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Abstract

The RET (REarranged during Transfection) gene, which encodes for a transmembrane receptor 

tyrosine kinase, is an established oncogene associated with the etiology and progression of 

multiple types of cancer. Oncogenic RET mutations and rearrangements resulting in gene fusions 

have been identified in many adult cancers, including medullary and papillary thyroid cancers, 

lung adenocarcinomas, colon and breast cancers, and many others. While genetic RET aberrations 

are much less common in pediatric solid tumors, increased RET expression has been shown to be 

associated with poor prognosis in children with solid tumors such as neuroblastoma, prompting an 

interest in RET inhibition as a form of therapy for these children. A number of kinase inhibitors 

currently in use for patients with cancer have RET inhibitory activity, but these inhibitors also 

display activity against other kinases, resulting in unwanted side effects and limiting their safety 

and efficacy. Recent efforts have been focused on developing more specific RET inhibitors, but 

due to high levels of conservation between kinase binding pockets, specificity remains a drug 

design challenge. Here, we review the background of RET as a potential therapeutic target in 

neuroblastoma tumors and the results of recent preclinical studies and clinical trials evaluating the 

safety and efficacy of RET inhibition in adults and children. We also present a novel approach to 

drug discovery leveraging the chemical phenomenon of atropisomerism to develop specific RET 

inhibitors and present preliminary data demonstrating the efficacy of a novel RET inhibitor against 

neuroblastoma tumor cells.
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1. Introduction

The RET (REarranged during Transfection) gene encodes a transmembrane-spanning 

receptor tyrosine kinase with restricted tissue expression that plays a critical role in 

numerous cellular processes. The RET proto-oncogene is located on the long arm of 

chromosome 10 (10q11.2; [1]), and the RET gene was initially identified and cloned in 1985 

from transformed mouse NIH/3T3 fibroblast cells that underwent DNA rearrangement after 

transfection with human T-cell lymphoma DNA [2]. The RET gene was subsequently found 

to be homologous to other receptor tyrosine kinase genes [3]. The RET kinase was initially 

notable for its ability to regulate growth, survival and differentiation of neural-derived 

cell types, with well-characterized roles in the survival and differentiation of developing 

neurons in the central (CNS) and peripheral nervous systems (PNS) through binding to 

neurotrophin ligands, leading to downstream signaling in target cells. However, additional 

research has also defined roles for RET in other cell types, where it can contribute to cell 

growth, differentiation, migration, and tissue maturation and other physiological processes 

such as early embryogenesis, enteric nervous system development, kidney morphogenesis, 

spermatogenesis, and hematopoiesis.

Aberrant expression and activation of the RET kinase have been shown to be critical drivers 

of growth and proliferation of cancer cells from a variety of tumors, making RET expression 

and function potentially valuable therapeutic targets. Prior attempts to inhibit RET for cancer 

therapy have employed nonselective multi-kinase inhibitors with anti-RET activity, but these 

agents have multiple kinase targets and have shown limited clinical activity, with the lack 

of target specificity and consequently increased side effects leading to dose reduction, drug 

discontinuation, and reduced efficacy in patients. New, more selective RET inhibitors are 

showing promising efficacy, improved response rates, and more favorable toxicity profiles 

in early clinical trials. This review discusses the known functional roles of RET in different 

tumors, focusing on the role of RET expression and activity in the pediatric solid tumor 

neuroblastoma, and the results of prior clinical trials employing nonselective RET inhibitors 

in these patients. We also review early results using more selective RET inhibitors as well as 

describe a novel approach to develop stereoselective agents that are more specific for RET 

inhibition.

2. RET expression and biology in normal tissues

2.1. RET molecular biology

The unmodified RET receptor is a 120-kDa protein monomer with a 150 kDa immature 

glycosylated form [4–6], and three distinct isoforms of RET are produced as a result of 

alternative splicing: RET9 (1072 amino acids), RET43 (1106 amino acids, and RET51 (1114 

amino acids). While these isoforms are all co-expressed, the RET9 and RET51 isoforms 

are by far the most predominant [7]. RET undergoes maturation via glycosylation during 

transit through the endoplasmic reticulum, resulting in two proteins differing in molecular 

weight. The 150 kDa protein, present in the cytoplasmic particulate fraction, represents the 

immature form of RET, whereas the 170 kDa protein, which is transported to the plasma 

membrane, represents the mature glycosylated form [8]. The RET receptor kinase domain 
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consists of two lobes connected via a hinge region, with the N-terminal lobe consisting of 

β-sheets, and the C-terminal lobe containing α-helices. The catalytic cleft containing the 

ATP binding site is located between these two lobes (Fig. 1). The RET receptor also contains 

four cadherin-like domains which have been speculated to be associated with cell adhesion, 

and these cadherin domains harbor 11 out of the 12 glycosylation sites in RET, indicating 

their significance for RET structure and folding.

The mature RET receptor protein is a subunit of a multi-protein complex that binds growth 

factors of the glial cell line-derived neurotropic factor (GDNF) family [9]. RET activation 

is secondary to the formation of this complex, which includes one of four soluble ligands, 

GDNF, neurturin (NRTN), artemin (ARTN), or persephin (PSPN), and one of four GPI-

linked co-receptors (GFRα1–4) [10], leading to RET dimerization and transphosphorylation 

of tyrosine residues in the intracellular kinase domain (Tyr806, Tyr809, Tyr900, Tyr905, 

Tyr981, Tyr1015, Tyr1062, Tyr1090, and Tyr1096) (Fig. 1); [11,12]. Dimerization of the 

RET extracellular domain triggers the activation of its intracellular tyrosine kinase domains, 

which then transphosphorylate each other [13]. Further studies demonstrated that although 

GDNF does not bind to RET directly, GDNF family ligand binding is necessary for RET 

activation [14].

Phosphorylation as well as binding of adaptor proteins to phosphorylated tyrosine 

residues in the intracellular domain of the RET receptor leads to the activation of 

various signaling pathways, including the RAS/extracellular signal-regulated kinase (ERK), 

phosphatidylinositol 3-kinase (PI3K)/AKT, p38 mitogen-activated protein kinase (p38 

MAPK), and c-Jun N-terminal kinase (JNK) pathways [7,15]. Phosphorylation of specific 

tyrosine residues has been shown to activate specific downstream signaling pathways, and 

the signaling pathways that become activated following RET ligand binding are highly 

dependent on intracellular localization. For example, RET localized outside lipid rafts on 

the cell surface has the capacity to activate SHC (Src Homology 2 domain-Containing), 

while RET inside lipid rafts can activate fibroblast growth factor receptor substrate 2 (FRS2) 

[16,17]. RET kinase activity also stimulates the JAK/STAT pathway through the recruitment 

of adaptor proteins such as SOCS2 and SHP2, contributing to the development and survival 

of various cell types [18]. Additionally, RET can activate AKT from the cell surface, but 

the RAS/ERK pathway is activated only after RET has become internalized [11]. After 

this activation, RET associates with the ubiquitin ligase Cbl and undergoes ubiquitination, 

leading to RET degradation and downregulation of RET-mediated signaling [19].

2.2. RET cellular functions

RET-mediated activation of multiple downstream signaling pathways impacts many essential 

cellular functions, such as cell proliferation, differentiation, migration, metabolism, and 

survival. The RET receptor also provides positional information and plays key roles in 

cell adhesion and migration in both normal and cancer cells. RET can activate signaling 

pathways that trigger cell migration in some contexts and survival, proliferation, or 

differentiation in others [13].

Recently, RET inhibitors have shown efficacy in preventing migration of pancreatic cancer 

cells, suggesting key roles for RET in cell migration and ultimately tumor invasion 
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and metastasis [20]. RET depletion also reduced cell migration and induced a flattened 

epithelial-like morphology in thyroid cancer cells, and RET depletion further decreased the 

expression of mesenchymal markers and matrix metalloproteinases and reduced invasive 

potential [21]. Interestingly, RET expression promotes a more mesenchymal phenotype with 

reduced cell–cell adhesion and increased invasiveness in papillary thyroid cancer cells but 

is associated with tumor cell survival and proliferation in medullary thyroid cancer cells, 

suggesting cell-type specific roles for RET [21]. During the process of sympathetic neuron 

adhesion, cleavage of RET generates an N-terminal truncated fragment that functions as a 

cadherin accessory protein, modifying the cadherin environment and potentiating cadherin-

mediated cell aggregation [22].

RET also induces cell adhesion and migration via the activation of the β1 and β3 integrin 

subunits in vitro, with β1 expression required for RET-induced cell adhesion and migration 

and with β3 expression correlated with RET-mediated invasion in a mouse tumor xenograft 

model [23], suggesting that coordinated signaling through these pathways is important 

for cell interactions with the microenvironment during tumor invasion and progression. 

In further support of a role for RET activity in cell migration, RET activation leads to 

cellular focal adhesion formation and to phosphorylation of critical molecules present in 

focal adhesions, including paxillin, focal adhesion kinase, and p130cas [24].

While these prior studies have identified roles for RET isoforms in cell migration and 

invasion, previous work demonstrated that RET9 and RET51 isoforms are associated 

with distinct functions in tumorigenesis, epithelial-mesenchymal transition (EMT) and 

metastasis, with RET51 expression more strongly correlated with malignant phenotypes 

and enhanced migration and invasion than RET9 [21]. While the molecular contributions 

of RET isoforms to tumorigenesis and metastasis are not fully defined, RET9 and RET51 

recruit distinct combinations of proteins to promote different signaling events and cellular 

processes, such as cell proliferation or migration [18,25,26]. Although RET9 is generally 

more highly expressed, RET51 is significantly more effective at promoting cell proliferation 

and anchorage-independent growth in vitro [21,27–30].

Further studies demonstrated that the RET ligand GDNF promoted activation, interaction 

and colocalization of the RET51 isoform with Ezrin, an intracellular protein that serves 

to link cell membrane-associated proteins with the cytoskeleton. GDNF enhanced the 

formation of actin-rich filopodia containing both RET and Ezrin and promoted RhoA-

GTPase activity and chemotaxis, while RET inhibition suppressed filopodia formation, 

reduced Ezrin colocalization with RET, and impaired cell migration [31]. Together, these 

results define a role for RET in regulating the mesenchymal gene expression profile and 

promoting a motile, invasive cell phenotype in thyroid, breast, and pancreatic cancers, where 

it has been linked to tumor invasion and metastasis [21,32,33].

RET is also known for its essential role in cell survival, but the mechanisms by which 

RET promotes survival and prevents cell death remain poorly defined. RET depletion 

increased thyroid cancer cell death, with RET expression specifically associated with 

tumor cell survival, proliferation and anoikis resistance in medullary thyroid cancer cells 

[21]. RET cleavage furthermore generates an intracellular domain that can trigger cell 
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death in apoptotic permissive settings [22]. RET depletion in thyroid cancer cells also 

increased chemotherapy-induced apoptosis via expression of and direct binding to ATF4, a 

transcription factor that activates proapoptotic genes NOXA and PUMA [34].

While RET has an important role for the normal development of both the PNS and 

CNS, RET also has functions outside the nervous system. RET signaling contributes 

to the regulation and function of hematopoietic cells and spermatogenesis [35,36], and 

RET has been shown to drive hematopoietic stem cell survival, expansion, and function, 

with RET ablation in hematopoietic stem cells leading to impaired survival and reduced 

cell numbers. During in vitro expansion, RET is active at the cell surface and mediates 

sustained cellular growth, resistance to stress, and improved hematopoietic stem cell survival 

[37]. Interestingly, hematopoietic stem cells deprived of RET retain normal differentiation 

potential, but display loss of cell-autonomous stress response and reconstitution potential 

[36].

2.3. RET function in cell and tissue development

The RET kinase has been shown to have critical roles in the normal development of many 

tissues, including the embryonic nervous system, the neural crest, and the enteric nervous 

system [4,38,39], along with roles in spermatogenesis [35], renal organogenesis [40], and 

intestine organogenesis during embryonic life [41]. Loss-of-function RET mutations in 

humans are associated with intestinal disorders, congenital malformations of the kidney and 

urinary tract, and congenital hypo-ventilation syndrome [42]. In mouse embryos, transcripts 

of RET9 were detected in all cranial ganglia, in sensory and autonomic ganglia of the trunk, 

in a subset of neurons of the dorsal root ganglion, in motor neurons of the spinal cord, in 

the developing lungs and excretory systems, in the enteric neuroblasts of the enteric nervous 

system, and in the thyroid lobes. In contrast, RET51 expression was weak and restricted 

to the motor column of the spinal cord, the dorsal root ganglion, the enteric neuroblasts, 

the lung bud, and the kidney [43]. Transgenic mice expressing a homozygous inactivating 

RET mutation die soon after birth with renal agenesis and absence of enteric neurons in the 

digestive tract [44], further demonstrating the significance of RET expression and function 

in development and organogenesis.

The role of RET in CNS and PNS development begins during early embryogenesis. RET 
transcripts were identified in mice beginning at day 8.5 of embryogenesis in PNS and CNS 

cell lineages as well as in the excretory system. Within the cranial region, RET mRNA 

was restricted to a small population of neural crest cells whereas at later stages, RET was 

observed in all cranial ganglia [45]. RET expression appears gradually in all cranial ganglia 

irrespective of origin of the contributing neural crests, suggesting that RET expression 

is associated with cranial ganglia development [45]. In early murine organogenesis, RET 
expression was observed in a small group of neural crest cells migrating from rhom-bomere 

4 (r4) of the hindbrain. RET expression was also observed in a region of the epibranchial 

placodes. In later stage embryos, RET expression was shown to be downregulated by the 

time the r4 crest had completed migration to the second branchial arch.

During intestinal development, normal activity of the RET receptor is required for the 

migration of enteric nervous system progenitors throughout the gut. In vertebrates, the 
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enteric nervous system is derived from the vagal neural crest, and RET is required for 

the directional migration of enteric nervous system progenitors from the neural tube to the 

gut wall. In the enteric nervous system, RET was expressed in the presumptive enteric 

neuroblasts of the vagal crest (day 9.0–11.5) and in the myenteric ganglia of the gut (day 

13.5–14.5) [45]. In zebrafish, enteric progenitor cells and the majority of enteric nervous 

system neurons express RET during development [46]. Loss of function mutations in murine 

RET lead to characteristic defects of neural crest cell migration within the developing 

gut [47], and loss-of-function RET mutations in humans are associated with Hirschsprung 

disease, a rare congenital anomaly of the enteric nervous system that is characterized by 

the absence of enteric ganglia in variable lengths of the distal intestinal tract [48,49]. Loss-

of-function RET mutations also resulted in a failure to colonize the distal colon in transgenic 

mice, and mice with RET mutations displayed reduced proliferation and differentiation of 

enteric nervous system progenitors in the ganglionic proximal gut [39].

Embryonic kidney development begins with the outgrowth of the ureteric bud. Activation of 

RET in the ureteric bud epithelium signals through PI3K to control outgrowth and branching 

morphogenesis [50], and, similar to its function in enteric neuronal precursor cells, 

activation of RET results in chemotaxis as RET-expressing cells invade the surrounding 

GDNF-expressing tissue in the developing kidney [51]. RET signaling through transcription 

factors ETV4 and ETV5 also promotes competitive cell rearrangements in the nephric duct, 

in which the cells with the highest level of RET signaling preferentially migrate to form the 

first ureteric bud tip [52,53].

While the role of RET in the development of embryonic tissues has been well established, 

the physiological role of RET in adult tissues remains unclear, and very little is known 

about RET function in adulthood. In normal adult human tissues, RET is mainly expressed 

in normal and malignant cells and organs derived from neural crest cells [54], with high 

levels of RET gene expression only found in a limited number of different human tissues, 

including the cerebellum and the substantia nigra, the adrenal and pituitary glands, and in 

C-cells in the thyroid (Fig. 2). No RET transcripts were found in a study examining other 

adult human tissues including the liver, lung, kidney, stomach, duodenum, colon, urinary 

bladder, spleen, thymus, placenta, uterus, atrium, ventricle, cerebral cortex, and medulla 

oblongata [54].

3. RET expression and biology in adult cancer

Oncogenic mutations that result in ligand-independent constitutive RET activation have been 

recognized for many years [55,56], and different oncogenic RET mutations are consistently 

associated with distinct tumor types. RET gene fusions and rearrangements, oncogenic RET 
gene mutations, and RET overexpression have each been associated with multiple cancers 

and diseases.

RET fusions from chromosomal rearrangements or inversions are genetic alterations that 

result in the fusion of the RET kinase domain with dimerization motifs from other genes 

[57], leading to spontaneous cytosolic dimerization and constitutive activation of the RET 

kinase that promotes sustained intracellular signaling and activation of cell growth and 
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survival pathways [58]. In human patients, the first oncogenic RET gene rearrangement 

leading to gene fusion of the RET tyrosine kinase domain with the 5′ terminal region of the 

CCDC6 gene was identified in a papillary thyroid carcinoma (PTC) tumor [59]. Since then, 

RET gene rearrangements resulting in RET fusions have also been identified in up to 70% 

of PTCs and in 1–3% of non-small-cell lung carcinomas (NSCLC), and are less commonly 

found in colorectal and breast adenocarcinomas (0.1–0.3%) [57,60,61]. Recent approaches 

using more sensitive techniques have identified rare RET rearrangements in other cancer 

types including chronic myelogenous leukemia and pancreatic, ovarian, and head and neck 

tumors [61–66].

Over a dozen of RET fusion partner genes have been identified in PTCs to date, with dozens 

more identified in other tumor types, with the distribution of different gene fusion partners 

varying among tumor types. The most common RET fusions are RET/PTC1 and RET/PTC3 
in PTC, which account for over 90% of all observed rearrangements and are the result of 

the fusion of the RET gene with either the CCDC6 or NCOA4 genes, respectively [67,68]. 

RET rearrangements and fusions have additionally been found much more frequently in 

childhood PTC patients and in those with prior significant radiation exposure. The most 

common gene rearrangement in NSCLC results from a fusion of the KIF5B gene with RET 
(KIF5B-RET) that is rare in other tumor types [69,70]. While RET fusions have not been 

extensively studied in solid tumors other than thyroid and lung cancer, the CCDC6-RET, 

NCOA4-RET, KIF5B-RET, and RASGEF1A-RET gene fusions have been identified in rare 

cases of colorectal and breast carcinomas [64,71].

Oncogenic RET gene mutations, unlike RET gene fusions, are rare outside of 

neuroendocrine tumors. Hereditary gain-of-function RET point mutations are responsible 

for multiple endocrine neoplasia type 2 (MEN2), a dominant inherited cancer syndrome 

that affects neuroendocrine organs and that is characterized by constitutive oncogenic RET 

activation, leading to medullary thyroid cancers (MTC) and adrenal pheochromocytomas 

[4,33,72]. These mutant RET receptors are able to stimulate unregulated signaling observed 

with wild-type RET activity from the cell membrane [73,74], and can also associate 

with RET ligand-GFRα complexes, leading to enhanced activity [75–77]. Genotype-

phenotype relationships do exist between RET mutations and phenotype in MEN2, with 

mutations at specific positions being correlated with either MTC, pheochromocytoma, 

and/or hyperparathyroidism [78], and mutations with increased oncogenic RET activity are 

associated with more severe disease [78,79]. Mutations in the extracellular cysteine-rich 

domain of RET, such as C634R, C618Y, and C634Y, are associated with MEN type 2A 

(MEN2A), while type 2B (MEN2B) is associated with a specific activating RET mutation, 

M918T, located in the intracellular tyrosine kinase domain. Familial MTC is also associated 

with various RET mutations, including V804M, Y791F, C634W, E768D, and S891A [80–

82].

Oncogenic RET point mutations are also the most common mutations identified in sporadic 

MTC, and these mutations occur in 40–65% of MTCs and are associated with more 

aggressive disease [33,72,83]. The most common and most aggressive somatic MTC 

mutation is M918T (exon 16), while a variety of other mutations affecting exons 10, 11 
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and 15 have been described. Single amino acid substitutions and small insertions/deletions 

are also associated with sporadic MTC as well as pheochromocytoma [84,85].

In addition to gene fusions and mutations, varying levels of RET expression have been 

identified in several different solid tumor types. RET expression occurs in up to 70% of 

invasive breast cancers and is more commonly found in ER + and HER2 + breast cancers, 

where it is associated with treatment resistance [86–89]. Increased RET expression that 

is associated with poor prognosis has been observed in 40–60% of breast tumors and in 

40–65% pancreatic ductal adenocarcinomas (PDAC)[90–92]. Increased RET expression in 

PDAC has been linked to lymph node metastasis, and decreased RET expression reduces 

pancreatic cell invasion [93]. Similarly, 20–75% of prostate cancers display increased 

expression of RET, where increased RET expression is associated with poor tumor 

differentiation [94]. Melanoma, glioma, renal cell carcinoma, NSCLC, and endometrial and 

head and neck cancers also show increased RET levels [95,96] Interestingly, increased RET 
expression has been found in breast cancer brain metastases compared to the corresponding 

primary tumors, indicating a potential role for RET in metastasis [97].

4. RET expression and biology in neuroblastoma

4.1. RET associations with neuroblastoma pathogenesis and patient outcomes

In 1990, five years after the discovery of RET as an oncogene, a panel of human tumor 

cell lines was examined for expression of RET mRNA. RET expression was observed in 

all 11 neuroblastoma cell lines examined, whereas no detectable levels of RET mRNA 

was observed in 19 non-neuroblastoma tumor cell lines and a human diploid fibroblast 

line [98]. The specific expression in neuroblastoma caused speculation that RET may have 

cellular functions specific to neuroblastoma cells or for neuroblastoma oncogenesis. More 

recent investigations have demonstrated that neuroblastoma tumor cells express significantly 

higher levels of RET when compared across 1378 cancer cell lines from the Cancer Cell 

Line Encyclopedia (CCLE) (https://depmap.org) that includes gene expression data from 

a wide range of adult normal and cancer cells [99–101]; (Fig. 3A). However, while RET 

deregulation in other cancers has been a product of activating mutations or rearrangements, 

neither of these phenomena are observed in neuroblastoma [102,103]. Early studies also 

failed to find correlations between RET gene expression and neuroblastoma tumor clinical 

stage, MYCN amplification, or patient age [104], and two additional centers found that 

RET mRNA was equally distributed across different neuroblastoma tumor stages [105,106], 

raising questions about the role of RET in the tumorigenesis of neuroblastoma.

Subsequent studies have further demonstrated RET expression on neuroblastoma tumor cells 

and patient tumor samples [107–111], and have more firmly established the likely functional 

role of RET in neuroblastoma pathogenesis. Initial studies demonstrated that transgenic 

mice overexpressing RET develop neuroblastoma tumors [112]. RET expression was also 

shown to be associated with increased neuroblastoma metastases in vivo [109], and RET 
expression is higher in neuroblastoma tumors from patients with stage 4 and high-risk 

disease [113]. Neuroblastoma cell lines were also found to be the most sensitive of cancer 

cell lines in the CCLE to RET depletion with RNAi (Fig. 3B), further reaffirming the 

important role of RET in neuroblastoma cell viability.
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In children with neuroblastoma, recent studies have further demonstrated significant 

associations between RET expression and both clinical and biological prognostic features 

and with patient outcomes. When expression levels of all receptor tyrosine kinase genes 

were compared across 10 independent patient cohorts, RET ranked as the top kinase 

whose expression robustly correlated to an unfavorable outcome [99]. Further analyses of 

gene expression profiles from neuroblastoma patient tumors also demonstrated significant 

associations between RET expression and patient outcomes (Fig. 4A), and elevated RET 
expression was also significantly associated with risk of relapse, MYCN amplification, and 

high-risk tumors (Fig. 4B–D), reaffirming the likely critical role of RET in neuroblastoma 

pathogenesis.

4.2. RET associations with neuroblastoma cell proliferation, metastasis, and 
differentiation

In addition to the demonstrated associations of RET expression with neuroblastoma patient 

outcomes and prognostic features, the RET kinase has also been shown to play important 

roles in neuroblastoma cell proliferation, survival, and metastasis. RET is an important 

mediator of survival, growth, differentiation, and migration of neural crest-derived cells 

[44,45], and RET signaling through the sonic hedgehog pathway stimulated by GDNF 

induces neuroblastoma cell proliferation and tumor growth [116]. GDNF was also shown 

to induce neuroblastoma cell proliferation by targeting and activating p70S6 kinase 

independent of the RAS/ERK signaling pathway [117] and by inducing GFRα1 clustering 

and RET activation [118]. RET signaling has also been shown to prevent neuroblastoma 

cell death induced by retinoic acid treatment [119]. RET expression may also contribute to 

neuroblastoma metastasis, as RET expression promotes non-adherent growth of the NB-39-

nu neuroblastoma cell line [120] and neuroblastoma cells expressing the MEN2B oncogenic 

mutant RET were able to grow more readily in suspension and induced metastatic tumors at 

a significantly higher rate than control mice [109].

During normal development, RET kinase signaling also is essential for the differentiation of 

neural crest cells into mature neurons and other cell types, and RET expression in neural 

crest-derived cells is important for the maturation of sympathetic neurons [121]. In mouse 

tissues, elevated RET expression has been identified in enteric, sympathetic, motor, sensory, 

dopaminergic, and adrenergic neurons, further suggesting a functional role for the RET 

kinase in neuronal differentiation [122]. In neuroblastoma cell lines, retinoic acid treatment 

induced neurite outgrowth, increased neurofilament gene expression, and increased RET 
expression, demonstrating the association of RET expression with neuroblastoma tumor 

differentiation [123]. Neuroblastoma cell lines transfected with oncogenic RET also 

displayed a reduced growth rate and acquired a neurite-bearing phenotype, with enhanced 

expression of neuroblastoma differentiation markers [124]. Furthermore, induction of RET 
expression by retinoic acid occurred in advance of differentiation and in the absence of 

de novo protein synthesis, indicating that the positive transcriptional regulation of RET is 

closely associated with early neuronal differentiation [125].

More recent studies demonstrated that, in neuroblastoma tumor cells, retinoic acid-

induced differentiation was mediated by a positive autocrine loop that sustained RET 
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downstream signaling and was dependent on GDNF expression and release, suggesting 

that RET activation is an upstream mechanism necessary to mediate retinoic acid-induced 

differentiation [126]. RET gene and protein expression were also primarily found in 

both neuroblastoma tumor and normal cells with gangliocytic differentiation and also 

identified RET as a consistently upregulated gene in neuroblastoma cells undergoing 

differentiation induced by retinoic acid treatment, with RET depletion resulting in inhibition 

of morphologic differentiation as well as reduced expression of differentiation marker genes 

[127].

4.3. RET signaling in neuroblastoma

The associations of RET with neuroblastoma cell growth and survival are likely mediated 

by a number of downstream signaling pathways that are activated by RET kinase ligand 

binding and autophosphorylation, including the PI3K/AKT, RAS/ERK, c-Jun NH2-terminal 

kinase (JNK), JAK/STAT, and p38 MAPK pathways [15,128]. Autophosphorylation sites 

within the intracellular tyrosine residues of RET serve as docking sites for downstream 

signaling effectors carrying Src homology 2 (SH2) or phosphotyrosine-binding (PTB) 

domains. Recruitment of PTB domain-containing adaptor protein SHC results in activation 

of the RAS/ERK and PI3K/AKT pathways, whereas recruitment of FRS2 activates the 

RAS/ERK and PI3K/AKT pathways, and studies have shown that competitive recruitment 

of SHC mediates cell survival signaling from RET whereas an engineered RET that recruits 

only FRS2 does not [129]. SHC recruitment by RET is both required and sufficient for 

cell survival partly via activation of PI3K/AKT but possibly also via other SHC-activated 

signaling pathways, such as NF-κB [6]. SHCD interaction with RET has also been shown to 

inhibit RAS/ERK and PI3K/AKT signaling and to reduce neuroblastoma cell viability and 

migration [130].

RET activity has also been shown to be mediated by interactions with other cell surface 

receptors in neuroblastoma cells, such as the anaplastic lymphoma kinase (ALK) and the 

TRK receptors TrkA and TrkB. ALK is altered by gain-of-function point mutations in 

over 10% of high-risk neuroblastoma tumors [131], and ALK activation induces RET 

upregulation in mouse sympathetic ganglia and in murine and human neuroblastoma 

tumors [132]. Neuroblastoma cells with mutant ALK also were found to have increased 

expression of RET and RET-driven sympathetic neuronal markers along with altered 

RAS/ERK pathway activity [133]. The ERK-ETV5-RET pathway has also been identified 

as a critical axis driving neuroblastoma oncogenesis downstream of activated ALK. ETV5 

is a transcription factor regulated both at the protein and mRNA levels by ALK activity, 

and ETV5 has been shown to regulate RET expression in a MEK/ERK dependent manner 

[134]. RET and TrkA have also been shown to interact, with NGF-mediated TrkA activation 

inducing RET phosphorylation and ARTN-mediated RET activation leading to TrkA 

phosphorylation in neuroblastoma cells and with RET and TrkA co-expression in patient 

tumors [135].

Steen et al. Page 10

Biochem Pharmacol. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. RET inhibition for cancer therapy

5.1. RET inhibition in adult cancer patients

With the expanding knowledge of the critical roles that RET kinase expression and 

activity play in a variety of cancers, RET inhibition has become an increasingly important 

therapeutic strategy. Initial efforts to target RET activity utilized multikinase inhibitors 

originally developed to inhibit other kinases but that also inhibit RET activity [42,136]. 

The multikinase inhibitors vandetanib, a VEGFR2/EGFR/RET inhibitor, and cabozantinib, 

a VEGFR2/MET/RET inhibitor, have been approved by the FDA for treatment of patients 

with advanced thyroid cancers and have recently been evaluated in clinical trials in adults 

with lung and breast cancers, where some patients have experienced partial responses 

but with limited overall clinical benefit [68,69,137–142]. A number of other multikinase 

inhibitors with RET inhibitory activity, including agerafenib, alectinib, lenvatinib, ponatinib, 

and sorafenib, are currently in clinical trials or are undergoing additional preclinical testing 

for RET-associated cancers [42,143]. Unfortunately, use of these multikinase inhibitors has 

been associated with significant side effects, including hypertension, nausea, diarrhea, skin 

rash, fatigue, decreased appetite, and weight loss, likely due to the inhibition of alternative 

kinase targets and frequently leading to treatment dose reduction or discontinuation 

[42,136,144]. Furthermore, recent reports of acquired resistance due to the acquisition of 

additional gene mutations such as the Val804 gatekeeper mutation or other oncogenic events 

in patients treated with these agents [68,145] suggest that new and more selective RET 

inhibitors are more likely to improve patient outcomes.

Recently, a number of new kinase inhibitors with increased specificity for RET inhibition 

have been developed and are undergoing preclinical and clinical testing. Pralsetinib 

(BLU-667) and selpercatinib (LOXO-292) each have more than 100-fold greater selectivity 

for RET [145] and have recently been been given breakthrough designations by the FDA 

in 2020 for treatment of patients with thyroid cancers with oncogenic RET mutations 

[146,147], as they have demonstrated high rates of disease responses even in the presence 

of gatekeeper mutations combined with greater patient tolerability. Additional efforts have 

been made to design and synthesize selective RET inhibitors based off of the structure of 

pralsetinib, one of which displayed increased potency and decreased “off-target” effects 

compared to pralsetinib [148]. However, these RET-selective inhibitors still interact with 

other intracellular proteins, including off-target kinases such as DDR1, JAK1, and TRKC 

[149], and additional resistance mechanisms such as RET solvent front mutations have 

evolved in some patients [150], demonstrating the need for new strategies to inhibit RET and 

leading to ongoing efforts towards designing novel, highly selective RET inhibitors.

5.2. RET inhibition in children with neuroblastoma and other solid tumors

A number of preclinical studies have demonstrated the potential efficacy of RET 

inhibition against neuroblastoma cells and tumors, and the sensitivity of neuroblastoma 

cell lines in the CCLE to RET depletion (Fig. 3B) further emphasizes the potential 

efficacy of RET inhibition for neuroblastoma patients. An early study revealed that 

the multikinase inhibitor vandetanib, an inhibitor of VEGFR2, EGFR, and RET, was 

able to inhibit RET phosphorylation in neuroblastoma cells and to reduce tumor cell 
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viability in vitro. Additionally, in a human neuroblastoma xenograft model, vandetanib 

inhibited tumor growth by 85% [110]. A follow-up study reported that the combination 

of vandetanib and 13-cis-retinoic acid demonstrated synergistic reduction in viability 

and growth inhibition [111], leading to a single-institution phase I clinical trial testing 

the combination of vandetanib with 13-cis-retinoic acid in children with recurrent 

neuroblastoma (NCT00533169). 10 patients between the ages of 3–26 years were enrolled 

and received either 50 (patients 1–7) or 65 mg/m2 (patients 8–10) vandetanib daily with 

80 mg/m2 13-cis-retinoic acid given twice daily for 14 consecutive days out of each cycle. 

Patients had received between 2 and 9 prior chemotherapy regimens prior to enrollment. 

Study treatment was generally well tolerated, with one patient experiencing dose-limiting 

toxicity (grade 3 hemorrhage). 2 patients had prolonged stable disease (12 and 16 weeks), 

suggesting the potential efficacy of this combination in the treatment of neuroblastoma 

[151].

Sunitinib is a multikinase inhibitor that has been shown to inhibit the activity of a wide 

range of kinases in addition to RET, including PDGFRα, PDGFRβ, Flt-3,VEGFR-1, 

VEGFR-2, and VEGFR-3. While initial preclinical testing showed that sunitinib 

demonstrated little tumor growth inhibition against a panel of neuroblastoma cell lines 

[152], follow-up studies demonstrated that sunitinib treatment inhibited neuroblastoma 

tumor growth, angiogenesis, and metastasis in tumor xenograft models [153,154], leading 

to a phase I clinical trial evaluating sunitinib in children with recurrent solid tumors 

through the Children’s Oncology Group (NCT00387920). Two children with recurrent 

neuroblastoma out of 23 total patients were enrolled. No objective responses were observed 

in any enrolled patients and the study was unfortunately limited by the development of 

cardiac toxicity in patients previously exposed to cardiotoxic treatment [155].

Cabozantinib is another multikinase inhibitor that targets RET as well as MET, VEGFR2, 

FLT3, and c-KIT, and cabozantinib was also shown to be effective against neuroblastoma 

cell lines and xenograft tumors alone and in combination with 13-cis-retinoic acid, with 

reduced RET and ERK phosphorylation in cell lines most sensitive to cabozantinib 

[156,157]. Cabozantinib was subsequently evaluated in a phase I clinical trial for children 

with recurrent solid tumors through the Children’s Oncology Group (NCT01709435), which 

enrolled 41 total patients, including three with neuroblastoma. Cabozantinib was well 

tolerated, with observed dose-limiting toxicities including hypertension, PRES, headache, 

elevated liver enzymes and proteinuria. 10 patients experienced partial responses or had 

prolonged stable disease, although none of the 10 patients had neuroblastoma [158]. 

A follow-up institutional case series reported results of four children with recurrent 

neuroblastoma treated at the recommended cabozantinib dose of 40 mg/m2/day [159]. All 

four children experienced extended disease control, with two who experienced complete 

responses and two with prolonged stable disease. Two patients required dose reduction due 

to toxicity. These promising results have led to follow-up studies, including an ongoing 

phase II clinical trial evaluating cabozantinib for children with relapsed or refractory 

neuroblastoma that is positive for RET or MET mutations (NCT02867592) and a phase 1 

study investigating the safety and tolerability of cabozantinib combined with 13-cis-retinoic 

acid (NCI03611595).
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While the multikinase inhibitor sorafenib was initially developed as an inhibitor of the 

RAS-ERK signaling pathway, further studies established that sorafenib inhibited a number 

of additional kinases, including VEGFR1–3, PDGFRβ, c-Kit, and RET [160], and initial 

studies demonstrated the efficacy of sorafenib against neuroblastoma cells and tumors 

[161,162]. While initial phase 1 and 2 clinical trials for children with recurrent solid tumors 

did not include any patients diagnosed with neuroblastoma [163,164]; (NCT01445080, 

NCT01502410), a subsequent case series of four children with recurrent neuroblastoma 

treated with sorafenib showed transient antitumor activity, but with disease progression 

observed in all four patients within 4 weeks [165].

Other more recently developed multikinase inhibitors with RET inhibitory activity, including 

agerafenib, alectinib, lenvatinib, ponatinib, and regorafenib, have also proven to be effective 

against neuroblastoma cells and tumors in vitro and in vivo. While ponatinib was found to 

be effective against neuroblastoma cells and tumors [166] and to possess more significant 

efficacy in neuroblastoma models compared to other similar kinase inhibitors [167,168], 

clinical trials have primarily focused on patients with leukemias that are likely to respond 

to ponatinib’s activity against both wild-type and treatment-resistant ABL kinase, and 

so the safety and efficacy of ponatinib in children with neuroblastoma tumors remain 

unknown. The newer multikinase inhibitor agerafenib was also found to be effective 

against neuroblastoma in preclinical models [169,170], but has not yet been evaluated 

in clinical trials for children with neuroblastoma. Regorafenib is a multikinase inhibitor 

that is FDA approved for the treatment of metastatic colorectal cancer and that targets 

angiogenic (VEGFR1–3, TIE2), stromal (PDGFR-β, FGFR), and oncogenic receptor 

tyrosine kinases (KIT, RET, and RAF) [171]. Regorafenib has been shown to be effective 

against neuroblastoma cells and tumors in vitro and in vivo, with regorafenib treatment 

leading to reduced activity of a number of intracellular signaling pathways, including 

the RAS/ERK, PI3K/AKT/mTOR and Fos/Jun pathways [111,172]. A phase 1 clinical 

trial for children with recurrent or refractory solid tumors (NCT02085148) found that 

regorafenib was well tolerated, with dose-limiting toxicities including thrombocytopenia, 

hypertension, and skin rash, but only one child with neuroblastoma was included out of 41 

enrolled patients and did not receive any noted clinical benefit [173]. Alectinib represents a 

promising therapy for neuroblastoma treatment due to its unique combined activity against 

RET and ALK. Alectinib was also found to be effective against neuroblastoma cells and 

tumors [174,175], and in a recent case report, alectinib treatment was associated with a 

partial response in a child with recurrent metastatic neuroblastoma [176]. An ongoing phase 

1 clinical trial for children with recurrent solid tumors (NCT04774718) will hopefully 

provide further support for the use of alectinib in children with neuroblastoma.

Recent preclinical studies have begun to explore the efficacy of the specific RET inhibitors 

pralsetinib and selpercatinib against neuroblastoma. Preliminary results have confirmed 

RET inhibition and efficacy against neuroblastoma cells by pralsetinib in vitro [177], but 

pralsetinib has not yet been evaluated for safety and efficacy in children with neuroblastoma. 

Conversely, selpercatinib has been approved by the FDA for use in any RET-fusion driven 

cancer and was found to be effective in children with MEN2 [178]. Early phase clinical trials 

evaluating the efficacy of selpercatinib in children with recurrent solid tumors are ongoing, 

but results for children with neuroblastoma have not yet been reported [179,180].
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6. Development of novel RET inhibitors using atropisomerism

6.1. Novel drug design strategy for the stereoselective inhibition of RET

Prior studies detailed above have demonstrated the efficacy of multiple RET inhibitors 

against NB both in vitro and in vivo through decreased viability and induction of apoptosis. 

However, these inhibitors frequently also inhibit other kinases in critical signaling pathways 

which may contribute to their antitumor effects but which also lead to well-characterized 

adverse events in patients and do not prevent the development of resistance mechanisms. 

Therefore, efforts towards designing highly selective RET inhibitors are of increasing 

interest in both adult and pediatric cancers because of their anticipated improved efficacy 

and safety. However, developing highly selective kinase inhibitors remains a challenge in 

drug design due to the high degree of active site conformations among kinases.

Kinase inhibitor specificity is determined by three-dimensional drug structure, and unstable 

atropisomerism is innate in many common scaffolds in drug discovery, commonly existing 

as freely rotating aryl – aryl bonds. Such compounds can access the majority of dihedral 

conformations around the bond axis; however, most small molecules bind their target within 

a narrow range of these available conformations. The remaining accessible conformations 

can interact with other proteins leading to compound promiscuity and reduced specificity 

(Fig. 5).

Atropisomerism, first observed in 1922 by Christie and Kenner [181], is a stereochemical 

phenomenon that arises due to asymmetry around a chemical bond. Atropisomers are 

stereoisomers formed by a spontaneous hindered rotation, typically around an sp2-sp2 

axis. Atropisomers were classified by LaPlante into three classes based on their rates 

of racemization at physiological conditions [182]. Class-1 atropisomers have barriers to 

rotation (ΔGrot
± ) < 20 kcal/mol racemize on the second or less time scale and are treated 

as achiral molecules. Class-2 atropisomers (ΔGrot
±  = 20–29 kcal/mol) have half-lives to 

racemization varying from hours to days at room temperature. Class-3 atropisomers (ΔGrot
±

≥ 29 kcal/mol) do not racemize at physiological conditions and are considered to exist 

as stable enantiomers or diastereomers [183]. Around 30% of small molecules that were 

FDA-approved between 2019 and early 2022 possess at least one atropisomeric axis [184]. 

The majority of these small molecule drugs exist as class-1 atropisomers, however, they bind 

their targets in single set of chiral conformations [185]. Hypothetically, therefore, the target 

selectivity of a promiscuous lead compound could be improved by locking the inhibitor 

into an atropisomeric conformation preferred by the targeted kinase, thereby precluding any 

off-target inhibition contributed by other conformations of the molecule.

Proof of concept for this hypothesis was obtained by turning promiscuous, rapidly 

interconverting pyrrolopyrimidine (PPY) kinase inhibitors, a common class of multi-kinase 

inhibitors (i.e. PP1) [186], into atropisomerically stable analogs by the strategic addition of 

two chlorine atoms at the ortho position. These synthesized class-3 analogs demonstrated 

superior target selectivity, and different atropisomers of the same compounds displayed 

varying kinase inhibition profiles.
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This discovery prompted the idea to improve the selectivity and potency of a lead compound 

towards the RET kinase. A series of in silico docking models of the lead inhibitor into 

the crystallographic model of RET demonstrated that the electron-withdrawing chlorine 

at the C2 position reduced the hydrogen bonding interaction between the active site 

and N-5 on the ligand (Fig. 6). Replacing this chlorine atom with an electron-donating 

methyl group significantly increased hydrogen bonding strength, resulting in an increase 

in potency towards RET. The docking experiments also revealed that the hydrophobic 

pocket in the RET kinase active site could better accommodate polycyclic aromatic groups 

in (R)-conformation, leading to the replacement of the benzyl group with the naphthyl 

group. Further analysis suggested that the non-conserved serine (Ser891) in the kinase active 

site could potentially engage in hydrogen bonding with the ligand. This insight led to 

the replacement of the naphthyl group with a quinoline moiety to successfully facilitate 

the hydrogen bonding interaction between nitrogen on the ring and Ser891. The final 

synthesized product, (Ra)-getretinib, demonstrated enhanced efficacy and was 35 times more 

potent at RET inhibition compared to the (Sa)-2 atropisomer, with R-getretinib exhibiting 

RET inhibitory activity at 8 nM, compared to 292 nM for S-getretinib (Fig. 6). Both 

atropisomers of each analog were synthesized and tested in cells demonstrating different 

kinase inhibition profiles [187].

6.2. R-getretinib reduces neuroblastoma cell confluence and RET phosphorylation

R-getretinib therefore is a novel inhibitor of RET kinase that leverages atropisomerism 

through the restriction of accessible low-energy dihedral conformations otherwise available 

to a more promiscuous compound to achieve a highly potent and ultra-selective kinase 

inhibitor. Getretinib possesses promising efficacy in models of RET-driven cancer [187], 

and R-getretinib possesses similar potency and improved selectivity compared to that of 

other next generation RET inhibitors. However, getretinib is half the molecular weight and 

possesses significantly improved ligand efficiencies towards RET. Getretinib is effective 

against RET-driven cancer cells, with calculated IC50 values comparable to that of 

vandetanib, without the non-RET mediated activities (Fig. 7).

To evaluate the efficacy of R- and S-getretinib against neuroblastoma cells, a panel of 

established human neuroblastoma cell lines representing a range of biological phenotypes 

(SK-N-AS, SK-N-BE(2), CHP134, CHP212, IMR-32, Kelly, NBL-S, NGP, and SK-N-SH) 

were obtained, validated, and maintained as published [169,172]. Cells were tested for 

sensitivity in vitro to both S- and R-getretinib and monitored by continuous live-cell 

imaging. R-getretinib reduced cell confluence in a dose-dependent manner in all tested 

cell lines, while S-getretinib had no significant effect on cell confluence over time at any 

tested doses (Fig. 8A,B). R-getretinib treatment also induced notable morphologic changes 

in all tested cell lines (Fig. 8C). To determine whether R- or S-getretinib could inhibit RET 

kinase activation, we evaluated neuroblastoma cells after R- and S-getretinib treatment for 

inhibition of RET phosphorylation. R-getretinib treatment of neuroblastoma cells resulted 

in reduced phosphorylation of RET in a dose-dependent manner, while treatment with 

S-getretinib resulted in paradoxical increase in RET phosphorylation (Fig. 8D), suggesting 

that specific inhibition of the RET kinase is likely responsible for the demonstrated efficacy 
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of R-getretinib against neuroblastoma and that R-getretinib represents a promising novel 

inhibitor with significant potential for safety and efficacy in children with neuroblastoma.

7. Concluding remarks and future directions

Neuroblastoma is the most common extracranial solid tumor in children and accounts 

for approximately 10% of new pediatric malignancies diagnosed each year. Aggressive, 

high-risk neuroblastoma tumors respond poorly to therapy, and refractory and recurrent 

neuroblastoma respond even more poorly to salvage therapy. Novel therapies directed 

against biologically relevant targets are clearly needed for these children. While 

neuroblastoma tumors generally are not associated with oncogenic RET gene mutations 

or fusions, increased RET expression is a feature of high-risk neuroblastoma tumors and 

is associated with poor patient outcomes. Therefore, RET inhibition represents a promising 

strategy for neuroblastoma therapy.

While multikinase inhibitors with activity against RET and more selective RET inhibitors 

both demonstrate efficacy against neuroblastoma in in vitro and in vivo models, responses 

in patients with neuroblastoma and other solid tumors remain poor, and further research 

into optimal treatment strategies, mechanisms of drug resistance, long-term consequences 

of potent RET inhibition, and development of more effective agents against emerging 

mutations are clearly needed. However, designing inhibitors with high selectivity remain 

a challenge.

Here, we review the role of RET in normal cells and tissues and in the development and 

progression of adult cancers. We further review the role of RET expression and activity in 

the pediatric solid tumor neuroblastoma and review recent preclinical and clinical studies 

evaluating currently available RET inhibitors. We have developed a novel strategy for 

generating specific RET kinase inhibitors using the chemical property of atropisomerism. 

We present R-getretinib as a highly potent and highly selective inhibitor of RET and have 

shown its selectivity and efficacy in models of adult cancers as well as in in vitro models of 

neuroblastoma. The high selectivity of R-getretinib towards RET has potential to minimize 

unwanted side effects caused by off-target kinase binding, thereby increasing the potential 

for clinical utility. While additional work is needed to further characterize the role of 

RET overexpression in neuroblastoma, our results provide preliminary evidence that highly 

selective inhibition of RET via atropisomerically stable R-getretinib holds great promise as a 

form of therapy in RET-driven cancers.

Despite the promise of targeted therapy for RET-driven cancers, the longer term effects 

of RET inhibition in normal tissues will need to be carefully monitored, particularly for 

children with cancer. RET signaling is essential for nervous system development and 

has critical roles in the maintenance and survival of mature nervous system tissue. RET 

signaling is also critical for hematopoietic stem cell maintenance, and prolonged inhibition 

of these signals may compromise either or both nervous system function or hematopoietic 

cell development and negatively impact patient long-term outcomes, particularly with 

inhibitors that are readily able to cross the blood–brain barrier.
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Alternative strategies to target RET expression and activity and avoid the development 

of treatment resistance are actively being employed. A number of drug combinations 

are currently being evaluated for synergistic efficacy in clinical trials for adults and 

children. Antibody-drug conjugates targeted against RET or GFRα1 are also being tested in 

preclinical models, and additional studies have employed chimeric antigen receptor (CAR)-

T cells to directly target RET via immune system activation. Further efforts to develop 

inhibitors specific for RET include the development of proteolysis-targeting chimeras 

(PROTACs) that could specifically and effectively target the RET kinase for proteasomal 

or lysosomal degradation, thereby eliminating or minimizing the oncogenic effects of RET 
overexpression.

In summary, the roles of RET expression and activity in a wide range of cancers has been 

clearly established over the past several decades. While the development of selective RET 

inhibitors represents an important clinical advance with significant benefits for patients, the 

need for new and more effective therapies has driven ongoing research into novel approaches 

toward targeting the RET kinase. The future treatment for many solid tumors is likely 

to incorporate many of these novel treatment strategies to inhibit RET activity, hopefully 

leading to improved patient outcomes in the future.
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Abbreviations:

ALK anaplastic lymphoma kinase

ARTN artemin

ATCC American Type Culture Collection

CCLE Cancer Cell Line Encyclopedia

CNS Central nervous system

DMEM Dulbecco’s Modified Eagle’s Medium

EMT epithelial/mesenchymal transition

ERK extracellular signal-regulated kinase

FBS fetal bovine serum

FRS2 fibroblast growth factor receptor substrate 2

GDNF glial cell line-derived neurotropic factor
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GFL growth factor ligand

JNK c-Jun N-terminal kinase

p38 MAPK p38 mitogen-activated protein kinase

MTC medullary thyroid carcinoma

MTT 3-(4,5 dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide

NRTN neurturin

NSCLC non-small-cell lung carcinoma

PDAC pancreatic ductal adenocarcinoma

PI3K phosphatidylinositol 3-kinase

PNS Peripheral nervous system

PSPN persephin

PTB phosphotyrosine-binding

PTC papillary thyroid carcinoma

RET REarranged during Transfection

SH2 Src Homology 2

SHC Src Homology 2 domain-Containing
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Fig. 1. 
Autophosphorylation sites in the kinase domain of RET. The structure of the RET 

kinase domain (705–1013) solved via x-ray crystallography was modeled using UCSF 

ChimeraX (https://www.rbvi.ucsf.edu/chimerax/). Tyrosine residues known to become 

autophosphorylated upon RET activation (Tyr806, Tyr809, Tyr900, Tyr905, Tyr981) are 

shown in red.
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Fig. 2. 
Bulk tissue RET gene expression patterns. Graph of RET tissue expression using gene 

expression data from adult tissues was generated from https://www.gtexportal.org/home/

gene/RET.
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Fig. 3. 
RET tumor cell line expression and outcomes of RET depletion. A. Graph of RET gene 

expression levels in cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) 

was generated from https://depmap.org. B. Graph of Chronos dependency scores [114] 

from RNAi datasets Achilles + DRIVE + Marcotte and DEMETER2 from the CCLE was 

generated from https://depmap.org. A lower Chronos score indicates a higher likelihood 

that the tested gene is essential for a given cell line, with a score of −1 indicating a gene 

comparable to the median of all pan-essential genes.
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Fig. 4. 
Neuroblastoma Patient Outcomes Based on RET Expression. A. Using the neuroblastoma 

Kocak (top) and Cangelosi (bottom) patient datasets in the R2 Genomics Analysis and 

Visualization Platform (http://r2.amc.nl), patients were divided into high (blue) and low 

(red) RET gene expression groups by median-centered Log2 ratios and survival curves 

were generated as previously published [115]. Event-free survival (left) and overall survival 

(right) curves are shown with patient numbers in parentheses. B. Relative RET gene 

expression in patients with and without experiencing an event, such as disease recurrence 

or death (top, Cangelosi dataset), or disease relapse (bottom, SEQC dataset) from in the 

R2 Genomics Analysis and Visualization Platform are shown. Graphs were generated as 

previously published [115]. C. Relative RET gene expression in patients with neuroblastoma 

tumors with and without MYCN amplification from the Kocak (top left) and Westermann 

(top right) datasets and in patients with high risk and non-high risk neuroblastoma tumors 

from the SEQC (bottom left) and Westermann (bottom right) datasets from in the R2 

Genomics Analysis and Visualization Platform are shown. Graphs were generated as 

previously published [115].
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Fig. 5. 
Point chirality versus axial chirality. A. Images representing chemical point chirality (top) 

and axial chirality via chemical bond rotation around an axis (bottom) B. Atropisomerism 

as a strategy to restrict free rotation around a chiral center to enhance drug selectivity. 

Unrestricted axis rotation allows for up to 210° of accessible low energy confirmations (left), 

while restricted rotation due to bulky side chains allows for only 80° of accessible low 

energy confirmations (right). Adapted from Ref. [179].
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Fig. 6. 
Atropisomeric Design and Synthesis of Getretinib. A. The PPY core of getretinib was 

synthesized via SNAr with tert-Butylamine followed by cyclization. The scaffold was 

iodinated using N-iodosuccinimide in dimethylformamide followed by Suzuki-Miyaura 

coupling with isoquinoline-4-boronic acid. To yield the final compound, scaffold was 

aminated vis SNAr with ammonium hydroxide in a pressure vial. The resulting racemic 

mixture was separated on a semi-preparative chiral HPLC column to yield each atropisomer. 

Racemization kinetics studies on HPLC showed the barrier of rotation to be 30.04 kcal/mol, 

classifying getretinib as a class-3 atropisomer with a half-life of 4.48 years at 37 °C. B. 

Chemical modification of the lead compound [1] began with replacing the C2 chlorine with 

a methyl group, replacement of the benzyl group with a naphthyl group, and replacement 

of the naphthyl group with a quinoline. In vitro IC50 values for inhibitors at each step of 

synthesis using ADP-Glo kinase inhibition assays are shown (bottom).
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Fig. 7. 
Cellular Activity Against RET-driven Cell Lines. R- and S-getretinib enantiomers were 

tested in cellular models of RET-driven and non-RET-driven control cell lines. (Ra)-

getretinib displayed promising antiproliferative activities in RET-driven models of breast, 

thyroid, and non-small cell lung cancers. The in vitro selectivity also carried over as 

we observed reduced activity towards non-RET driven models. Activity in cell lines was 

measured in triplicate.
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Fig. 8. 
R-Getretinib reduces neuroblastoma cell confluence and inhibits RET phosphorylation. 

A. Neuroblastoma cell lines CHP-134 (top) and SK-N-BE(2) (bottom) were grown using 

standard conditions [164,167] and exposed to increasing doses of R- and S-getretinib. 

Cell confluence was assessed by continuous live cell imaging using the Incucyte ZOOM™ 

after 72 h of incubation as previously published [164,167]. Time-response curves for R-

getretinib (left) and S-getretinib (right) are shown. B. Neuroblastoma cell lines SK-N-BE(2), 

CHP-134, CHP-212, Kelly, NBL-S, NGP, and SK-N-AS were obtained from the ATCC, 

validated by DNA sequence, and grown using standard conditions (164,167). Cell lines 

were exposed to increasing doses of R- and S-getretinib and cell confluence was assessed 

by continuous live cell imaging using the Incucyte ZOOM™ after 72 h of incubation as 

above. Dose-response curves for R-getretinib (top) and S-getretinib (bottom) are shown. C. 

Neuroblastoma cell lines grown and treated as above [164,167] with R- and S-getretinib 

were photographed at regular intervals, and 10X images taken from the Incucyte ZOOM™ 

after 72 h of treatment with 5μ M of either S- or R-getretinib were compared to control cells. 

D. SK-N-BE(2) neuroblastoma cells were grown as above [164,167] and treated with 5 μM 

13-cis-retinoic acid for 48 h, followed by treatment with increasing concentrations of either 

R- or S-getretinib for 72 h. Cells were lysed with RIPA buffer, and lysates were separated by 

sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and analyzed by 

Western blot for total (3220, Cell Signaling Technology) and phosphorylated RET (3221S, 

Cell Signaling Technology) and GAPDH (5174S, Cell Signaling Technology), using anti-
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rabbit or anti-mouse HRP-conjugated secondary antibodies (1:5000, Sigma-Aldrich). Signal 

was visualized using Amersham ECL (GE Healthcare Bio-Sciences).
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