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Regeneration in insects

J. Lawrence MarshU and Heidi Theisen†

In insect limbs, networks of gene regulation mediated by
secreted morphogens play key roles in controlling
development, repair and regeneration. Two models for limb
patterning and regeneration were proposed in the 1970s:
The Polar Coordinate Model and The Boundary Model.
Here we describe the molecular networks driving limb
development and regeneration and how they support a
hybrid PCM-Boundary Model, where circumferential
positional values emerge from the interplay of two
morphogens with two compartments and distal outgrowth is
initiated by the combinatorial signaling of two morphogens,

( ) ( )Wingless Wg and Decapentaplegic Dpp . Autoactivating
loops and lateral inhibition are prominent mechanisms in
these networks.

Key words: regeneration r pattern formation r gene regu-
lation r morphogen r distalization
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Introduction

TISSUES EXHIBIT AN impressive ability to respond to a
myriad of insults by repairing and regenerating com-
plex structures. The elegant and orderly process of
regeneration provides clues to the mechanisms of
pattern formation but also offers the hope that the
process might one day be manipulated to replace
damaged body parts. To manipulate the process, it
will be necessary to understand the genetic basis of
the process. In the case of the insect leg, we are
coming close to such a level of understanding and
many of the lessons learned are relevant to vertebrate
systems. A dynamic web of gene regulatory networks
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appears to create a robust self-organizing system that
is at once extremely intricate but also perhaps simple
in its reliance on a few key signaling pathways and a
few simple processes, e.g. autoactivation and lateral
inhibition. Here we will summarize what has been
learned about the networks of gene regulation pre-
sent in the Drosophila leg discs and then we will
explore how the regenerative responses to different
insults can be understood as predictable responses to
these networks. Each of the regulatory networks could
themselves serve as the subject of a detailed review
and that is beyond the scope of this discussion. Here
we will focus on the interplay between the regulatory
networks in patterning the tissue.

The tissue: imaginal discs

The appendages of Drosophila arise from imaginal
discs. Topologically, discs are bags of cells comprised

Ž .of a single epithelial sheet reviewed in refs 1,2 . The
disc is asymmetric with one side comprised of folded
columnar epithelial cells that will give rise to the
adult structures and the other side comprised of a
few very squamous cells that make up the peripodial

Ž .membrane Figure 1 . During metamorphosis, the
columnar side telescopes out to form an appendage.

Imaginal discs arise from approximately 10 to 30
( )cells at the intersection of wingless wg , decapenta-

( ) ( )plegic dpp and engrailed en expression on the flank
of the embryo and hence initial asymmetries in the
disc are defined by embryonic gene networks.2 The
disc field invaginates from the embryonic ectoderm
to become a physically independent bag of cells con-
nected to the larval hypoderm by a thin stalk. A leg
disc will increase from 10]30 cells to 10]30 000 cells
before ceasing growth and undergoing metamorpho-
sis.1,2 Cell division occurs throughout the disc with-
out any obvious growth zones1,2 until very late. Cell

lineage’s apart from the ArP compartment lineage’s,
appear for the most part indeterminate,1,2 suggesting
that cell interactions play an important role in evolv-
ing towards the final pattern.
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Ž .Figure 1. Anatomy of a leg disc and leg. A The frontal
view of the leg disc shows a series of rings demarcated by
folds that will telescope out of the plane to form the leg
during metamorphosis. Dorsal is up and anterior is to the
left. The domains of ci, dpp, hh, en and wg expression are

Ž .indicated. B The side view shows the approximate sources
of the adult structures with the tarsi arising from the

Ž .central fold s , the tibia from the outermost folds and the
femur, coxa, trochanter arising from the outmost ring of
the epithelium. The peripodial membrane covers the api-
cal surface of the epithelium. The domains of dac and Dll
expression relative to the adult structures are indicated.

Requirements for normal patterning in
Drosophila leg discs

The minimum requirement for a chiral structure
such as a limb is three axes of asymmetry. In discs
Ž .and other epithelia , one axis is the apical basal axis
of the cells that is fixed. Disruption of this axis leads
to a complete breakdown of tissue architecture and

Ž .no pattern at all e.g. ref 3 . The bulk of the pattern-
ing stems from the interaction of the other two axes

Ž .of asymmetry, namely the AnteriorrPosterior ArP
Ž .and DorsalrVentral DV axes. Briefly, asymmetry in

the ArP axis is provided by a lineage restriction
between the anterior and posterior compartments
Ž .reviewed in ref 4 , while asymmetry in the DrV axis
is generated by the expression of dpp dorsally 5,6 and
wg ventrally.7,8 For this discussion, we postulate that
localized expression of just two morphogen organiz-
ers, wg and dpp, is sufficient to produce a symmetri-

Ž .cal outgrowth limb and that the added feature of

differential response of cells in the anterior and
posterior compartments is sufficient to account for
production of a chiral limb. This assumes the fol-
lowing:

v Two morphogens, Wg and Dpp establish ven-
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tral and dorsal territories, respectively, by a
process of autoactivation and lateral inhibition.

v Combinatorial signaling at the intersection of
the two morphogen territories initiates distal
outgrowth.

v A short-range inducer from the posterior com-
Ž .partment, i.e. Hedgehog Hh , maintains local-

ized expression of wg and dpp.
v Different responses of Anterior and Posterior

compartment cells can generate asymmetry in
the ArP axis thus establishing chirality.

v The properties of the autoactivating loops and
lateral inhibitory networks are sufficient to ac-
count for regeneration of stable pattern after
insult.

v The continuous input of these morphogens is
essential throughout the developmental process
up until the last hours before differentiation
thus providing a dynamic system able to re-
spond at many times in development to injury.

g and Dpp are the key morphogens

any experiments have demonstrated that the local-
zed expression of wg and dpp are essential for
ormal pattern formation. In leg discs, both wg and
pp are expressed in narrow wedges of anterior cells

5 ] 8 Ž .butting the ArP compartment border Figure 1 .
oss of wg causes loss of ventral structures and sym-
etrical duplication of dorsal structures, while ec-

opic expression of wg in the dorsal region causes
roduction of ectopic ventrolateral structures and
rganization of an ectopic leg.7 ] 12 The reverse is true
or dpp. Loss of dpp causes loss of distal and dorsal
attern elements, sometimes accompanied by dupli-
ation of ventral tissue,13,14 while ectopic activation of
pp in a ventral region produces a new leg axis.15,16

hus, localized expression of wg and dpp is both
ssential for patterning and sufficient to initiate new

.regenerative patterning.

orsal and ventral territories of dpp and wg
xpression are achieved by autoactivation and
ateral inhibition
ith the initial discovery of compartments in the
rP axis, it was predicted that compartments would
rovide a general mechanism for patterning along
ther axes, like the DrV axis. DrV compartments
ould provide a convenient mechanism to maintain



wg expression ventrally and dpp expression dorsally.
In fact, no evidence for a DrV compartment has
been found in leg discs.17 Rather, localized expres-
sion of wg and dpp is maintained by a territory
system that involves autoactivation and lateral inhibi-

18 Ž .tion Figure 2 . As we will see, such territories are
much more dynamic and robust in their ability to
regenerate coherent pattern after a myriad of insults
than fixed lineage systems.

Several studies reveal that Wg and Dpp inhibit
each other’s expression.16,18 ] 23 For example, elimi-
nating Wg signaling in the entire disc by using tem-
perature sensitive alleles of wg leads to ectopic dpp
expression in the wg domain over a time span that is
sufficient for only a few cell divisions.18 In addition,

Ž .clones of cells that lack Wg response e.g. dsh acti-
vate dpp.11,23 Conversely, ectopic expression of wg
suppresses dpp expression dorsally.18,19,21 Manipula-
tions of Dpp signaling affect wg transcription in a
similar fashion. Loss of Dpp signaling allows ectopic
wg expression along the ArP border, while ectopic
expression of dpp suppresses wg expression
ventrally.16,18 ] 20,22

In addition to inhibiting each other’s expression,
Wg and Dpp each autoactivate their own expression
as suggested by manipulations of either pathway
downstream of the ligand. For example, Wg signaling

Figure 2. Local sources of dpp and wg expression are
restricted to the region along the ArP boundary. Ci is155
required for dpp and wg expression but is continuously
inhibited by the action of Ptc. Hh diffusing from the

posterior compartment, relieves this inhibition; thus, main-
taining a localized source of dpp and wg expression. The
different dorsal and ventral territories of dpp and wg ex-
pression, respectively are maintained by a network of au-
toactivation of, e.g. Wg activating itself, and lateral inhibi-
tion in which Wg inhibits dpp expression and visa versa.

367
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Žinhibits Shaggy activity Sgg, ZW-3 or mammalian
.Glycogen Synthase Kinase and the regenerative re-

sponses to engineered loss of Sgg activity resemble
the responses to ectopic wg expression.12,23,24 Sgg
clones also activate wg expression.20,23 On the other

Ž .hand, Dishevelled Dsh activity is required to tran-
smit the Wg signal and loss of dsh causes loss of wg
expression.23,25,26

Autoactivation of dpp in leg discs is indicated by
the observation that ectopic expression of dpp can
trigger ectopic expression of a dpp)LacZ reporter
gene.16 Interestingly, the regulatory networks can be
quite tissue-specific. For example, Wg repression of
dpp that is clear in the leg discs, does not occur in the
wing disc23 and in the developing gut, Wg and Dpp
signaling act synergistically27 rather than antagonisti-
cally as in the leg.

In summary, a system of autoactivation operates
throughout development to maintain both wg and
dpp expression in the leg disc and a system of cross-
inhibition ensures that the initial DrV bias of dpp

Ž .and wg expression will be perpetuated Figure 2 .
This regulatory circuit helps us to understand how
forced confrontation of inappropriate cells in re-
sponse to genetic or surgical manipulations can be
resolved into coherent and organized patterns with
respect to Wg and Dpp.

The ArrrrrP axis is characterized by compartments
of lineage restriction and an inductive circuit at
the boundary between two compartments
involving Hh

Restriction of wg and dpp expression to defined
wedges requires the interplay of the A and P com-
partments. Unlike the dynamic network that main-
tains DrV territories of dpp and wg expression,
asymmetry in the ArP axis is achieved by lineage
restriction.4,28 The posterior compartment is defined
by expression of the homeotic selector gene engrailed
Ž .en that inhibits expression of anterior genes, e.g.

Ž . Ž .wg, dpp, patched ptc and cubitus interuptus ci while
promoting expression of hh.29,30 By defining the pos-
terior compartment, En also modulates the response
of posterior cells to the secreted morphogens Wg and
Dpp.
Localized expression of wg and dpp is achieved by
an inductive circuit at the boundary between two
compartments involving Hh. Hh is expressed only in
the posterior compartment31 ] 33 and diffuses a short
distance into the anterior compartment where it
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Ž .counteracts the inhibition of Smoothened Smo sig-
Ž .naling by the Patched protein Ptc thereby allowing

Ž .wg and dpp to be expressed Figures 2 and 3 . Smo
encodes a seven-pass transmembrane protein34,35

which acts constitutively to promote wg and dpp
expression.36 However, the transmembrane protein
Ptc37,38 constitutively inhibits Smo activity, thereby
inhibiting wg and dpp expression in the anterior
compartment. Hedgehog can bind the Ptc receptor
and thereby relieve the inhibition of Smo

activity.36,39 ] 41 In addition to its role in transducing
the Hh signal, Ptc also impedes the movement of Hh
thereby limiting the region of wg and dpp activation
to a narrow stripe abutting the ArP compartment

36,41 ] 43 Ž .boundary Figure 2 .

Figure 3. Ptc and Smo have opposite effects on C
inhibits Smo activity. When Smo activity is inh
cytoplasmic multiprotein complex that is associated

Ž .Su fu . PKA phosphorylates Ci and promotes the
transcriptional repressor and inhibits wg and dpp
Pte is inactivated and Smo activity is no longer
phosphorylation and proteolysis of Ci155. Smo
containing multiprotein complex freeing the tran
dpp expression. Thus, in cells that receive a Hh sign
Ci155 transcriptional activator is released from a m
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The anterior compartment is defined by expres-
sion of Zn finger transcription factor Cubitus inter-

Ž .ruptus Ci which is related to the Gli proteins of
vertebrates.44,45 Ci can be proteolytically processed to
produce two different forms, Ci75 a repressor and

Ž .Ci155 an activator Figures 2 and 3 . At the ArP
boundary, Hh signaling causes Ci to be converted to
an activator of wg, dpp and ptc expression.46 ] 49 In A
cells that do not receive the Hh signal, i.e. distant
from the ArP border, Ci75 predominates and re-

presses hh, wg and dpp but not en expression.45,46,48

The fine tuning of this regulatory circuit is known to
involve interactions with other factors such as Fused
Suppressor of fused, PKA, Costal-2, Smo, Ptc, Grou-

Ž .cho, Polyhomeotic Figure 3; refs 43,47,50]56 .

i activity. In the absence of Hh signaling, Ptc
Ž .ibited, full length Ci Ci 155 is held in a

with microtubules and includes Cos2, Fu and
cleavage of Ci to form Ci75, which acts as a
transcription. Upon reception of a Hh signal,
inhibited. Smo inhibits PKA, thus inhibiting
also promotes the dissociation of the Ci155
scriptional activator, Ci155, to activate wg and
al, the Ci75 repressor is not produced and the
ultiprotein complex.



The ability to maintain two distinct populations of
cells, A and P, that do not mix appears to require Hh
signaling to establish boundaries of affinity that dis-
tinguish the two compartments.53,57 An important is-
sue is how the regulatory network between the A and
P compartments can account for the apparent regen-
eration of posterior compartment cells in disc frag-
ments that regenerate. We will consider this in the
discussion of responses to surgical manipulations
below.

Wg plus Dpp are sufficient to distalize

Establishment of the proximal distal axis has long
been perplexing.58 Meinhardt59 proposed that a
unique morphogen whose expression required input
from Wg, Dpp and Hh, would be expressed at the
center of the disc and would pattern the PrD axis.
The disc appears to have adopted a more conserva-
tive mechanism to accomplish the same objective
Ž .Figure 4 . A regulatory network exists in which com-
binatorial input from Wg and Dpp directs gene ex-
pression in discrete domains along the proximodistal
axis. High levels of Wg and Dpp activate Distalless
( ) 60 ] 63Dll expression in the distal leg. Dll in turn

( ) 62,64inhibits homothorax hth expression which is re-
Ž .quired for targeting Extradenticle Exd to the nu-

cleus.65 ] 67 These interactions set up a proximal do-
main of active nuclear Exd and a distal domain of
inactive cytoplasmic Exd. The nuclear Exd in the
proximal domain of the leg prevents cells from re-
sponding to Wg or DPP signaling thus dividing the
leg into WgrDpp responsive and WgrDpp non-re-
sponsive domains along the PrD axis.62 ] 64 The
WgrDpp, responsive domain is further divided into

( )Dll and dachshund dac expressing regions by the
differential response of cells to levels of Wg and Dpp
signaling and repression of Dll by Dac.61,64 These
discrete domains of gene expression are required for
normal PrD patterning. Dll is required for the more
distal regions of the leg,68 while Dac specifies inter-
mediate pattern elements69 and Exd and Hth are
required for the formation proximal structures.70,71

The shape of a new outgrowth is influenced by the
spatial regulation of the combinatorial inducers, Wg

Žand Dpp. If not inhibited by other mechanisms e.g.

.Ptc , Wg and Dpp will autoactivate and laterally in-

hibit to produce two territories of expression with a
long border. If hh is expressed uniformly,60,72 a pad-
dle shaped limb will develop.60 If expression is limited

36
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Figure 4. Wg and Dpp trigger a cascade of regulatory
networks in the PrD axis. High levels of Wg and Dpp
induce Dll expression and low levels induce dac. Where
levels of Dll and Dac are low, hth is expressed. Hth causes
ubiquitously expressed Exd to enter the nucleus. Nuclear
Exd in turn stabilizes Hth; thus, forming an autoactivating
loop and providing a source of regulatory proteins that
inhibit the expression of targets of Wg and Dpp regulation,
e.g. H15 for Wg and omb in the wing for Dpp. Whether the
action of Dll on hth is direct or indirect is not resolved.
These interactions divide the PrD axis into three regions: a
distal region defined by Dll, an intermediate region, where
Dac is required to specify cell fates; and a proximal region
defined by Hth and Exd.

Ž .to wedges, a pointy leg natural will develop. Wher-
ever Dll is activated, a PrD axis will develop as Dll
activity inhibits hth expression leaving a proximal
ring of Hth which then forms an autoregulatory loop
with Exd. Since Hth blocks the effect of both Wg and
Dpp on their target genes, the range of action of
these cytokines is restricted in the PrD axis.60 ] 64

Thus, the juxtaposition of high levels of Wg and Dpp
is sufficient to initiate a cascade of gene regulation
that defines a PrD axis and organizes a new limb.

Understanding regeneration in terms of
regulatory networks

A number of experimental manipulations will induce

ectopic patterning including surgical manipulations,
misexpression experiments and loss of heterozygosity.

Ž .All of these manipulations can but do not always
produce supernumerary truncated limbs.

9
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Misexpression experiments

Expression of genes in ectopic locations can be ac-
complished by several strategies including the flipout
technique11 and the Gal4rUAS system.73 In these
experiments, the gene is constitutively active since it
has been removed from the feedback regulation that
may characterize the normal gene. For example, ec-
topic activation of wg in a dorsal region causes bifur-
cated limbs with the ectopic limb arising completely
from the A compartment with no P tissue.60,72 Based
on the networks described above, these double ante-
rior regenerates can be explained by the establish-
ment of an ectopic focus of Wg and Dpp juxtaposi-
tion that activates Dll expression and a new PrD axis.
The lack of posterior tissue in these regenerates
reflects the inability to regulate en expression in
Anterior cells in order to reassign compartment iden-
tity.

In another example, misexpression of hh in just
the dorsal or just the ventral anterior regions affects
patterning but does not produce distal outgrowth.60,72

Only when a hh expressing clone is present in both
the dorsal and ventral anterior regions, are both wg
and dpp activated and consequently Dll and a new
PrD axis established. These outgrowths contain only
anterior tissue suggesting that Hh cannot induce en
that is required for posterior cell fates.

Morimura et al16 used the dppblk )GAL4:UAS to
ectopically express dpp. When low levels of dpp were
expressed ventrally, leg duplications emerged sug-
gesting that the DpprWg combination activated Dll
expression and produced an outgrowth. On the other
hand, if high levels of dpp were expressed, ventral
structures were lost entirely and duplications of dor-
sal structures were observed. One imagines that the
higher levels of Dpp were sufficient to extinguish wg
expression16,18 ] 20,22,23 and the artificial expression of
dpp would drive cells toward a dorsal fate.

Loss of heterozygosity experiments

Induction of mitotic clones can be used to engineer
the loss of heterozygosity in a particular cell and all
its descendants. The patterning responses to loss of
heterozygosity appear to be due to disruption of
autoactivating or inhibiting loops that result in mis-

expression of one morphogen or another. For exam-
ple, Shaggy activity antagonizes Wg signaling74 and
loss of Sgg function leads to activation of wg expres-
sion.20,23. If sgg clones occur in the dpp expressing
regions of a disc, two new foci of DpprWg confronta-

37
tion are created along the PrD axis. This causes two
new distalization centers to be established and a
pattern triplication to emerge with the ectopic limbs
comprised solely of anterior tissue23,60 implying the
absence of a mechanism to activate en and posterior
compartment genes. Dsh activity antagonizes Sgg,
and dsh clones have the opposite effect namely a
ventral clone of dsh loses wg expression and activates
dpp expression.20,23. The resulting DpprWg con-
frontation activates Dll and organizes a new center of
distalization with opposite polarity to that produced
by sgg clones.

Similarly, clones of cells that have lost the Dpp
receptors, Punt, Thickveins or Saxophone activate
wg.22 Such activation of wg would create a new focus
of DpprWg confrontation and consequent activation
of Dll and outgrowth, e.g. see Figure 1C in ref 22.
Thus, the responses to loss of genes downstream of
ligands in signaling pathways can best be understood
by their affects on the autoactivating and laterally
inhibiting regulatory networks affecting expression of
morphogen genes.

Transcriptional regulation can account for the pat-
terning responses to manipulations of Hh signaling.
Loss of Hh function results in the loss of distal leg
elements33,72 while ectopic Hh can lead to the forma-
tion of double anterior supernumerary limbs.72 Since
Hh signaling is required to maintain wg and dpp
expression72 loss of Hh indirectly leads to loss of Dll
and truncated legs.60 ] 63 On the other hand, clones of
ectopic Hh that fall along the DrV midline of the
anterior compartment activate dpp in the dorsal re-
gion and wg in the ventral region of the clone. These
clones produce double anterior outgrowths suggest-
ing that activated wg and dpp are sufficient to specify
PrD growth that is symmetrical if there is no input
from the posterior compartment, but input from the
posterior compartment does confer a chirality to a
fully patterned leg.72

Surgical manipulations

Central to the insect regeneration field have been
the responses to surgical manipulations of Drosophila
imaginal discs.75 ] 81 One of the key observations has
been that the anterior dorsal quadrant of a first leg

Ž .disc A1r4 will regenerate while the remaining P3r4

Ž .fragment will duplicate Figure 5 . One perplexing

aspect of these observations has been how a fragment
Ž .completely lacking a posterior compartment A1r4

could regenerate and why a fragment with at least
Ž .some wg, dpp and en regions P3r4 would

0



duplicate.28 In a series of elegant experiments, Gib-
son and Schubiger79 provide an explanation that
forces us to reinterpret many of the older experi-
ments. They find that first leg discs are unique in
having a small patch of en and hh expressing cells in
the peripodial membrane that appears to serve as a
source of posterior compartment material in these

Ž .fragments Figure 5 . Notably, second and third leg
discs do NOT have this patch of en and hh and they
do NOT exhibit the same regenerative capacity. Al-
most all the literature describing manipulations of
Drosophila leg discs is based on manipulations of the

w Ž .first leg disc exclusively i.e. the prothoracic L1
xdisc . In the process of wound closing, the unique

domain of enrhh expression in L1 discs provides a
basis for reestablishing a posterior compartment that

Ž . 79other discs L2; L3 do not possess. From the regu-
latory networks described above, one would expect

Žthat posterior 3r4 fragments of leg discs roughly 12
.to 9 o’clock would regenerate as the cut edges

expressing wg and dpp come into contact and begin
to regulate. In fact, P3r4 fragments from L2 and L3
discs do just that. The exception is the P3r4 frag-
ment from L1 discs which duplicates posterior struc-
tures because the wound closing brings a novel patch
of en expressing cells to the anterior. If Hh is elimi-

Žnated from the P3r4 fragments of L1 discs e.g. by
ts.hh , then the Anterior compartment regenerates via

the action of wg and dpp as the other discs do.
Similarly, the unique patch of peripodial cells that
express enrhh in first leg discs provides a starting
source of posterior cells that allows regeneration in
the A1r4 fragments from L1 discs. Notably, A1r4
fragments from L2 and L3 discs fail to thrive when
cultured as does the A1r4 fragment from L1 discs if
Hh activity is blocked, e.g. by a temperature sensitive
allele of hh.79 It is clear that the small patch of
hhr en expressing cells is able to direct the growth of
a new posterior compartment. Although the exact
mechanism whereby this occurs is unclear, one im-
mediate response to wound healing is activation of
patterning genes such as dpp and H15.82 In some
experiments, Hh does not seem able to reprogram A
cells to P fates30 although in other experiments ec-
topic Hh activity can activate en expression in ante-
rior wing cells51,83 and leg discs79. Perhaps the many
experiments with L1 discs are the exception that

proves the rule, i.e. wg and dpp are capable of
regenerating the disc IF they have a mechanism to
support their expression which in Drosophila leg discs
requires sustained Hh to relieve the repression by
Ptc.

37
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Figure 5. A source of Hh and En are required to establish
Ž .a new posterior compartment. A Expression patterns of genes

( )relative to cuts dark black lines . Dorsal is up, anterior is to
the left. Expression of en and hh are restricted to the
posterior compartment in all leg discs. The first leg disc is
unique in having en, hh expressing cells in the dorsal

Ž . Ž .peripodial cells arrow . B Patterning responses to surgical
( )cuts described in A in L1, L2 and L3 discs. The A1r4

fragment from L1 has a small bit of en, hh expression
Ž .arrow in A which provides the starting point to regener-

Ž .ate a posterior compartment arrow in B . Because the L2
and L3 discs do not have these en, hh expressing peripodial
cells, they cannot create a posterior compartment and the
A1r4 fragments from L2 and L3 do not regenerate. In
P3r4 L1 disc fragments, the small patch of en, hh expres-
sion closes on the wounded edge and provides a second

Ž .source of posterior compartment arrow , and hence cre-
ates a mirror image duplication. The P3r4 fragments from
L2 and L3 have an intact posterior compartment and thus,
regeneration is dominated by Wg and Dpp regenerating
the A compartment. L1 discs that have lost Hh function,
L1hhts, behave like L2 and L3 discs emphasizing the impor-
tance of a source of Hh and En in the outcome of a
regenerate.

A second set of surgical manipulations addressing
the processes of regeneration involved grafting ex-

Žperiments with cockroach legs and other insects re-
viewed in refs 60,80,84. The results of those experi-
ments can be understood if one assumes spatial pat-
terns of gene expression and regulatory circuits simi-
lar to those observed in the Drosophila discs. Con-
tralateral grafts of legs to stumps would bring wg and
dpp expressing regions together which would be ex-
pected to induce Dll and produce outgrowths which
they do. Rotation during grafting brings A and P cells
in apposition thus creating a new ArP boundary with
attendant induction of wg and dpp and distalization.
For an excellent discussion of these experiments, see

ref 60. Notably, 908 rotations do not produce super-
numerary limbs perhaps reflecting the fact that only
modest changes in wgrdpp or ArP confrontations
would be created which would likely be resolved with
minimal alterations of pattern.

1
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In summary, the resolution of the paradoxically
different behavior of first leg discs versus the other
discs in Drosophila coupled with the regulatory net-
works that have emerged from the contributions of
many authors provides a framework to understand a
molecular basis for regeneration in insect legs in
response to surgical manipulations.

Models and molecules

There has been much discussion about compart-
ments, boundaries, morphogens and positional iden-
tity. Bateson85 articulated rules to account for sponta-
neous triplications in insect legs such as the fact that
the three legs lie in a plane. The spatial locations of
wg r dpp r hh account for that observation.
Wolpert86,87 defined the property of positional infor-
mation to account for the behavior of surgically ma-
nipulated tissues. The polar coordinate model58,80

postulated a set of positional identities in two dimen-
sions, i.e. radial and circumferential. The interplay
between wg and dpp in promoting Dll expression
and radial PrD differentiation and the interplay
between these two morphogens and the A and P
compartment in assigning circumferential identities
fit this model well.88 A notable point was the sugges-
tion that positional values would be continuous with-
out boundaries of discontinuity. Meinhardt59 pro-
posed a hybrid model that called for three compart-
ment boundaries to act as organizing centers with the
intersection of the three compartments to induce a
proximal morphogen.89 Indeed, the networks de-
scribed here fall somewhere between these two mod-
els. The distinction between D and V is not defined
by a compartment but rather by a dynamic contin-
uum of Wg and Dpp signaling. The continuous need
for this input to maintain patterns of expression can
account for the robust ability of tissues to reorganize
and regenerate after a myriad of insults. The combi-
natorial action of Wg and Dpp is sufficient to define
the PrD axis without the need for new morphogen,
but the addition of Hh from the posterior compart-
ment relieving a repression keeps that interaction
focused to a point rather than a line.
A working hypothesis

What are the key mechanistic interactions that ap-
pear to make the system work? One is the involve-
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ment of territories of morphogen activity that are
maintained by a system of autoactivation and lateral
inhibition that requires continuous input. Such a
system is dynamic allowing confrontations of cells to
be resolved in a coherent manner as morphogen
gene expression is activated or repressed depending
on the confrontation. A second key feature is the
extensive use of negative regulation such that loss of
one component leads to activation of another. Thus,
loss of heterozygosity for a negative element in an
autoactivating pathway or in a cross-inhibiting path-
way can lead to activation of a growth factor and
thus, initiation of growth and patterning. Some hy-
perplasias may originate by such a mechanism. The
use of combinatorial input from two morphogens to
define a unique point in a tissue replaces the need
for a distal morphogen.

Compartments play two roles. One is to serve as a
spatially restricted source of Ptc inhibition; thus es-
tablishing the boundary as an organizer and restrict-
ing confrontation of Wg and Dpp to a point resulting
in a circle of Dll expression and a tube-like leg.
Compartments also affect the response of cells to
these two morphogens resulting in chirality. For-
mally, it seems possible that a second pair of mor-
phogens orthogonal to the first could be used to
pattern the ArP axis resulting in four wedges of
morphogen expression without the need for com-
partments. However, we must wait to see if such a
mechanism exists in other systems or if the flexibility
of such a system might be its own undoing. It seems
likely that different morphogens could be used to
pattern limbs in other systems by employing similar
regulatory circuits.

Although the discussion above can serve as a rea-
sonable working hypothesis, there is much to learn.
For example, the mechanism of how a few posterior
cells can serve to regenerate a compartment needs
further study. How these thoughts apply to the topo-
logically more complex wing disc that nevertheless
follows many of the same rules is not fully under-
stood. Perhaps most notable, very few of the formal
interactions discussed here have been documented at
the level of understanding the direct physical and
functional interactions of the participating gene
products.
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