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Azimuthal angular correlation of J=ψ plus jet production
at the electron-ion collider

Luca Maxia 1,* and Feng Yuan 2,†

1Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands

2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 8 March 2024; accepted 29 November 2024; published 30 December 2024)

By investigating the soft gluon radiation in the J=ψ plus jet photoproduction at the electron-ion collider
(EIC), we demonstrate that the azimuthal angular correlations between the leading jet and heavy
quarkonium provide a unique probe to the production mechanism of the latter. In particular, a significant
cosðϕÞ asymmetry is found for the color-singlet channel, whereas it vanishes or has an opposite sign for
color-octet production, depending on the jet transverse momentum. Numerical results of cosðϕÞ and
cosð2ϕÞ asymmetries employing both the color-singlet model and the nonrelativistic QCD approach are
presented for typical kinematics at the future EIC.

DOI: 10.1103/PhysRevD.110.114042

I. INTRODUCTION

In recent years, heavy quarkonium production in various
inclusive processes has attracted great interest as a way to
probe gluon distributions both in initial (nucleon tomog-
raphy) and final (fragmentation functions) states [1–17].
Among them, Refs. [10,12] have studied the azimuthal
angular correlation in semi-inclusive DIS between J=ψ and
leading jet to probe the so-called linearly polarized gluon
distribution. In this paper, we will investigate the dominant
contributions from the soft gluon radiations and demon-
strate that azimuthal correlations can also provide a unique
opportunity to disentangle between the color-singlet (CS)
and color-octet (CO) mechanisms.
In the nonrelativistic QCD (NRQCD) [18] approach, the

heavy-quark pair forms a Fock state specified by

n ¼ 2Sþ1LðcÞ
J , with S denoting its spin, L the orbital angular

momentum, J the total angular momentum and c its color.
Note that, within this framework, the pair can couple either
as a CS or CO state. Therefore, comprehending the
significance of the CS and CO contributions is crucial.
Although great progress has been made in understanding
heavy quarkonium production in hadronic collisions (for
recent reviews see [19,20]), challenges remain to describe
quarkonium formation. For instance, there is no formal

proof of the validity of the NRQCD approach in the
small transverse momentum region, and only recently
works that address this issue begun to emerge [13,21–23].
Moreover, in [24] it has been shown that including the next-
order contributions of the CS channel greatly improves
the agreement of the theoretical prediction with HERA
data [25], which might be an indication that the CO
contributions are overestimated. In the literature (see,
e.g., [1,5,6,8,10,26–28]) it has already been vastly dis-
cussed the opportunities of future experiments at the
electron-ion collider (EIC) to provide additional informa-
tion on the production mechanism through cross section
and/or polarization measurements. Here, we propose an
original and innovative approach to disentangle the CS and
CO mechanisms at the EIC and test the significance of CO
contributions (at least in the small transverse momentum
region). More specifically, we will demonstrate how
azimuthal angular correlations in J=ψ plus jet1 photo-
production at the EIC offer a unique probe of the under-
lying production mechanism. We will focus on the
correlation limit, i.e., the transverse momentum of indi-
vidual particles is much larger than the total transverse
momentum. Therefore, by combining the transverse
momenta of the J=ψ (kψ⊥) and the jet (kj⊥), we can

identify two scales. The first one is given by P⃗⊥ ¼ k⃗ψ⊥−k⃗j⊥
2

,

while the second by q⃗⊥ ¼ k⃗ψ⊥ þ k⃗j⊥, with jq⃗⊥j ≪ jP⃗⊥j.
Hence, according to this limit, the heavy quarkonium and
jet are mainly produced back-to-back in the transverse
plane (see Fig. 1). An imbalance between the two final-state
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1Reconstruction of the jet in the final state can be achieved by
applying the anti-kT algorithm.

PHYSICAL REVIEW D 110, 114042 (2024)

2470-0010=2024=110(11)=114042(14) 114042-1 Published by the American Physical Society

https://orcid.org/0000-0003-0647-1033
https://orcid.org/0000-0001-9979-3853
https://ror.org/012p63287
https://ror.org/02jbv0t02
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.114042&domain=pdf&date_stamp=2024-12-30
https://doi.org/10.1103/PhysRevD.110.114042
https://doi.org/10.1103/PhysRevD.110.114042
https://doi.org/10.1103/PhysRevD.110.114042
https://doi.org/10.1103/PhysRevD.110.114042
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


particles with nonzero jq⃗⊥j can be generated by high-order
perturbative corrections and from the intrinsic transverse
momentum of the incoming parton. We identify this
imbalance with the angle ϕ, namely the difference between
the azimuthal angles of q⃗⊥ and k⃗ψ⊥, where we can

approximate the latter as k⃗ψ⊥ ≈ P⃗⊥ within the correla-
tion limit.
Moreover, we remark that in this limit such azimuthal

imbalance is mostly generated from the soft/collinear gluon
radiations from perturbative diagrams (see for instance
[29,30]). This contribution, denoted by kg⊥ in Fig. 1, tends
to align with the jet direction at low q⊥, which leads to
significant cosðnϕÞ asymmetries. Detailed examples have
been shown for vector boson (photon/Z/Higgs) plus jet
production in pp collisions [31,32] and for lepton plus
jet [29] and dijet [30] productions in ep collisions. In the
case of quarkonium productions, azimuthal distributions
like the cosðϕÞ and cosð2ϕÞ can also be exploited to unravel
the production mechanism. Such findings can then be
applied to electroproduction to investigate gluon distribu-
tions (e.g., linearly polarized gluons) in nucleons and
nuclei.
The remainder of the paper is the following. In Sec. II we

present the one loop fixed-order calculation. In Sec. II Awe
report the derivation in the CS channel, whereas the CO is
given in Sec. II B. For the latter, we explicitly consider
gluon and quark contributions, and discuss the importance
of the LDME evolution. In Sec. III we present the
resummed cross section at one loop and give numerical
predictions at fixed kinematics for EIC. Conclusions are
drawn in Sec. IV. In addition, our paper includes the
Appendix, where we present the resummed asymmetries
and the normalized cross section in the CS and CO
channels separately.

II. SOFT GLUON RADIATION AT ONE LOOP

In this section we discuss the implication of azimuthal
correlation between the J=ψ and jet for photoproduction at
the future EIC, γp → J=ψ þ jetþ X. The leading-order
(LO) NRQCD contribution from the partonic process is
given by

γðp1Þ þ aðp2Þ → ½QQ̄�ðcÞðkψÞ þ aðkjÞ; ð1Þ

with a ¼ g when the heavy-quark pair QQ̄ is produced in a
CS (c ¼ 1) configuration and a ¼ g; q; q̄ in the CO (c ¼ 8)
one. Moreover, we have indicated the momentum of each
particle in parentheses. At this order, the J=ψ and jet are
back-to-back in the transverse plane, so that q⊥ ¼ 0.
However, at higher orders, small nonzero q⊥ originates
from parton intrinsic transverse momenta and soft gluon
radiation. In the following, we will derive the LO soft gluon
radiation contribution (Fig. 2) and the associated azimuthal
angular asymmetries, whereas the collinear gluon radiation
factorizes into the TMD gluon distributions.
The major difference between CS and CO channels is

that the soft gluon radiation associated with the heavy
quark pair only contributes to the latter. This occurs due to
cancellations between the emissions from the heavy quark
and antiquark when the pair is in a CS state. This difference
has significant implications for the azimuthal asymmetries,
as we will discuss in the following.
We first present the results of the soft gluon radiation at

fixed order, while we will present the resummed form in
Sec. III.

A. Color-singlet channel

Starting with the CS channel, by adding Figs. 2(a) and
2(b) we obtain the amplitude squared (averaged over the
color and spin of incoming particles) for the soft gluon
radiation

jAð1Þ
1 j2 ¼ g2sCAjAg;ð1Þ

0 j2Sgðp2; kjÞ; ð2Þ

where Ag;ð1Þ
0 is the LO amplitude and Sgðva; vbÞ is a

shorthand notation for

Sgðva; vbÞ ¼
2ðva · vbÞ

ðva · kgÞðvb · kgÞ
: ð3Þ

More specifically,

FIG. 1. Kinematic correlation between the leading jet and
heavy quarkonium as viewed in the transverse plane. Here q⊥
(the total outgoing transverse momentum) is small compared to
individual transverse momenta.

(a) (b) (c)

FIG. 2. Soft gluon radiation in the J=ψ plus jet photoproduction
process from: (a) incoming parton, (b) outgoing parton, (c)
outgoing J=ψ . The parton, either a quark, antiquark or gluon,
is given as a dashed line in the figure. All three diagrams
contribute to the CO channel, whereas only the first two, (a) and
(b), are relevant for the CS one.
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Sgðp2; kjÞ ¼
2ðp2 · kjÞ

ðp2 · kgÞðkj · kgÞ

¼ 2

jk⃗g⊥j2
eΔyg

coshðΔygÞ − cosðΔϕgÞ

≈
2

jk⃗g⊥j2
�
1þ sinhðΔygÞ

coshðΔygÞ − cosðϕÞ

þ cosðϕÞ
coshðΔygÞ − cosðϕÞ

�
; ð4Þ

where we have already separated Sgðp2; k2Þ into three
contributions for convenience later. We have defined
Δyg ¼ yg − yj, namely the difference between the emitted
soft gluon and jet rapidities, while the approximation sign
is due to the relation between Δϕg and ϕ, Δϕg ≈ ϕ. We
need to integrate over the phase space of the emitted soft
gluon to derive the leading contribution,

Z
d3kg

ð2πÞ32Ekg

jAð1Þ
1 j2δð2Þðq⊥ þ kg⊥Þ

¼ αsCA

2π2jq⃗⊥j2
jAð1Þ

0 j2
�
ln

ŝ
jq⃗⊥j2

þ ln
t̂
û
þ IjðR;ϕÞ

�
; ð5Þ

where ŝ¼ðp1þp2Þ2, t̂ ¼ ðp2 − kjÞ2, and û ¼ ðp1 − kjÞ2.
The first term in the bracket of Eq. (6) leads to the double-
logarithm. The second one, being an odd function of Δyg,
receives contributions only from the boundaries of the
integration region,which causes thepresenceof the additional
logarithmic term, lnðt̂=ûÞ. The last term inEq. (6) contains the
jet contribution to azimuthal angular asymmetries.
Although its integral was relevant, and therefore com-

puted, in other works [29,30,33–36], for completeness we
report the calculation in the following. To better analyze the
physical content of this derivation, we can divide Sgðp2; k2Þ
into three contributions as follows

Sgðp2; kjÞ ¼
2ðp2 · kjÞ

ðp2 · kgÞðkj · kgÞ

¼ 2

jk⃗g⊥j2
eΔyg

coshðΔygÞ − cosðΔϕgÞ

≈
2

jk⃗g⊥j2
�
1þ sinhðΔygÞ

coshðΔygÞ − cosðϕÞ

þ cosðϕÞ
coshðΔygÞ − cosðϕÞ

�
; ð6Þ

where we have defined Δyg ¼ yg − yj, namely the differ-
ence between the emitted soft gluon and jet rapidities.

The first term in the bracket of Eq. (6) leads to the double-
logarithm (in bT space). The second one, being an odd
function of Δyg, receives contributions only from the
boundaries of the integration region, causing the presence
of the additional logarithmic term, lnðt̂=ûÞ, which
depends on the jet rapidity. The last term in Eq. (6) contains
the jet contribution to azimuthal angular asymmetries. The
third term, Ij, is one of the subjects of this work, being
azimuthal distribution that arises from the soft gluon
radiation. As a result of the removal of collinear divergences
already included within the jet function, Ij depends on the jet
size R.
In particular,

IjðR;ϕÞ ¼
Z

dΔyg
cosðϕÞ

coshðΔygÞ − cosðϕÞ

−
jk⃗g⊥j2
2

Z
dΔygSgðp2; kjÞΘðΔkgkj < R2Þ

¼
Z

dΔyg
cosðϕÞ

coshðΔygÞ − cosðϕÞΘðΔkjkg > R2Þ

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ϕ2

q
; ð7Þ

where ΘðΔkjkg ≶ R2Þ implies that the integration is
restricted inside (<) or outside (>) the rapidity region
occupied by the jet cone, namely

jΔygj >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ϕ2

q
: ð8Þ

To further investigate this distribution, we expand it in a
Fourier series according to

IjðR;ϕÞ ¼ CðjÞ
0 ðRÞ þ 2

X∞
n¼1

CðjÞ
n ðRÞ cosðnϕÞ: ð9Þ

For a general R, the Fourier expansion of IjðR;ϕÞ is
manageable only via computational methods. However, the
analytical evaluation of this expansion within the small-R
limit is possible, giving

IjðR;ϕÞ ¼ ln
1

R2
þ 2 cosðϕÞ

�
ln

1

R2
þ 2 lnð4Þ − 2

�

þ 2 cosð2ϕÞ
�
ln

1

R2
− 1

�
þ � � � : ð10Þ

In Fig. 3, we show how the first three coefficients of the
Fourier expansion behave with respect to R. From this
figure, we conclude that the approximation used in Eq. (10)
is reasonably adequate for R < 0.4. Moreover, in line with
previous works [29,30,33–36], we find that the soft gluon
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radiation associated with the jet leads to a dominant cosðϕÞ
asymmetry.

B. Color-octet channel

At variance with the CS case, when the pair forms a CO
state all diagrams in Fig. 2 are relevant. While it is
straightforward to evaluate the soft gluon emission from
the first two diagrams and prove that it does not depend on
the CO Fock state, it is worthwhile to elaborate more on the
last one [Fig. 2(c)], which corresponds to the soft gluon
radiation from the heavy-quark pair itself. We can separate
this last contribution in two terms: one that is also indepen-
dent of the CO Fock state and the other that mixes S- and
P-wave due to the LDME evolution [13,21,23,37,38]
(higher states are involved too, but suppressed according
to the velocity expansion of NRQCD). The former is similar
to the result obtained for the soft gluon radiation from a
gluon jet in the final state [34], with the only difference
originating from the gluon on-shell condition, k2 ¼ 0 for jets
and k2 ¼ M2

V ≈ 4M2
Q for quarkonia. The second contribu-

tion occurs via the emission of soft gluons of order Mv,
where v is the relative velocity of the heavy-quark pair. Since
the soft gluons considered here have momenta of order q⊥
(which can be greater than Mv), one might expect a
suppression of this contribution. In the next subsection,
we will show that the LDME evolution actually plays a
significant role in the predictions of the asymmetries. Note
that, momentarily, we will keep these Fock-state dependent
contributions implicit, referring to them as “mixing.” More
details will be provided in Sec. II C.
With this in mind, we can combine the soft gluon

radiations from the initial and final state gluons [Figs. 2(a)
and 2(c)], and the averaged CO amplitude squared is
summarized as follows

jAð8Þ
1 j2 ¼ g2sCA

�
jAg;ð8Þ

0 j2
�
Sgðp2; kjÞ þ

1

2

�
Sgðp2; kψÞ

− Sgðkψ ; kψÞ þ Sgðkj; kψ Þ − Sgðp2; kjÞ
	�

þ
X
q

jAq;ð8Þ
0 j2

�
CF

CA
Sgðp2; kjÞ þ

1

2

�
Sgðp2; kψ Þ

− Sgðkψ ; kψÞ þ Sgðkj; kψ Þ − Sgðp2; kjÞ
	�


þmixing; ð11Þ
where we have taken into account the contributions from

both gluon and quark channels and Ag;ð8Þ
0 (Aq;ð8Þ

0 ) repre-
sents the LO gluon (quark) amplitude. The relative impor-
tance depends on the kinematics [16]. Note that the first
term of Eq. (11) is equivalent to that in Eq. (2) for the CS
case and, therefore, is a contribution purely driven by the
gluon jet, whereas the corresponding term in the quark
sector differs by a Casimir scaling factor. On the other
hand, all the other terms gathered in the curved parentheses
are associated with the J=ψ and always proportional to CA.
Now, as before, we need to carry out the integration over
the phase space of the emitted soft gluon. We discuss the
integral of each (new) Sg term separately, while the overall
contribution is given at the end of this section.

1. Integral of Sgðp2; kψÞ
Similarly to Sgðp2; kjÞ, we divide Sgðp2; kψ Þ in the

following three terms

Sgðp2; kψÞ ¼
2ðp2 · kψÞ

ðp2 · kgÞðkψ · kgÞ

¼ 2

jk⃗g⊥j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

eΔygψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔygψÞ− cosðΔϕgψÞ

≈
2

jk⃗g⊥j2

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

sinhðΔygψ Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔygψ Þ þ cosðϕÞ

−
cosðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2
ψ⊥

q
coshðΔygψ Þ þ cosðϕÞ

1
CA; ð12Þ

where we have defined Δygψ ¼ yg − yψ , namely the differ-
ence between the emitted soft gluon and J=ψ rapidities, and
mψ⊥ ¼ Mψ=jP⃗⊥j, with Mψ being the J=ψ mass. Moreover
Δϕgψ ¼ ϕg − ϕψ ¼ ϕg in a frame where ϕψ ¼ 0. As for
Eq. (6), the first term in the bracket of Eq. (12) leads to the
double-logarithm while the second one receives contribu-
tions only from the boundaries of the integration region,

providing the logarithms: ln û
t̂ þ ln 1−M2

ψ=û
1−M2

ψ=t̂
. These are once

FIG. 3. Dependence of the first coefficients of Eq. (9) with
respect to R. In the upper panel we show both the exact result
obtained from a numerical computation (full color) and the
approximated one given in Eq. (10) (softer color). In the lower
panel, we present the difference between the two. The vertical
dotted line corresponds to R ¼ 0.4, beyond which the approxi-
mation fails.
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again dependent on the rapidities, but in this case both yj
and yψ . The last term in Eq. (12) contains part of the J=ψ
contribution to azimuthal angular asymmetries.
We identify this angular distribution as

Iψ-pðmψ⊥;φÞ

¼
Z

dΔygψ

2
64− cosðφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þm2
ψ⊥

q
coshðΔygψÞþcosðφÞ

3
75 ð13Þ

Note that the presence of the mass in the denominator acts
as a regulator, and therefore Iψ-p is continuous for all values
of ϕ. Moreover, when evaluated within the jet rapidity
region, Eq. (12) leads to

Ijetψ-pðR;mψ⊥;Δy;ϕÞ

¼ jk⃗g⊥j2
2

Z
dΔygSgðp2; kψÞΘðΔkgkj < R2Þ; ð14Þ

which not only depends on both parameters R andmψ⊥, but
also on the rapidity difference Δy ¼ yψ − yj between the
J=ψ (yψ ) and the leading jet (yj). The distribution in
Eq. (13) can be expanded in the Fourier series

Iψ-pðmψ⊥;φÞ

¼ Cðψ-pÞ
0 ðmψ⊥Þ þ 2

X∞
n¼1

Cðψ-pÞ
n ðmψ⊥Þ cosðnφÞ; ð15Þ

where the coefficients can be analytically evaluated only in
the small-mψ⊥ limit, for which

Iψ-pðmψ⊥;φÞ ¼ ln
1

m2
ψ⊥

− 2 cosðφÞ
�
ln

1

m2
ψ⊥

þ 2 lnð4Þ − 2

�

þ 2 cosð2φÞ
�
ln

1

m2
ψ⊥

− 1

�
þ � � � : ð16Þ

Figure 4 shows the dependence of the first three
coefficients with respect to mψ⊥, together with the reli-
ability of the approximation introduced in Eq. (16).

2. Integral of Sgðkj; kψÞ
Compared to the previous functions, deriving the azi-

muthal distribution arising from Sgðkj; kψÞ requires some
extra care. Firstly, we recast the function as follows

Sgðkj; kψÞ ¼
2ðkj · kψÞ

ðkj · kgÞðkψ · kgÞ
≈

2

jk⃗g⊥j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔyÞ þ 1

½coshðΔygÞ − cosðϕÞ�½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔygψ Þ þ cosðϕÞ�

¼ 2

jk⃗g⊥j2
�

cosðϕÞ
coshðΔygÞ − cosðϕÞ −

cosðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔygψ Þ þ cosðϕÞ

þ sinhðΔygÞ
coshðΔygÞ − cosðϕÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

sinhðΔygψÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔygψÞ þ cosðϕÞ
þ Ŝgðkj; kψ Þ

�
; ð17Þ

where we remark thatΔy ¼ yψ − yj,Δyg ¼ yg − yj, andΔygψ ¼ yj − yψ , with yj, yψ , and yg being respectively the jet, J=ψ
and emitted soft gluon rapidities. The first four terms of Eq. (17) coincide with the last terms of Eqs. (6) and (12),
respectively, and thus remove the double counting in the azimuthal dependences. We identify the azimuthal distribution
driven by the first two terms as

Iψ-jðR;mψ⊥;ϕÞ ¼
Z

dyg

0
B@ cosðϕÞ
coshðΔygÞ − cosðϕÞ −

cosðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔygψÞ þ cosðϕÞ

1
CA; ð18Þ

independent of Δy. The last term of Eq. (17), which is explicitly given by

FIG. 4. Dependence of the first coefficients of Eq. (15) with
respect to mψ⊥. The vertical dotted line corresponds to
mψ⊥ ¼ 0.4. Panels follow the same logic as Fig. 3.
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Ŝgðkj; kψÞ ¼
1

½coshðΔygÞ − cosðϕÞ�
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −m2
ψ⊥

q
coshðΔygψÞ þ cosðϕÞ

i
�
ðcoshðΔygÞ − sinhðΔygÞÞ cosðϕÞ − cosð2ϕÞ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

ψ⊥
q

ðcoshðΔyÞ − coshðΔygψÞðsinhðΔygÞ þ cosðϕÞÞ − sinhðΔygψÞðsinhðΔygÞ − cosðϕÞÞÞ
�
; ð19Þ

produces the unique azimuthal distribution of Sgðkj; kψ Þ

Iψ-jðmψ⊥;Δy;ϕÞ ¼
Z

dygŜgðkj; kψ Þ: ð20Þ

Moreover, Ŝgðkj; kψÞ provides another azimuthal distribu-
tion when evaluated within the jet region

Ijetψ-jðR;mψ⊥;Δy;ϕÞ

¼ jk⃗g⊥j2
2

Z
dΔygŜgðkj; kψÞΘðΔkjkψ < R2Þ: ð21Þ

Among these three distributions, Eq. (20) is the most
interesting. It does not depend on the jet variable R, since
the integration of Ŝgðkj; kψÞ is continuous at ϕ ¼ 0.
However, it presents an additional dependence on the
rapidity difference Δy, which affects its harmonic expan-
sion coefficients, given by

Iψ-jðmψ⊥;Δy;ϕÞ¼Cðψ-jÞ
0 ðmψ⊥;ΔyÞ

þ2
X∞
n¼1

Cðψ-pÞ
n ðmψ⊥;ΔyÞcosðnϕÞ: ð22Þ

In particular, depending on the value of Δy we can have
additional logarithms of û=t̂ within the coefficients.
Moreover, the closer the two outgoing particles are to
the production axis (namely jΔyj → ∞), the less relevant
the angular distribution in Iψ−jðmψ⊥;Δy;ϕÞ becomes, with
its sole contribution being restricted to a logarithm of û=t̂.
To see this effect, we consider the analytical expansion in
the small-mψ⊥ limit for two values of Δy, namely Δy ¼ 0

and Δy ¼ 1

Iψ-jðmψ⊥;Δy¼0;ϕÞ¼2 lnð4Þ−4cosð2ϕÞðlnð4Þ−1Þþ���
ð23aÞ

and

Iψ-jðmψ⊥;Δy ¼ 1;ϕÞ

¼ 2

�
2ðlnð1þ eÞ − 1Þ − ln

û
t̂
−
1

2
ln
1 −M2

ψ=û

1 −M2
ψ=t̂

�

−
4

e
cosð2ϕÞ

�
ð1þ e2Þðlnð1þ eÞ − 1Þ

þ e − ln
û
t̂
−
1

2
ln
1 −M2

ψ=û

1 −M2
ψ=t̂

�
þ…: ð23bÞ

Note that at small-mψ⊥ the distribution only contributes
to the even modes of the Fourier expansion. The complete
dependence of the first coefficients of Eq. (22) for the same
values of Δy is shown in Figs. 5 and 6, where once again it
is shown that the approximation in Eq. (23) holds up
to mψ⊥ ∼ 0.4.

3. Integral of Sgðkψ ; kψÞ
The function Sgðkψ ; kψ Þ, nonzero only for massive

particles, is given by

Sgðkψ ; kψÞ ≈
2

jk⃗2g⊥j2
m2

ψ⊥� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔygψÞ þ cosðϕÞ
�
2
:

ð24Þ

The azimuthal distribution arising from Sgðkψ ; kψÞ is
identify by

FIG. 5. Dependence of the first coefficients of Eq. (22) with
respect to mψ⊥ and for Δy ¼ 0. The coefficient C1, being zero, is
not shown here. Vertical dotted line corresponds to mψ⊥ ¼ 0.4.
Panels follow the same logic as Fig. 3.
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Iψ-ψ ðmψ⊥;ϕÞ

¼
Z

dΔygψ
m2

ψ⊥� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

ψ⊥
q

coshðΔygψÞþcosðϕÞ
�
2
; ð25Þ

Moreover, when evaluated within the jet region, Sgðkψ ; kψÞ
generates

Ijetψ-ψðR;mψ⊥;Δy;ϕÞ

¼ jk⃗g⊥j2
2

Z
dΔygSgðkψ ; kψÞΘðΔkgkj < R2Þ: ð26Þ

Also in this case, we perform the harmonic expansion

Iψ-ψ ðmψ⊥;ϕÞ

¼ Cðψ−ψÞ
0 ðmψ⊥Þ þ 2

X∞
n¼1

Cðψ−ψÞ
n ðmψ⊥Þ cosðnϕÞ: ð27Þ

It is interesting to notice that these coefficients are non-
zero for all mψ⊥. In particular, we have residual contribu-

tions in the small-mψ⊥ limit, with Cðψ-ψÞ
0 ; Cðψ-ψÞ

2 → 2 and

Cðψ-ψÞ
1 → −2, which is expected due to the singular

behavior of Iψ-ψ at ϕ ¼ π.
For completeness, Fig. 7 shows the exact dependence of

the coefficients on mψ⊥. From this figure we understand

that Cðψ-ψÞ
0 is independent of m⊥ψ , whereas Cðψ-ψÞ

1 and

Cðψ-ψÞ
2 are negligible when m⊥ψ ≳ 1.

4. Overall distribution

Combining the above derivations, we obtain the soft
gluon radiation contributions in the CO channel

Z
d3kg

ð2πÞ32Ekg

jAg;ð8Þ
1 j2δð2Þðq⊥ þ kg⊥Þ

¼ αsCA

2π2jq⃗⊥j2
jAg;ð8Þ

0 j2
�
ln

ŝ
jq⃗⊥j2

þ 1

2
ln
1 −M2

ψ=û

1 −M2
ψ=t̂

þ IgðR;mψ⊥;Δy;ϕÞÞ
�
þmixing; ð28Þ

for the gluon channel, and

Z
d3kg

ð2πÞ32Ekg

jAq;ð8Þ
1 j2δð2Þðq⊥ þ kg⊥Þ

¼ αsCF

2π2jq⃗⊥j2
jAq;ð8Þ

0 j2
�
ln

ŝ
jq⃗⊥j2

þ CF − CA

CF
ln

t̂
û

þ CA

CF

�
1

2
ln
1 −M2

ψ=û

1 −M2
ψ=t̂

þ CA

CF
IqðR;mψ⊥;Δy;ϕÞ

��

þmixing; ð29Þ

for the quark one. The first term of Eqs. (28) and (29)
corresponds to the leading, double logarithmic behavior at
low q⊥, which is the same as the CS case. This implies that
the soft gluon emission from the (massive) quarkonium
does not provide double logarithms, a conclusion in line
with other works [13,21,22,39–41]. The other logarithms
depend on the rapidities yj and yψ , where the sum yj þ yψ
differs from zero due to the presence of the J=ψ mass. The
third term, Ig for gluons and Iq for quark, is the overall
azimuthal distribution. More specifically, we have

IgðR;mψ⊥;Δy;ϕÞ ¼ IjðR;ϕÞ þ Iψðmψ⊥;ϕÞ

þ 1

2
Iψ-jðmψ⊥;Δy; 2ϕÞ

−
1

2
Ijetψ ðR;mψ⊥;Δy;ϕÞ; ð30Þ

FIG. 6. Same as Fig. 5 but for Δy ¼ 1. At variance with the
previous figure, we have that the coefficients include extra
logarithms [see Eq. (23)], which are shown separately.

FIG. 7. Dependence of the first coefficients of Eq. (27) with
respect to mψ⊥. Note that the coefficient C0 does not vary with
mψ⊥. Vertical dotted line corresponds to mψ⊥ ¼ 0.4. Panels
follow the same logic as Fig. 3.
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and

IqðR;mψ⊥;Δy;ϕÞ ¼
CF

CA
IjðR;ϕÞ þ Iψðmψ⊥;ϕÞ

þ 1

2
Iψ-jðmψ⊥;Δy; 2ϕÞ

−
1

2
Ijetψ ðR;mψ⊥;Δy;ϕÞ: ð31Þ

Note that they differ only for the prefactor of Ij, namely the
azimuthal dependence associated with the jet found in
Eq. (5). The last three azimuthal distributions, namely
Iψ ¼ Iψ-pðmψ⊥;ϕÞ − 1

2
Iψ-ψ ðmψ⊥;ϕÞ, Iψ-j and Ijetψ , are the

novel terms due to the production of a CO state, with each
Iψ-v generated from the corresponding Sgðkψ ; vÞ. Again, we
expand them in terms of cosðnϕÞ harmonics according to
Following the expansion of each term discussed above, we
expand the overall distribution according to

IaðK;ϕÞ ¼ 2
X∞
n¼0

Ca
nðKÞ cosðnϕÞ; ð32Þ

where K is a shorthand notation for the dependence on R,
mψ⊥ and Δy.

C. Soft gluon emission and LDME evolution

In this section, we present more details regarding the
LDME mixing. This mixing is generated from the evolu-
tion of a lower Fock-state to another one with higher
quantum numbers, e.g., S → P. Being a characteristic of
quarkonia, this feature can be observed only in the
interference with soft gluons emitted from the cc̄ pair
(Fig. 8.) In particular, if one includes states up to a relative
power v4 in the NRQCD expansion, the contributions of the

evolution in J=ψ yields can only be observed in the 3Pð8Þ
J

wave. In this case, the soft gluon emission can be decom-

posed into two terms, namely A
ð3Pð8Þ

J Þ
1 ¼ A

ð3Pð8Þ
J Þ

1f þ A
ð3Pð8Þ

J Þ
1d

with

A
ð3Pð8Þ

J Þ
1f ¼ ðigsfdd0kÞ

kψ · ϵλg
kψ · kg

A
ð3Pð8Þ

J Þ
0 ;

A
ð3Pð8Þ

J Þ
1d ¼

�
−4

ffiffiffi
3

p
igs

R0
1

R0

�
ϵLz

· ϵλg
kψ · kg

×

� ffiffiffiffi
2

N

r
δdkA

ð3Sð1Þ
1
Þ

0 þ ddd0kA
ð3Sð8Þ

1
Þ

0

�
; ð33Þ

where d is the color of the cc̄, k is the color of the soft gluon,
and the amplitudes An

0 include the proper radial wave
functions. These two contributions do not interfere with
each other, due to the orthogonality of the J=ψ polarization
vector, ϵLz

· kψ ¼ 0. Moreover, the color structure of the

studied process cancels the interference between the A
ð3Pð8Þ

J Þ
1d

emission with either the incoming or outgoing partons.
Consequently, this mixing term contributes only to the self-
interference of soft gluons emitted by the cc̄ via

jAa;ð3Pð8Þ
J Þ

1d j2 ¼ 96g2s
jR0

1j2
M2

ψ jR0j2
�
CFjAa;ð3Sð1Þ

1
Þ

0 j2

þ BFjAa;ð3Sð8Þ
1
Þ

0 j2
�
Sgðkψ ; kψÞ; ð34Þ

with BF ¼ ðN2
c − 4Þ=4Nc. Equation (34), summed over all

partons a ¼ g; q; q̄, corresponds to the “mixing” term of
Eq. (11). Finally, upon integration over the phase space of
the emitted soft gluon, one gets

Z
d3kg

ð2πÞ32Ekg

jAa;ð3Pð8Þ
J Þ

1d j2δð2Þðq⊥þkg⊥Þ

¼ αs
2π2jq⃗⊥j2

96

M2
ψ

�jAa;ð3Sð1Þ
1
Þ

0 j2
hO1ð3S1Þi

þBF
jAa;ð3Sð8Þ

1
Þ

0 j2
hO8ð3S1Þi

�

×hO8ð3P0Þi
Iψ−ψðmψ⊥;ϕÞ−Ijetψ−ψ ðR;mψ⊥;Δy;ϕÞ

2
; ð35Þ

where we have taken into account the relation between the
radial functions and the LDME with the proper normaliza-
tion factors. Equation (35), which is in agreement with [37],
corresponds to the mixing term reported in Eq. (28), with
a ¼ g, and Eq. (29), with a ¼ q.
Finally, note that to get the contributions of the LDME

evolution to Eq. (36), we have performed the expansion in
harmonics of the azimuthal distribution and explicitly taken
the relation between the CO and CS gluonic channels

jAg;ð3Sð8Þ
1
Þ

0 j2 ¼ 15
8

hO8ð3S1Þi
hO1ð3S1Þi jA

g;ð3Sð1Þ
1
Þ

0 j2, while jAq;ð3Sð1Þ
1
Þ

0 j2 ¼ 0.

D. Summary of one-loop results

Summarizing the above results, the differential cross
section including the soft gluon radiation in the correlation
limit is given by

FIG. 8. Soft gluon emission from the cc̄ pair. We consider

n ¼ 3PðdÞ
J , while n0 ≡ 3Pðd0Þ

J , n0 ¼ 3Sð1Þ1 or n0 ¼ 3Sðd
0Þ

1 . The soft
gluon, which carries out the color-index k, is given in red and it
connects to both c and c̄.
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d4σðcÞ

dΩ
¼ αsCA

2π2jq⃗⊥j2
x

�
σg;ðcÞ0 fgðxÞ

�
ln

ŝ
jq⃗⊥j2

þ 2
X∞
n¼0

Cg;ðcÞ
n ðR;mψ⊥;Δy ¼ 0Þ cosðnϕÞ

�

þ
X
q

σq;ðcÞ0 fqðxÞ
�
CF

CA
ln

ŝ
jq⃗⊥j2

þ 2
X∞
n¼0

Cq;ðcÞ
n ðR;mψ⊥;Δy ¼ 0Þ cosðnϕÞ

�

þ δc8
96

M2
ψ

�
1þ 15

8
BF

�
σ
g;ð3Sð1Þ

1
Þ

0

hO8ð3P0Þi
hO1ð3S1Þi

fgðxÞ
X∞
n¼0

Cmix
n ðR;mψ⊥;Δy ¼ 0Þ cosðnϕÞ

þ δc8
X
q

96

M2
ψ
BFσ

q;ð3Sð1Þ
1
Þ

0

hO8ð3P0Þi
hO8ð3S1Þi

fqðxÞ
X∞
n¼0

Cmix
n ðR;mψ⊥;Δy ¼ 0Þ cosðnϕÞ



; ð36Þ

where σg;ðcÞ0 (σq;ðcÞ0 ), with c ¼ 1, 8, represents the LO gluon
(quark) cross section [42], dΩ≡ dyjdyψd2P⃗⊥d2q⃗⊥ the
phase space, and fgðxÞ is the gluon distribution. Note that
the quarks solely contribute to the CO channel, as well as
the LDME mixing, where for the dominant LDMEs
in J=ψ production we need to include the evolution from

the 3SðcÞ1 states, both CS and CO. We are considering the
case where yj ¼ yψ ¼ 0 for simplicity since this scenario
does not present additional, nondivergent logarithms.
Hence, in Eq. (36) we have that the first and third terms
correspond to the leading double logarithms, while the
second and fourth lines stand for the single logarithms.
Since the latter carry the azimuthal dependence, we have
already expanded them into harmonics, with the coeffi-

cients Ca;ðcÞ
n connected to those in the Fourier series of each

distribution. Therefore they depend on the jet size R, the
heavy quarkonium mass via mψ⊥ ¼ Mψ=P⊥ and the
rapidity difference Δy ¼ yψ − yj. Most importantly, these
coefficients depend crucially on the production channel
considered.
To illustrate these differences, we consider a typical

kinematic for future EIC measurements. We take R ¼ 0.4
and mψ⊥ ¼ 0.26, that corresponds to kj⊥ ≈ 12 GeV.
Within this choice, the first three coefficients of the
Fourier expansion in Eq. (36) are given in Table I,
displaying a clear difference between CS and CO channels.

In particular, the coefficient Cð1Þ
1 is significantly positive

due to the soft gluon radiation associated with the jet in the
final state. However, the soft gluon radiation associated
with heavy quark pair has an opposite sign. Thus, a proper

choice of mψ⊥ can reduce the magnitude of Cð8Þ
1 when

compared to Cð1Þ
1 , while on the other hand Cð8Þ

2 and Cð1Þ
2

stay of more or less the same order. Beyond the mψ⊥ used
in Table I, other values can also be considered, although
they might be not accessible at the EIC.
In Figs. 9 and 10 we present a more comprehensive

dependency of the first coefficients of the Fourier expan-
sion in Eq. (36) on both R and mψ⊥ in the CO channel.
Within the CS channel, the coefficients only depend on R
and are therefore given as columns. Figure 9 corresponds to
the gluon channel [first line of Eq. (36)] while the Fig. 10 to
the quark one [second line of Eq. (36)]. Note that the
LDME evolution is directly related to Iψ-ψ , see Eq. (35), so
the comparison with the coefficients in the CS channel is
already understood from Figs. 3 (CS) and 7 (CO LDME
mix). By comparing the color shades in the different rows,
hence at fixed R, it is evident that predictions that include
the CO mechanism are significantly different from those
exclusively driven by the CS one. This holds for both
gluons and quarks, with the qualitative behaviors in the two
partonic channels being, in fact, the same. More specifi-

cally, we saw that in both cases the sign of the Cð8Þ
1

coefficient becomes opposite to that of Cð1Þ
1 for a suffi-

ciently low mψ⊥ value. Of course, the specific mψ⊥ at
which this occurs can vary depending on both R and the
partonic channel considered, with quarks consistently
requiring higher mψ⊥ values (which corresponds to lower

jk⃗j⊥j values) compared to gluons. Thus, depending on the
dominance of gluons over quarks or vice versa, we will
have the same features as those discussed in Fig. 11 but
seen at different values of jk⃗j⊥j. In addition, also the
LDME mixing will not spoil this picture since, for R < 1

and independently from mψ⊥, Cmix
1 has an opposite sign to

Cð1Þ
1 , while Cmix

2 and Cð1Þ
2 have the same sign.

TABLE I. First coefficients of the azimuthal correlation Fourier
expansions for the CS and CO mechanisms with R ¼ 0.4 and
mψ⊥ ¼ 0.26. Note that the coefficients within the CS channel are
independent of kj⊥.

Mechanism CðcÞ
0 CðcÞ

1 CðcÞ
2

CS 0.89 2.61 0.95
CO gluon 2.45 −0.08 1.70
CO quark 1.96 −1.52 1.17
CO mix 0.50 −0.93 0.81
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III. ALL ORDER RESUMMATION AND PREDICTIONS FOR THE EIC

All order resummation is needed to make reliable predictions for the soft gluon radiation contributions. Following the
standard TMD framework, we have

d4σðcÞ

dΩ
¼ σg;ðcÞ0

Z
db⃗2⊥
4π

�
J0ðjb⃗⊥jjq⃗⊥jÞ þ 2

CAαs
nπ

Jnðjb⃗⊥jjq⃗⊥jÞCg;ðcÞ
n cosðnϕÞ

�
W̃g;ðcÞ

0 ðjb⃗⊥jÞ

þ
X
q

σq;ðcÞ0

Z
db⃗2⊥
4π

�
J0ðjb⃗⊥jjq⃗⊥jÞ þ 2

CAαs
nπ

Jnðjb⃗⊥jjq⃗⊥jÞCq;ðcÞ
n cosðnϕÞ

�
W̃q;ðcÞ

0 ðjb⃗⊥jÞ

þ δc8σ
g;ð3Sð1Þ

1
Þ

0

hO8ð3P0Þi
hO1ð3S1Þi

Z
db⃗2⊥
4π

�
J0ðjb⃗⊥jjq⃗⊥jÞ

þ 192

M2
ψ

�
1þ 15

8
BF

�
CAαs
nπ

Jnðjb⃗⊥jjq⃗⊥jÞCmix
n cosðnϕÞ

�
Wg;mix

0 ðjb⃗⊥jÞ

þ δc8
X
q

σ
q;ð3Sð8Þ

1
Þ

0

hO8ð3P0Þi
hO8ð3S1Þi

Z
db⃗2⊥
4π

�
J0ðjb⃗⊥jjq⃗⊥jÞ

þ 192

M2
ψ
BF

CAαs
nπ

Jnðjb⃗⊥jjq⃗⊥jÞCmix
n cosðnϕÞ

�
Wq;mix

0 ðjb⃗⊥jÞ; ð37Þ

where

W̃a;ch
0 ðjb⃗⊥jÞ ¼ xfaðx; μbÞe−Sa;chðP⊥;b⊥Þ; ð38Þ

(a) (b) (c)

FIG. 9. Dependence of the first coefficients on the jet size R and the variable mψ⊥ for CO production in the gluon channel and for
transverse production (Δy ¼ 0): (a) C0, (b) C1, and (c) C2. A comparison with the CS channel, for which coefficients solely depend on
R, is given by the column on the left.

(a) (b) (c)

FIG. 10. Same as Fig. 9 but for the coefficients occurring in the quark induced process.
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with ch ¼ ð1Þ; ð2Þ;mix. Note that in Eq. (37) we have
already included higher-order double logarithmic correc-
tions present also for the angular dependent term [31,32].
Although we have derived Eq. (37) at the one-loop order, it
holds also when next-order contributions are included. In
particular, real emissions will modify the coefficients of the
double- and/or single-logarithms included in W0, while
virtual corrections apply to the hard factor σ0. A consistent
computation of all these next-order contributions in the
correlation limit is still lacking and, for this reason, we will
not include them in the following discussion. Note that, by
excluding them we are missing corrections of Oðq2⊥=k2j⊥Þ,
which can affect the high q⊥ part of the spectrum and not
the general result reported below. The Sudakov form factor
SðP⊥; b⊥Þ is separated into perturbative and nonperturba-
tive parts: SðP⊥; b⊥Þ ¼ SpertðP⊥; b⊥Þ þ SNPðP⊥; b⊥Þ. The
perturbative parts at one loop are defined as

Sg;ðcÞpert ¼
Z

ŝ

μ2b�

dμ2

μ2
αsCA

2π

�
ln

ŝ
μ2

− 2β0 þ 2Cg;ðcÞ
0

�
;

Sq;ðcÞpert ¼
Z

ŝ

μ2b�

dμ2

μ2
αsCF

2π

�
ln

ŝ
μ2

−
3

2
þ 2

CA

CF
Cq;ðcÞ
0

�
; ð39Þ

while for the LDME evolution terms we have

Sg;mix
pert ¼

Z
ŝ

μ2b�

dμ2

μ2
αsCA

2π

�
ln

ŝ
μ2

− 2β0

þ 192

M2
ψ

�
1þ 15

8
BF

�
Cmix
0

�
;

Sq;mix
pert ¼

Z
ŝ

μ2b�

dμ2

μ2
αsCF

2π

�
ln

ŝ
μ2

−
3

2
þ 192

M2
ψ

CA

CF
BFCmix

0

�
; ð40Þ

where β0¼11=12−Nf=18 and μb¼b0=b⊥ with b0 ¼ 2eΓE

and ΓE being the Euler’s constant. Moreover, in Eq. (39) we
have already introduced the b�-prescription [43], where
b� ¼ b⊥=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb⊥=bmaxÞ2

p
with bmax ¼ 1.5 GeV. For the

nonperturbative part, we have contributions driven by the
incoming parton and the outgoing jet and quarkonium. For
the first one, we employ the nonperturbative Sudakov
found for TMD quark distributions in Refs. [44,45] with
the appropriate Casimir scaling for gluons

SqNP ¼
�
0.106b2⊥ þ 0.42 ln

P⊥
Q0

ln
b⊥
b�

�
;

SgNP ¼
CA

CF
SqNP; ð41Þ

where Q2
0 ¼ 2.4 GeV2. For the others, we assume that the

nonperturbative contribution associated with the jet is given
by SjetNP ¼ gjetΛ b2⊥, and the J=ψ one by SψNP ¼ gψΛb

2⊥. Overall,
we employ Sð1ÞNP ¼ SgNP þ SjetNP for the CS mechanism and

Sa;ð8ÞNP ¼ SaNP þ SjetNP þ SψNP for the CO channel. We take
gjetΛ ¼ 0.225 GeV2, in line with [29,30], and gψΛ ¼ gjetΛ ,
upon the assumption that the CO final state generates a
nonperturbative form factor similar to that of the (gluon)
jet. Besides, we checked that the final azimuthal asymme-
tries do not depend significantly on these parameters, as
expected. From the above expressions, we find that the
azimuthal asymmetries of cosðϕÞ and cosð2ϕÞ are linearly
proportional to the respective C1 and C2 coefficients
which are different between the CS and CO channels.
Therefore, they can be used to probe these two production
mechanisms.
As an example, in Fig. 11, we show the numerical results

for hcosðϕÞi and hcosð2ϕÞi as functions of q⊥ for realistic
kinematics accessible at the EIC, with

ffiffiffi
s

p
γp ¼ 100 GeV,

R ¼ 0.4, and jk⃗j⊥j ¼ 12 GeV. For the parton distribution
function, we have employed the MSHT20 LO set [46].
Predictions are shown for both the color-singlet model
(CSM) and NRQCD approach, with the latter strongly
depending on the relative fraction of the CS and total CO
contributions. In particular we have included the following

CO channels: 1Sð8Þ0 , 3Sð8Þ1 , and 3Pð8Þ
J Fock states in both

gluon and quark channels. The bands of the NRQCD
predictions are constructed by combining several central
values of the associated LDMEs from different global
analyses [47–51]; among them, we remark that solely [47]
agrees with HERA photoproduction data. The red band is
obtained by neglecting the LDME evolution contributions,
with the CO azimuthal distribution thence independent of
the CO Fock state. In this scenario, the result is mainly

FIG. 11. Averaged resummed azimuthal asymmetries for J=ψ
plus jet photoproduction at

ffiffiffi
s

p
γp ¼ 100 GeV, jk⃗j⊥j ¼ 12 GeV

and jet size R ¼ 0.4. The solid blue line is the CSM predictions,
whereas for the NRQCD approach we have the red and purple
bands, where the latter includes the LDME evolution contribu-
tion. The bands are obtained by combining the results from
different LDMEs central values.
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driven by the gluon channel. Upon the inclusion of the
LDME evolution, which is found non-negligible only
for the quark channel for the kinematics explored in
Fig. 11, the band size increases significantly. This large
uncertainty offers, with precise enough data, the additional
opportunity to utilize these observables in LDME fits to
greatly constrain their values. Both NRQCD bands are
mostly dominated by the CO mechanism, and we expect
that the inclusion of higher-order states (in v) does not
significantly affect the result shown in Fig. 11. We also
expect that the following conclusions, based on Fig. 11,
apply to other kinematic regions. Thus, we believe that our
findings are broader than the specific scenario dis-
cussed here.
The resummed form of hcosðnϕÞi is exactly 0 at q⊥ ¼ 0,

and at small q⊥ they scale as hcosðnϕÞi ∝ qn⊥ [32]. At large
q⊥, where the hard gluon radiation dominates and there is
no preferred direction, hcosðnϕÞi must decrease as func-
tions of q⊥. This will modify the behavior of both hcosðϕÞi
and hcosð2ϕÞi asymmetries at large q⊥. Besides this, the
hcosðϕÞi and hcosð2ϕÞi predictions present a clear differ-
ence. The former highly depends on the model considered,
with the NRQCD being more suppressed compared to the
CSM.We see that the NRQCD suppression holds also upon
inclusion of the LDME evolution, but in addition we
observed that certain combinations of LDMEs can also
lead to a change of sign compared to the CSM. On the other
hand, the CSM and NRQCD outcomes are comparable, and
in general non-negligible, for hcosð2ϕÞi.
As demonstrated, such differences offer a unique oppor-

tunity to determine the underlying quarkonium production
mechanism. In particular, a suppressed hcosðϕÞi with a
sizable hcosð2ϕÞi implies that contributions driven by the
CO channel are important at low-q⊥ and one must then
include them, e.g., by means of the NRQCD factorization.
Once asserted, data relative to these observables can be
incorporated in global fits to further constrain LDME
values. In addition, one can also verify the consistencies
with different observables, which might be an indication of
the presence of factorization-breaking effects.

IV. CONCLUSIONS

In summary, we have demonstrated that the soft gluon
radiation leads to significantly different azimuthal angular
correlations between the CS and CO mechanisms in the
J=ψ plus jet photoproduction process at the future EIC. We
have shown that such differences hold for both gluon and
quark channels. This directly affects azimuthal asymmetry
predictions within the CSM and the NRQCD approach,
where the latter presents a soft dependence on the LDME.
We also expect that including higher Fock-states’ contri-
butions will not modify the above conclusion. Thus, we
consider these observables as the stems to disentangle these
two production mechanisms and investigate the absence of
NRQCD factorization-breaking effects at small q⊥. We also

expect that similar conclusions can be drawn for other
experiments as well, like in hadronic processes at the LHC.
Moreover, cosð2ϕÞ has been proposed to study the linearly
polarized gluon distribution in the electroproduction of J=ψ
plus jet at the EIC. We expect that the soft gluon radiation
will lead to sizable contributions to cosð2ϕÞ asymmetry in
this process as well, with a behavior similar to that shown in
Fig. 11 for photoproduction. Understanding the soft gluon
radiation will be a crucial step to unambiguously determine
the gluon tomography of linearly polarized distribution
from this measurement. We will explore all these physics,
including higher-order perturbative and power corrections,
in the future.
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APPENDIX: AZIMUTHAL ASYMMETRIES IN
THE CS AND CO CHANNELS SEPARATELY

In this appendix we present direct comparisons between
the CS and COmechanisms, providing more insights on the
results shown in Fig. 11.
In addition to the asymmetries, in Fig. 12 we present the

normalized differential cross section within both the CS
and CO channels and for the same kinematics considered
for Fig. 11. The CO channel has a much wider distribution
as compared to the CS one as a result of the final state gluon
radiation associated with the heavy quark pair, which leads
to a significant difference in the associated CðcÞ

0 coefficients
(see Table I). The bands in the CO channel are constructed
by combining the central values of several LDME sets (see
also Fig. 11). As expected, this uncertainty increases once
the contribution of the LDME evolution is taken into
account. We point out that for the kinematics discussed
here such contribution mostly arises from the quark
channel, while we have found it negligible for the gluon
channel. Moreover, it is worth mentioning that Fig. 12 is
obtained for yj ¼ yψ ¼ 0 and different rapidities values can
slightly modify the picture, e.g., less broadened distribu-
tions for yj ¼ 1. Nonetheless, other choices of yj and yψ do
not spoil the main conclusion of Fig. 12, namely that we
identify different shapes of the normalized differential cross
sections within the CS and CO mechanisms.
Moving to the asymmetries, in Fig. 13 we present

hcosðϕÞi and hcosð2ϕÞi predictions in the CS and CO
channels as functions of q⊥. We consider kj⊥ ¼ 12 GeV as
done in Fig. 11. While the CS channel is exclusively driven
by gluons, in the CO one we have the interplay between
quarks and gluons. If one does not include the LDME
mixing, the quark contribution (at kj⊥ ¼ 12 GeV) is
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negligible, causing a suppression of the dependence on
the LDME choice. Consequently, the variation observed in
the full NRQCD result is mostly due to the significance
of the CO mechanism with respect to the CS one. On the
other hand, upon the inclusion of the LDME evolution, the
quark channel becomes more significant, and the

uncertainty band driven by the choice of the LDME set
opens up. Not that themagnitude of the hcosðϕÞi asymmetry
in the CO channel is always lower than the CS case, while a
change of sign (especially upon the inclusion of the LDME
evolution) might be present. At variance, hcosðϕÞi predic-
tions employing the two mechanisms are always compa-
rable to each other, and they undoubtedly agree in sign.
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