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I. INTRODUCTION 

Industrial applications of magnet technology have mushroomed in the 

last decade. Such applications have ranged widely and include exotic super-

conducting magnets such as those used in particle accelerators to magnetic \) 

actuators used in the design of computer disk units. 

Such dramatic growth would not have been possible had it not been for 

the rapid advances in simulation models that approximate and solve the non­

linear Maxwell's equations that describe the magnetic fields generated from 

such magnets. 

In this article we endeavor to describe this methodology and its 

application to various industrial processes. We will briefly describe the 

mathematical models and proceed to describe the importance of such modeling 

in terms of providing the engineer or scientist with an extremely valuable 

tool to aid in the optimization of any device that includes magnetic fields 

as a component. Examples of such applications will reinforce our believe 

that mathematical modeling is an important and indispensible part of an 

overall system design. 

II. MATHEMATICAL MODELING 

Even though it is not the intention of this article to outline the 

mathematical models used to simulate electromagnetic fields, nevertheless I 

think it is important for the magnetic field designer to be aware of their 

existence and not take a detached view and disentangle physical concepts 

from algebraic ones. 

In general, the simulation of magnetic fields involves the solution of 

extremely complex equations (partial differential equations or integral 
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equations) imposed on a grid on which the contemplated magnet geometry is 

outlined. 

•. kJ Ouri ng the 1 ast decade, vari ou s formu 1 at ions have been proposed and 

programmed. Generally, these formulations solve either a set of partial 

differential equations using a vector potential such as Eq. 1, or using a 

scalar potential such as shown in Eq. 2. 

1 + + 
'1/ A • A = 4 IT J 

11 
Eq. 1 

where 11 = permeability of material 
+ 
A = vector potential 
+ 
J = current density 

+ 
'1/ 2 V* , - - '1/ . M Eq. 2 

+ + 
where 'l/XM = J 

V* = scalar potential 

Formulations such as the above solve two-dimenstional problems, since, 
+ 

for example, the vector potential A appearing in Eq. 1 has only one non-zero 

component (Az /: 0), thus necessitates less computer storage and produces 

results in a reasonable computer time. 

Numerical methods developed to solve these equations involve their 

discretization and by means of a "finite difference" scheme the continuous 

!~ field distribution problem is replaced by a discrete one. 

Recently, however, "fi nite element II methods have become popu 1 ar. 

These methods use the integral formulation approach and solve equations like 
+ 

Eq. 3, for the magnetization vector M 
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or similar expressions for the vector H. 
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I M } dV] 
iron 

Eq. 3 

Algebraically, both methods may lead to similar computational schemes 

involving the solution of thousands of simultaneous equations. 

Most recently, hybrid methods have been evolved which use both the 

differential and integral formulation in the same problem by solving the 

interior problem by differential equations while the boundary of the problem 

is solved by the integral formulation. Progress in arriving at better 

formulations is a continuous process that involves many researchers at 

various laboratories. 

Depending on the degree of sophistication of the mathematical model, 

the resulting algorithm can solve two-dimensional or three-dimensional 

problems, problems containing iron (non-linear) or problems containing coil 

geometries only (linear problems). Table I lists some of the most important 

computer programs for magnetic field simulation. 

The methods outl ined above solve the "magneto-static" problem; that 

is, the problem during which time is still. Time-dependent magnetic field 

problems can also be solved by both finite difference and finite element 

methods. Such problems result also in complex equations that are solved 

iteratively. 

The references at the el1d of this article enumerate chronologically 

some of the important papers in this field. 
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Table I 

Method of No. of Linear or 
Name Dimension Solution Points ComQuter Nonlinear 

TRIM(l ) 2* Finite-diff. 4000-10000 CDC,IBM,VAX Both 
vector pot. 

EFFI(2) 3 Elliptic No 1 imit CDC,CRAY Linear 
integrals 

POISSON(3) 2* Finite-diff. 4000-10000 CDC,IBM,VAX Both 
vector pot. 

GFUN(4) 3 Integral CDC,CRAY,IBM Both 
magnetization 

TOSCA(5) 3 Integral CDC,CRAY,IBM Both 
mod. scalar 

* Axi ally symmetric geometries may also be considered. 

III. USING A NUMERICAL MODEL 

Why use a numerical model and not the real thing? Actually, a numer­

ical model represents a real-life system and depending on how good the model 

is, it will represent accordingly the real-world system it attempts to 

simulate. In most cases, the model is cheaper to construct than the real 

thing, it is possible to experiment with, and parameters can be optimized to 

produce a better "real thing". The model we use to represent Maxwe 111 s 

equation involves too many variables for the unaided human mind to juggle at 

once. 

To provide some insight into the mechanics of using a mathematical 

model, we will assume the formulation shown by Eq. 1 and investigate in some 

detail the behavior of such a model. 
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The computer program written to solve this equation uses the finite 

difference formulation, which in essence replaces the partial differential 

equation, Eq. 1, by a set of difference equations applied over a set of 

points in the region of interest. This technique is perhaps the most 

popular numerical method for solving such equations and recently is being 

challenged by the finite-element method. The approximate solution to the 

continuous problem is obtained by solving a very large system of simultan­

eous linear equations and the resulting solution is usually the potential 

defined at a finite number of points, making up the grid, rather than con-
-+ 

tinuously over the region of interest. This potential (A) is subsequently 

differentiated to produce the magnetic field components Bx , By or Br and Bz , 

depending on whether the problem has Cartesian or Axial Symmetry. 

Let us consider as a test problem a pipe of .5 11 thickness and 4.0 11 10 

(see Fig. 1) which is exposed to a constant magnetic field of varying 

intensity (for example, from 1000 gauss to 10,000 gauss). To model this 

problem, we must describe the geometry of the pipe into a grid system such 

as that shown in Fig. 2. Note that this grid is triangular and consists of 

600 intersecting lines. We find such grids to be more appropriate for this 

type of problem since they simulate curved boundaries more smoothly than 

rectangular grids. Actually, it can be shown that for interior regions, 

right-angle elements with two equal sides produce equations that are identi­

cal to the finite-element equations. 

The mesh size depends on the type of accuracy one desires. Obviously, 

the finer the grid the finer the degree of approximation, and the resulting 

discretization of the partial differential equations is more accurate. 

However, i ncreas i ng the mesh increases the computer memory requ i rements as 

well as the computer time. 

\ . 
\; 

~I 
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For the example under consideration I chose 31x31 mesh size. On this 

mesh we describe the geometry we would use to simulate, in this case, the 

steel pipe. 

One might argue that the pipe outlined on the grid in Fig. 2 is far 

from being circular. That is true, however, this grid should be considering 

as a "stretched membrane II , which assumes the given boundary by stretching 

the corresponding boundary points to lie on the circular surface. 

The input data to describe this geometry would require a sUbstantial 

effort if one had to enter every x and y coordinate describing the two 

circles that make up the pipe. However, we have written an automatic conic 

section generator which requires a minimum number of points to describe this 

geometry. Actually, the data needed to describe the two circles are: 

2 2 s 

-2 16 16 3 

3 1 s 
-2 15 15 3 

3 2 7 

3 1.7 3 

c 

c 

$ REGION 2 

$ REGIONAL POINTS 

$ REGION 3 

$REGIONAL POINTS 

In the above sequence the first entry specifies the region number the type 

of the material (2 = iron) while the next entry gives the following infor-

mati on: 

-2 Code to signify that this is a circle 
16 L mesh line of center of circle (see Fig. 2) 
16 K - mesh line of center of circle (see Fig. 2) 

3.0 Y coordinate of center of circle in units of length 
3.0 X - coordinate of center of circle in units of length 
2.0 R - radius of circle 

7 NPTS - number of mesh lines to describe radius 

A similar interpretation is given for the other two lines of input. 

The automatic mesh generator is extremely general to include parabolas, 
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hyperbo 1 as, straight 1 i nes, etc., connected in any des; red way to produce 

the required geometry. Thus very little effort is required in preparing the 

input data for a complicated geometry. 

Once the input is executed, the program produces the mesh which will 

be used by the second phase of the program to calculate the resulting 

magnetic field distribution. This mesh is shown in Fig. 3. Note the dis-

tort i on that the mesh has undergone to produce the requ i red exact geometry 

shown in Fig. 1. Note also that the circles are discretized so that they 

actually consist of straight line segments. Obviously, the more points one 

allocates to simulate such geometry, the shorter the straight line segments 

would be, and the resulting cylinder would be more accurately simulated. 

Once the mesh has been successfully generated, the pr6gram proceeds to 
-+ 

calculate the vector potential A, the derivatives of which produce the Bx 

and By components of the magnetic field. 

During this calculation the program uses magnetization curves that 

describe the B & H characteristics for the iron used. These curves are 

compiled from manufacturer's data and are stored internally in the computer, 

or supplied externally by the user. The program runs iteratively; that is, 

the mesh is scanned many times, usually 200-300 times. At each scan. or 

iteration, the potentials are subjected to various tests for convergence and 

upon successful completion, various printouts and plots are obtained. Fig. 

\' 
" 

4 shows a series of flux plots for various input conditions. For example, v 

in Fig. 4A the applied external magnetic fields is 2000 gauss while that of 

Fig. 4B is 10,000 gauss. Notice that at low field the iron pipe barely 

manages to contain the magnetic flux, while at 1 Tesla the pipe saturates 

and most of the flux is leaking outside the pipe. 
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There are many modes that such programs operate. In this example the 

program was used as a boundary value problem, that is, the boundary was 

~ specified and fixed and the magnetic field distribution within that boundary 

was requested; however, many other options may be exerci sed. Some of the 

options are outlined below: 

a. Constant J.1 

In this option the magnetic material is considered to have 

constant permeability J.1 (J.1 = B/H). 

b. For a given geometry 

Given current ) 
Find flux distribution) 

In this case a certain current excitation in ampere-turns is 

given and the program calculates the magnetic field that 

results from such current distribution. 

c. For a given geometry, given the magnetic field at some point, find 

necessary current to produce it 

In this case, we define the total magnetic field at some 

point and the program calculates the current excitation 

required to produce it. 

Besides the computer plots showing the flux lines resulting from the 

computations performed, the program also prints tables of the magnetic field 

components at strategic points or areas defined by the user, energy stored 

in the system as well as many other pertinent quantities. 

The above brief description gives an idea of the type of calculations 

and results that one should expect by using such simulation codes. 
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There are a lot of fine points that have not been discussed, partic­

ularly that of boundary conditions that numerical models assume. Such con­

ditions not only save computer space and execution time, but improve the 

accuracy and use of the program. For example, a look at Fig. 4 will 

convince the reader that there is a four-fold symmetry in this problem. 

That is, if one draws a hori zonta 1 and vert i ca 1 1 i ne through the center of 

the pipe, as suggested in Fig. 5, then anyone of the four quadrants is an 

image of the other properly rotated. Thi s means that if we use the appro­

priate boundary conditions, we can simulate only one quarter of the proposed 

geometry. 

In our example, we could have run in the computer, say, the first 

quadrant with boundary conditions known on Neumann in the horizontal plane, 

and Dirichlet on the vertical, and the results obtained would have been 

identical to those obtained by running the whole pipe. Obviously, we save a 

substant i a 1 number of mesh 1 i nes as we 11 as computer memory and computer 

time. 

IV. FUTURE OF MODELING 

The discussion elaborated above assumes no interaction between user 

and machine; however, with the advent of microprocessors and CAD/CAM it is 

extremely important to create such a dialog. As far back as 1972, the 

writer has advocated computer interaction(6,7) to solve problems of this \i 

type. Actually, only a portion of such programs need be executed in a large 

mach i ne. A good pract ice is to so 1 ve part of the prob 1 em on a personal 

computer, and connect to a large mainframe for that part of the problem that 

requires "number crunching". For example, in the case discussed earlier, 
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the input stage as we 11 as the mesh generat i on and d i sp 1 ay cou 1 d be per­

formed on a personal computer, and once the input resembles the model to be 

simulated, then that "file" is transmitted to the mainframe for solving. 

This way the user has local control of his program and files, performs 

editing and plotting functions and does not have to tax a large machine for 

such simple operations. Similarly, once the large mainframe has completed 

the solution process, the resulting "output ll file can be transferred from 

ma inframe to mi cro-computer for performi ng whatever output functi ons are 

needed. 

Such "pre" and "postll processing is becoming an extremely desirable 

mode of operation, since it puts the scientist or engineer in the computa­

tiona 1 loop. Such interaction, extreme 1 y expens i ve a few years ago, is 

becoming easy to accomplish and reasonable to implement. The writer is 

present ly engaged in prepari ng such a program to run on a small personal 

computer. 

In the discussion above, intentionally, I make no mention of the cal­

culation of magnetic fields in three-dimension or about time varying fields. 

Even though there exist programs that calculate such fields, their descrip­

tion is quite a bit more complicated to describe, and the reader is referred 

to the references at the end of this article. 

~ The last topic I would like to touch upon is that of the calculation 

\ ... ' 
of magnetic fields for permanent magnets. Such problems may also be solved 

using various simulation models. Actually, the program described above can 

be used to simulate some permanent magnetic material (such as summarium 

cobalt) by replacing the permanent magnetic material with two very thin 

current sheets and assigns the permeability of free space in the remainder 
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of the magnet. Such methods are appropriate only if the demagnetization 

curve (B & H) is a straight line. Recently, Halbach(8) has published a 

paper in which a computer program is described that produces reasonable com­

putational results for a variety of permanent magnetic materials. 
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Fig. 1. Cross Sectional View of a Metal Pipe 
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Fig. 2. Logical Diagram of Metal Pipe to be Simulated 
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Fig. 3. Computer Generated Mesh from Logical Diagram 

TEST CASE METAL CYLINDER IN A UNIFORM MAGNETIC FIELD 

~I 
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Fig. 4A. Flux Distribution at .2 Teslas. Note 
that most flux is retained within the 
pipe. 

Fi g. 4B. Fl ux di stri buti on at 1 Tesl a. Note 
that pipe has saturated and most flux 
passes through as if pipe was not there. 

LBL-17348 



'I..f,) 

I 
/ 

/ 
I 
I 

\ 
\ 
\ 

y 

--..,.. 
./' 

/ --..,.. 

-17-

... __ Dirichlet boundary 
(zero flux) 
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Reduces Size of Problem. 
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