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Abstract 
 

This paper presents a recurrent neural network model of long 
term attitude change resulting from the reduction of cognitive 
dissonance.  The model uses Contrastive Hebbian Learning 
(CHL) to capture changes in weight strength among 
cognitions resulting from dissonance reduction. Several 
authors have presented recurrent network models of 
dissonance reduction that capture the constraint satisfaction 
nature of dissonance. But as these models did not learn they 
could only model short-term attitude change represented by 
changes in activatio.  In response, Van Overwalle and Jordens 
(2002) presented a feedforward model, with delta rule 
learning, in an attempt to capture long-term attitude change 
caused by dissonance reduction. However, the feedforward 
nature of their model created two problems. First, it could not 
capture the parallel constraint satisfaction mechanisms that 
underlie dissonance reduction.  Second, and perhaps more 
important, the network was not able to “reason” backwards 
from its inconsistent behavior to its new attitude, but instead 
had to be explicitly taught its new attitude.  The present 
model overcomes the weaknesses of the previous approaches 
to modeling dissonance reduction.  Because it has learning it 
can represent long-term attitude change by weight change and 
because it is a recurrent model it can propagate changes from 
inconsistent behavior to the attitudes linked to that behavior.   
 
Keywords: Coherence, Cognitive Consistency, Constraint 
Satisfaction, Neural networks, Connectionist models. 
 

Introduction 
One of the most famous and productive theories in social 
psychology has been Festinger’s (1957) theory of Cognitive 
Dissonance.  The term cognitive dissonance has entered 
everyday language and is often used to describe 
inconsistencies among cognitions. According to Cognitive 
Dissonance Theory, when two cognitions are dissonant with 
each other, an individual is motivated to reduce that 
dissonance.  Festinger defined two cognitions as being in a 
dissonant relationship if the obverse of one cognition 
followed from the other.  To date, researchers have used 
dissonance theory to generate a number of counter intuitive 
findings, such as finding that people like groups better the 
more painful is the initiation to join that group (Gerard & 
Mathewson, 1966) and finding that people like a boring task 
better if they agree to tell someone that the task is actually 

interesting for small amounts of money, compared to 
receiving a large amount (Festinger & Carlsmith, 1959).   

Several authors (e.g., Read & Miller, 1994; Read, 
Vanman, & Miller, 1997; Shultz & Lepper, 1996; Simon & 
Holyoak, 2002) have argued that cognitive dissonance 
(Festinger, 1957) and related consistency phenomena 
(Abelson et al., 1968) can be modeled as a parallel 
constraint satisfaction process in a neural network, where 
the relevant cognitions are treated as nodes in the network 
and the consistent and inconsistent relations between 
cognitions are treated as excitatory and inhibitory 
relationships, respectively.  Read, Vanman, and Miller 
(1997) have noted that parallel constraint satisfaction 
processes provide a computational implementation of the 
Gestalt processes that provide the theoretical underpinnings 
of dissonance theory. These authors, and particularly Shultz 
and Lepper (1996) have shown that a number of different 
Cognitive Dissonance findings can be successfully modeled 
in a parallel constraint satisfaction network. 

However, recently Van Overwalle and Jordens (2002) 
have noted that these approaches to modeling cognitive 
dissonance can only model the immediate attitude and belief 
change in the specific experimental situation, but that they 
are incapable of modeling any long-term attitude or belief 
change that might result from resolving the dissonance.  
They rightly note that this is due to the lack of any kind of 
learning mechanism in the proposed models.  All of these 
models use recurrent or feedback neural networks in which 
attitude and belief change is captured by changes in the 
activation of relevant nodes representing the key cognitions.  
However, none of these models have a learning mechanism 
that can modify the associations or links between cognitions 
as a result of the changes in pattern of activations.  Such 
weight change would allow for the representation of long-
term attitude change.   

To attempt to remedy this lack, Van Overwalle and 
Jordens (2002) proposed a feedforward neural network 
model, with delta rule learning, that would change the links 
among cognitions in response to changes in the pattern of 
activations of the nodes.  They argued that this model could 
successfully capture the long-term attitude change that 
would result from cognitive dissonance processes. 
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We agree that having a learning mechanism is critical for 
any adequate model of cognitive dissonance that wishes to 
address the issue of long-term attitude change resulting from 
dissonance reduction.  However, there are two fundamental 
and interrelated problems with their proposed solution.  
First, the characterization of cognitive dissonance suggested 
by their model is a radical departure from the consensual 
understanding of cognitive dissonance processes. Rather 
than treating dissonance reduction processes as a Gestalt 
like seeking for good form and coherence (the historical 
view) or as a constraint satisfaction process (the modern 
rendition of Gestalt ideas of coherence (see Read, Vanman, 
& Miller, 1997; Simon & Holyoak, 2002), their model treats 
dissonance reduction purely as an error correcting learning 
process.  Second, a perhaps more fundamental problem with 
their model is that the network does not model how a 
network might infer changes in the evaluation of an attitude 
object. Because the model is a feedforward network, it 
cannot “reason” backward from the inconsistent behavior to 
the underlying attitude. Instead during learning, the authors 
directly tell the network what their evaluative response is. 

In a typical dissonance study, the subject is subtly induced 
to perform a behavior that is inconsistent with the behavior 
that they would expect, given their current attitude: for 
example, for a minimal and apparently insufficient 
inducement, they will agree to convince someone that a 
truly boring task is interesting (Festginger & Carlsmith, 
1959) or they will write an essay espousing a position that 
contradicts their true attitude (Linder, Cooper, & Jones, 
1967). Because the inducement is subtle the subject is 
typically not aware that they were actually induced by the 
experimenter.  Lacking an obvious justification for their 
counter-attitudinal behavior, they then change their attitude 
to become more consistent with their previously “counter-
attitudinal” behavior, thereby justifying the unexpected 
behavior.  In modeling this experimental situation, Van 
Overwalle and Jordens do not have the network infer the 
attitude change as a function of dissonance reduction 
mechanisms (or constraint satisfaction processes) in the 
individual.  Rather, they directly instruct the network that 
their attitude or evaluation has changed in ways consistent 
with typical experimental findings.  Thus, what they have 
essentially done is show that their network is capable of 
using delta rule learning to modify an association in 
response to their direct training.  The necessity of having to 
directly instruct their network is a result of their choosing to 
use a feedforward network.  Because of this, they have no 
way to model how performing an unexpected behavior can 
modify the attitudes that might drive that behavior. (An 
example of the general structure of their network can be 
seen in Figure 1.)   

In contrast, in our model, we use a recurrent network that 
does not receive any direct information about the network's 
new evaluation or attitude.  Instead, we simply tell it that it 
performed a behavior counter to what would be expected, 

given it's previous experience. This results in a change in 
the patterns of activations, which the learning process then 
transforms into appropriate weight changes. The model 
changes the evaluations of the object and the relevant 
weights so that the previously unexpected behavior becomes 
consistent with the network’s new evaluation and relations.   

Figure 1: Example of Van Overwalle and Jordens (2002) 
network 

Although we believe that Van Overwalle and Jordens 
model fails to capture fundamental aspects of dissonance 
processes, no other model of dissonance reduction attempts 
to model long-term attitude change.  The current model 
seeks to address the weaknesses in both existing approaches 
to modeling cognitive dissonance. The proposed model is a 
recurrent (feedback) network with Contrastive Hebbian 
Learning.  It can capture the constraint satisfaction 
processes that we believe are central to dissonance 
processes as well as capturing long-term attitude change 
represented by changes in the weights in the network.   

 
Simulations 

Network Overview 
The simulations were done with the constraint satisfaction 
module (cs++) in the PDP++ neural network software 
(Dawson, O'Reilly, & McClelland, 2003; O'Reilly & 
Munakata, 2000).  The cs++ module allows for the use of 
bidirectional weights and thus can function as a constraint 
satisfaction system.  The models used a Contrastive 
Hebbian Learning (CHL) algorithm developed for the 
Boltzmann machine and then generalized by O'Reilly 
(1996).  This algorithm compares the activation of the 
network in a plus phase (when both inputs and desired 
outputs are presented to the network) to its activation in a 
minus phase (when only the inputs are presented). CHL then 
adjusts weights to reduce the difference in activation 
between the two phases.  One strength of Contrastive 
Hebbian Learning is that it allows for the use of hidden 
units in a network and adjusts weight to those units in a 
more biologically plausible way than does backpropagation.  
Backpropagation requires the use of a nonlocal error term 
and assumes that the error can be propagated back through 
multiple layers.  CHL uses a local error term and thus does 
not require the propagation of an error signal. 
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We used the default sigmoidal activation function for the 
units in the networks, with activations limited to the range -
1 to 1. Bias weights were set to 0. The learning rate was .20.   

 
Simulation 1: Festinger and Carlsmith (1959) 
Counter-attitudinal Advocacy 
In one of the first published studies of cognitive dissonance, 
participants first spent an hour doing an excruciatingly 
boring task. Then the experimenter entered and told them 
that the study was investigating how to motivate people to 
perform routine tasks. They were told that some of the 
previous participants had been told that the task was quite 
interesting.  Suddenly, the lab supervisor rushed in and said 
that the assistant who typically told participants that the task 
was interesting had not shown up and that they needed 
someone to tell the next subject that the task was interesting.  
The experimenter asked the participants if they would take 
the assistant's place and tell the next participant that the task 
was interesting.  Some of the participants were offered $20 
to do this, but others only $1.  All agreed to help.  Then, in a 
separate context, all participants were asked to evaluate the 
study.  Surprisingly, participants paid $1 liked the 
experiment more than participants paid $20.  Festinger and 
Carlsmith argued that this happened because participants 
paid $1 experienced strong dissonance between their feeling 
that the task was boring and the fact that for a trivial amount 
of money they had tried to convince someone else that the 
task was actually interesting.  So, to reduce their dissonance 
they changed their feelings about the task. In contrast, 
subjects who were given $20 could use the large payment to 
justify their behavior.  
 
Network structure.  The structure of the network is shown 
in Figure 2.  One input node represents the boring task and 
the other input node represents the level of payment.  The 
task node is linked by feedforward links to two paired 
evaluation nodes, a positive evaluation node and a negative 
evaluation node with a weight of -.5 between them, 
indicating that the two evaluations inhibit each other. 

Figure 2: Network for Festinger and Carlsmith(1959) 

This use of paired evaluations nodes is similar to the 
model of Shultz and Lepper (1996).  We had two evaluation 
nodes that could be activated somewhat independently, 
because research indicates that evaluation is not strictly a bi- 
polar dimension, but that one can have somewhat separate 
positive and negative evaluations of an object.   

These positive and negative evaluation nodes are then 
linked to the two behavioral alternatives: “said task was 
interesting” or “said task was boring.”  These two nodes 
have an inhibitory link of -1 between them so that under 
most circumstances only one of the nodes will have a 
positive activation.  We have separate nodes for “said task 
was interesting” and “said task was boring”, because we 
wanted to be able to separately and explicitly represent what 
the participant expected to do and what the participant 
actually did.  So in this simulation, we wanted to see what 
would happen if we had a network that initially predicted 
that the participant would say that the task was boring 
(represented by a positive activation of the “said task was 
boring” node as a result of the spread of activation 
throughout the network), followed by the observation that 
the participant actually said the task was interesting 
(represented by a teaching activation to the “said task was 
interesting” node).   

Further, the positive evaluation node has a positive link to 
“said task was interesting” and an inhibitory link to “said 
task was boring.”  The negative evaluation node has the 
reverse pattern of weights, with the negative evaluation 
node having a positive link to “said boring” and an 
inhibitory link to “said interesting.” Finally, the payment 
node has a direct link to the “said interesting” node. 

The network is set up so that in the dissonance simulation 
feedback from the environment or a “teaching” signal will 
only be applied to the two behavior nodes. In contrast to 
Van Overwalle and Jordens' (2002) model, in our model 
there is no direct feedback to the evaluation / affect nodes.  
This was done so that we could see if expectations about 
behavior and feedback about actual behavior could lead to 
indirect changes in evaluations, without the need to give 
direct feedback about affect.  Another way to frame this 
difference between the two models is that in the Van 
Overwalle and Jordens' model, the network is explicitly told 
what it did and how it “felt” in response to that behavior, 
whereas in our model, the network is only explicitly told 
what it did and it must “infer” how it felt and presumably 
change it's evaluations to make them more consistent with 
its behavior.  We would argue that this latter process is 
much more similar to the original process of dissonance 
reduction.  Perhaps more important, we believe that our 
model is a much better representation of the actual 
experimental conditions in dissonance experiments.   

In the typical dissonance experiment, the participant is not 
given any explicit feedback about how they feel, only about 
how they behaved.  Any changes in affect and evaluation 
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would have to be driven by that difference in behavior.  This 
is the logic of how we set up our model.  

 
Initial learning and expectations. To insure sure that the 
model generated the correct set of expectations, we 
developed a set of training events that would insure that the 
network had a plausible set of weights that would lead to the 
expected outcome. After training with the events, the 
network behaved as expected.  When the task was present 
and there was low payment (indicated by low activation of 
the payment node), the “said task was boring” node was 
more highly activated than the “said task was interesting” 
node. However, when the task was activated and the 
payment node was highly activated (indicating a payment of 
$20), then the “said task was interesting” node was more 
highly activated than the “said task was boring” node.   

 
Results and discussion. Ten separate simulations were 
done with different random initializations of the weights 
before learning.  Weights were initialized from a uniform 
distribution with a mean of 0 and a variance of .1.   

Dissonance reduction was tested by first testing how the 
model would predict the participants’ behavior and attitudes 
(before dissonance columns in Table 1) when the task was 
present and activation of the payment node was low. We 
then creating dissonance by having the model predict that it 
would produce the expected behavior (say the task was 
boring) and then receive feedback (activation of the 
appropriate node) that the participant actually said that the 
task was interesting.  To simulate rumination and repeated 
consideration of the dissonance, we presented the dissonant 
behavior five times. That is, we turned on the task node and 
the “said task was interesting” node, let the network settle, 
and then updated the weights. This sequence was repeated a 
total of five times.   

 
Table 1: Node activations before and after dissonance in 

Festinger & Carsmith (1959) 
 

 Positive 
Eval. 

Negative 
Eval. 

Said 
Interesting 

Said 
Boring 

Before 
Dissonance 

.26 .72 .40 .51 

After 
Dissonance 

.34 .66 .47 .42 

 
Averaged across the 10 simulations with different random 

weight initializations, it is clear that after the “dissonance 
induction” (after dissonance columns in Table 1) the 
activation of the “said task was interesting” node was now 
higher than the activation of the “said task was boring” node 
and the activation of the positive evaluation node had 
increased and the evaluation of the negative evaluation node 
had decreased. Thus, the network did successfully “infer” a 
change in attitude evaluation from its dissonant or 

unexpected behavior. Unlike the model by Van Overwalle 
and Jordens (2002) we did not have to explicitly tell the 
network its new attitude. Instead the network inferred its 
new attitude from its behavior.  
 
Simulation 2: Insufficient Justification: The 
Forbidden Toy Paradigm (Freedman, 1965) 
In this paradigm a young child is brought into the 
experimental room and shown an attractive toy: an 
interesting robot.  The experimenter than administers either 
a mild or a severe threat to the child to not play with the 
robot.  The experimenter then either leaves the room or 
stays.  So the child is in one of four conditions: (1) mild 
threat, no surveillance, (2) mild threat, surveillance, (3) 
severe threat, no surveillance, or (4) severe threat, 
surveillance.  The child is then observed through a one-way 
mirror.  In this initial observation, none of the children play 
with the robot.   

Forty days later the child is brought back to the 
experiment room and then left alone in the room with the 
toy.  The experimenters observed the child through a one-
way mirror and recorded whether the child played with the 
toy. The researchers predicted that all of the children should 
play with the toy except for those who were initially in the 
mild threat, no surveillance condition.  The rationale is that 
in all the other conditions, the child believes that they did 
not play with the toy because of the threat of punishment. 
Thus, they didn't need to rationalize why they didn't play 
with the attractive toy.  There shouldn't have been any 
change in the child's liking for the toy and when they are 
later given an opportunity to play with the toy without any 
possibility of punishment they will happily play with the 
toy.  In contrast, the argument is that for the children in the 
mild threat, no surveillance condition, their failure to play 
with the robot earlier, was perceived as inconsistent with the 
fact that they had only received a mild threat.  To justify this 
inconsistency they would decrease their liking for the toy. 
As predicted, the only children who do not play with the toy 
were those who were given the mild threat and thought they 
were not watched.   

 
Network structure.  The structure of the network is shown 
in Figure 3.  One input node represents the attractive toy, a 
second input node represents the level of threat, and the 
third input node represents the level of surveillance.  The 
toy node is linked by feedforward links to two paired 
evaluation nodes, a positive evaluation node and a negative 
evaluation node with a weight of -.5 between them.  

These positive and negative evaluation nodes are linked to 
the two behavioral alternatives: “play with the toy” or “do 
something else.”  These two nodes have an inhibitory link 
of -1 between them so that under most circumstances only 
one of the nodes will have a positive activation.  We have 
separate nodes for “play” and “do something else”, because 
we wanted to be able to separately and explicitly represent 
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what the child expected to do and what the child actually 
did.  So, we wanted to see what would happen if we had a 
network that initially predicted that the child would play 
with the toy (represented by a positive activation of the 
“play with the toy” node), followed by the observation that 
the child did not play with the toy (represented by a teaching 
activation to the “do something else” node).   

 

Figure 3: Network for Freedman(1965) 

Further, the positive evaluation node has a positive link to 
“play with the toy” and an inhibitory link to “do something 
else.”  The negative evaluation node has the reverse pattern 
of weights, with the negative evaluation node having a 
positive link to “don't play with the toy” and an inhibitory 
link to “do something else.”  

The surveillance and threat nodes are connected to four 
hidden units that connect to “play with the toy” and “do 
something else.” The hidden units are used in this model 
because we need to capture the idea that while a mild threat 
alone doesn't stop playing and surveillance alone doesn't 
stop playing, the conjunction of the two will stop playing.  
As in the first simulation, the network is set up so that in the 
dissonance simulation the “teaching” signal will only be 
applied to the two behavior nodes.  

 
Initial learning and expectations. As in Simulation 1, we 
developed a learning history that would insure that the 
network had a plausible set of weights that would lead to the 
expected outcomes. After training with the events, the 
network behaved as expected.  When the toy was present 
and there was only a mild threat, with no surveillance, the 
“play with toy” node was highly positively activated and the 
“do something else” node was negatively activated. 
However, in the other three combinations of surveillance 
and threat (mild threat, surveillance; severe threat, no 
surveillance, and severe threat, surveillance) the “do 
something else” node was highly positively activated and 
the “play with toy” node was not.  Thus, the nodes were 
activated in the expected pattern. 

Table 2: Node activations before and after dissonance in 
Freedman (1965) 

 
 Positive 

Eval. 
Negative 
Eval. 

Play Don’t 
Play 

Before 
Dissonance 

.844 .123 .793 .186 

After 
Dissonance 

.810 .167 .675 .284 

 
Results and discussion. As in Simulation 1, we ran ten 
different versions with different random starting weights 
and then averaged the results across the ten initializations. 
For each of the ten initializations, after learning we first 
turned on the toy node and set the threat to mild. As 
expected, the “play with toy node” was more highly 
activated than the “do something else node” (the before 
dissonance column in Table 2). Then for each initialization 
to test whether the predicted activation and weight changes 
would occur in the “dissonance” conditions, we ran the 
following sequence.  We turned on the “toy” node and the 
mild surveillance node, and then turned on the “do 
something else” node.  Since the network with this 
configuration of inputs should predict “play with toy” this 
activation of the “do something else” node was dissonant.  
We presented this sequence five times to the network. That 
is, we turned on the input nodes, the “do something else” 
node, let the network settle, and then updated the weights.  
At the end of this sequence, we then turned on only the 
“toy” node to see what the network would predict.  The 
average pattern of activation for the behavior and evaluation 
nodes can be seen in Table 2.  As predicted, after the 
dissonance experience (after dissonance column) the 
activation of the positive evaluation node decreased and the 
activation of the negative evaluation node increased, 
indicating decreased liking for the toy.  Further, the 
activation of the “play with toy” node is now lower than the 
activation of the “do something else” node, predicting that, 
as was shown in the experiment, the child would not play 
with the toy after the mild threat, no surveillance 
experience.  Thus, as in simulation 1 we successfully 
simulated changes in liking for the toy after dissonance 
without having to explicitly instruct the network about the 
current evaluation of the toy.   

 
Discussion 

This recurrent neural network model, with Contrastive 
Hebbian Learning, successfully modeled both the immediate 
and long-term attitude change that results from reduction of 
cognitive dissonance.  Immediate attitude change is 
represented by changes in the temporary activation of 
concepts and evaluations and long-term attitude change is 
represented by changes in the weights among cognitions and 
evaluations.   
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Van Overwalle and Jordens (2002) had modeled long-
term attitude change with delta rule learning in a 
feedforward network, but at the expense of not being able to 
capture the parallel constraint satisfaction nature of 
cognitive dissonance processes.  Further, the feedforward 
nature of their network required that they explicitly tell the 
network what its new attitude was.  Their network could not 
“infer” its new attitude from its behavior.  In contrast, our 
recurrent network can both capture the parallel constraint 
satisfaction nature of dissonance as well as being able to 
model how the network could “infer” a new attitude from its 
behavior.  Thus, we can combine the strengths of the two 
previous approaches to modeling cognitive dissonance, 
while avoiding their major weaknesses.   
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