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Azimuthal angular correlation of J/y plus jet production
at the electron-ion collider

Luca Maxia®"" and Feng Yuan

2,7

"Wan Swinderen Institute for Particle Physics and Gravity, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands
*Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

® (Received 8 March 2024; accepted 29 November 2024; published 30 December 2024)

By investigating the soft gluon radiation in the J/y plus jet photoproduction at the electron-ion collider
(EIC), we demonstrate that the azimuthal angular correlations between the leading jet and heavy
quarkonium provide a unique probe to the production mechanism of the latter. In particular, a significant
cos(¢) asymmetry is found for the color-singlet channel, whereas it vanishes or has an opposite sign for
color-octet production, depending on the jet transverse momentum. Numerical results of cos(¢) and
cos(2¢)) asymmetries employing both the color-singlet model and the nonrelativistic QCD approach are

presented for typical kinematics at the future EIC.

DOI: 10.1103/PhysRevD.110.114042

I. INTRODUCTION

In recent years, heavy quarkonium production in various
inclusive processes has attracted great interest as a way to
probe gluon distributions both in initial (nucleon tomog-
raphy) and final (fragmentation functions) states [1-17].
Among them, Refs. [10,12] have studied the azimuthal
angular correlation in semi-inclusive DIS between J/y and
leading jet to probe the so-called linearly polarized gluon
distribution. In this paper, we will investigate the dominant
contributions from the soft gluon radiations and demon-
strate that azimuthal correlations can also provide a unique
opportunity to disentangle between the color-singlet (CS)
and color-octet (CO) mechanisms.

In the nonrelativistic QCD (NRQCD) [18] approach, the

heavy-quark pair forms a Fock state specified by

n= 2S+1L§C), with S denoting its spin, L the orbital angular

momentum, J the total angular momentum and c its color.
Note that, within this framework, the pair can couple either
as a CS or CO state. Therefore, comprehending the
significance of the CS and CO contributions is crucial.
Although great progress has been made in understanding
heavy quarkonium production in hadronic collisions (for
recent reviews see [19,20]), challenges remain to describe
quarkonium formation. For instance, there is no formal
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proof of the validity of the NRQCD approach in the
small transverse momentum region, and only recently
works that address this issue begun to emerge [13,21-23].
Moreover, in [24] it has been shown that including the next-
order contributions of the CS channel greatly improves
the agreement of the theoretical prediction with HERA
data [25], which might be an indication that the CO
contributions are overestimated. In the literature (see,
e.g., [1,5,6,8,10,26-28]) it has already been vastly dis-
cussed the opportunities of future experiments at the
electron-ion collider (EIC) to provide additional informa-
tion on the production mechanism through cross section
and/or polarization measurements. Here, we propose an
original and innovative approach to disentangle the CS and
CO mechanisms at the EIC and test the significance of CO
contributions (at least in the small transverse momentum
region). More specifically, we will demonstrate how
azimuthal angular correlations in J/y plus jet1 photo-
production at the EIC offer a unique probe of the under-
lying production mechanism. We will focus on the
correlation limit, i.e., the transverse momentum of indi-
vidual particles is much larger than the total transverse
momentum. Therefore, by combining the transverse
momenta of the J/y (k, 1) and the jet (k;;), we can

identify two scales. The first one is given by P L= @

while the second by g, = l_év,l + %jl, with |g, | < |f’l|
Hence, according to this limit, the heavy quarkonium and
jet are mainly produced back-to-back in the transverse
plane (see Fig. 1). An imbalance between the two final-state

'Reconstruction of the jet in the final state can be achieved by
applying the anti-k; algorithm.

Published by the American Physical Society
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FIG. 1. Kinematic correlation between the leading jet and
heavy quarkonium as viewed in the transverse plane. Here g
(the total outgoing transverse momentum) is small compared to
individual transverse momenta.

particles with nonzero |G | can be generated by high-order
perturbative corrections and from the intrinsic transverse
momentum of the incoming parton. We identify this
imbalance with the angle ¢, namely the difference between

the azimuthal angles of g, and /EW 1, where we can

approximate the latter as l;,, LR p | within the correla-
tion limit.

Moreover, we remark that in this limit such azimuthal
imbalance is mostly generated from the soft/collinear gluon
radiations from perturbative diagrams (see for instance
[29,30]). This contribution, denoted by k,, in Fig. 1, tends
to align with the jet direction at low ¢, which leads to
significant cos(n¢) asymmetries. Detailed examples have
been shown for vector boson (photon/Z/Higgs) plus jet
production in pp collisions [31,32] and for lepton plus
jet [29] and dijet [30] productions in ep collisions. In the
case of quarkonium productions, azimuthal distributions
like the cos(¢) and cos(2¢)) can also be exploited to unravel
the production mechanism. Such findings can then be
applied to electroproduction to investigate gluon distribu-
tions (e.g., linearly polarized gluons) in nucleons and
nuclei.

The remainder of the paper is the following. In Sec. Il we
present the one loop fixed-order calculation. In Sec. II A we
report the derivation in the CS channel, whereas the CO is
given in Sec. II B. For the latter, we explicitly consider
gluon and quark contributions, and discuss the importance
of the LDME evolution. In Sec. IIl we present the
resummed cross section at one loop and give numerical
predictions at fixed kinematics for EIC. Conclusions are
drawn in Sec. IV. In addition, our paper includes the
Appendix, where we present the resummed asymmetries
and the normalized cross section in the CS and CO
channels separately.

II. SOFT GLUON RADIATION AT ONE LOOP

In this section we discuss the implication of azimuthal
correlation between the J/y and jet for photoproduction at
the future EIC, yp — J/w + jet + X. The leading-order
(LO) NRQCD contribution from the partonic process is
given by

(b) ()

FIG.2. Soft gluon radiation in the J/y plus jet photoproduction
process from: (a) incoming parton, (b) outgoing parton, (c)
outgoing J/w. The parton, either a quark, antiquark or gluon,
is given as a dashed line in the figure. All three diagrams
contribute to the CO channel, whereas only the first two, (a) and
(b), are relevant for the CS one.

7(p1) +a(pa) = [0 (k,) + alk)). (1)

with @ = g when the heavy-quark pair QQ is produced in a
CS (¢ = 1) configuration and a = g, g, g in the CO (c = 8)
one. Moreover, we have indicated the momentum of each
particle in parentheses. At this order, the J/y and jet are
back-to-back in the transverse plane, so that g, = 0.
However, at higher orders, small nonzero ¢, originates
from parton intrinsic transverse momenta and soft gluon
radiation. In the following, we will derive the LO soft gluon
radiation contribution (Fig. 2) and the associated azimuthal
angular asymmetries, whereas the collinear gluon radiation
factorizes into the TMD gluon distributions.

The major difference between CS and CO channels is
that the soft gluon radiation associated with the heavy
quark pair only contributes to the latter. This occurs due to
cancellations between the emissions from the heavy quark
and antiquark when the pair is in a CS state. This difference
has significant implications for the azimuthal asymmetries,
as we will discuss in the following.

We first present the results of the soft gluon radiation at
fixed order, while we will present the resummed form in
Sec. III.

A. Color-singlet channel

Starting with the CS channel, by adding Figs. 2(a) and
2(b) we obtain the amplitude squared (averaged over the
color and spin of incoming particles) for the soft gluon
radiation

AN = 2Cal A28, (pas k), (2)

where Ag’(l) is the LO amplitude and S,(v,.v,) is a
shorthand notation for

(3)

o 2(v, - vp)
Sg(Vas vp) = m

More specifically,

114042-2



AZIMUTHAL ANGULAR CORRELATION OF J/y PLUS ...

PHYS. REV. D 110, 114042 (2024)

2(pa - k)
(Pz : kq)(k/ : kq)
2 e

B |]€gl|2 cosh(Ay,) — cos(A¢,)

i <1 sinh(Ay,)

lkgo |? cosh(Ay,) — cos(¢)
cos(¢)

cosh(Ay,) — cos((ﬁ))’

Sg(va k]) =

4)

where we have already separated S,(p,.k,) into three
contributions for convenience later. We have defined
Ay, =y, —y;, namely the difference between the emitted
soft gluon and jet rapidities, while the approximation sign
is due to the relation between A¢, and ¢, Ag, ~ ¢. We
need to integrate over the phase space of the emitted soft
gluon to derive the leading contribution,

Pk, —p 2)
(Zn)TEkMI |76 (g, +ky1)
K

n

Ay CA

o)
“aegp A

1

where § = (Pl +p2)2, ,i = (pz - kj)2’ and 1t = (pl - k])z
The first term in the bracket of Eq. (6) leads to the double-
logarithm. The second one, being an odd function of Ay,,
receives contributions only from the boundaries of the
integration region, which causes the presence of the additional
logarithmic term, In(7/ ). The last term in Eq. (6) contains the
jet contribution to azimuthal angular asymmetries.

Although its integral was relevant, and therefore com-
puted, in other works [29,30,33-36], for completeness we
report the calculation in the following. To better analyze the
physical content of this derivation, we can divide S, (p,. k)
into three contributions as follows

2(pa - k;)
(Pz : kq)(k/ ! kq)
2 e
B |]€gl|2 cosh(Ay,) — cos(A¢,)

2 <1 N sinh(Ay,)
- |];gl|2 cosh(Ay,) — cos(¢)

cos(¢) )
cosh(Ay,) —cos(¢) /)’

Sg(va k]) =

(6)

where we have defined Ay, =y, — y;, namely the differ-
ence between the emitted soft gluon and jet rapidities.

The first term in the bracket of Eq. (6) leads to the double-
logarithm (in b space). The second one, being an odd
function of Ay,, receives contributions only from the
boundaries of the integration region, causing the presence
of the additional logarithmic term, In(Z/&), which
depends on the jet rapidity. The last term in Eq. (6) contains
the jet contribution to azimuthal angular asymmetries. The
third term, /;, is one of the subjects of this work, being
azimuthal distribution that arises from the soft gluon
radiation. As a result of the removal of collinear divergences
already included within the jet function, /; depends on the jet
size R.
In particular,

cos(¢)
cosh(Ay,) — cos(¢)

1(R.$) = / dAy,

[
=P [ danS, (2 k)O(as, < )

B cos(¢p)
N /dAyg cosh(Ay,) — cos(¢) O(Ag, > R?)

—2\/R* + ¢*, (7)

where ©(A;; S R?) implies that the integration is
restricted inside (<) or outside (>) the rapidity region
occupied by the jet cone, namely

|Ayy| > \/R* + ¢, (8)

To further investigate this distribution, we expand it in a
Fourier series according to

LR ) = CO(R) +2 CP (R cos(ng).  (9)
n=1

For a general R, the Fourier expansion of I;(R,¢) is
manageable only via computational methods. However, the
analytical evaluation of this expansion within the small-R
limit is possible, giving

I;(R.¢) = ln% + 2cos(¢) <ln% +2In(4) — 2>
+2005(2¢)<ln%—1> 4o (10)

In Fig. 3, we show how the first three coefficients of the
Fourier expansion behave with respect to R. From this
figure, we conclude that the approximation used in Eq. (10)
is reasonably adequate for R < 0.4. Moreover, in line with
previous works [29,30,33-36], we find that the soft gluon

114042-3
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FIG. 3. Dependence of the first coefficients of Eq. (9) with
respect to R. In the upper panel we show both the exact result
obtained from a numerical computation (full color) and the
approximated one given in Eq. (10) (softer color). In the lower
panel, we present the difference between the two. The vertical
dotted line corresponds to R = 0.4, beyond which the approxi-
mation fails.

radiation associated with the jet leads to a dominant cos(¢)
asymmetry.

B. Color-octet channel

At variance with the CS case, when the pair forms a CO
state all diagrams in Fig. 2 are relevant. While it is
straightforward to evaluate the soft gluon emission from
the first two diagrams and prove that it does not depend on
the CO Fock state, it is worthwhile to elaborate more on the
last one [Fig. 2(c)], which corresponds to the soft gluon
radiation from the heavy-quark pair itself. We can separate
this last contribution in two terms: one that is also indepen-
dent of the CO Fock state and the other that mixes S- and
P-wave due to the LDME evolution [13,21,23,37,38]
(higher states are involved too, but suppressed according
to the velocity expansion of NRQCD). The former is similar
to the result obtained for the soft gluon radiation from a
gluon jet in the final state [34], with the only difference
originating from the gluon on-shell condition, k> = 0 for jets
and k* = M, ~ 4M7, for quarkonia. The second contribu-

tion occurs via the emission of soft gluons of order M,
where v is the relative velocity of the heavy-quark pair. Since
the soft gluons considered here have momenta of order ¢ |
(which can be greater than Mwv), one might expect a
suppression of this contribution. In the next subsection,
we will show that the LDME evolution actually plays a
significant role in the predictions of the asymmetries. Note
that, momentarily, we will keep these Fock-state dependent
contributions implicit, referring to them as “mixing.” More
details will be provided in Sec. II C.

With this in mind, we can combine the soft gluon
radiations from the initial and final state gluons [Figs. 2(a)
and 2(c)], and the averaged CO amplitude squared is
summarized as follows

APP = RC{ LATTR[3,(p2 k) + 3 (5,02 R0)
Sy(ky. ky) + Sy(kj k) = Sy(pa. kj))]
34 AR [CL 5,02k +5 (5, (p2:k0)

= Sy(ky. ky) + Sy(kj. k) = Sy(pa, kj))] }
+ mixing, (11)

where we have taken into account the contributions from

both gluon and quark channels and Ag’(g) (Ag’(8>) repre-
sents the LO gluon (quark) amplitude. The relative impor-
tance depends on the kinematics [16]. Note that the first
term of Eq. (11) is equivalent to that in Eq. (2) for the CS
case and, therefore, is a contribution purely driven by the
gluon jet, whereas the corresponding term in the quark
sector differs by a Casimir scaling factor. On the other
hand, all the other terms gathered in the curved parentheses
are associated with the J/y and always proportional to Cy.
Now, as before, we need to carry out the integration over
the phase space of the emitted soft gluon. We discuss the
integral of each (new) S, term separately, while the overall
contribution is given at the end of this section.

1. Integral of S, (p,. k)

Similarly to S,(p,.k;), we divide S (p,.k,) in the
following three terms

2([72 . kl//)

Sy(pa.k,) = (k) ky - K)
|kgL| mCosh(AyW —cos(Agy,)
z_}i - \/1+my sinh(Ayg,)
|k9J_|2 /1 +m3¢ cosh(Ay,, ) + cos(¢)

. cos(#) 1)

\/1+my | cosh(Ay,,) +cos(¢) ’

where we have defined Ay,, =y, — y,,, namely the differ-
ence between the emitted soft gluon and J /y rapidities, and
m, = M,,,/|13l|, with M, being the J/y mass. Moreover
Ady, = ¢y — ¢y = ¢, in a frame where ¢, = 0. As for
Eq. (6), the first term in the bracket of Eq. (12) leads to the
double-logarithm while the second one receives contribu-

tions only from the boundaries of the integration region,
1-M} /it
T 0 a.
1-M; /1

providing the logarithms: ln% + In These are once

114042-4
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again dependent on the rapidities, but in this case both y;
and y,,. The last term in Eq. (12) contains part of the J/y
contribution to azimuthal angular asymmetries.

We identify this angular distribution as

1, ,(my..0)

cos(¢)

= [ dAy,, |—
/ " \/1-+m} | cosh(Ayg,) +cos(e)

Note that the presence of the mass in the denominator acts
as aregulator, and therefore /,,., is continuous for all values
of ¢. Moreover, when evaluated within the jet rapidity
region, Eq. (12) leads to

(13)

Bp(Romy, Ay, §)

_ |ng_|2

[ dny,S, k)08, <R (14

which not only depends on both parameters R and m,, | , but
also on the rapidity difference Ay =y, —y; between the
J/w (y,) and the leading jet (y;). The distribution in
Eq. (13) can be expanded in the Fourier series

Ly p(my1. @)

C("' P) 1) cos(ng), (15)

+2Zc"”’

where the coefficients can be analytically evaluated only in
the small-m,, , limit, for which
|

FIG. 4. Dependence of the first coefficients of Eq. (15) with
respect to m,, . The vertical dotted line corresponds to
m,, | = 0.4. Panels follow the same logic as Fig. 3.

1 1
= In———2cos(¢p )(ln—+21n(4) 2>
ml//J_ I//J_

+2c0s(29) (m%— 1) b (16)

my, |

Il//-[) (my/La (P)

Figure 4 shows the dependence of the first three
coefficients with respect to m,, , together with the reli-
ability of the approximation introduced in Eq. (16).

2. Integral of S, (k;.k,)

Compared to the previous functions, deriving the azi-
muthal distribution arising from S,(k;, k,,) requires some
extra care. Firstly, we recast the function as follows

S, (ki k,) = 2(k; - k ) L 2 MCosh(Ay)_g_l
PP (kg k) (ky k) R P [COSh(Ayg)—COS(¢)][mcosh(A)}W)+COS(¢)]

cos(¢)

2 cos(¢)
|kL|2 cosh(Ay,) — cos(¢

sinh(Ay,)

W1+ m | cosh(Ay,,) 4 cos(¢)
\/1+my sinh(Ayg,)

cosh(Ay,) — cos(¢

where we remark that Ay =y, —y;, Ay, =y,

,/1 +m Lcosh Ayg,) + cos(¢)

—yjand Ayg, =y;

+Sg(kj,kw)), (17)

— Yy, Withy;, y,,, and y, being respectively the jet, J /ys

and emitted soft gluon rapidities. The first four terms of Eq. (17) coincide with the last terms of Egs. (6) and (12),
respectively, and thus remove the double counting in the azimuthal dependences. We identify the azimuthal distribution

driven by the first two terms as

cos(¢p)

cos(¢p)

- (18)

I.(Rom, .¢)= [ d ’
y-i(Romy 1 @) / Vg cosh(Ay,) — cos(¢) mcosh(AyW) + cos(¢)

independent of Ay. The last term of Eq. (17), which is explicitly given by

114042-5
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1

Sy(kj k) =

[cosh(Ay,) — cos(¢)] [, /1 - miL cosh(Ay,,) + cos(¢)]

[(cosh(Ayg) — sinh(Ay,)) cos(¢) — cos(2¢)

—4/1= miL(cosh(Ay) — cosh(AyW)(sinh(Ayg) + cos(¢)) — sinh(Aygy,)(sinh(Ayg) — cos(gz’))))] , (19)

produces the unique azimuthal distribution of S,(k;, k,)
1, (m, . Ay, ¢) = / dy,S,(k;. k,). (20)

Moreover, S‘g(kj, kl,,) provides another azimuthal distribu-
tion when evaluated within the jet region

B (R my, 1, Ay. §)

_ |ng_|2

/ dAy,S,(kj k,)O(Dgy, < R).  (21)

Among these three distributions, Eq. (20) is the most
interesting. It does not depend on the jet variable R, since
the integration of S‘ g(k;j.k,) is continuous at ¢ = 0.
However, it presents an additional dependence on the
rapidity difference Ay, which affects its harmonic expan-

sion coefficients, given by

=CV (m,, . Ay)

123
n=1

Iw—j(me’Ayv¢>

(my 1, Ay)cos(ng).  (22)

In particular, depending on the value of Ay we can have
additional logarithms of #/7 within the coefficients.
Moreover, the closer the two outgoing particles are to
the production axis (namely |Ay| — o0), the less relevant
the angular distribution in 7,,_; (mv, 1, Ay, ¢) becomes, with
its sole contribution being restricted to a logarithm of /7.
To see this effect, we consider the analytical expansion in
the small-m,,, limit for two values of Ay, namely Ay =0
and Ay =1

I, ;(m, ,Ay=0,¢)=2In(4)—4cos(2¢)(In(4)—1) +---
(23a)

and

[

Il[/-j(ml/IJ_7 Ay = 19 ¢>

—
1

N 1 — M2
:2[2(ln(1+e)—1)—lnu : 1_];442//1

—gcos(Zgb) [(1 +eX)(In(1+e)—1)

+e—In-—
1

L _Mz/”} (23b)

2 1-M%/t

Note that at small-m,,, the distribution only contributes
to the even modes of the Fourier expansion. The complete
dependence of the first coefficients of Eq. (22) for the same
values of Ay is shown in Figs. 5 and 6, where once again it
is shown that the approximation in Eq. (23) holds up
to my,; ~0.4.

3. Integral of S, (k,,.k,)

The function S,(k
particles, is given by

. ) nonzero only for massive

2
my, |

2
s (/14 m3  cosh(ay,,) +cos(@))

(24)

Sy(kys k) ~

The azimuthal distribution arising from S,(k,.k,) is
identify by

3F

s i

I2F — ol

=

< R C(t*p)

o L

§/ P — ng/)
R EEE LR

D S ==
A -1g Ll 1 1 e
T

S o i

4 S
:7“ N \
s L1 N N A S N
N 1073 1072 107! 10° 10

Myl
FIG. 5. Dependence of the first coefficients of Eq. (22) with

respect to m,; and for Ay = 0. The coefficient C;, being zero, is
not shown here Vertical dotted line corresponds to m,,; = 0.4.
Panels follow the same logic as Fig. 3.
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[ — VP
= 10F G
I S— Ci(l*[?)
= r P
<A 05 F .. olop)
ER s
£ 00 F Co M 10g i e e T T T T
1;'~ Fomem OV log
O _os5F
& 1l
= IF
S 0F
| [
= -1F
s Lot TN | T | P ST | TN
oo 107 107! 100 10"

FIG. 6. Same as Fig. 5 but for Ay = 1. At variance with the

previous figure, we have that the coefficients include extra
logarithms [see Eq. (23)], which are shown separately.

Il//-l// (my/L s ¢)
2
mq/i ) (25)

—/dA)’gw <Mcosh(A}’gw)+COS(¢>)2

Moreover, when evaluated within the jet region, S (k,,. k)
generates

IJl/‘/sfll/(R’ my/J_v Ay’ ¢)

ey |
= Hal / dAy,S,(ky K, )O(A < RD).  (26)

Also in this case, we perform the harmonic expansion

Il//-l//(ml//JJ ¢)

=Y (m,,) +2 i: ¥ (m,.)cos(ng).  (27)
n=1

It is interesting to notice that these coefficients are non-
zero for all my, . In particular, we have residual contribu-

(y-w) Cg//“//)

tions in the small-m,,, limit, with C, — 2 and

C(l”' ) - —2, which is expected due to the singular

behavior of 1., at ¢ = x.

For completeness, Fig. 7 shows the exact dependence of
the coefficients on m,, ;. From this figure we understand
that C'*) is independent of m 1,» whereas CI"V)
Cg//-w)

and

are negligible when m,, 2 1.

4. Overall distribution

Combining the above derivations, we obtain the soft
gluon radiation contributions in the CO channel

2r —
[ .
[ s
3 lr o) N,
= I ~.
g (6-1) >~
= 0F=-=-( ——
L -
. —_ Cr' ) PR
S) L 2 /,,
F ,/
[ T
L L Tl
2 1 1 1l 1 1
A
< ot T
I o0F —_—
P [ -
= [ \'\.
g “2L N 1 Ll N
o100 1072 107! 10° 10!

FIG. 7. Dependence of the first coefficients of Eq. (27) with
respect to m,, | . Note that the coefficient C, does not vary with
m,, . Vertical dotted line corresponds to m,; = 0.4. Panels
follow the same logic as Fig. 3.

d3ky 9-(8) 12 5(2)
MMI 176 (q 1 + kg1)

aCA 2 .,S\' /u
= l

S e e A
—I—Ig(R,m,l,l,Ay,gb))} + mixing, (28)

for the gluon channel, and

d3kg |Aq |25 ( +kyp)
(27)2E, 4L Rl
C s Cpr-C 1
0523 F2|Ag |2[ 7t "I
27[ g1 |fh_| Cr u
CA 1 - M2 /I/l
+C_F<_ln1—M2/ +—I (R,ml',,J_,Ay,(ﬁ)
+ mixing, (29)

for the quark one. The first term of Egs. (28) and (29)
corresponds to the leading, double logarithmic behavior at
low g, which is the same as the CS case. This implies that
the soft gluon emission from the (massive) quarkonium
does not provide double logarithms, a conclusion in line
with other works [13,21,22,39-41]. The other logarithms
depend on the rapidities y; and y,,, where the sum y; + y,,
differs from zero due to the presence of the J/y mass. The
third term, /9 for gluons and /9 for quark, is the overall
azimuthal distribution. More specifically, we have

IQ(R’ my , Ay’ ¢) = Ij(Rv ¢) + Il//(my/Lv ¢)
1
+ E Il[/-j(ml[/J_v Ay7 2¢)

.
— EI-)]//I(Rs ml//l7 Ay7 ¢), (30)
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and

I9(R,my, Ay, ¢) = —L1,(R.$) + 1, (my, 1. ¢)

1
+ Ell//—j(mx/d_a Ayv 2¢)
1
_Eli,,[(R,mwl,Ay,gb). (31)

Note that they differ only for the prefactor of /;, namely the
azimuthal dependence associated with the jet found in
Eq. (5) The last three azimuthal distributions, namely
I ( my,, ¢) 2 1//1//( wls (,[7), IV/'j and ijft, are the
novel terms due to the production of a CO state, with each
I,,., generated from the corresponding S, (k. v). Again, we
expand them in terms of cos(n¢) harmonics according to
Following the expansion of each term discussed above, we
expand the overall distribution according to

1K, ¢) _2an

where K is a shorthand notation for the dependence on R,
m,,; and Ay.

cos(ng), (32)

C. Soft gluon emission and LDME evolution

In this section, we present more details regarding the
LDME mixing. This mixing is generated from the evolu-
tion of a lower Fock-state to another one with higher
quantum numbers, e.g., S — P. Being a characteristic of
quarkonia, this feature can be observed only in the
interference with soft gluons emitted from the cc pair
(Fig. 8.) In particular, if one includes states up to a relative
power v* in the NRQCD expansion, the contributions of the
evolution in J/y yields can only be observed in the 3P§8>
wave. In this case, the soft gluon emission can be decom-

CPPY _ 0P CP)

posed into two terms, namely A, '~ = Ay +A,7
with
FIG. 8. Soft gluon emission from the c¢ pair. We consider

%Pgd), while n’ = 3P<Jd/), n =8\ or n' = 35(1’”. The soft
gluon, which carries out the color-index k, is given in red and it
connects to both ¢ and c.

(3P(8)) . kl]/ . €i ( P(B))
Alfj = (igsf aar) k, -k, A,
P "€,
Ay, =14 g
( Vig, )k b

3 ) 369
X <\/;5dkA(() ] >+ddd/kAf) ' )>’ (33)

where d is the color of the ¢, k is the color of the soft gluon,
and the amplitudes Aj include the proper radial wave
functions. These two contributions do not interfere with
each other, due to the orthogonality of the J/y polarization
vector, € -kv, = 0. Moreover, the color structure of the

. . pl®
studied process cancels the interference between the Ag 4’ )

emission with either the incoming or outgoing partons.
Consequently, this mixing term contributes only to the self-
interference of soft gluons emitted by the c¢ via

|A1d P

R’ 2 a 360
— 9642 2|‘R' : (CF|A0‘ VP
1// 0
a,(les)) 2
+ Brl|A, * ) Sy(ky Ky ). (34)

with Br = (N? — 4)/4N ... Equation (34), summed over all
partons a = g, q, g, corresponds to the “mixing” term of
Eq. (11). Finally, upon integration over the phase space of
the emitted soft gluon, one gets

/ d’k,
(2”)32Eky
3401 3 §®)
@ 96(M$S”+B 45" ”P)
222 PMZ\(O,(8))) " (OsCSy))

—I':;t—y/(Rymy/J_’Aya¢)
2 9

a, 3P(8)
AL 260 (g, 1k, )

0,y rr o)

(35)

where we have taken into account the relation between the
radial functions and the LDME with the proper normaliza-
tion factors. Equation (35), which is in agreement with [37],
corresponds to the mixing term reported in Eq. (28), with
a = g, and Eq. (29), with a = q.

Finally, note that to get the contributions of the LDME
evolution to Eq. (36), we have performed the expansion in
harmonics of the azimuthal distribution and explicitly taken
the relation between the CO and CS gluonic channels

( (1) 3o(1)
4z Z 15 P \AO SR, while [A2C5)2 = 0.
D. Summary of one-loop results

Summarizing the above results, the differential cross
section including the soft gluon radiation in the correlation
limit is given by
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d4g(c>

~ [Se]

where a(g)’(c) (Gg-(@)’ with ¢ = 1, 8, represents the LO gluon
(quark) cross section [42], dQ = dy jdywdzﬁ 1d?g, the
phase space, and f,(x) is the gluon distribution. Note that
the quarks solely contribute to the CO channel, as well as
the LDME mixing, where for the dominant LDMEs
in J/y production we need to include the evolution from

the *S (lc) states, both CS and CO. We are considering the
case where y; = y,, = 0 for simplicity since this scenario
does not present additional, nondivergent logarithms.
Hence, in Eq. (36) we have that the first and third terms
correspond to the leading double logarithms, while the
second and fourth lines stand for the single logarithms.
Since the latter carry the azimuthal dependence, we have
already expanded them into harmonics, with the coeffi-
cients C2“) connected to those in the Fourier series of each
distribution. Therefore they depend on the jet size R, the
heavy quarkonium mass via m,, = M,/P, and the
rapidity difference Ay =y, —y;. Most importantly, these
coefficients depend crucially on the production channel
considered.

To illustrate these differences, we consider a typical
kinematic for future EIC measurements. We take R = 0.4
and m,, =0.26, that corresponds to k;; ~12 GeV.
Within this choice, the first three coefficients of the
Fourier expansion in Eq. (36) are given in Table I,
displaying a clear difference between CS and CO channels.

(1)

In particular, the coefficient C;’ is significantly positive

TABLE 1. First coefficients of the azimuthal correlation Fourier
expansions for the CS and CO mechanisms with R = 0.4 and
m,, | = 0.26. Note that the coefficients within the CS channel are
independent of k;, .

Mechanism cl cl cl
CS 0.89 2.61 0.95
CO gluon 2.45 —0.08 1.70
CO quark 1.96 -1.52 1.17
CO mix 0.50 -0.93 0.81

aSC A\ C W\C
o = éi|2x{ag( '£,(x) {mw +23 Y Rm, Ay = 0) cos(nqﬁ)}
P 23" (R my,. Ay =0) cos(nqﬁ)}
n=0
Py))

96 15 s (0
+5c<1+3 )og e
"M 8 )70 (0,05)

£ Y C (R Ay =0 cos<n¢>},
n=0

£o(2) > CHX(R.m,,, Ay = 0) cos(n¢)
n=0

(36)

[
due to the soft gluon radiation associated with the jet in the
final state. However, the soft gluon radiation associated

with heavy quark pair has an opposite sign. Thus, a proper
)

choice of m,, can reduce the magnitude of C(l8 when

compared to CED, while on the other hand ng) and Cél)

stay of more or less the same order. Beyond the m,, | used
in Table I, other values can also be considered, although
they might be not accessible at the EIC.

In Figs. 9 and 10 we present a more comprehensive
dependency of the first coefficients of the Fourier expan-
sion in Eq. (36) on both R and m,,, in the CO channel.
Within the CS channel, the coefficients only depend on R
and are therefore given as columns. Figure 9 corresponds to
the gluon channel [first line of Eq. (36)] while the Fig. 10 to
the quark one [second line of Eq. (36)]. Note that the
LDME evolution is directly related to /,,.,,, see Eq. (35), so
the comparison with the coefficients in the CS channel is
already understood from Figs. 3 (CS) and 7 (CO LDME
mix). By comparing the color shades in the different rows,
hence at fixed R, it is evident that predictions that include
the CO mechanism are significantly different from those
exclusively driven by the CS one. This holds for both
gluons and quarks, with the qualitative behaviors in the two
partonic channels being, in fact, the same. More specifi-

cally, we saw that in both cases the sign of the ng)
coefficient becomes opposite to that of C(ll) for a suffi-
ciently low m,; value. Of course, the specific m,, at
which this occurs can vary depending on both R and the
partonic channel considered, with quarks consistently
requiring higher m,, | values (which corresponds to lower
|7c>- | values) compared to gluons. Thus, depending on the
dominance of gluons over quarks or vice versa, we will
have the same features as those discussed in Fig. 11 but
seen at different values of \l:] 1|- In addition, also the
LDME mixing will not spoil this picture since, for R < 1
and independently from m,, |, C* has an opposite sign to

C(ll), while C'* and Cé” have the same sign.
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1) (8 1 (8 1 (8
Gl'r) (R Ay =0) (R V(R muL, Ay =0) CPR) YR mys, Ay =0)
1.0 1.0 5.00 10
18 5.25
.
ok 12 o 375 o 450
] 0o . 250 - 375
3.0 1.25 .
0.6 06 06F 3.00
3 24 000 &= -
18 195
04F 0.4 125 04F 1.50
L2 —2.50 0.75
0.6
02F 0.2 -3.75 0.2
00 0.00
—5.00
0.2 0.4 0.6 0.8 1.0 02 0.4 0.6 0.8 10 02 0.4 0.6 0.8 1.0
My MyL MyL
(a) (b) (©)

FIG. 9. Dependence of the first coefficients on the jet size R and the variable m,,, for CO production in the gluon channel and for
transverse production (Ay = 0): (a) Cy, (b) Cy, and (c) C,. A comparison with the CS channel, for which coefficients solely depend on
R, is given by the column on the left.

1 (8 (1 /(8 1 (8
'@ V(R myL, Ay =0) clir) YR myL Ay =0) ) R (R my, Ay =0)
10 1.0 5.00 1.0
18 5.25
s 42 ok 31 o 4.50
: 3.6 ' 250 ' 3.75
3.0 125 )
0.6+ 0.6 0.6+ 3.00
~ 24 &= 0.00 = .
18 _1.25
04F 5 0.4 12 04F 1.50
U.G —2.50 0.75
0.2 ' 0.2 —3.75 0.2
o0 0.00
. . . . —5.00 . . .
0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 10
My mMy1 My
(a) (b) (©)

FIG. 10. Same as Fig. 9 but for the coefficients occurring in the quark induced process.

III. ALL ORDER RESUMMATION AND PREDICTIONS FOR THE EIC

All order resummation is needed to make reliable predictions for the soft gluon radiation contributions. Following the
standard TMD framework, we have

d*o') o [dby
= [ (Joubinqu)

2 [ (i

050 (0CPY) [AR (1 o
e [ (Joublnqu)

%, (5.3, cos<n¢>)v~vz’“)<|5u>

% (0. cos<n¢>)v~vz~“><|5l|>

+5c‘8 o)

M? 8

sas YO | DL (st

192 Caty ) 21 .
7 B S (. ) costn) W™
1//

192/ 15 \Caay , o o -
gz (145 B ) A, Bl D costud) W™ 5.

) (37)
where

W (b L) = xfa(x. py)es""Pube), (38)
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with ch = (1), (2), mix. Note that in Eq. (37) we have
already included higher-order double logarithmic correc-
tions present also for the angular dependent term [31,32].
Although we have derived Eq. (37) at the one-loop order, it
holds also when next-order contributions are included. In
particular, real emissions will modify the coefficients of the
double- and/or single-logarithms included in W, while
virtual corrections apply to the hard factor o,,. A consistent
computation of all these next-order contributions in the
correlation limit is still lacking and, for this reason, we will
not include them in the following discussion. Note that, by
excluding them we are missing corrections of O(g? /k l)
which can affect the high ¢, part of the spectrum and not
the general result reported below. The Sudakov form factor
S(P,,b,) is separated into perturbative and nonperturba-
tive parts: S(PJ_, bJ_) = Spert(PJ_7 bJ_) -+ SNP(PJ_a bJ_) The
perturbative parts at one loop are defined as

( Sdpa,Cyf, 3
I
wo ST LK
SdPaCrl 53 Capate
R A el L R Ao A B
b*

while for the LDME evolution terms we have

S du? a,Cy [ §
Sgemlx — et N ln_ _ 2ﬂ0
pert }4%* /12 20T ’u2
192 15
208, )]

mix d//l a CF K 3 192 CA
ST = —— — == —LBpCIX| (40
pert /4}2)* //52 7 |:n'u2 2 M%, CF F ( )

whereﬂo =1 1/12—Nf/18 and,u;, :bg/bj_ with b() = ZCFE
and I'g being the Euler’s constant. Moreover, in Eq. (39) we
have already introduced the b -prescription [43], where
b, =1b,/\/1+ (b|/bn)* With b, = 1.5 GeV. For the
nonperturbative part, we have contributions driven by the
incoming parton and the outgoing jet and quarkonium. For
the first one, we employ the nonperturbative Sudakov
found for TMD quark distributions in Refs. [44,45] with
the appropriate Casimir scaling for gluons

P, b
Stp = {01063 +0.42In—In—=|,
QO b*
Ch
SNP - C SNP’ (41)
F

where Q3 = 2.4 GeV?. For the others, we assume that the
nonperturbative contribution associated with the jet is given

by Ski, = ¢<'b2, and the J/ y one by S\p = gib%. Overall,
we employ SG) = S, + SI%, for the CS mechanism and

114042-

kL] =12 GeV

1.0 0.200
— CSM V5, = 100 GeV F

N “Z =5 L
NRQCD 2Bl .
0.8 4 NRQCD w. LDME - mix R=04 [

0.6 4

0.4 4

{cos(@)}

0.2

F 0.000

FIG. 11. Averaged resummed azimuthal asymmetn'es for J/y
plus jet photoproduction at /s, =12 GeV
and jet size R = 0.4. The solid blue line is the CSM predlctions,
whereas for the NRQCD approach we have the red and purple
bands, where the latter includes the LDME evolution contribu-
tion. The bands are obtained by combining the results from
different LDMESs central values.

Se®) — ga, + S + 8Y, for the CO channel. We take
g'A = 0.225 GeV?, in line with [29,30], and ¢¥ = g},
upon the assumption that the CO final state generates a
nonperturbative form factor similar to that of the (gluon)
jet. Besides, we checked that the final azimuthal asymme-
tries do not depend significantly on these parameters, as
expected. From the above expressions, we find that the
azimuthal asymmetries of cos(¢) and cos(2¢) are linearly
proportional to the respective C; and C, coefficients
which are different between the CS and CO channels.
Therefore, they can be used to probe these two production
mechanisms.

As an example, in Fig. 11, we show the numerical results
for (cos(¢)) and (cos(2¢)) as functions of ¢, for realistic
kinematics accessible at the EIC, with \/Eyp =100 GeV,

R =04, and |7<} 1| = 12 GeV. For the parton distribution
function, we have employed the MSHT20 LO set [46].
Predictions are shown for both the color-singlet model
(CSM) and NRQCD approach, with the latter strongly
depending on the relative fraction of the CS and total CO

contributions. In particular we have included the following

CO channels: S( ), 3 , and P Fock states in both

gluon and quark channels The bands of the NRQCD
predictions are constructed by combining several central
values of the associated LDMEs from different global
analyses [47-51]; among them, we remark that solely [47]
agrees with HERA photoproduction data. The red band is
obtained by neglecting the LDME evolution contributions,
with the CO azimuthal distribution thence independent of
the CO Fock state. In this scenario, the result is mainly
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driven by the gluon channel. Upon the inclusion of the
LDME evolution, which is found non-negligible only
for the quark channel for the kinematics explored in
Fig. 11, the band size increases significantly. This large
uncertainty offers, with precise enough data, the additional
opportunity to utilize these observables in LDME fits to
greatly constrain their values. Both NRQCD bands are
mostly dominated by the CO mechanism, and we expect
that the inclusion of higher-order states (in v) does not
significantly affect the result shown in Fig. 11. We also
expect that the following conclusions, based on Fig. 11,
apply to other kinematic regions. Thus, we believe that our
findings are broader than the specific scenario dis-
cussed here.

The resummed form of (cos(n¢)) is exactly O at g, = 0,
and at small ¢, they scale as (cos(n¢)) « ¢'| [32]. At large
q |, where the hard gluon radiation dominates and there is
no preferred direction, (cos(n¢)) must decrease as func-
tions of ¢ , . This will modify the behavior of both (cos(¢))
and (cos(2¢)) asymmetries at large ¢, . Besides this, the
(cos(¢)) and (cos(2¢))) predictions present a clear differ-
ence. The former highly depends on the model considered,
with the NRQCD being more suppressed compared to the
CSM. We see that the NRQCD suppression holds also upon
inclusion of the LDME evolution, but in addition we
observed that certain combinations of LDMEs can also
lead to a change of sign compared to the CSM. On the other
hand, the CSM and NRQCD outcomes are comparable, and
in general non-negligible, for (cos(2¢)).

As demonstrated, such differences offer a unique oppor-
tunity to determine the underlying quarkonium production
mechanism. In particular, a suppressed (cos(¢)) with a
sizable (cos(2¢)) implies that contributions driven by the
CO channel are important at low-g, and one must then
include them, e.g., by means of the NRQCD factorization.
Once asserted, data relative to these observables can be
incorporated in global fits to further constrain LDME
values. In addition, one can also verify the consistencies
with different observables, which might be an indication of
the presence of factorization-breaking effects.

IV. CONCLUSIONS

In summary, we have demonstrated that the soft gluon
radiation leads to significantly different azimuthal angular
correlations between the CS and CO mechanisms in the
J/w plus jet photoproduction process at the future EIC. We
have shown that such differences hold for both gluon and
quark channels. This directly affects azimuthal asymmetry
predictions within the CSM and the NRQCD approach,
where the latter presents a soft dependence on the LDME.
We also expect that including higher Fock-states’ contri-
butions will not modify the above conclusion. Thus, we
consider these observables as the stems to disentangle these
two production mechanisms and investigate the absence of
NRQCD factorization-breaking effects at small ¢ | . We also

expect that similar conclusions can be drawn for other
experiments as well, like in hadronic processes at the LHC.
Moreover, cos(2¢) has been proposed to study the linearly
polarized gluon distribution in the electroproduction of J /y
plus jet at the EIC. We expect that the soft gluon radiation
will lead to sizable contributions to cos(2¢) asymmetry in
this process as well, with a behavior similar to that shown in
Fig. 11 for photoproduction. Understanding the soft gluon
radiation will be a crucial step to unambiguously determine
the gluon tomography of linearly polarized distribution
from this measurement. We will explore all these physics,
including higher-order perturbative and power corrections,
in the future.
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APPENDIX: AZIMUTHAL ASYMMETRIES IN
THE CS AND CO CHANNELS SEPARATELY

In this appendix we present direct comparisons between
the CS and CO mechanisms, providing more insights on the
results shown in Fig. 11.

In addition to the asymmetries, in Fig. 12 we present the
normalized differential cross section within both the CS
and CO channels and for the same kinematics considered
for Fig. 11. The CO channel has a much wider distribution
as compared to the CS one as a result of the final state gluon
radiation associated with the heavy quark pair, which leads
to a significant difference in the associated C(()C’) coefficients
(see Table I). The bands in the CO channel are constructed
by combining the central values of several LDME sets (see
also Fig. 11). As expected, this uncertainty increases once
the contribution of the LDME evolution is taken into
account. We point out that for the kinematics discussed
here such contribution mostly arises from the quark
channel, while we have found it negligible for the gluon
channel. Moreover, it is worth mentioning that Fig. 12 is
obtained for y; = y,, = 0 and different rapidities values can
slightly modify the picture, e.g., less broadened distribu-
tions for y; = 1. Nonetheless, other choices of y; and y,, do
not spoil the main conclusion of Fig. 12, namely that we
identify different shapes of the normalized differential cross
sections within the CS and CO mechanisms.

Moving to the asymmetries, in Fig. 13 we present
(cos(¢p)) and (cos(2¢)) predictions in the CS and CO
channels as functions of ¢, . We consider k;; = 12 GeV as
done in Fig. 11. While the CS channel is exclusively driven
by gluons, in the CO one we have the interplay between
quarks and gluons. If one does not include the LDME
mixing, the quark contribution (at k;; =12 GeV) is
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K| =12 GeV
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CcO
CO w. LDME - mix

2= §

V5, = 100 GeV

1 [GeV]

FIG. 12. Normalized differential cross section of isotropic J/y
plus jet photoproduction at /s,, = 100 GeV in a frame where

the azimuthal angle of p L is zero and y; =y, =0. We
considered two values of \I_g, 1|, while R = 0.4. Solid cyan line
corresponds to the CS channel. Orange and pink bands corre-

spond to the CO one, with the latter including the contribution
from the LDME evolution.

negligible, causing a suppression of the dependence on
the LDME choice. Consequently, the variation observed in
the full NRQCD result is mostly due to the significance
of the CO mechanism with respect to the CS one. On the
other hand, upon the inclusion of the LDME evolution, the
quark channel becomes more significant, and the

Fj1| = 12 GeV
1.0 0.25
]1]— Cs
4 co
0.8 4 CO w. LDME - mix

r 0.20

0.6 4
1 r 0.15

0.4 4

(cos(@))

_F o010

(cos(26))

0.2 4

] F 0.05
0.0 f=az

02 ] F 0.00

—0.4 T T T T T T T T —0.05

1 [GeV]

FIG. 13. Averaged azimuthal asymmetries for J/y plus jet
photoproduction at +/s,, = 100 GeV and k;, | = 12 GeV, ob-
tained within the CS (solid cyan line) and CO (orange and pink
bands) mechanisms. Jet size is R = 0.4.

uncertainty band driven by the choice of the LDME set
opens up. Not that the magnitude of the (cos(¢)) asymmetry
in the CO channel is always lower than the CS case, while a
change of sign (especially upon the inclusion of the LDME
evolution) might be present. At variance, (cos(¢)) predic-
tions employing the two mechanisms are always compa-
rable to each other, and they undoubtedly agree in sign.
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