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1 Executive Summary

The National Energy Research Scientific Computing Center (NERSC) is the primary
computing center for the DOE Office of Science, serving approximately 5,000 users working
on some 700 projects that involve nearly 700 codes in a wide variety of scientific disciplines.
In addition to large-scale computing and storage resources NERSC provides support and
expertise that help scientists make efficient use of its systems.

In January 2014, NERSC and DOE’s Office of Advanced Scientific Computing Research
(ASCR) held a review to characterize High Performance Computing (HPC) and storage
requirements for ASCR computational research through 2017. This review is the eleventh in
a series that began in 2009 and it is the second for ASCR. The report from the earlier (2010)
NERSC ASCR review is available at http://www.nersc.gov/science/hpc-requirements-
reviews/target-2014/.

The latest review revealed several key requirements, in addition to achieving its goal of
characterizing ASCR computing and storage needs. High-level findings are:

1. To meet ASCR objectives, researchers need computing and data resources that
continue to grow exponentially.

2. ASCR researchers will require software applications, libraries, and tools that
will run efficiently on many-core architectures.

3. New resources are required to support data analytics, visualization, and
archiving.

4. Code teams need help porting applications, libraries, frameworks, and tools to
run well on next-generation architectures.

This report expands upon these key points and adds others. The results are based upon
representative samples, called “case studies,” of the needs of science teams within ASCR.
The case study topics and review attendees were selected by the NERSC meeting
coordinators and ASCR program managers to represent the ASCR production computing
workload. Prepared by the review participants, the case studies contain a summary of
science goals, methods of solution, current and future computing requirements, and special
software and support needs. Also included are strategies for computing in the highly
parallel “many-core” environment that is expected to dominate HPC architectures over the
next 10 years.
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2 Advanced Scientific Computing Research Mission

The Advanced Scientific Computing Research (ASCR) program discovers, develops, and
deploys the computational and networking capabilities that enable researchers to analyze,
model, simulate, and predict complex phenomena important to the Department of Energy.
Advanced mathematics and computing provide the foundation for models and simulations,
which permit scientists to gain insights into problems ranging from bioenergy and climate
change to Alzheimer's disease. ASCR and its predecessor programs have led these advances
for the past thirty years by supporting the best applied math and computer science research,
delivering world class scientific simulation facilities, and working with discipline scientists
to deliver exceptional science.

ASCR’s basic research and computing facilities are world class. The Research Division
supports research and development in Applied Mathematics, Computer Science, and Next
Generation Networks. The Research Division disseminates and further expands ASCR'’s
computational expertise and intellectual resources through its Computational Partnerships
with science organizations in the Office of Science. These partnerships are realized through
SciDAC Institutes, SciDAC Scientific Computations Applications Partnerships, and Exascale
Co-Design.

The Facilities Division is responsible for three supercomputing facilities - facilities that
house some of the world’s fastest supercomputers - at the National Energy Research
Scientific Computing Center (NERSC), the Oak Ridge Leadership Computing Facility (OLCF),
and the Argonne Leadership Computing Facility (ALCF), and - as well as the Energy
Sciences Network (ESnet) that facilitates scientific collaborations and the sharing of
scientific data. ASCR is guided by science needs and requirements of applications that are
critical to the DOE and the nation. Today, modeling and simulation are integral parts of the
“scientific method.” A good simulation can inform experiment design to assure the return of
high-quality experimental data. A high-fidelity simulation is indispensable for the analysis
of physical phenomena. The demand for scientific rigor and defensibility in modeling and
simulation requires verification, validation, and uncertainty quantification (V&V and UQ).
With the unprecedented data available today and becoming even more available in the
future (from both observations and simulations), data analytics and data management are
rapidly gaining importance as interdisciplinary research and development areas. The
demand for computing resources, in terms of processor hours, data transmission and
storage, application software, workflow, analysis tools, HPC support, etc., will only increase.

At the same time, high-performance computers are undergoing architectural changes. It is
generally agreed that power density already limits the frequency at which semiconductor
chips can operate, and future simulation speedups will come from exploiting increased fine-
grained parallelism on energy-efficient many- and multi-core processors. These constraints
of physics and engineering are forcing a paradigm shift in the way scientific simulation and
analysis codes are written and executed. Instead of optimizing the total number of
calculations, programmers will need to put a premium on maximizing data locality and
reducing data movement. Many computational scientists have not experienced such a
paradigm shift. This may spur changes in basic understanding of algorithms, operating
systems, programming models, performance analysis and tuning- in other words, to
prepare for exascale computing, much of the basic research supported by ASCR may
undergo significant changes in directions and focus as well!

Today ASCR is at a critical juncture. Demand for high-performance computing is increasing
rapidly at the same time high-performance computing paradigms are changing radically. It
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is in this climate that this requirement workshop attempts to cover areas of ASCR research
and development that may become more prominent in the future and help understand
computing needs in a rapidly changing landscape.

3 About NERSC

The National Energy Research Scientific Computing (NERSC) Center, which is supported by
the U.S. Department of Energy’s Office of Advanced Scientific Computing Research (ASCR),
serves more than 5,000 scientists working on over 700 projects of national importance.
Operated by Lawrence Berkeley National Laboratory (LBNL), NERSC is DOE's mission
science high-performance computing facility, supporting scientists in all Office of Science
research programs. These scientists, working remotely from DOE national laboratories;
universities; other federal agencies; and industry, use NERSC resources and services to
further the research mission of the Office of Science (SC). While focused on DOE's missions
and scientific goals, research conducted at NERSC spans a range of scientific disciplines,
including physics, materials science, energy research, climate change, and the life sciences.
This large and diverse user community runs hundreds of different application codes.
Results obtained using NERSC facilities are citied in about 1,500 peer reviewed scientific
papers per year. NERSC activities and scientific results are also described in the center’s
annual reports, newsletter articles, technical reports, and extensive online documentation.
In addition to providing computational support for projects funded by the Office of Science
program offices (ASCR, BER, BES, FES, HEP and NP), NERSC directly supports the Scientific
Discovery through Advanced Computing (SciDAC!) and ASCR Leadership Computing
Challenge? Programs, as well as several international collaborations in which DOE is
engaged. In short, NERSC supports the computational needs of the entire spectrum of DOE
open science research.

The DOE Office of Science supports three major High Performance Computing Centers:
NERSC and the Leadership Computing Facilities at Oak Ridge and Argonne National
Laboratories. NERSC has the unique role of being solely responsible for providing HPC
resources to all open scientific research areas sponsored by the Office of Science.

This report illustrates NERSC alignment with, and responsiveness to, DOE program office
needs; in this case, Advanced Scientific Computing Research. The large number of projects
supported by NERSC, the diversity of application codes, and its role as an incubator for
scalable application codes present unique challenges to the center. However, as
demonstrated its users’ scientific productivity, the combination of effectively managed
resources, and excellent user support services the NERSC Center continues its 40-year
history as a world leader in advancing computational science across a wide range of
disciplines.

For more information about NERSC visit the web site at http://www.nersc.gov.

1 http://www.scidac.gov

2 http://science.energy.gov/~/media/ascr/pdf/incite/docs/Allocation_process.pdf
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4 Meeting Background and Structure

In support of its mission to provide world-class HPC systems and services for DOE Office of
Science research NERSC regularly gathers user requirements. In addition to requirements
reviews NERSC collects information through the Energy Research Computing Allocations
Process (ERCAP), workload analyses, an annual user survey, and discussions with DOE
program managers and scientists who use the facility.

In January 2014, ASCR and NERSC held a review to gather HPC requirements for current
and future science programs supported by ASCR. This report is the result.

This document presents a number of findings, based upon a representative sample of
projects conducting research supported by ASCR. The case studies were chosen by the DOE
Program Office Managers and NERSC staff to provide broad coverage in both established
and incipient ASCR research areas. Most of the domain scientists at the review were
associated with an existing NERSC project, or “repository” (abbreviated later in this
document as “repo”).

Each case study contains a description of current and future science, a brief description of
computational methods used, and a description of current and future computing needs.
Since supercomputer architectures are trending toward systems with chip multiprocessors
containing hundreds or thousands of cores per socket and millions of cores per system,
participants were asked to describe their strategy for computing in such a highly parallel,
“many-core” environment.

Requirements presented in this document will serve as input to the NERSC planning
process for systems and services, and will help ensure that NERSC continues to provide
world-class resources for scientific discovery to scientists and their collaborators in support
of the DOE Office of Science, Office of Advanced Scientific Computing Research.

NERSC and ASCR have been conducting requirements workshops for each of the six DOE
Office of Sciences offices that allocate time at NERSC (ASCR, BER, BES, FES, HEP, and NP). A
first round of meetings was conducted between May 2009 and May 2011 for requirements
with a target of 2014; this included a January 2011 ASCR review. A second round of
meetings, of which this is the fifth, will target needs for 2017. Reports from all previous
NERSC requirements reviews are available on the NERSC web site.

A specific goal for this review was to explore the extent to which library and other
supporting software would be ready for the transition to energy-efficient many-core
processing. This is especially important because NERSC has announced the planned
procurement of a many-core supercomputer named “Cori,” scheduled to be installed in
2016. A major goal of NERSC is to transition its broad user workload to Cori and follow-on
architectures. Many NERSC user projects rely on software libraries provided by some of the
participants. However, since authors of this software were invited to the review primarily
to discuss software readiness, and since development of the software is generally more
about algorithm and code development than about large-scale simulation, case studies
based on these libraries do not always include numerical estimates of future NERSC
resource requirements.

Specific findings from the review follow.
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5 Meeting Demographics

5.1 Participants
5.1.1 DOE and NERSC

Name Affiliation Title or Role
Barbara Helland DOE / ASCR ASCR Facilities Division Director
Dave Goodwin DOE / ASCR NERSC Program Manager
Karen Pao DOE / ASCR Program Manager
Sudip Dosanjh NERSC NERSC Director
Katie Antypas NERSC Services Department Head
Richard Gerber NERSC S $c1ence Ac!wsor,
Meeting Organizer
Harvey Wasserman NERSC Meeting Organizer
Jack Deslippe NERSC Materials Science Application Support
5.1.2 Domain Scientists
Name Institution Area of Interest NERSC
Repo(s)
Mark Adams Lawrence Applied Numerical Algorithms Group m1411,
Berkeley m1797,
National Lab m1516,
m1489
John Bell Lawrence Group Leader, Center for Computational mpl11
Berkeley Sciences and Engineering
National Lab
Jed Brown Argonne PETSc, scalable solvers for implicit m1489
National Lab multiphysics
Suren Byna Lawrence Scientific data management m1248
Berkeley
National Lab
Phillip Colella Lawrence Applied Numerical Algorithms Group Lead m1411
Berkeley
National Lab
James Demmel University of Numerical linear algebra libraries; mpl56
California, communication avoiding algorithms
Berkeley
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Quincey Koziol HDF Group Principal software architect for the HDF5 m888
software project
Michael Heroux Sandia National | Algorithm development; parallel
Labs implementation of solver components
Sherry Li Lawrence Sparse matrix computations; parallel mpl127
Berkeley algorithm design and optimization;
National Lab numerical linear algebra
Dan Martin Lawrence Applied Numerical Algorithms Group m1795
Berkeley m1041
National Lab
Prabhat Lawrence Scientific data management, parallel /0, and | m636,
Berkeley scientific visualization
National Lab
Abhinav Sarje Lawrence Parallel algorithms and applications on m1270,
Berkeley emerging parallel architectures; m88
National Lab performance optimization
David Trebotich Lawrence Applied numerical algorithms; porous media | m1792,
Berkeley transport m1516
National Lab
Chao Yang Lawrence Computational mathematics m1027
Berkeley
National Lab

5.1.3 Observers

Name

Institution

Title

Kathy Yelick

Lawrence Berkeley
National Lab

Associate Director for Computing Sciences

Jonathan Carter

Lawrence Berkeley
National Lab

Computing Sciences Area Deputy and
Computational Research Division Deputy
Director

Greg Bell

Lawrence Berkeley
National Lab

Scientific Networking Division Director

Paul Messina

Argonne Leadership
Computing Facility

ALCF Director of Science

Bert de Jong

Lawrence Berkeley
National Lab

Scientific Computing Group Lead

Scott Parker

Argonne Leadership
Computing Facility

Application Performance Engineer

Tjerk Straatsma Oak Ridge Leadership Group Leader for Scientific Computing
Computing Facility

Judy Hill Oak Ridge Leadership Computational Scientist
Computing Facility

Eli Dart ESnet Network Engineer
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5.2

NERSC Projects Represented by Case Studies

NERSC projects represented at the review are listed in the table below, along with
computing and storage resources each used in 2013. These projects accounted for about 73
percent of computer time, 77 percent of shared global (“project”) disk space, and 68 percent
of archival storage used by ASCR projects at NERSC in 2013.

NERSC Hours Archive | Shared
Proiect NERSC Review Used at | Dataat | Dataon
D ) NERSC Project Title Project PI | Speaker(s) NERSC NERSC Disk
. ) P 2013 2013 | 2013
M) (TB) (TB)
mp111 | Simulation and Analysis of Bell Bell 22 2,608 13
Reacting Flow
Chombo-Crunch: Advanced
11792 Simulation of Subsurface Flow
and Reactive Transport Trebotich Trebotich 63 274 1.8
(ALCC) ; .
Processes Associated with
Carbon Sequestration
Advanced Simulation of Pore
mis16 | Scale Reactive Transport Trebotich | Trebotich 33 249 0
Processes Associated with
Carbon Sequestration
Numerical Algorithms and
Parallel Implementations for
m1027 Electronic and Nuclear Structure Yang Yang 73 == 28
Analysis
m1041 | Projections oflce Sheet E.Ng D. Martin 0.5 20.8 11
Evolution
Composable Hierarchically L. Curfman
m1489 Nested Solvers Mcinnes J. Brown 0.4 0 0
Linear Algebra Algorithms on
mpl56 High Performance Computers J. Demmel | J. Demmel 0.4 0 0
mp127 High I?erformance Sparse Matrix E.Ng S Li 15 1127 08
Algorithms
High Performance Visualization,
m636 Ameilgries, i 10 - M W. Bethel Prabhat 5.1 184 33
miz24g | Scientific Data Management johnWu | S.Byna 4.0 53 248
Research
Storage for the Scientific Data A.
SRy Management Research Group Shoshani S.Byna 0 S 0
The Sustained Performance, . .
m88 ey L. Oliker A. Sarje 4.3 1.4 0.2
Total of projects represented by case studies 141 5,024 389
All ASCR at NERSC 2013 186 5,706
Percent of NERSC ASCR 2013 allocation represented by case studies 76% 88%
Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2017 10



6 Findings

6.1 Summary of Requirements

The following is a summary of requirements derived from the case studies.

1. To meet ASCR objectives, researchers need computing and data resources that
continue to grow exponentially.

a. Researchers need 2.3 billion hours in 2017, a 12-fold increase over
hours used at NERSC in 2013.

b. Scientists will need to store more than 78 PB of archival data storage in
2017, about 14 times more than in 2013.

c. Collaboratory teams will need 3 petabytes of shared online data in 2017,
compared to only 300 TB of shared data space at NERSC in 2013.

2. ASCR researchers will require software applications, libraries, and tools that
will run efficiently on many-core architectures.

a. Many existing software packages need to be ported, optimized and
supported on next-generation platforms like Cori.

b. In order to provide applications, libraries, and tools to users that run
efficiently on many-core architectures, software developers need
sustained support from DOE.

c. Development and measurement tools are needed to optimize codes on
new systems.

3. New resources are required to support data analytics, visualization, and
archiving.

a. Researchers want NERSC to take leadership in provisioning high-
performance I/0 subsystems of HPC systems, an area in which they feel
NERSC is lagging, in order to push the state of the art.

b. A system for co-locating simulation and analysis with dedicated data
management nodes is needed to support extreme scale computing and
analysis.

c. Burst buffer technology is crucial for supporting in-situ and in-transit
analysis.

d. Global shared project disk space is needed for permanent data storage
and sharing.

e. Enhanced quotas on scratch disk space are needed to accommodate
large simulations and analysis.

f.  An /0 Quality of Service is needed to assure that I/0 time is predictable
and help to less than a few percent of an application’s total run time.

g. Faster data transfer to archival storage is needed.

4. Code teams need help porting applications, libraries, frameworks, and tools to
run well on next-generation architectures.

a. Developers need access to consulting, training classes, documentation,
and online tutorials.

b. Information about, and access to, new hardware as early as possible is
needed to prepare for future systems.

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2017 11



6.2

Additional Observations

Participants at the meeting made several observations that are not listed in the high-level
findings, the most significant of which are listed here.

6.3

Readiness for next-generation architectures (many-core) varies. Some groups
have working codes that make good use of GPUs, while others are just starting to
experiment with porting to many-core processors.

It is difficult to get access to an entire machine at NERSC. Other projects that
would like, or need, to run full-configuration jobs have difficulty doing so in the
NERSC environment.

Stable systems and seamless software upgrades are highly valued.

NERSC consulting and account support are also highly valued.

Requirements Summary

The following tables list the 2017 computational hours, archival storage, and shared disk
storage needed at NERSC for research represented by the case studies in this report. “Total
Scaled Requirement” at the end of the tables represents the hours needed by all 2013 ASCR
NERSC projects if increased by the same factor as that needed by the projects represented
by the case studies. All computational hours in this report are normalized to Hopper-
equivalent (NERSC MPP) hours.
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6.3.1 Computing

Hours Needed in 2017
Case Study Title Repo(s) PI Million Factor
Hours Increase
Simulation and Analysis of Reacting Flows mp111 Bell 500 22.5
Simulation of Pore Scale Reactive Transport 11792
Processes Associated with Carbon ’ Trebotich 500 5.1
. ml1516

Sequestration
Numerical Algorithms for Electronic and
Nuclear Structure Analysis m1027 Yang 75 10.2
AMR for Ice Sheet Modeling m1041 Ng 550 1,130
PETSc - Portable Extensible Toolkit for m1489 Curfman

L . . 10 22.7
Scientific Computation Mcinnes
Linear Algebra Algorithms and High m156 Demmel 35 86
Performance Computers
Sparse Direct Solver SuperLU mp127 Li 20 13.3
Requlremerlltsfor Parallel 1/0, Visualization, m636 Bethel 50 98
and Analysis
Requirements for Scalable Scientific Data m1248, Shoshani /

30 7.5
Management sdmstor Wu
Performance Optimization of Scientific
oo ; m88, Lucas /

Applzcatzons - MPAS-Ocean & the HipGISAXS m1285, als Oliker / Li 20 4.6
Suite
Total Represented by Case Studies 1,758
Percent of NERSC ASCR Represented by Case Studies 76% 12.4
All ASCR at NERSC Total Scaled Requirement 2,309
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6.3.2 Storage

Archival Data Shared Online

Storage Needed in Data Storage

Case Study Title Repos PI 2017 Needed in 2017
Factor Factor
TB TB
Increase Increase
Szmulgtlon and Analysis of mpl11 Bell 50,000 19 50 39
Reacting Flows
Simulation of Pore Scale
Reactive Transport Processes m1792, .
Associated with Carbon ml1516 Trebotich 5,000 20 100 56
Sequestration
Numerical Algorithms for
Electronic and Nuclear m1027 Yang 500 89 100 36
Structure Analysis
AMR for Ice Sheet Modeling m1041 Ng 500 24 16 15
PETSc - Portable Extensible m1489 Curfman
Toolkit for Scientific . N/A N/A N/A N/A
. Mcinnes

Computation
Linear Algebra Algorithms and m156
High Performance Computers i — N/A N/A N/A N/A
Sparse Direct Solver SuperLU mp127 Li 3,000 2.7 1 1.2
R(.aquzr'eme.ntsfor Parallel. 1/0, m636 Bethel 5,000 27 1,000 30
Visualization, and Analysis
Requirements for Scalable m1248, | Shoshani/
Scientific Data Management sdmstor Wu 5,000 10 1,000 4
Performance Optimization of m88, Lucas /
Scientific Applications - MPAS- m1285, Oliker / Li 2 1.4 2 10
Ocean & the HipGISAXS Suite als
Total Represented by Case Studies 69,002 2,269
Percent of NERSC ASCR Represented by Case Studies 88% 14 77% 7.6
All ASCR at NERSC Total Scaled Requirement 78,372 2,935
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7 ASCR and NERSC Trends

The following graphs show both ASCR and all NERSC usage of computational (“MPP”) hours
and archival data storage. Also included are requirements from both the first round of
requirements reviews (target 2014) and this report. The projected need from ASCR for
2017 is somewhat below the historical trend, but still 12 times ASCR usage in 2013.

NERSC and ASCR Computational Hours
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NERSC and ASCR Archival Storage
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8 Applied Math Case Studies

8.1 Simulation and Analysis of Reacting Flows

Principal Investigator: John Bell
NERSC Repository: mp111

8.1.1 Project Description

8.1.1.1 Overview and Context

The goal of our research is the development of high-fidelity simulation capabilities for
modeling of complex physical phenomena. The resulting computational tools enable
researchers to perform detailed simulations to obtain a deeper understanding of a
particular problem. Our work specifically addresses problems in combustion, subsurface
flow, atmospheric flow, cosmology and astrophysics.

In the area of combustion we are developing tools that enable us to quantify the interaction
of turbulence and chemistry in premixed flames that are of interest in the design of next-
generation, low-emissions combustion systems. Our work in subsurface flow modeling
examines questions arising in carbon sequestration and environmental remediation. Our
efforts in atmospheric flow focus on developing high-fidelity models of moist atmospheres
that include effects of moisture physics. The methodology we develop for astrophysics is
used to study supernovae as well as other low-speed astrophysical phenomena.
Cosmological simulations are focused on improving estimates of cosmological parameters
by comparing simulations with observation.

8.1.1.2 Scientific Objectives for 2017

The goal of our project for 2017 is to develop computational approaches and validate those
new approaches on realistic applications within the areas discussed above. We consider all
aspects of the target application ranging from formulation to discretization to solvers. We
want to design numerical methodology that respects the underlying mathematical structure
of the problem and is well matched to state-of-the-art computing technology.

8.1.2 Computational Strategies (now and in 2017)

8.1.2.1 Approach

The problems we consider all fall within the realm of phenomena described by differential
equations. Although the different applications we consider have their own unique features,
they share a number of common mathematical characteristics. For that reason, we can base
our development on a common software framework. In particular, they are:

1. Built on CCSE's well-established BoxLib framework (ccse.lbl.gov/BoxLib)

2. Rely on iterative linear solvers for constant and/or variable coefficient elliptic and
parabolic equations based on geometric multigrid

3. Implemented on 2D or 3D adaptive grid hierarchies (structured grid AMR)
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4. Several of the codes incorporate particle data structures; particles may be passive or
active, and fundamentally interact with the grid data during the simulation.

8.1.2.2 Codes and Algorithms

LMC: low Mach number combustion

1. Low Mach number formulation

2. Adaptive projection discretization
3. Multigrid

4. SDC coupling of processes

PMAMR: porous media

1. Total velocity with volume discrepancy formulation
2. Elliptic /parabolic pressure equation solve with multigrid
3. High-order Godunov approach for conservation laws

MAESTRO: low Mach number astrophysics

1. Low Mach number formulation with slowly varying base state
2. Nuclear reaction networks
3. Also adapted for atmospheric flows

CASTRO: compressible astrophysics
1. Self-gravity using multigrid
2. Multigroup flux limited diffusion using multigrid
3. Unsplit explicit hydro

Nyx: computational cosmology

1. Similar to CASTRO
2. Particles to represent dark matter

SMC / RNS: multicomponent, reacting, Navier-Stokes

High order accuracy

Multirate discretization based on SDC

Multigrid

Spectral Deferred Correction for process coupling

BN

8.1.3 HPC Resources Used Today

8.1.3.1 Computational Hours
Repo mp111 consumed about 22M hours at NERSC during AY2013.

8.1.3.2 Parallelism

We typically use 6K-25K cores in our runs at NERSC. Our codes have been demonstrated to
scale, for some problems, to over 100,000 CPUs on Jaguar at the Oak Ridge Leadership
Computing Facility. We typically run with the fewest number of cores needed to fit the
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problem within memory. We obtain better throughput and more efficient use of our
allocation with this strategy.

Weak scaling has traditionally been more important for our applications. This may be
changing.

8.1.3.3  Scratch Data
We generally need about 20 TB.

8.1.3.4 Shared Data

We have an mp111 project directory that we typically use to hold data for post-processing.
In effect we use it as a staging area. We used 13 TB of space in this directory in 2013.

8.1.3.5 Archival Data Storage
We had about 2.6 PB stored on HPSS in 2013.

8.1.4 HPC Requirements in 2017

8.1.4.1 Computational Hours Needed

We estimate needing about 500M hours. We have often had INCITE time for more focused
computational studies in a given area. The primary factor driving the need for more hours
is our need to solve larger and more complex problems.

8.1.4.2 Parallelism

A reasonable target for 2017 would be 20K MPI tasks with 64 fine-grained tasks per node.
The maximum might be 100K MPI x 256 fine-grained tasks.

8.1.43 1I/O

Our applications do include checkpoint/restart. A reasonable estimate for data read and
written per run in 2017 is that we would write 10-25TB / hour of [/O (assumes doing to
level in situ data reduction relative to current practice) This is an estimate of 100 GB / sec
bandwidth. We would prefer no more than 5-10% of the runtime devoted to [/0.

Our I/0 to the scratch file system is parallel, is done using multiple nodes, is generally using
large files, and we do an N x M style [/O where we write to fewer files than nodes

8.1.4.4 Future Data Needs

We would prefer a permanent project repository for data. It sometimes takes years to
complete full analysis of complex problems. In the future, we would like to make data
available to the larger scientific community.

8.1.4.5 Memory Required

Our simulations are primarily memory constrained. Target would be total memory of at
least 100-200 TB. Not clear how low we can effectively push the memory per core. Ideally
0.5G per core would be good. This can be pushed smaller but depends a lot on available
programming models. A reasonable estimate is that you would want a node to have at least
50 GB.
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8.1.4.6 Emerging Technologies and Programming Models

Our software currently does not have CUDA/OpenCL extensions. We are considering
putting chemistry integration onto GPUs. The software does not run in production on Titan
or elsewhere using GPUs. The software does have OpenMP directives now and these are
used routinely in production. We have not run on Mira or Sequoia. Porting to Intel MIC is
underway. We have developed a tiling based implementation of one of our codes that got a
speedup of a factor of 86 on a 61-core MIC. We collaborate with a CS researcher funded by
the ExaCT Co-design Center and various X-stack projects have interacted with us on these
activities.

We believe NERSC needs to:

* Provide high quality tools needed to make this transition
* Support development of new programming models needed to effectively implement
algorithms on these types of architectures

We believe DOE and ASCR need to:

* Continue to fund applied math research groups working to develop algorithms for
these architectures

* Provide support for software developed by these groups to facilitate availability of
libraries / frameworks on new architectures

8.1.4.7 Software Applications and Tools

Software we need includes: MPI / OpenMP / C++ and F90 / Visit / htar / hypre. We also
need better performance analysis tools and an improved programming model to support
multicore.

8.1.4.8 HPC Services

We need consulting and account support

One possible additional service would be to provide the framework needed to make
computational datasets available to the broader community. In combustion and cosmology
in particular there is expressed interest from other researchers in having access to our data.
Providing a gateway and suitable interfaces to support this would be potentially very useful.

8.1.4.9 Additional Data Intensive Needs

We do not currently have a data management plan for our project. We need help from
NERSC, particularly in understanding the requirements for data management.

8.1.4.10 Additional Data Intensive Needs: Burst Buffer

A burst buffer would be useful in two ways

1. Stage latest checkpoint to burst buffer before jobs begin
2. Write more frequent checkpoints to burst buffer and migrate last complete
checkpoint to rotating disk at end of run
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8.1.4.11 Requirements Summary

NERSC Repository mp111 Used at NERSC Needed at NERSC
in2013 in2017
Computational Hours 22M 500M
Typical number of cores used for production 20K 200-1000K
runs
Maximum number of cores that can be used for 200K 1.2M
production runs
Data read and written per run 1TB/hr 25TB /hr
Maximum [/0 bandwidth 10 GB/sec 100 GB/sec
Percent of runtime for I/0 5-10% 2-5%
Scratch File System space 20 TB 200 TB
Shared filesystem space 13 TB 50TB
Archival data 2,608 TB 50,000 TB
Memory per node 12 GB 30 GB
Aggregate memory 12 TB 200 TB
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8.2 Simulation of Pore Scale Reactive Transport Processes
Associated with Carbon Sequestration

Principal Investigator: David Trebotich
NERSC Repositories: m1516, m1792

8.2.1 Project Description

8.2.1.1 Overview and Context

The objective of the Energy Frontier Research Center (EFRC) for Nanoscale Control of
Geologic CO; (NCGC) is to use new investigative tools, combined with experiments and
computational methods, to build a next-generation understanding of molecular-to-pore-
scale processes in fluid-rock systems, and to demonstrate the ability to control critical
aspects of flow and transport in porous rock media, in particular, as applied to geologic
sequestration of CO. The proposed research of NCGC aims to establish the rules governing
emergent behavior at the porous-continuum macro-scale under far from equilibrium
conditions by carefully understanding the behavior at the underlying pore micro-scale. To
do so, a new generation of experimental, imaging and modeling tools must be developed at
the pore scale. These include: X-ray synchrotron and neutron scattering techniques to
image the evolving pore structure and chemistry during active CO; injection experiments
conducted over a range of scales; and multiphase, reacting flow and transport modeling
based on direct numerical simulation in realistic pore space to not only inform these
experiments a priori, but to also help interpret the experimental results, and to generalize
the results to the larger (porous-continuum) scales.

To address this challenge, the model needs to resolve the relevant physical and chemical
processes in complex pore geometries with complex fluid-fluid-solid interfaces, i.e.,
multiphase flow. This requirement demands very fine model resolution (on the order of
100’s of nanometers to a few microns) so that the physics and chemistry are accurately
captured. However, to draw conclusions that are applicable over a representative volume of
porous media at the continuum scale, large simulation domains and extreme computational
capabilities are required.

To this end, we have developed a new high performance simulation code, Chombo-Crunch.
Chombo-Crunch solves the single-phase incompressible Navier-Stokes flow equations and
advection-diffusion-reaction transport equations at the pore scale in very complex
microscale geometries associated with heterogeneous subsurface pore space. Chombo-
Crunch has produced the largest pore scale simulations of multi-component reactive
transport to date, both in resolution and scale. Chombo-Crunch scales to 100,000s of
processors on NERSC systems and has achieved image data resolution (1 micron) for flow-
through reactive transport experiments. These simulations have produced several PBs of
data (checkpoint and plot files). Sub-micron resolution (factor of 2), particularly for flow in
shales, will be required to accurately capture reactive transport processes associated with
carbon sequestration. To help accomplish this goal we have received several computational
resource allocation awards from DOE including a 2014 INCITE award, a 2013 ALCC award
and a 2012-13 NISE award (now DOE production), amounting to over 200 million core
hours and 100s of TBs of storage at DOE computing facilities.
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8.2.1.2 Objectives for 2017

The ultimate objective of this work is to develop an upscaling approach for partially
miscible multiphase flow. This will likely require an ensemble of simulation datasets. We
will need to develop a predictive model for multiphase flow within realistic fracture
systems similar in scale to the single-phase simulations by Chombo-Crunch. We will
implement the recent conservative, finite volume algorithm of Miller and Trebotich (2012)
into the Chombo-Crunch framework to model multiphase flow (Miller and Trebotich, 2014).
The interface in this case is between two fluids and is governed by surface tension jump
conditions. Initially we will concentrate on flow of a two-phase fluid (for example, for
invasion of CO; in the pore space: CO2 and brine) with specific attention to the triple point
problem presented by two fluids and a mineral boundary. Based on simulation benchmarks,
we estimate that we can initially simulate, at a best resolution of 100 nm, a 100x100x100
pum image domain (one billion grid points) obtained from FIB/SEM images of a real fracture
(Silin and Kneafsey, 2012). Model predictions can be tested by way of real-time X-ray
imaging of fluid occupancy.

8.2.2 Computational Strategies (now and in 2017)

8.2.2.1 Approach

We use adaptive, embedded boundary methods to treat the geometric complexity of the
subsurface medium at the pore scale. Embedded boundary methods are a cut cell, finite
volume approach to irregular geometry based on conservative volume of fluid
discretizations in the irregular cells that result from intersecting the problem domain with a
rectangular Cartesian grid. Away from the boundary the finite volume method reduces to
well-understood finite difference approximations.

There are several advantages to taking an embedded boundary approach to resolving the
mineral boundary of subsurface pore space. Grid generation is more tractable and efficient
than body-fitted gridding. In particular, this approach makes possible direct numerical
simulation from image data obtained by x-ray microtomography with little user
involvement. Furthermore, the embedded boundary approach allows for resolution of the
reactive transport flux at the fluid-mineral boundary in each grid cell. This approach is also
consistent with conservative sharp interface methods for treating both fluid-fluid
boundaries in multiphase flow and fluid-mineral boundaries in the presence of
precipitation or dissolution, two key features of our proposed new work. Finally, embedded
boundaries are amenable to adaptive mesh refinement (AMR), a technique for increasing
grid refinement dynamically only in local areas of interest in the domain (e.g., reactive
front). The combined adaptive, embedded boundary approach is a very powerful tool for
solving multiscale, multiphysics flow and transport problems in the subsurface.

8.2.2.2 Codes and Algorithms

We use the Chombo-Crunch production code to simulate reactive transport in microscopic
pore space geometries obtained from image data of geologic porous media. Flow and
conservative transport is solved by incompressible flow and advection-diffusion solvers and
algorithms developed in the Chombo framework. Reactions are handled by the
geochemistry module in CrunchFlow. The interface to CrunchFlow from Chombo is a point-
by-point computation on a local box of the domain and thus scales ideally with Chombo
solvers. We also use algebraic multigrid solvers through PETSc to avoid limitations with
geometric coarsening. Chombo and PETSc support comes by way of the SciDAC FASTMath
project.
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8.2.3 HPC Resources Used Today

8.2.3.1 Computational Hours

We used 96 million hours at NERSC in 2013, many or which were Edison pre-production
hours. We also had an ALCC allocation (80M on Mira) and an INCITE allocation (another
80M on Mira)

8.2.3.2 Parallelism

The concurrency range is from about 6,144 to 131,072, with the maximum we could use
being about 131,072.

We do some runs at 6,144 and 49,152 for a specific problem that ideally we would like to
increase the resolution by a factor of 2 and make use of 393,216 cores

Weak scaling is more important for us. Due to the sweet spot for load balancing in Chombo-
Crunch (323 grid points per box in 3D; 2562 grid points per box in 2D) we cannot achieve
optimal performance for strong scaling. We can usually get two data points for strong
scaling due to this load-balancing requirement. Furthermore, we are more interested in
increased resolution to resolve reactive transport processes at sub-micron scales.

8.2.3.3  Scratch Data
We need 80-100TB of scratch space.

8.2.3.4 Shared Data

We currently use project directory m1792 to share data amongst team members. We
managed to store 1.8 TB there in 2013 and find that the quota of 1 TB is too small.

8.2.3.5 Archival Data Storage
We had about 500 TB stored on HPSS at NERSC.

8.2.4 HPC Requirements in 2017

8.2.4.1 Computational Hours Needed

We estimate needing 500M hours. Chombo-Crunch is now considered a production code,
i.e, it is out of the experimental testing phase. As such, computational geoscientists on our
team would like to use it to run a number of simulations beyond what | have mentioned in
my ERCAP requests.

8.2.4.2 Parallelism

We are currently making Chombo-Crunch thread safe and will learn how we are able to
scale on Mira in that mode. Currently 16 ranks per core is our sweet spot. However, for the
current production version of Chombo-Crunch on NERSC that uses flat MPI we will be
running 393,216 cores if there is a machine that has that number available.

8.243 1I/O

We currently do have checkpoint/restart and we use it. A 36-hour production run can
dump up to 100TB of data, depending on the problem. We estimate needing
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100TB/(.01*36hrs) = 278TB/hr = 77GB/sec 1/0 bandwidth and currently devote less than
2% of the time to I/0, which is all we're willing to devote.

8.2.4.4 Future Data Needs

In 2017, we expect to need 500 TB of temporary scratch disk space, 100 TB of NERSC
project space (globally accessible shared data), and 5,000 TB of storage on NERSC HPSS.
The growth in these requirements relative to 2013 is due primarily to increased resolution.
Data in the project space would need to be retained for about five years.

8.2.4.5 Memory Required

We will need about 1 GB per core in a discrete memory space.

8.2.4.6 Emerging Technologies and Programming Models

Our software currently does not have CUDA or OpenCL and there is no plan to add this.

We have development versions of Chombo that use OpenMP. We will be porting to
Chombo4 in the next year. We are currently running on Mira but not using threading yet.
Porting to MIC is underway via our account on the NERSC Babbage system. We have
engaged the ExaHDF5 team led by Prabhat, the PETSc team (Mark Adams, Jed Brown), and
the ALCF consultants to help.

We need NERSC to tell us what hardware it planning to acquire to so we can then tell you
how we will use it. The burst buffer is an example.

DOE and ASCR need to engage the algorithm and simulation software developers for
guidance on future directions in hardware. For example, I would be very happy right now
with a machine like Edison that has 8 or more times the core count. I would be set beyond
2017 with that capability.

8.2.4.7 Software Applications and Tools
We need Chombo, PETSc, HDF5, and Vislt.

8.2.4.8 HPC Services

We typically make heavy use of consulting and account support, data analytics and
visualization. We do not need NERSC web sources for publishing or making data available.

8.2.4.9 Additional Data Intensive Needs

I may have already mentioned this but my workflow is severely hampered by scratch
quotas. I will need 100TB of scratch space in the future. Also, transfer rates from scratch to
HPSS are slow.

We believe that our use of HPSS satisfies the need for a data management plan.

8.2.4.10 Additional Data Intensive Needs: Burst Buffer

The primary scenario on http://www.nersc.gov/assets/Trinity-NERSC-8-
RFP/Documents/trinity-NERSC8-use-case-v1.2a.pdf would be very useful for my work. All
three data analysis and visualization secondary scenarios would be useful particularly with
our plans for in situ data analytics and vis. These secondary scenarios would fit very well
with our plans to have in situ data vis and analytics in Chombo-Crunch.
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8.2.4.11 Additional Comments
[ would like a Cray like Edison but with 400K cores.

8.2.4.12 Requirements Summary

NERSC Repositories m1516, m1792 Used at NERSC Needed at NERSC
in2013 in2017
Computational Hours 96 M 500 M
Typical number of cores used for production 6K -131K 400K
runs
Maximum number of cores that can be used for 400K 400K
production runs
Data read and written per run 100 TB 500 TB
Maximum [/0 bandwidth 77 GB/sec
Percent of runtime for I/0 <2% <2%
Scratch File System space 100 TB 500 TB
Shared filesystem space 1.8 TB 100 TB
Archival data 525 TB 5,000 TB
Memory per node 1 GB/core 1 GB/core

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2017

26



8.3 Numerical Algorithms for Electronic and Nuclear Structure
Analysis

Principal Investigator: Chao Yang
NERSC Repositories: m1027

8.3.1 Project Description

8.3.1.1 Overview and Context

The goal of our project is to develop enabling applied mathematics and numerical tools for
improving the fidelity and throughput of computational materials science and chemistry
research. In particular, we focus on developing methodologies and software tools for
accelerating ground state electronic structure calculations that are based on density
functional theory (DFT) and many-body wave function methods (such as configuration
interaction, coupled cluster) and excited state calculations that are based on Green’s
function formalism and many-body perturbation approaches. The improvement in ground
state DFT calculation is also important for accelerating first principles molecular dynamics
simulation. The algorithmic and software development for configuration interaction is also
relevant for nuclear structure calculations.

This project facilitates several SciDAC3 institution and partnership projects that we are
currently funded to work on. These projects (and their Pls) include:

* FASTMath institute (Lori Diachin)

* Advanced Modeling of lons in Solutions, on Surfaces, and in Biological Environments
(Roberto Car)

* Discontinuous Methods for Accurate, Massively Parallel Quantum Molecular
Dynamics: Lithium Ion Interface Dynamics From First Principles (John Pask)

* Scalable Computational Tools for Discovery and Design - Excited State Phenomena
in Energy Materials (Jim Chelikowsky); see http://excited-state-scidac.org

* Simulating The Generation, Evolution and Fate of Electronic Excitations in Molecular
and Nanoscale Materials With First Principles Methods (Martin Head-Gordon)

* Charge Transfer and Charge Transport in Photoactivated Systems: Developing
Electron-Correlated Methods for Excited State Structure and Dynamics in the
NWChem Software Suite (Chris Cramer)

* Nuclear Computational Low-energy Initiative (Joe Carlson)

8.3.2 Objectives for 2017

For first-principle MD simulation, we aim to develop efficient algorithms and parallel
implementations that will allow scientists to perform simulations on realistic Li-ion models
and certain biological systems (ions in solutions) that contain more than 10,000 atoms. In
particular, we would like to keep the wall clock time it takes to advance each MD step under
one minute. This will allow scientists to simulate a longer trajectory than what they can
currently do.
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For electron excitation, we aim to develop methods that would allow scientists to perform
GW calculations and solve Bethe-Salpeter equations for systems with up to 1,000 atoms.

We also aim to develop efficient algorithms that will enable scientists to perform large-scale
configuration interaction (CI) calculations for both electronic and nuclear structures. For
nuclear structure, we hope to be able to perform CI calculations that involve 3 and 4-body
potentials.

At the solver level, we hope to develop an eigensolver that can utilize a vast amount of
computational resources efficiently to compute a small percentage of eigenpairs of large
sparse matrices.

8.3.3 Computational Strategies (now and in 2017)

8.3.3.1 Approach

In density function theory based electronic structure calculation, the main problem to be
solved is the Kohn-Sham equation, which is a nonlinear eigenvalue problem. The solution to
this problem is the starting point for calculating excited state properties of materials. It is
also the building block for optimizing the structure of materials (geometry optimization)
and for performing first-principle molecular dynamics.

The Kohn-Sham problem is solved by a nonlinear iterative method often known as the self-
consistent field (SCF) iteration. The most expensive part of the method is the evaluation of
the electron density. The most widely used algorithm computes the electron density at each
SCF iteration by solving a large linear eigenvalue problem with a fixed Hamiltonian matrix.
The number of eigenpairs required is proportional to the number of atoms (N). The
complexity of the this approach is O(N3) if a standard eigensolver is used to compute the
desired eigenpairs.

We are pursuing two ways to reduce the complexity of electron density evaluation. In one
approach, we express the electron density as the diagonal of a matrix function of the
Hamiltonian, and approximate this matrix function by a linear combination of simple
rational functions through a technique called pole expansion. The use of pole expansion
allows us to avoid computing eigenvalues of the Hamiltonian. Instead, we need to compute
the diagonals of the inverses of a number of shifted Hamiltonians. We developed an efficient
sparse matrix technique called selected inversion to compute these diagonal elements
without inverting the entire matrix. This technique allows us to reduce the complexity to
O(N2) in the worst case. In another approach, we still compute the electron density by
computing the desired eigenpairs. We develop a new algorithm that divides the spectrum of
interest into several intervals and compute eigenvalues belonging to different intervals
simultaneously. This approach not only reduces the complexity of the calculation, but also
introduces more concurrency by adding a level of coarse-grained parallelism.

The prefactor of these calculations depends on the choice of discretization methods. The
existing discretization schemes such as plane wave basis expansion, finite element, and
finite difference often lead to large prefactors that cannot simply be ignored. We are in the
process of developing a new discretization scheme that is based the discontinuous Galerkin
framework. In this approach, we expand the solution to the Kohn-Sham problem in a set of
discontinuous basis functions constructed from solving the Kohn-Sham problem restricted
to a number of localized domains. The DG approach allows us to minimize the number of
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basis functions per atom, thereby reducing the dimension of the matrix Hamiltonian while
keeping it sparse. This technique reduces the prefactor of the DFT computation significantly.

For excited state calculation through the Green’s function formalism, we need to solve
Dyson’s equation, which is also a nonlinear eigenvalue problem. We use the GW
approximation to the self-energy in the Dyson’s equation. A full-frequency GW
approximation requires the dielectric operator to be evaluated and inverted at multiple
frequencies. Each evaluation has O(N%) complexity. We are developing techniques to
organize the computation in a way to maximize concurrency. To obtain energies of excitons,
we need to solve the Bethe Salpeter equation, which is a complex linear eigenvalue problem.
The dimension of the problem is N2 by N2. This is extremely costly to solve. We will
develop an efficient structure preserving eigensolver to tackle this problem.

On the wave function methods side, the main problem to be solved is a many-body
Schrodinger’s equation, which is a large-scale linear eigenvalue problem. We are developing
efficient preconditioning techniques to accelerate the convergence of eigensolvers for both
configuration interaction and multi-configuration SCF calculations.

8.3.3.2 Codes and Algorithms

PPEXSI: Parallel Pole Expansion and Selected Inversion.

It is used to evaluate electron density from a sparse DFT Hamiltonian without computing
eigenvalues and eigenvectors of the Hamiltonian. It uses an efficient and accurate rational
expansion called pole expansion to approximate a Fermi-Dirac function, and a sparse direct
method to compute selected elements of the inverse of a sparse matrix without inverting
the whole matrix. This is currently used for electronic structure calculation. But parallel
selected inversion has a wider range of applications (electron transport, uncertainty
quantification etc.) We are currently working with two SciDAC3 teams (Roberto Car and
John Pask) to integrate PPEXSI with CP2K and DGDFT (see below). We are also working
with SIESTA developers to integrate PPEXSI with SIESTA.

DGDFT: Discontinuous Galerkin based Density Functional Theory calculation

It is a new DFT-based electronic structure code that uses a local basis expansion technique
and discontinuous Galerkin formalism to discretize the Kohn-Sham equation. It is combined
with PPEXSI to perform electronic structure analysis of large atomistic systems. It is also
used in first-principle molecular dynamics code to simulate the dynamics of complex
systems such as the formation and evolution of SEI layer in a Li-ion battery.

BerkeleyGW:

A code developed by Steven Louie’s group at UC-Berkeley. It is used to calculate single
electron excitation and optical spectral of an electron-hole pair. Most of the computations
involved in GW calculation are dense linear algebra operations. We developed special
numerical integration scheme to perform the convolution of the Green’s function (G) and
the screened Coulomb interaction in the frequency domain. We are also developing efficient
ways to evaluate frequency-dependent dielectric matrices without computing the
polarizability explicitly, thereby avoiding computing many eigenvalues of the Kohn-Sham
Hamiltonian.

NWCHEM and QCHEM:
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These are both well-established quantum chemistry codes. NWCHEM uses GlobalArrays as a
means to perform parallel calculations on a distributed memory system. QCHEM currently
only supports shared memory parallelism. Disk /0 is used to hold intermediate results for
some type of calculations such as coupled cluster. Both codes use the block Davidson
algorithm to solve large-scale eigenvalue problems.

MFDn:

The Many-body Fermion Dynamics for nuclear physic code is developed by James Vary at
Iowa State University. It is a nuclear configuration interaction code that can be used to
study both the ground and excited states of light nuclei. It uses the Lanczos algorithm to
compute typically 10-20 lowest eigenpairs of a Hamiltonian with dimension as large as 109.

Alternative eigensolvers

We are developing two new eigensolvers to compute a small percentage of eigenpairs of
large sparse matrices. EigPen uses a trace-penalty formulation of the eigenvalue problem
and minimizes the trace of the Hamiltonian within a subspace using a steepest descent type
of algorithm. RTraceMin implements a relaxed trace minimization algorithm in which the
orthonormality constraint is first relaxed and then reinforced later to project the
approximate solution onto the constraint. We currently have a OpenMP parallel version for
EigPen and a distributed parallel version of RTraceMin, which is being integrated with the
Quantum Espresso and Qbox packages. We are also developing a solver based on a
spectrum slicing technique.

8.3.4 HPC Resources Used Today

8.3.4.1 Computational Hours
We used roughly 7.3 million Hopper-equivalent hours at NERSC in 2013. Among these

* Roughly 2.8 million hours are spent on algorithm development and tests for
BerkeleyGW

* Roughly 2.4 million hours are spent on algorithm development and tests for parallel
selected inversion

* Roughly 150K hours are spent on the development of large-scale eigensolvers

* Roughly 900K hours are spent on the development of DGDFT

8.3.4.2 Parallelism

We typically use several thousands to several hundreds of thousands of cores for
production runs. Our production runs are mostly used to test the performance and accuracy
of algorithms.

The BerkeleyGW code can use as many cores as is available for sufficiently large systems.
The DGDFT and PPEXSI code can use over 300,000 cores.

Most of the runs in this project are used to test newly developed algorithms. For testing
algorithms, fast turnaround is extremely important. Therefore, we cannot afford to submit

large jobs that wait in queues for several days. We typically submit small jobs that can run
interactively or medium-sized jobs that can be started within a day.
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For application problems, weak scaling is important since scientists we work with tend to
be interested in looking at larger and more complex systems. To be able to take advantage
of a vast amount of computational resources to study these problems is what is important
to them. In some cases, strong scaling matters also. For example, one of the goals of our
project is to be able to perform each molecular dynamics step for a realistic Li-ion model
within one wall-clock minute. This is the kind of time scale that would allow scientists to
obtain a sufficiently long trajectory to understand battery materials properties.

For algorithmic development, strong scaling is often the first thing we look because it often
exhibits computational bottlenecks that need to be addressed.

8.3.4.3 Scratch Data

For BerkeleyGW runs, we can use as much as several terabytes. The disk space is used to
store frequency dependent dielectric matrices that are used in subsequent self-energy
calculations.

For other codes, the amount of disk space needed is typically small. We use some disk space
to store sparse Hamiltonian matrices and sometimes eigenvectors and electron density. We
typically need less than 1 TB for these projects.

8.3.4.4 Shared Data

We use project directory /project/projectdirs/m1027, which currently has nearly 3TB of
data stored. We use the project directory primarily to share input and output data.
Sometimes we use it to share certain versions of the code that we are not ready to commit
to a code repository system such as svn and git.

8.3.4.5 Archival Data Storage
We currently use HPSS very little. We had 5.6 TB stored there in 2013.

8.3.5 HPC Requirements in 2017

8.3.5.1 Computational Hours Needed

We expect that our project will need at least 75M compute hours in CY 2017. It is likely
that NERSC will be the only resource we'll use.

By 2017, most of code development for SciDAC3 projects should be completed. We will be
testing and benchmarking these codes on more challenging systems with sufficiently large
number of atoms. In particular, for first-principle MD simulation, we will be targeting
systems with more than 10,000 atoms. For GW and BSE calculations, we will be targeting
systems with 1,000 atoms. The 10-fold increase in system alone will require at least a 10
fold increase in computational resources if we assume linear scaling can be achieved in our
calculation, which is a bit optimistic at the moment, especially for excited state calculation.

8.3.5.2 Parallelism

For a 10,000-atom MD simulation using DGDFT and PEXSI, we expect to break the system
into 2,000 5-atom elements. Each can be assigned to an MPI task. So there will be 2,000 MPI
tasks. We hope to be able to use shared-memory cores to compute DG basis on each
element. We currently use 12 cores on Edison, and can possibly use more if available.
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For parallel PEXSI, we can currently use up to 1.3 M MPI tasks (with 2 levels of parallelism).
We hope to reduce the number of MPI tasks by at least a factor of 10 and replace them with
OpenMP tasks to achieve better scaling.

In principle, there is no limit on how many MPI tasks we can use.

8.3.5.3 I/O

Our applications currently do not have built-in checkpoint/restart.

For end-to-end simulation, we anticipate a relatively small amount of data that describes
and chemical species and geometry of the system to be read. Our code may write a large
amount of data that consists of 3D wave functions, electron density at multiple time steps or
dielectric matrices and self-energy at multiple frequencies.

The wave functions and density may require hundreds of GB. The dielectric matrices at
multiple frequencies may require tens to hundreds of TB disk space to store if the existing
algorithms are used and all intermediate data need to be stored.

Effective bandwidth of tens GB/sec should be sufficient. This may translate to hundreds of
GB/sec or 1TB/sec depending on how many users are performing I/0 at the same time.

Ideally, no more than 1 percent of wall clock time should be spent on [/0.

8.3.5.4 Future Data Needs

In 2017, we expect to need about 100 TB of temporary scratch disk space, 100 TB of NERSC
project space (globally accessible shared data), and about 500 TB of storage on NERSC HPSS.
The growth in these requirements relative to 2013 is due primarily to increased problem
size. Of the data that we will store at NERSC in the project space or on HPSS, we would like
it to be permanent storage, if possible.

8.3.5.5 Memory Required

For Kohn-Sham DFT based electronic structure calculation for a 10,000 atom system using
DGDFT, the aggregate memory we need is at least 512x80 GB = 40TB aggregate memory to
store the Cholesky factor (assuming a 20% fill) and the selected inverse of the sparse
Hamiltonian which is required to calculate the electron density. If we can run the code
efficiently on 2,000 nodes, the amount of memory required per node is at least 20GB.

For GW calculations, we potentially need 10 PB aggregate memory if polarizability is
constructed explicitly from the eigenvectors of the DFT Hamiltonian. If 100,000 nodes can
be efficiently used, the memory requirement per node is 100 GB.

For nuclear CI calculations, the 40 PB aggregate memory is likely to be needed just to store
the sparse Hamiltonian. There is a trade-off between communication overhead and memory
per node. If 100,000 nodes can be efficiently used, 400 GB per node memory is needed.

8.3.5.6 Emerging Technologies and Programming Models

We currently do not use CUDA/OpenCL. We do not have plans to use these in the near
future. Our software does not currently run on Titan or other GPU systems.
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Some of our codes (DGDFT, BerkeleyGW) have OpenMP directives now. We plan to add
OpenMP directives to other codes such as PPEXSI in the future. BerkeleyGW can run on
Mira.

We have not tried porting to or optimizing for MIC.
There are no other funded groups to help with these activities.

We have no strategy for exploiting the above technologies because we do not know if any of
them is sustainable. We have limited human resources and cannot afford to rewrite codes
that will become obsolete in a few years.

We believe the role that NERSC should play is in porting existing codes, performing
benchmark tests, and sharing experiences by giving presentations and providing tutorials.

We believe the role that DOE and ASCR should play is by providing sufficient and sustained
funding for algorithm development.

8.3.5.7 Software Applications and Tools

We would need several standard material science and chemistry applications (such as
Quantum Espresso, SIESTA, ABINIT, QCHEM, NWChem, and/or BerkeleyGW), as well as a
wide variety of libraries such as BLAS/LAPACK/ScaLAPACK SuperLU_DIST, Pardisol,
MUMPS, Parmetis, PT-SCOTCH, and FFTW. We also need C, C++, and Fortran90 compilers,
Python, DDT or other more user-friendly parallel debugging systems, and performance
analyzer and profiling tools (something better than CrayPat).

8.3.5.8 HPC Services

Consulting and account support are most useful for us. Help with visualization can
potentially be useful also. We do not need web resources from NERSC to publish data.

8.3.5.9 Additional Data Intensive Needs

We do not have a data management plan of any kind in place now, nor do we feel we need
help from NERSC in defining or implementing such a plan.

8.3.5.10 Requirements Summary Worksheet

NERSC Repository m1027 Used at NERSCin | Needed at NERSC
2013 in 2017

Computational Hours* 75 M 75 M
Typical number of cores** used for production 5,000 -100,000 10,000-1M
runs
Maximum number of cores** that can be used 1M 10 M
for production runs
Data read and written per run 4TB 40 TB

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2017 33



Maximum I/0 bandwidth 2 GB/sec 50 GB/sec
Percent of runtime for 1/0 33% 1%
Scratch File System space 5TB 100 TB
Shared filesystem space 2.8 TB 100 TB
Archival data 5.6 TB 500 TB
Memory per node 32GB 1024 GB
Aggregate memory 10 TB 10 PB

*NERSC MPP Hours (Hopper equivalent hours)
**Traditional cores

8.3.5.11 Additional Storage and I/0 Comments

We have both serial and parallel 1/0; both shared (N-to-1) or distributed (N-to-N) and uses

mostly large files.
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8.4 AMR for Ice Sheet Modeling

Principal Investigator: Esmond G. Ng, LBNL

Worksheet Author(s): Daniel Martin, Esmond G. Ng, LBNL

NERSC Repositories: m1041 (Predicting Ice Sheet and Climate Evolution at Extreme
Scales)

8.4.1 Project Description

8.4.1.1 Overview and Context

Ice sheets are immense freshwater reservoirs that interact dynamically with other parts of
the Earth system. Most climate models to date have ignored dynamic changes in ice sheets,
for two reasons. First, ice sheets were thought to evolve only on time scales of hundreds to
thousands of years. Recent observations, however, have shown that the Greenland and
Antarctic ice sheets are losing mass at a rate of 500 km3/year and are likely to make a
dominant contribution to 21st century sea level rise. Second, ice sheets are difficult to
observe and model. Models must simulate complex flows on small scales (1 km or less),
solving large nonlinear systems of partial differential equations (PDEs) that challenge the
best computational methods. Ice flow is sensitive to poorly understood basal boundary
processes. Ice sheets are closely coupled to the atmosphere and ocean, and this coupling is
only beginning to be included in climate models. Furthermore, there are few observational
data sets for model validation.

Although ice sheet models have improved in recent years, much work is needed to make
these models reliable and efficient on continental scales and to quantify their uncertainties.
We will develop and apply robust, accurate, and scalable dynamical cores (“dycores”) for ice
sheet modeling on structured and unstructured meshes with adaptive refinement, evaluate
ice sheet models using new tools and data sets for verification and validation (V&V) and
uncertainty quantification (UQ), and integrate these models and tools in the Community Ice
Sheet Model (CISM) and Community Earth System Model (CESM). Using improved
estimates of ice sheet initial conditions, we will simulate decade-to-century-scale evolution
of the Greenland and Antarctic ice sheets, using CISM both in standalone mode and coupled
to CESM. We aim to provide useful, credible predictions, including uncertainty ranges, of
future ice sheet mass loss and resulting changes in climate and sea level.

Building on recent successes of SciDAC and the Ice Sheet Initiative for Climate Extremes
(ISICLES), we are developing two dycores: (1) BISICLES: a finite-volume dycore on a
structured mesh, using the Chombo adaptive mesh refinement software framework, and (2)
FELIX: a finite-element dycore on an unstructured mesh, using the Model for Prediction
Across Scales (MPAS) framework and Trilinos software packages. Both dycores will include
a hierarchy of Stokes and higher-order solvers that can be applied at variable resolution in
different regions. We will develop stable, efficient numerical schemes for ice-thickness
evolution and will implement realistic, physics-based basal boundary conditions. In order
to model the Antarctic ice sheet, high-performance computing is needed. The dycores we
are developing will be engineered to optimize performance on new high-performance
computers with heterogeneous architectures and will be incorporated into the Community
Ice Sheet Model (CISM), which will be coupled to global climate models (GCMs) like CESM
and the under-development DOE ACME GCM.
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8.4.1.2 Objectives for 2017

By 2017 we aim to have high-resolution, fully coupled simulations of ice sheet and climate
evolution (e.g., sea-level rise) with uncertainty quantification. We will run stand-alone CISM
model simulations as well as simulations fully coupled (ocean-atmosphere-sea ice) to CESM
and the DOE ACME GCM. CISM will use the BISICLES and FELIX dynamical cores, both with
adaptive mesh refinements and hierarchical, 3-D, higher-order momentum balance
solutions (including and up to nonlinear Stokes).

8.4.2 Computational Strategies (now and in 2017)

8.4.2.1 Approach

The computational problem is the solution of large systems of nonlinear partial different
equations (PDEs). The strategies for solving the PDEs depend on the dycores. The BISICLES
dycore is based on a finite volume technique using structured meshes with adaptive
refinement. The FELIX dycore is based on a finite element method using unstructured
meshes with variable resolution. In both cases, the computational kernels after
discretization involve nonlinear and linear solvers. The solution strategies make extensive
use of computational frameworks developed by ASCR researchers. The BISICLES dycore is
built using the Chombo framework for block-structured adaptive mesh refinements and
relies on nonlinear and linear solvers from PETSc. The FELIX dycore is built using the
Model for Prediction Across Scales (MPAS) framework; the nonlinear and linear solvers
come from the Trilinos framework.

8.4.2.2 Codes and Algorithms

Both the BISICLES and FELIX codes are used for modeling land ice sheet evolution.
BISICLES: Chombo-based AMR ice sheet model based on finite-volume discretizations on
regular block-structured adaptive meshes. Currently beginning to be used for production

runs.

FELIX: Trilinos/MPAS-based ice sheet model based on finite-element discretizations on
unstructured/semi-structured meshes. This code is still under development.

8.4.3 HPC Resources Used Today

8.4.3.1 Computational Hours
NERSC time: 500,000 core hours

BISICLES: 300,000 core-hours on Hopper in 2013
FELIX: 200,000 core-hours on Hopper in 2013.
Other facilities:

BISICLES: only local workstation usage for development and testing, probably around 50k
cpu-hours

FELIX: only local workstation usage for development and testing, probably around 50k cpu-
hours
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8.4.3.2 Parallelism
The remainder of this study will primarily discuss the BISICLES model.

For 1km-resolution full-continent Antarctica runs, we have been running BISICLES with 768
cores, which takes about 77 hours to do a 100-year run (7x11 hours). Multiple runs are
needed to evaluate different climate scenarios.

We haven’t done a recent scaling study for BISICLES, but we likely don’t want to use more
than a few thousand cores. The issue we run into is that we start to run out of work to
distribute, particularly on the coarser AMR levels.

As mentioned, we begin to run out of work to do on the coarser levels. At the same time, the
particular number of processors was chosen to try to find a “sweet spot” in the queues.

At present, as we are increasing the resolution of our simulations, weak scaling is more
important. Once we reach our target resolution (very soon), then strong scaling becomes
more important.

8.4.3.3 Scratch Data
We typically need about 10 TB for temporary space.

8.4.3.4 Shared Data

We have two project directories. One is a “piscees,” project directory associated with the
PISCEES SciDAC application partnership, to enable sharing of common datasets and
software/library installation for common use. The other is the “iceocean” project directory
inherited from the now-defunct m1343 ALCC allocation, used primarily to enable offline
coupling between the POP2x ocean model (managed by Xylar Asay-Davis) and the BISICLES
ice sheet model (managed by Dan Martin). We used 1.1 TB of disk space in these directories
in 2013.

8.4.3.5 Archival Data Storage
We had 20 TB of data stored in the NERSC HPSS system in 2013.

8.4.4 HPC Requirements in 2017

8.4.4.1 Computational Hours Needed

In 2013, our finest-resolved full-continent Antarctic simulation was a 1 km finest-resolution
AMR run, which took 77 hours on 768 processors for a 100-year run (approx. 60,000 cpu-
hours).

In 2017, we expect to be doing ~ 250m-resolution full-Antarctic runs (with AMR). With the
current code, each of these runs would require approximately 960,000 hours per 100-year
run (9,600 hours/simulation year). We expect to do a suite of these runs to evaluate
different climate scenarios and also to begin to quantify the uncertainties in the problem.

Expected improvements in the code in that timespan include a transition from 2.5D to full

3D (roughly a factor of 10x) and transition to more-complex physics (2-3x), which leads to
roughly 20M cpu-hours per 100-year run. A suite of 100 runs would then be 2B cpu-hours.
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So, the increase is driven somewhat by larger problem size, but mostly by the desire to run
more scenarios.

Note that for each initial condition, we also need to solve an inverse problem to obtain the
initial state. This generally costs about the same as a 10-year run. In 2017 we likely won’t
need to resolve the inverse problem for every scenario, so our estimate is that we will need
550 million hours.

8.4.4.2 Parallelism

The number of unknowns will be roughly 25 times larger than what we solve for now,
which is likely a good indicator of the MPI parallelism we can hope to achieve, which means
an MPI parallelism of around 25,000 MPI tasks. We can likely expect O(10) additional fine-
grained parallelism via threading.

8.4.43 1/O0

Our application does make use of its own checkpoint/restart capability. We would typically
write or read about O(500 GB)/run x 25 runs = 12.5 TB. Assuming perfect [/0 hiding,
would need 500 GB/80hrs = 6.25 GB/hr of bandwidth. That would mean no time spent in
[/0; we could reasonably tolerate 5-10%.

8.4.4.4 Future Data Needs

In 2017, we expect to need about 50 TB of temporary scratch disk space, 16 TB of NERSC
project space (globally accessible shared data), and 500 TB of storage on NERSC HPSS. The
growth in these requirements relative to 2013 is due primarily to increased number of
scenarios to evaluate.

8.4.4.5 Memory Required

We haven’t really measured memory requirements for the simple reason that it hasn’t been
an issue for us - we've found the current amount of memory per node to be adequate to our
needs. For us, parallelism has been driven by execution time, not memory footprint.

8.4.4.6 Emerging Technologies and Programming Models

We don't use CUDA or OpenCL and have no current plans to do so. Our code does not run
on Titan or other systems using GPU hardware.

Our software does not currently have OpenMP, but OpenMP support has been added to
Chombo for the upcoming 3.2 release. At that point, we can begin to experiment with this
capability in BISICLES. The code does not currently run on Mira or Sequoia.

Porting to or optimizing for Intel MIC is neither underway nor planned.

We plan to leverage development by the Chombo team currently underway, as well as
whatever support PETSc brings to the table. Also, PISCEES includes some funding for SUPER
(Williams at LBNL, Worley at ORNL) to support performance improvements and migration
to new architectures.

We would like to see NERSC provide, at the very least, training and support for users

making the transition to these architectures. We strongly believe that DOE/ASCR needs to
better support development of programming libraries, tools, and algorithms.
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8.4.4.7 Software Applications and Tools

We will need HDF5, netCDF, PETSc, C++/Fortran (PGI or GNU), LAPACK, MPI, OpenMP, DDT
or similar parallel debugger, and performance evaluation tools.

8.4.4.8 HPC Services

We anticipate needing consulting and account support, architecture transition training and

support, performance tools.

8.4.4.9 Additional Data Intensive Needs

We currently have no data management plan beyond archiving data via HPSS.

8.4.4.10 Requirements Summary Worksheet

NERSC Repository m1041 Used at NERSC Needed at NERSC
in 2013 in 2017
Computational Hours* 500 K 550 M
Typical number of cores used for production runs 500-2,000 12,000
Maximum number of cores** that can be used for 3,000 25,000
production runs
Data read and written per run 1TB 100 TB
Percent of runtime for 1/0 <5-10% <5-10%
Scratch File System space 10 TB 50 TB
Shared filesystem space 1.1 TB 16 TB
Archival data 20 TB 500 TB

*Normalized to Hopper-equivalent (NERSC MPP) hours

**Traditional cores

8.4.4.11 Additional Storage and I/0 Comments

Our [/0 is mostly parallel, using HDF5 with an N-to-1 pattern and medium-size files.
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8.5 PETSc - Portable Extensible Toolkit for Scientific
computation

Principal Investigator: Lois Curfman Mclnnes, Argonne National Laboratory
Additional Worksheet Authors: Jed Brown, Barry Smith
NERSC Repository: m1489, Composable Hierarchically Nested Solvers

8.5.1 Project Description

8.5.1.1 Overview and Context

PETSc is a scalable numerical software library for the solution of PDEs and optimization
problems. It includes its own linear, nonlinear, and ODE solvers as well as interfaces to
other packages, including SuperLU_DIST, Hypre, ML, and Sundials. It also contains code for
the management of parallel data structures (for example structured and unstructured grids)
needed in the solution of PDEs.

8.5.1.2 Objectives for 2017

By 2017 we want to achieve scalability and efficiency across a range of applications and
problem sizes on the hardware available at that time. This includes algorithmic advances to
utilize higher-level problem structure to reduce communication requirements, create more
on-node parallelism, and reduce memory bandwidth in order to improve efficiency and
strong scalability (reduce the turn-around time).

8.5.2 Computational Strategies (now and in 2017)

8.5.2.1 Approach

PDE solvers require nearest neighbor communication plus global reductions. Multilevel
preconditioners and solvers also require longer-range communication when restricting the
active process set for coarse grids.

8.5.2.2 Codes and Algorithms

Our codes contain Krylov solvers, multigrid solvers, stiff and non-stiff ODE solvers, and
structured and unstructured grids.

8.5.3 HPC Resources Used Today

8.5.3.1 Computational Hours
In 2013 we used 441 K hours at NERSC and about 1 million at other facilities.

8.5.3.2 Parallelism

We believe that NERSC users calling PETSc solvers probably have concurrencies in the
range 200-100k cores. The maximum would probably be more than 1M, depending on the
chosen algorithm.

Some algorithms are currently implemented with nonscalable data structures or have a

communication pattern during setup that is not scalable. By nonscalable, we mean any
handling of local problem-sized data involving work that is more than logarithmic in the
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number of processes P. A constant amount of O(P) data is allowed, and is used internally by
the MPI implementations, so long as it is only used for fast (logarithmic or better) lookups
when handling problem-sized data. For problems with irregular sparsity, the user may
provide data with unbalanced off-process dependencies, in which case the best algorithm
would change. It complicates the interface to require the user to choose the algorithm up-
front, but not doing so increases setup costs because some analysis must be done to choose
an efficient communication algorithm.

Weak scaling is important to demonstrate the capability and for a few customers that run
extremely high resolution. Weak scaling is also a more discerning test of multilevel
algorithmics, assuming it is done in a realistic setting (with just-resolved solution structure
on the finest grids). We believe that strong scalability is more important for changing the
type of science and engineering that is possible. This is due to increased emphasis on time-
accurate transient simulations (that must take smaller time steps as the spatial grid is
refined) and with increased emphasis on uncertainty quantification, data assimilation, and
optimization, as well as new real-time applications. Strong scaling is fundamentally difficult
for PDE solvers since network latency and bandwidth become more significant factors
(work scales with the subdomain volume while communication bandwidth scales with the
surface area). We believe that new algorithms to use higher-level problem structure to
reduce communication costs represent an important research area.

8.5.3.3  Scratch Data
About 1TB would be needed currently.

8.5.3.4 Shared Data

We don't use a project space.

8.5.3.5 Archival Data Storage
We don't archive data at NERSC.

8.5.4 HPC Requirements in 2017

8.5.4.1 Computational Hours Needed

We estimate that we will need about 10M hours in 2017. We expect to use a similar amount
of time on other architectures, especially those at ALCF.

The reason for needing more hours is as follows. Customers ask for scalability up to the
largest jobs they want to run, which is near the full machine for some. We conduct scaling
studies to identify bottlenecks and refine our algorithms. When users run with larger core
counts, our tests must also run with more cores, resulting in more time used.

8.5.4.2 Parallelism

PETSc algorithms are all bandwidth limited hence the amount of local parallelism possible
is proportional to the available memory bandwidth.

8.5.43 1I/O

We are a library rather than an application, but we provide functions for persistence and to
assist users in implementing comprehensive checkpoint capability. This /0 is generally to
a single large-file written collectively.
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We believe that global storage is dead as an algorithmic device; thus, 1/0 performance is
important for dealing with system reliability, resource management (job length limitations),
and so that humans can make choices. In-situ analysis will reduce the I/0 demands once the
cost of I/0 and storage becomes high enough. It will take many years for applications to
implement in-situ analysis and we expect that newer applications will postpone such
implementations; thus, there will always be some applications demanding more /0 than
would be cost-effective based purely on direct costs.

A rough 1/0 bandwidth requirement might be calculated as follows. If the working set
increases to 5PB, with 2% (=100TB) used for storage of essential state (typical with implicit
solvers using assembled matrices, preconditoners, Krylov spaces), a MTBF of one hour, and
20% checkpointing overhead deemed acceptable, yields a required write time of one
minute, or a bandwidth of 1.6 TB/second.

The percentage of total runtime that should reasonably be consumed by 1/0 is a choice for
users rather than for libraries. We make the 1/0 as efficient as possible and provide certain
in-situ analysis support, but the user is the one with science/engineering demands, thus the
one making the cost/benefit analysis.

8.5.4.4 Emerging Technologies and Programming Models

PETSc can use CUDA and OpenCL, but most applications do not. PETSc also can use pthreads
and OpenMP. However, most applications do not use them. GPUs are not good for strong
scaling and are currently of mediocre efficiency for sparse problems unless their use is
subsidized. Our software does run on GPUs, primarily at smaller GPU installations. Not all
algorithms make sense on GPUs and many of the larger customers need those algorithms
that are not efficient on GPUs.

OpenMP and pthreads are supported in PETSc via a “threadcomm”, which provides thread-
collective semantics. The threading backend can be chosen at run-time. OpenMP is useful
with applications that also use OpenMP, so that thread pools can be shared. Not all
operations have threaded implementations. Our software does run in production now on
Mira using threading, but it is more common to use pure MPI.

MIC performance has been so disappointing that we are not directing much effort this way.
The OpenCL toolchain is particularly so, and the memory subsystem is poorly connected,
leading to generally poor performance and efficiency for the sort of operations that are
important for implicit solvers.

Regarding other groups engaged to help with these activities, a group at Imperial College
London has done work on threading using OpenMP. Tech-X contributed some GPU code.

We believe NERSC's role should be to make a careful assessment of potential efficiency
across the range of applications. Current “hybrid” architectures are effectively subsidized
from the perspective of the end user (and often computing centers), but this won’t last and
many important applications spend their time performing operations that are ill-suited to
throughput-oriented accelerators. Not all applications would benefit from “transitioning to
these architectures.”

Regarding DOE's and ASCR's role in this, again, we urge them to be realistic about choosing

the right tool for the job. Many of those applications that are ill-suited to throughput-
oriented devices will need major algorithmic advances to create a computational structure
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with enough fine-grained parallelism and sufficiently short critical paths for throughput-
oriented devices to be competitive, especially with the stringent turn-around requirements

brought on by science, engineering, and policy decisions.

8.5.4.5 Software Applications and Tools

We need MPI, pthreads, C and Fortran compilers. Interactive sessions and debuggers are

also useful.

8.5.4.6 Requirements Summary Worksheet

NERSC Repository m1489

Used at NERSC in
2013

Needed at NERSC in
2017

Computational Hours* 441K 10M
Typical number of cores used for production runs 200-100K 200-1 M+
Maximum number of cores that can be used for 100 K+ 1 M+
production runs

Data read and written per run <1TB <10 TB

*Normalized to Hopper-equivalent (NERSC MPP) hours
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8.6 Linear Algebra Algorithms and High Performance
Computers

Principal Investigator: James Demmel, UC Berkeley
NERSC Repository: mp156

8.6.1 Project Description

8.6.1.1 Overview and Context

We design, implement, evaluate, and autotune novel algorithms for numerical linear algebra
and other high performance computing kernels, that are widely used by many scientific
computing projects. Our theme is “avoiding communication”, i.e. minimizing data
movement, whether it is between levels of the memory hierarchy or between processors
over a network. This is because data movement is widely recognized as the most time and
energy consuming operation performed by current and future hardware. We are also
funded by NSF to incorporate our new algorithms into numerical libraries including
LAPACK and ScaLAPACK, which are widely used by DOE applications. To this end, it is
important to run problems at various scales, and to be able to have low-level hardware
knowledge and measurement of, and control over, the resources we consume, in order to
evaluate and autotune our algorithms. This is true even though, in production mode, we are
unlikely to have as much control over resource allocation.

In particular, we would ideally like the following HW and SW features to be available:

1) Ability to allocate “regular” subsets of a machine, with simple interconnection
topologies. This is because a number of our communication-bound algorithms work
best when we do topology-aware mappings of tasks, and tune the corresponding
communication schedules. We have done these experiments on IBM BG-Ps in the
past with very good results, but not on Hopper for lack of this allocation ability.
Even though not every application using our library may get a “regular” subset, the
speedups may be significant enough to justify such allocations for some applications.

2) Ability to measure hardware events, especially data movement. Since minimizing
data movement is our goal, it is important to be able to easily access accurate
hardware performance counters to evaluate our algorithms.

3) Ability to measure energy/power consumed in various machine components. While
data movement consumes much energy, modern architectures are so complicated,
and consume energy in so many places (on chip, on board, in memory, in network)
in ways that change dynamically (e.g. frequency scaling) that simple energy models
(based on accurate counts of a few hardware events, like cache misses) may not be
adequate for tuning an algorithm to minimize energy usage. Measuring energy
accurately is an on-going research question in both academia and industry, but the
more tools for measurement the better.

4) We are exploring adding other features to numerical software that have raised
interest from a large number of users, whose efficiency will depend on the
availability of particular underlying hardware features.

a. Reproducibility means getting bitwise identical results when running the same
program twice, on the same hardware, but with possibly different subsets of
resources (e.g. number of processors). This is important for debugging, correctness,
or uncertainty quantification in various applications. A major obstacle to
reproducibility is non-associativity of floating point arithmetic, leading to different
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round-off errors when computing sums in different orders, for example because of
different reduction trees. We have recently released the first version of a library,
ReproBLAS, that provides implementations of reproducible Basic Linear Algebra
Subprograms. We are exploring various hardware features that could make our
current implementation even faster (e.g. extended precision, atomic operations,
specialized operations embedded in network).

Precision tuning means automatically figuring out the least precision needed in each
variable or phase of a computation, and still provide an answer that is accurate
enough, according to a user-supplied accuracy metric. For example, an algorithm
initially all running in double precision may be able to perform most operations in
single and still get an adequate answer, thus saving time, memory and energy. We
have recently released the first version of a tool, Precimonious (short for
“parsimonious with precision”) that automatically searches for the largest subset of
variables that can be converted from higher to lower precision and still get an
answer that is good enough. Depending on the floating point instructions and
precisions available, Precimonious may attain different levels of optimization.

8.6.1.2 Objectives for 2017

We hope to build the libraries and tools described above, and make them available to DOE

and other users.

8.6.1.3 Requirements Summary Worksheet

NERSC Repository mp156

Used at NERSC in
2013

Needed at NERSC in
2017

Computational Hours*

405K

3.5M
(Based on historical
growth of usage in
this repo)

*Normalized to Hopper-equivalent (NERSC MPP) hours
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8.7 Trilinos Libraries for Scalable, Resilient Many-core
Computations

Principal Investigator: Michael A. Heroux, Sandia National Laboratories
NERSC Repository: N/A

8.7.1 Project Description

8.7.1.1 Overview and Context

Trilinos provides a large collection of reusable software components in the form of
packages for many common requirements in scientific and engineering applications.
Capabilities include data creation and management: geometry, meshing, discretization, load
balancing and data redistribution, construction of data objects (dense matrices/vectors,
sparse matrices/graphs and related) and [/0. All of these capabilities are designed for
scalable systems, with growing support for many-core, accelerator and hybrid systems.
Trilinos also contains a large collection of state-of-the-art algorithms for linear, eigen,
nonlinear, transient, optimization and UQ problem solvers in a framework that utilizes
Trilinos data services, but also permits and encourages easy user customization. Trilinos
also provides uniform access to many third-party libraries where substantial capabilities
are available from the broader community.

Historically Trilinos has provided unique capabilities for unstructured PDE computations,
inherently discrete problems such as circuit simulations and hybrid integral FEM problems.
Structured stencil applications can use Trilinos, but we do not typical take advantage of the
simplicity these formulations represent. In particular, we do not have turnkey data
structure support or specialized preconditioners for this class of problems.

Some problem areas where Trilinos is best known are scalable unstructured sparse
multilevel preconditioned linear solvers, scalable eigensolvers, robust multi-scale, multi-
physics solvers, load balancing and partitioning and, most recently, advanced embedded
optimization and uncertainty quantification coupled with automatic differentiation.
Trilinos is written mostly in C++ and makes full use of C++ language features for efficient
polymorphism and compact source code, including well-defined abstraction layers used
throughout Trilinos and template meta-programming for compile-time polymorphism.

8.7.1.2  Objectives for 2017

Trilinos is a very large project with dozens of simultaneous research initiative underway at
any given time. I will highlight three broad areas that have cross-cutting importance and
involve the efforts of many people:

1. Advanced solvers: Most solver research efforts on the Trilinos project are focused
on tightly coupled multiphysics and embedded nonlinear analysis, optimization and
uncertainty quantification. The demands of these problem formulations drive
research in all layers of the solver stack, requiring more robust transient and
nonlinear solvers, and new forms of linear solvers, such as solvers for families of
related systems. Algorithm advances in these areas are naturally complementary
for extreme scale systems because these advanced solver formulations force
problem sizes to grow dramatically. In the 2017 time frame we expect to have at
least six large-scale applications using the full capabilities of Trilinos for fully
coupled problems using embedded optimization and UQ.
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Algorithms and data classes for scalable many-core and accelerator based
systems: The slowed growth of internode parallelism and the dramatic growth of
intranode parallelism have created a huge disruption in the algorithms and software
stack for scalable computing. We are now several years into the analysis and re-
design of data classes, and have made significant progress in many-core/accelerator
versions of key scalable solvers. But there is much more to do. We can demonstrate
excellent many-core/accelerator scaling for most solver algorithms used by our
most advanced users, but we still need improved many-core/accelerator smoothers
for multigrid preconditioners. We expect to have adequate capabilities by 2017,
coming from (i) better approaches to extracting fine-grain, data-driven parallelism
from existing algorithms, (ii) development of low-rank approximations to off-
diagonal blocks in sparse direct methods (both exact and inexact), (iii) advances in
Krylov methods, such as pipelining and s-step formulations, block Krylov
(simultaneous RHS) and families of related systems and (iv) better use of
aggregation in multi-DOF problems.

Resilient computations: We anticipate a dramatic decrease in the reliability of
computations over the next decade on leadership computing systems. In
preparation for this—and to address the already-emerging needs—we are exploring
several resilient computing models that will enable applications to succeed in the
presence of faults. We are focused on approaches that (i) permit the application to
continue and make progress in the presence of performance variability due to error
detection and correction, (ii) enable recover locally from process failure, and (iii)
detect and correct soft errors. By 2017 we anticipate that all of our mainstream
solvers will be latency tolerant. We also expect several applications to be built on
top of Trilinos-provided reliable data services that enable application-driven
recovery from process loss. We also expect to have solvers that can detect and
recover from silent data corruption that occurs within the solvers (where often 80%
or more of the application execution time can be).

8.7.2 Computational Strategies (now and in 2017)

8.7.2.1

Approach

Trilinos is used in many different application settings. Some of the most common are:

1.

Coupled multi-physics: Trilinos provides a collection of interoperable solver
components for nonlinear multi-physics problems. Typically, the nonlinear solver
must handle very stiff systems, and may require continuation to converge. In turn,
the underlying preconditioned linear solver is also highly stressed. Preconditioners
are typically user-defined physics-based formulations where general algebraic
preconditioners from Trilinos are used as subsolvers. In this setting, we see the
combined use of many Trilinos capabilities. Our most sophisticated users in this
area utilize as many as 30 Trilinos packages, and numerous third-party libraries, e.g.,
SuperLU. In the future, we expect to see an increase in this usage model for Trilinos,
commensurate with the first strategic objective discussed in Section 2.2. We
continue to evolve our library component model to make interoperability of Trilinos
packages and other third-party capabilities easier.

Scalable unstructured single-DOF solves for Poisson-like operators: Another
common use of Trilinos is for the solution of single-DOF problems that arise in
applications such as segregated solution of CFD problems, where solution of the
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pressure-Poisson problem is very challenging. In these settings, load balancing of
the sparse matrix and the advanced use of a robust algebraic multigrid
preconditioned GMRES solver are essential, along with efficient local grid smoothers.
The most important efforts in preparation for 2017 are (i) the development of
efficient many-core/accelerator smoothers, and (ii) continued advancement in
multigrid methods, especially latency hiding designs and implementations.

3. Beginning-to-end Trilinos-based applications: The Albany application
framework provides application-level reusable components based on Trilinos
capabilities. Albany provides a growing collection of beginning-to-end Trilinos-
based applications that are characterized by containing only problem-specific code
for defining the target problem formulation and otherwise relying on sophisticated
parameterizations of Trilinos capabilities. Using this approach, a new application
can go from first concept to a scalable full-featured, manycore/accelerator-enabled
code that can provide an optimal solution with uncertainty quantification in less
than a year. We expect this framework/component approach to grow in popularity.

8.7.2.2 Codes and Algorithms

See above.

8.7.3 HPC Resources Used Today

8.7.3.1 Computational Hours
Not applicable. The Trilinos team itself uses very few NERSC hours itself.

8.7.3.2 Parallelism

Core counts are highly variable. We have some users (e.g., Denovo) that use the entire Titan
system at ORNL, and could use any such system at scale. Other important users seldom
scale beyond 10,000 cores.

There are several reasons why problems are not run at scale. The most common are lack of
scalability due to load imbalance, lack of algorithmic scalability, and lack of need to scale
beyond a certain problem size.

8.7.4 HPC Requirements in 2017

8.7.4.1 Computational Hours Needed

We have not traditionally used a lot of NERSC time over the past few years. We do at times
run scalability analyses using NERSC systems. These runs seldom add up to more than 100
total core hours, but provide crucial data for our publications and these hours are hard to
find on other systems. We don't expect large allocations elsewhere in the 2017 time frame.

If we engage in NERSC-specific work, we could benefit from additional compute hours.

8.7.4.2 Parallelism

For some applications we expect to use the entire system, factoring the (hyper)
thread/process space appropriately between MPI processes and thread processes. Right
now this factoring leads to 4-8 threads per MPI process and the rest used by MPI.
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8.743 1I/O

Trilinos provides [/0 libraries in the Trios package. These libraries can be used to perform
CPR. We are also working on a collection of persistent storage data objects for support of
application level fault tolerance. The amount of data read or written and the rate at which it
is written is not applicable to us, since it depends on what users of the software do.

8.7.4.4 Future Data Needs
Not applicable.

8.7.4.5 Memory Required

This is very application dependent. Presently most of our users can do well with 1GB/core.
This is down from a few years ago when it was 2GB/core. We anticipate that this value will
continue to drop as we shift computation to multi-threaded mode and become more careful
in the strong scaling regime. By 2017, we hope to realize optimal performance at
256MG/core for our key applications.

8.7.4.6 Emerging Technologies and Programming Models

Trilinos supports CUDA. We have no plans to support OpenCL until (if ever) OpenCL
provides modest C++ compilation capabilities. OpenCL is useless to us until then.

Trilinos runs in production mode on Titan and elsewhere with GPU support. At the same
time, we are still ramping up support, and still need significant algorithm development in
order to provide full GPU capabilities.

Trilinos has OpenMP as an optional node parallel model. Use is limited at this point, but we
see a dramatic increase in use on Intel MIC platforms.

Trilinos has been ported to Sequoia (but not to Mira as far as I know). We still have some
compiler issues with some packages, but the core Trilinos capabilities work.

Trilinos is being actively developed for Intel MIC. We work closely with Intel on
performance and programming issues.

We have funding from several sources to work on next generation preparations (not sure if
this is answers the question as you intended).

Providing occasional access to NERSC systems would be very helpful for studying algorithm
and software scalability.

The role of DOE and ASCR in this work would involve funding of algorithms R&D, access to
emerging systems, researcher training on new systems.

8.7.4.7 Software Applications and Tools

We will need optimized (threaded/vectorized) dense BLAS and LAPACK, or similar libraries
in the 2017 time frame. For the most part, we expect these libraries to be provided by the
vendor, but we access them through our own abstraction layers and can use other libraries.
We also need to have at least one node-parallel sparse direct solver library, and one
distributed-parallel sparse direct solver that runs across as many nodes as possible.
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We need a full-featured C++ compiler environment that is very robust and efficient in
compilation.

We anticipate that within the 2017 time frame we will have interoperability with some in
situ analysis libraries, where computational and analysis data containers are compatible
and can be used in combination, in-memory. In this case, we would benefit from installation
of these tools.

8.7.4.8 Additional Data Intensive Needs

We would find it useful to have non-volatile storage that could be used for persistent data.
Some of our resilient computing models rely on this type of capability.

We are typically not the owners of data, but provide filters through which data pass, so we
are not addressing a data management plan here.

8.7.4.9 Requirements Summary Worksheet

Not applicable.
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8.8 Sparse Direct Solver SuperLU

Principal Investigator: Xiaoye Sherry Li, LBNL
NERSC Repositories: mp127

8.8.1 Project Description

8.8.1.1 Overview and Context

We develop direct solver libraries for sparse linear systems to support a wide range of
scientific computing research. The most parallel library is SuperLU_DIST, which is MPI-only
at present. There are many users: 27,403 downloads in FY13. It is used in many high-end
scientific simulation codes important to DOE. A survey of NERSC usage between June 21,
2012 and January 17, 2013 via the ALTD facility showed that SuperLU is the thirteenth most
heavily used library at NERSC, with about 100 unique users during that period. SuperLU is
also included in many commercial libraries, including Cray’s LibSci, FEMLAB, HP's MathLib,
IMSL, NAG, OptimaNumerics, Python (SciPy).

The factorization algorithm is considered a “direct” method, which is numerically robust,
and there is no convergence issue. The drawback is that it requires large amount of memory.
Alot of research effort is devoted to reduce memory usage while maintaining speed.

8.8.1.2 Objectives for 2017
Our goals for 2017 are:

» Strong scaling to 10K nodes with hybrid programming: MPI + OpenMP +
CUDA/OpenCL/xx.
* Preliminary results on the NERSC Dirac GPU test bed system show a 3x speedup
relative to MPI-only using eight CPU cores + 1 GPU
* Solve equations with 50M-100M degrees of freedom (presently 10M-20M).
* Be capable of using any heterogeneous architecture.
* Algorithm-based fault tolerance (ABFT) resilience with fault detection & recovery.

8.8.2 Computational Strategies (now and in 2017)

8.8.2.1 Approach

Our computational problem and strategies for solving it include:

* Sparse LU, sparse triangular solve

* Supernode partition, 2D block cyclic matrix/process distribution

* Numerical pre-pivoting via weighted maximum bipartite matching

*  Sparsity ordering with parallel graph partitioning: ParMETIS, PT-Scotch, Zoltan
* Parallel symbolic factorization

Our biggest computational challenges are:

* Task & data dependency (esp. triangular solve)
* Low arithmetic intensity

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2017 51



* Pre-pivoting is the serial bottleneck
* How to speed up non-BLAS-like operations: scattering, graph traversal

We expect our computational approach and/or codes to change by 2017:

* Alternative to pivoting: Random Butterfly Transformation (RBT)
* Expose more data parallelism to utilize GPU, MIC, etc.

8.8.2.2 Codes and Algorithms

We use the following software:

* MPI, BLAS, ParMETIS, PT-Scotch

8.8.3 HPC Resources Used Today

8.8.3.1 Computational Hours

The repository mp127, High Performance Sparse Matrix Algorithms, used 1.5 million hours
at NERSC in 2013.

8.8.3.2 Parallelism
SuperLU often runs using 100s - 1,000s of cores.

8.8.4 HPC Requirements in 2017

8.8.4.1 Computational Hours Needed

Based on historical trends and anticipated needs, mp127 will require about 20 M hours in
2017.

8.8.4.2 Parallelism

We expect about 10-20x greater concurrency than today, meaning we will use 50K - 100K
cores).

8.8.4.3 Emerging Technologies and Programming Models

We have started CUDA development. AMD is interested in developing OpenCL. Our
software should be running on Titan soon. The code has OpenMP directives now but does
not run on the Mira or Sequoia Blue Gene/Q systems. A port to the Intel MIC architecture is
planned. We are collaborating with Rich Vuduc’'s group at Georgia Tech for many-core
developments and energy-aware algorithms. NERSC could probably help with n-node
performance models, performance tools for threads, GPUs. DOE and ASCR needs to provide
sustained funding for code development and maintenance.

8.8.4.4 Requirements Summary Worksheet
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NERSC Repository mp127 Used at NERSCin | Needed at NERSC in

2013 2017

Computational Hours 1.5M 20M

Typical number of cores used for production 100s-1,000s 10K

runs

Maximum number of cores that can be used 5,000 50K

for production runs

Archival data 1,127 TB 3,000 TB

Shared (project) data 0.8 TB 1TB

Memory per node Can use all Can use all

Aggregate memory 0.1 TB 1TB
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9 Computer Science Case Studies

9.1 Requirements for Parallel 1/0, Visualization and Analysis

Principal Investigator: E. Wes Bethel
Worksheet Author(s): Prabhat, Quincey Koziol
NERSC Repositories: m636

9.1.1 Project Description

9.1.1.1 Overview and Context

This case study encompasses several distinct but related projects.

LBL "Vis Base" program projects provide fundamental and applied visualization/analytics
R&D to produce technologies aimed at meeting high performance visualization and data
understanding needs of DOE's science community, particularly those we expect to
encounter at the exascale.

Our ExaHDF5 work focuses on enabling high-performance parallel 1/0 for science codes
and analysis tools on DOE platforms through a combination of fundamental research in
optimization techniques; methodologies for hiding complexity of parallel I/0 (auto-tuning,
transparent data re-organization, high-level APIs) and index/query methods. Features are
rolled into HDF5, and deployed on production I/0 stacks on DOE HPC facilities.

The MANTISSA project involves research and development of scalable algorithms in
statistics, machine learning and graph analytics, with an application to data-centric
problems in problems in the areas of mass spectrometer imaging, climate, cosmology,
genomics and high energy physics. Developed methods will be tested on multi-TB sized
datasets on petascale class machines.

We also have several "Data Exploration at the Exascale" projects, which include R&D that
focuses on finding ways to reduce the amount of data written to disk by codes via new
approaches in situ processing that enable traditional post-processing exploratory visual
data analysis.

There is also Topological Data Analysis at the Extreme Scale. This involves R & D that
focuses on developing scalable algorithms for topological data analysis and feature
detection with the goal of in situ processing, analysis of massive data sets and data triage
and reduction.

Finally, Optimizing Power Usage for Data-Intensive Workflows and Algorithms on Modern
Computing Architectures projects is a study of power usage of visualization and analysis
software infrastructure on modern platforms, and perform R&D aimed at reducing power
consumption of these data-intensive software algorithms, libraries, and applications
(visualization, analysis, [/0).

9.1.1.2 Objectives for 2017
Our primary goals for 2017 include:
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* Demonstrating successful application of visualization techniques to PB-sized output

* Demonstrating HDF5 (and production 1/0 stack) scaling on current petascale and
future exascale platforms

* Demonstrating sophisticated Big Data analytics techniques applied to TB-sized
complex, multi-modal datasets (simulations, experiments, observations)

9.1.2 Computational Strategies (now and in 2017)

9.1.2.1 Approach

We do not develop computational simulation codes. Rather, our efforts are more focused on
efficient rendering, analysis and 1/0 algorithms and software. We use hybrid parallel and
domain decomposition strategies in visualization and research tools. We use a variety of
optimization techniques (collective buffering, compression and auto-tuning) for our 1/0
work.

9.1.2.2 Codes and Algorithms
Simulation codes: VPIC, Chombo, FLASH, MOAB, SPH, IMPACT-Z, VORPAL, Warp, CAM5

[/0: HDF5, NetCDF
Vis: VTK, Vislt, Paraview

In terms of characterization, we operate on the following data models and motifs in our
research:

[/0: particle, block structured, unstructured, AMR meshes
Vis: volume rendering, ray casting, streamline computation

Analysis: Big Data motifs (sparse/dense linear algebra, stochastic optimization, graph
analytics)

9.1.3 HPC Resources Used Today

9.1.3.1 Computational Hours
We used just over 5 million hours at NERSC in 2013.

9.1.3.2 Parallelism

Typical visualization and analysis jobs run at 1 K-10 K cores. One-time hero exercises are
conducted at 100 K cores. Codes are capable of scaling to 100 K for visualization, to 50 K for
analysis, and to 500 K for I/0.

Typical I/0 jobs run at 10 K cores. Several hero runs have been attempted on full scale on
Hopper/Edison.

The typical number is generally less than the maximum because of insufficient real-world
use cases for visualization involving 100K core runs [not enough data to read from multi-
variate simulations]. A similar story holds true for analysis (although that will change in the
2017 timeframe).
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9.1.3.3 Scratch Data
We would need about 500TB.

We predominantly use Parallel 1/0 in our projects. We try to use collective buffering
wherever possible, and avoid reads/writes to/from a single node. We use shared [/0, there
are a few cases wherein we use independent /0 for writes. Our codes generally write to
medium and large files.

9.1.3.4 Shared Data

We have several project directories: vacet, cascade/m1517, mantissa. The primary reasons
for project folders in ease of sharing data, joint development and sharing of code. In 2013,
we used 33 TB of disk space in these directories.

9.1.3.5 Archival Data Storage
We have about 184 TB stored on HPSS now.

9.1.4 HPC Requirements in 2017

9.1.4.1 Computational Hours Needed

We estimate needing 50M hours in 2017. We rely on NERSC for most of our R&D and so we
do not anticipate using other resources to any great extent. The increase over 2013 is due
to larger dataset sizes (problem configurations from our science collaborators) and more
sophisticated analysis problems.

9.1.4.2 Parallelism

We would like to use a hybrid parallel strategy (#MPI tasks == # nodes [0(1K)] and
pthreads/OpenMP [=#hardware threads O(10) on each node]. @We estimate that the
maximum concurrency that could be used in 2017 of order one million total.

9.14.3 1/0

Our software typically does use checkpoint/restart. We would typically read and write 100-
GB - 1 PB of data per run in 2017. We estimate bandwidth requirements to be ideally 1-
10TB/s, so that 5-10% of a run is consumed by I/0. We try to follow two rules of thumb to
generally spec out I/0:

* checkpoint all of memory to somewhere in 15-20 minutes
* spend <10% time on I/0

9.1.4.4 Future Data Needs

In 2017, we expect to need 1,000 TB of temporary scratch disk space, 1,000 TB of NERSC
project space (globally accessible shared data), and 5,000 TB of storage on NERSC HPSS.
The growth in these requirements relative to 2013 is due primarily to larger dataset sizes
and problems being attempted by our collaborators.

We would like a permanent repository for climate data. Some other projects might be
interested in storage for about a 5-year timeframe.
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9.1.4.5 Memory Required
We would need aggregate memory in the 1 TB-500 TB range.

9.1.4.6 Emerging Technologies and Programming Models

A small class of visualization software is currently utilizing CUDA/OpenCL. This is not
relevant to I/0. The software is "not quite" running in production on Titan or elsewhere
using GPUs.

At this point, we have only experimented with OpenMP and pthreads. Software is not
running on Mira or Sequoia using threading.

Experiments are underway in porting to, and optimizing for, the Intel MIC architecture

Visualization activities are well funded to pursue this kind of exploration. However, there is
insufficient funding for statistics and machine learning efforts in this space. I/0 is currently
unfunded in this space.

In our opinion, additional resources are needed at NERSC to systematically explore issues
related to energy efficiency and many-core. We believe that we need more NERSC staff and
user training in assisting with this transition. The petascale post-doc program was a success,
and should be continued in some form. In the case of 1/0, we believe that industry and
research collaborations (similar to the Intel/Whamcloud fastforward program) are the way
to go for exploring /0 middleware solutions.

9.1.4.7 Software Applications and Tools

We need HDF5, NetCDF. Vislt, Paraview and "Big Data software solutions" (when they
become available).

9.1.4.8 HPC Services

The main service we'll need is consulting. ‘Big Data’ analysis will be very important for us
going forward. Some degree of training would be appreciated. We will not be relying on
NERSC to publish data or results.

9.1.4.9 Additional Data Intensive Needs

Workflow tools will be important going forward. We would also like standardized
mechanisms for sharing data.

9.1.4.10 Additional Data Intensive Needs: Burst Buffer (BB)

We believe that BB hardware is definitely relevant and important for accelerating parallel
[/0 operations (reads and writes). But we need the software stack (HDF5, Lustre/GPFS) to
intelligently use the hardware. Some form of transparent data pre-fetching optimizations, or
staging will be helpful. The hardware will also be relevant for in-situ and in-transit
visualization solutions (via GLEAN, Paraview and Vislt).

9.1.4.11 What Else?

We firmly believe that typical HPC users want [/0 performance to be reliable, and they do
not want to know any more about the 1/0 subsystem (striping, staging, interference, noise)
than they absolutely need to. Approaches such as auto-tuning are headed in the right
direction, but are probably too ambitious to attempt on a center-wide scale. We think that
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[/0 Quality of Service (i.e. you are guaranteed sustained 20GB/s performance during your
job execution) is a reasonable metric to aim towards and that NERSC should consider that
for future hardware.

We are generally quite happy with professional quality of services rendered by NERSC, and
Cray/NERSC staff collaboration. We feel that NERSC is lagging behind other HPC centers in
terms of 1/0 hardware provisioning, which is turning out to be a detriment to 1/0
researchers pushing the state of the art.

Looking at the future, we believe that NERSC can play a leading role in DOE for ‘Big Data’,
but a clear articulation, formulation and execution of a data strategy is required. This
strategy needs to be presented in contrast to the existing HPC/Exascale initiatives, and

needs to identify requirements emerging from experiments and instruments.

9.1.4.12 Requirements Summary Worksheet

NERSC Repository m636 Used at NERSC | Needed at NERSC
in 2013 in 2017
Computational Hours* 5.1 50M
Typical number of cores used for production runs 10,000 10,000
Maximum number of cores that can be used for 150,000 5,000,000
production runs
Data read and written per run 0.1-30 TB 0.1-1,000 TB
Maximum I/0 bandwidth 35 GB/sec 5,000 GB/sec
Percent of runtime for 1/0 1-30% 5%
Scratch File System space 250-500 TB 1,000-5,000 TB
Shared filesystem space 33TB 1,000 TB
Archival data 184 TB 5,000 TB
Memory per node 100% 100%
Aggregate memory TB 500 TB

*Normalized to Hopper-equivalent (NERSC MPP) hours
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9.2 Requirements for Scalable Scientific Data Management

Principal Investigator: Arie Shoshani, LBNL (Note: Arie Shoshani was PI of these two
projects at the time of the review. As of September, 2014, Keshang Wu is PI.)

Worksheet Author: Suren Byna, LBNL

NERSC Repositories: m1248 (Scientific Data Management Research); sdmstor (Storage for
the Scientific Data Management Research Group)

9.2.1 Project Description

9.2.1.1 Overview and Context

The Scientific Data Management Research Group (SDM) at LBNL develops tools for efficient
access and storage management of massive scientific datasets. Large scientific simulations
and experiments produce not only enormous quantities of data but also complex and
heterogeneous datasets that require effective and efficient management, a task that can
distract scientists from focusing on their core research.

SDM researchers are working to provide a coordinated framework for the unification,
development, deployment, and reuse of scientific data management software. In short, this
will allow scientists to define requests for data on their own terms to tap into a transparent
data management and access infrastructure.

SDM group’s work represented here spans multiple interrelated projects: (1) Scientific Data
Management at Extreme-scale Computing, (2) FastBit - Bitmap Indexing to search scientific
data, (3) ExaHDF5 and (4) International Collaboration Framework for Extreme Scale
Experiments (ICEE). In preparation of scientific data management at extreme-scale
computing, SDM group is currently working on an array data management system, called
Scientific Data Services (SDS) framework, for accelerating data analysis tasks. SDS targets to
provide various data management services, such as data reorganization, compression,
indexing, smart data prefetching, etc., while hiding the complexity of storage system. We are
working on FastQuery, a library for generating bitmap indexes and querying data in various
file formats, using parallel resources of multi-core and distributed memory systems. We
also directly work with various applications in improving parallel 1/0 performance while
writing tens of TBs of data. Our recent large-scale simulation on Hopper produced 40TB
data written to a single HDF5 file, testing the boundaries of various software layers of the
parallel I/0 subsystem. The ICEE project focuses on facilitating in situ and in transit analysis
of data from scientific domains including high-energy physics, fusion, climate, etc. The ICEE
workflow system leverages in transit capabilities of ADIOS and selective data access
capabilities of FastBit.

Our goals may be summarized as follows:

* Providing services to bring the merits of database management systems and parallel
file systems together;

* Programming interfaces for accessing arrays and for executing queries;

* An optimization interface between data format libraries (HDF5, NetCDF, and ADIOS-
BP) and file system optimizations.

Research activities include:
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* Optimizations for accessing data in post-process phase via data reorganization:
replicate data in different organizations for accesses
* In-memory data processing and querying
o Query optimization
o In memory Indexing
*  Runtime support for deep memory hierarchies

The direct benefit to users from our work includes:

e A data model familiar to domain scientists;

* Existing file formats and analysis tools can co-exist with the new system;

* Optimization of data access based on queries on data model;

* Dynamic reorganization of data based on access patterns;

* Large energy savings by accessing only data needed from disk;

* Reducing data movement in memory using in-memory indexing, thus reducing
energy usage;

* Easier to integrate with analysis and visualization tools - integration can now be
done at the data model level.

9.2.1.2 Objectives for 2017

All the projects mentioned above use HPC resources extensively. By 2017, we expect to
have a fully functional Scientific Data Services framework. We expect to deploy and exercise
various data management tasks, including automatic provision of indexing, querying, data
analysis operator services. Our requirements are more memory, deeper memory hierarchy
(including burst buffer), staging nodes for smart data management, and faster 1/0.

9.2.2 Computational Strategies (now and in 2017)

9.2.2.1 Approach

Based on the size of data, indexing, querying, and analysis operators will need more
computation than today. We expect to have staging nodes dedicated for data management
tasks. The following three figures indicate the process of data management, showing the
overall data flow (Figure 1), the current state (with data formats indicated, Figure 3), and
how this project intends to provide solutions (Figure 3).

9.2.2.2 Codes and Algorithms

Scientific Data Services (SDS) code. More details of SDS are presented in the paper located
at: https://sdm.lbl.gov/~sbyna/research/papers/2013-PDSW2013-SDS.pdf
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Figure 1. Data flow for traditional data management.
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Figure 2. The current state of data management.
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Figure .3 How the SDM project fills the gap.
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9.2.3 HPC Resources Used Today

9.2.3.1 Computational Hours
We used 4 million NERSC MPP hours in 2013.

9.2.3.2 Parallelism

Typical parallel concurrencies:

* Bitmap indexing: up to 20,000 cores
* Parallel sorting: up to 10,000 cores

Memory used:

* For VPIC simulation: 90% of the total memory on Hopper
* Index generation: 75% of memory on each node

9.2.3.3 Scratch Data

Data read/written per run:
* Bitmap indexing: 0.3X to 3X the original data size
* E.g, Index of one trillion particle data: ~150 TB for 12 time steps and about 50 TB
/scratch space on Hopper for testing SDS.

Also, simulations such as VPIC and AMR codes need fast checkpoint/restart capabilities.

9.2.3.4 Shared Data
We have about ~250 TB for particle indexes data on /project.

9.2.3.5 Archival Data Storage
We consume about 500 TB for particle data on HPSS.

9.2.4 HPC Requirements in 2017

9.2.4.1 Computational Hours Needed

We project about a 7.5X increase in our usage. See the following table, which contains data
for sections 9.2.4.2 through 9.2.4.5.
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Compute Target Data read/ Memory per | Required Resources Data Stored
Hours Concurrency | written per software used

run

Current 4M 10K-150K 100GB- 100% HDFS5, /scratch 250-500 TB
2014 30TB NetCDF, /project

MPI, MPI-IO,

pthreads,

OpenMP,

ScalaPACK,

BLAS
Estimated 30M 10K-10M 100GB- 100% HDF5, /scratch 1-5PB
2017 1PB NetCDF, /project

MPI, Burst Buffers

MPI-10,

MPI+X??

ScalaPACK,
BLAS

9.2.4.2 Emerging Technologies and Programming Models

Depending on which analysis codes are needed, the SDS framework and ICEE plan to use
heterogeneous processing. FastQuery currently uses MPI + Pthreads and the VPIC code
uses MPI+OpenMP. Porting to, and optimizing for, the Intel MIC architecture is not planned,
but we are considering it for data management and computing operators.

An important role that NERSC and DOE could play in this is

* Providing new architectures for co-locating simulation and analysis

* Providing new architectures for dedicated nodes for smart management of data
movement

* Funding efforts for energy efficient data management research
Although not necessarily related directly to many-core systems, we also note that:

* Performance and power consumption monitoring at CPU and system levels is key
for identifying bottlenecks.

* Performance monitoring at file system level is needed for improving parallel I/0.

* Power consumption monitoring at storage system level is needed for improving
energy efficiency of data movement.

9.2.4.3 Additional Data Intensive Needs

Our project would benefit from dedicated nodes for offering scientific data services; from
NVM/NVRAM for analysis data that does not fit in memory and for prefetching data (as
noted below); and from faster file systems.

9.2.4.4 Additional Data Intensive Needs: Burst Buffer

Burst buffers will be useful for in situ and in transit analysis when available memory is not
sufficient. The SDS framework can use a burst buffer or storage in a staging area for
prefetching and reorganizing data.
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9.2.4.5 Requirements Summary Worksheet

production runs

100,000 (ExaHDF5)

NERSC Repositories m1248, Used at NERSC Needed at NERSC

sdmstor in 2013 in 2017
Computational Hours* 4 M 30M
Typical number of cores used for 20,000 (SDM research) 50 K (SDM)

1,000 K (ExaHDF5)

Maximum number of cores that can

20 K (SDM research)

50,000 (SDM)

be used for production runs 100 K (ExaHDF5) 1,000,000
(ExaHDF5)
Data read and written per run 400 TB 2,000 TB
Maximum I/0 bandwidth 28 GB/sec 1,024 GB/sec
Percent of runtime for I/0 30% 10%
Scratch File System space 400 TB 2,000 TB
Shared filesystem space 250 TB 1,000 TB
Archival data 554 TB 5,000 TB
Memory per node 29 GB 64 GB
Aggregate memory 100 TB 1000 TB

*Normalized to Hopper-equivalent (NERSC MPP) hours
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9.3 Performance Optimization of Scientific Applications -
MPAS-Ocean & the HipGISAXS Suite

Principal Investigators: SUPER: Bob Lucas, USC, and Leonid Oliker, LBNL; X-Ray: Xiaoye Li,
LBNL

Worksheet Author: Abhinav Sarje (LBNL)

NERSC Repositories: m88, m1285, als

9.3.1 Project Description

9.3.1.1 Overview and Context

Within the SUPER (Sustained Performance, Energy and Resilience) Institute, we are
working towards performance analysis, parallelization and optimization of the MPAS-Ocean
code on HPC systems. This is an MPI-based code for ocean modeling and simulations. Our
work includes incorporation of on-node multicore parallelization using OpenMP, and
optimizations through better exploitation of data locality, data organization, and optimal
data partitioning for minimization of data transfers and communications.

We are collaborating with the Advanced Light Source to develop HPC solutions for X-ray
scattering data analysis. We have developed a massively parallel HipGISAXS software suite
for this purpose, and currently the forward simulation has been optimized for various
parallel architectures including GPUs, Intel MIC as well as multi-core CPUs. On-going work
includes development of inverse modeling for nanostructure discovery in materials.

9.3.1.2 Objectives for 2017
The SUPER goals for MPAS-Ocean code are as follows.

* Implement improved parallelization and develop codes for various parallel
architectures including multicore CPUs, Intel MIC and GPUs.

* Improve FLOP performance to get near peak on a given HPC system.

* Achieve high Simulated Year per Day (SYPD) performance on fine/high-resolution
grids (e.g. realize more than 10 SYPD on 15km mesh resolution using around 3000
cores).

* Improve code scalability to utilize 100,000 cores.

The goals of HipGISAXS suite development are as follows. Realize real-time scattering data
analysis through improved FLOP performance to achieve high efficiency on a given HPC
system and minimized inter-node communication. Match data analysis rate to data
generation rates at current beamline detectors (100 TB/week). Development and
implementation of better data analysis and inverse modeling parallel algorithms to
effectively utilize large HPC systems.

9.3.2 Computational Strategies (now and in 2017)

9.3.2.1 Approach

MPAS-Ocean models and simulates Earth's oceans through the use of unstructured multi-
resolution/multi-scale mesh discretization. Currently, the data distribution across nodes on
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a HPC system is performed through an existing graph and mesh partitioning tool Metis.
Inter-partition communication involves multi-layered halos (ghost cells), typically 3 layers,
causing high data volume transfer to compute ratio. Load imbalance is caused through
variable cell depths. Further, the mesh partitions are assigned to nodes in an arbitrary order,
and also the mesh cells within a partition are processed in an arbitrary order. A number of
strategies can be used to improve parallelization and performance. Presently [ am exploring
within-partition cell reordering techniques to improve data locality and cache usage, as well
as partition ordering to improve communication performance. [ am also exploring the use of
OpenMP for multi-core parallelization. Better partitions can be achieved through weighted
partitioning, and exploration of other partitioning tools. Communication avoidance would
reduce the data volume to compute ratio.

The forward simulation of X-ray scattering is an embarrassingly parallel computational
problem making use of massive parallelism easier, with minimal inter-node communication.
I have implemented a logical hierarchical parallelization framework that can schedule
independent computations occurring at a number of stages during the simulations. It also
incorporates effective exploitation of hardware parallelism hierarchy. Inverse modeling for
nanostructure detection is an optimization problem with uses a number of forward
simulations, but generally this series of simulations is inherently sequential. We are
exploring various optimization algorithms and machine learning techniques to improve the
inverse modeling performance.

9.3.2.2 Codes and Algorithms

1. MPAS-Ocean: It uses multi-scale unstructured meshes over a sphere, and halo exchanges
to perform quasi-stencil computations for simulating Earth's oceans. We are collaborating
with the MPAS-Ocean development team at Los Alamos National Laboratory.

2. HipGISAXS suite: This code uses irregular but structured volume mesh. A simulation
involves computation of Form Factor and Structure Factor at each mesh cell, and is based on
the Distorted Wave Born Approximation theory. We are collaborating with beamline
scientists from the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory.

9.3.3 HPC Resources Used Today

9.3.3.1 Computational Hours
MPAS-Ocean used about 1.7M core hours at NERSC in 2013 (4.3M total for SUPER m88).

HipGISAXS used about 2.4M core hours at NERSC in 2013.

9.3.3.2 Parallelism

A typical production run for MPAS-Ocean uses 1,000-3,000 cores. That for HipGISAXS uses
about 3,000 cores.

MPAS-Ocean is able to scale to about 3,000 cores. HipGISAXS can scale to current full
machines (144,000 cores).

A typical HipGISAXS simulation currently does not involve complex nanostructures and so

fewer than maximum cores are sufficient. Few simulations with complex nanostructures
demand use of large number of cores.
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For MPAS-Ocean, strong scaling is more important. This is to achieve a high Simulated Year
Per Day (SYPD) performance rate for a given mesh resolution.

For HipGISAXS, both strong and weak scaling are important due to the need for simulation
of structures with various complexity levels, although the volume mesh is typically constant
as dictated by beamline detector resolution. Faster computations are required to simulate a
complex system. Solution to a bigger problem involving large number of system
configurations in allocated time duration is also needed.

9.3.3.3 Scratch Data

Requirements in this area are fairly minimal: MPAS-Ocean requires about 50GB of scratch
space; HipGISAXS requires around 100GB.

9.3.3.4 Shared Data

The SUPER collaboration currently uses 'm88' to store performance analysis data.

The X-Ray collaboration (m1285) and 'als' also have project spaces, used host the code
repositories and publicly available webpages.

9.3.3.5 Archival Data Storage
We used little archival storage (1.4 TB in 2013).

9.3.4 HPC Requirementsin 2017

9.3.4.1 Computational Hours Needed

We estimate that MPAS-Ocean and HipGISAXS will require 10M core hours each in 2017.
We expect to have significant allocations from the two leadership facilities and from TACC
at that time.

By 2017 we would have inverse modeling implemented in HipGISAXS and this requires
multiple forward simulations; this accounts for the increase in hours.

9.3.4.2 Parallelism

By 2017 both codes should be able to use 10,000 MPI Tasks. For MPAS-Ocean, each task
would have about 10 threads. For each task would have about 10-1,000 threads. (GPUs and
Intel MIC)

9.3.43 1/0

The MPAS-Ocean code has built-in checkpoint/restart but the HipGISAXS does not. We
write only about 10GB per run, so the bandwidth and maximum [/0 time per run is not
applicable.

9.3.4.4 Future Data Needs

In 2017, we expect to need 1 TB of temporary scratch disk space, 1 TB of NERSC project
space (globally accessible shared data), and 2 TB of storage on NERSC HPSS. The growth in
these requirements relative to 2013 is due primarily to experimental data accumulation.
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9.3.4.5 Memory Required

MPAS-Ocean will require about 50GB per node. The requirements for HipGISAXS are
minimal.

9.3.4.6 Emerging Technologies and Programming Models

MPAS-Ocean does not have CUDA extensions. Plans include adding them. HipGISAXS has
CUDA extensions and very effectively exploits multicore, GPU, and Intel MIC architectures at
the node level. The code runs at TACC and on Titan.

MPAS-Ocean does not have OpenMP directives, but are being added.

HipGISAXS has OpenMP directives and are used. Porting to Mira is planned. The SciDAC
SUPER institute is helping us with all these activities. We would like NERSC to provide
state-of-the-art testbeds and production systems with these architectures. We would like
ASCR to provide funding for latest hardware procurement. Continual, year-round addition
of testbeds hosting latest processor technologies/hardware would play important role in
adapting codes to the state-of-the-art.

9.3.4.7 Software Applications and Tools

We need access to GNU compilers, Intel compilers, Boost libraries, parallel HDF5 library,
Intel TBB, Intel Vtune, Intel IPP, and TAU.

9.3.4.8 HPC Services

We need the usual account support, consulting, support servers, web interfaces, and
gateways.

9.3.4.9 Additional Data Intensive Needs

We do not currently have a data management plan in place.

9.3.4.10 Requirements Summary Worksheet

MPAS-Ocean Used at NERSC Needed at
(part of SUPER) in 2013 NERSC in 2017
Computational Hours* 4.3M 10M
Typical number of cores used for production 3000 10,000
runs

Maximum number of cores that can be used for 3000 100,000

production runs

Data read and written per run 0.001 TB 0.01 TB
Percent of runtime for I/0 5% 5%
Scratch File System space 1TB 2TB

Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research: Target 2017 68



Shared filesystem space 0.2 TB 2TB
Archival data 1.4 TB 2TB
Memory per node 8GB 50GB
Aggregate memory 8TB 500TB
HipGISAXS Used at NERSC Needed at NERSC
in 2013 in 2017
Computational Hours* 2.4M 10M
Typical number of cores used for production 3000 10,000
runs
Maximum number of cores that can be used for 100,000 >100,000
production runs
Data read and written per run 0.0001 TB 0.001 TB
Percent of runtime for I/0 1% 1%
Scratch File System space 1TB 2TB
Memory per node 8GB 50GB
Aggregate memory 8TB 500TB

*Normalized to Hopper-equivalent (NERSC MPP) hours
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Appendix A. Attendee Biographies

Application Scientists

Mark Adams received a Ph.D. in Civil Engineering, from U.C. Berkeley in 1998 and was a
former student and postdoc with Jim Demmel in the Computer Science Division, at U.C.
Berkeley. He works in the Applied Numerical Algorithms Group at Lawrence Berkeley
National Laboratory, and as an adjunct research scientist in the Applied Physics and Applied
Mathematics Department at Columbia University.

Jed Brown is an assistant computational mathematician at Argonne National Laboratory.
Brown received his doctor of science degree from ETH, Zurich, in 2011. He was a
postdoctoral appointee at Argonne from 2011 to 2012 and was named an Argonne Scholar
in 2012. He also is an assistant professor adjunct at the University of Colorado Boulder.

John Bell is an applied mathematician and computational scientist who leads the Center for
Computational Sciences and Engineering and the Mathematics and Computational Science
Department at Lawrence Berkeley National Laboratory. Bell is well known for his
contributions in the areas of finite difference methods, numerical methods for low Mach
number flows, adaptive mesh refinement, interface tracking, and parallel computing and the
application of these numerical methods to problems from a broad range of fields including
combustion, shock physics, seismology, flow in porous media, and astrophysics. Bell earned
his M.S. and Ph.D. from Cornell University after receiving a B.S. from MIT, all in mathematics.
He worked as a researcher at the Naval Surface Weapons Center and Exxon Production
Research Company before joining Lawrence Livermore National Laboratory in 1986. In
1996, Bell and his group moved from LLNL to Berkeley Lab.

Surendra Byna is a Research Scientist in the Scientific Data Management Group at
Lawrence Berkeley National Lab (LBNL). His research interests are in computer
architecture and parallel computing. Specifically, he interested in optimizing data access
performance for parallel computing and in utilizing heterogeneous computing power. He is
also interested in energy efficient parallel computing. Before joining LBNL, Byna was a
researcher at NEC Labs America, where he was a part of the Computer Systems Architecture
Department and was involved in the Heterogeneous Cluster Computing project. Prior to that,
he was a Research Assistant Professor in the Department of Computer Science at Illinois
Institute of Technology (IIT) and a Guest Researcher at the Math and Computer Science
division of the Argonne National Laboratory, as well as a Faculty Member of the Scalable
Computing Software Laboratory at IIT.

Phillip Colella is a Senior Scientist and Group Leader for the Applied Numerical Algorithms
Group in the Computational Research Division at the Lawrence Berkeley National
Laboratory, and a Professor in Residence in the Electrical Engineering and Computer
Science Department at UC Berkeley.

James Demmel received his B.S. in Mathematics from Caltech in 1975 and his Ph.D. in
Computer Science from UC Berkeley in 1983. After spending six years on the faculty of the
Courant Institute, New York University; he joined the Computer Science Division and
Mathematics Departments at Berkeley in 1990, where he holds joint appointments.
Professor Demmel is an ACM Fellow, a SIAM Fellow, an IEEE Fellow, and a member of both
the National Academy of Engineering and the National Academy of Science. He has also won
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the IEEE Computer Society Sydney Fernbach Award for "computational science leadership
in creating adaptive, innovative, high performance linear algebra software."

Michael A. Heroux is a Distinguished Member of Technical Staff at Sandia National
Laboratories, working on new algorithm development, and robust parallel implementation
of solver components for problems of interest to Sandia and the broader scientific and
engineering community. He leads development of the Trilinos Project, an effort to provide
state of the art solution methods in a state of the art software framework. Trilinos is a 2004
R&D 100 award-winning product, freely available as Open Source and actively developed by
dozens of researchers.

Quincey Kozoil is a co-founder of The HDF Group and started with the HDF team in 1991,
when it was still part of the National Center for Applications. He serves as the Director of
Core Software Development and High Performance Computing, overseeing the design and
architecture of the HDF5 software, as well as providing software engineering leadership
within the company.

Xiaoye (Sherry) Li is a Senior Staff Scientist in the Computational Research Division of
Lawrence Berkeley National Laboratory. She has worked on diverse problems in high
performance scientific computations, including parallel computing, sparse matrix
computations, high precision arithmetic, and combinatorial scientific computing. She has
contributed to the design and implementation of the following high quality, open source
software packages: SuperLU, PDSLin, XBLAS, ARPREC, QD, and LAPACK. She has
collaborated with many domain scientists to deploy the advanced mathematical software in
their simulation codes, including those from accelerator structure modeling, plasma fusion
energy study, and materials sciences. She earned her Ph.D. in Computer Science from UC
Berkeley in 1996.

Dan Martin is a computational scientist in the Applied Numerical Algorithms Group at
Lawrence Berkeley National Laboratory. His research involves development of algorithms
and software for solving systems of PDEs using adaptive mesh refinement (AMR) finite
volume schemes, high (4th)-order finite volume schemes for conservation laws on mapped
meshes, and Chombo development and support. Current applications of interest are
developing an AMR ice sheet model as a part of the SCIDAC-funded PISCEES application
partnership, and some development work related to the COGENT gyrokinetic modeling code,
which is being developed in partnership with Lawrence Livermore National Laboratory as a
part of the Edge Simulation Laboratory (ESL) collaboration. Dan joined ANAG and LBL as a
post-doc in 1998. He has published in a broad range of application areas including
projection methods for incompressible flow, adaptive methods for MHD, phase-field
dynamics in materials, and Ice sheet modeling. Dan is also the LBL practicum coordinator
for the DOE’s Computational Science Graduate Fellowship program.

Prabhat leads the Data and Analytics Services team at NERSC. His current research
interests include scientific data management, parallel I/0, high performance computing and
scientific visualization. He is also interested in applied statistics, machine learning,
computer graphics and computer vision. Prabhat received an ScM in Computer Science from
Brown University (2001) and a B.Tech in Computer Science and Engineering from IIT-Delhi
(1999). He is currently pursuing a PhD in the Earth and Planetary Sciences Department at
U.C. Berkeley.
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Abhinav Sarje is a research scientist in the Future Technologies Group at Berkeley Lab. He
was previously a postdoctoral researcher in the same group. He completed his doctoral
studies in computer engineering at lowa State University. His research interests are in
parallel algorithms and computing, high-performance scientific computing, algorithms and
applications on emerging parallel architectures including multi/many core CPUs and GPUs,
performance optimization, string and graph algorithms, machine learning, and
computational biology.

David Trebotich is a computational scientist in the Computational Research Division at
LBL. His research interests include adaptive, finite volume methods for flow and transport
in complex geometries, high performance computing for CFD applications and multiscale
methods. David leads the HPC simulation efforts for the DOE EFRC-NCGC, where he is
working with geoscientists to model pore scale reactive transport processes associated with
carbon sequestration, and the DOE BER SSSFA2.0, where he is working with earth scientists
on development of a genome enabled watershed simulation capability.

Editors and NERSC Application Support Personnel

Richard Gerber is NERSC Senior Science Advisor and User Services Group Lead and, with
Harvey Wasserman, organizes the NERSC High Performance Computing and Storage
Requirements Reviews for Science and edits the reports. He holds a Ph.D. in physics from
the University of Illinois at Urbana-Champaign, specializing in computational astrophysics;
held a National Research Council postdoctoral fellowship at NASA-Ames Research Center
1993-1996; and has been on staff at NERSC since 1996.

Harvey Wasserman is a member of the NERSC User Services Group and helps to organize
the NERSC High Performance Computing and Storage Requirements Reviews.
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Appendix B. Workshop Agenda

Time

8:30 AM

8:45 AM

9:00 AM

9:15 AM

9:45 AM

10:00 AM
10:30 AM

11:00 AM

11:30 AM

12:00 PM

12:30 PM

1:00 PM

1:20 PM

1:40 PM

2:00 PM

2:20 PM

2:40 PM

3:00 PM

3:23 PM
3:45 PM

4:05 PM

4:45 PM

5:00 PM

Topic

Welcome, Overview of Requirements Reviews

The View from ASCR
ASCR Program Office Research Directions

NERSC Ten-Year Plan

AM Break

Applied Math Case Studies

Simulation and Analysis of Reacting Flow
Defining Requirements, Meeting Requirements

Simulation of Pore Scale Reactive Transport Processes Associated
with Carbon Sequestration

Numerical Algorithms for Electronic and Nuclear Structure
Analysis

Group Photo

Working Lunch Presentation. "Transitioning to NERSC-8 and
Beyond: The NERSC Application Readiness Effort"

AMR for Ice Sheet Modeling
PETSc and Composable Hierarchically Nested Solvers
Linear Algebra Algorithms on High Performance Computers

Trilinos Libraries for Scalable, Resilient Manycore Computations

SuperLU and TOORSES
PM Break
Computer Sciences Case Studies

Parallel I/0 and Visualization

Requirements for Scalable Scientific Data Management
Performance and Optimization of Scientific Applications

Cross-Cutting Issues: Status of Efforts to Transition Software to
Manycore Systems and What is Required from NERSC and ASCR

Discussion of next steps

Adjourn

Speaker

Dave Goodwin, ASCR; Richard
Gerber, NERSC

Barbara Helland, ASCR
Karen Pao, ASCR

Sudip Dosanjh, NERSC
Director

John Bell, LBNL
Phillip Colella, LBNL

David Trebotich, LBNL

Chao Yang, LBNL

All

Jack Deslippe, NERSC

Dan Martin, LBNL
Jed Brown, ANL
James Demmel, UC Berkeley

Michael Heroux, Sandia
National Labs

Sherry Li, LBNL

Prabhat, LBNL
Quincey Koziol, HDF Group

Suren Byna, LBNL
Abhinav Sarje, LBNL

Karen Pao and All Participants

All Participants
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Appendix C. Abbreviations and Acronyms

ALCC
ALCF
AMR
ASCR
AY
BER
CUDA
ESnet
FEM
FFT
GPGPU
GPS
GPU
HDF
HEDLP
HPC
HPSS
I/0
IDL
INCITE
LANL
LBNL
LLNL
MHD
MPI
NASA
NERSC
NetCDF
NGF
NISE
NRL
OLCF
ORNL
0S
PDE
PDSF
SC
SciDAC
SLAC

uQ

ASCR Leadership Computing Challenge

Argonne Leadership Computing Facility

Adaptive Mesh Refinement

Advanced Scientific Computing Research, DOE Office of
Allocation Year

Biological and Environmental Research, DOE Office of
Compute Unified Device Architecture

DOE's Energy Sciences Network

Finite Element Modeling

Fast Fourier Transform

General Purpose Graphical Processing Unit

General plasma science

Graphical Processing Unit

Hierarchical Data Format

High Energy Density Laser Plasma

High-Performance Computing

High Performance Storage System

input output

Interactive Data Language visualization software
Innovative and Novel Computational Impact on Theory and Experiment
Los Alamos National Laboratory

Lawrence Berkeley National Laboratory

Lawrence Livermore National Laboratory
Magnetohydrodynamics

Message Passing Interface

National Aeronautics and Space Administration
National Energy Research Scientific Computing Center
Network Common Data Format

NERSC Global Filesystem

NERSC Initiative for Science Exploration

Naval Research Laboratory

Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

operating system

Partial Differential Equation

NERSC’s Parallel Distributed Systems Facility

DOE's Office of Science

Scientific Discovery through Advanced Computing
SLAC National Accelerator Laboratory

Uncertainty Quantification
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Appendix D. About the Cover
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Image showing a portion of NERSC’s “Hopper” system, a Cray XE6 installed
during 2010. Hopper is NERSC's first peta-FLOP resource, with a peak
performance of 1.28 PetaFLOPs/sec, 153,216 compute cores, 212 Terabytes
of memory, and 2 Petabytes of disk. Hopper placed number five on the
November 2010 Top500 Supercomputer list.

Visualization of fluid flow in a capillary tube packed with crushed calcite
undertaken to investigate the pore-scale transport and surface reaction
controls on calcite dissolution under elevated CO- pressure conditions. The
image shows computed pH on calcite grains at 1-micron resolution. The
work was undertaken as part of the Center for Nanoscale Control of
Geologic CO2, an Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences, and
the Office of Advanced Scientific Computing Research. The goal is to model
geochemistry when the greenhouse gas carbon dioxide is injected
underground for sequestration. Image courtesy of David Trebotich,
Lawrence Berkeley National Laboratory. See Environmental Science &
Technology, May 27, 2014, pp7453-7460.

A visualization created by Berkeley Lab mathematicians Robert Saye and
James Sethian from a simulation of soap bubbles bursting and reforming.
The simulation includes various physical and chemical processes including
liquid draining from the bubbles’ thin walls until they rupture, after which
the remaining bubbles rearrange, often destabilizing other bubbles, which
subsequently pop. The soap bubble cluster shown includes physically
accurate thin-film interference, which produces rainbow hues A beach at
sunset is reflected in the bubbles. An article about the model was published
in the May 10, 2013 issue of Science.
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