory conditions goes beyond the scope of our research.

4.3  |  The compliance rate of participants and data 
quality considerations

Six months of the daily longitudinal collection is a challenge in terms 
of ensuring that participants maintain compliance with experimental 
guidelines. The Cozie smartwatch-based methodology turned out 
to facilitate high compliance with none of the participants dropping 
out from the study, and all completed at least 1080 surveys. This 
result reinforces previous work in micro-EMA and its ease of de-
ployment in collecting longitudinal data with less survey fatigue.32 
Compliance maintenance was enhanced with notifications sent 
through a messaging app that would remind the participants about 
notable achievements or deficiencies in the experimental process.

Despite the compliance rate, some participants were not fully 
cognizant of their perspective on each response given over the 
6 months due to survey fatigue. This risk could be mitigated in future 
work through early detection, incentives, and by significantly re-
ducing the number of surveys that each participant has to complete 
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every week. This risk is significant for data-driven models, which are 
highly susceptible to “bad” data. One possible other solution to this 
problem is utilizing the model to control their environment actively.

4.4  |  Limitations

One notable limitation of the deployment is that the Singapore cli-
mate has little diversity across the year. Seasonality in other climates 
may result in longitudinal data needing more training beyond the 200–
300 points found in this study. Studies in other climates may need to 
spread data collection into phases that account for different seasons.

In addition, the experimental deployment for this study began 
in April 2020, just as Singapore entered a lockdown period due to 
COVID-19 restrictions. Throughout the study, the lockdown situation 
was dynamic, but overall there was less diversity of data collection 
locations than intended. Most of the occupants were forced to work 
from home for the whole duration of the study, while those who were 
allowed to resume going to the office were required to wear face 
masks at all times. We started this study before the pandemic started, 
hence we did not include any questions about face masks.

Another notable limitation category relates to the nature of 
black-box machine learning models in the application of thermal 
comfort prediction. The lack of conversion of model output or ac-
curacy into the physical understanding of what makes people feel 
comfortable or not is troublesome in the context of improving com-
fort, particularly for facility operators. Future work should focus 
on the conversion of the accuracy of prediction to the applicabil-
ity to system and occupant interaction. The previously mentioned 
personal comfort review found similar insight in the literature 
of such models.28 Among the different models tested, Random 
Forest is one of the most widely adopted in the literature and its 
performance justifies its adoption (Figure  8). Nevertheless, when 
compared to a regression-based model like SVM with similar pre-
diction performance, Random Forest required 100 times more com-
putational time for model training, i.e., 620 and 6  s, respectively. 
Coincidentally, XGB and MLP also achieve a similar performance 
but require roughly 12 times the computational time of SVM, 83 
and 67 s, respectively. These results reinforce the selection of SVM 
since it does not sacrifice prediction accuracy; as a regression-based 
model, it is more interpretable and requires less computational cost. 
It should also be noted that since some machine learning models 
are not linear, like RDF, this may cause the personal comfort model 
may still predict thermal preference to vary back and forward from 
“warmer” to “cooler” as the temperature increases, despite all other 
inputs being fixed. This situation has several issues. Firstly, it does 
not provide an accurate representation of how people perceive their 
thermal environment nor take into account that thermal preference 
is an ordinal variable. Secondly, it may be the cause of instabilities 
if the model is used to actively control a space. We believe that this 
issue has had very little coverage in previous studies that aimed to 
develop personal thermal comfort models, and it should be further 
investigated.

5  |  CONCLUSIONS

We conducted a longitudinal thermal comfort study that aimed to 
develop personal thermal comfort models. Twenty participants took 
part in it, and they completed on average at least six RHRN surveys 
per day for a period of 6 months. We developed an effective meth-
odology that simplified the life of the participants, and none of them 
dropped from the study. We measured and logged environmental 
parameters, physiological signals, outdoor weather data, and partici-
pants' location outdoors and indoors. We used these data to train 
and test a personal thermal comfort model for each participant. We 
were able to determine that:

•	 Cozie, a micro-EMA open-source Fitbit and Apple application, is a 
reliable and robust solution to non-intrusively collect participants’ 
feedback in field studies.

•	 Personal comfort models were able to accurately predict (median 
F1-micro score 0.78) occupants’ thermal preferences. With the 
limitations in data collection posed by the study methodology, 
they could outperform the PMV model.

•	 Indoor air temperature (ti), wrist near body temperature (tnb,w  ), 
heart rate (HR), wrist skin temperature (tsk,w), and humidity ratio 
indoors (Wi), listed in decreasing order of importance, had the 
highest average marginal contribution to the overall model 
prediction.

•	 The thermal personal comfort model prediction accuracy (F1-
micro) plateaued at around 300 data points across all participants. 
Individual personal models are sensitive to dataset size to vary-
ing degrees. The amount of data required to characterize ther-
mal comfort could potentially be reduced with the development 
of targeted sampling, which strategically requests feedback only 
when it is necessary.

•	 We made available publicly the data we collected and open-
sourced the Python code we used to analyze them to enable 
other researchers to test different hypotheses utilizing our data.

NOMENCL ATURE
HR	 heart rate, beats per minute
PMV	 Predicted Mean Vote
RHRN	 Right-Here-Right-Now
SVM	 Support Vector Machine
ti	 indoor air temperature, °C
tnb,w	 wrist near body temperature, °C
tsk	 skin temperature, °C
tsk,w	 wrist skin temperature, °C
Wi	 humidity ratio indoors, kgwater vapor/kgdry air
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