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W O M E N ’ S  H E A LT H

Aging activates escape of the silent X chromosome in 
the female mouse hippocampus
Margaret Gadek1,2,3, Cayce K. Shaw1,4, Samira Abdulai-Saiku1, Rowan Saloner1,5,  
Francesca Marino1,6, Dan Wang1, Luke W. Bonham5, Jennifer S. Yokoyama1,5,7, Barbara Panning8, 
Bérénice A. Benayoun9,10,11,12, Kaitlin B. Casaletto1,5, Vijay Ramani8,13,14, Dena B. Dubal1,3,4,6,15*

Women live longer than men and exhibit less cognitive aging. The X chromosome contributes to sex differences, 
as females harbor an inactive X (Xi) and active X (Xa), in contrast to males with only an Xa. Thus, reactivation of 
silent Xi genes may contribute to sex differences. We use allele-specific, single-nucleus RNA sequencing to show 
that aging remodels transcription of the Xi and Xa across hippocampal cell types. Aging preferentially changed 
gene expression on the X’s relative to autosomes. Select genes on the Xi underwent activation, with new escape 
across cells including in the dentate gyrus, critical to learning and memory. Expression of the Xi escapee Plp1, a 
myelin component, was increased in the aging hippocampus of female mice and parahippocampus of women. 
AAV-mediated Plp1 elevation in the dentate gyrus of aging male and female mice improved cognition. Under-
standing how the Xi may confer female advantage could lead to novel targets that counter brain aging and dis-
ease in both sexes.

INTRODUCTION
The expansion of aging research to investigate female-specific biol-
ogy and its mechanistic underpinnings represents a major advance 
of high importance for human health. True sex differences exist 
in aging, and understanding what makes women more resilient 
(or vulnerable) reveals targets for therapeutic paths that may benefit 
women’s health, men’s health, or both (1).

Women live longer than men, across socioeconomic status, 
despite famines and epidemics (2), and all around the world (2, 3), 
suggesting a common biologic contribution to female longevity. 
Female survival advantage is also variably observed in the animal 
kingdom (4–7) and extends to many (8–10), but not all (11), strains 
of mice, including those that are genetically heterogeneous (9). Sex 
chromosomes affect longevity (10) and may also affect resilience in 
health span, or the span of time spent healthy for specified out-
comes. While female health span differs in its resilience and vulner-
abilities across the body (12,  13), the connection between the 
number of X chromosomes (X’s) and longevity raises the question of 
whether X’s also affect cognitive resilience.

An increasing body of evidence supports female resilience in brain 
aging. Women undergo slower molecular brain aging, measured by 
the epigenetic clock, across brain regions (14), compared to men. Fur-
thermore, women harbor a younger metabolic brain age, measured 
by positron emission tomography imaging (15). These findings could 
underlie the striking observation that women show resilience to cog-
nitive decline (16–20) and exhibit higher baseline memory function-
ing in typical aging of several populations, in the absence of dementia 
(16–18, 20, 21). Etiologies of female-based cognitive resilience, also 
observed in aging mice (22), highlight a role for the second X. In nor-
mal aging (22), and in models of Alzheimer’s disease (AD) (23), add-
ing a second X improves cognition in male mice and subtracting it 
worsens cognition in female mice (22, 23), indicating a causal role for 
the second X in cognitive resilience.

Enriched for neural factors, the X harbors 5% of our genome and 
has been largely understudied in the aging brain. In female mam-
mals with two X’s, one is silenced through X chromosome inactiva-
tion (XCI), resulting in an active (Xa) and inactive X (Xi) (24). 
While XCI is thought to equalize X-linked gene expression between 
XX and XY cells, select genes from the Xi escape inactivation, to 
varying degrees and in a tissue-specific manner (25, 26). Since es-
cape results in expression from both the Xa and Xi (25), a second X 
selectively increases X-linked gene dose in females and could poten-
tially drive sex bias in cognitive resilience. Whether Xi escape re-
mains unchanged into old age and if aging can affect Xi expression 
in the female brain are fascinating and unresolved questions. Fur-
thermore, whether Xi expression uniquely and heterogeneously 
manifests across cell types in a key area of learning and memory 
targeted by aging, such as the hippocampus, is unknown.

Here, we investigated whether aging modulates expression of genes 
on the Xi, or the silent X, in the female hippocampus using an approach 
combining single-nucleus RNA sequencing (snRNA-seq) with allele-
specific analysis, thus enabling discrimination of Xi from Xa expression 
in a cell type–specific manner. We report that aging preferentially mod-
ulates differential gene expression on the X compared to autosomes, 
with a near-global up-regulation of genes from both the Xa and Xi, in a 
cell type–specific manner. Focused analysis of the Xi revealed many 
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changes including its cell type–specific activation of many genes, with 
increased baseline escape and new age-induced escape. Further investi-
gation of a robust age-induced escape factor suggested that changes in 
Xi expression contribute to cognitive resilience in the aging female brain.

RESULTS
Genetic model of nonrandom XCI to detect escapees from Xi
To define and distinguish expression from the Xi and the Xa, we used 
a genetic model that combines two mouse strains, enabling strain-
specific analysis based on differing alleles on the two X’s. Combining 
mouse strains is commonly used to study allele-specific expression 
(25, 27–29). In this model, one X is inherited from Mus musculus 

and the other from Mus castaneus (Fig. 1A), which exhibits single- 
nucleotide polymorphisms (SNPs) roughly every 264 base pairs 
(bp). Thus, transcripts can be mapped to either the M. musculus or 
M. castaneus genome.

XCI is random (Fig. 1A, bottom left) such that one X is the Xa in
approximately half of cells and the other X is the Xa in the remaining 
half (24), which adds analytical complexity to single-cell studies. To 
simplify analysis, we implemented a genetic model of nonrandom XCI, 
with the Xa coming from M. musculus and the Xi coming from 
M. castaneus (Fig. 1A, bottom right) (25). In this model, the M. musculus 
X harbors a deletion of Xist, which encodes a long noncoding RNA re-
quired in cis for XCI (30). Since only the M. castaneus X can transcribe 
Xist during development, it is always the Xi in our mouse model. Thus, 
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Fig. 1. Allele-specific, single-nucleus sequencing of cell types in the young and aging XX hippocampus. (A) Genetic model for allele-specific investigation of the 
X. M. musculus XX mice with an Xist deletion were crossed with XY M. castaneus mice. XX progeny without an Xist deletion (left) underwent random XCI. XX progeny with 
an Xist deletion (right) harbor an Xa chromosome strictly from the M. musculus strain and an Xi chromosome from the M. castaneus. Differences in SNPs between the
strains enable a direct measure of expression from each X, the Xa and the Xi. Image credit: D. Velasco. (B) Diagram of the experimental workflow of allele-specific, single-
nucleus sequencing. Young (n = 4 mice, age = 3 months) and old (n = 4 mice, age = 22 months) hippocampi from the strain-specific X-detection mice were dissected.
Nuclei were dissociated and sequenced with 10x RNA sequencing on the Illumina NovaSeq 6000. Reads were aligned to the combined M. musculus and M. castaneus 
genome and analyzed by origin from Xa or Xi, cell type, and age. Hippocampi, cells, and NovaSeq were acquired with a ShutterStock Enhanced License. (C) Hippocampal 
cell types sequenced. Dimension reduction analysis using UMAP revealed 11 distinct cell type populations sequenced plus a mixed category. Clusters are the fol-
lowing: endothelial cells (Endo), astrocytes (Astro), vascular leptomeningial cells (VLMC), microglia (MG), DG neurons, CA1 neurons, glutamatergic undefined neurons 
(Glut_Undef ), CA3 neurons, GABAergic neurons (GABA), oligodendrocyte progenitor cells (OPCs), and oligodendrocytes (Oligo). (D) Matrix plot showing expression 
relating cell type marker genes (columns), cell clusters (rows), and corresponding genes. (E) Heatmap of cell markers across UMAP clusters. Color intensity reflects 
extent of gene expression.
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transcripts with SNPs mapping to the M. castaneus genome arise from 
the Xi and are designated escapees.

Using snRNA-seq, we profiled over 40,000 nuclei from four young 
and four old female mouse hippocampi (Fig. 1B). Nuclei were isolated 
from dissected hippocampi, with similar numbers of nuclei per 
sample, processed through droplet-based single-cell profiling, and 
sequenced. The reads were assigned to the M. musculus or M. castaneus 
genome for further analysis. Similar median unique molecular identi-
fier (UMI) counts and gene counts were assigned to each sample (data 
S1). Autosomal reads were 56% M. musculus and 44% M. castaneus, 
with a mild mapping bias toward M. musculus, as observed in other 
allele-specific sequencing studies (25). In contrast, reads arising from 
the X were 91.7% M. musculus and 8.3% M. castaneus (including ro-
bust Xist expression), consistent with silencing of the M. castaneus X, 
and with the estimated 3 to 7% of escape in mice (25). These findings 
validate the genetic model of establishing nonrandom XCI to specifi-
cally enable the detection of escapees from the Xi.

Single-nucleus sequencing of the young and old female 
mouse hippocampus
Nuclei clustered into different cell types using the Leiden algorithm 
in Scanpy (Fig. 1C) (31). Using a comparison to the Allen Brain 
Atlas 10x hippocampus and cortex datasets, differentially expressed 
genes (DEGs) were assigned to corresponding groups (data S2) (32). 
Clusters with similar cell marker identities were combined, and cell 
types were assigned using the most DEGs in the cluster compared to 
all others. Neuronal cell types included glutamatergic neurons such 
as CA1, CA3, and dentate gyrus (DG) neurons. Other undefined 
glutamatergic neurons (Glut_Undef) and GABAergic (GABA) neu-
rons were also present. Glial cell types included astrocytes (Astro), 
oligodendrocytes (Oligo), oligodendrocyte progenitor cells (OPC), 
and microglia (MG). Finally, vascular leptomeningeal cells (VLMC) 
and endothelial cells (Endo) were identified. Transcriptionally in-
distinct mixed nuclei made up 0.9% of the nuclei population. The 
distinctly identified clusters were further validated with known 
marker genes from other mouse brain single-cell datasets (Fig. 1, D 
and E) (32–35). Expression of marker genes across clusters showed 
expected patterns. Thus, the cell clustering analysis of our snRNA-
seq dataset reflected the spectrum of cell types typically present in 
the hippocampus, indicating a robust model to probe gene expres-
sion across hippocampal cell types in aging.

Enrichment of DEGs on the X in aging hippocampus
We first conducted a differential gene expression analysis of com-
bined cell types and individual cell types. Representation of hippo-
campal neuronal and glial cell types was similar in young and old 
cell populations and across samples (fig. S1) (data S3). Using the 
decoupler and pyDEseq2 programs (36, 37), we interrogated aging-
induced differential gene expression via pseudobulking expression 
by cell type and sample. In combined cell types, 926 genes were sig-
nificantly differentially expressed in old compared to young nuclei 
(Fig. 2A) (data S4). Approximately 50% of these DEGs were previ-
ously identified to change in similar directions in datasets of the ag-
ing male (38) and female (33) mouse brain (Fig. 2A, top hits in red) 
(data S5). Also in the combined cell types, among the 926 DEGs, 29 
were from the X (Fig. 2A, in blue).

As global changes to X regulation were previously identified as a 
feature of female hypothalamic aging (33), we wondered whether 
aging preferentially alters DEGs on the X compared to autosomes in 

the hippocampus. When normalizing for total genes of each chro-
mosome, more genes changed on the X (Xa and Xi combined) than 
on autosomes (Fig. 2B). This finding extended to analyses of indi-
vidual autosomes of similar size compared to the X (fig. S2). DEG 
overrepresentation on the X similarly extended to most cell types in 
the aging, compared to young, hippocampus (Fig. 2C). That is, sim-
ilar to the combined all-cell population, CA1 neurons, CA3 neurons, 
DG neurons, GABAergic neurons, microglia, and oligodendrocytes 
individually showed an increased number of significant DEGs from the 
X, compared to autosomes. Notably, DG neuronal nuclei harbored 
the highest number of significant DEGs, from both autosomes (14%) 
and X’s (20%), followed by Oligos (Fig. 2C), suggesting that they may 
be particularly sensitive to age-induced changes on the X.

Following the finding that aging-induced DEGs were enriched on 
the X, we next assessed cell type–specific RNA expression of X-linked 
genes, applying genome-wide corrections. First, using g:Profiler, we 
conducted a gene ontology (GO) term analysis of the X-linked genes 
significantly enriched in each cell type compared to other cell types 
in our dataset (39). The top predicted structures and functions across 
cell types were the synapse and synaptic organization (Fig. 2D), con-
sistent with the high proportion of genes related to cognition on 
the X (40). Thus, the enrichment of neural functions on the X high-
lights the high value for its study in the hippocampus and for cogni-
tive aging.

Aging-induced DEGs from Xa and Xi across hippocampal 
cell types
We assessed significant X-linked DEGs, for those broadly shared 
across cell types like neurons and glia, and for cell type–specific pop-
ulations. DEGs, measured from the Xa or Xi, were classified as neuro-
nal, glial, multiple, or cell type specific according to inclusion criteria 
(Fig. 2E). Aging nearly globally resulted in up-regulated neuronal and 
glial DEGs—and largely up-regulated multiple and cell type–specific 
DEGs—from both the Xa and Xi (Fig. 2E). Notably, most X-linked 
DEGs changed in a cell type–specific manner, highlighting the het-
erogeneity of aging effects within the hippocampus. Even so, the con-
vergent aging-induced increase in X-linked expression across cell 
types suggests common chromatin regulators and transcription fac-
tors, and less transcriptional repression, across the X’s.

To investigate how aging alters predicted cellular components and 
functions referable to the X, we performed individual GO term 
enrichment analyses of significant X-linked DEGs that change with 
aging for each cell type (fig. S3). GO terms related to synaptic regula-
tion, activity, and organization were the most robust and remarkably 
conserved pathways among nearly all cell types (fig. S3). Cell type–
specific differences also emerged, such as GTPase (guanosine triphos-
phatase) binding (CA3, DG, Oligos) or constituents of the myelin 
sheath (Astro and Oligos) (fig. S3). Rho GTPase signaling integrates 
synaptic structure and function through AMPA receptor trafficking 
and represents a treatment avenue for cognitive disorders (41, 42), 
while myelination decreases with aging and contributes to cognitive 
decline (43). Since synapses and myelin are fundamental units and 
substrates of neural function, and targets of aging-induced dysfunc-
tion, these enrichments collectively suggest a molecular basis for 
XX-based resilience against cognitive decline in aging. Details of 
aging-induced X-linked DEGs that were most common to neuronal 
and glial cell populations are reported in Supplementary Text.

We identified the aging-induced DEGs derived from Xa, present 
in the most cell types; all notably harbor mutations in humans that 
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cause intellectual disability: Dmd (44, 45), Cnksr2 (46, 47), and Pak3 
(48, 49). These X genes increased in at least seven cell types (Fig. 2, 
F to N) and have known hippocampal functions. Dmd encodes dys-
trophin, a scaffold protein at inhibitory synapses (50). Cnksr2 is also 
a synaptic scaffolding protein for granule cells of the DG (51). Pak3 
is a synaptic connectivity protein that forms spines (52) and syn-
apses (53), and contributes to cognition (54). Thus, synaptic func-
tions of aging-induced Xa genes are prominent and show human 
relevance as demonstrated by intellectual disability resulting from 
their loss of function or pathogenic variation.

The aging-induced DEGs derived from the Xi represented in 
most cell types were Ftx, Gpm6b, and Plp1. These genes increased on 
the Xi in three to four cell types that were either neuronal (Ftx) or glial 
(Gpm6b, Plp1) biased (Fig. 2, F to N). Ftx, the long noncoding RNA, 
inhibits hippocampal apoptosis (55) and ferroptosis (56). Also, as a 
positive regulator of Xist (57), its age-induced increase might influence 
XCI regulation. Members of the proteolipid protein family, Gpm6b 
and Plp1 (58), both contribute to myelination, and human mutations 
in PLP1 cause hypomyelination and intellectual disability (59). Since 
defects in myelin maintenance contribute to age-related cognitive de-
cline (43), it is interesting to speculate that modest increases in these 
factors from the Xi could attenuate cognitive deficits.

Since snRNA-seq provides a shallow depth of coverage and allele-
specific analysis requires doubling the genes detected (one from each 
allele), together they necessarily constrain both coverage and statisti-
cal power. Thus, cell type–specific DEG analyses yield high specific-
ity but low sensitivity for detecting gene changes, particularly from 
genes on the Xi, which are expressed at lower levels than on the Xa. 
Given our focus on detecting X escape from XCI, we complemented 
our study with additional analyses.

Xi escape from XCI, with reference to Xa, in the 
aging hippocampus
We next implemented a well-established and conservative analysis 
pipeline (25) to define X escape and assess how Xi expression chang-
es across cell types and age, in reference to Xa. This better powered 
and more sensitive computational approach (Fig. 3A), compared to 
single-nucleus DEG analysis, aggregates reads broadly across and 
within cell types (pseudobulking) and enables a quantitative detec-
tion of escape from XCI (data S6). X escape status was calculated 
using an escape proportion and its corresponding 99% confidence 
intervals (CIs). To meet criteria as an escapee, a lower bound of the 
CI must be greater than 0, and the median escape value (the escape 
proportion) must be greater than 0.05 (Fig. 3A).

Baseline escape genes were identified as those that showed escape 
in the young life stage, and differences between escapee behavior in 
young and old cohorts were categorized. Genes exhibited increased es-
cape from baseline if they escaped in both young and old samples, but 
the lower bound of their old CI was greater than the upper bound of 
their young CI. Baseline escapees increased (Fig. 3B, purple), lost 
(Fig. 3B, maroon), or maintained (Fig. 3B, red) their level of expres-
sion with age. In addition, aging activated expression of previously 
silent Xi-linked genes to induce their new escape (Fig. 3B, orange).

With this framework for Xi escape across aging in place, we exam-
ined escape in a population of combined cell types (Fig. 3B). Of the 73 
baseline escapees identified, 4 increased expression with age, 51 main-
tained expression, and 18 lost expression with aging. Remarkably, aging 
induced new expression of 19 genes from Xi that were previously inactive 
in the young life stage. Of particular interest were age-induced (orange) 

and increased escape with age (purple) genes (Fig. 3C), since their Xi 
expression was increased in hippocampal cells (Fig. 3, D to L).

We next determined whether there was cell type variation in how 
aging affected Xi-linked gene expression (Fig. 3, D to L, and fig. S4, A to 
D). In the DG and glutamatergic neurons, aging both robustly activated 
and repressed Xi-linked genes, indicating dynamic age-induced remod-
eling of fundamental neural units underlying learning and memory. In 
comparison, in CA1 and CA3 (which receive and refine DG input), 
GABAergic cells, and OPCs, aging predominantly repressed Xi-linked 
gene expression. In contrast, aging markedly activated Xi-linked gene 
expression in microglia, astrocytes, and oligodendrocytes, potentially 
influencing neuroimmune-mediated functions and proper myelina-
tion. Thus, the effects of aging on the Xi varied by cell type, highlighting 
the complexity of gene regulation of the highly and structurally con-
densed Xi.

To maintain XCI-mediated transcriptional silencing, the Xi is 
tightly compacted by heterochromatin, is coated by Xist RNA, and 
exhibits altered DNA and histone methylation patterns compared to 
the Xa. Since aging altered expression of Xi-linked genes, we won-
dered whether it influences regulators of XCI. While Xist was abun-
dant in every cell, as anticipated, a further increase in already high 
expression was only detected on Xi in microglia (Fig. 2K). Because 
Xist deletion from Xa was used to enforce nonrandom XCI, our 
method does not capture any Xist expression from the Xa, which 
may explain why we do not observe the previously reported increase 
in abundance of this noncoding RNA in several wild-type hippo-
campal cell types (33). Nonetheless, and interestingly, aging changed 
expression of other XCI regulators from the Xi, including Jpx and 
Ftx. Aging increased Jpx expression from the Xi in glutamatergic 
neurons (Fig. 3G) and decreased it in CA3 neurons (fig. S4) Fur-
thermore, aging consistently increased Xi expression of Ftx in CA1, 
DG, and glutamatergic neurons (Fig. 3, D, F, and G, and fig. S4), key 
cell types for learning and memory in the hippocampus. Our results 
converge with previous findings that aging also increased total Jpx 
and Ftx expression in the female hypothalamus (33); our data sug-
gest that this increase was from Xi. Whether these XCI regulators 
affect the XCI status of Xi, or whether they exert XCI-independent 
functions in the aging hippocampus, remains to be determined.

We examined whether the same genes could be targets of aging-
induced Xi modulation across multiple cell types of the hippocampus. 
Approximately half (44%) of Xi-mediated changes in a gene’s expres-
sion extended across two to eight cell types in the given escape pattern. 
For example, aging increased Plp1 expression on the Xi consistently 
across seven cell types (CA1 neurons, DG neurons, undefined gluta-
matergic neurons, GABAergic neurons, oligodendrocytes, microglia, 
and astrocytes) (Fig. 3, D, F to J, and L, and fig. S4). Relatedly, aging 
increased expression of Gpm6b in glial cells (oligodendrocytes, OPCs, 
and astrocytes), induced new escape in MG, and decreased expression 
in neuronal cells (CA1, CA3, and undefined glutamatergic neurons) 
(Fig. 3, D, E, G, and J to L, and fig. S4). Thus, as top examples, Plp1 and 
Gpm6b were targets of Xi modulation in aging, each in seven of nine 
cell types, suggesting their heightened accessibility to activation or re-
pression on the silent X in aging.

Cell type–specific repression and activation of the Xi
To shore up findings of Xi escape, calculated with reference to Xa, 
we next further examined gene changes by focusing on Xi-only ex-
pression. In addition to understanding aging-induced Xi activation 
through escapee expression increases and new escape with aging, we 
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Fig. 3. Xi escape from XCI, with reference to Xa, in the aging hippocampus across cell types. (A) Schematic of escape ratio and CI calculation with an example calcu-
lation for hypothetical gene “X” showing age-induced escape. (B) Sankey plot showing the classification of X escapee expression of 708 detected X genes in young (mid-
dle) and old (right) populations for bulk cell populations. The gene expression is first classified as being baseline escapees (red) or inactive genes (blue). Escapee expression 
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extended analyses to aging-induced repression by querying X genes 
that lost their baseline escape status with aging.

In a combined cell type analysis, escapee genes from the Xi identi-
fied to increase expression, lose expression, newly escape in aging, or 
fit multiple categories (mixed escape)—observed in at least two hip-
pocampal cell types (fig. S4, B to D)—were examined for their frac-
tion of cells and mean Xi expression in young and old mice (Fig. 4A). 
Broadly, aging modulated escapee expression (Fig. 4A). Notably, the 
escapee Ftx solely increased expression with aging across multiple 

cell types—and at very high levels. Mixed escape expression patterns 
showed opposing Xi changes with age in different cell types that can-
celed out the signal in this combined cell type analysis.

To increase resolution of Xi-only expression in aging, we next 
used a cell type–specific approach and queried loss of escapee ex-
pression occurring in at least two cell types (Fig. 4B and fig. S4). 
Aging repressed Xi through loss of escapee expression, resulting in 
loss of escape status, depicted by reduced gene expression and frac-
tion of cells of the depicted cell type and life stage (Fig. 4B). Parallel 
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Fig. 4. Activation and repression of Xi-only expression in aging and across cell types. (A) Combined, bulk cell analysis of Xi expression showing genes with lost escape 
(maroon), escapee expression increased (purple), new escape with aging (orange), or mixed escape, observed in at least two hippocampal cell types in young and old 
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to patterns identified in escape analysis, aging repressed Xi expres-
sion and cell fraction of Gpm6b in neurons, and boosted them in glia 
(Fig. 4, B and E, and fig. S4, B to D). Notably, aging repressed Pak3 
across most cell types on the Xi (Fig. 4B and fig. S4C) and activated 
it on the Xa (Fig. 2). To further confirm the escapee’s loss of expres-
sion, we graphed X escape for each aging-mediated Xi gene that lost 
escape status in a cell type. As expected, in their specific cell type, 
aging uniformly repressed these escapee genes (Fig. 4C).

We wondered what functions aging-mediated repression of the Xi 
could contribute to a hippocampal cell. A GO term analysis of these Xi 
genes in at least one cell type (fig. S4C) highlighted several terms, includ-
ing those regulating chromosomes (Fig. 4D). A conspicuous contributor 
to this prediction is Atrx, a central player in genome stability that re-
presses numerous regions of chromosomes and contributes to silencing 
of Xi in development (60). Thus, aging-mediated repression of the re-
pressor Atrx on Xi could potentially contribute to new escape from the Xi.

Similar to our analysis of Xi repression, we conducted an analysis 
of Xi-only activation in aging, using the same cell type–specific ap-
proach (Fig. 4, E to H, and fig. S4, B and D). Aging activated Xi 
through increased escapee expression (Fig. 4, E and F) and new escape 
with aging (Fig. 4, G and H), depicted by augmented expression and 
fraction of cells in both groups of genes. As highlighted in the DEG 
and escape analyses, aging increased Ftx escape from the Xi in many 
cell types (Fig. 4E and fig. S4B). To further confirm this finding, we 
graphed X escape for each Xi-linked escapee that increased expres-
sion in a cell type. As expected, in their specific cell type, aging uni-
formly increased baseline expression of these escapee genes (Fig. 4F).

Several genes showed new escape with aging—indicating activa-
tion of the Xi—across many cell types. Among them, and confirming 
our previous analysis, Plp1 notably exhibited new escape with aging in 
six cell types and increased escapee expression in the remaining (Fig. 
4G and fig. S4D). To further confirm that genes inactive in the young 
life stage underwent new escape with aging, we graphed X escape for 
each Xi gene of this category in a cell type. As expected, in their spe-
cific cell type, aging robustly activated these genes—going from silent 
in young mice to new escapee expression in old mice (Fig. 4H).

To probe putative functions conferred by aging-mediated activa-
tion of Xi (increased escapee expression and new escape with aging) 
in the hippocampus, we performed a GO term analysis of this class 
with genes changed in at least one or more cell type (fig. S4, B and 
D). An enrichment of terms related to XCI, such as Ftx, Jpx, and 
Rlim (57,  61,  62), suggests that aging-induced Xi activation could 
alter its transcriptional landscape. This probably contributes to other 
terms enriching for broad neural functions (synaptic and endosomal 
membranes, neuronal cell body, and protein binding) (Fig. 4I). Atrx 
was implicated in multiple GO terms relating to chromosomal regu-
lation, indicating that the repressor Atrx is repressed in some cell 
types and activated in others (60). Other escapees, Plp1 and Gpm6b, 
are relevant to the cellular component organization term, as compo-
nents of myelin and the membrane of many central nervous system 
cells (63, 64). Finally, Atp7a and Gria3 are known to contribute syn-
aptic integrity, signaling, and neuronal activation (65,  66). Thus, 
aging-mediated activation of the Xi may set off a cascade of tran-
scriptional escape to ultimately alter neuronal and glial functions.

Human relevance of DEG and X escape analysis findings
The X is enriched for genes with neural functions, and the findings 
of our computational analyses highlighted broad neural functions 
alongside synaptic signaling and neural structural components. Thus, 

we wondered whether specific aging-induced changes in Xi-linked 
gene expression are enriched for genes represented among human, 
X-linked conditions of intellectual disability. In other words, if the
select Xi genes identified here were particularly important to cogni-
tive functions, then their mutations would predict cognitive dys-
function. To that end, we systematically searched the literature for
the 100 Xi genes that exhibited age-induced changes in at least one
or more cell types. Mutation of nearly half (49%) of these genes
caused intellectual disability, typically in males since they lack a
compensatory X (table S1) (67–115). This finding highlights the ex-
ceptionally important role of the silent X, changed by aging, in po-
tentially influencing underlying substrates of cognitive function,
one of our most valued outputs of brain function.

Female sex increases Plp1 expression in the hippocampus of 
mice and parahippocampus of humans
Aging selectively activated Xi genes in both single-nucleus differential 
gene expression and X escape analyses, and among them, Plp1 either 
was highly activated from Xi or showed increased escapee expression 
across cell types. PLP1 is also implicated in Pelizaeus-Merzbacher dis-
ease, a leukodystrophy that causes intellectual disability, among other 
neurological deficits; thus, it has high relevance for human cognition 
(81, 115). We therefore focused further studies on Plp1. Aging in-
creased Xi expression of Plp1 in DG neurons, oligodendrocytes, and 
astrocytes in the DEG analysis (Fig. 2, H, L, and N). The Plp1 escapee 
ratio was highest (Fig. 5A), with the most robust Xi expression (Fig. 
5B) in old oligodendrocytes. As PLP1 is intrinsic to oligodendrocyte 
structure and function, its strong increase from the Xi with aging sug-
gests that it may enhance aging oligodendrocytes (58).

We further measured Plp1 in mice and PLP1 in humans. To con-
firm the aging-mediated increase in Plp1 across cell types in XX 
mice, we compared its bulk expression in young compared to old 
mice in the XX and XY hippocampus (Fig. 5C) using a separate co-
hort. Using quantitative polymerase chain reaction (qPCR), we 
found that aging increased Plp1 mRNA in XX, but not XY, mice. To 
assess whether this sex difference in Plp1 extends to humans, we 
then assessed its expression in the parahippocampus of aging hu-
mans using the Mount Sinai Brain Bank (MSBB) cohort. This region 
surrounds the hippocampus and is involved in spatial memory, infor-
mation, and context. Sequenced samples were analyzed and normal-
ized for library size, and adjusted for relevant covariates, including 
batch, age at death, race, postmortem interval, RNA integrity 
number (RIN), exonic rate, and ribosomal RNA (rRNA) rate. In 
parallel to mice, older women showed increased PLP1 expression in 
the parahippocampus, compared to older men (Fig. 5D). Increased 
PLP1 in women was restricted to the parahippocampal region and 
not observed in the frontal pole, superior temporal cortex, or infe-
rior frontal gyrus (fig. S5). Together, these findings confirm increased 
Plp1/PLP1 expression in the hippocampus or its surrounding area of 
aging females in both mice and humans.

AAV-mediated Plp1 overexpression in oligodendrocytes of 
the mouse hippocampus
To investigate the effects of increased Plp1 on cognition in aging, we 
constructed an adeno-associated virus (AAV) to overexpress Plp1. 
We focused on oligodendrocytes because the highest overall expres-
sion and most robust aging-induced increase in Plp1 was observed in 
this cell type. We used an AAV2/5 Plp1 mRNA construct driven by 
Mbp, an oligodendrocyte-specific promoter, followed by a ubiquitous 
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SV40 promoter transcribing green fluorescent protein (GFP) to mark 
successful transfection (Fig. 6A). The control AAV was identical to 
the Plp1-OE AAV, except for the deletion of Plp1. In vitro infection of 
a mixed glial population including oligodendrocytes confirmed that 
Plp1-OE compared to control AAV increased Plp1 mRNA overex-
pression in both XY and XX cells (Fig. 6, B and C).

Following in vitro validation, we performed in vivo AAV studies 
in aging XY and XX mice. We specifically injected the control and 
Plp1-OE AAV into the DG of the mouse hippocampus to investi-
gate whether Plp1 mediates behavioral changes in the aging brain 
(Fig. 6D). We focused on the DG since it is a key region in cogni-
tive functions like spatial memory (116) and also harbored the 
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most DEGs in our pseudobulk analysis (Fig. 2, C and H), sug-
gesting that it is particularly sensitive to aging. Using immuno-
histochemistry, we examined AAV infection of oligodendrocytes 
with immunofluorescence for GFP (Fig. 6, E and F) and OLIG2 
(Fig. 6F), an oligodendrocyte marker. GFP (green) overlapped 
with OLIG2(red) in 6.8% of cells in the DG and 24.3% of oligoden-
drocytes within the region (Fig. 6G), confirming that the AAV 
infected oligodendrocytes.

Cell type–specific up-regulation of Plp1 improves cognition 
in aging XY and XX mice
Finally, we tested whether increasing Plp1—through cell type–specific 
elevation in oligodendrocytes of the hippocampus—improved cog-
nition in the aging XY and XX brain. To this end, we conducted a 

battery of behavioral tests in old male and female mice transfected 
with AAV2/5 with an empty vector (control) or Plp1 overexpression 
(Plp1-OE) (Fig. 7A). Plp1-OE in oligodendrocytes did not alter 
anxiety-like behavior in the elevated plus maze (EPM) (Fig. 7B) 
or total activity in the open field (Fig. 7C) in either XY or XX mice. 
To probe spatial and working memory, domains preferentially tar-
geted by aging (117), we then assessed mice in the two-trial large 
Y-maze. Plp1-OE in oligodendrocytes increased exploration in the
novel compared to the familiar arm in both XY (Fig. 7D) and XX
(Fig. 7E) mice, indicating that it improved cognition in aging mice
of both sexes. Thus, Plp1 elevation in the oligodendrocytes of the
hippocampus—recapitulating a component of aging-induced activa-
tion of the silent Xi in females—enhanced learning and memory in
aging brains of both XY and XX mice.
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DISCUSSION
Our data show that aging remodels Xi, the silent X, across cell types of 
the female mouse hippocampus. Aging preferentially altered DEGs on 
the X compared to autosomes, and nearly globally up-regulated neuro-
nal and glial DEGs from both Xa and Xi, in a cell type–specific manner. 
Focused analysis of Xi showed changes in escapee expression including 
new escape with aging, and collectively predicted transcriptional regu-
lation of XCI and broad neural structures and functions including syn-
aptic integrity, signaling, and constituents of myelin. Plp1, a component 
of myelin highly expressed in oligodendrocytes, was among the most 
common and robustly activated Xi genes with age, and also increased 
in the aging parahippocampus of women. AAV-mediated elevation of 
Plp1 in oligodendrocytes of the DG, a key memory region targeted by 
aging, improved cognition in old mice of both sexes. Thus, recapitula-
tion of a component of aging-induced activation of the silent X in fe-
males promoted better function of the old brain.

The study of female-specific biology is historically underrepre-
sented in science and medicine but is essential and expanding fervently. 

This area of investigation is important because it (i) promotes an 
understanding of how fundamental biology contributes to health 
and disease in women and (ii) lays the groundwork to dissect sex 
differences between men and women. Unraveling the sex-based bi-
ology of what makes one sex more resilient or vulnerable paves the 
path to new and personalized treatments for both sexes. Our inves-
tigation of how aging affects the Xa and Xi chromosomes is specific 
to females and therefore forms a basis to understand sex differences, 
since typical males lack a second X.

The X, a major source of sex difference due to a second X in fe-
male mammals, represents 5% of the genome in men and women, 
and its study is growing rapidly, particularly in brain aging and age-
related neurodegenerative conditions such as AD. Historically, ana-
lytic challenges posed by X hemizygosity in males, random XCI and 
baseline X escape in females, shared sequences between X and Y, and 
limited representation of the X in genome-wide association studies 
often resulted in X exclusion in studies (118, 119). However, expand-
ing tool kits and varied sequencing approaches offer innovative and 
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complimentary opportunities to study the X with high accuracy in 
the brain, as evidenced by several recent studies (23, 120–122).

Our findings remarkably converge upon several targets identi-
fied in recent, unbiased, and large-scale human studies of the X in 
aging and AD. In these studies, either X expression (23) or its ge-
netic variation (120–122) associated with genes coding for synaptic 
(GRIA3, DMD, TENM1, FRMPD4, IL1RAPL1, GRIPAP1), kinase or 
phosphatase (PNCK, IRAK1, WNK3, MTM1), ubiquitin ligase or 
deubiquitinase (RLIM, OTUD5), DNA polymerase or transcription 
(AFF2, POLA1), and sodium and potassium transporter (SLC9A7) 
factors—all of which were modulated in our study of aging-induced 
remodeling of Xa and Xi. Notably, genetic variation in SLC9A7, 
which underwent new escape with aging in oligodendrocytes (fig. 
S4D), associated with AD risk in a meta-analysis of over 1 million 
individuals (122). It will be particularly interesting to know how ge-
netic variation alters cell type–specific SLC9A7 levels and function, 
and how that links to AD risk. This, along with the finding that around 
half of the aging-induced targets we identified on the Xi cause human 
intellectual disability if mutated (table S1), highlights the exceptional 
role of the X factors identified in contributing to cognition.

XCI was proposed in 1961 by Mary Lyon (123), followed by sev-
eral decades of mechanistic advances (24, 124–130). Newer tools such 
as single cell and snRNA-seq now enable more nuanced study of XCI 
escape across cell types (131–134), and allele-specific approaches en-
able direct measure of Xi expression (25, 27–29, 135–139). Our study 
uniquely combines snRNA-seq with an allele-specific approach to 
understand how aging alters Xa and Xi expression across cell types of 
the hippocampus, a region critical to cognition and targeted by aging, 
AD, and other neurodegenerative diseases.

Aging-induced activation of Xi, either through increased escapee 
expression or new escape altogether, increases the dose of activated 
X genes in cell types of the XX hippocampus. In other words, the 
aging female brain carries higher X expression due to the second 
“inactive” X. It is interesting to speculate that the X increase may 
benefit the aging brain since it is enriched for cognition-related genes. 
This may, in part, underlie why adding a second X to XY male mice 
improves, while subtracting one from XX female mice worsens, 
hippocampal-dependent cognitive functions in aging and an AD 
model (22, 23). It may also link with female-based resilience to cog-
nitive aging (16–20) and higher baseline memory functions in typi-
cal aging and early AD (16, 20, 21, 140) observed in women, across 
many populations. However, X genes also harbor immune-related 
functions that exacerbate phenotypes, as noted with Tlr7 in the 
brains of aging male mice (141) and Kdm6a in lymphocytes of fe-
male mice in an experimental model of autoimmune encephalitis 
(142). In addition, an X factor, USP11, promotes tau modification 
and pathology in female mice (143). Whether these factors es-
caped from the Xi is unclear in these studies, but it is important to 
note that while an increase in Xi gene expression could confer 
cognitive resilience at large, not all X factors will uniformly benefit 
the brain at all life stages and conditions. Each will require causal 
testing for their cell type–specific role(s) in brain aging and neuro-
degenerative diseases. What Xi activation broadly means for wom-
en’s brain health—or for other systems of the body—is now a critical 
area of investigation.

Here, increasing Plp1 expression in oligodendrocytes of the DG, 
which recapitulates a component of age-induced Xi activation, im-
proved cognition in old XX and XY mice. First, Plp1 is robustly 
expressed in oligodendrocytes, where it promotes myelination, a 

principal regulator of axonal conductance, and target of age-induced 
degeneration (144–147) that links to cognition (148). Oligodendro-
cyte vulnerability in aging impairs myelin plasticity through decreased 
remyelination and regenerative capacities alongside attenuated meta-
bolic shuttling of lactate and pyruvate to axons (43). Therefore, increas-
ing Plp1 in this cell type may boost the functions of oligodendrocytes 
and counter age-induced vulnerabilities.

Increasing Plp1 in the small hippocampal subregion of the DG 
improved cognitive functions, consistent with findings that inter-
ventions in cells forming a functional hub can modulate larger net-
works (149). Furthermore, Plp1-mediated cognitive improvement 
was acute and occurred when the intervention was introduced dur-
ing old age, not requiring lifetime exposure to a transgenic altera-
tion. This is important because treatments for cognitive aging, and 
for neurodegenerative diseases like AD, will require treatment late 
in life, and perhaps after symptoms emerge.

Beyond Plp1, aging activated the escape of several genes from the 
“inactive” Xi, suggesting its heightened accessibility to transcrip-
tion. Epigenetic alterations are a hallmark of aging (150), and XCI is 
maintained by epigenetic programs of methylation, heterochroma-
tin, and noncoding RNAs. It follows that the process of aging itself 
alters these programs across the genome including on the X (151), 
causing an overall loss of repression and increased transcription 
(150, 152, 153). More specifically, aging increases variability of the 
methylation (151) that widely silences genes on Xi (154), as ob-
served in demethylation of regions escaping XCI in human leuko-
cytes (153). Furthermore, aging increases chromatin accessibility 
(152), promoting increased gene expression (155), across the ge-
nome and particularly on topological-associated domain-like structures 
with high chromatin accessibility where escapees tend to cluster 
(156), as observed in hematopoietic stem cells (152). Collectively, 
these examples provide mechanistic insight into how aging may acti-
vate Xi in the brain, possibilities that require further study in neural 
cell types.

Given the density and high volume of epigenetic repression in-
volved in maintaining XCI, the silent X may unintentionally but 
preferentially be affected by the global alterations of aging. Alterna-
tively, or additionally, the aging-driven activation of Xi may offer an 
evolutionary advantage to females by increasing X dose, and thus 
potentially conferring resilience to cognitive decline. In the context 
of the debated “grandmother hypothesis” (157–161), a sharp mind 
and knowledge of resources could enhance the survival, reproduc-
tive success, and genetic fitness of a female’s children, grandchil-
dren, and local community. Whether or not activation of the Xi is an 
intended or unintended consequence of aging, this remarkable pro-
cess of partial “awakening” with age, first noted in the in 1980s in the 
liver (162), requires further investigation. The timing of Xi activa-
tion, its mechanistic and epigenetic orchestration, its conservation 
and overlap with humans (who show more X escape at baseline than 
mice) (163–165), and its functional significance for the aging female 
brain are all high-value areas of future research.

Emulating the effects of escape from XCI or even directly activat-
ing Xi genes could be a potential therapeutic strategy in brain aging 
and neurodegenerative diseases. Treatments simulating escape from 
XCI have been explored to treat Rett syndrome and other X-linked 
conditions. Since Rett syndrome is caused by a mutation in MEPC2 on 
one X (166, 167), therapies to reactivate the silenced wild-type MEPC2 
or replace the mutated gene have been proposed (166, 168, 169). Our 
studies suggest that targeted elevation of Plp1, which is down-regulated 
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in some studies of AD (170)—or perhaps targeting a number of other 
activated Xi genes—might improve cognitive deficits in aging and 
neurodegenerative disease.

In our analysis, most DEGs (Fig. 2E) and escapees (fig. S4) were 
cell type specific (60% and 56%, respectively), yielding high resolu-
tion of the Xi with aging. Notably, cell type classification was reca-
pitulated by manual and automated (171, 172) annotation with 96% 
cell class overlap (data S7). While snRNA-seq datasets are inher-
ently confounded by doublets and ambient RNA to some degree 
(173), we largely accounted for these confounders using Scrublet 
(174) and Cell Ranger, balancing resolution of cell type specificity 
while maintaining sufficient power to detect allele-specific reads.

Our study has several caveats and limitations. First, our experi-
ments did not include males, who harbor a single Xa. Whether ag-
ing similarly increases X expression in males, as it does in females, 
remains an important question. Second, we did not study how 
parent-of-X origin, known to influence X gene expression in neu-
rons (175), influences the age-induced modulation of the Xa or Xi in 
females. Third, in our allele-specific analysis, which uses two differ-
ent reference genomes, mapping bias toward M. musculus may have 
occurred since it is a more refined and established genome than that 
of M. castaneus, which is more newly generated (176,  177). This 
could result in capturing less of the Xi and lead to a more conserva-
tive analysis. Fourth, while a great many SNPs differentiate the two 
mouse genomes, increasing discrimination of the Xa from Xi, some 
genomic areas show scant SNPs, which could lead to decreased dis-
crimination in some genes. However, this genetic structure, consis-
tent between young and old mice, would not influence age-induced 
escape findings. Fifth, genetic deletion of Xist on the Xa chromo-
some, used to enforce nonrandom XCI, may have precluded our 
detection of age-induced Xist changes. Finally, like for any snRNA-
seq library, selection bias of RNAs captured in our study was un-
avoidable, as was the twofold decrease in power resulting from 
measuring each gene twice to assess allele-specific expression.

In summary, our study reveals aging-induced activation, repres-
sion, and remodeling of the “silent” Xi and its cell type specificity, 
with high resolution. Since Xi activation increases X dose, and X 
genes disproportionately influence neural and cognitive functions, 
our findings may imply a mechanism for female-based resilience to 
cognitive aging and increased baseline functions in early AD (16–
21). Understanding how Xi escapees, such as Plp1, can contribute to 
counteracting vulnerabilities of brain aging may pave the way to 
therapeutic targets that benefit one or both sexes.

MATERIALS AND METHODS
Animals
All mouse studies were approved by the Institutional Animal Care 
and Use Committee (IACUC) of the University of California, San 
Francisco (IACUC protocol number: AN204838). The studies com-
plied with the National Institutes of Health guidelines. Mice were on 
a 12-hour light/dark cycle, in standard housing groups of five mice 
per cage with ad libitum access to food and water.
snRNA-seq mice
Female M. musculus XistloxP+/−,Zp3-cre mice (30, 178) with a congenic 
C57BL/6J background were crossed with male M. castaneus mice 
obtained from The Jackson Laboratory (strain 000928). XX progeny 
carrying the XistloxP+/−,Zp3-cre allele were used for snRNA-seq. Each 
experimental group consisted of age-matched, littermate controls. 

Four young (3 months) and four old (22 months) mice were eutha-
nized. Their fresh hippocampi were dissected and frozen for down-
stream studies.
Plp1 overexpression in mice
Aged male (19 months) and female (17.5 months) mice from a con-
genic C57BL/6J background were used for Plp1 overexpression stud-
ies. Plp1 was up-regulated using an AAV2/5 vector that encodes Plp1 
[National Center for Biotechnology Information (NCBI) Reference 
Sequence: NM_011123; 894 bp] from Applied Biological Materials 
(catalog number: #370271040110). The cytomegalovirus promoter 
was changed to an Mbp promoter. Downstream of Plp1, Gfp with an 
SV40 promoter is present. An additional control virus was used with 
the same sequence as the overexpression virus but no Plp1.

Mice were anesthetized (2 to 3% isoflurane) and placed in a ste-
reotaxic frame using ear bars and tooth bar. AAV (5 μl per hemi-
sphere) was stereotaxically injected into each DG of the hippocampus 
using the coordinates anterior-posterior (AP) = −2.1, medial-lateral 
(ML) = ±1.7, and dorsal-ventral (DV) = 1.9 at 3 μl/min, allowing 
for 10 min of diffusion. Experimenters were blinded to the identity 
of the viral injection.

Sequencing and bioinformatics
snRNA preparation
Nuclei were extracted using the Nuclei EZ Prep kit (Millipore Sig-
ma), following the manufacturer’s protocol. Frozen hippocampi 
were homogenized in lysis buffer and centrifuged twice to isolate the 
nuclei from the cell debris. The nuclei were resuspended in glycerol-
containing buffer and stored at −80°C. The libraries were prepped 
with the goal of 5000 captured nuclei per sample using the Chro-
mium Single Cell 3′ Library and Gel Bead Kit v3.1, Chromium Next 
GEM Chip G, and Dual Index Kit TT Set A (10x Genomics). The 
samples were sequenced by Novogene USA on an Illumina NovaSeq 
6000 with paired-end 150-bp reads PE150 (Novogene) with the goal 
of 100,000 reads per target captured cell.
snRNA-seq data analysis
A combined M. musculus (GRCm39) and M. castaneus (CAST_EiJ_
v1.111) genome was created using the mkref function of Cell Ranger 
(Cell Ranger/8.0 10x Genomics). FASTQ files were aligned to the 
combined reference genome using Cell Ranger Count v8.0.0 with the 
-include introns flag. Combined feature-barcode matrixes were formed 
using the aggregate function of Cell Ranger (Aggr v8.0.0). The resul-
tant feature-barcode matrix was analyzed using Scanpy (31). The matrix 
was filtered by removing barcodes with less than 100 corresponding 
genes and removing genes associated with fewer than three barcodes.

Scrublet was used to remove predicted doublets from the dataset 
(174). Data were normalized to total counts and logarithmized. Di-
mension reduction analysis was conducted using uniform manifold 
approximation and projection (UMAP). The Leiden algorithm was 
used to cluster the cells at a 0.5 resolution. The Wilcoxian method 
was used to determine the top 100 DEGs in each group. The genes 
were compared to clusters in the Allen Brain Atlas 10x hippocampus 
and cortex dataset, and clusters were assigned (32). Clusters with 
similar markers were combined for downstream analysis. Automat-
ed annotation was conducted with CellTypist (171, 172).

For DEG analysis, barcodes were pseudobulked by sample and cell 
cluster for downstream analysis using the decoupler and pyDEseq2 
programs (36, 37) after filtering out genes with a minimum of 10 reads 
across samples and 10 counts in an individual sample. Genes were 
considered to be differentially expressed if the adjusted P value was 
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<0.05, and the log2 fold change was >0.1 or <−0.1. Typical to DEseq2 
pipelines, the P values are calculated with the Wald test and are ad-
justed using the Benjamini-Hochberg procedure.

GO term analysis was conducted for each cell type. Genes were 
ranked using the Scanpy function “rank_genes_groups” and grouped 
by cell type. The top 350 X chromosome genes (ranked by P value and 
log2 fold change) were evaluated with the g:Profiler if their adjusted 
P value was <0.05, and the log2 fold change was >0.1 or <−0.1 (39). 
P values are adjusted with the g:SCS method (179). GO term analysis 
was also conducted on significant (adjusted P value was <0.05, and the 
log2 fold change was >0.1 or <−0.1) X DEGs using g:Profiler (39).
Computational escape
Escape was assessed using a method adapted from Berletch et  al. 
(25). The M. musculus and M. castaneus normalized reads were summed 
for each gene, and the escape ratio was evaluated by taking the propor-
tion of M. castaneus reads from the total reads for the gene (Eq. 1).

Xa is the total normalized reads assigned to the M. musculus 
genome for the given cell type and age context.

Xi is the total normalized reads assigned to the M. castaneus 
genome for the given cell type and age context.

Pesc is the ratio of X
i
 reads

The escape ratio was corrected for mapping bias using the meth-
ods explained by Berletch et al. (25) using the ratio of the total auto-
somal reads to the M. musculus and M. castaneus genomes (Eq. 2).

ATcast is the total normalized autosomal reads from the M. castaneus 
genome across all genes.

ATmus is the total normalized autosomal reads from the M. musculus 
genome across all genes.

Pescadj is the adjusted escape ratio

A 99% CI was conducted for each escape ratio (Eq. 3)

If the lower bound of the CI was greater than 0 and the corrected 
escape value was greater than 0.05, the gene was considered to es-
cape. If Xa or Xi was lower than the 5th percentile for X allelic reads 
in all cell types, the gene was not considered an escapee. If Xa was 
lower than the 5th percentile for X allelic reads in all cell types, age-
related escape trends were not calculated. Escape was assessed by cell 
type and age group. GO term analysis was conducted on escapees 
following certain trends with aging using the program g:Profiler (39).
Human PLP1 analysis
MSBB cohort data were accessed from the Accelerating Medicines 
Partnership Alzheimer’s Disease (AMP-AD) knowledge portal at 
Synapse (180). Four different cortical regions—Broadmann area 10 
(frontal pole), Broadmann area 22 (superior temporal gyrus), Broad-
mann area 36 (parahippocampal gyrus), and Broadmann area 44 
(inferior temporal gyrus)—were analyzed (181). Using the DESeq2 
package in R, raw PLP1 count data for each region were normalized 
for library size and modeled as a function of sex while adjusting for 
standard covariates used in the MSBB processing pipeline: batch, age 

at death, race, postmortem interval, RIN, exonic rate, and rRNA rate 
(180, 182). Sex differences are reported as log2 fold change of nor-
malized PLP1 expression. Cases with available uncensored age-at-
death data were included in the final analysis (frontal pole: n = 161, 
superior temporal gyrus: n = 159, parahippocampal gyrus: n = 184, 
inferior temporal gyrus: n = 150).

In vitro and in vivo experiments
Immunohistochemistry
AAV-infected mice (2.5 months postinfection) were perfused with a 
peristaltic pump for 4 min using cold phosphate-buffered saline 
(PBS) (10 ml/min). Whole brains were collected and postfixed for 
48 hours in 4% (w/v) paraformaldehyde. The brains were preserved 
in 30% (w/v) sucrose in PBS. A freezing sliding microtome (Leica) 
was used to section whole brains into 40-μm-thick coronal slices 
and stored in cryoprotective medium at −20°C.

Individual sections were blocked with 10% normal donkey se-
rum. The blocked sections were incubated with primary antibodies 
[rabbit anti-GFP (1:1000, Sigma-Aldrich, G1544) and mouse anti-
OLIG2 (1:200, Proteintech, 66513-1-IG)] at 4°C overnight. The sec-
tions were washed and incubated with secondary antibodies [donkey 
anti-rabbit 488, donkey anti-mouse 594 Alexa Fluor–conjugated 
secondary antibodies (1:1000, Invitrogen A-21206, Invitrogen 
R37115)] at room temperature for 2 hours, with a final addition of 
300 nM 4′,6-diamidino-2-phenylindole (DAPI). Sections were 
washed and mounted on a microscope (Nikon CSU-W1) using Micro 
Manger 2.0 Gamma (183). The microscope has a Zyla 4.2 CMOS 
camera (Andor), piezo XYZ stage (ASI), CSU-W1 Spinning Disk 
with Borealis upgrade (Yokogowa/Andor), Spectra-X (Lumencor), 
CSU-W1 Penta Dichroic 405/488/561/640/755, ILE 4 line solid-
state Laser Launch a slide with Vectashield.

Sections were imaged on the fluorescence microscope with a 
spinning disk confocal (405/488/561/640 nm; Andor). Images were 
taken using the Plan Apo λ 20×/0.75 objective using solid-state 
lasers 405 and 488 nm and emission filters 447/60 and 525/50 (Semrock) 
(for DAPI and GFP, respectively). Additional images were taken 
with the Plan Apo λ 40×/1.3 oil objective using solid-state lasers 
405, 488, and 561 nm and emission filters 447/60, 525/50, and 607/36 
(Semrock) [for DAPI, GFP, and red fluorescent protein (RFP), respec-
tively]. Images were stitched and processed using Fiji (184). Images 
(40×) were used for cell counting, described below.
Cell counting
Microscopy images were analyzed using the segment artificial intelli-
gence (AI) analysis from the Nikon NIS Elements AR software ver-
sion 5.41.00 64bit. The images were preprocessed using the Mexican 
Hat, Fast Smoothing, and Subtracting backgrounds functions to make 
the nuclei clearer and increase the ability of the software to identify 
the nuclei. The segment AI was trained on 512 × 512 segments of the 
DG until the AI was reliably able to identify about 95% of DG nuclei. 
The trained segment AI was then applied to the DG images, where it 
counted the nuclei and measured the intensity of GFP and RFP in the 
cytoplasm. A threshold of 350 intensity units and 200 intensity units 
was set for RFP and GFP, respectively. All nuclei that met that thresh-
old were recorded as positive for that signal. Cells that were positive 
for GFP and RFP were counted as cells with colocalization.
Mixed glial culture
Using methods previously described (185), primary mixed glia were 
cultured from postnatal 0 to 2 congenic C57BL/6J male XY and fe-
male XX mouse pups. Cells were plated at a density of 106 cells/ml 
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in 24-well plates. The cells matured in Dulbecco’s modified Eagle’s 
medium. At day 5 (division 2) in vitro, they were treated with the 
Plp1 AAV (described in the Plp1-OE mouse section) at multiplicity 
of infection (MOI) = 2. At division 4, cells were treated with cyto-
sine arabinoside to reduce glial proliferation (186). At division 10, 
cells were harvested, and RNA was isolated.
Quantitative PCR
qPCR was conducted on whole hippocampi from young (3 months) 
(n = 13; XX, n = 15) and old (20 to 35 months) (XY, n = 10; XX, 
n  =  15) XX and XY mice. Mouse Plp1 transcript variant 2 F: 
5′CTTCCTTTATGGGGCCCTCC and R: 5′GGTGGTCTTGTAG
TCGCCAA primers were used.
Behavior
Behavioral studies were conducted beginning 4 weeks after AAV in-
jection, and experimenters were blinded to the treatments. Studies 
were conducted on age-matched controls and during the light cycle. 
All chambers, objects, and areas were cleaned with 70% alcohol be-
tween testing sessions.
Elevated plus maze
The EPM was carried out as described (187, 188). For 1 hour before 
testing, mice were habituated in the testing room in dim light. Dur-
ing testing, mice were placed in the center of the EPM facing the 
open arm and could explore for 10 min. Their time spent in each 
region and distance traveled in the open and closed arms were re-
corded using the Kinder Scientific Elevated Plus-Maze (Chula Vista, 
CA) and MotorMonitor system.
Open field
The open field was carried out as described (23, 187–189). Mice were 
acclimated for 30 min and explored the open field for 10 min. The 
total activity in the open field (clear chamber 41 × 30 cm) was de-
tected by beam breaks and measured with an automated Flex-Field/
Open Field Photobeam Activity System (San Diego Instruments).
Two-trial large Y-maze
The mice were evaluated in the two-trial large Y-maze following the 
described protocols (188, 190, 191). Mice were trained by allowing ex-
ploration of one arm of the Y with a visual cue. Following 16 hours after 
completion of training, the novel arm with a different visual cue was 
opened and mice were allowed access. Mice then explored all arms of 
the two-trial large Y-maze. The duration in the novel compared to the 
familiar arm, a measure of spatial learning and memory, was assessed.
Statistical analysis
Statistical analyses for in vitro and in vivo behavioral experiments 
were carried out using GraphPad Prism (version 7.0) for t tests and 
two-way analyses of variance (ANOVAs). All tests were two-tailed 
unless indicated otherwise. Differences between two means were as-
sessed using unpaired t tests and a two-way ANOVA to assess differ-
ences among multiple means for all experiments unless otherwise 
stated. Error bars represent SEM, and null hypotheses were rejected 
at or below a P value of 0.05 when rounded to two decimal points.
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