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In education, many assessments boil down to getting the correct solution or 

necessary result to receive credit. This end goal mentality, in turn, influences how 

educators transfer knowledge to students. For example, some educators may present or 

walk through completed solutions. However, continually displaying and using worked-

out solutions to teach can quickly become an obstruction to learning. In computer 

science, a significant amount of learning occurs while fixing the errors that litter the 

pathway from a blank page to a working solution. This dissertation establishes a 

methodology for teaching from student errors in computer science. 
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The first part of the dissertation establishes how we developed over fifty 

lightweight exercises to integrate into a ten-week course without content replacement. 

Using past research in computer science, education theory, and cognitive load theory, we 

developed and refined a standard exercise structure that incorporates student submissions 

containing erroneous code, past student solutions presented during student-instructor 

interactions, and instructor feedback. Collectively, our core exercises are known as 

"What's Wrong With My Code" exercises. 

Next, we evaluated the "What's Wrong With My Code" exercises in three distinct 

ways. First, we performed a study to assess student improvement when using our 

exercises in place of current course activities (e.g., CodeLab). Second, we analyzed the 

differences in student error encounters for an entire term by comparing error counts in 

prior course offerings to offerings with our exercises integrated into the weekly course 

workload. Lastly, we evaluated student self-efficacy improvements over an entire term by 

comparing offerings with and without our exercises. In each of the studies, our exercises 

proved beneficial with increased student performance (with effect sizes of 0.56 and 0.42), 

increased self-efficacy (p-value < 0.05), and diminished student error encounter rates. 

Finally, we used our methodology to implement additional exercises to 

demonstrate a pathway for use beyond common errors. Specifically, we developed 

exercises to teach programming style in an introductory C++ computer science course. 

We evaluated the style exercises alongside data from seven years of submissions, which 

spanned four different instructional methods of teaching programming style. Our research 

concludes that students showed increased use of proper programming style before 
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receiving any assessment feedback in academic terms that utilized our exercises. 

Additionally, we discovered that using an automatic assessment tool with an assigned 

style grade significantly improves the use of proper programming style. 

This dissertation creates a methodology for teaching from student errors in any 

computer science course, utilizes the methodology to provide multiple implementations 

and use case examples for an introductory computer science course in C++, and suggests 

concrete changes for computer science course instructors. 
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Chapter 1: Introduction 

In education, many assessments boil down to getting the correct solution or 

necessary result to receive credit. This end goal mentality, in turn, influences how 

educators transfer knowledge to students. For example, some educators may present or 

walk through completed solutions. However, continually displaying and using worked-

out solutions to teach can quickly become an obstruction to learning. In computer 

science, a significant amount of learning occurs while fixing the errors that litter the 

pathway from a blank page to a working solution. 

Motivation & Background 

Growing class sizes, as well as dwindling resources, have led instructors to pursue 

different tactics, methods, and implementations in scalable and effective teaching habits. 

New tools and online environments help recreate standard teaching pedagogy, such as 

worked-out examples, but they also create an opportunity to introduce alternatives to 

complement long-standing teaching practices. In the era of growing class sizes, 

automated assessment of programming exercises helps bridge the scalability gap. 

However, the open-ended nature of programming assignments can lead to (1) misguided 

automatic feedback, (2) a disconnection between an errant student solution and proper 

advice, (3) a complete lack of advice due to the student not understanding the presented 

question, or (4) knowledge gaps due to students never encountering a problem/feedback 

pairing. Altering worked-out examples into broken examples for students to fix is a novel 

way to supplement the overuse of worked-out examples in current teaching methods. 
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Incorporating teaching from errors into courses is an active pursuit in computer 

science education (Denny et al., 2012; Du Boulay, 1986; Ginat & Shmalo, 2013; Mathis, 

1974; Murphy et al., 2010) and many other fields. However, many computer science 

explorations have limited impact because the research requires altering an entire course 

or removing content to add the newly developed content of the researchers. Additionally, 

a common stance is to offer an entire course on debugging, but students who may take 

the course are well into their computer science studies. Other fields offer potential 

implementation pathways for using broken examples or examples with missing pieces. In 

Chemistry, Barke (2015) incorporated incorrect examples to teach students to balance 

chemical equations. Rogers et al. (2000) utilize errant examples in a teaching model to 

correct student misconceptions in electrochemistry. At the grade school level, Durkin and 

Rittle-Johnson (2012) use correct and incorrect worked-out examples to teach decimal 

mathematics, and Adams et al. (2014) extend the research to introducing a web-based 

tutoring system using incorrectly completed examples. In the medical field, Kopp et al. 

(2008) use misleading or broken examples to help students build diagnostic knowledge. 

We build on the research both from computer science education and from other 

disciplines to create building blocks for our methodology. 

Cognitive Load Theory 

The APA Dictionary of Psychology defines cognitive load as the number of 

mental resources required to complete a task (VandenBos, 2007). Cognitive load has 

three distinct types, intrinsic, extraneous, and germane. Intrinsic cognitive load is the load 

of the actual content and correlates with the amount of effort output by the learner during 
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information consumption. Extraneous cognitive load relates to the presentation style of 

the material and the effort placed into parsing or interpreting the presentation. Lastly, 

germane cognitive load is the load necessary to store the knowledge into memory. 

Cognitive load theory ties cognitive load to problem-solving, a key element of instruction 

and learning (Sweller, 1988). Chandler and Sweller (1991) use cognitive load theory to 

guide the design of pedagogy by reducing the complexity and presentation of examples 

and exercises. Following up on Sweller’s work, Renkl (2010) shows that the current use 

of worked-out examples does not take advantage of prior research in cognitive load 

theory. Our work builds upon research from Chandler, Sweller, and Renkl to redefine 

what a worked-out example should look like within an exercise.  

 

 

Figure 1: Example “What’s Wrong With My Code” exercise. 
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Developing Exercises: Building on Prior Research 

Traditionally, instruction from examples teaches from the correct way of 

programming by presenting a completely worked-out solution with proper syntax. 

However, students are not always able to infer the important principles, such as fixing a 

commonly occurring syntax mishap, from an already correct presentation. In our 

exercises, we teach from the point of an error. For example, instead of showing a student 

a proper “cout” statement, we present a broken code attempting to use “cout” and our 

exercise asks the student to choose a proper fix for the problem. Durkin and 

Rittle-Johnson (2012) concluded that mixing in exercises with errant solutions alongside 

normal practice problems and worked-out examples increases student understanding.  

Our core group of exercises (Appendix D) adapts cognitive load reduction 

strategies developed in prior research. Figure 1 contains an example of our exercises. To 

reduce extraneous cognitive load in exercise presentation, we separate each problem into 

three distinct parts, 1) the student’s description of the problem combined with an example 

with erroneous code, 2) several student-produced potential solutions to the described 

problem, and 3) the instructor feedback area that outlines why a chosen solution is correct 

or incorrect. 

In the first area, we use student descriptions to describe the problem. Presenting a 

problem from a student’s perspective lowers the intrinsic cognitive load of the problem 

description. Similarly, we lower the intrinsic and extrinsic cognitive load of the program 

code by using prior student submissions to represent the problem and stripping the code 

of an extraneous syntax. According to Große and Rekl (2004), highlighting can reduce 
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cognitive load. In our exercises, we highlight the specific errant line or lines of code to 

draw the student’s attention to problematic lines.  

In the second area, we reduce cognitive load by using a multiple-choice layout 

and presenting potential solutions from a student’s perspective. Presenting student-

oriented answers in a multiple-choice format builds upon prior research about 

encouraging student self-explanation (Chi, 1994) and research reducing the cognitive 

load of self-reflection by providing options to game players (Johnson and Mayer, 2010). 

Finally, in the instructor feedback area, we use clear and concise statements at the 

student’s knowledge level to provide feedback on correctness based on the selected 

multiple-choice answer. Additionally, we color code the feedback. We use red for 

incorrect responses and green for correct responses. Coloring the feedback helps students 

quickly pick up on whether the chosen answer is right or wrong. 

The design of our exercises aims to reduce the intrinsic and extraneous cognitive 

load of each exercise. This facilitates the student’s understanding of the problem and 

enables the student to commit the knowledge to memory without experiencing cognitive 

overload. 

Impact 

This dissertation makes several significant contributions to computer science 

education. 

1. We create a methodology for incorporating exercises containing erroneous 

code within computer science education. 
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2. We implement over fifty exercises for use within introductory computer 

science courses in C++. 

3. We show that utilizing exercises containing erroneous code can increase 

student performance on short term assessments. 

4. We show that utilizing exercises containing erroneous code can reduce the 

number of errors students encounter. 

5. We show that student self-efficacy increases when using exercises containing 

erroneous code. 

6. We utilize our methodology to create exercises to teach programming style 

within an introductory computer science course. 

7. We show that automatically assessing style with immediate feedback is an 

effective means for getting a student to use proper programming style. 

8. We show that our exercises increase student use of proper programming style 

with and without automatic style assessment. 

9. We provide practical implementations and directions for using our 

methodology to computer science instructors.    

Research Inquiries and Hypotheses 

We collected our data within the Introduction to Computer Science for Science, 

Mathematics, and Engineering I at the University of California, Riverside (CS 010 in 

UCR’s catalog). CS 010 is the first computer science course taken by computer science 

majors at UCR. Colloquially the first computer science course for majors is referred to as 

“CS 1” because the catalog designation varies by university. 
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Research Inquiry 1) How does the introduction of exercises containing erroneous code 

affect student performance? 

Hypothesis 1a) We hypothesize that completing exercises containing erroneous 

code will increase student performance on quizzes in comparison to normal 

lightweight programming activities.  

Hypothesis 1b) We hypothesize that the introduction of weekly exercises 

containing erroneous code will reduce the number of compiler errors directly 

related to the newly introduced exercises.  

Research Inquiry 2) How does the use of exercises containing erroneous code across an 

entire term affect student self-efficacy? 

Hypothesis 2a) We hypothesize that student self-efficacy will increase across the 

entire term with the addition of weekly exercises containing erroneous code.  

Research Inquiry 3) How effective are current strategies at teaching programming style 

in introductory computer science courses? How can we introduce exercises to take 

advantage of previously discovered benefits of exercises that contain erroneous code? 

What effect does the use of exercises containing erroneous style examples have on the 

student’s use of proper programming style for assignments? 

Hypothesis 3a) We hypothesize that students will use proper programming style 

more often when they receive a grade for proper programming style. 

Hypothesis 3b) We hypothesize that students with better programming style will 

perform better in the course. 
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Hypothesis 3c) We hypothesize that the introduction of style exercises that use 

erroneous code will increase the student’s ability to employ proper programming 

style.  

Summary 

 This dissertation consists of three primary studies. In Chapters 2, 3, and 4, we 

present our studies in a format similar to the one used by the American Society for 

Engineering Education. One of our studies (Chapter 2) has already been published as a 

paper (Koehler, 2016; doi: doi.org/10.18260/p.27196) and is presented with some edits. 

The other two studies (Chapter 3, Chapter 4) were published as posters 

(doi: doi.org/10.1145/3287324.3293720, doi: doi.org/10.1145/3159450.3162330) and 

will be published as full papers. The three studies address the following connected lines 

of inquiry: 

A. How does the introduction of exercises containing erroneous code affect student 

performance? 

B. How does the use of exercises containing erroneous code affect student self-

efficacy when used for an entire term? 

C. How can we introduce alternate exercises to take advantage of previously 

discovered benefits of exercises that contain erroneous code?  
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Chapter 2: What’s Wrong With My Code (WWWMC) 

 

Abstract  

Student-instructor interaction and passage of knowledge is often optimal in a one-

on-one setting1. Individual interactions between a student and an instructor form a 

distinct pathway for the passage of knowledge, including information about topic-specific 

misconceptions. Unfortunately, these interactions can be time-consuming. Automated 

assessment and directed educational tools attempt to address the time concerns by 

presenting the student with immediate feedback but can often be lacking in other ways. 

Our paper presents a teaching instrument, “What's Wrong With My Code,” that 

allows us to capture these one-on-one interactions. We provide our design methods used 

to create the “What's Wrong With My Code” problem sets and analyze the results of 

studies that utilized the problem sets within a teaching environment. 

Introduction 

Growing class sizes, as well as dwindling resources, have led instructors to pursue 

different tactics, methods, and implementations for scalable and effective instruction. The 

goal is to adapt specific teaching methodologies to accommodate resource and personnel 

constraints with rising per-class student enrollments. The apprenticeship method is one 

such teaching strategy that requires adaptation. With this method, a single student learns 

through direct instructor feedback across various examples through one-on-one 

 
1 The material in this chapter was previously published at 2016 ASEE Annual 
Conference & Exposition (Koehler, 2016). This chapter is an edited version of that 
publication. The material was edited to achieve consistency with the rest of this 
document and to provide clarification of some details. Also, an appendix was added 
to present additional details (Appendix A).  
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interactions. One-on-one interactions help facilitate an excellent teaching environment, 

and instructors use one-one-one interactions to teach students about programming 

misconceptions and errors in introductory programming courses. The repetitive nature of 

a substantial portion of these interactions makes them a prime candidate for improving 

scalability through automation. 

Automated assessment of programming exercises can bridge the scalability gap. 

However, the open-ended nature of programming assignments can lead to (1) misguided 

automatic feedback, (2) a disconnection between an errant student solution and proper 

advice, (3) a complete lack of advice due to the student not understanding the presented 

question, or (4) knowledge gaps due to students never encountering a problem/feedback 

pairing. “What's Wrong With My Code” (WWWMC) attempts to emulate the 

apprenticeship environment and solve these problems by using a much more stringent 

and guided experience while still maintaining scalability. 

Background 

As class sizes grow, we must support the instructor-student relationship with 

growing technologies that allow interaction outside the typical lecture environment. 

Automated tools are now capable of grading homework and tutoring students on specific 

topics (Farrel et al., 1984; Vanlehn et al., 2005; Wood, 1996). In recent years a few of 

note include Web-CAT (Edwards & Perez-Quinones, 2008), Marmoset (Spacco et al., 

2006), and Codelab (Arnow & Barshay, 1999). One of the goals of automated assessment 

is to replace both human-generated grading and feedback with automated testing suites, 

thus reducing the workload of instructors with growing class sizes. As an example, the 
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Codelab environment allows automated assessment through grading of a multitude of 

exercises as well as feedback on errant solutions to guide the student to a correct 

submission (Arnow & Barshay, 1999). However, automated assessment utilities can have 

drawbacks based on how general or how specific the tool implementation and use is. 

Autograders often reduce their ability to provide specific tutoring and feedback as a 

compromise to create an implementation for a broader set of programming submissions. 

Therefore, applying and scaling appropriate feedback becomes the most challenging part 

of scaling automated assessments. 

As resources continue to change in computer science education, many old 

techniques utilized by instructors to distribute knowledge have moved to an online 

environment. Systems such as Codelab (Arnow & Barshay, 1999) have established online 

presence as tutoring software for computer science education. Additionally, researchers 

like Edgcomb, Vahid, and Wood have shown that increasing the interaction level of the 

tools utilized within computer science education can improve students’ scores (Edgcomb 

& Vahid, 2014; Wood, 1996). For example, Edgcomb and Vahid showed that using 

interactive web content, such as animations, within an online textbook is more effective 

than simply migrating a book to a static online version (Edgcomb & Vahid, 2014). 

Identifying pitfalls, ranging from those of a specific programming language to 

pitfalls of an entire computer science class, has also been a long-sought task of 

researchers (Du Boulay, 1986 and Spacco et al., 2006). When building and analyzing the 

findings of Marmoset, Spacco et al. set up repositories for student code that allowed the 

researchers to analyze intermediate student programs and not just final submissions 
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(Spacco et al., 2006). Garner, Haden, and Robins categorize programming pitfalls into 

twenty-seven categories built from the error reports gathered within a Java-based CS 1 

course (Garner et al., 2005). As we will show in the WWWMC Tool Development 

section, many of the categories we have chosen for our question sets overlap the outlined 

categories of Garner et al. 

Once misconceptions are known, incorporating pedagogy into courses is an active 

pursuit of not only computer science education (Denny et al., 2012; Du Boulay, 1986; 

Ginat & Shmalo, 2013; Mathis, 1974; Murphy et al., 2010) but other educational fields as 

well (Barke, 2015 and Rogers et al., 2000). Pair debugging by Murphy et al. shows how 

to incorporate debugging into the commonly utilized pedagogical technique of pair 

programming (Murphy et al., 2010). Simon et al. developed several videos to help CS 1 

students when debugging programs (Simon et al., 2007). Each of these pedagogical 

techniques has had a modicum of success. However, a few are only feasible in a smaller 

classroom, and others use different programming languages than C++. 

WWWMC Tool Development 

Traditionally with student-instructor interactions, a student presents a problem 

description, problematic code, and potential solutions to the instructor who provides 

feedback and guidance. This process can be time consuming as mastery of the specific 

piece of knowledge may require several such interactions. Furthermore, multiple students 

may ask similar questions, requiring the instructor to provide the same guidance multiple 

times. The goal of “What's Wrong With My Code”, is to streamline these multi-part and 

potentially multi-day teaching moments into a single WWWMC question. An individual 



 13 

WWWMC question allows all students to encounter the same problem and receive 

feedback. 

We created the WWWMC problems to have four distinct parts, as shown in 

Figure 2. The left column initially contains the problem or question, as well as the 

problematic code. The right column contains potential answers. Each time a student 

selects an answer in the right column, the left column updates with an explanation for 

why the choice is correct or incorrect. Also, we use textual coloring and answer 

highlighting to emphasize whether the selection is correct or incorrect. All our problems 

come from a CS 1 course using the C++ programming language. 

 

 

 Figure 2: Example “What's Wrong With My Code” problem 
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The first part of the WWWMC question is a student question paired with code 

derived from a student submission. We gathered student programming questions from 

two years from course forum interactions, program submissions, and office hour 

inquiries. From this, we isolated several pervasive and recurring issues to build our 

question sets around. The question for each WWWMC problem covers a distinct issue 

that many students encounter when learning to program for the first time. The problems 

use C++ syntax, but the concepts are portable to other introductory programming 

languages, such as Java. We developed over fifty problems and categorized them into 

various CS 1 teaching topics, as shown in Table 1. Many of the categories and errors 

overlap with the previous categorization by Garner, Haden, and Robin (Garner et 

al., 2005). The first aspect of a traditional “What's Wrong” interaction is the student 

presenting the problem to an instructor. In a WWWMC exercise, we present the problem 

description and code from the student perspective. We edited the problem description for 

spelling, grammar, and conciseness. Despite some alterations, we emphasize posing each 

question as a student would. We trimmed the code portion of the questions to exclude any 

unnecessary pieces of code to help focus the question but maintained the full program 

aspect by presenting a piece of code that could be copied and pasted into an editor, 

compiled, and executed. Lastly, we added code highlighting to focus the student on the 

error. 

The categories shown in Table 1 contain several distinct errors from both runtime 

and compile-time error groupings. For our purposes, when referring to runtime, we mean 

any error that occurs during program execution, such as logical bugs or thrown 
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exceptions. Also, we have several style questions to help build a basis of proper style for 

a novice programmer. For example, in Figure 2, we see a compile-time error from the 

input and output problems. This is a common error that occurs when novice students 

attempt to combine input and output statements when first learning. In Figure 4, we see 

an example of a runtime error resulting from using variables before values have been 

assigned to them. 

 

Table 1: “What's Wrong With My Code” Question Categories 

 

Figure 3: Example compile-time error from the String Member Functions category. 

 

  

1. Style 

2. Basic Input & Output 

3. Basic Variables and Math 

4. Random Numbers 

5. Branching 

6. String Member Functions 

7. Loops 

8. Functions 

9. Vectors 
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Figure 4: What's Wrong With My Code problem from the Basic Variables and Math 

category 

 

 

 

Figure 5: Example runtime error from the String Member Functions category 
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If we delve into the String Member Functions category, we see more examples of 

the mix of runtime and compile-time errors. These include syntax errors, such as leaving 

off parentheses when invoking a function (shown in Figure 3) and runtime errors, such as 

the out-of-range exception (shown in Figure 5). A combination of compile-time and 

runtime errors allows students to learn about multiple types of errors while gaining 

knowledge of how to fix specific errors. 

As shown in Figures 2, 3, 4, and 5, each question has several potential solutions. 

The solutions use student-centric wording just as in the problem descriptions. As with the 

questions, we gathered many of the solutions from correct and incorrect student answers 

to other student's inquiries about incorrect code. Additionally, we derived solutions from 

correct and incorrect implementations of student programs. Most solutions are  

a simple description of what is wrong with the code. Occasionally, a description requires 

additional clarification with a code snippet (as seen in Figure 4). We present the potential 

solutions in a multiple-choice layout. Using multiple-choice allows the student to easily 

navigate through all the explanations by selecting the various solutions. Our approach of 

providing errant code alongside multiple-choice options exposes the student to questions 

they might not otherwise encounter during the course. 

Each potential solution gives feedback. When the student selects a potential 

solution, we show the corresponding feedback and explanation. We provide all feedback 

and explanation statements from the instructor's perspective; we show examples of 

feedback in Figure 2 and Figure 5. The explanation describes why the solution is correct 

or incorrect as if an instructor is talking to a beginning programmer. Additionally, the 
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explanation utilizes a green checkmark or red 'x' as well as colored text to denote whether 

a solution is correct or incorrect.  

Lastly, the explanations attempt to avoid using too much computer science 

terminology. This is done to simplify the explanation and avoid confusing the student 

with unfamiliar words or programming terms. The goal of the explanation is to provide 

feedback on the potential solution and why the solution is correct or incorrect, not to 

teach computer science terminology and definitions. The feedback provides immediate 

justification for the correctness of a solution, rather than merely marking a question right 

or wrong. 

Study Implementation 

We performed our initial study in two quarters, Spring and Fall. In each study, 

students completed a pretest, a randomly assigned either an experimental or control 

treatment, and a post-test. The experimental treatment option was the “What's Wrong 

With My Code” exercises. In the Spring study, the control treatment used several 

exercises with the Codelab (Arnow & Barshay, 1999) instructional programming 

environment. In the Fall study, the control treatment used a home-grown automated 

assessment system to replace submission to the Codelab environment. The exercises used 

in the Fall study mimicked the Spring’s Codelab exercises but provided only correct or 

incorrect marking with no guided feedback. We developed the second control treatment 

for the Fall study because instructors opted not to use Codelab after the Spring quarter. In 

each study, the control attempts to teach items similar to the WWWMC questions. 
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Each study contained five parts, presented through a single web page, one part at 

a time. We integrated the parts with a Google Form to allow data and timestamp 

collection after each section. The five parts of the study included: background survey, 

pretest, lesson or instruction, post-test, and follow-up survey. At the beginning of the 

course, we provide a unique four-digit ID to each student. We used the ID within the 

study to anonymize the results, assign course credit to the participants, and maintain 

continuity in data collection across the multiple parts of the study. 

The pretest and post-test were the same series of ten questions, comprising three 

multiple-choice questions and seven free-response essay questions. Each of the seven 

free-response questions required the student to write no more than a few lines of code. 

Figure 6 shows two free-response questions. The third item in Figure 6 is an example of a 

multiple-choice question. We informed participants that all questions in the pretest and 

post-test are optional. Additionally, we informed all participants that they receive credit 

based on participation, not performance on either the pretest or post-test. 

 

1. Write an expression that calculates the floating-point value of the fraction 1213 / 

57101. 

 

2. Given the code above, write the code to store the floating-point average of x, y, and 

z in the variable avg. 

 

3. Which of the following is a character literal? 

Figure 6: Example written response (1&2) and multiple choice (3) test questions. In 

question 2, code precedes the question to declare and initialize variables. In question 3, 

we present several C++ literals as multiple-choice options.  
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To avoid grading bias toward a specific study, pretest over post-test, or toward a 

specific lesson, the student answers were all combined regardless of the test, lesson, or 

quarter. After merging the test responses, we randomized the collected student answers 

before grading. To establish consistency in grading, we established a standard rubric for 

each written question allowing partial credit between a score of 0 (no credit) and 1 (full 

credit). 

Study Participation Breakdown 

Our study population included all students enrolled in the Introduction to 

Computer Science course at the University of California, Riverside (UCR). Introduction 

to Computer Science is the first course taken by all computer science majors at UCR. We 

performed the study in two different quarters, but the on-track Fall quarter had many 

more computer science majors. Even with the increase in computer science majors during 

the Fall study, most participants did not have prior programming experience (66% of the 

333 participants had no prior experience). Not every participant completed the study 

correctly. For example, some participants completed the background section and skipped 

the other sections. Additionally, some students in the course opted to skip the entire 

study. 

The Spring study had 201 total participants, seven of which were computer 

science majors. The class breakdown of participants was 23% Freshmen, 34% 

Sophomores, 20% Juniors, 19% Seniors, and 4% being either non-matriculated or outside 

the typical classifications. The Fall study had 333 total participants, 80 of whom were 



 21 

computer science majors. The yearly distributions were 53% Freshmen, 17% 

Sophomores, 14% Juniors, 9% Seniors, and 7% other.  

After the study, we identified the exclusion criteria. To be included in the study: 

(1) the student must complete all parts of the study, (2) the student must complete the 

pretest, lesson, and post-test within eighty minutes, and (3) the student must have had no 

prior programming experience. The first criterion ensures that the student was engaged in 

the study enough to complete the five required steps. Our second criterion comes from 

our study instructions, which asked all participants to complete the study in a single 

sitting. An eighty-minute allotment allowed twenty minutes each for the pretest and post-

test, along with forty minutes for the lesson. Over 90% of the students that completed the 

study were able to do so in under eighty minutes. Many of the remaining students took 

several hours to complete all the parts, indicating they did not complete the study in one 

sitting. Lastly, to control for knowledge variation between students with and without 

prior programming experience, we included participants with no prior programming 

experience.  

With exclusion criteria 1 and 2, the Spring study had 128 eligible participants. 

After applying all three exclusion criteria, 91 participants remained. With the Fall study, 

267 participants remained after applying exclusion criteria 1 and 2, and 172 participants 

remained after applying all three exclusion criteria. 
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Table 2: Scores for Spring study out of 10 points 

 

Results and Analysis 

We analyzed the results of the study across three different scores: the average 

pretest score, the average post-test score, and the performance improvement from pretest 

to post-test in the Spring and Fall studies. Additionally, during the Spring quarter, we 

used participant engagement scores, which we gathered during a follow-up survey using 

a six-point Likert scale question with no neutral option. 

As shown in Table 2, both the control lesson and the WWWMC lesson showed 

improvements to the students’ test scores in the Spring study. Students taking the 

WWWMC lesson posted a statistically better average improvement of 1.73 points (on a 

scale of 0 to 10) versus students taking the alternate lesson who posted an average 

improvement of 1.03 points (p-value 0.033). The 1.73 point improvement corresponds to 

a 48% improvement on the pretest score and an actual grade percentage increase of 

17.3%. When examining the post-test for differences to determine if the students 
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achieved a different level of knowledge, we saw no significant difference between the 

post-test averages for the two groups despite the average score being slightly lower for 

the WWWMC group than for the Codelab group (p-value 0.162). 

In the Spring study, we also evaluated whether students who were more engaged 

with each of the lessons benefited more. First, we examined if there was a difference in 

engagement between the two groups of students and found no significant difference 

(p-value 0.47). We then compared the performance of students who reported that they at 

least slightly agreed that they were engaged in the treatment. In this case, the WWWMC 

group had an average score increase of 1.89, an average pretest score of 3.51, and an 

average post-test score of 5.41. The Codelab group had an average improved score of 

1.05, with averages scores of 4.38 and 5.43 for the pretest and post-test, respectively. 

These differences were non-significant, but this may be due to small population size, as 

only 34 students met the criteria for inclusion in this analysis. 

When we go one step further and only consider individuals that replied "agree" or 

"strongly agree" to the engagement question, the scores improve even more. The students 

in the WWWMC group had an average improvement of 1.91 points with average scores 

of 3.51 and 5.42 for the pretest and post-test. However, the scores for the Codelab group 

are similar to those with lower levels of engagement, with an average of 0.97 points of 

score improvement and pretest and post-test scores of 4.74 and 5.71. However, the 

differences between the groups are non-significant, most likely due to the small 

population that met the criteria for inclusion in this analysis.  
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Table 2 shows that increased engagement corresponds to increased improvements 

for students in the WWWMC group, but not for students in the control group. While this 

evidence lacks statistical significance, it suggests that increased engagement in the 

WWWMC treatment may contribute to improved outcomes. 

The Fall study had results similar to those of the Spring study, as shown in 

Table 3. The WWWMC group showed significant improvement from pretest to post-test 

(p-value < 0.001). However, for the control group, while there were improvements from 

pretest to post-test, these were not statistically significant. 

The lack of improvement may have been due to the students performing a task 

that had minimal feedback to help them solve the problem, additionally having only a 

single exercise to complete may have prevented the students from encountering all the 

potential errors before completing the submission. 

 

 

Table 3: Scores for Fall study out of 10 points 
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Students taking the WWWMC lesson in the Fall posted a statistically better 

average improvement score of 1.16 points (a 24% improvement from the pretest) when 

using two of the three exclusion criteria. When we apply all three exclusion criteria, the 

improvement is 1.35 points (a 32% improvement from the pretest). Those are increases of 

11.6% and 13.5%, respectively. Additionally, the students with the WWWMC treatment 

benefited with significantly stronger post-test scores when compared to students with the 

control treatment (p-value < 0.001).  

A common sentiment among the follow-up feedback for the WWWMC treatment 

stated that students enjoy knowing why something is correct versus only getting points. A 

common myth, often reinforced by correct/incorrect auto graders, is that if a student got 

the answer correct, then he or she clearly understands why. The explanations for correct 

and incorrect answers create teachable moments, reiterating knowledge the student may 

not have fully grasped. Of the students who took the WWWMC treatment, 78% of the 

students stated they explored both correct and incorrect answers to read the provided 

instructor feedback. 

The results from Spring and Fall allowed us to conclude that the “What's Wrong 

With My Code” questions were a positive influence on the success of the students. The 

WWWMC treatment provided significant changes in scores, often increasing the 

student's post-test score an entire letter grade. With this knowledge in mind, we moved to 

the third part of our implementation: integrating WWWMC exercises across the entire 

introductory computer science course. 
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Full Course Integration 

Working with Zyante (zyBooks, 2015), the research team created a supplemental 

zyBook for the students of the Winter and Spring 2 quarters. We named the zyBook 

PreLab to designate the time for the completion of all activities in the supplemental text. 

The “What's Wrong With My Code” chapter had ten sections (one per week of the 

quarter) comprising an introduction and nine sections containing WWWMC exercises. 

The introduction explained the purpose of the WWWMC questions and offered a few tips 

for effective use of the questions, based on prior feedback from students. Instructors 

incorporated all of the exercises in our supplemental textbook into the required weekly 

student workload.  

To compare the effectiveness of the fully integrated WWWMC problems to 

previous studies, we use the survey and post-test from the Spring and Fall studies. With 

no easy control for the consumption of knowledge beyond the current workload, we did 

not conduct a pretest in the two terms using fully integrated WWWMC exercises (Winter 

and Spring 2). We compare the singular survey to the previous post-test scores because 

students would complete all relevant WWWMC questions before the singular survey. 

When analyzing the data, we applied exclusion criteria 1 & 3. We modify exclusion 

criteria 1 to require that all WWWMC exercises be completed before the survey. Because 

the exercises in this study did not mandate completion in a single sitting, we did not use 

exclusion criteria 2. 
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 Winter Spring 2 

Participants (N) 118 147 

Exclusion Criteria 1 & 3 1 & 3 

WWWMC Test 6.75 6.46 

Table 4: Scores for Winter and second Spring study out of 10 points. 

 

Table 4 shows us the results of the Winter and Spring 2 studies. The Winter study 

had 118 participants, 4 of which were computer science majors. The Spring 2 study had 

147 participants, 14 of which were computer science majors. We administered a single 

test using the post-test questions from the Spring and Fall studies. Students completed the 

singular test for Winter and Spring 2 in the same timeframe in the academic term as the 

post-test of the Spring and Fall studies. The average scores (in a range from 0 to 10) for 

the test administered in the Winter and Spring 2 studies were 6.75 and 6.46 points, 

respectively. When we compared these results to the post-test results of Fall and Spring, 

the Winter and Spring 2 scores were significantly better than the Spring and the Fall 

scores, with p-values less than 0.001 for comparisons with Winter and p-values less than 

0.009 for comparisons with Spring 2. These test results show that the complete 

integration of WWWMC into the course further benefited the students.  

In addition to the one test, we collected all the errors that the students encountered 

during all four quarters. For errors covered within “What's Wrong With My Code” 

exercises we analyzed whether the percent of students that encountered the error was 

different during full quarter integration that the percent of students that encountered the 

error given no exposure to “What's Wrong With My Code” treatment during the quarters 
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before full concept integration. We collected errors by redirecting the compiler (g++) 

with a script that automatically filled in a Google form when an errant compilation 

occurred. The redirection script allowed us to gather errors for students, in all four terms, 

that used the online IDE for the course. When students initially set up the script, we 

triggered a Google form to show the instructors that a student set up an online IDE 

workspace. We calculated percentages for each error string in Table 5 from the total 

number of participants that set up our version of the IDE with compiler redirection. This 

means we excluded students enrolled in the course who use another IDE because we do 

not have error encounter information for those students 

 

Error Search String Spring 1* Fall* Winter Spring 2 

expected ';' before '{' 93.69% 59.63% 76.00% 79.39% 

no return statement in function 

returning non-void 
47.75% 43.58% 99.11% 97.33% 

expected primary-expression 

before '<<' 
63.06% 44.95% 58.22% 60.69% 

operator<< 56.76% 67.89% 85.78% 87.02% 

operator>> 75.68% 91.74% 96.00% 96.56% 

invalid use of member 79.68% 68.35% 83.11% 85.50% 

void value not ignored 97.30% 91.28% 100.00% 100.00% 

cannot be used as a function 81.98% 69.72% 92.44% 91.98% 

assignment of read-only variable 100.00% 95.41% 98.22% 99.24% 

Table 5: Percent of students to not encounter the error per quarter, a higher percentage is 

better. *Spring 1 & Fall data from students not exposed to WWWMC treatment. 
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In Table 5, we show the percent of students that never encounter the various types 

of errors in each quarter. The error search strings listed in Table 5 are the strings used to 

search the compiler output. A few error strings map to multiple compiler errors, such as 

“operator<<” which will find all errors containing improper use of the C++ output 

operator. We group these similar errors into a single count because the groups of 

WWWMC exercises covered several different potential errors on a concept, such as the 

proper use of the output operator. 

As shown in Table 5, full integration does not win out in every comparison, but 

often, the comparison results are in favor of the quarters with full WWWMC integration. 

For example, errors containing the input operator >> (row 5 in Table 5) showed 

significantly reduced encounter rates during the fully integrated quarters of Winter and 

Spring 2. However, one error that showed a significant reduction in the control quarters 

was the expected semicolon error (first row in Table 5). For this error, the rates for 

Winter and Spring 2 (the quarters with WWWMC exercises) were similar, but the percent 

of students in Spring 1 that did not encounter the error was significantly better than the 

fully integrated quarters. Similar results that favor quarters without WWWMC exercises 

include errors for expecting primary expressions before the << operator (row 3 in Table 

5) and assignment into a read-only variable (last row in Table 5). 

The fully integrated quarters were significantly better in six cases, and Spring 1 

was significantly better in two cases (p-values < 0.01). We highlighted the significant 

differences in Table 5. The rows in Table 5 with the following search strings showed 

significant improvements: expected ‘;’ before ‘{‘, no return statement, operator<<, 
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operator>> (Spring 1), invalid use of member, void value not ignored, and cannot be used 

as a function. The positive results showing the percent of students that never encountered 

an error help further support our claim that “What's Wrong With My Code” exercises 

benefit the students. Additional analysis of the association between treatment and errors 

is in Appendix A. 

Future Work 

We hope to work with Zyante (zyBooks, 2015) textbooks to create a free online 

textbook containing all the “What’s Wrong With My Code” problems. At present, the 

questions are available only upon request. The free zyBook would allow open access to 

our WWWMC problem sets. We sorted our questions into the concept groups described 

in the WWWMC Tool Development section. Additionally, we would like to translate the 

questions into other programming languages leading to an entire zyBook of WWWMC 

problems with chapters for different programming languages. 

We would like to break off a subset of WWWMC specifically for style. Style is 

often a "learn through experience" endeavor. We believe that using WWWMC type 

questions can help eliminate some of the programming style frustrations encountered by 

novice programmers when adapting to the programming style of an instructor.  

Lastly, we are investigating whether our “What’s Wrong With My Code” problem 

set can develop into a more structured tutoring system. We are unsure whether this would 

create further benefit for students, but it is certainly worth investigating, given our 

positive results thus far. 
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Conclusion 

The “What's Wrong With My Code” teaching instrument proved beneficial to 

student learning. In all the studies we conducted, the students showed improvement from 

pretest to post-test when using the WWWMC lessons. As we continued to develop and 

enhance this tool, the scores for the students using the WWWMC tool also improved. The 

improvement to student test scores for the WWWMC lesson participants was 

significantly better than scores for students taking the control lesson in the Fall study with 

p-values less than 0.001. Additionally, we show reduced error encounters for errors 

covered by the WWWMC exercises in the quarters with full integration of our “What’s 

Wrong With My Code” exercises. 

Ultimately, we believe our more guided approach with curated problems and 

solution-explanation pairings helps minimize some of the known drawbacks in 

automatically assessing open-ended programming problems. First, our problems provide 

concise instructor feedback. Second, the streamlined nature of presenting all the pieces 

a -- the problem the errant code, the solution, and the feedback -- in one exercise helps to 

reinforce the connection between all the pieces. Third, to make the questions easily 

understandable, we frame them from the student’s perspective. If the student is still 

struggling, WWWMC provides the student with the code, solutions, and feedback to 

provide contextual support in understanding the problem. Lastly, every student that 

completes an exercise will have seen the problem, solution, feedback coupling. By 

contrast, students with traditional instructional methods may fail to learn an important 

piece of knowledge if they happen not to encounter a particular mistake in a traditional 
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programming exercise. In summary, our results demonstrate that the integration of 

“What's Wrong With My Code” problems within an introductory programming course is 

beneficial to student learning. 
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Chapter 3: Improving Student Self-efficacy Using Exercises with Erroneous Code 

 

Abstract  

Research has shown that self-efficacy, a student's confidence in his or her ability, 

contributes to student success. Here, we examine if teaching students to recognize 

common programming errors increases their self-efficacy in an introductory 

programming course. We provided students with exercises containing examples of 

typical novice programming errors and methods for fixing them. At the beginning of the 

course, we assessed self-efficacy and administered a test to measure programming 

competence. We repeated these measurements at the end of the course. To assess self-

efficacy, students rated their confidence in completing various programming tasks on a 

scale of 0 to 100. The test had fourteen questions; twelve were short answer questions, 

and two were multiple-choice questions. Short answer questions required the students to 

write at most a few lines of C++ code, with most requiring only a single line. We 

analyzed student self-efficacy in relation to the pre- and post-test, assignment grade, final 

exam grade, and overall course grade. Our research reinforces prior research 

demonstrating a correlation between student assessment grades and student self-efficacy. 

We also found that our exercises provided significant self-efficacy improvements during 

an experimental term as compared to a control term across our eleven measurers for 

student self-efficacy (p-value < 0.05). 
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Introduction 

Believing in oneself can go a long way. Throughout lower-level computer science 

courses, instructors will note that being confident will, in turn, yield benefits to student 

performance on assessments. However, encouraging students to have confidence in their 

abilities can only go so far, especially when the students are faced with finding and fixing 

errors in their code. In our past research, we demonstrated that presenting students with 

examples of erroneous code and asking them to identify the errors improved students’ 

performance in an introductory computer science course (Koehler, 2016). In Chapter 2, 

we described our “What’s Wrong With My Code” system. An example “What’s Wrong 

With My Code” exercise is in Figure 7, and Appendix D contains the full set of exercises. 

Figure 7 shows an example of one of these exercises.  Here we examine if this system 

improves student self-efficacy in an introductory computer science course.  

 

 

Figure 7: Example of one of our exercises. 
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Background  

Research both inside and outside of computer science has examined student self-

efficacy and ways of improving it. The concept of self-efficacy, introduced by Albert 

Bandura (1986), comprises one’s confidence in one’s ability to complete a task. 

Following up on this initial concept description, Zimmerman, Bandura, and Martinez-

Pons (1992) studied the interplay between goal setting and student self-efficacy. Outside 

of computer science, a multitude of discipline-specific studies evaluated the relationship 

between self-efficacy and error detection (Zamora et al., 2018; King et al., 2013; 

Kluge et al., 2011; Winne and Nesbit, 2009; and Lorenzet et al., 2005). 

Specifically looking at computer science education, we find prior work evaluating 

course changes and the use of specific instruments or teaching style changes to affect 

self-efficacy. For example, Kinnunen and Simon (2011) analyzed prior results about 

student perceptions and self-efficacy evaluations in terms of Bandura’s established 

theories to outline future course modifications and interventions. Ramalingam and 

Wiedenbeck (1998) developed a 32-item scale to measure programming self-efficacy in 

introductory computer science courses. Many studies use Ramalingam and Wiedenbeck’s 

all-encompassing scale to evaluate student self-efficacy on a wide range of programming 

tasks of the sort used in a semester-long introductory computer science course. Wilson 

and Shrock (2001), Campbell et al. (2016), and Lambert (2015) all evaluated several 

factors of success in introductory computer science courses, including self-efficacy. All 

three studies reinforced prior research correlating student performance and student self-

efficacy. Etsey and Coady (2017) evaluated whether students understand the connection 
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between exam performance and problem-solving, and they discovered that students who 

perform poorly on the final exam are also confident that looking at solutions to problems 

prepares a student to solve future similar problems. Zingaro (2014) determined that peer 

instruction improves student self-efficacy significantly. 

Study Design 

Our study evaluates student self-efficacy improvements for students taking a ten-

week introductory programming course using the C++ programming language. (Such 

courses are often called “CS 1” despite the actual designation in a course catalog.) At the 

beginning of the course, we conducted a survey to assess student self-efficacy across 

several tasks. Additionally, we administered a test to measure programming competence. 

We repeated our measurements at the end of the course. We also used a survey to gather 

additional demographic information such as major and prior programming history. We 

conducted the study in three different terms, one control term and two experimental 

terms. Each of the three terms had the same course structure and materials, with the 

experimental terms adding our erroneous code exercises to the weekly student workload. 

The same instructor taught all three courses with the same course layout and materials.   

Instrument Development 

Bandura (2006) outlined a method of developing self-efficacy scales. We utilize 

Bandura’s guide to implement our eleven-question survey to measure student self-

efficacy. The survey measures a student’s self-efficacy in C++ programming skills 

learned in a CS 1 course in C++ as well as general skills developed in any CS 1 course. 

As suggested by Bandura (2006), we asked students to rate their confidence from 0 to 
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100 on specific tasks after completing a familiarization question. The familiarization 

question introduces the student to rate their confidence level to complete a common task. 

Our familiarization question asks students to rate their confidence (from 0 to 100) in their 

ability to pick up weights of different sizes varying from ten pounds to 500 pounds.  Our 

self-efficacy scale asked students to rate their confidence in the following eleven tasks. 

1. Program with proper style. 

2. Tell another student what proper style is. 

3. Outline a series of steps to solve the problem. 

4. Write a program in code-like statements (pseudocode). 

5. Write a C++ program to solve the problem on a computer with a compiler. 

6. Write a solution to the problem on paper using proper C++. 

7. Describe your solution to another student without showing them any code. 

8. Discover errors in a program without a compiler (g++). 

9. Fix compile-time errors. 

10. Fix runtime or logic errors. 

11. Describe how to fix an error to another student without providing them any 

code. 

  



 40 

Control (n = 57) Experiment 1 (n = 111) Experiment 2 (n = 67) 

Week 1 0.948 Week 1 0.961 Week 1 0.979 

Week 10 0.966 Week 10 0.956 Week 10 0.954 

Table 6: Cronbach’s alpha calculations per instrument use. 

Instrument Reliability 

We performed a reliability analysis by calculating the Cronbach’s alpha for each 

use of the 11-item instrument. We performed this calculation six times, once for the 

pretest and once for the post-test, for all three terms. As shown in Table 6, all of the 

alphas are over 0.90, with five of the six being over 0.95. Thus, the reliability of our scale 

is in line with other self-efficacy measurement instruments utilized in computer science 

and computing education. Ramalingam and Wiedenbeck (1998) developed a 32-item 

scale to measure programming self-efficacy with an overall alpha of 0.98, and 

instruments prior to Ramalingam and Wiedenbeck’s reported alphas ranging from 0.92 to 

0.97 (Torkzadeh and Koufteros, 1994; Murphy et al., 1989; Loyd and Gressard, 1984). 

Results and Analyses 

We compare results across three terms, all taught by the same instructor. 

However, the enrolled student population contained zero computer science majors in the 

control term as well as one of the two experimental terms, and under ten majors in the 

other experimental term. Since zero computer science majors existed in the control term, 

we exclude all computer science majors during our analyses across terms. Additionally, 

to control for variable levels of programming knowledge in students with prior 

programming knowledge, we exclude all students with prior programming knowledge 
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from our analyses. After the two population restrictions, the control term had 57 

participants remaining, the first experimental term had 111 participants remaining, and 

the second experimental term had 67 participants remaining. 

As expected from prior research on student self-efficacy improvements in 

education, student self-efficacy increased significantly from week 1 to week 10 for all 

three terms. Table 7 shows the mean and standard deviation of the 11 self-efficacy 

measures from week 10 for all three terms. The table also includes the gains from week 

one to week ten. To control for differing week-one scores between the control and 

experimental groups, we performed an ANCOVA analysis to determine the statistical 

significance for the differences in the week-10 scores for each of the measures. 

Additionally, we computed each student’s overall self-efficacy score by taking the 

average of all eleven measures for that student. 

We performed an ANCOVA analysis to determine the significance of the 

difference in the overall week-10 student self-efficacy scores across the three terms 

(shown in the “All Measures” row of Table 7). For the first experimental term, all 

measures except measure one show statistically significant improvements in student self-

efficacy scores (p-values < 0.05) compared to the control. For the second experimental 

term, all eleven measures show statistically significant improvements (p-values < 0.05) 

compared to the control term. As the only difference between the control and 

experimental course offerings was the inclusion of our exercises, we can conclude that 

our exercises are beneficial to improving student self-efficacy. 
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 Control Experiment 1 Experiment 2 

Measure Mean Std. Dev Mean Std. Dev Mean Std. Dev 

1 73.16 

(15.79) 

20.04 75.85 

(34.86) 

18.19 74.79* 

(54.04) 

17.17 

2 64.21 

(15.18) 

21.79 69.99** 

(35.03) 

20.51 69.63** 

(52.97) 

20.06 

3 66.75 

(7.28) 

23.33 74.02** 

(23.60) 

21.37 75.67** 

(44.78) 

17.27 

4 64.47 

(14.12) 

20.57 73.19** 

(35.77) 

22.09 72.91** 

(48.88) 

19.25 

5 67.95 

(6.81) 

19.82 76.67** 

(39.15) 

19.15 74.55** 

(56.87) 

18.44 

6 63.47 

(6.02) 

20.10 69.23** 

(33.30) 

20.94 70.00** 

(51.49) 

18.43 

7 60.18 

(8.26) 

21.64 65.46* 

(30.05) 

23.88 65.55** 

(47.72) 

22.91 

8 55.70 

(8.95) 

24.68 63.42** 

(30.05) 

20.79 62.40** 

(43.85) 

22.11 

9 65.26 

(8.60) 

25.723 70.66* 

(37.64) 

21.58 69.75* 

(52.57) 

21.45 

10 64.91 

(10.61) 

22.77 68.55* 

(35.11) 

20.70 68.58** 

(52.42) 

20.87 

11 56.14 

(8.12) 

25.44 62.75** 

(32.20) 

22.07 59.78** 

(44.34) 

24.16 

All 

Measures 

63.84 

(9.98) 

19.38 70.00** 

(33.34) 

17.57 69.42** 

(49.99) 

16.80 

 

Table 7: End of term self-efficacy averages per measure with the score change between 

week 1 and week 10 shown in parentheses. 

** indicates p-value < 0.01, * indicates p-value < 0.05 

 

 

 

  



 43 

We also evaluated the correlation between student self-efficacy scores and a 

student’s programming assignment’s grade, midterm grade, and final exam grade.  We 

found that the correlations were significant for all three terms (p-values < 0.05). These 

findings reinforce previously mentioned related work examining the correlations between 

learning outcomes and self-efficacy. 

Limitations 

One issue with our style of study design is the self-selection bias introduced by 

students completing surveys. To counteract the bias, the instructor provided extra credit 

to students participating in our study. Our study spanned only three terms, and when we 

control for the instructor, three possible terms remain for comparison. Selecting courses 

taught by this instructor resulted in student population controls that eliminated computer 

science majors and students with prior programming knowledge before our analyses. 

Having additional terms would allow the selection of a different instructor and potentially 

allow the inclusion of the two excluded populations.    

Conclusion 

In this study, we analyze the effect of using exercises containing erroneous code 

to improve student self-efficacy in an introductory computer science course.  Students in 

the two experimental terms used our “What's Wrong With My Code” exercises as part of 

their weekly workload. Students in the control term did not use our exercises. Instruction 

in the three terms was otherwise identical. Students completed a survey at the start and 

end of the quarter to self-assess their confidence levels from zero to one hundred on 

eleven different tasks. Self-efficacy improved for all eleven tasks across all three terms. 
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For ten of the eleven measures and the overall student self-efficacy score, both 

experimental terms showed statistically significant improvements in student self-efficacy 

compared to the control term (p values < 0.05). The other measure showed statistically 

significant improvement in one of the two experimental terms (p value < 0.05). With this 

evidence, we conclude that our exercises do contribute to the improvement of student 

self-efficacy in an introductory computer science course. These results demonstrate one 

more benefit for including our “What's Wrong With My Code” exercises in introductory 

computer science courses.  



 45 

References 

Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal 

of social and clinical psychology, 4(3), 359-373. 

 

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ, 

1986. 

 

Bandura, Albert. "Guide for constructing self-efficacy scales." Self-efficacy beliefs of 

adolescents 5.307-337 (2006). 

 

Estey, A., & Coady, Y. (2017, June). Study Habits, Exam Performance, and Confidence: 

How Do Workflow Practices and Self-Efficacy Ratings Align?. In Proceedings of 

the 2017 ACM Conference on Innovation and Technology in Computer Science 

Education (pp. 158-163). 

 

Campbell, J., Horton, D., & Craig, M. (2016, July). Factors for success in online CS1. In 

Proceedings of the 2016 acm conference on innovation and technology in computer 

science education (pp. 320-325). 

 

King, A., Holder, M. G., & Ahmed, R. A. (2013). Errors as allies: error management 

training in health professions education. BMJ Qual Saf, 22(6), 516-519. 

 

Kinnunen, P., & Simon, B. (2011, August). CS majors' self-efficacy perceptions in CS1: 

results in light of social cognitive theory. In Proceedings of the seventh 

international workshop on Computing education research (pp. 19-26). 

 

Kluge, A., Ritzmann, S., Burkolter, D., & Sauer, J. (2011). The interaction of drill and 

practice and error training with individual differences. Cognition, Technology & 

Work, 13(2), 103-120. 

 

Koehler, A. T. (2016). What's wrong with my code (wwwmc). In 2016 ASEE Annual 

Conference & Exposition, number (Vol. 10, p. 27196). 

 

Lambert, L. (2015). Factors that predict success in CS1. Journal of Computing Sciences 

in Colleges, 31(2), 165-171. 

 

Lorenzet, S. J., Salas, E., & Tannenbaum, S. I. (2005). Benefiting from mistakes: The 

impact of guided errors on learning, performance, and self‐efficacy. Human 

Resource Development Quarterly, 16(3), 301-322. 

 

Loyd, B. H., & Gressard, C. (1984). Reliability and factorial validity of computer attitude 

scales. Educational and psychological measurement, 44(2), 501-505. 

 



 46 

Murphy, C. A., Coover, D., & Owen, S. V. (1989). Development and validation of the 

computer self-efficacy scale. Educational and Psychological measurement, 49(4), 

893-899. 

 

Torkzadeh, G., & Koufteros, X. (1994). Factorial validity of a computer self-efficacy 

scale and the impact of computer training. Educational and psychological 

measurement, 54(3), 813-821. 

 

Winne, P. H., & Nesbit, J. C. (2009). 14 Supporting Self-Regulated Learning with 

Cognitive Tools. Handbook of metacognition in education, 259. 

 

Zamora, Á., Súarez, J. M., & Ardura, D. (2018). A model of the role of error detection 

and self-regulation in academic performance. The Journal of Educational Research, 

111(5), 595-602. 

 

Zimmerman, B. J., Bandura, A., & Martinez-Pons, M. (1992). Self-motivation for 

academic attainment: The role of self-efficacy beliefs and personal goal setting. 

American educational research journal, 29(3), 663-676. 

 

Zingaro, D. (2014, March). Peer instruction contributes to self-efficacy in CS1. In 

Proceedings of the 45th ACM technical symposium on Computer science education 

(pp. 373-378). 

 

 

 

 

  



 47 

Chapter 4: Teaching Programming Style in CS 1   

Abstract  

Students in introductory computer science courses (CS 1) typically receive little 

formal instruction in proper programming style. Students may gain a limited 

understanding of proper style by reading code samples, observing an instructor write 

code with proper style, or by receiving feedback on homework submissions. In our 

research, we evaluate the effectiveness of an alternative pedagogical approach in which 

we provide students with brief instruction on proper style, and then students critique and 

fix examples containing improper style. Our research answers three questions: First, will 

students use proper style if they know each program receives a style grade? Second, does 

the student's ability to use proper style correlate with academic performance? Third, do 

our exercises increase the student's ability to employ proper style? We investigated the 

first two of our research questions using data from three CS 1 courses with distinct forms 

of style assessment: 1) no style grading and no feedback, 2) automated style grading with 

feedback, and 3) hand-graded style with feedback. We investigated the third research 

question by augmenting the first two course forms with our pedagogical approach. In all 

courses, students use the same textbook, complete similar assignments, receive a 

programming style guide at the beginning of the term, and experience similar examples in 

lectures. We found that simply having a style grade is insufficient. Our results show that 

automatic assessment with feedback is the best route to proper style adoption. Our 

approach shows promise in increasing student use of proper programming style on 

programming assignments with and without automatic assessment.  
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Introduction 

Teaching programming style is an afterthought for many introductory computer 

science courses (CS 1). Programming style is never the primary subject of a text or 

lecture, and students learn proper programming style only through years of watching, 

reading, and doing rather than through instruction and assessment. Students may 

eventually obtain an understanding of and reasoning behind proper programming style, 

but the process can leave students frustrated, cause unnecessary delays in debugging, and 

increase the time needed for instructors to provide help. Teaching and enforcing proper 

programming style at the CS 1 level can set a student on the correct path of using proper 

style and reaping the benefits of proper style from the beginning of a student’s computer 

science education. 

In this paper, we present our research that evaluates the usefulness of assessing 

proper programming style and present our exercises as a teaching implement that 

integrates into current introductory computer science courses without the need for content 

replacement. Our research answers three questions: First, will students use proper style if 

they know each program receives a style grade? Second, does the student's ability to use 

proper style correlate with academic performance? Third, do our exercises increase the 

student's ability to employ proper style? We investigated the first two of our research 

questions using data from three CS 1 courses with three distinct forms of style 

assessment: 1) no style grading and no feedback, 2) automated style grading with 

feedback, and 3) hand-graded style with feedback. We investigated the third research 

question by using our style exercises with the first two of these forms of style assessment. 
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Background  

Dennis Ritchie invented the C programming language in 1974, and the language 

became popular throughout the 1980s after the first release of The C Programming 

Language (K&R C) in 1978 (Kernighan and Ritchie, 2006). Between the invention of C 

and the release of K&R C, Kernighan and Plauger (1974) investigated what proper 

programming style and structure should be and made their arguments with a series of 

examples. However, a dearth of research into what proper style is and how to teach it has 

continued to exist after Kernighan and Plauger’s work. Jumping a decade, Oman and 

Crook (1988) separated style into two categories, typographical and structural, in their 

pursuit of creating better style guidelines and automatic style assessment. Following their 

work, Oman and Cook (1990) created a taxonomy for programming style and 

demonstrated, for the first time in decades, the impact of teaching programming style. 

Since Oman and Cook’s work, the C programming language is now the parent 

language of many current programming languages, including C++ and Java, which are 

common programming language choices for introductory computer science courses. To 

support growing class sizes, a handful of researchers have looked for alternative methods 

of teaching style, such as automatic assessment tools to help grade style and provide 

feedback. For example, Ala-Mutka et al. (2005) developed an automatic C++ style 

analyzer for deployment in introductory computer science courses. In “Effectively 

teaching coding standards in programming,” Xiaosong Li and Christine Prasad (2005) 

question several students about coding standards to determine the importance of style 

from the student’s perspective. They discovered that students believe in assessing and 
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teaching coding standards, but students prefer to learn through examples and practice. As 

a follow-up, Li (2006) used peer review as a teaching and assessment method for 

programming style. Li’s case study provided anecdotal results demonstrating the 

usefulness of peer review. However, a student that does not understand style may not be 

able to peer review another student’s style. We believe teaching style directly through our 

exercises is a more straightforward approach to build from the results of Li and 

Prasad (2005). 

Previous research has outlined several potential benefits of teaching programming 

standards. To this prior research, we provide our pedagogical contribution of teaching 

style through exercises containing erroneous style examples for use at the CS 1 level. 

Exercise Development & Implementation 

The APA Dictionary of Psychology defines cognitive load as the amount of 

mental resources required to complete a task (VandenBos, 2007). Cognitive load has 

three distinct types, intrinsic, extraneous, and germane. Extraneous cognitive load relates 

to the presentation style of the material and the effort placed into parsing or interpreting 

the presentation. Chandler and Sweller (1991) use cognitive load theory to outline 

guidance for exercise creation, concentrating on reducing extraneous load by reducing the 

exercise presentation complexity. Within our university’s version of CS 1, instructors 

provide a style guide to students as the primary instructional tool for teaching proper 

programming style. We used Chandler and Sweller’s guidance to reduce the style guide 

from 7 pages of text and examples to create the following 15 concrete rules for proper 

programming style in our version of CS 1.  
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1. Indent each block of code 3 spaces beyond the previous indentation level. A 

block of code is code between a pair of left and right curly braces. One 

indentation level is three spaces. The global block, function headers, and 

everything outside function bodies, start with zero indentation. 

2. Only one curly brace can exist on a single line. 

3. Indent any line that continues from a prior line one level beyond the original 

line. 

4. Comments and vertical whitespace should help identify and visually separate 

logical code blocks. 

5. Initialize variables to literals, not expressions. 

6. Variables must have well thought out names, and names are usually nouns. 

7. Variables must use camel casing style casing. The first letter is lowercase, and 

then the first letter in each new word of the variable name is uppercase, such 

as personName. 

8. A conditional expression should not contain any comparisons to the literal 

values of true or false. 

9. All branches and loops must use curly braces to enclose code. 

10. The opening curly brace for all branches and loops must be on the same line 

and one space after the terminating parenthesis of the conditional expression. 

11. Indent all terminating curly braces to the initial indentation level, and the 

curly braces must be alone on the syntax line. 

12. Function headers have zero indentation. 
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13. Functions have an opening curly brace immediately following the header, or 

the curly brace may go on the line after the function header by itself. 

14. If a function header is too long, continue the function header on the next line, 

but remember to indent the continuation line one indentation level. 

15. The function body or implementation code should follow all previously 

outlined style guides. 

Our past research establishes the benefits of teaching with examples of errors and 

establishes a core exercise structure to use when building exercises (Koehler 2016). We 

used our prior research to develop eight exercises to teach programming style. We 

integrated the eight exercises into the weekly student workload across the first five weeks 

of the term. In our CS 1, all syntax learned after week 5 follows one or more style rules 

established in the first five weeks of exercises, such as when students learn about vectors. 

Students complete our exercises shortly after learning new C++ syntax. Figure 8 shows 

one example of the exercises (all eight are in Appendix E). As illustrated in Figure 8, our 

exercises present style rules sequentially, and each rule is presented along with a list of 

rules that have been previously taught. We designed this style of presentation to reduce 

unnecessary cognitive load.  

Research Questions 

Our research answers three questions: First, will students use proper style if they 

know they will receive a style grade on each assignment? Second, does the student's 

ability to use proper style correlate with academic performance? Third, do our exercises 

increase the student's ability to employ proper style? We investigated the first two of our 
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research questions using data from three CS 1 courses with distinct forms of style 

assessment: 1) no style grading and no feedback, 2) automated style grading with 

feedback, and 3) hand-graded style with feedback. We investigated the third research 

question by using our style exercises with the first two of these forms of style assessment. 

 

 

Figure 8: Example of an exercise teaching programming style for variables. 
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Methodology 

To compare style across terms, we created a style checker to mark seven types of 

style errors covered by the fifteen rules. Our checker output the number of style errors per 

group and the total style errors for a student’s submission. Each of the following style 

checks is specific to our CS 1 course implementation; other instructors may choose 

different rules for grading.  Our rules, test harnesses, and approach to grading can serve 

as a model for other approaches to grading style. The Python code we use to test style 

errors is included in Appendix B. The seven style elements we check are: 

1. Global variables. Our CS 1 instructors prohibit the use of global variables. 

Students may use global variables to circumvent the need to learn scope rules 

and to learn how to send and return values from functions. 

2. Existence of comments. Checking the usefulness of comments is a difficult 

task. Our CS 1 instructors simply want to make sure students use comments. 

3. Line length must be 80 characters or less. Our CS 1 instructors use a common 

programming standard of avoiding long lines of syntax. Our CS 1 instructors 

define long lines as syntax lines with more than 80 characters. 

4. Indentation must use spaces. Our CS 1 instructors allow only the use of spaces 

for indentation, and tabs are prohibited. 

5. Proper conditional expressions. Our CS 1 instructors do not allow students to 

create conditional expressions with direct comparisons to literal values of true 

or false. A conditional expression using the literal value of true or false is 

improper. 
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6. One curly brace per syntax line. Our CS 1 instructors require that no more 

than one curly brace is used on a line to reduce code complexity. 

7. Proper indentation. Our CS 1 instructors allow consistent indentation between 

two and six spaces. Our style checker attempts to determine the number of 

spaces used for indentation in each file. If a value cannot be determined, the 

checker uses three spaces as a default. 

 

 Term: A B C D E   F G H I 

On-track ▪   ▪   ▪   ▪     

Style Guide ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ 

Style Exercises       ▪ ▪ ▪ 

Style Grade ▪ ▪   ▪ ▪   ▪ 

Feedback on 

programming 

style in 

homework 

assignments 

Human 

Generated 
▪ ▪               

Machine 

Generated 
        ▪ ▪     ▪ 

none     ▪ ▪     ▪ ▪   

Table 8: Important characteristics of the course offerings included in this study. 

 

Our study included student program submissions from seven offerings of CS 1. 

Table 8 lists the important differences between these course offerings. Some of the 

courses were offered during the Fall quarter. We refer to these as on-track offerings (A, 

C, E, and G), as that is when first-year students in computer science are supposed to take 
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the course. In all terms, students were provided with a six-page style guide. During our 

style exercise development, we used this guide as the basis of our fifteen style rules. We 

deployed our style exercises during three of the terms: G, H, and I. Five terms (A, B, E, 

F, and I) had programming assignments with a style grade. All of the terms with a style 

grade incorporated style feedback to justify the assigned style grade. Two types of style 

feedback were provided to students: human-generated and machine-generated. In terms A 

and B, instructors provided human-generated feedback on student programming style 

when hand grading student submissions. In terms E, F, and I, the autograder provided 

machine-generated style feedback immediately following each student submission. In 

terms, C, D, G, and H, students received no programming style feedback on their 

submissions, nor did they receive a grade for style.  In terms that used the autograder, 

students were allowed unlimited attempts to submit programming assignments. When 

possible, we gathered data from both the first and final submission to the autograder. 

Term 

Type 

Term 

Description and 

Submissions 

Description 

Style 

Feedback 

Style 

Grade 

Average 

Errors per 

Submission 

(Std Dev) 

Average non-

Indent Errors 

per Submission 

(Std Dev) 

A 
Hand-graded:  

One Submission 

After Only 

Submission 
Yes 41.69 (72.66) 12.18 (35.24) 

C 
Ungraded:  

One Submission 
None No 41.58 (69.03) 6.06 (23.58) 

E 
Autograded:  

Final Submission 

After Each 

Submission 
Yes 1.28 (8.33) 0.18 (2.15) 

G 

Style Exercises: 

Autograded Final 

Submission 

None No 26.97 (32.41) 7.42 (12.97) 

Table 9: Average number of style errors per student assignment submission. 
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Will students use proper style if they know each program receives a style grade? 

Our first research question asks whether students will use proper programming 

style if style is graded. To ensure consistent demographics, for this analysis, we consider 

data from only the on-track terms, A, C, E, and G. For two of these terms, A and E, the 

students received a style grade on assignments. In term A, students received handwritten 

style feedback when instructors returned graded assignments one week after submission. 

In term E, students received machine-generated feedback immediately after each 

submission to the autograder. In terms C and G, students received no style feedback or 

style grade. In term G, our style exercises were presented in the textbook alongside other 

required exercises. 

Table 9 provides data about the frequency of style errors in students’ programs. 

To determine the impact of receiving a grade, we compare the frequency of style errors 

for terms where assignments received no style grade (C and G) to terms where they did 

(A and E). In all these comparisons, we used a student t-test to determine significance. 

Students in term C averaged 41.58 style errors per submission, and students in 

term A averaged 41.69 errors. This difference is non-significant using a p-value cutoff of 

0.05. Students in term G averaged 26.97 style errors per submission. This average is 

significantly less than that of term A (p-value < 0.01). Students in term E averaged 1.28 

style errors per submission. This average is significantly less than the average of term C 

and the average of term G (p-values < 0.01). 
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These results do not support the hypothesis that receiving a style grade leads to 

improved use of style. For example, there was no significant difference in the number of 

errors between terms A and C, even though only term A include a grade for style. 

Likewise, there were significantly fewer errors in term G than for term A, even though 

term A included a grade, but G did not. This latter fact suggests that other factors besides 

style grade, may have a greater influence on students’ use of style. However, the grade 

does have some influence. We found that for term E, the average number of errors on the 

first submission was 6.65 and on the last submission was 1.46. The latter is significantly 

smaller than the former. This suggests that students were explicitly attempting to improve 

their style. The most likely reason for doing that would be to improve their grade. 

The vast majority of style errors were related to indentation. Because of this, 

including indentation errors in our analysis may obscure our ability to examine student’s 

knowledge of the other style rules. Thus, here we repeat our analysis, excluding 

indentation errors. Students in term A averaged 12.18 non-indentation style errors per 

submission while students in term C averaged 6.06. This latter is significantly less than 

the former (p-value < 0.01).  Students in term G averaged 7.52 non-indentation style 

errors per submission.  This average is significantly less than that of term A (p-value < 

0.01). Students in term E averaged 0.18 non-indentation style errors per submission. This 

average is significantly less than the average of term C and the average of term G 

(p-values < 0.01). 
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Once again, these results do not support the hypothesis that receiving a style grade 

leads to improved use of style. For example, there were significantly fewer errors in 

terms C and G than for term A, even though term A included a grade, but C and G did 

not. 

 

Table 10: Pearson correlation calculations between style and course/assignments grade. 

* p-value < 0.01. 

 

Does the student's ability to use proper style correlate with academic performance? 

Our next research question is to determine if a student’s ability to use proper style 

correlates with academic performance. For this analysis, we examine the correlation 

between the total number of style errors a student made during the term and both the 

student’s course grade and the average grade across all programming assignments. Table 

10 shows the Pearson correlation coefficients and corresponding p-values. As before, we 

consider only the on-track terms, except for term A, which is excluded because we could 

not obtain a gradebook for that term. Also, we consider correlations for both all style 

errors and only non-indentation style errors.  

  Course Grade Assignment Grade 

Term (n) 
All Style 

Errors 

non-Indent 

Errors 

All Style 

Errors 

non-Indent 

Errors 

E (314) -0.193* -0.178* -0.151* -0.190* 

C (520) -0.043 0.080 0.114* 0.144* 

G (455) -0.173* 0.015 -0.026 0.014 
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For term E, all correlations are negative and significant (p-value < 0.01). For term 

C, the correlations with assignment grades are positive and significant. However, the 

correlations with course grade are non-significant. For term G, only the correlation for 

the number of style errors (including indentation errors) and course grade is negative and 

significant. The other correlations are non-significant. 

For term E, the number of style errors does correlate significantly and negatively 

with grade, indicating that a student’s ability to employ proper style does correlate 

positively with performance. For the other terms, there was no strong evidence to support 

a correlation between proper use of style and performance. Thus, the evidence supporting 

the hypothesis that proper use of style relates to performance is, at best, mixed.  

 

Term 

Style 

Autograded 

Style 

Exercises 

Average 

Errors per Submission 

(Std Dev) 

Average non-Indent 

Errors per Submission 

(Std Dev) 

C No No 41.58 (69.03) 6.06 (23.58) 

F Yes No 10.61 (27.32) 12.18 (35.24) 

G No Yes 26.97 (32.41) 7.42 (12.97) 

I Yes Yes 8.35 (18.76) 12.18 (35.24) 

Table 11: Average style grades per submission for style exercise effectiveness evaluation.  

 

Do our exercises increase the student's ability to employ proper programming style? 

Our next research question examines if our exercises significantly improve the 

use of proper programming style. For this analysis, we compare term C to G and term F 

to I. Terms C and G differ only in that G included our style exercises, but C did not. In 
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both terms C and G, students received no feedback on style and no grade for style. 

Likewise, terms G and I differ only in that I included our style exercises, but F did not. In 

both terms F and I, students received machine-generated feedback on style and a grade 

for style. 

Table 11 shows the frequencies of errors for these four terms. For terms F and I, 

we consider the number of errors on the first submission to the autograder. This 

represents their ability to apply proper style before receiving feedback from the 

autograder. On average, students in term C had 41.58 errors per submission, while 

students in term G had 26.97 errors per submission. This difference is significant at 

p-value < 0.01. In this comparison, our style exercises have a medium Cohen’s d effect 

size of 0.439, which exceeds Hattie’s educational effectiveness threshold of 0.40 

(Hattie 2009). Likewise, students in term F averaged 10.61 errors per submission, while 

students in term I averaged 8.35 errors per submission. This difference is significant at 

p-value < 0.05. In this comparison, our style exercises have a minimal Cohen’s d effect 

size of 0.097. In both cases, the style scores for the students in terms where our exercises 

were significantly better than for students in similar terms without our exercises. 

Therefore, we conclude that our exercises do increase a student’s ability to employ proper 

programming style. 

Limitations 

Our autograder may be considered too harsh. The most problematic style marking 

is the score given to indentation errors. Many of the style score averages are drastically 

reduced when indentation errors are ignored. This is why, in multiple analyses, we 
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provide statistics for style scores with and without indentation errors. Our anecdotal 

interactions with instructors suggest that improper indentation is the top complaint about 

student programming style, so we believe the exclusion of indentation from any style 

assessment would be a misstep. In future research, hand-grading a randomized selection 

of programming assignments and comparing hand-graded style scores to autograded 

scores could help alleviate the sentiment that autograding style can be too harsh. 

Future 

Many anecdotes suggest that proper programming style improves code readability 

and reduces debugging times. Future investigations should take an empirical look at 

many of these anecdotes to provide concrete evidence to either back up this gut feeling or 

disprove it. 

Conclusions 

We used our “What’s Wrong With My Code?” methodology to develop eight 

style exercises to teach fifteen style rules during the first five weeks of a ten-week course. 

Our analysis compares data across seven years of programming submissions to answer 

three research questions. 

First, we investigated whether assigning a grade for programming style as part of 

a programming assignment would result in students using proper programming style. Our 

analysis compared several terms with and without a style grade. From our analysis, we do 

not believe that giving a grade for style has a strong effect on students’ use of proper 

programming style. However, we found that there was some effect as we found that 
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students’ final submissions to the autograder were significantly better than their first 

submissions, with a likely motivation being improving the style grade.  

Our second research question investigated whether a correlation exists between 

students’ use of proper style and students’ performance in a course. For three different 

on-track term types, we calculated the Pearson correlation coefficients relating student 

style scores to both the course grade and the average assignment grade. Our results show 

that a student’s overall performance for a term with autograding did significantly 

correlate with student performance, but for other terms, there was no strong evidence to 

support a strong relationship.  

Our final research question investigated whether students in terms that included 

our style exercises employed proper programming style more often than students in terms 

without these exercises. We examined both terms that used an autograder and those that 

did not. Our results show that students in terms with our exercises had significantly 

improved style scores compared to students in other similar terms. These results suggest 

that our exercises did improve students’ use of proper programming style. 

Based on the results in this paper, we recommend that all CS 1 instructors use our 

exercises or similarly developed exercises to teach programming style. Additionally, if 

possible, instructors should automatically provide style feedback for each submission and 

allow students to fix style before the final assignment submission. Finally, we encourage 

instructors to use a style grade for each assignment as a means of motivating students to 

fix style problems caught by the autograder. 
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Chapter 5: Conclusions 

In this dissertation, we used past research in computer science, education theory, 

and cognitive load theory to develop and establish a methodology for incorporating 

examples of student errors into computer science education. Our methodology 

incorporates five steps: 

1. Determine a set of common student errors. These are errors made by differing 

students term after term, but the errors may be specific to a course or field. 

2. Collect a group of prior student submissions containing errors from the set of 

errors in step 1. Curate each submission such that the submission contains only a 

single error and minimizes the amount of information presented with the error. 

For example, a student submission may reduce to just the errant lines of code and 

a handful of other lines to create relevant a program structure.   

3. Gather 3 or 4 student resolutions (only one correct) for each errant submission 

created in step 2. The student-suggested resolutions are a crucial component to 

invoking self-explanation.  

4. Create an instructor response per resolution from step 3. The instructor response 

provides feedback for each potential solution and establishes why a solution is 

correct or incorrect. 

5. Use the content created in steps 1 through 4 and our exercise design to create 

exercises. Spread the exercises across the term and integrate the exercises into the 

weekly student workload alongside current teaching practices. 
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We built a standardized exercise structure based on prior research in education, 

cognitive load theory, and computer science. The structure incorporates student 

submissions containing erroneous code, past student solutions presented during student-

instructor interactions, and instructor feedback. Using our methodology, we created over 

fifty "What's Wrong With My Code" exercises to teach programming syntax and several 

additional exercises to teach programming style for use in an introductory computer 

science course based on the C++ programming language. 

Student Performance Improvement Study 

In our first study, we evaluated the effect of using our "What's Wrong With My 

Code" on student performance and reducing students’ programming errors. Our study 

design was based on a pretest, a lesson, and a post-test. We randomly assigned one of two 

lessons to each student. The first lesson contained typical course programming exercises 

and used the native course programming environment to complete the lesson. The other 

lesson was a series of our "What's Wrong With My Code" exercises. In the first term of 

the study, the students using our exercises showed improvement over the control group in 

post-test scores. Using the average of the student improvement scores (change from 

pretest to post-test), we calculated a Cohen's d effect size of 0.56. However, an 

ANCOVA analysis could not prove the post-test scores to be significantly different 

between the control group and the experimental group. In the study’s second term, the 

experimental group’s post-test scores were significantly better than the post-test scores of 

the control group (p-value of 0.001). For the second term, the Cohen's d calculation using 

the average of student improvement scores yielded an effect size of 0.42. Each of the 
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calculated effect sizes exists in the moderate treatment range of 0.4 to 0.6 for education, 

and both clear Hattie's proposed 0.40 educational importance threshold (Hattie, 2009). 

The student improvements, combined with the effect sizes, show that our exercises 

provide beneficial contributions to student learning.  

After our positive initial result, we integrated our exercises into the students’ 

weekly course workload in subsequent course offerings. In those offerings, instructors 

chose to drop the exercises offered to the control group in our first study. After students 

completed the “What’s Wrong With My Code” exercises from the previous study (spread 

across multiple weeks of instruction), they were given a quiz. The quiz used the questions 

from the previous study’s post-test. However, a controlled pretest could not be completed 

due to the exercises being spread across the early weeks of the course. Quiz scores of 

students in courses with the full implementation were similar or better than the average of 

the experimental group scores for prior studies, suggesting our full implementation was 

working as expected. 

Reduction in Errors Encountered 

In this analysis, we cataloged nine types of errors displayed during student 

compilation using g++. We gathered the errors from four academic quarters, including 

two control quarters and two experimental quarters, which used our exercises as part of 

the weekly student coursework. We found that most of the error types occurred less 

frequently in the quarters using our exercises than in the control quarters.  For five of the 

nine error types, both experimental quarters showed a statistically significant reduction in 

error encounters (p-values < 0.01), and for another error type, one of the two 
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experimental quarters showed a statistically significant reduction in error encounters (p-

value < 0.01) while the other did not. Two error types were more common during the 

experimental quarters than during the control quarters. 

Additionally, we evaluated the association between the treatment (our exercises 

and the control) and sixteen errors. Our analysis, presented in Appendix A, uses a chi-

squared test to show a statistically significant association between our exercises and nine 

of the sixteen errors. This suggests that our treatment directly affected the error rates on 

those nine errors. 

Improved Student Self-efficacy 

In our study on improving student self-efficacy, we compared experimental 

quarters that used our “What's Wrong With My Code” exercises as part of the weekly 

student workload to a control quarter that did not. Students completed a survey at the start 

and end of the quarter to self-assess their confidence levels from zero to one hundred on 

eleven different tasks. All eleven tasks showed improvement in student self-efficacy 

across all the quarters. The improvement was statistically significant for ten of the eleven 

measures and the overall student self-efficacy score in both experimental terms (p-

values < 0.05). The remaining measure improved in both terms, but significantly 

improved in only one of the two experimental terms (p-value < 0.05). Based on this 

evidence, we conclude that our exercises contribute to the improvement of student self-

efficacy in an introductory computer science course. 
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Using Proper Programming Style 

We used our “What's Wrong With My Code” methodology to develop eight 

programming style exercises to teach fifteen style rules during the first five weeks of a 

ten-week quarter. Our analysis compares data across seven years of programming 

submissions. Employing the exercises adds only a minimal amount of additional work to 

the student workload but yields a Cohen's d effect size of 0.36 for improving the use of 

proper style, which is lower than Hattie's educational importance threshold of 0.40 

(Hattie, 2009). Our analysis shows that students in our experimental term had better style 

scores on their initial submission to the autograder, even when style was not a part of the 

overall assignment or course grade. Likewise, when our exercises were used in course 

with feedback from an autograder and with a grade assigned for style, we observed 

significantly improved style scores on both the initial and final submissions to the 

autograder for several programming assignments (p-values < 0.05).  

The benefits demonstrated in Chapter 4 and summarized above make our style 

exercises an ideal choice over the currently established standards of a long style guide or 

not teaching programming style at all. Furthermore, to encourage even better use of 

proper programming style, our results indicate that instructors should automatically 

assess style and provide immediate feedback with the ability to fix the style errors and 

resubmit. A style grade or style for an assignment should be used to motivate students to 

fix errors caught by the autograder. 

  



 70 

Limitations & Future Directions 

Many of our studies rely on students to provide self-evaluation or self-assessment. 

One known limitation to this style of data collection is self-selection bias. When possible, 

course instructors provided extra credit to students that participated in our research 

studies to help reduce self-selection bias, and an alternate option for extra credit was 

offered to students that did not wish to participate in the study. Self-assessment can also 

be unreliable. For example, in our self-efficacy study, our control group’s confidence 

scores for the pretest were significantly higher than for the experimental terms, even 

though we performed the pretests at the same time for all three terms. Self-assessment is 

necessary for certain types of data, but ensuring students understand the evaluations and 

are honest is important. Instructors provided participation credit for our studies, and we 

provided explanations at the beginning of each study to help the student understand that 

the correctness of their answers was not going to affect their participation credit. 

We use CS 1 for all our studies, and to help control for changes in student 

population across terms, we used several exclusion criteria. Using exclusion criteria can 

limit the generalization of the results. Future studies should be longitudinal to allow 

comparison of several similar terms across multiple academic years without exclusion 

criteria. Additionally, future studies should evaluate courses beyond CS 1. 

Instructor changes can lead to uncontrollable threats to validity. We could not 

control the change of teaching assistants for the course offerings used in our studies, but 

our analyses compare courses with the same programming assignments, textbook, and 

primary instructor.  
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We analyzed error reduction on errors related to or loosely related to the common 

errors encountered by our students. This narrowing of the field limits our analysis to 

these specific errors, and thus limits the generality of our findings. Our analysis focused 

on the frequency of occurrence of various types of errors. It would also be beneficial to 

examine other measures of performance, such as the effects of our exercises on the time 

required to fix an error or debug a program. 

Contributions 

This dissertation establishes a methodology for the incorporation of examples of 

student errors within instructional materials in introductory computer science courses. 

We used the methodology to create over fifty lightweight exercises that use erroneous 

code from students and created a series of similar exercises to teach programming style. 

Our exercises proved to be effective at reducing students’ programming and style errors. 

These exercises could be easily incorporated into existing introductory programming 

courses that use the C++ programming language. Our methodology could also be adapted 

to other topics for use in other computer science courses. 

Key Takeaways 

With our contributions in mind, we recommend the following for all computer 

science instructors: 

1. Instructors should teach using examples of students’ errors. This is a must for 

future course development at all levels of computer science education. 

However, teaching using errors should supplement and not replace current 

instruction. 
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2. Instructors should consider using our methodology to develop their own 

exercises to integrate into their courses. 

Additionally, the following recommendations apply specifically to instructors teaching 

introductory courses using the C++ programming language: 

3. Our exercises should be distributed across the entire CS 1 course. For 

instructors using zyBooks, you can file a request to add our “What’s Wrong 

With My Code” exercises to your book. However, with the sale of zyBooks in 

2019, we are not sure how long this option will be available. 

4. At a minimum, instructors should consider teaching programming style with 

our exercises or similarly designed exercises. To further improve students’ 

ability to use proper programming style, a grade should be assigned for 

programming style, and student submissions should be evaluated with an 

automatic style checker, and feedback should be provided immediately. 
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Appendix A: Results & Analyses Addendum to Chapter 2 

 

 

Figure 9: Flow chart outlining study evaluating student performance increase. 

 

Term A – Participants: 108 Pre- SD Post- SD Δ SD 

Control (54) 4.67 1.79 5.76 1.77 1.09 1.47 

What's Wrong With My Code (54) 3.90 1.89 5.92 2.04 2.02 1.81 

Table 12: Term A mean scores for pre- and post-test out of 10. 

Term B – Participants: 269 Pre- SD Post- SD Δ SD 

Control (144) 5.13 2.25 5.45 2.18 0.32 1.72 

What's Wrong With My Code (123) 4.89 2.10 6.04* 2.45 1.16* 2.25 

Table 13: Term B mean scores for pre- and post-test out of 10.  

*Significantly different (p-value < 0.001) 

ANCOVA Analysis of Student Performance Increases 

As discussed in Chapter 2, we performed a study during a single week of the 

quarter to analyze the performance increases of students on a post-test after taking either 

a control or experimental lesson containing “What’s Wrong With My Code” exercises. 

Figure 9 demonstrates the student flow through the study. The results of the study are in 
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Table 12 and Table 13. Term A utilized a control of Codelab exercises, and Term B used 

a control of a lab implementation that mimicked the previously used Codelab exercises 

on a homegrown automated marking and feedback system. We gave a ten-question pre- 

and post-test before and after the student completed the randomly assigned lesson. The 

ten-question test contained seven written and three multiple-choice questions. Each 

question was worth one point, and we gave partial credit to all written questions.  

Due to the differing pretest scores, we performed an additional analysis to 

determine if statistically significant differences exist between the two groups of student 

post-test scores. We performed an ANCOVA analysis on the post-test scores comparing 

students in the control lesson group to students in the experimental lesson group using the 

pre-test as the covariate. Student scores for the “What’s Wrong With My Code” 

experimental lesson were higher than the student scores for the control lesson in both 

Terms A and B. However, the ANCOVA analysis shows that only Term B qualified as a 

statistically significant improvement (p-value < 0.001). 

Effect Size Analysis  

In addition to the ANCOVA analysis, we evaluated the effect size of the “What’s 

Wrong With My Code” lesson using the average of all the student score improvements 

from pretest to post-test. The delta column in Table 12 and Table 13 displays the average 

improvement out of 10 points. For Term A, we achieve an effect size of 0.56, and for 

Term B, we achieve an effect size of 0.42. Both of our calculated effect sizes meet 

Hattie’s educational effectiveness threshold of 0.40 (Hattie, 2009). 
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Table 14: Chi-Squared scores and Phi calculations.  

*Significant difference, p-value < 0.05 
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Error Reduction - Chi-Squared Analysis  

We gathered all g++ error output across four terms, two control terms, and two 

experimental terms. In the experimental terms, students completed our “What’s Wrong 

With My Code” exercises as part of their weekly course workload. We counted specific 

errors encountered by each student by searching for a specific string in a log of all the 

g++ compilation results collected over an entire term. Each of the sixteen different search 

strings (seen in Table 14), identifies a different error output by the g++ command. For 

our analysis, we performed a chi-squared test to determine if one of the specific errors is 

associated with either the control group or the experiment group. Table 14 contains the 

chi-squared and Phi scores for all sixteen error strings. Additionally, Table 14 contains 

the number of students that did not encounter the error and the percent of the total 

students for the control or experimental grouping.  

Five error strings (numbers 1, 4, 11, 13, and 16) did not have a significant 

association with either the control or experimental offerings. The five error strings range 

from highly encountered errors to barely encountered errors. At the high end, error string 

number 1 describes the error output by g++ when the input file name has a typo. Students 

in both types of offerings encountered this at a high rate, with only 3.04% of control 

group students and 5.95% of experimental group students not encountering the error. On 

the other end of the spectrum, error string number 16 describes the error output by g++ 

when a programmer attempts to change the value of a constant variable after the constant 

is initially set. For error number 16, 96.96% of control group students and 98.77% of 

experimental group students did not encounter the error. 
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Two error strings (numbers 3 and 10) are significantly associated with the control 

offerings of the course (p-values < 0.001). For error string number 3, 80.85% of control 

group students and 65.30% of experimental group students did not encounter the error for 

mismatched modulo operands. For error string number 10, 87.54% of control group 

students and 78.44% of experimental group students did not encounter the g++ error 

output for a string literal assignment into a character variable 

Nine error strings (numbers 2, 5, 6, 7, 8, 9, 12, 14, and 15) are significantly 

associated with the experimental offerings of the course (p-values < 0.001 to 0.05). The 

differences in percentages of students that did not encounter one of the individual errors 

ranged from 6.69% on error string number 2 to 53.17% on error string number 5. 

Conclusion  

Overall, our additional analyses reinforce the findings of Chapter 2. Our 

ANCOVA analysis showed significant performance improvements. Our effect size 

calculations are higher than the educational effectiveness threshold. Lastly, our chi-

squared analysis indicates a relationship between several error strings and our 

experimental course offering containing “What’s Wrong With My Code” exercises. 

Together these findings combined with the finding in Chapter 2 emphasize the usefulness 

of our exercises within an introductory computer science course. 
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Appendix B: Style Checker Code 

 

Automatic Style Checker 

The following sections contain subtests called by our style checker. We use 

Python for all our test harnesses. We extracted the code from a full test harness, and 

therefore use by others may require source code modification.  

Comments Existence Check 

 
 

Figure 10: Code to check whether the source file has programming comments or not.  
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Line Length Check 

 
 

Figure 11: Code to return lines numbers of lines exceeding 80 characters in length.  
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Check for Improper Conditional Expressions 

 
 

Figure 12: Code to return line numbers of conditional expressions that compare to literal 

values of true or false. 
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Check for Global Variables 

 
 

Figure 13: Part 1 of the code to return a string of all global variable names. 
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Figure 14: Part 2 of the code to return a string of all global variable names. 
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Check for Tab Characters 

 
 

Figure 15: Code to return all source code line numbers containing a tab character. 

  



 86 

Check for Proper Line Indentation 

 
 

Figure 16: Part 1 of indentation check - verify single curly brace per line. 
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Figure 17: Part 2 of indentation check - create blocks to separate indentation levels.  
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Figure 18: Part 3 of indentation check - primary function to create a list of 

improperly indented lines.   
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Appendix C: Additional Charts and Graphs 

  

Figure 19: Style scores for the final submission for the last five assignments in the quarter 

across seven years.  

 

 

Figure 20: Style scores for the last five assignments in the quarter. Comparing two terms 

(types F and I) with automatic feedback on unlimited submissions. 
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Autograded 

Assn Number: 
8 7 6 5 4 

Term F (Control) 
     

N 154 138 172 182 158 

Average # of Errors 30.00 12.67 10.65 13.83 7.13 

Std Dev 57.13 28.76 22.28 26.28 15.43 

Term I (Experimental) ✓ ✓ 
 

✓ ✓ 

N 187 200 169 199 214 

Average # of Errors 4.01 5.37 11.52 15.87 5.95 

Std Dev 10.33 13.76 22.27 27.69 9.54 

Table 15: Autograded terms (F and I), style scores on the first submission of unlimited 

submissions. ✓ indicates significant difference in errors (p-value < 0.01). 

 

 

Autograded 

Assn Number: 
8 7 6 5 4 

Term F (Control) 
     

N 154 137 173 162 188 

Average # of Errors 5.22 1.00 1.05 3.51 3.86 

Std Dev 18.94 6.74 8.46 14.33 24.49 

Term I (Experimental) 
    

✓ 

N 216 200 196 201 189 

Average # of Errors 0.56 2.01 0.58 0.16 0.35 

Std Dev 3.47 10.22 6.81 1.61 2.75 

Table 16: Autograded terms (F and I), style scores on the final submission of unlimited 

submissions. ✓ indicates significant difference in errors (p-value < 0.01). 
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Appendix D: What’s Wrong With My Code Exercises  

Basic Output Exercises

 

Figure 21: Basic Output, Question #1, Answer #1 

 

 

Figure 22: Basic Output, Question #1, Answer #2 
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Figure 23: Basic Output, Question #1, Answer #3 

 

 

 

 

 

Figure 24: Basic Output, Question #2, Answer #1 
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Figure 25: Basic Output, Question #1, Answer #2 

 

 

 

 

Figure 26: Basic Output, Question #2, Answer #3 
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Figure 27: Basic Output, Question #3, Answer #1 

 

 

 

 

Figure 28: Basic Output, Question #3, Answer #2 
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Figure 29: Basic Output, Question #3, Answer #3 

 

 

Figure 30: Basic Output, Question #4, Answer #1 
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Figure 31: Basic Output, Question #4, Answer #2 

 

 

 

 

Figure 32: Basic Output, Question #4, Answer #3 
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Figure 33: Basic Output, Question #5, Answer #1 

 

 

 

 

 

 

 

 

 

Figure 34: Basic Output, Question #5, Answer #2 
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Figure 35: Basic Output, Question #5, Answer #3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Basic Output, Question #6, Answer #1 
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Figure 37: Basic Output, Question #6, Answer #2 

 

 

 

 

 

 

 

 

 

 

Figure 38: Basic Output, Question #6, Answer #3 
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Figure 39: Basic Output, Question #7, Answer #1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Basic Output, Question #7, Answer #2 
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Figure 41: Basic Output, Question #7, Answer #3 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Basic Output, Question #8, Answer #1 
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Figure 43: Basic Output, Question #8, Answer #2 

 

 

 

 

 

 

 

 

 

Figure 44: Basic Output, Question #8, Answer #3 

 

  



 103 

Basic Input Exercises 

 

 

Figure 45: Basic Input, Question #1, Answer #1 

 

 

 

 

 

 

 

 

Figure 46: Basic Input, Question #1, Answer #2 
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Figure 47: Basic Input, Question #1, Answer #3 

 

 

 

 

 

 

 

 

 

 

Figure 48: Basic Input, Question #2, Answer #1 

 

 



 105 

 

Figure 49: Basic Input, Question #2, Answer #2 

 

 

 

 

 

 

 

 

Figure 50: Basic Input, Question #2, Answer #3 
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Figure 51: Basic Input, Question #3, Answer #1 

 

 

 

Figure 52: Basic Input, Question #3, Answer #2 

 

 

 

Figure 53: Basic Input, Question #3, Answer #3 
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Figure 54: Basic Input, Question #4, Answer #1 

 

 

 

 

Figure 55: Basic Input, Question #4, Answer #2 

 

 

 

 

Figure 56: Basic Input, Question #4, Answer #3 
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Basic Math Exercises 

 

 

Figure 57: Basic Math, Question #1, Answer #1 

 

 

 

 

 

 

 

 

 

Figure 58: Basic Math, Question #1, Answer #2 
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Figure 59: Basic Math, Question #1, Answer #3 

 

 

 

 

 

 

 

 

Figure 60: Basic Math, Question #2, Answer #1 
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Figure 61: Basic Math, Question #2, Answer #2 

 

 

 

 

 

 

 

 

 

 

 

Figure 62: Basic Math, Question #2, Answer #3 
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Figure 63: Basic Math, Question #3, Answer #1 

 

 

 

 

 

 

 

 

Figure 64: Basic Math, Question #3, Answer #2 
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Figure 65: Basic Math, Question #3, Answer #3 

 

 

Figure 66: Basic Math, Question #4, Answer #1 

 

 

Figure 67: Basic Math, Question #4, Answer #2 
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Figure 68: Basic Math, Question #4, Answer #3 

 

 

 

Figure 69: Basic Math, Question #5, Answer #1 

 

 

 

Figure 70: Basic Math, Question #5, Answer #2 
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Figure 71: Basic Math, Question #5, Answer #3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72: Basic Math, Question #6, Answer #1 
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Figure 73: Basic Math, Question #6, Answer #2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 74: Basic Math, Question #6, Answer #3 
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Figure 75: Basic Math, Question #7, Answer #1 

 

 

Figure 76: Basic Math, Question #7, Answer #2 

 

 

 

Figure 77: Basic Math, Question #7, Answer #3 
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Basic Variable Exercises 

 

 

Figure 78: Basic Variable, Question #1, Answer #1 

 

 

Figure 79: Basic Variable, Question #1, Answer #2 

 

 

 

Figure 80: Basic Variable, Question #1, Answer #3 

 



 118 

 

Figure 81: Basic Variable, Question #2, Answer #1 

 

 

 

 

 

 

 

 

 

 

 

Figure 82: Basic Variable, Question #2, Answer #2 
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Figure 83: Basic Variable, Question #1, Answer #3 

 

 

 

 

 

 

 

Figure 84: Basic Variable, Question #3, Answer #1 
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Figure 85: Basic Variable, Question #3, Answer #2 

 

 

 

Figure 86: Basic Variable, Question #3, Answer #3 

 

 

 

Figure 87: Basic Variable, Question #4, Answer #1 
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Figure 88: Basic Variable, Question #4, Answer #2 

 

 

 

 

 

 

 

 

 

 

 

Figure 89: Basic Variable, Question #4, Answer #3 
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Branching Exercises 

 

 

Figure 90: Branching, Question #1, Answer #1 

 

 

 

 

 

 

 

 

 

 

 

Figure 91: Branching, Question #1, Answer #2 
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Figure 92: Branching, Question #1, Answer #3 

 

 

 

 

 

 

 

 

 

 

 

Figure 94: Branching, Question #2, Answer #1 
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Figure 93: Branching, Question #2, Answer #3 

 

 

 

 

 

 

 

Figure 95: Branching, Question #2, Answer #3 
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Figure 96: Branching, Question #3, Answer #1 

 

 

 

 

 

 

 

Figure 97: Branching, Question #3, Answer #2 
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Figure 98: Branching, Question #3, Answer #3 

 

 

 

 

 

 

 

 

Figure 99: Branching, Question #4, Answer #1 
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Figure 100: Branching, Question #4, Answer #2 

 

 

 

 

 

 

 

 

 

 

 

Figure 101: Branching, Question #4, Answer #3 
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Figure 102: Branching, Question #5, Answer #1 

 

 

 

 

 

 

 

 

 

 

 

Figure 103: Branching, Question #5, Answer #2 
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Figure 104: Branching, Question #5, Answer #3 

 

 

 

 

 

 

 

 

 

 

 

Figure 105: Branching, Question #6, Answer #1 
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Figure 106: Branching, Question #6, Answer #2 

 

 

 

 

 

 

Figure 107: Branching, Question #6, Answer #3 
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String Function Exercises 

 

 

Figure 108: String Functions, Question #1, Answer #1 

 

 

 

 

 

 

 

 

Figure 109: String Functions, Question #1, Answer #2 
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Figure 110: String Functions, Question #1, Answer #3 

 

 

 

 

 

 

 

 

Figure 111: String Functions, Question #2, Answer #1 
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Figure 112: String Functions, Question #2, Answer #2 

 

 

 

 

 

 

 

 

Figure 113: String Functions, Question #2, Answer #3 
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Figure 114: String Functions, Question #3, Answer #1 

 

 

 

 

 

 

 

 

Figure 115: String Functions, Question #3, Answer #2 
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Figure 116: String Functions, Question #3, Answer #3 

 

 

 

 

 

 

 

 

Figure 117: String Functions, Question #4, Answer #1 
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Figure 118: String Functions, Question #4, Answer #2 

 

 

 

 

 

 

 

 

Figure 119: String Functions, Question #4, Answer #3 
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Figure 120: String Functions, Question #5, Answer #1 

 

 

 

 

 

 

 

 

 

Figure 122: String Functions, Question #5, Answer #2 
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Figure 121: String Functions, Question #5, Answer #3 

 

 

 

 

 

 

 

 

 

Loops Exercises 

 

 

Figure 123: Loops, Question #1, Answer #1 
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Figure 124: Loops, Question #1, Answer #2 

 

 

 

 

 

 

 

 

 

 

 

Figure 125: Loops, Question #1, Answer #3 
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Figure 126: Loops, Question #2, Answer #1 

 

 

 

 

 

 

Figure 127: Loops, Question #2, Answer #2 
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Figure 128: Loops, Question #2, Answer #3 

 

 

 

 

 

Figure 129: Loops, Question #3, Answer #1 
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Figure 130: Loops, Question #3, Answer #2 

 

 

Figure 131: Loops, Question #3, Answer #3 
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Figure 132: Loops, Question #4, Answer #1 

 

 

 

 

 

 

 

 

 

 

 

Figure 133: Loops, Question #4, Answer #2 
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Figure 134: Loops, Question #4, Answer #3 

 

 

 

 

 

 

 

 

Random Number Exercises 

 

 

Figure 135: Random Numbers, Question #1, Answer #1 
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Figure 136: Random Numbers, Question #1, Answer #2 

 

 

 

 

 

 

 

 

 

 

 

Figure 137: Random Numbers, Question #1, Answer #3 
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Function Invocation Exercises 

 

 

Figure 138: Function Invocation, Question #1, Answer #1 

 

 

 

 

 

 

Figure 139: Function Invocation, Question #1, Answer #2 
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Figure 140: Function Invocation, Question #1, Answer #3 

 

 

 

 

 

 

Figure 141: Function Invocation, Question #2, Answer #1 
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Figure 142: Function Invocation, Question #2, Answer #2 

 

 

 

 

 

 

 

Figure 143: Function Invocation, Question #2, Answer #3 
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Figure 144: Function Invocation, Question #3, Answer #1 

 

 

 

 

 

 

Figure 145: Function Invocation, Question #3, Answer #2 
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Figure 146: Function Invocation, Question #3, Answer #3 

 

 

 

 

 

 

Figure 147: Function Invocation, Question #4, Answer #1 
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Figure 148: Function Invocation, Question #4, Answer #2 

 

 

 

 

 

 

Figure 149: Function Invocation, Question #4, Answer #3 
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Figure 150: Function Invocation, Question #5, Answer #1 

 

 

 

 

 

 

Figure 151: Function Invocation, Question #5, Answer #2 
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Figure 152: Function Invocation, Question #5, Answer #3 

 

 

 

 

 

 

Figure 153: Function Invocation, Question #6, Answer #1 
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Figure 154: Function Invocation, Question #6, Answer #2 

 

 

 

 

 

 

 

 

 

Figure 155: Function Invocation, Question #6, Answer #3 
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Figure 156: Function Invocation, Question #7, Answer #1 

 

 

 

Figure 157: Function Invocation, Question #7, Answer #2 
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Figure 158: Function Invocation, Question #7, Answer #3 

 

 

 

Figure 159: Function Invocation, Question #8, Answer #1 
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Figure 160: Function Invocation, Question #8, Answer #2 

 

 

 

Figure 161: Function Invocation, Question #8, Answer #3 
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Function Writing Exercises 

 

 

Figure 162: Function Writing, Question #1, Answer #1 

 

 

 

Figure 163: Function Writing, Question #1, Answer #2 
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Figure 164: Function Writing, Question #1, Answer #1 

 

 

 

Figure 165: Function Writing, Question #2, Answer #1 
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Figure 166: Function Writing, Question #2, Answer #2 

 

 

 

Figure 167: Function Writing, Question #2, Answer #3 
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Vector Exercises 

 

 

Figure 168: Vectors, Question #1, Answer #1 

 

 

 

 

 

 

 

 

Figure 169: Vectors, Question #1, Answer #2 
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Figure 170: Vectors, Question #1, Answer #3 

 

 

 

 

 

 

 

Figure 171: Vectors, Question #2, Answer #1 
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Figure 172: Vectors, Question #2, Answer #2 

 

 

 

 

 

Figure 173: Vectors, Question #2, Answer #3 

 

  



 164 

 

Figure 174: Vectors, Question #3, Answer #1 

 

 

 

 

 

 

 

 

Figure 175: Vectors, Question #3, Answer #2 
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Figure 176: Vectors, Question #3, Answer #3 

 

 

 

 

 

 

Figure 177: Vectors, Question #4, Answer #1 
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Figure 178: Vectors, Question #4, Answer #2 

 

 

 

Figure 179: Vectors, Question #4, Answer #3 
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Figure 180: Vectors, Question #5, Answer #1 

 

 

 

Figure 181: Vectors, Question #5, Answer #2 
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Figure 182: Vectors, Question #5, Answer #3 
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Appendix E: What’s Wrong With My Style Exercises  

 

Figure 183: Style Exercise #1 and #2 - Basic Style, Answers #1 and #1 
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Figure 184: Style Exercise #1 and #2 - Basic Style, Answers #2 and #2 
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Figure 185: Style Exercise #1 and #2 - Basic Style, Answers #3 and #2 
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Figure 186: Style Exercise #3 - Style with Variables, Answer #1 
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Figure 187: Style Exercise #3 - Style with Variables, Answer #2 
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Figure 188: Style Exercise #3 - Style with Variables, Answer #3 
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Figure 189: Style Exercise #4 - Style with Variables, Answer #1 
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Figure 190: Style Exercise #4 - Style with Variables, Answer #2 
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Figure 191: Style Exercise #4 - Style with Variables, Answer #3 
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Figure 192: Style Exercise #5 - Style with Branches, Answer #1 
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Figure 193: Style Exercise #5 - Style with Branches, Answer #2 
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Figure 194: Style Exercise #5 - Style with Branches, Answer #3 
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Figure 195: Style Exercise #6 - Style with Branches, Answer #1 
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Figure 196: Style Exercise #6 - Style with Branches, Answer #2 
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Figure 197: Style Exercise #6 - Style with Branches, Answer #3 
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Figure 198: Style Exercise #7 - Style with Loops, Answer #1 
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Figure 199: Style Exercise #7 - Style with Loops, Answer #2 
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Figure 200: Style Exercise #7 - Style with Loops, Answer #3 
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Figure 201: Style Exercise #8 - Style with Functions, Answer #1 
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Figure 202: Style Exercise #8 - Style with Functions, Answer #2 

  



 189 

 

Figure 203: Style Exercise #8 - Style with Functions, Answer #3 




