
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
The Smooth Extension Embedding Methods for Free Boundary Problems

Permalink
https://escholarship.org/uc/item/9x95c789

Author
Yan, Dong

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9x95c789
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

The Smooth Extension Embedding Methods for Free Boundary Problems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Dong Yan

Dissertation Committee:
Professor Patrick Guidotti, Chair

Professor Long Chen
Professor Knut Sølna

2024

© 2024 Dong Yan

DEDICATION

To my advisor, who guided me with infinite patience and never gave up on me.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Free and Moving Boundary Problems . 1
1.2 Shape Optimization Approaches . 2
1.3 Smooth Extension Embedding Methods . 6
1.4 An Overview . 9

2 Boundary Shape Approximation 12
2.1 Introduction: Boundary Approximation Methods 12
2.2 Kernel-Based Level Set Approximation . 16
2.3 Regularized Kernel-Based Level Set Approximation 18
2.4 Boundary Points Sampling Methods . 21

2.4.1 Marching Algorithm . 21
2.4.2 Optimization-Based Method . 22

3 Smooth Extension Embedding Methods 25
3.1 Introduction: Distinctive Features . 25
3.2 Original Implementations . 27

3.2.1 Iterative Solver . 32
3.2.2 Direct Solver . 35
3.2.3 Remarks on Different Solvers . 37

3.3 Regularized Preconditioned Iterative Solver 40

iii

4 Shape Optimization 48
4.1 Shape Perturbations . 50
4.2 Shape Derivatives . 53
4.3 Gradient Descent on Shape Manifold . 56
4.4 Order of Convergence of Numerical Shape Gradients 59

5 Main Algorithm 64
5.1 Description of the Algorithm . 65
5.2 An Introductory Test Problem . 69

6 Obstacle Problems 74
6.1 Problem Introduction . 74
6.2 Experiments with Known Exact Solutions 78
6.3 Experiments with Unknown Exact Solutions 82

7 Conclusion 85

Bibliography 87

iv

LIST OF FIGURES

Page

2.1 The sample points projected back to the exact curve by Newton’s method. . 23

3.1 Domain embedding and straightforward discretization used in the SEEM. . . 29
3.2 A visualization of the oscillations caused by trivial extension with no regular-

ization. 30
3.3 Smooth curves and their non-smooth numerical representations for regularized

preconditioning test. 43
3.4 Domain with smooth boundaries for which the analytical representations are

unknown. 46

4.1 Approximation error of the boundary-formula shape gradient using p-th order
SEEM solvers. 62

5.1 Visualization of the right-hand-side data function in the state problem (5.3). 71
5.2 The mesh condition and the shape gradient field in the last gradient descent

iteration in classical finite element based shape gradient method. 72
5.3 The domain grid and the shape gradient field in the last gradient descent

iteration in SEEM based shape gradient method. 73
5.4 Plots of L∞ norm in shape gradient vectors for different regularization levels

of l using different types of solvers. 73

6.1 An illustration of a typical obstacle problem which models the displacement
of an elastic membrane under a convex smooth obstacle due to an external
force. 75

6.2 Initial curve used in the shape gradient descent iteration to detect the free
boundary of the obstacle problem. 79

6.3 The errors with respect to SEEM grid number m in different regularization
levels l of SEEM-RPCG solver applied to the obstacle problem. 80

6.4 The errors with respect to SEEM grid number m in different regularization
levels l of SEEM-Direct solver applied to the obstacle problem. 81

6.5 An elliptic paraboloid obstacle used for testing the SEEM-based gradient de-
scent algorithm on an obstacle problem with no known exact solution. 82

6.6 The L∞ errors of the shape gradient vectors with respect to the SEEM grid
number m in different regularization levels l using SEEM-RPCG solver. . . . 83

v

6.7 The L∞ errors of the shape gradient vectors with respect to the SEEM grid
number m in different regularization levels l using SEEM-Direct solver. . . . 83

vi

LIST OF TABLES

Page

3.1 Condition numbers and preconditioning rates for test curve in figure 3.3a with
different boundary densities. 45

3.2 Condition numbers and preconditioning rates for test curve in figure 3.3b with
different boundary densities. 45

3.3 Condition numbers and preconditioning rates for test curve in figure 3.3c with
different boundary densities. 45

3.4 Relative L2 approximation errors, PCG iterations, and CPU times for SEEM-
RPCG solving problem defined in Figure 3.4a. 46

3.5 Relative L2 approximation errors, PCG iterations, and CPU times for SEEM-
RPCG solving problem defined in Figure 3.4b. 47

3.6 Relative L2 approximation errors, PCG iterations, and CPU times for SEEM-
RPCG solving problem defined in Figure 3.4c. 47

4.1 Order of convergence of the boundary-formula shape gradient approximation
using p-th order SEEM solvers. 62

5.1 Order of convergence in L∞ norm of shape gradient vectors for different reg-
ularization levels of l using different types of solvers. 73

6.1 Order of convergence in different errors using SEEM-RPCG solvers of varying
orders. 80

6.2 Order of convergence in different errors using SEEM-Direct solvers of varying
orders. 81

6.3 Order of convergence in L∞ norm of shape gradient vector for different levels
of l using SEEM-RPCG solver. 82

6.4 Order of convergence in L∞ norm of shape gradient vector for different levels
of l using SEEM-Direct solver. 83

vii

LIST OF ALGORITHMS

Page
1 SEEM-Based Gradient Descent Algorithm for Free Boundary Problems . . . 66

viii

ACKNOWLEDGMENTS

I am deeply grateful to my advisor, Patrick Guidotti, for his patient guidance and profes-
sionalism throughout my journey in graduate studies. Patrick’s extensive interests across
various fields of mathematics have illuminated my path, helping me to develop my research
and offering insightful criticism. His accessibility and willingness to devote time to advising
me on all matters were invaluable. As an exceptional educator, he transformed me from a
passive learner into an active explorer, fostering a profound shift in my approach to learning.
Beyond academic matters, Patrick’s advice and encouragement have been pivotal at every
significant juncture and through the greatest challenges of my graduate life. His wisdom
is sure to have a lasting impact on my personal development. Patrick sets an exceptional
example for me in his roles as a researcher, educator, and individual embodying positivity,
self-discipline, and motivation. To express my utmost respect and enduring gratitude, I
would like to quote a Chinese saying here: Once a teacher, always a father.

I would also like to thank Professor Long Chen for his comprehensive lecture notes and the
engaging articles on his Computational and Applied Math (CAM) blog. These resources
have greatly enlightened and guided me throughout my research. I am deeply thankful to
Professor Knut Sølna for his tremendous effort in securing financial support during my final
year of the PhD program. Without his assistance, completing my studies would have been
more challenging. I appreciate Professor Yifeng Yu and Professor Christopher Davis for their
support and guidance in my teaching career. Lastly, I want to thank Dr. Daniel Agress for
being an exceptional peer mentor, helping me transition into my first PhD research project,
and providing invaluable assistance in the early stages of my research. I am grateful for
the financial support I received from my advisor and for the Graduate Division Completion
Fellowship, both of which helped bring the work on this dissertation to completion.

Special thanks go to the individuals at Harbin Institute of Technology, my alma mater, who
have significantly supported me. Thank my advisor, Professor Zhichang Guo, for introducing
me to the fascinating world of mathematical research about ten years ago. Thank the team
leaders, Professor Jiebao Sun and Professor Boying Wu, for their invaluable guidance in
my academic career development. Thank my peers and collaborators—Dr. Ying Wen, Dr.
Wenjuan Yao, and Dr. Jingfeng Shao—for their dedication in completing and publishing the
projects I was involved in during my undergraduate studies.

I must extend my deepest gratitude to my parents for their invaluable financial and emo-
tional support during my most challenging times. I’m deeply thankful for the unforgettable
moments with my friends, from hot pot parties and board game nights to adventurous road
trips. Equally precious are the warm online greetings from friends worldwide. Despite the
distance, their virtual companionship is just as meaningful and cherished. Special thanks
go to Qiao Liang and Jiao Liang, the idol twins, for their encouragement and best wishes.
Finally, I thank myself for enduring through numerous obstacles and moments close to giving
up throughout these seven years, yet ultimately persevering to the completion of my PhD
journey. Ending with Vex King’s words dedicated to myself: You are made of supernova
stardust. Your potential to shine is as infinite as the galaxies that surround and support you.

ix

VITA

Dong Yan

EDUCATION

Doctor of Philosophy in Mathematics 2024
University of California, Irvine Irvine, California

Master of Science in Mathematics 2019
University of California, Irvine Irvine, California

Bachelor of Science in Mathematics 2017
Harbin Institute of Technology Harbin, China

RESEARCH EXPERIENCE

Graduate Research Assistant 2019–2024
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Lecturer 2022–2023
University of California, Irvine Irvine, California

Teaching Assistant 2018–2023
University of California, Irvine Irvine, California

x

REFEREED JOURNAL PUBLICATIONS

The smooth extension embedding method with Cheby-
shev polynomials

2023

Numerical Methods for Partial Differential Equations

A Non-Local Diffusion Equation for Noise Removal 2022
Acta Mathematica Scientia

Hybrid BM3D and PDE filtering for non-parametric
single image denoising

2021

Signal Processing

xi

ABSTRACT OF THE DISSERTATION

The Smooth Extension Embedding Methods for Free Boundary Problems

By

Dong Yan

Doctor of Philosophy in Mathematics

University of California, Irvine, 2024

Professor Patrick Guidotti, Chair

Free boundary problems can be reformulated as shape optimization problems with partial

differential equation (PDE) constraints, making them solvable through numerical shape opti-

mization algorithms. The Smooth Extension Embedding Method (SEEM), a novel approach

for solving PDEs, leverages straightforward discretizations of complex domains and achieves

a high degree of convergence for problems with smooth solutions. This makes SEEM a viable

alternative to the finite element methods used in traditional numerical shape optimization

algorithms, effectively overcoming key challenges such as mesh degeneration and low-order

convergence. To enhance the stability of SEEM while maintaining its high-order accuracy

for boundary value problems on non-smooth numerical representations of inherently smooth

boundaries, we employ a regularized level set boundary approximation technique. This en-

hancement broadens the applicability of SEEM to the class of free boundary problems with

a shape optimization approach. Through theoretical and practical examples, experiments

show that our improved SEEM-based algorithm maintains high-order accuracy in shape gra-

dient approximation and circumvents computational pitfalls like mesh degeneration that can

arise during shape evolution. This makes the direct use of a simple shape gradient formula

and an explicit gradient descent flow possible. The resulting algorithm employs straight-

forward domain grids throughout the shape optimization process, resulting in significant

computational savings and ease of implementation.

xii

Chapter 1

Introduction

1.1 Free and Moving Boundary Problems

Free and moving boundary problems play a significant role in various engineering and physics

disciplines. Their applications span across hydrology, metallurgy, chemical engineering, soil

science, molecular biology, and materials science [10], such as melting and solidification pro-

cesses, tumor growth, and fluid flow around obstacles. Free and moving boundary problems

represent a class of complex mathematical and computational challenges encountered across

various scientific and engineering disciplines. These problems involve determining the shape

and position of boundaries that are not known a priori but instead evolve according to the

underlying physical laws of the system.

The numerical simulation of free and moving boundary problems is pivotal for predicting

system behavior under varying conditions, in optimization problems, and in the design of new

technologies. However, these problems are inherently difficult to solve due to the dynamic

nature of the boundaries, which may change shape, move, merge, split, or even disappear over

time. Accurately representing and tracking the moving or free boundaries in a numerical

1

simulation is crucial. Methods such as the boundary element method and front-tracking

methods [28] have been applied, but each comes with its own set of challenges, including

computational efficiency and the accurate representation of complex boundary geometries.

Ensuring numerical stability and convergence is particularly challenging due to the non-linear

nature of the problems and the moving boundaries. Techniques like front-fixing methods

and fixed domain methods, which involve transforming the moving boundary to a fixed

domain, have been developed to avoid numerical instabilities [5]. However such methods

require complex coordinate transformations that can introduce additional computational

complexities and sources of errors. Moreover, they may not be suitable for all types of free

and moving boundary problems, especially those with highly nonlinear dynamics.

There are no strict definitions that clearly distinguish between free and moving boundary

problems. However, Crank [10] suggests a way to differentiate the two terms. The term free

boundary problem typically refers to situations where the boundary to be determined in the

problem is stationary and a steady-state problem exists. In contrast, moving boundaries

relate to time-dependent problems and the position of the boundary has to be determined

as a function of time and space. This categorization becomes particularly useful in the

field of shape optimization. Within this context, free and moving boundary problems can

be reformulated to minimize a shape functional subject to constraints imposed by partial

differential equations (PDEs). Thus, free boundary problems often involve elliptic equations,

while moving boundary problems are linked with parabolic equations.

1.2 Shape Optimization Approaches

Shape optimization is a distinct area of research that is intricately linked with free and

moving boundary problems. In this thesis, we do not distinguish between shape optimization

2

problems and free and moving boundary problems. Shape optimization is concerned with

determining the optimal shape of a domain to achieve a specific goal, often within various

constraints. This process may involve minimizing or maximizing factors such as resistance,

energy, or stress, depending on the context. Shape optimization can be directly applied to

free and moving boundary problems by considering the free or moving boundary as the target

shape for optimization. This approach of focusing on optimizing the shape and position of

the boundary can be highly beneficial for design and control objectives. Furthermore, it

allows for a seamless integration with physical models, enabling simultaneous optimization

of performance while addressing the boundary problem.

These benefits position shape optimization as a vibrant research area with a broad spectrum

of applications, ranging from aerodynamic optimal shape design [20, 17, 29], image restora-

tion and segmentation [18], and interface identification in transmission processes [26, 30],

to the design of drug-eluting stents [36] and horn-like structures used in devices for acous-

tic or electromagnetic waves [33]. Recent studies on Stefan problem, a classic example of

moving boundary problems which investigates the melting of polar ice caps, have focused on

their reformulation as shape optimization problems constrained by parabolic PDEs, further

enriched by the inclusion of analytical shape derivatives [8].

To rigorously formulate free and moving boundary problems as shape optimization problems

constrained by elliptic or parabolic type PDEs on the underlying domain, and to develop an

effective numerical scheme, it necessitates a thorough understanding of differential calculus,

spaces of geometries, evolution equations, and other core concepts in analysis when dealing

with geometric domains, mirroring the theory of functions of real variables. Delfour and

Zolésio have presented a comprehensive overview of mathematical constructions and tools

in [11]. The relevant and important concepts and results will be succinctly cited in chapter

4 in order to make this thesis as self-contained as possible.

The numerical investigation of shape optimization problems typically employs a line search

3

framework, where the initial shape is iteratively evolved based on a velocity field. This field

is designed to reduce the shape energy functional, in terms of the minimization problem,

until a form of convergence is reached. At this point, the final shape is considered as the

numerical approximation of the optimal shape solution. Within this process, two critical

questions arise: how to evolve the shapes or define the perturbation of the shape object, and

how to determine the descent direction of the shape functional, which involves the concept

of shape derivatives and shape gradient. These questions are comprehensively addressed

in [32, 11], where methods of domain variation using vector fields are introduced, and in

[16], which implies that the shape gradient can be articulated through the solutions of the

underlying PDEs. This underscores the importance of PDE-solving methods in numerical

shape optimization. In terms of numerical implementation, the finite element method is

widely used in this field to solve differential equations.

A prevalent challenge with finite element methods, particularly when addressing free and

moving boundary problems where the domains and boundaries are constantly changing, is

mesh degeneration. As highlighted in [17], mesh degeneration is one of the bottlenecks of

the shape optimization techniques that employ finite element solvers. It is crucial to ensure

that the boundary of the transformed domain does not self-intersect during the domain

transformation process. This requirement adds complexity to the optimization process,

necessitating sophisticated techniques to manage and adapt the mesh dynamically as the

shape evolves.

Over the last few decades, considerable literature has emerged to tackle mesh degeneracy

in numerical methods for shape optimization problems. A straightforward solution is to

re-mesh the computational domain whenever mesh degeneracy occurs [34, 13]. However,

re-meshing the entire spatial domain, as opposed to focusing solely on the boundary, the

primary subject of shape optimization, entails computations in a high-dimensional space,

leading to significant additional computational costs. Alternative techniques aim to preserve

4

mesh quality throughout the gradient descent process. Methods such as mesh regularization

and angle control [4], and geometrically consistent mesh modification [7] have been proposed

to adjust and maintain mesh quality.

Moreover, some strategies focus on designing shape gradients to prevent mesh degeneration.

For instance, nearly conformal transformations are applied to shape gradients to preserve

mesh angles [22], or only restricted perturbation fields induced by normal boundary forces

are employed to address mesh degeneracy [14]. Adaptive strategies that guide the line

search direction through tangential movements of the boundary nodes [25] are designed to

prevent mesh distortion. Additionally, more stable shape evolution schemes, like a semi-

implicit Euler discretization for the velocity method with time adaptivity and backtracking

line search [12], have been explored to manage error accumulation in explicit time-marching

schemes. These varied approaches demonstrate the complexity and the innovative solutions

developed to address the challenges of mesh degeneration in shape optimization.

Another prevalent challenge in shape optimization algorithms that use finite element ap-

proximation is the low order of convergence. Most shape optimization algorithms employing

finite elements rely on linear finite elements. Although this choice benefits from computa-

tional simplicity and efficiency, it can lead to a notable decrease in approximation accuracy.

Research examining the effect of different shape gradient formulations on convergence order

within finite element approximation [19] concludes that shape energies defined in boundary

integrals result in a lower order of convergence compared to those defined in volume inte-

grals. This discrepancy arises because finite element solutions possess only limited regularity,

making a global integration by parts from volume to boundary expression unfeasible.

The predominant use of linear elements is primarily due to their lower computational de-

mands in terms of both memory and processing power, which is particularly relevant for shape

optimization problems that require multiple iterations, making higher degree elements more

time-consuming. Furthermore, higher degree elements are known to introduce numerical

5

instabilities and are more sensitive to mesh quality and distortions, which can deter their

use despite their greater accuracy.

In summary, the preference for linear finite elements in shape optimization is a balance

between the improved accuracy offered by higher degree elements and the increased compu-

tational complexity, implementation challenges, and the potential for instability that they

entail. This characteristic of the finite element method hampers the overall convergence

order of shape optimization algorithms that rely on it.

Addressing both mesh degeneration and low-order convergence challenges in numerical meth-

ods for free and moving boundary problems calls for an alternative approach to boundary

value problem solvers. This alternative should ideally minimize the need for extensive mesh

generation efforts and be cost-effective in achieving higher orders of convergence. Such a

solution would not only streamline the computational process but also enhance the accu-

racy and efficiency of solving shape optimization problems. The goal is to find and develop

techniques that can adapt to changing domain shapes without the need for constant re-

meshing, while simultaneously offering improved convergence rates compared to traditional

linear finite element methods.

1.3 Smooth Extension Embedding Methods

The Smooth Extension Embedding Methods (SEEM) introduced by Agress and Guidotti [3]

emerges as a promising PDE-solving technique for formulating an effective and high-order

numerical shape optimization approach. SEEM is characterized by its unique and essential

features, such as eliminating the need for meshing or re-meshing even when handling complex

domains, and achieving a high order of convergence for smooth problems. These attributes

make SEEM particularly suitable for overcoming the traditional challenges associated with

6

mesh degeneration and low-order convergence in shape optimization. Further details on the

construction and application of SEEM will be given in Chapter 3.

SEEM addresses problems in complex domains by selecting an optimal smooth extension

within a larger, simple hold-all domain, allowing for straightforward discretization. This key

advantage removes the necessity to create intricate meshes for domains of varying geome-

tries. The straightforward discretization of the simple hold-all domain also facilitates the

discretization of smoothing and differential operators. For instance, fast Fourier transforms

can be utilized on a uniform grid for the torus, while Chebyshev transformations are suitable

for Chebyshev grids on a box.

The straightforward discretization of the simple hold-all domain can remain constant through-

out the shape optimization process, provided that the evolution of the free boundary or the

path of the moving boundary remains within the confines of the same hold-all domain. As

the boundaries evolve through iterations, only the boundary points need tracking, allowing

the domain grids to stay unchanged. This approach significantly lowers the computational

effort related to mesh generation commonly found in finite element-based algorithms.

The SEEM approach for solving boundary value problems within a large, simple hold-all

domain draws inspiration from the fictitious domain method, although the implementations

differ significantly. Essentially, SEEM calculates a discrete extension of the solution to the

boundary value problem by selecting a smooth solution from the complete affine family of

solutions to the original equations, resulting in an underdetermined problem defined across

the entire fictitious domain. Since there is no need to deliberately extend the problem

itself to a larger domain, the regularity of the SEEM solution can be easily maintained

across the boundary. The actual smoothness of this SEEM extension automatically depends

on the smoothness of the analytic solution and the chosen objective functional, allowing for

precision tuning of the SEEM solution by choosing different orders of the objective functional.

Consequently, if the analytic solution is inherently smooth, the order of SEEM can reach the

7

limits of what the computing machine can handle.

Beyond the adjustable high-order capability of SEEM when applied to smooth problems, it

is noteworthy that shifting to a high-order setting within machine precision limits does not

complicate the implementation or extend the processing time. This ease of adjustment is

because, for sufficiently smooth problems, the order of SEEM is determined by the order of

the smooth norm used in the objective functional. For instance, if the smooth norm is the

Sobolev Hp norm, it can be efficiently discretized as a diagonal matrix under fast Fourier

transforms. Therefore, transitioning the algorithm from a low order to a high order merely

involves modifying the exponent of the diagonal matrix, making the process straightforward

and efficient.

An additional advantage of SEEM, which could prove beneficial in future investigations into

moving boundary problems, is the utilization of a variant of SEEM employing Chebyshev

nodes and polynomials, as outlined in [1]. This variant offers an accurate and efficient space-

time scheme suitable for time-dependent problems, such as parabolic PDEs. This becomes

particularly noteworthy when applied to moving boundary problems in comparison to tra-

ditional time-marching methods that accumulate errors over time. SEEM in a Chebyshev

setting empowers the algorithm to maintain accuracy and concurrently reduce computational

costs.

The unique attributes of SEEM suggest its potential as a viable alternative to the tradi-

tional finite element method for solving PDEs within the shape optimization framework

for free and moving boundary problems. Nonetheless, there are limitations that impede its

straightforward application to shape optimization techniques.

SEEM demonstrates significant effectiveness for smooth problems, yet the numerical rep-

resentation of these smooth objects may become non-smooth, particularly in the context

of free and moving boundary problems. Here, exact boundaries are unknown and must be

8

approximated throughout the process, often leading to numerically perturbed or distorted

shapes, despite theoretical regularity preservation. The original configuration of SEEM is

sensitive to such non-smoothness in numerical boundaries, typically resulting in breakdown

after several iterations of shape optimization evolution.

To effectively incorporate SEEM into the shape optimization framework and leverage its

unique benefits, enhancing its stability in handling non-smooth numerical representations

of underlying smooth shapes is essential. Additionally, a robust boundary representation

algorithm is crucial throughout the shape optimization iterations. While there may be other

effective boundary value problem solvers suitable for integration into the shape optimization

framework for free and moving boundary problems, this thesis focuses on exploring and

extending the application of SEEM to various numerical computation facets, setting aside

discussions on alternative methods.

1.4 An Overview

Throughout our discussions, we assume that the problems being tested have sufficient reg-

ularity, without exhaustively stating the least regularity requirements for each specific sce-

nario. Essentially, our main interest is in problems admitting smooth solutions that are

suitable for high-order methods. The methodologies we have developed in this thesis are

particularly effective in scenarios with sufficiently smooth solutions. It is important to note

that the primary computational tools we use can also address problems with less regularity,

where the effectiveness of our methods depends on the regularity of the problem itself. In

many real-life examples of free and moving boundary problems, the inherent smoothness is

typically guaranteed by the governing physical laws.

The primary contribution of this thesis is the expansion of SEEM to tackle free bound-

9

ary problems under the framework of shape optimization. Specifically, our contributions

manifest in several key areas. We have enhanced the stability of SEEM when addressing

boundary value problems (BVPs) on non-smooth numerical representations of inherently

smooth boundaries through the use of regularized level set boundary approximation. This

enhancement not only facilitates the use of SEEM as a BVP solver but also aids in devel-

oping an effective high-order shape optimization approach for free boundary problems. Our

experiments reveal that the refined SEEM algorithms maintain high-order accuracy in shape

gradient approximation, allowing for the direct application of a straightforward shape gra-

dient formula derived from boundary integral definitions. The shape optimization method

based on SEEM successfully avoids computational issues such as mesh degeneration that can

occur during shape evolution. Moreover, SEEM utilizes simple domain grids throughout the

entire shape optimization process, leading to substantial savings in computational resources.

The SEEM-based shape optimization algorithm proves effective in practical problems, such

as the obstacle problem, demonstrating high convergence rates and computational efficiency

in our experiments.

The structure of the thesis is laid out as follows: Chapter 2 provides a comprehensive overview

of boundary approximation techniques, covering both explicit and implicit representations.

We then delve into a kernel-based level set method and its regularized variants. Given that

the approximated boundary is implicitly defined by the 1-level set of the level set function,

we explore different boundary point sampling algorithms tailored to various applications to

determine the locations of the boundary points.

In Chapter 3, we introduce a detailed yet comprehensive construction of the original SEEM

algorithms. This is followed by an in-depth analysis of the condition numbers and the

development of preconditioners for various operators within the algorithm. We propose a

regularized preconditioning technique for SEEM, which is inspired by the regularized kernel-

based level set boundary approximation algorithm. Our experiments demonstrate that this

10

improved SEEM exhibits robust stability while preserving accuracy, even when applied to

rough discrete boundaries.

In Chapter 4, we introduce basic notations and fundamental results in the field of shape

optimization, particularly as they relate to the formulation of free boundary problems. We

conclude the chapter with a verification example that demonstrates how SEEM maintains

the order of convergence when approximating the shape gradient in the boundary integral

formula, whereas the same task using finite element approximation experiences a loss in

convergence order.

With the groundwork laid in the previous chapters, Chapter 5 introduces the main algorithm

that employs the improved SEEM techniques within a shape optimization approach to solve

free boundary problems. This is followed by detailed remarks on each step of the process. To

illustrate the effectiveness of SEEM in overcoming the mesh degeneration issue during shape

deformation in the shape optimization process, an example of a free boundary problem is

provided at the end of this chapter. The algorithm demonstrates a high order of convergence

in experiments.

Chapter 6 presents a practical application of our algorithm in solving the obstacle problems.

Compared to the existing algorithms based on the universal mesh finite element method,

our algorithms exhibit a superior order of convergence, along with additional benefits such

as straightforward implementation and reduced computational costs.

This thesis concludes with a summary of the main results and contributions in Chapter 7.

11

Chapter 2

Boundary Shape Approximation

2.1 Introduction: Boundary Approximation Methods

Shapes, particularly their boundaries, represent the primary unknown variables in free and

moving boundary problems. It is crucial to accurately and stably identify and conduct further

calculations on these shapes. The iteration of free boundaries and the evolution of moving

boundaries necessitate boundary reparametrization. In numerical algorithms, boundaries

are expressed as a set of discrete points. A robust boundary approximation algorithm is

essential to precisely extract useful geometric information from the given set of points. This

ensures that other points on the underlying boundary can be accurately located, furthermore,

the differentiation and integration on the boundary can be accurately approximated. This

task is challenging in practice as discrete points may not be uniformly distributed along the

underlying boundary and could be unordered or affected by computational errors.

Two main approaches exist for representing and approximating shapes: explicit parametriza-

tion and implicit level set methods. Explicit parametrization offers advantages such as lower

computational costs, given that the parameter domain for the boundary hypersurface Γ ⊂ Rd

12

lives in the lower dimensional space Rd−1. A one-dimensional reduction significantly low-

ers overall computational costs. Additionally, once the parametric representation of the

boundary is established, it is straightforward to generate a new set of boundary points in

any desired distribution or to perform boundary integration based on the approximated

parametrization.

However, the parametrization approach has notable disadvantages that limit its adaptivity

in terms of shape approximation. Finding accurate parameters for each given discrete point

is challenging, especially for complex shapes like non-convex ones where polar or spherical

coordinates may not be well-defined, leading to multiple boundary points in certain angular

directions. Although the arc-length parameter is well-defined for closed boundaries in two

dimensions (i.e., closed plane curves), determining the parameters themselves can be difficult.

For example, for closed plane curves, one can fix a reference point and follow the curve in one

of the two possible directions, using the arc-length from the reference point as the parameter

for each discrete point. While this parametrization is well-defined, the mismatch between

the approximated arc-length parameter and the exact parameter for each discrete point can

significantly impact the overall quality of the boundary shape approximation. The mismatch

in the arc-length parameter usually is inevitable due to the fact that the continuous curve is

unknown or due to errors in the approximation to the curve. Moreover, generating a coarse

approximation to the curve when the given discrete points are not listed in order can also

be a challenging task.

Another approach to boundary representation is the implicit level set method, which char-

acterizes an (d − 1)-dimensional boundary Γ as the zero (or any constant) level set of a

function defined inside Rd. Specifically, consider a function ϕ(x) : Rd → R where its zero

level set {x ∈ Rd|ϕ(x) = 0} delineates the boundary between the interior and exterior of an

d-dimensional domain. Although ϕ(x) = 0 is selected to depict the boundary hypersurface

Γ, the choice of the zero level set is not inherently special. The boundary hypersurface Γ

13

with an d − 1 dimension, is closed such that the interior and exterior regions are clearly

defined.

It has been pointed in [27] that defining boundaries implicitly as the level set of a function

offers numerous advantages over explicit parametric methods, where the points comprising

the boundary are specifically outlined. In complex scenarios, such as boundaries in three-

dimensional space that lack an analytical representation, discretizing explicit parametric

representations can be challenging. This process requires selecting a number of points on

the two-dimensional surface and noting their connectivity. Connectivity in two dimensional

space is determined based on the ordering, while in three dimensions is less straightforward.

Moreover, connectivity can change during the evolution of the shapes. However, this issue

is seamlessly managed by the implicit level set approach. One of the key benefits of implicit

shapes is that there’s no need to establish connectivity for discretization. A uniform Carte-

sian grid in Rd can be used along with straightforward generalizations of the technology

from two spatial dimensions. Possibly the most powerful aspect of implicit surfaces is that

it is straightforward to go from two spatial dimensions to three spatial dimensions (or even

more).

While implicit representation offers numerous benefits, it also presents challenges depend-

ing on the application. In two-dimensional spaces, defining a boundary explicitly involves

identifying every point along a curve. A common method for approximating an explicit

representation involves discretizing its parameter into a finite set of points, which are not

necessarily equally spaced. For each parameter point, the corresponding location on the

two-dimensional curve is determined and stored. Increasing the number of points in the

discretized parameter space enhances the resolution or detail of the two-dimensional curve.

Conversely, the implicit representation used in traditional level set methods identifies the

level set function by solving a system of partial differential equations (PDEs). Typically,

this level set function is not known analytically and is approximated through numerical

14

PDE solutions. As a result, the implicit representation must be stored on a discretized

bounded subdomain of R2, highlighting a potential drawback. Instead of merely resolving a

one-dimensional parametric interval as in explicit representations, one must resolve a two-

dimensional region. More broadly, in Rd, discretizing an explicit representation only requires

resolving an (d−1)-dimensional set, whereas an implicit representation necessitates resolving

an d-dimensional set. This issue can be mitigated, to some extent, by concentrating all points

close to the boundary, leaving the rest of the domain less defined. This strategy, known as a

local approach, clusters points near the boundary to discretize implicit representations more

efficiently.

Moreover, because the level set function ϕ has to be numerically solved from level set equa-

tions, which are partial differential equations (PDEs), any subsequent calculations of the

normal vector field or curvature on the boundary based on the numerical approximation of

the level set function will significantly lose accuracy upon differentiation. This necessitates

the use of higher-order schemes in numerical PDE solutions, which can, in a way, increase the

computational load. This increase is particularly significant because boundary approxima-

tion is a foundational step that will be repeatedly applied throughout the overall process of

solving free and moving boundary problems. Therefore, the efficiency of this step is critical

to the overall efficiency of solving free and moving boundary problems, highlighting the need

for a balance between accuracy and computational speed in these applications.

Consequently, an alternative method for obtaining the level set representation of boundaries

through a kernel-based approximation will be introduced in the forthcoming sections 2.2.

This approach enables the construction of an analytical level set function for the boundary,

requiring only the storage of a few coefficients—typically as many as the number of input

discrete boundary points. Furthermore, possessing an explicit formula for the level set func-

tion allows for a more accurate approximation of the normal vector field and curvature on

the boundary by performing analytical differentiation of the level set function. To derive

15

such a level set function, it is only necessary to solve a linear system whose size corresponds

to the number of boundary sample points. This is in contrast to the traditional level set

equation, which must be solved across the entire (or a substantial portion of the) spatial do-

main. By reducing the computation to a lower dimension, this method significantly conserves

computational resources.

2.2 Kernel-Based Level Set Approximation

This section introduces the kernel-based level set approach for approximating boundary

shapes, as proposed by Guidotti [15]. For a detailed understanding, readers are encouraged

to consult the original work. Below, we offer a concise summary of the procedure and of its

key properties.

Given a set of data pairs

D = {(xi, yi) | xi ∈ Rd, yi ∈ Rn, i = 0, 1, . . . , N − 1}.

In the context of two-dimensional plane curve or three-dimensional surface approximation,

yi = 1 for all i, xi ∈ Rd for d = 2 or d = 3, indicate the sample locations along the boundary,

which may be unevenly distributed or arranged in no particular order.

First consider the non-regularized case, where one aims to find a level set function ϕ(x) :

Rd → R whose 1-level set exactly interpolates all the sample locations {xi}N−1
i=0 . As proposed

in [15], the level set function ϕ is chosen as the unique solution of the following constrained

optimization problem

minimize
1

2
∥ϕ∥2S ,

subject to ϕ(xi) = yi, i = 0, 1, . . . , N − 1,

16

where || · ||S denotes some smooth norm, which is paired with the smooth operator S in the

following sense

||ϕ||S = ||S1/2ϕ||L2 .

The corresponding unconstrained optimization problem is given by

ϕ(x) = argmin
ϕ∈D(Rd,R)

max
λi∈R

{
1

2
∥ϕ∥2S +

N−1∑
i=0

λi(ϕ(x
i)− yi)

}
,

where the D(Rd,R) denotes the corresponding space associated with the smooth norm ∥ ·∥S .

The normal equation in the distributional sense is

Sϕ(x) =
N−1∑
i=0

λiδxi(x),

where δxi(x) = δ(x − xi) is the shifted dirac delta distribution. Apply the inverse operator

S−1 on both sides, one gets an explicit representation of the non-regularized level set function

ϕ(x) =
N−1∑
i=0

λiS
−1δxi(x). (2.1)

Denote the kernel function centered at xi as

ϕi(x) := S−1δxi(x), (2.2)

then the coefficients Λ = [λi]
N−1
i=0 can be solved from the linear system

MΛ = Y, (2.3)

17

where Y = [yi]N−1
i=0 , and M is an N ×N matrix whose ij-th entry is

Mij = ϕi(x
j) = ϕj(x

i). (2.4)

Theoretically, given a smooth norm ∥·∥S , formulae (2.1)–(2.4) explicitly construct a function

whose 1-level set interpolates the underlying boundary exactly containing all the data points

{xi}Ni=0. However, in practice the matrix equation (2.3) can be ill-conditioned due to the low

quality of the data set.

2.3 Regularized Kernel-Based Level Set Approxima-

tion

To mitigate the ill-conditioning of the kernel-based level set algorithm, implementing tech-

niques to control the condition number is crucial for developing a stable boundary approxima-

tion algorithm. Achieving stability may involve compromising some interpolation accuracy,

which means it is not strictly necessary to enforce the exact validity of ϕ(xi) = yi. Instead,

the aim now becomes to find a regularized level set function ϕα(x) that approximates the

data pairs D to minimize the following functional

Jα(ϕ) =
α

2
||ϕ||2S +

1

2

N−1∑
i=0

|ϕ(xi)− yi|2, α > 0.

Here the positive parameter α together with the first term are designed for regularity, and

the second term is obviously for data matching. The other notations are the same as the

non-regularized case. The corresponding normal equation in the distributional sense is as

18

follows

αSϕα(x) =
N−1∑
i=0

(yi − ϕα(x
i))δxi(x).

The solution ϕα(x) of the normal equation above in the boundary shape approximation con-

text represents the regularized level set function whose 1-level-set approximates the smooth

boundary. Rewrite the normal equation above, one gets

ϕα(x) =
1

α

N−1∑
i=0

(yi − ϕα(x
i))S−1δxi(x). (2.5)

Under the notations defined in (2.2) and (2.4) which are independent of the regularization

parameter α, the notation X = {xi}N−1
i=0 ⊂ Rd indicating the set of discrete locations, and

ΦX = [ϕα(x
i)]N−1

i=0 indicating the vector of the regularized level set function ϕα evaluated at

given locations xi, the above normal equation can be rewritten as follows

(αI +M)ΦX =MY, (2.6)

where I is N ×N identity matrix. Denote the kernel-based representation of the regularized

level set function as

ϕα(x) =
N−1∑
i=0

λiαϕi(x), (2.7)

and the weighted coefficients Λα = [λiα]
N−1
i=0 , formula (2.5) yields

λiα =
1

α
(yi − ϕα(x

i)), i = 0, . . . , N − 1,

then in vector form, Λα becomes

Λα =
Y− ΦX

α
=

Y− (αI +M)−1MY
α

,

19

which is equivalent to

(αI +M)Λα = Y. (2.8)

The kernel-based representation (2.7), combined with formulae (2.2), (2.4), and (2.8), fully

defines the regularized level set function ϕα(x). Hence the approximated boundary is

Γα = {x ∈ Rd|ϕα(x) = 1}.

From (2.6) it is evident that the 1-level set of the regularized ϕα function does not exactly

interpolate the original dataset D. In fact, the evaluation of the ϕα function at the set of

given locations X is ΦX = (αI + M)−1M1, which deviates from the unit vector 1 when

α > 0. However, this minor loss in accuracy significantly improves the stability of the

boundary approximation algorithm. Furthermore, the approximation error can be minimized

by selecting a small value for α.

In [15], the space under consideration is described as follows

H
d+1
2 (Rd,Rn) = {u ∈ S ′ | [ξ 7→ (1 + |ξ|2)

d+1
2 û(ξ)] ∈ L2(Rd,Rn)}.

Then the resultant kernel function is

ϕi(x) = S−1δxi(x) = (1−∆)−
d+1
2 δxi(x) = Ce−2π|x−xi|,

for some constant C. According to the framework mentioned above, one can replace formula

(2.2) by specified kernel functions {ϕi}N−1
i=0 which are centered at the data locations {xi}N−1

i=0 ,

then use the remaining formulae to finalize the level set function. In practice, the modified

20

kernel functions from [15] used in shape optimization are

ϕi(x) = e−a|x−xi|, (2.9)

where a by default is chosen as 1, for specific problems it may be adjusted to scale the radius

of numerical support.

2.4 Boundary Points Sampling Methods

From the boundary approximation algorithms discussed in the previous section, we derive

a level set function ϕ(x) : Rd → R, where the boundary of interest is implicitly represented

as the 1-level set of the function ϕ(x). To perform further calculations at specific points on

the curve, it is necessary to sample points from the level set of ϕ(x). This step is crucial in

various fields, including computer graphics, scientific visualization, and numerical analysis.

Although many methods have been proposed in this area, this thesis primarily focuses on

introducing two methods that are employed within our research.

2.4.1 Marching Algorithm

The Marching Squares method [24] is a widely utilized algorithm in the field of computer

graphics, playing a pivotal role in visualizing and analyzing two-dimensional function eval-

uations. It primarily generates contour lines by connecting points with the same value and

can also sample points along these contours. Its simplicity and efficiency in implementation

enables the real-time generation of contours in various applications.

The Marching Squares method segments the input function evaluations into a grid of squares

and evaluates the value of the function at each corner of these squares to determine how

21

the contour intersects the square. Based on these values, the algorithm classifies the square

into one of a finite number of cases, each representing a different pattern of intersection.

The contour lines are then interpolated within each square according to the identified case,

ensuring a continuous and accurate representation of the level set. This methodical approach

allows Marching Squares to efficiently and accurately render complex shapes and structures,

making it a fundamental tool in the field of computer graphics and data visualization.

In the algorithm outlined in this thesis, we primarily use the Marching Squares method for

sampling boundary points, largely because of its straightforward implementation. In fact,

the python function matplotlib.pyplot.contour is built based on this algorithm.

2.4.2 Optimization-Based Method

While the Marching Squares method is efficient for implementation, its reliance on linear

interpolation can lead to inaccuracies for certain applications. If high precision in boundary

point sampling is necessary, one can refine the points obtained from Marching Squares to

meet the accuracy requirements.

Recall that sampling points from the level set involves finding x ∈ Rd such that ϕ(x) = 1 for

the smooth level set function ϕ(x) : Rd → R. This constitutes a root-finding problem, and

the differentiability of the ϕ function allows for the application of Newton’s method, which

is quadratically convergent, to efficiently and accurately adjust the sample points. Starting

from an initial point x0 ∈ Rd, we seek to find the root of the function f(x) = ϕ(x)− 1 in Rd.

Consider the derivative of f at xk in the following notations

A = Df(xk) = (∇ϕ(xk))⊤ ∈ R1×d,

22

(a) Random Sample (b) Projected Sample

Figure 2.1: The sample points projected back to the exact curve by Newton’s method.

and Newton’s method provides the following formula for updating the point

xk+1 = xk − A+f(xk).

Here A+ = A⊤(AA⊤)−1 represents the pseudo-inverse. Notice that the unit normal vector

ν can be defined by the level set function ϕ as ν = − ∇ϕ
|∇ϕ| , where the negative sign indicates

that the unit vector points outward, as the level set function defined by the (regularized)

kernel-based algorithm has a larger value inside the boundary. The pseudo-inverse matrix

can thus be simplified to

A+ = ∇ϕ(|∇ϕ|2)−1 = − ν

|∇ϕ|
.

Therefore, the sample points can be iteratively updated as follows

xk+1 = xk +

(
ϕ(xk)− 1

|∇ϕ(xk)|

)
ν(xk),

until the updating coefficient |ϕ(xk) − 1|/|∇ϕ(xk)| falls below a certain small tolerance.

This process effectively moves the points in the direction normal to the surface, showcasing

Newton’s method’s capability to direct the points towards the exact boundary.

23

Figure 2.1 shows how Newton’s method can successfully project poorly sampled points,

corrupted by Gaussian noise, back onto the precise curve.

24

Chapter 3

Smooth Extension Embedding

Methods

3.1 Introduction: Distinctive Features

The Smooth Extension Embedding Method (SEEM) is a novel efficient and high order bound-

ary value problem (BVP) solving method based on a fictitious domain formulation. It has

distinct advantages over several existing BVP solvers.

Comparing to the finite element method, probably the most commonly used BVP solution

method in the shape optimization aspect of free and moving boundary problems, the signif-

icant difference lies in the discretization of the domain. The finite element method typically

uses triangular meshing techniques to adaptively discretize domains with complex geome-

tries. As in free and moving boundary problems the domain changes in each optimization

step or evolves in time, there is a need to maintain meshing quality and a computational cost

associated to any required remeshing. As the SEEM method uses a simple and fixed grid for

a larger hold-all domain for any complex domain and its evolution, there is no (re)meshing

25

need for SEEM throughout the computational process as long as the hold-all domain contains

the full evolution. SEEM captures the geometries of the complex and evolving domains by

interpolating their boundary points, which is a lower dimensional task compared to meshing

and remeshing of the whole domain. Therefore, a relatively denser sample of points used for

boundary characterization becomes affordable and acceptable in an attempt to increase the

overall accuracy of the BVP solution. Although SEEM needs to discretize a larger hold-all

domain and it seems to waste computational resources in the ‘outside’ region, its high-order

advantage compensates for this. It achieves equivalent accuracy to other low-order methods

on a significantly coarser grid when applied to smooth problems.

SEEM has also other advantages when applied in the context of free and moving boundary

problems. First, it has been shown in [2] that the order of convergence of SEEM with the

pth order Sobolev smoothing kernel is (p−2). Assuming sufficient smoothness, when SEEM

is applied to free and moving boundary problems, the BVP solver can theoretically achieve

spectral convergence. However, due to the limitations of machine precision, the actual order

of convergence cannot be infinite. Despite this, the convergence rate can still be impressively

high. In other words, for smooth problems, the high order of convergence of SEEM makes it

possible to achieve high accuracy with a limited number of boundary points and a very sparse

domain grid. This saves plenty of computational resources, an important consideration in the

solution of free and moving boundary problems. In particular more computational effort can

be focused on seeking the unknown solution boundary (domain). Second, SEEM can be used

with unordered boundary points, though, in its original implementation it still requires the

boundary points to be equally distributed along the arc length of the boundary curve. We

will see in Section 3.2, SEEM addresses the issue of unordered boundary points by treating it

as row permutation of the boundary operator matrix. Therefore, unordered boundary points

do not affect the approximation result of SEEM, since row permutation does not impact the

linear system solving. In fact, in section 3.3 we will see that the requirement on the boundary

point distribution can be relaxed to a much general case. Even if the boundary points form

26

a non-smooth representation for the smooth shape, SEEM still have the ability to obtain a

good numerical BVP solution defined on the underlying domain. This makes SEEM robust

enough to serve as the BVP solver for free and moving boundary problems.

A detailed formulation of the SEEM method and its algorithmic implementation will be

given in section 3.2. Following that, we will give a more thorough discussion of the two main

implementations of SEEM: the iterative and the direct solvers. Subsequently, we introduce a

regularized preconditioning technique inspired by the regularized kernel-based boundary ap-

proximation algorithm for the iterative approach, as outlined in 3.3. This chapter concludes

with experiments demonstrating the efficacy of our proposed regularized preconditioners in

reducing the condition number and enabling SEEM to address boundary value problems in

domains lacking known analytical representations.

3.2 Original Implementations

For a comprehensive overview of the Smooth Extension Embedding Methods (SEEM) con-

struction, readers are directed to [3, 1, 2]. This section provides a concise presentation of the

key concepts to ensure that this thesis be as self-contained as possible. Consider a second

order elliptic boundary value problem of the following form

Au = f in Ω,

Bu = g on Γ = ∂Ω,

(3.1)

where A is a second order elliptic differential operator (such as the Laplace operator −∆),

while B is a boundary operator (such as, e.g., the trace γΓ for Dirichlet problem). The

domain Ω has some complex geometries. Traditional methods for boundary value prob-

lems when dealing with complex geometries usually require additional implementation and

27

computational costs. For example, the finite element methods are mesh-based, they have

the computational burden of generating a mesh for an arbitrary domain. While the finite

difference methods have the simpler formulation of the discretization, but it is not straight-

forward to implement for complicated domains. Also, traditional spectral methods are only

directly available when the domain has a special shape such as in the case of the torus or

the rectangular box, where the spectral transformation (such as, e.g., the Fourier transform

or the Chebyshev transform) applies.

The SEEM provides a stable and efficient approach to solve boundary value problems on

arbitrary domains. It does so by embedding the arbitrary domain Ω into a larger regular

domain B (a box), then it imposes the equations of the boundary value problem (3.1) only

in the smaller domain of interest by using numerical discretizations that live on the larger

encompassing domain. The solution that the SEEM computes is a smooth extension of

the solution within Ω to the large domain B. Many different choices of straightforward

discretization Bm are available for the regular domain B. Figure 3.1 illustrates the domain

embedding mentioned above and provides two examples of straightforward discretization.

Figure 3.1b (partially) displays a uniform grid that integrates with the Fourier transforms

on the torus [3], while Figure 3.1c demonstrates a Chebyshev grid for a rectangular box,

suitable for addressing problems involving non-periodicity [1]. Rather than extending the

problem artificially across the boundary into the larger domain, like it is done in fictitious

domain methods, the SEEM only imposes the differential equations in Ω∪Γ using the points

from the regular grid Bm. The discretization of Ω is simply obtained as Ωm = Bm ∩ Ω.

The boundary can be discretized by a set points that are not necessarily elements of Bm,

such as the points evenly distributed along the arc length of Γ, as shown in Figure 3.1b and

3.1c. The set of chosen boundary points is denoted by Γm. In order to impose the boundary

conditions on Γm, the SEEM uses interpolation operators on the regular grid Bm.

The matrix of the discrete boundary value problem (3.1) denoted as Cu = b can be repre-

28

(a) (b) (c)

Figure 3.1: Domain embedding and straightforward discretization used in the SEEM.

sented as follows,

C =

A ∈ RNΩm×NBm

B ∈ RNΓm×NBm

, (3.2)

whereND indicates the number of points in the corresponding setD (D can be one of Bm, Ωm,

and Γm). Each row of the matrix C imposes the interior or the boundary conditions at a single

point. Notice that the permutation of the rows in matrix C has no effect on the solvability

of system, so that the exact order of boundary points used to generate boundary matrix B

makes no difference in the SEEM implementation. Since the domain B is larger than the

domain Ω, the matrix C is a rectangular matrix with fewer rows than columns (supposing,

of course, the number of boundary points is fewer than the exterior grid points), therefore

the problem (3.1) is typically under-determined. There are many possible extensions of

the solution to the larger domain B. However, there exist oscillatory discrete functions

satisfying the discrete equations which do not approximate the solution well. Consider a

29

Figure 3.2: A visualization of the oscillations caused by trivial extension with no regulariza-
tion.

one-dimensional example

−∂xxu = f, x ∈ (−1, 1),

u = 0, x = ±1.

(3.3)

Figure 3.2 displays an oscillatory numerical extension for solving (3.3) without the use of

regularization.

The SEEM resolves this issue by reformulating the under-determined problem Cu = b as a

constrained optimization problem as follows,

argmin{Cu=b}
1

2
∥u∥2Sp

. (3.4)

Rather than extending the PDEs analytically to the complement of the domain, it selects a

smooth element of the affine set of solutions. The unconstrained form is as follows,

argminu sup
Λ

{
1

2
∥u∥2Sp

+ Λ · (Cu− b)

}
,

where ∥u∥Sp = ∥S1/2
p u∥ℓ2 can be any smooth norm whose induced operator Sp can be easily

30

discretized and inverted in the implementation. For instance, when the hold-all discrete

box Bm is the uniform grid of the torus [−π, π)d ⊂ Rd, the smooth norm can be taken

as the Sobolev Hp norm which can be efficiently discretized by the fast Fourier transforms

(FFT). Specifically, the induced operator is Sp = (1−∆π)
p, then the regularizer is its inverse

operator

S−1
p = (1−∆π)

−p, (3.5)

where ∆π is the Laplacian operator on the torus, and it can be simply discretized as follows

S−1
p = (Fm)−1diag[1 + |km|2]−pFm, (3.6)

where Fm and (Fm)−1 are FFT and its inverse, km ∈ Zd
m is the frequency vector on the

discrete grid Bm. An alternative operator in Chebyshev settings [1] can be obtained in a

similar manner,

S−1
p = (1−

d∑
i=1

D2
i)

−p = (Cm)−1diag[1 + |km|2]−pCm, (3.7)

where Di =
√

1− x2i
∂
∂xi

. Eventually, the discrete optimization problem (3.4) can be solved

from the regularized normal equation with the Schur complement formula

u = S−1
p C⊤(CS−1

p C⊤)−1b. (3.8)

The primary challenge in numerically implementing SEEM lies in managing the inversion

of the Schur complement matrix CS−1
p C⊤. As highlighted by the spectral discretization

formulas (3.6) and (3.7), the condition number of the problem correlates with m2p, where

m represents the one-dimensional grid number in SEEM. Consequently, if m−2p < ϵmachine,

there is a risk of information loss. To prevent this, two distinct strategies are suggested in

31

[3, 1] for applying formula (3.8): iterative or direct inversion. One method involves using

lower-order operators on dense grids, leading to an iterative approach since these dense grids

generate large systems more efficiently solved iteratively. Alternatively, employing higher-

order operators on coarser grids results in direct solving methods, as the smaller systems

from coarser grids can be directly inverted more feasibly. The implementation details and

the key features of these two approaches are discussed below.

3.2.1 Iterative Solver

Notice that in the formula (3.8), the main task is to invert the matrix CS−1
p C⊤. As the

smooth kernel S−1
p is chosen to be symmetric, then the matrix CS−1

p C⊤ is symmetric positive

definite, thus the conjugate gradient type methods can be applied. However, it has been

found that in general the matrix CS−1
p C⊤ is ill-conditioned, and this ill-conditioning mainly

comes from two aspects, the mismatch in the order between boundary and interior operators,

and the high order of the regularizer S−1
p . To tackle the latter issue, one can simply apply

relatively lower order regularizer (in practice, SEEM retains its effectiveness for p up to

4 when using iterative solvers), coupled with denser mesh grids to achieve highly accurate

results. For the order mismatch issue, a wisely designed preconditioner is used to stably invert

the matrix in the preconditioning conjugate gradient (PCG) method. Since the PCG method

is the sole iterative technique utilized in SEEM, we refer to the SEEM implementation that

uses this iterative solver as the SEEM-PCG method. Recall that the coefficient matrix C

consists of domain and boundary parts as defined in (3.2), then matrix CS−1
p C⊤ can be

regarded as a block matrix

CS−1
p C⊤ =

AS−1
p A⊤ AS−1

p B⊤

BS−1
p A⊤ BS−1

p B⊤

 .

32

As S−1
p defined in (3.5) represents an operator of order −2p, the matrix A represents the

discretization of Laplacian operator with order of 2, the boundary matrix B, taking Dirichlet

boundary condition as an example, has an order of 0, therefore the overall orders are 4− 2p

and −2p for domain block AS−1
p A⊤ and boundary block BS−1

p B⊤ respectively. In general,

an operator of order −n introduces a polynomial growth of degree n in condition number as

the grid size increases. Therefore, the preconditioner ensuring the stability of the iterative

solver for large systems should adjust the diagonal blocks in matrix CS−1
p C⊤ so that their

order reduces to 0. Denote the preconditioner as

P =

PA 0

0 PB

 ,
where PA and PB are approximate inverses to AS−1

p A⊤ and BS−1
p B⊤ respectively.

• Domain operator preconditioning

The goal of PA is to reduce the order of the block AS−1
p A⊤ from 4 − 2p to 0 after

the preconditioning (PA)
−1/2

(
AS−1

p A⊤) (PA)
−1/2. For p = 2, there is no need for

preconditioning, i.e. take PA as the identity matrix INΩm . For p = 3 and p = 4, [3]

chooses the following preconditioner,

PA = (1−∆Ω)
p−2,

where ∆Ω is the Laplacian operator on Ω and is discretized by a finite difference scheme.

• Boundary operator preconditioning

When it comes to boundary preconditioning, rather than constructing an operator of

order 2p for order elimination, the emphasis is placed on directly seeking a rough inverse

of the boundary operator. Consider a Dirichlet problem, where the boundary operator

consists of evaluations on the boundary, then the rows of B are the discretizations of

33

the delta distribution supported at the various boundary points. Denote the discrete

boundary Γm = {yi}NΓm

i=1 as the set of points on it, then the matrix BS−1
p B⊤ is a

discretization of the collocation matrix M whose elements are defined as

Mij = ⟨δyi , S−1
p δyj⟩, i, j = 1, 2, . . . , NΓm . (3.9)

Thus the preconditioner PB is obtained by inverting the explicit collocation matrix,

i.e.

PB = M−1.

Notice that the dimension of the collocation matrix compared to the dimension of

the full boundary value problem is significantly reduced, making direct inversion of

the collocation matrix feasible for much denser grids. Additionally, since the inverse

collocation matrix is only used as a preconditioner, it does not need to be precisely

calculated, then any rough approximation suffices for this purpose.

In the implementation in [3], the fundamental solution h(y) of the smoother Sp defined

by

h(y) = (S−1
p δ)(y)

is used to build the collocation matrix. The function h(y) is independent of the actual

differential and boundary operators arising from the problem, then it can be pre-

saved in a lookup table for convenient further use. The explicit collocation matrix is

then constructed by interpolating function h(y) at the designated boundary points for

specific problems. The elements of the collocation matrix defined in (3.9) after being

34

applied to the fundamental solution are given by the following formula

Mij = h(yi − yj), i, j = 1, 2, . . . , NΓm . (3.10)

3.2.2 Direct Solver

Another approach to implement the formula (3.8) is to reformulate it as following

u = S−1/2
p S−1/2

p C⊤(CS−1/2
p S−1/2

p C⊤)−1b.

The pseudo-inverse formula for underdetermined matrix A+ = A⊤(AA⊤)−1 further simplifies

the formula as follows

u = S−1/2
p (CS−1/2

p)+b, (3.11)

which can be implemented by direct solvers. Notice that the pseudo-inverse in (3.11) signifi-

cantly decreases the condition number to the square root of that of the full Schur complement

matrix in (3.8). This reduction enables the use of the regularizer Sp with a much higher order

p when solving boundary value problems. For self-inclusion, two types of direct solvers used

in computing the pseudo-inverse of the explicit matrix CS
−1/2
p are briefly introduced below.

Only for the following discussion, the notation M = NΩm + NΓm and N = NBm is used to

describe the dimensions of relevant matrices for simplicity.

• QR decomposition

Notice that CS
−1/2
p is an M × N matrix. Consider the QR decomposition of its

transpose

S−1/2
p C⊤ = QR,

35

where Q ∈ RN×M is an orthogonal matrix satisfying Q⊤Q = IM , while R ∈ RM×M is

an upper triangular matrix. Then the pseudo-inverse of CS
−1/2
p can be simplified as

follows

(CS−1/2
p)+ =(CS−1/2

p)⊤
(
(CS−1/2

p)(CS−1/2
p)⊤

)−1

=QR
(
(QR)⊤(QR)

)−1

=QR(R⊤Q⊤QR)−1

=QR(R⊤R)−1

=Q(R⊤)−1.

Observe that the pseudo-inverse by QR decomposition is simply done by inverting a

lower triangular matrix of a smaller order M .

• Singular value decomposition (SVD)

Consider the singular value decomposition of matrix

CS−1/2
p = UΣV ⊤,

where U ∈ RM×M and V ∈ RN×N are orthogonal matrices, Σ ∈ RM×N consists of the

singular values of CS
−1/2
p and is defined as follows

Σ =

s1 0 . . . 0

s2 0 . . . 0

. . .
...

...

sM 0 . . . 0

.

The pseudo-inverse then is represented as

(CS−1/2
p)+ = V Σ+U⊤,

36

where Σ+ is the pseudo-inverse of Σ. It is formed by replacing every non-zero diagonal

entry by its reciprocal and transposing the resulting matrix, specifically

Σ+ =

1
s1

1
s2

. . .

1
sM

0 0 . . . 0

...
...

...

0 0 . . . 0

.

3.2.3 Remarks on Different Solvers

In sections 3.2.1 and 3.2.2, the main approaches used in SEEM for solving linear systems

are briefly introduced. Both approaches have been proven effective for solving boundary

value problems on complex domains. However, as two distinct types of methods, iterative

solvers and direct solvers have their own unique features and are typically applied to different

types of applications. Furthermore, considering that the main objective of this thesis is to

broaden the applicability of SEEM to encompass more general problems like free and moving

boundary problems, both solvers mentioned earlier, which were initially tailored for solving

boundary value problems, come with limitations that impede their adaptation to broader

applications. Detailed comparisons of these solvers will be provided below.

1. Applicable Scenarios

• The Iterative Solver

Iterative solvers are proven to be effective especially for for problems requiring

denser grids. Unlike direct solvers, they circumvent the need for explicit matrix

37

inversion, relying solely on matrix-vector products which can be represented by

implicit operators. Consequently, they excel at handling large systems.

The preconditioning technique outlined in the SEEM-PCG solver addresses the

disparity in orders between domain and boundary operators, notably reducing

the condition number of the system when applied to boundary value problems

with analytically known boundaries. Thus, it exhibits exceptional efficiency and

stability, particularly on very dense grids and with relatively low-order regulariz-

ers. It is worth noting that even though we refer to the regularizers as relatively

low-order, it can still reach up to p = 4. This designation is made in compar-

ison to direct solvers employing pseudo-inverse formulas, where even 12th-order

regularizers can be effectively utilized.

It has been demonstrated in section 4.3 of [3] that on an Intel i7-7700HQ CPU,

the H3 solution can be obtained for a 20482 grid within in 1 minute, with the

PCG method converging in just 45 iterations.

• The Direct Solver

In contrast, direct solvers employing pseudo-inverse formulas facilitate the use of

high-order regularizers, making them particularly efficient for sparse grids. With

very high-order methods, minimal additional information, such as problem data

or computation nodes, is required to achieve equivalent accuracy compared to

lower-order methods, where accuracy improvement relies mainly on grid refine-

ment. This significantly conserves computational resources. In SEEM, high-order

operators do not entail additional implementation complexity, unlike in the finite

element method, where employing high-order elements typically increases both

degrees of freedom and computational costs.

Experiments outlined in [1] demonstrate that direct solvers allow for the utiliza-

tion of high-order regularizers up to 12th-order. When applied to boundary value

problems with sufficiently smooth solutions, the algorithm achieves an L2 error of

38

10−12 in just 402 grids.

2. Limitations and Drawbacks

• The Iterative Solver

The effectiveness of the iterative PCG solver heavily relies on the performance of

preconditioning. This significantly impacts its efficacy, particularly when dealing

with more complex problems such as those involving free and moving boundaries.

In such scenarios, where boundary points are unknown and require detection and

approximation, achieving well-distributed boundary points precisely located on

smooth underlying boundaries proves challenging. Perturbations on boundary

points, such as uneven distribution along the arclength or errors and noise accu-

mulated during curve evolution, further exacerbate the condition number of the

boundary operator.

The original design of the preconditioner may no longer effectively reduce the

condition number in such cases. A stronger preconditioning strategy is essential

to enable the usage of the PCG solver for problems requiring sufficient resolution

on boundaries as well as a much denser overall grid.

Another source of ill-conditioning arises from the density mismatch between the

boundary and domain grids. To keep the condition number of the Schur comple-

ment matrix within a reasonable range, the density of boundary points needs to

remain sparse. However, meeting the boundary resolution requirements in free

and moving boundary problems necessitates denser domain grids. This presents

a dilemma: allocating too many computational resources to the domain grids be-

comes prohibitively expensive, especially considering that solving the boundary

value problem is only a step in the entire process of addressing free and moving

boundary problems.

• The Direct Solver

39

Given the current SEEM implementation, which mandates a fixed ratio of bound-

ary to domain grid density to strike a balance between accuracy and stability,

there’s a challenge. This fixed density of boundary points may lead to inadequacy

when utilizing direct solvers, primarily designed for sparse grids, for nonlinear

problems such as free and moving boundary problems. These scenarios impose

specific requirements on boundary resolution for identifying unknown boundaries.

Hence, for broader applicability, enhancing the utilization of boundary points

within the SEEM framework with direct solvers becomes crucial while maintain-

ing the computational efficiency inherent in sparse domain grids.

3.3 Regularized Preconditioned Iterative Solver

As discussed in Section 3.2.1, the iterative solver is particularly sensitive to the condition

number of the problem, which is primarily influenced by the domain and boundary compo-

nents. The original preconditioner PA effectively reduces both the operator order and the

condition number for the domain part. It’s also worth noting that the condition number

and preconditioning for the domain part are only affected by the mesh size and the level of

regularization, independent of the boundary conditions. Therefore, the main focus lies in

improving the preconditioner PB for the boundary operator when expanding the application

of the SEEM algorithm.

Experiments have shown that various factors, such as uneven distribution of boundary points,

noise in boundary point locations, and discrepancies in densities between boundary and do-

main points, can substantially increase the condition number of the boundary operator.

This, in turn, affects the overall performance of preconditioning in the original SEEM-PCG

solver. Many of these factors are commonly encountered in applications involving free and

moving boundary problems. Therefore, any modifications made to the boundary precondi-

40

tioner should be able to effectively manage the complexities associated with such boundary

point inputs with the features mentioned above.

Recall from Section 3.2.1 that the original design of the preconditioner for boundary operators

(using Dirichlet conditions as an example) involved reformulating the boundary block as a

straightforward boundary interpolation problem. Hence, a logical approach for modifying

the boundary preconditioner to accommodate more intricate boundary inputs can be inspired

by the advanced boundary approximation algorithm discussed in Section 2.3.

In most of the applications of the original SEEM solver, the boundary is usually given by

the analytical representation. This ensures that the boundary points used in the SEEM pro-

cedure are of very high quality, meaning they are precisely located on the boundary without

any errors or noise corruption. Additionally, these points are evenly distributed along the

boundary (for example, along the arc length in the case of two-dimensional curves). Conse-

quently, the resulting boundary operators are usually well-conditioned or can be effectively

preconditioned. Recall that the boundary preconditioner PB introduced in section 3.2.1 is

the inverse of a matrix M whose entry is defined by the fundamental solution evaluated at

the distance between given boundary points, specifically

Mij = S−1
p δ(yi − yj), i, j = 1, 2, . . . , NΓm . (3.12)

Recall the kernel-based level set function introduced in section 2.2, built upon the data set

D = {(xi, 1)} that comprises boundary points {xi}, employs a kernel decomposition formula

given by

ϕ(x) =
N−1∑
i=0

λiS
−1δxi(x).

In this context, the operator S can essentially represent any smooth operator. Specifically,

we designate S as Sp within the SEEM framework. We further update the notation for

41

boundary points to yi ∈ Γm, where i = 1, 2, . . . , NΓm . Substituting the data set D into the

level set function ϕ(x) yields the matrix equation

MΛ = 1,

with the coefficient matrix M defined element-wise as follows

Mij = S−1
p δyi(yj) = S−1

p δyj(yi) = S−1
p δ(yi − yj), i, j = 1, 2, . . . , NΓm . (3.13)

It is obvious that the coefficient matrix M in level set function is identical to the inverse

preconditioner matrix M, i.e.,

PB =M−1.

Now suppose that the data set D consists of boundary points yi ∈ Γm, i = 1, 2, . . . , NΓm ,

with low quality, then for better stability we use the following regularized level set function

to approximate the boundary

ϕα(x) =
N−1∑
i=0

λαi S
−1
p δyi(x).

The entries in M is still defined the same as in (3.13), however after plugging in the data

set D, the corresponding matrix equation becomes

(αI +M)Λα = 1.

Therefore, we conclude that the modified boundary preconditioner PB,α is defined as

PB,α = (αI +M)−1.

42

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Smooth curves and their non-smooth numerical representations for regularized
preconditioning test.

Notice that the original preconditioner PB is identical to PB,0.

To evaluate the efficacy of the regularized boundary preconditioner, we selected several

smooth sketching curves as boundaries in boundary value problems. The original curves

and their corresponding discretizations are illustrated in Figure 3.3. It’s noteworthy that,

although the original curves presented in the first row appear smooth, their analytical

parametrizations are unknown. Therefore, we resorted to using a point sampling technique

to obtain their numerical representations, as depicted in the second row. This step intro-

duces elements of non-smoothness into the numerical computation. Indeed, for the discrete

representations of all three test curves, the original preconditioners PB = PB,0 are singular,

rendering the original SEEM-PCG solver ineffective.

43

In our investigation of the factors influencing the performance of preconditioning, we tested

numerous potential factors. However, some showed no significant correlation with precondi-

tioning performance, including the shape of the test curve, the number of boundary points,

the number of SEEM domain grid points, and the regularization level of SEEM itself. These

factors, deemed irrelevant, will not be elaborated upon further with detailed data.

Nonetheless, our analysis revealed two factors that significantly affect the performance of

the preconditioning: the regularization parameter α in the regularized preconditioner PB,α

and the boundary density of SEEM operators. We define this boundary density ρ as follows,

ρ =
4πN

Lm
. (3.14)

Here, N represents the number of boundary points used in SEEM, m is the number of one-

dimensional grid points, and L is the perimeter of the underlying closed curve. With this

definition, if the curve is a circle with a radius of 2 centered at the origin, then approximately

ρ boundary points would be found within each domain grid box. Additionally, according to

this definition, the boundary density in the original SEEM settings [3] corresponds to ρ = 1.

The effectiveness of the preconditioners PB,α is measured by the preconditioning rate η, which

is the percentage decrease in the log condition number after preconditioning. Specifically,

let κ0 = κ(B) and κ1 = κ(P
1/2
B,αBP

1/2
B,α) represent the condition numbers before and after

preconditioning, respectively. Then, η is defined as:

η =
log(κ0)− log(κ1)

log(κ0)
× 100%. (3.15)

For the ideal case, the condition number drops to 1 after the preconditioning, then the

preconditioning rate is η = 100%.

44

Boundary Density Condition Number P10−15 P10−12 P10−9 P10−6 P10−3

2.515625 5.75× 1016 3.69% 54.23% 37.62% 17.48% -1.93%
1.265625 7.80× 1016 69.55% 28.72% 18.03% 17.96% 4.66%
0.828125 4.45× 1017 70.86% 32.77% 38.51% 12.24% -2.62%
0.671875 8.95× 1016 71.44% 51.93% 35.98% 7.95% 2.04%
0.484375 2.45× 1017 70.42% 53.14% 35.86% 18.82% -3.37%

Table 3.1: Condition numbers and preconditioning rates for test curve in figure 3.3a with
different boundary densities.

Boundary Density Condition Number P10−15 P10−12 P10−9 P10−6 P10−3

2.765625 5.09× 1016 33.33% 53.03% 35.04% 16.75% -3.61%
1.421875 3.73× 1016 68.96% 50.83% 34.51% 16.43% -1.26%
0.921875 1.74× 1017 70.17% 52.74% 35.31% 17.71% 3.98%
0.640625 3.13× 1016 32.48% 52.43% 32.38% 14.34% -0.06%
0.546875 2.33× 1016 68.87% 51.80% 33.29% 8.48% -2.32%

Table 3.2: Condition numbers and preconditioning rates for test curve in figure 3.3b with
different boundary densities.

For different preconditioners PB,α, each with a unique parameter α, applied to domain-

boundary discretizations characterized by varying SEEM boundary densities ρ, we document

both the condition number prior to preconditioning and the preconditioning rate η in Tables

3.1–3.3,

The tables 3.1–3.3 demonstrate that with appropriate choices of preconditioning regularizer

parameter α and the SEEM boundary density ρ, the condition number of the boundary

operator can be significantly lowered. In our regularized PCG algorithm, we default to

setting α at 10−15 and ρ at 0.5.

Boundary Density Condition Number P10−15 P10−12 P10−9 P10−6 P10−3

2.859375 7.90× 1016 38.69% 53.56% 33.99% 18.04% 1.31%
1.390625 3.03× 1016 68.79% 50.56% 32.33% 17.75% -3.18%
0.953125 7.26× 1016 69.50% 51.67% 33.86% 17.87% 1.72%
0.703125 2.43× 1016 68.61% 50.27% 31.93% 15.42% 0.53%
0.515625 2.81× 1016 70.01% 50.41% 28.81% 13.87% -1.33%

Table 3.3: Condition numbers and preconditioning rates for test curve in figure 3.3c with
different boundary densities.

45

(a) (b) (c)

Figure 3.4: Domain with smooth boundaries for which the analytical representations are
unknown.

m NΓm NΣm L2 Error PCG Iteration CPU Time
256 85 256 2.24× 10−8 5700 109.28
128 41 128 3.67× 10−7 998 3.01
64 21 64 8.86× 10−6 392 0.32
32 13 32 1.05× 10−4 226 0.13
16 5 16 4.44× 10−3 81 0.02

Table 3.4: Relative L2 approximation errors, PCG iterations, and CPU times for SEEM-
RPCG solving problem defined in Figure 3.4a.

Now, more experiments will be given to show that the SEEM with regularized PCG solvers,

which we call it SEEM-RPCG method from now on, can solve BVP with more complex

boundaries accurately, efficiently, and stably.

Consider the Dirichlet boundary value problem defined on the domain with analytical rep-

resentation unknown. Specifically,

−∆u = 0, in Ω,

u = x2 − y2, on ∂Ω = Γ ∪ Σ.

The exact solution is u = x2 − y2. Different domains with inner boundary Γ and outer

boundary Σ are shown in Figure 3.4, the domains are labeled with interior (in orange),

exterior (in blue), and boundary points (in green), respectively.

46

m NΓm NΣm L2 Error PCG Iteration CPU Time
256 91 302 1.95× 10−8 9490 194.73
128 47 151 4.16× 10−7 2998 9.53
64 23 75 8.17× 10−6 1091 0.90
32 9 37 1.73× 10−4 325 0.18
16 5 18 2.26× 10−3 98 0.03

Table 3.5: Relative L2 approximation errors, PCG iterations, and CPU times for SEEM-
RPCG solving problem defined in Figure 3.4b.

m NΓm NΣm L2 Error PCG Iteration CPU Time
256 109 316 1.08× 10−7 18143 378.92
128 47 158 4.56× 10−6 4621 15.02
64 25 79 5.70× 10−5 1208 0.99
32 11 39 5.87× 10−4 322 0.16
16 5 19 2.36× 10−3 91 0.03

Table 3.6: Relative L2 approximation errors, PCG iterations, and CPU times for SEEM-
RPCG solving problem defined in Figure 3.4c.

Tables 3.4–3.6 show the experiment data based on the SEEM-RPCG solver with pre-selected

parameters. The regularizer level for SEEM is l = 4 for all three test examples. Notations

consistent with those in SEEM are used, where m denotes the one-dimensional grid number

within SEEM. Furthermore, NΓm and NΣm represent the number of boundary points sampled

from Γ and Σ, respectively. The computations were performed using the standard Python

packages on an Apple M2 chip. The stopping criteria for the PCG iterations is 10−8.

47

Chapter 4

Shape Optimization

According to the definition of free and moving boundary problems given by Crank [10]

mentioned in section 1.1, these problems can be formulated as shape optimization problems

involving constraints from elliptic and parabolic PDEs, respectively. Thus, this thesis primar-

ily focuses on shape optimization problems constrained by PDEs. The general formulation

of the shape optimization problems under consideration is outlined below:

minimize J(Ω) := j(u(Ω),Ω), subject to E(u(Ω),Ω) = 0.

Here u(Ω) represents the solution to the constrained PDE over the domain Ω. The primary

variable in the shape optimization problem is the domain Ω, which is to be optimized.

To identify the optimal shape Ω∗ that minimizes a given shape energy, it is essential to

employ an energy minimization algorithm. These algorithms typically operate iteratively,

beginning with an initial shape Ω0 and progressively deforming it through a series of iterations

using a velocity field V⃗ until a minimal energy state is reached. A key step in solving

the minimization problem involves computing the gradient descent velocities V⃗ , which

necessitates understanding how slight alterations in the shapes Ω affect the energy functional

48

value, or in other words, understanding the shape derivatives. We will introduce basic

notations and essential findings in this domain, drawing from [11], including a detailed

explanation of shape perturbations within any given vector field V⃗ in section 4.1, followed

by a comprehensive definition of shape derivatives and the formula commonly associated with

PDE constraint shape optimization in section 4.2. With the shape derivative formula for any

given vector field, it becomes possible to determine the descent direction by rendering the

shape derivative negative. Consequently, we can straightforwardly achieve a gradient descent

iteration, which will be further elaborated in section 4.3. We will conclude this chapter with

a verification example illustrating the effectiveness of SEEM in approximating the shape

gradient, as discussed in section 4.4. Remarkably, SEEM preserves the convergence order

when estimating the shape gradient in the boundary integral formula, whereas the same task

using finite element approximation experiences a loss in convergence order.

This thesis prioritizes the development of high order numerical methods within the shape

optimization framework to address free boundary problems. Our focus is specifically on

problems that, as established in the literature, exhibit sufficient smoothness, where the

shape functional is differentiable, and a unique minimal shape can be determined in the

context of shape optimization. Consequently, we do not delve into the minimal differentia-

bility requirements essential for the existence of shape derivatives. It’s important to note

that determining these requirements is a non-trivial task, varying significantly based on the

application and necessitating a tailored approach for each case. For readers interested in

exploring the existence and uniqueness of minimal shapes in shape optimization further, we

recommend consulting sources such as [9, 6] for comprehensive insights.

49

4.1 Shape Perturbations

This section elaborates on two methods of shape perturbation within the context of shape

optimization: the velocity method and the perturbation of identity method. Both methods

involve transforming a domain or boundary via specified vector fields, but they differ in their

approaches and mathematical formulations. The content in this section primarily references

Chapter 4 and Chapter 9 in [11]. For further details, we direct the reader to these chapters.

The velocity method is based on a velocity field that pushes points within a domain or

on a boundary in a specified direction over time, resulting in a new shape. This method

is defined through a transformation that follows an ordinary differential equation (ODE),

which specifies how points move according to the velocity field. Specifically, we introduce

this method with the following definition.

Definition 4.1 (Velocity method). Suppose V⃗ : Rd → Rd is a smooth vector field. Let

x ∈ Rd, consider the following ODE

∂tT (t, x) = V⃗ (T (t, x)), t > 0

T (0, x) = x

which defines a transformation T (t, x) : [0,∞)× Rd → Rd. For any fixed t, define the set

Ωt,V⃗ = {T (t, x)|x ∈ Ω ⊂ Rd},

Γt,V⃗ = {T (t, x)|x ∈ Γ ⊂ Rd},

to be the perturbation of Ω (or Γ = ∂Ω) with respect to the velocity V⃗ and time step t.

Given the focus on developing high-order methods for problems that are sufficiently smooth,

we assume that both shapes and velocity fields exhibit high levels of regularity. It’s important

50

to highlight that to achieve a perturbed shape of a certain regularity, specific conditions for

the regularity of V⃗ and an appropriate value of t are essential.

A more straightforward method for transforming shapes is known as the perturbation of iden-

tity. This approach typically offers a more direct and uncomplicated formulation compared

to other methods.

Definition 4.2 (Perturbation of identity method). Given a (smooth) vector field V⃗ : Rd →

Rd, consider a family of transformations {Tt}t∈[0,τ] such that

Tt = I + tV⃗ ,

where τ > 0, and I is the identity operator on Rd. The family {Tt} yields a family of

perturbed shapes

Ωt,V⃗ = Tt(Ω), Γt,V⃗ = Tt(Γ),

which are the perturbations of Ω (or Γ = ∂Ω) with respect to the velocity V⃗ and time step t.

In view of Banach’s fixed point theorem, if the domain Ω is open bounded with C1,1-boundary

Γ, and the vector field V⃗ ∈ C1,1(Rd;Rd), then there exists a value τ > 0 such that Tt is

invertible for all t ∈ [0, τ].

According to [19], from a differential geometry perspective, the perturbation of identity

method outlined in Definition 4.2 is considered less versatile than the velocity method de-

scribed in Definition 4.1. Despite this, both methods ultimately yield the identical formula

for calculating the shape gradient, which merely takes into account first order perturbations

of the shape functional.

In fact, when we approximate the shape gradient of the shape functional at some specific

51

domain Ω (or boundary Γ), only the normal component of the vector field V⃗ on the boundary

Γ matters for the shape perturbation, as the tangential velocities only shift the points along

the boundary but do not change the shape. Since for any domain with C1,1-boundary Γ, there

is an open neighborhood U(Γ) of Γ, such that any point z inside U(Γ) can be represented as

z = xΓ(z) + sΓ(z)νΓ(xΓ(z)).

Here xΓ(z) ∈ Γ is the projection of point z onto the boundary Γ, sΓ(z) is the normal

displacement of z from Γ, and νΓ is the unit normal vector on Γ. Then one can define

the perturbed shapes starting from any (sufficiently smooth) normal velocity V that is only

defined on the boundary Γ, and extend it into the entire space Rd by

V⃗ (z) =

ψ0(sΓ)V (xΓ)νΓ(xΓ), z ∈ U(Γ),

0, z ∈ Rd/U(Γ).

Here ψ0 is the smooth cut-off function centered at 0 with the properties that ψ0(x) = 1 near

0 and ψ0(x) = 0 away from 0. With this notation, within a small tubular neighborhood

of the boundary where ψ0(x) ≡ 1, the vector field V⃗ is the constant normal extension of

the normal velocity V . Hence, the perturbed shapes obtained by both Definition 4.1 and

Definition 4.2 are equivalent. Notice that the shape derivatives computed for the shape

optimization algorithms are used for evolving the shape locally. Only the information near

to the current shape make senses during the entire shape optimization process. Given the

nonlinear nature of the shape manifold, shape derivatives must be recalculated in the new

tangential space after each iteration to accurately reflect changes and inform subsequent

steps.

52

4.2 Shape Derivatives

The results presented in this section are intended to make the thesis self-contained. For com-

prehensive proofs and additional details, readers are directed to [32]. This section employs

the concept of shape derivatives to analyze how a specific velocity field V⃗ influences energy

changes. Understanding the impact of any given velocity filed V⃗ on energy allows for the

selection of an optimal velocity from the space of admissible velocities that minimizes the

energy for a specific shape Ω (or Γ = ∂Ω).

Definition 4.3 (Shape derivative of energy functional). The shape derivative of an energy

functional J(Ω) at Ω (or J(Γ) at Γ = ∂Ω) with respect to velocity field V⃗ is

dJ(Ω; V⃗) = lim
t→0

J(Ωt,V⃗)− J(Ω)

t
,

or

dJ(Γ; V⃗) = lim
t→0

J(Γt,V⃗)− J(Γ)

t
,

where Ωt,V⃗ and Γt,V⃗ are defined in Definition 4.1 or 4.2.

It goes without saying that it is desirable that the limits in above definition exist for all

possible perturbation directions V⃗ . It is therefore natural to define a shape functional J to

be shape differentiable at Ω (or Γ) if the mapping

dJ(Ω; ·) : C1(Rd;Rd) → R, V⃗ 7→ dJ(Ω; V⃗)

is linear and bounded on C1(Rd;Rd). Similarly for the boundary functional dJ(Γ), see

Chapter 9, Definition 2.2 in [11].

This thesis primarily concentrates on shape optimization problems constrained by PDE,

where the energy functional usually is a nonlocal function of the PDE solution u = u(x,Ω)

53

(or u(x,Γ)), viewed as a function dependent not only on the spatial variable x, but also on

the shape Ω (or Γ) where its associated PDE is defined. To effectively compute the shape

derivatives of such energy functionals, it’s crucial to consider the derivative of functions with

respect to the shapes Ω and Γ. This involves revisiting the concepts of material derivative

and shape derivative as discussed in [32].

Definition 4.4 (Material derivative of shape-dependent functions). For a shape-dependent

function ϕ = ϕ(x,Ω) (or ϕ(x,Γ)), the material derivatives ϕ̇(Ω, V⃗) at Ω and ϕ̇(Γ, V⃗) at Γ in

direction V⃗ are defined as follows

ϕ̇(Ω; V⃗) = lim
t→0

ϕ(T (t, ·),Ωt,V⃗)− ϕ(·,Ω)
t

, ϕ̇(Γ; V⃗) = lim
t→0

ϕ(T (t, ·),Γt,V⃗)− ϕ(·,Γ)
t

,

where the notations T (t, ·), Ωt,V⃗ , and Γt,V⃗ are from Definition 4.1.

Definition 4.5 (Shape derivative of shape-dependent functions). For a domain-dependent

function ϕ = ϕ(x,Ω), the shape derivative ϕ′(Ω, V⃗) at Ω in direction V⃗ is defined as follows

ϕ′(Ω; V⃗) = ϕ̇(Ω; V⃗)−∇ϕ · V⃗ .

While for a boundary-dependent function ϕ = ϕ(x,Γ), the shape derivative ϕ′(Γ, V⃗) at Γ in

direction V⃗ is defined as follows

ϕ′(Γ; V⃗) = ϕ̇(Γ; V⃗)−∇Γϕ · V⃗ |Γ.

Here the notation ∇Γ means the tangential gradient, which is defined as follows.

Definition 4.6 (Tangential gradient). Assume that Γ is a smooth orientable compact (d−1)

dimensional surface in Rd without boundary. Given ϕ ∈ C2(Γ) and its smooth extension

ϕ̃ ∈ C2(Rd). The tangential gradient ∇Γϕ is defined to be

∇Γϕ = (∇ϕ̃− (∂νϕ̃)ν)|Γ,

54

where ν denotes the unit normal vector to Γ and ∂νϕ̃ is the normal derivative.

The concept of shape derivative is pivotal for calculating changes in quantities dependent

on shape, as well as variations in shape energy functionals, with respect to deformations of

the shape by specified velocity fields. The following discussion introduces a range of results

from shape differential calculus as outlined in [32] without proof.

Theorem 4.1 (shape derivative for domain integral energy). Let ϕ = ϕ(Ω) be given so that

the material derivative ϕ̇(Ω; V⃗) and the shape derivative ϕ′(Ω; V⃗) exist. Then, the shape

energy J(Ω) =
∫
Ω
ϕ(x,Ω)dx is shape differentiable and its shape derivative at Ω in the

direction of V⃗ is defined to be

dJ(Ω; V⃗) =

∫
Ω

ϕ′(Ω; V⃗)dx+

∫
Γ

ϕV dS.

Theorem 4.2 (shape derivative for boundary integral energy). Let ϕ = ϕ(Γ) be given

so that the material derivative ϕ̇(Γ; V⃗) and the shape derivative ϕ′(Γ; V⃗) exist. Then, the

shape energy J(Γ) =
∫
Γ
ϕ(x,Γ)dS is shape differentiable and its shape derivative at Γ in the

direction of V⃗ is defined to be

dJ(Γ; V⃗) =

∫
Γ

ϕ′(Γ; V⃗)dS +

∫
Γ

κϕV dS,

Moreover, if ϕ(·,Γ) = ψ(·,Ω)|Γ, then we obtain

dJ(Γ; V⃗) =

∫
Γ

ψ′(Ω; V⃗)|ΓdS +

∫
Γ

(∂νψ + κψ)V dS.

Notice that for different free boundary problems, the formulation of the shape energies and

the constraint PDEs vary significantly. The shape derivatives of the integrated objective

functions ϕ′ and ψ′ need to be computed for specific applications. We will reference specific

results in later sections when we have a more concrete example. In this section, our goal is

55

to introduce basic notations and the most general results in the field of shape optimization.

Therefore, we conclude this section with a general property of shape derivatives, as expressed

in the following theorem.

Theorem 4.3 (Hadamard structure theorem). For shapes with smooth boundaries, the shape

gradient of a surface or domain energy always has a representation of the form

dJ(Γ; V⃗) = ⟨g, V ⟩Γ or dJ(Ω; V⃗) = ⟨g, V ⟩Γ,

where ⟨·, ·⟩ denotes a suitable duality pairing on the boundary, and V = V⃗ · ν is the normal

component of V⃗ on the boundary.

This theorem demonstrates that the shape derivative is concentrated on the boundary, indi-

cating that only normal displacements of the boundary affect the value of the shape energy

functional. It’s important to note that this outcome holds true regardless of the specific

form of the shape functional; both domain and boundary integral-defined shape functionals

have their shape gradients defined on the boundary. For those interested in further details,

we recommend consulting Chapter 9, Theorem 3.6 in [11] and Section 2.11, Theorem 2.27 in

[32].

4.3 Gradient Descent on Shape Manifold

As indicates in Theorem 4.3, the shape derivative dJ(·; V⃗) is solely dependent on V , the

normal component of the velocity. This means that any vector field V⃗ that satisfies V⃗ ·ν = V

can be chosen as an extension of V beyond the boundary Γ without affecting the shape

gradient. Therefore, without loss of generality, an extension of the normal velocity V that

is locally constant in normal direction within a tubular neighborhood of the boundary can

be readily used.

56

The primary motivation behind deriving the shape derivatives dJ(Γ; V⃗), dJ(Ω; V⃗) of a given

shape energy J is to derive algorithms aimed at minimizing this energy and calculating the

optimal shape solution. In this section, we will provide a brief overview of how to develop

gradient descent flows for shapes, utilizing shape derivatives for this objective.

In Theorem 4.3, it is noted that the shape derivative takes the form

dJ(Γ; V⃗) =

∫
Γ

g(Γ)V dS,

where g(Γ) (or alternatively g(Ω)) represents the shape gradient, which is dependent on the

shape energy. By formally setting V = −g(Γ), we can derive a gradient descent velocity,

leading to

dJ(Γ; V⃗) = −
∫
Γ

g2dS ≤ 0.

demonstrating a decrease in the shape energy, thus adhering to the principles of gradient

descent.

The velocity V = −g(Γ) is the most commonly used gradient descent velocity for solving

shape optimization problems. Once a method for computing the gradient descent velocity V

is established, minimization can proceed by starting with an initial surface Γ0 and iteratively

updating it, calculating the velocity V k+1 for the new shape Γk+1 at each step

xk+1 = xk + τkV⃗
k, ∀xk ∈ Γk, (4.1)

where τk > 0 represents a step size parameter. This parameter may either be fixed or

determined by a line search algorithm. The vector velocity V⃗ can be computed from the

normal velocity V through a constant extension in the normal direction alone, as previously

mentioned. This is because the tangential component of the velocity V⃗ does not change the

57

shape of the surface.

Iterative methods other than direct shape gradient descent can also be applied within the

shape optimization framework, including accelerated gradient descent, the conjugate gra-

dient algorithm, quasi-Newton, and Newton methods. However, when implementing any

advanced iterative methods on the shape manifold, it’s crucial to ensure that the updated

shape remains on the manifold of shapes itself. Given the nonlinear nature of the shape

manifold, careful implementation is required. Additionally, while the well-designed descent

directions in more advanced iterative methods can significantly accelerate convergence, they

may also substantially increase the computational cost per iteration. For instance, second-

order iterative methods like Newton’s method often require higher-degree shape derivatives,

potentially introducing more approximation error and decreasing the numerical solutions’

overall accuracy. While (semi-)implicit schemes, which offer enhanced stability for handling

higher-degree derivatives (such as curvature), could be a viable alternative to the explicit

scheme detailed in (4.1), exploring these schemes falls outside the scope of this thesis. In-

vestigating these alternatives could be an avenue for future research. In this thesis, the

main objective is to explore a viable strategy for broadening the application of the SEEM

algorithm, with the aim of developing a high-order solver (in terms of grid refinement) for

free boundary problems. Therefore, the focus is primarily on smooth problems where the

shape gradient involves derivatives up to the first order, including normal vectors and nor-

mal derivatives. For these problems, employing a straightforward shape gradient formulation

alongside an explicit scheme is sufficient to achieve competitive results.

58

4.4 Order of Convergence of Numerical Shape Gradi-

ents

In the previous sections, from 4.1 to 4.3, we have fully introduced the framework for the shape

optimization problem using a continuous formulation. Regarding numerical implementation,

various methods such as the finite element method are used to approximate solutions to the

PDEs, along with the required differentiation and integration across the domain and its

boundaries. However, when implementing shape gradients numerically, approximation er-

rors arise in comparison to continuous analysis. This sparks an interest in the convergence

rate of these numerical shape gradient approximations. The research presented in [19] shows

that two analytically identical ways of representing shape gradients for PDE-constrained

shape functionals, integrating their traces along the domain boundary versus evaluating in-

tegrals within the volume, become distinct for a numerical approximation with finite element

solutions of BVPs. Through detailed convergence analysis, it has been determined that the

volume-based expression for the shape gradient typically yields higher accuracy within a

finite element framework. We will start by summarizing their key findings, then move on

to use the SEEM to approximate shape gradients for comparison purposes. Finally, we aim

to demonstrate that the convergence order of the boundary integral-defined shape gradient

does not decrease when the SEEM is utilized as a BVP solver.

The Main Results of [19] can be summarized as follows. Consider the PDE constrained shape

functional of the form

J(Ω) =

∫
Ω

j(u)dx,

where j : R → R possesses a locally Lipschitz continuous derivative j′, and u is the solution

59

of the state problem, a scalar elliptic equation with Dirichlet boundary conditions

−∆u+ u = f in Ω,

u = g on ∂Ω.

(4.2)

The formulas for shape gradients also contain p, the solution of the adjoint problem

−∆p+ p = j′(u) in Ω,

p = 0 on ∂Ω.

(4.3)

The shape gradient formulas expressed through both volume and boundary integrals are

listed below, for a detailed derivation and understanding of these formulas, one should refer

to [19].

• Volume Integral for Dirichlet BC

dJ(Ω, u, p, V⃗)Vol =

∫
Ω

(
∇u · (DV⃗ +DV⃗ ⊤)∇p− fV⃗ · ∇p

+ divV⃗ (j(u)−∇u · ∇p− up)

+ (j′(u)− p)(∇g · V⃗)−∇p · ∇(∇g · V⃗)
)
dx.

• Boundary Integral for Dirichlet BC

dJ(Ω, u, p, V⃗)Bdry =

∫
∂Ω

V⃗ · ν
(
j(u) + pν(u− g)ν

)
dS.

For exact solutions u∗ and p∗, the shape gradients represented in both volume integral and

boundary integral are equivalent

dJ(Ω, V⃗)Exact = dJ(Ω, u∗, p∗, V⃗)Vol = dJ(Ω, u∗, p∗, V⃗)Bdry.

60

However, for the finite element solutions uh and ph, this equality may break down. The main

theorems in [19] show that, if the Dirichlet BVPs for the Laplacian (4.2) and (4.3) are H2-

regular, The source function f and the boundary data g in (4.2) are restrictions of functions

in H1(Rd) and H3(Rd) to Ω and ∂Ω, respectively, the vector field V⃗ is in W 2,∞(Rd), then

the Ritz–Galerkin approximations uh and ph by piecewise linear Lagrangian finite elements

satisfy

|dJ(Ω, V⃗)Exact − dJ(Ω, uh, ph, V⃗)Vol| ≤ C(Ω, u∗, p∗, f, g, V⃗)h2 = O(h2).

Moreover, if for some p > d, where d is the space dimension, the following assumption holds

∥u∗∥W 2,p(Ω) ≤ C ∥f∥Lp(Ω) ,

then

|dJ(Ω, V⃗)Exact − dJ(Ω, uh, ph, V⃗)Bdry| ≤ Ch = O(h).

Here h stands for the meshwidth, and C > 0 does not depend on h.

We compare the first test example in [19] using SEEM as the BVP solver instead of the finite

element method. Specifically, consider the exact solution

u(x, y) = cos(x) cos(y),

the associated right hand side functions f and g can be calculated based on the specific

operators and boundary conditions. The computational domain Ω is a disc with radius
√
π.

The shape functional is quadratic with j(u) = u2. This example is actually sufficiently

smooth, however the numerical test from the original paper based on the finite element

method verifies their predicted quadratic and linear convergence with respect to the mesh-

width h for volume and boundary integral formulas respectively. Notice that the optimal

order of convergence using linear element on this BVP isO(h2) in L2 norm, the shape gradient

61

Figure 4.1: Approximation error of the boundary-formula shape gradient using p-th order
SEEM solvers.

Reg Level 2 4 6 8 10
Order for dJ 2.751 4.373 6.135 8.423 11.805

Table 4.1: Order of convergence of the boundary-formula shape gradient approximation
using p-th order SEEM solvers.

in volume integral formula preserves the order of convergence, whereas the boundary integral

formula lose accuracy by 1 order.

As proven in Theorem 7.3 of [2], the order of convergence of the SEEM method with Hp-

regularizer is p− 2. However, for the sufficiently smooth solution u ∈ Hp+2, SEEM performs

the p-th order convergence in numerical approximation. To assess whether the shape gradient

defined by the boundary integral is less accurate compared to its volume integral counterpart

under the SEEM approximation, it is enough to verify if the boundary integral formula

ensures p-th order convergence when employing a p-th order SEEM solver, assuming the

underlying problem possesses sufficient regularity.

Figure 4.1 and Table 4.1 demonstrate that the shape gradient, when represented by the

boundary integral and solved with the SEEM solver, maintains the expected order of conver-

gence. Therefore, we conclude that using the boundary integral formula in the development

of straightforward and easily implementable shape optimization algorithms remains advan-

62

tageous. This is because it offers two significant benefits over the volume integral formula.

Firstly, the boundary integral formula aligns directly with the Hadamard structure theorem

(Theorem 4.3), facilitating the straightforward derivation of the explicit formula for the de-

scent normal velocity in gradient descent iterations. Secondly, the explicit representation of

normal velocity simplifies the shape evolution process through the perturbation of identity

method (Definition 4.2), making it a direct and efficient approach.

63

Chapter 5

Main Algorithm

In previous chapter, an overview of different types of shape energy functional as well as their

corresponding shape derivatives are introduced. However, for the simplicity of the algorithm

introduction, we will standardize the notation for the algorithm in this chapter. Consider the

free boundary problem formulated in the following general shape optimization framework

minimize J(Γ) := j(u(Γ),Γ),

subject to BVPstate(u(Γ),Γ) = 0,

(5.1)

with the analytical shape gradient represented in the Hadamard structure form as follows

dJ(Γ, V) =

∫
Γ

g(Γ, u(Γ), p(Γ))V dS. (5.2)

Here V is the normal velocity defined on the free boundary Γ, p(Γ) is the solution to the

adjoint boundary value problem BVPadjoint(p(Γ),Γ) = 0. The shape gradient descent algo-

rithm, which utilizes numerical PDE solutions through SEEM, is proposed in Section 5.1.

An introductory problem solved by the proposed algorithm will be presented in Section 5.2.

It’s important to note that while this test example is purely academic and may seem less

64

practical, it effectively showcases the advantages of our proposed method in overcoming the

meshing and remeshing issues that plague finite element-based methods. Additionally, this

test example also highlights the superior convergence rate of our proposed method when

compared to finite element-based methods.

5.1 Description of the Algorithm

The gradient descent iteration begins with a set of N equally distributed discrete points

along the arc length of a smooth curve. This curve is defined by an analytical parametric

representation and serves as the initial approximation of the free boundary solution Γ, which

we denote as Γ0. In each iteration of the shape gradient descent, calculations are performed

using the information from the current discrete curve Γk. At the end of each iteration, the

discrete curve is updated to Γk+1, following the gradient descent flow. The detailed steps of

the algorithm within a single iteration are outlined in Algorithm 1.

Several key points should be noted about this algorithm:

1. The initial guess for the discrete free boundary is characterized by N boundary points,

a number that is maintained throughout the explicit shape gradient vector evaluation

and the explicit curve evolution. Although these boundary points may be resampled

to address any issues related to their quality, the total number of boundary points in

the updated configuration should remain as N .

2. The boundary-domain ratio r1, representing the ratio between the number of bound-

ary points N and the SEEM grid points m, is typically set to be greater than 1. This

approach leverages the high-order capabilities of SEEM solvers to minimize the overall

computational cost, as SEEM can achieve sufficient accuracy with a coarser grid com-

pared to the precision required for boundary approximation. In our experiments, we

65

Algorithm 1 SEEM-Based Gradient Descent Algorithm for Free Boundary Problems

Input: initial guess of the discrete free boundary Γ0 = {x00, . . . , x0N−1}, max iteration number
kmax, boundary-domain ratio r1 =

N
m
between the number of boundary points and the SEEM

grid points, SEEM boundary density level ρ = 4πNSEEM
m

Lm
, regularization level l of SEEM, line

search step length upper bound τ0, tolerance ε of stopping criterion.
Output: numerical approximation of the discrete free boundary Γn.

1: Initialization: set k = 0, get the number of boundary points throughout the curve
evolution N = |Γ0|

2: while k < kmax do
3: Find level set representation ϕ(x) of the discrete curve Γk using regularized kernel-

based boundary approximation.
4: Approximate the perimeter L of the current boundary curve.
5: Set grid number of SEEM by m = ⌈N

r1
⌉. Set SEEM boundary number by NSEEM

m =

⌈ρLm
4π

⌉.
6: Obtain numerical solutions um and pm of state and adjoint problems by SEEM.
7: Estimate shape gradient vector Gk = g(Γk) = [gk0 , . . . , g

k
N−1]

⊤ in (5.2) with interpo-
lation and boundary approximation techniques based on um, pm, and ϕ(x).

8: Compute the normalized step length in gradient descent formula τ k = min
{

τ0
∥Gk∥2 , 1

}
.

9: Get Γk+1 = {xk+1
j }N−1

j=0 by the explicit gradient descent scheme xk+1
j = xkj − τ kgkj ν

k
j .

10: if ∥Γk+1 − Γk∥ =
√∑N−1

j=0 |xk+1
j − xkj |2 < ε then

11: return Γk+1.
12: end if
13: Backtracking: Approximate the shape energy at Γk+1 and Γk.
14: if J(Γk+1) > J(Γk) + βk then
15: Set τ k = τ k/2, repeat from step 8 or return Γk if τ k < ε.
16: end if
17: k = k + 1.
18: end while
19: return Γkmax .

66

generally set r1 to range from 2 to 4.

3. The SEEM boundary density, denoted as ρ = 4πNSEEM
m

Lm
and discussed in Section 3.3,

quantifies the number of SEEM boundary points NSEEM
m relative to the perimeter of the

boundary curve L and the SEEM grid number m. It’s important to note that SEEM

boundary points differ from those used in curve evolution, with NSEEM
m usually being

much smaller thanN . Analysis in Section 3.3 suggests that SEEM performs better with

a lower boundary density ρ, to some extent, with ρ = 0.5 being a suitable choice for

both regularized iterative and direct SEEM approaches. The SEEM boundary points

NSEEM
m in our algorithm are obtained through a point sampling algorithm applied to the

level set function ϕ(x), as introduced in Section 2.4. NSEEM
m can also be viewed as the

dimension of the SEEM boundary operator, limiting the size of the Schur complement

matrix to be inverted within SEEM. However, SEEM is capable of utilizing the full

information from the N boundary points, including recognition of interior and exterior

regions and interpolation on the boundary.

4. The approximation of the boundary in step 3 is a critical component of the iterative

computations. The level set function ϕ(x), which encapsulates all the information from

the N discrete boundary points, is extensively utilized in subsequent steps. These steps

include but are not limited to resampling new boundary points, evaluating normal vec-

tors, and recognizing domain regions. The regularization parameter for the regularized

kernel-based method is set to 10−15 by default to ensure both accuracy and stability.

It’s important to note that the precise information always originates from the original

N boundary points, regardless of how finely we resample the curve.

5. In step 4, the approximation of the perimeter L can be initially estimated by calculating

the perimeter of the polygon formed by the discrete curve Γk. For more accurate results,

the perimeter can also be computed based on the level set function ϕ(x).

6. In step 7, use interpolation, um, pm, and level set representation ϕ(x) of the bound-

67

ary to find the approximation of the shape gradient formula g(Γ, u(Γ), p(Γ)) on the

initial boundary points Γk, which is denoted as Gk = [gk0 , . . . , g
k
N−1], where g

k
j is the

approximation of g(xkj), j = 0, . . . , N − 1.

7. The backtracking technique is employed to manage the reduction of the shape energy

J(Γk). However, during the evolution of the curve, particularly at the start, significant

shape deformations may occasionally result in an acceptable increase in the shape

energy functional. A widely used approach to address this situation is the application

of the Armijo condition. For instance, in step 14, βk could be set as βk = βτ k∥Gk∥2,

where β is a constant within the range (0,1). This parameter is carefully chosen to

strike a balance between minimizing the objective function and advancing towards the

minimum efficiently. It helps to avoid excessively large steps that could bypass the

minimum and excessively small steps that could decelerate the convergence process.

8. The algorithm terminates when any of the three stopping criteria is met. The first

criterion, applied in step 10, evaluates the magnitude of the update: if the iteration

results in a discrete curve that does not significantly differ from the previous step,

as indicated by an L2 norm of the update vector below a specified tolerance, then the

algorithm stops. The second criterion, introduced in step 15, is related to backtracking:

if the gradient descent step length τ k falls below the tolerance and the shape energy does

not effectively decrease, the algorithm halts, acknowledging that the current step’s Γk,

which leads to a smaller energy than Γk+1, is the output. The final stopping criterion

is reached if neither of the first two criteria is met by the time the iteration count

reaches the maximum number kmax. However, in our experiments, this scenario has

not occurred since the maximum number of iterations is usually set sufficiently high

to allow the algorithm to progress fully.

68

5.2 An Introductory Test Problem

The shape gradient descent scheme, as outlined in Chapter 4 based on shape sensitivity

analysis, is equally applicable to both continuous and discrete representations of the shape

optimization problem. However, Section 4.4 mentions that this approach may not hold up

when dealing with certain low-order numerical approximations, such as finite element meth-

ods that use piecewise linear elements. It’s important to note that the preceding discussion

primarily focuses on the approximation of the shape gradient in a single iteration. When

considering the evolution of shape throughout the gradient descent process, the complexity

increases. In the case of finite element methods, the domain Ω is typically represented by

a computational mesh. As the shape evolves through the gradient descent iterations, and

the boundary nodes are adjusted following the gradient descent flow, the interior nodes are

subsequently shifted in response to the movements of the boundary nodes, following a certain

nonlinear mapping. Numerous studies have identified a significant limitation of this direct

approach: it often results in the degeneration of the computational mesh. Two primary

sources of this degeneration are highlighted in [14]: deteriorating cell aspect ratios and mesh

nodes moving into adjacent cells.

As introduced in Chapter 3, the SEEM method operates on a consistent domain grid that re-

mains unaffected by the movement of boundary points during curve evolution. This approach

eliminates the issues of meshing or remeshing within the interior domain discretization. Fur-

thermore, by integrating SEEM with the stable and robust boundary approximation algo-

rithm presented in Chapter 2, it effectively bypasses potential degeneration at the boundary

points, showcasing its potential as an efficient solution to the primary challenges in shape

optimization algorithms.

To evaluate the effectiveness of our methods in addressing mesh degeneration issues encoun-

tered in finite-element-based approaches, we examine a test example from [14]. This example

69

demonstrates how the direct application of the shape gradient, derived from the Hadamard

structure theorem in the explicit shape gradient flow, leads to significant mesh degeneration.

Suppose D ⊂ Rd is some bounded and open hold-all domain. Find Ω ⊂ D open, such that

∫
Ω

udx

is minimized, where u solves

−∆u = f in Ω,

u = 0 on ∂Ω.

(5.3)

The shape derivative of above shape optimization problem in the direction of the perturbation

field V⃗ is given by

dJ(Ω, V⃗) =

∫
∂Ω

−∂u
∂ν

∂p

∂ν
V ds,

where ν denotes the outer unit normal vector along the boundary ∂Ω of Ω, V = V⃗ · ν is

the normal component of the vector field V⃗ , p represents the unique solution of the adjoint

problem
−∆p = −1 in Ω,

p = 0 on ∂Ω.

The derivation of the shape gradient above can be found in [23]. By the Hadamard structure

theorem, a straightforward choice of the normal velocity in the gradient descent flow of the

boundary ∂Ω is

V =
∂u

∂ν

∂p

∂ν
.

Although the chosen example is primarily academic, it was selected to demonstrate that

our method can achieve comparable convergence using the simplest shape gradient formula,

70

(a) Function graph. (b) Contour lines.

Figure 5.1: Visualization of the right-hand-side data function in the state problem (5.3).

bypassing any need for meshing and remeshing processes. This is in contrast to finite element

methods, which require a carefully crafted shape gradient formula to sidestep issues related

to mesh quality. More practical examples will be provided in the subsequent chapters to

showcase the versatility and effectiveness of our algorithms across a wider range of PDE-

constrained shape optimization problems.

Consider the data function f in the state problem (5.3) as follows

f(x, y) = 2.5(x+ 0.4− y2)2 + x2 + y2 − 1.

Figure 5.1 provides a visualization of this function. The exact shape solution Ω of the shape

optimization problem is unknown.

The classical gradient method, when applied with a piecewise linear finite element approxima-

tion, faces mesh degeneration issues during its gradient descent iterations. The degenerated

domain mesh, observable after extended iteration periods, alongside the shape gradient field,

are illustrated in Figure 5.2, originally sourced from [14].

The SEEM method maintains the same domain discretization throughout the curve evolu-

71

(a) Domain Mesh (b) Shape Gradient

Figure 5.2: The mesh condition and the shape gradient field in the last gradient descent
iteration in classical finite element based shape gradient method.

tion, as illustrated in Figure 5.3. This figure specifically showcases the conditions during

the final iteration before the algorithm converges. In our approach, the shape gradient field

performs as anticipated: it is smooth and exhibits a small magnitude.

Given the unknown exact solution to the problem, we assess the convergence of our proposed

algorithms using the L∞ norm of the shape gradient vectors. Figure 5.4 presents the plots

of these gradient norms relative to the one-dimensional grid numbers m of SEEM.

Define the order of convergence p with respect to the mesh refinement, which in our algorithm

is measured by the increase of the domain grid number m. Specifically,

p =
log(en+1/en)

log(hn+1/hn)
=

log(en+1/en)

log(mn/mn+1)
,

where en is L∞ norm of shape gradients, mn is the number of SEEM grid points in one dimen-

sion used for solving BVP in curve evolution. Under this notation, the order of convergence

of our algorithms are computed and listed in Table 5.1.

72

(a) Domain Grid (b) Shape Gradient

Figure 5.3: The domain grid and the shape gradient field in the last gradient descent iteration
in SEEM based shape gradient method.

(a) SEEM-RPCG solver (b) SEEM-Direct solver

Figure 5.4: Plots of L∞ norm in shape gradient vectors for different regularization levels of
l using different types of solvers.

Regularization Level Order of SEEM-RPCG Order of SEEM-Direct
2 0.8681 3.1625
3 2.4641 3.7263
4 2.4142 4.0672
5 - 4.1064
6 - 4.1737

Table 5.1: Order of convergence in L∞ norm of shape gradient vectors for different regular-
ization levels of l using different types of solvers.

73

Chapter 6

Obstacle Problems

6.1 Problem Introduction

The obstacle problem is a prototypical free boundary problem, which describes the equi-

librium position u of an elastic membrane loaded by the external force f , with boundary

Σ held fixed at height 0, under a given obstacle φ > 0. Denote Ω =: {x | u(x) < φ(x)}

as the non-contact set, the free boundary Γ is the interface between Ω and the contact set

I =: {x | u(x) = φ(x)}. An illustration of the above problem is shown in Figure 6.1.

There are mainly two ways of formulating the obstacle problem mathematically [6]. Denote

the set D ⊂ Rd as the hold-all domain with the smooth boundary Σ = ∂D. With the

notations above, the set D = I ∪ Ω is the union of both contact and non-contact sets.

Assume functions f ∈ H−1(D), and φ ∈ H1(D), where Hs(D) denotes the Sobolev space of

order s. Denote the space K0 as

K0 = {v ∈ H1
0 (D)|v ≤ φ in the sense of H1(D)}.

74

Figure 6.1: An illustration of a typical obstacle problem which models the displacement of
an elastic membrane under a convex smooth obstacle due to an external force.

Then the obstacle problem can be formulated as the following variational inequality, where

u ∈ K0 to be found such that for ∀v ∈ K0,

∫
D

∇u · ∇(v − u)dx ≥
∫
D

f(v − u)dx. (6.1)

The other formulation of the obstacle problem can be obtained if the free boundary Γ is

sufficiently smooth. Then the above variational inequality (6.1) can be reformulated as an

overdetermined boundary value problem

−∆u = f in Ω,

u = φ on Γ (also in I),

∂νu = ∂νφ on Γ,

u = 0 on Σ,

(6.2)

where ∂ν denotes the normal derivative on Γ.

75

Under the shape optimization framework, the above overdetermined BVP (6.2) can be re-

formulated as a shape energy functional minimization problem with PDE constraint. There

are multiple choices of constructing the shape functionals. It’s been shown in [31] that a

straightforward choice of the shape energy functional

J(Γ) =

∫
Γ

(u− φ)2dS

subject to the mixed boundary value problem

−∆u = f in Ω,

u = 0 on Σ,

∂νu = ∂νφ on Γ.

has multiple stationary points. Therefore it is not an ideal choice for developing the numerical

method to find the free boundary solution, as it may raise new difficulties in finding the

the global minimizer of the shape functional. Notice that choosing a shape functional for

computing the free boundary in the obstacle problem is a rather nontrivial task, since the

main focus of this thesis is to extend the applications of the high-order SEEM algorithms,

and to improve the order of convergence of some existing low order algorithms. Here we

mainly follow the shape optimization framework suggested in [6] that is proven to possess

a unique minimizer at the exact solution provided that some sufficient conditions on the

problem data hold. Additionally, we will compare our SEEM-based algorithm with the work

in [31] which is a more recent finite element based algorithm built under the same shape

optimization framework.

The shape optimization framework in [6] can be formulated as follows. Denote F as a closed

nonempty subset of the hold-all domain D with sufficiently smooth boundary ΓF = ∂F ,

76

consider the functional

Jt(F) =
1

2

∫
D

|∇uF |2dx+ (t− 1)

∫
D

fuFdx, t ∈ R, (6.3)

with the following PDE constraint

−∆uF = f in ΩF = D/F,

uF = φ in F,

uF = 0 on Σ = ∂D,

(6.4)

where uF is the solution to the constraint BVP, and the subscription F emphasizes this BVP

depends on the set F . The parameter t in the shape functional (6.3) can be chosen as any

real number in theory, however, special cases when t = 0 [35] and t = 1 [21] have already

been proposed elsewhere, this choice of shape functional generalizes those existing results.

In particular, the cases for t ≥ 1 is of most interest.

Denote V⃗ : R2 → R2 as a sufficiently smooth vector field that vanishes outside D, the normal

component of V⃗ on the boundary ΓF is V =: V⃗ · ν. According to [6], the shape derivative of

Jt(F) in the direction of V⃗ is as follows

dJt(F, V⃗) =

∫
ΓF

(∂νuF − ∂νφ)B(t)V dσ, (6.5)

where

B(t) =
1

2
(∂νuF + ∂νφ)− t∂νp+ (t− 1)∂νuF , (6.6)

77

and p is the unique solution of the adjoint BVP

−∆p = 0 in ΩF ,

p = φ on ΓF ,

p = 0 on Σ.

(6.7)

6.2 Experiments with Known Exact Solutions

We test our algorithms using an example of obstacle problem (6.2) with known exact solu-

tions. For circular domains and radically symmetric obstacles, the exact solution u = u(r)

is also radically symmetric, which is given in the following form

u(r) =

φ(r), for r ≤ rΓ,

−fr2/4 + α log r + β, for rΓ ≤ r ≤ R,

If the obstacle is a flat plane parallel to and positioned Z units above the plane of D, i.e.,

the height function of the obstacle is φ(r) = Z. Then the parameters in the exact solution

formula can be explicitly determined by the problem data in the following way:

R = 1

Z = f(1− 3e−2)/4

φ(r) = Z

=⇒

α = fe−2/2

β = f/4

rΓ = e−1

(6.8)

This is the test example used in [31], we choose it for better comparison between our methods

and the existing ones. The initial curve for the gradient descent iteration is shown in Figure

6.2.

There are two kinds of error metrics used in [31] for measuring the approximation of the

78

Figure 6.2: Initial curve used in the shape gradient descent iteration to detect the free
boundary of the obstacle problem.

obstacle problems. We reformulate them in the notation of our algorithm as follows

• Root Mean Square Error Erms

The root mean square of the distances between the numerical solution ΓN and the

exact solution Γ is defined as

Erms(ΓN) =

(
1

N

N∑
k=1

∥xk − ΠΓ(xk)∥2
)1/2

.

where xk is the k-th point on ΓN , and ΠΓ(xk) is the closest point projection of xk onto

Γ.

• L2 Type Error EL2

Denote PN as the polygon generated by points on ΓN , then the deviation of ΓN from

Γ in an L2 sense is defined as

EL2(ΓN) =

(∫
PN

∥x− ΠΓ(x)∥2ds
)1/2

.

The order of convergence is computed with respect to the mesh refinement for both our

algorithms and those in [31]. The finite element methods are used therein for solving the

79

Figure 6.3: The errors with respect to SEEM grid number m in different regularization levels
l of SEEM-RPCG solver applied to the obstacle problem.

Algorithm Order of Erms Order of EL2

Algorithm in [31] 1.1014 0.8595
2nd-order SEEM-RPCG 0.9700 0.9687
3rd-order SEEM-RPCG 2.2998 2.2475
4th-order SEEM-RPCG 2.9357 2.9138

Table 6.1: Order of convergence in different errors using SEEM-RPCG solvers of varying
orders.

BVPs defined in the domain Ω, and the free boundary Γ is approximated by the mesh

nodes on Γ. As the mesh size h decreasing, finer triangulation induces more points on the

free boundary, then the mesh refinement of the algorithm in [31] can be measured by the

decrease of h. Equivalently, our algorithms use SEEM as the BVP solving algorithm, the

mesh refinement can be measured by the increase of the grid number m. Now the specific

formula of the order of convergence that are equivalent for both methods is as follows,

p =
log(en/e1)

log(hn/h1)
=

log(en/e1)

log(m1/mn)
,

where ek represents any of the approximation error metric defined above, hk represents the

mesh size of the finite element method used in [31], mk represents the number of the spatial

grid points used one dimension in SEEM, k = 1, n respectively denotes the first and last

record of data that is placed in order of mesh refinement.

80

Figure 6.4: The errors with respect to SEEM grid number m in different regularization levels
l of SEEM-Direct solver applied to the obstacle problem.

Figure 6.3 and Table 6.1 display the error plots and rate of convergence table of our algorithm

applied to the obstacle problem with exact solution (6.8) using SEEM-RPCG solvers of

different regularization levels.

Algorithm Order of Erms Order of EL2

Algorithm in [31] 1.1014 0.8595
2nd order SEEM-Direct 1.6377 1.6322
3rd order SEEM-Direct 1.8294 1.8189
4th order SEEM-Direct 2.5058 2.4895
5th order SEEM-Direct 3.8862 3.7379
6th order SEEM-Direct 3.6988 3.5767

Table 6.2: Order of convergence in different errors using SEEM-Direct solvers of varying
orders.

Figure 6.4 and Table 6.2 display the error plots and rate of convergence table of our algorithm

applied to the obstacle problem with exact solution (6.8) using SEEM-Direct solvers of

different regularization levels.

81

(a) 3D graph (b) Contour Plot

Figure 6.5: An elliptic paraboloid obstacle used for testing the SEEM-based gradient descent
algorithm on an obstacle problem with no known exact solution.

Regularization Level Order of SEEM-RPCG
2 0.8099731675905643
3 2.096281860836129
4 2.1089154406932495

Table 6.3: Order of convergence in L∞ norm of shape gradient vector for different levels of
l using SEEM-RPCG solver.

6.3 Experiments with Unknown Exact Solutions

Consider the obstacle problem (6.2) featuring an elliptic paraboloid obstacle described by the

equation z = x2 +2y2 − 0.75, as shown in Figure 6.5. The problem is sufficient smooth with

a simple closed free boundary that is unknown analytically. We measure the performance

of our algorithms by the L∞ norm of the shape gradient vector evaluated on the discrete

boundary solution. The initial curve for this example is taken as a circle with radius 0.75.

Both SEEM-RPCG and SEEM-Direct solver are tested for this example.

Figure 6.6 and Table 6.3 show the results for SEEM-RPCG solver. Figure 6.7 and Table 6.4

are for SEEM-Direct solver.

82

Figure 6.6: The L∞ errors of the shape gradient vectors with respect to the SEEM grid
number m in different regularization levels l using SEEM-RPCG solver.

Figure 6.7: The L∞ errors of the shape gradient vectors with respect to the SEEM grid
number m in different regularization levels l using SEEM-Direct solver.

Regularization Level Order of SEEM-Direct
2 3.579707665243948
3 3.5700885592783633
4 2.4835150383645166
5 2.5165530934708134
6 2.157117510663864

Table 6.4: Order of convergence in L∞ norm of shape gradient vector for different levels of
l using SEEM-Direct solver.

83

We conclude that our proposed SEEM-based gradient descent algorithm demonstrates a

high order of convergence when applied to the obstacle problems. The regularized iterative

method operates stably on a dense grid, whereas the direct method leverages the high-order

nature to achieve competitive accuracy within a sparse grid, which significantly reduces

computational costs.

84

Chapter 7

Conclusion

The primary contribution of this thesis is the expansion of applicability of SEEM to tackle

free boundary problems within the framework of shape optimization. We have introduced

a stable, high-order approach for free boundary problems by leveraging regularized SEEM

techniques.

Specifically, this work addresses challenges faced by numerical shape optimization approaches

in solving free boundary problems, where commonly employed boundary value problem

solvers (BVP) exhibit low orders of convergence and struggle with mesh degeneration through-

out the problem-solving process.

We propose the use of SEEM, an alternative BVP solving approach, within the optimization

framework. SEEM stands out as a BVP solver due to its highly tunable order of convergence.

It employs simple discretization across a larger hold-all domain and remains unaffected by

boundary evolution, offering distinct advantages.

A key challenge in integrating SEEM into the shape optimization framework is its sensitivity

to perturbations in the discrete representation of boundaries. We address this by employing

85

a regularized kernel-based level set method to stably represent discrete boundaries and ex-

tend the regularization concept to develop a regularized preconditioning approach for SEEM.

This significantly reduces the condition number for rough boundaries by up to 70%, enhanc-

ing stability of SEEM in tackling boundary value problems on unknown boundaries and

facilitating its use in shape optimization frameworks for free boundary problems.

We demonstrate that the regularized SEEM preserves high-order accuracy in shape derivative

approximation within boundary integral formulations, whereas the same task using finite

element approximation experiences a loss in convergence order. This enables the direct use

of shape gradient representation in shape optimization algorithms.

Furthermore, the regularized SEEM method sidesteps the meshing complications in a direct

and efficient way, which traditional finite element methods often have to expend additional

efforts to overcome. Experimental results show that the regularized SEEM is capable of

solving more applied problems, such as obstacle problems, while maintaining a high order of

convergence.

86

Bibliography

[1] D. Agress, P. Guidotti, and D. Yan. The smooth extension embedding method
with chebyshev polynomials. Numerical Methods for Partial Differential Equations,
39(3):2355–2377, 2023.

[2] D. J. Agress. Seem: A Kernel-Based Fictitious Domain Method. University of California,
Irvine, 2020.

[3] D. J. Agress and P. Q. Guidotti. The smooth extension embedding method. SIAM
Journal on Scientific Computing, 43(1):A446–A471, 2021.

[4] E. Bänsch, P. Morin, and R. H. Nochetto. A finite element method for surface diffusion:
the parametric case. Journal of Computational Physics, 203(1):321–343, 2005.

[5] A. E. Berger, M. Ciment, and J. C. Rogers. Numerical solution of a diffusion consump-
tion problem with a free boundary. SIAM Journal on Numerical Analysis, 12(4):646–
672, 1975.

[6] A. Bogomolny and J. Hou. Shape optimization approach to numerical solution of the
obstacle problem. Applied Mathematics and Optimization, 12:45–72, 1984.

[7] A. Bonito, R. H. Nochetto, and M. S. Pauletti. Geometrically consistent mesh modifi-
cation. SIAM Journal on Numerical Analysis, 48(5):1877–1899, 2010.

[8] R. Brügger and H. Harbrecht. On the reformulation of the classical stefan problem as
a shape optimization problem. SIAM Journal on Control and Optimization, 60(1):310–
329, 2022.

[9] D. Bucur, G. Buttazzo, et al. Variational methods in shape optimization problems. (No
Title), 2000.

[10] J. Crank. Free and moving boundary problems. (No Title), 1984.

[11] M. C. Delfour and J.-P. Zolésio. Shapes and geometries: metrics, analysis, differential
calculus, and optimization. SIAM, 2011.

[12] G. Dogan, P. Morin, R. H. Nochetto, and M. Verani. Discrete gradient flows for shape
optimization and applications. Computer methods in applied mechanics and engineering,
196(37-40):3898–3914, 2007.

87

[13] J. S. Dokken, S. W. Funke, A. Johansson, and S. Schmidt. Shape optimization using
the finite element method on multiple meshes with nitsche coupling. SIAM Journal on
Scientific Computing, 41(3):A1923–A1948, 2019.

[14] T. Etling, R. Herzog, E. Loayza, and G. Wachsmuth. First and second order shape
optimization based on restricted mesh deformations. SIAM Journal on Scientific Com-
puting, 42(2):A1200–A1225, 2020.

[15] P. Guidotti. Dimension independent data sets approximation and applications to clas-
sification. arXiv preprint arXiv:2208.13781, 2022.

[16] J. Hadamard. Mémoire sur le problème d’analyse relatif à l’équilibre des plaques
élastiques encastrées, volume 33. Imprimerie nationale, 1908.

[17] J. Haubner, M. Siebenborn, and M. Ulbrich. A continuous perspective on shape
optimization via domain transformations. SIAM Journal on Scientific Computing,
43(3):A1997–A2018, 2021.

[18] M. Hintermüller and W. Ring. A second order shape optimization approach for image
segmentation. SIAM Journal on Applied Mathematics, 64(2):442–467, 2004.

[19] R. Hiptmair, A. Paganini, and S. Sargheini. Comparison of approximate shape gradients.
BIT Numerical Mathematics, 55:459–485, 2015.

[20] J. B. Ho and C. Farhat. Aerodynamic shape optimization using an embedded boundary
method with smoothness guarantees. In AIAA Scitech 2021 Forum, page 0280, 2021.

[21] J.-W. Hou. Shape optimal design and free boundary value problems. The University of
Iowa, 1983.

[22] J. A. Iglesias, K. Sturm, and F. Wechsung. Two-dimensional shape optimization
with nearly conformal transformations. SIAM Journal on Scientific Computing,
40(6):A3807–A3830, 2018.

[23] K. Ito, K. Kunisch, and G. H. Peichl. Variational approach to shape derivatives. ESAIM:
Control, Optimisation and Calculus of Variations, 14(3):517–539, 2008.

[24] C. Maple. Geometric design and space planning using the marching squares and march-
ing cube algorithms. In 2003 international conference on geometric modeling and graph-
ics, 2003. Proceedings, pages 90–95. IEEE, 2003.

[25] P. Morin, R. H. Nochetto, M. S. Pauletti, and M. Verani. Adaptive finite element method
for shape optimization. ESAIM: Control, Optimisation and Calculus of Variations,
18(4):1122–1149, 2012.

[26] A. Nägel, V. Schulz, M. Siebenborn, and G. Wittum. Scalable shape optimization
methods for structured inverse modeling in 3d diffusive processes. Computing and Vi-
sualization in Science, 17:79–88, 2015.

88

[27] S. Osher, R. Fedkiw, and K. Piechor. Level set methods and dynamic implicit surfaces.
Appl. Mech. Rev., 57(3):B15–B15, 2004.

[28] D. W. Quinn and M. E. Oxley. The boundary element method applied to moving
boundary problems. Mathematical and Computer Modelling, 14:145–150, 1990.

[29] L. Rao and H. Chen. The technique of the immersed boundary method: application
to solving shape optimization problem. Journal of Applied Mathematics and Physics,
5(2):329–340, 2017.

[30] V. H. Schulz, M. Siebenborn, and K. Welker. Structured inverse modeling in parabolic
diffusion problems. SIAM Journal on Control and Optimization, 53(6):3319–3338, 2015.

[31] A. Sharma and R. Rangarajan. A shape optimization approach for simulating contact
of elastic membranes with rigid obstacles. International Journal for Numerical Methods
in Engineering, 117(4):371–404, 2019.

[32] J. Sokolowski and J.-P. Zolésio. Introduction to shape optimization. In Introduction to
shape optimization, pages 5–12. Springer, 1992.

[33] R. Udawalpola and M. Berggren. Optimization of an acoustic horn with respect to
efficiency and directivity. International journal for numerical methods in engineering,
73(11):1571–1606, 2008.

[34] D. N. Wilke, S. Kok, and A. A. Groenwold. A quadratically convergent unstructured
remeshing strategy for shape optimization. International journal for numerical methods
in engineering, 65(1):1–17, 2006.

[35] J.-P. Zolésio. Domain variational formulation for free boundary problems. Optimization
of Distributed Parameter Structures-Volume II, pages 1152–1194, 1981.

[36] P. Zunino. Multidimensional pharmacokinetic models applied to the design of drug-
eluting stents. Cardiovascular Engineering: An International Journal, 4:181–191, 2004.

89

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Free and Moving Boundary Problems
	Shape Optimization Approaches
	Smooth Extension Embedding Methods
	An Overview

	Boundary Shape Approximation
	Introduction: Boundary Approximation Methods
	Kernel-Based Level Set Approximation
	Regularized Kernel-Based Level Set Approximation
	Boundary Points Sampling Methods
	Marching Algorithm
	Optimization-Based Method

	Smooth Extension Embedding Methods
	Introduction: Distinctive Features
	Original Implementations
	Iterative Solver
	Direct Solver
	Remarks on Different Solvers

	Regularized Preconditioned Iterative Solver

	Shape Optimization
	Shape Perturbations
	Shape Derivatives
	Gradient Descent on Shape Manifold
	Order of Convergence of Numerical Shape Gradients

	Main Algorithm
	Description of the Algorithm
	An Introductory Test Problem

	Obstacle Problems
	Problem Introduction
	Experiments with Known Exact Solutions
	Experiments with Unknown Exact Solutions

	Conclusion
	Bibliography

