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ABSTRACT OF THE DISSERTATION

Three Essays on Unobserved Heterogeneity

in Panel and Network Data Models

by

Hualei Shang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2020

Professor Rosa Liliana Matzkin, Chair

This dissertation consists of three chapters that study unobserved heterogeneity in panel

and network data models. In Chapter 1, I propose a semi-nonparametric panel data model

with a latent group structure. I assume that individual parameters are heterogeneous across

groups but homogeneous within a group while the group membership is unknown. I first

approximate the infinite-dimensional function with a sieve expansion; then, I propose a

Classifier-Lasso(C-Lasso) procedure to simultaneously identify the individuals’ membership

and estimate the group-specific parameters. I show that: (i) the classification exhibits

uniform consistency; (ii) C-Lasso and post-Lasso estimators achieve oracle properties so

that they are asymptotically equivalent to infeasible estimators as if the group membership

is known; and (iii) the estimators are consistent and asymptotically normally distributed.

Simulations demonstrate an excellent finite sample performance of this approach in both

classification and estimation.

In Chapter 2 (joint with Wenyu Zhou), we study a nonparametric additive panel regres-

sion model with grouped heterogeneity. The model can be regarded as a natural extension

to the heterogeneous panel model studied in Su, Shi, and Phillips (2016). We propose to

estimate the nonparametric components using a sieve-approximation-based Classifier-Lasso
ii



method. We establish the asymptotic properties of the estimator and show that they enjoy

the so-called oracle property. In addition, we present the decision rule for group classifica-

tion and establish its consistency. Then, a BIC-type information criterion is developed to

determine the group pattern of each nonparametric component. We further investigate the

finite sample performance of the estimation method and the information criterion through

Monte Carlo simulations. Results show that both work well. Finally, we apply the model

and the estimation method to study the demand for cigarettes in the United States using

panel data of 46 states from 1963 to 1992.

In Chapter 3, I study a network sample selection model in which 1) bilateral fixed effects

enter the pairwise outcome equation additively; 2) link formation depends on latent variables

from both sides nonparametrically. I first propose a four-cycle structure to difference out the

fixed effects; next, utilizing the idea proposed in Auerbach (2019), I manage to use the kernel

function to control for the selection bias. I then introduce estimators for the parameters of

interest and characterize their asymptotic properties.
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Chapter 1

Semi-Nonparametric Panel Data

Models with Latent Structures
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1.1 Introduction

In semi-nonparametric panel data models, it is almost universal to assume that the regression

parameters are the same across individuals, while unobserved heterogeneity is merely mod-

eled through individual-specific effects. However, since most panel data cover cross-sectional

units with different characteristics, to control for individual heterogeneity remains a chal-

lenge. One important task is how to model the influence of heterogeneity on the individual

regression parameters. To tackle the problem while preserving the power of cross-sectional

averaging, I propose a semi-nonparametric panel data model with a latent group structure.

I assume that individuals belong to different groups while the group identity is unknown

a priori. Individual regression parameters are the same within the group but differ across

groups. In Economics, the groups could be understood as different convergence clubs in

the economic growth studies (Phillips and Sul (2007)), stock returns in different sectors

in financial markets (Ke, Fan, and Wu (2015)), spatial geographic groupings in economic

geography (Bester and Hansen (2016); Fan, Lv, and Qi (2011)) or multiplicity of Nash

equilibria in game theory or Macroeconomics models (Hahn and Moon (2010)). Several

important examples and policy implications will be discussed at the end of this section.

This group structure modeling reaches a good balance between its two alternatives: com-

plete parameter homogeneity or complete parameter heterogeneity. Traditional panel data

models always assume that individuals share the same parameters. Although this approach

is easy to implement and achieves good convergence rate, homogeneity assumption has been

frequently rejected in empirical studies; see Hsiao and Tahmiscioglu (1997), Lee, Pesaran,

and Smith (1997), Durlauf, Kourtellos, and Minkin (2001), Phillips and Sul (2007), Brown-

ing and Carro (2007), Browning and Carro (2010), Su and Chen (2013) and Browning and

Carro (2014). To the other extreme, if we allow for complete parameter heterogeneity, the

key advantage of working with panel data is lost. If the time dimension is short, estimation

could be very imprecise. See survey papers by Baltagi, Bresson, and Pirotte (2008) and

Hsiao and Pesaran (2008). Compared with the two pieces of literature above, the group
2



structure approach simultaneously alleviates the misspecification problem common in the

first one and preserves the power of cross-section averaging lost in the second one.

In the literature of panel structure modeling, there are two dimensions to consider. First,

whether the parameters of interest are finite or infinite-dimensional; Second, what approach

to use. Please see Table 1.1 for a summary. I discuss the literature mainly according to the

approaches they implement but will also mention the parameters of interest in the process.

First, the k-means algorithm or its variants are commonly used to classify individuals

into different groups. Lin and Ng (2012) and Sarafidis and Weber (2015) studied linear panel

data models with finite dimensional coefficients following some group structure. Bonhomme

and Manresa (2015) focuses on the grouped patterns of time-varying fixed effects. Ando

and Bai (2014), Ando and Bai (2016) and Ando and Bai (2017) generalized Bonhomme

and Manresa (2015) and studied panel data models where interactive fixed effects exhibit

some group structure. Abraham et al. (2003), Luan and Li (2003), Chiou and Li (2007)

and Tarpey (2007) applied the k-means algorithm or its variants to different realizations of

random curves that depend on a deterministic index t ∈ T .

Another approach, called classifier-Lasso (C-lasso), proposed by Su, Shi, and Phillips

(2016), treated clustering as a process of shrinking individual-specific coefficients into some

group-specific parameters. They imposed the group structure on finite dimensional parame-

ters. Su and Ju (2018) extended this method to include interactive fixed effects. Su, Wang,

and Jin (2019) assumed that time-varying coefficients follow some group structures.

There also exist some other classifying methods. Ke, Fan, and Wu (2015) proposed a

clustering algorithm in regression via data-driven segmentation (CARDS). Wang, Phillips,

and Su (2018) further generalized it into the panel data. Vogt and Linton (2017) implemented

a thresholding method combining with kernel estimation to classify nonparametric functions

into different groups. Vogt and Linton (2020) further developed a clustering method that

does not rely on any smooth parameters, like the bandwidth or number of basis functions.

This paper follows the C-Lasso approach (Su, Shi, and Phillips (2016)) but considers

3



semi-nonparametric panel data models instead. C-lasso enjoys several significant advantages

over the k-means algorithm and other alternatives. First, it allows some individuals left

unclassified, adding more flexibility to the model. Second, the k-means method relies heavily

on the initial values of the group identity, while C-Lasso is not sensitive to that. Third, the

computation burden of k-means is more significant than that of C-lasso. Finally, C-lasso

could be easily combined with some other methods.

Practically, my method could be separated into two steps. I first approximate the infinite-

dimensional functions with a sieve expansion and then use C-Lasso to shrink individual-

specific coefficients of basis functions into some group-specific parameters.

The main contribution of this paper is that I generalize the latent group structures from

parametric to semi-nonparametric panel data models. Thus, further exploration beyond the

parametric specification of the unobserved heterogeneity in response mechanisms becomes

possible. Although Su, Wang, and Jin (2019), Vogt and Linton (2017) and Vogt and Linton

(2020) also considered clustering of functions, in Su, Wang, and Jin (2019), the regressor is

one-dimensional deterministic (t/T ) while in my paper, they could be multiple-dimensional

general random variables. The approaches in Vogt and Linton (2017) and Vogt and Linton

(2020) are difficult to be applied to partially linear models; however, in my research, partially

linear and nonparametric models are of no significant difference. So far as I know, my paper

is the first one in the literature to impose group structures to semi-nonparametric panel data

models flexibly.

I also contribute to the extensive literature of estimation in semi-nonparametric panel

data models, including, but not limited to, partially linear and nonparametric panel data

models. In addition to the estimation, my approach simultaneously identifies individuals’

membership. However, this doesn’t affect the asymptotic properties of the estimators, which

are equivalent to those of the oracle estimators that use individual group identity information.

The latter are well studied in the literature. For detailed discussions, I direct readers to

survey papers by Su and Ullah (2011), Ai and Li (2008) and Ullah and Roy (1998).

4



To further illustrate applications of my method, I discuss the following three examples:

Example 1 (Learning Curve): In Atkin, Khandelwal, and Osman (2017), the authors

conducted a random experiment for rug producers in Egypt. They generated exogenous vari-

ation in access to foreign markets and studied the impact of exporting on firm performance.

The most crucial step is to estimate how the quality changes as the volume of production

increases, i.e., the learning curves. They assumed that different firms share the same learning

curve.

However, due to unobserved heterogeneity (for example, the management levels of owners

or proficiencies of workers in different firms might differ.), it might not be appropriate to

make such a homogeneity assumption. My approach then would complement their study to

further explore the heterogeneity of different firms in terms of learning.

Example 2 (Trade Cost): Atkin and Donaldson (2015) used newly collected CPI

microdata from Ethiopia and Nigeria to study how cost-shifting characteristics (such as

distance) affect the spatial price gaps.

However, distance is only an imperfect proxy for measuring transportation costs. The

origin-destination paths exhibit considerable unobserved heterogeneity (for example, the

quality of the roads is unobserved.). Although the authors also tried the quickest-route

travel time measure as a more plausible alternative for the geographic distance, the same

concern remains.

My method, on the other hand, would help to capture the heterogeneity of routes by

merely imposing a group structure (high quality and low quality roads) on the effect of

distance on price gaps.

Example 3 (Policy Analysis): Clemens, Lewis, and Postel (2018) evaluated the labor

market effects of abrogation of the manual laborer (Bracero) agreements between the United

States and Mexico. They estimated how the exclusion of Mexican farmworkers affect the

employment and wages of domestic workers.

5



To study the heterogeneity of the effects, they split the states of the US into three groups

using Bracero fraction (B/L, the ratio of Bracero workers and the whole labor force) as a

criterion: no exposure with B/L = 0, low exposure with 0 < B/L < 0.2 and high exposure

with B/L > 0.2.

Even though this criterion might capture some heterogeneity of the influence of the policy

on different states, it would be useful to use my approach at least as a robustness check. I

could automatically accomplish the classification and estimation with an additional harmless

assumption that the effect could be expressed as a time-varying function. The advantage,

however, is to avoid any subjective judgment which might be arbitrary.

Table 1.1: Literature Review on Classification

Parameters
of Interest

Approaches k-means Or
its Variants Classifier-Lasso Other Approaches

Finite Dimensional
Lin and Ng (2012)
Sarafidis and Weber (2015)
Bester and Hansen (2016)

Su, Shi, and Phillips (2016)
Su and Ju (2018)

Ke, Fan, and Wu (2015)
Wang, Phillips, and Su (2018)

Infinite Dimensional

Bonhomme and Manresa (2015)
Ando and Bai (2014)
Ando and Bai (2016)
Ando and Bai (2017)
Abraham et al. (2003)
Luan and Li (2003)
Chiou and Li (2007)
Tarpey (2007)

Su and Ju (2018)
Su, Wang, and Jin (2019)

Vogt and Linton (2017)
Vogt and Linton (2020)

The rest of the paper is organized as follows. Section 1.2 discusses the model. Section 1.3

presents the estimation and inference results. Section 1.4 reports Monto Carlo simulation

findings. Section 1.5 concludes. All proofs of the main results are given in the Appendix.

Notation: Throughout the paper, I consider the case that (N, T ) pass jointly to infinity,

which is denoted as (N, T ) → ∞. For any real value matrix A, I write the transpose A′,

the Frobenius norm ‖A‖F ≡
(
tr(AA′)

) 1
2 and the Moore-Penrose inverse A−. When A is

symmetric, I denote µmax(A) and µmin(A) as its largest and lowest eigenvalues, respectively.

For a square integrable function f defined on the support Ω, ‖f‖2 denotes its L2 norm:

‖f‖2 ≡
{∫

Ω
∣∣f(x)

∣∣2 dx} 1
2 . The operator P→ means convergence in probability, D→ convergence

in distribution. α � β denotes that α and β are of the same magnitude, i.e., α = O(β) and
6



β = O(α). I use superscript 0 to denote the true values of parameters.

1.2 Penalized Sieve Estimation

In this section, I assume that the number of groups K0 is known and will discuss in Section

1.3.5 how to determine it.

1.2.1 Semi-Nonparametric Panel Data Structure Models

I mainly focus on the partially linear model, since 1) all the results hold for nonparametric

models as long as the conditions of finite-dimensional parameters are excluded. 2) it is more

involving to develop the theory for partially linear models. I will briefly mention how to

apply the method into nonparametric models when necessary.

A partially linear model in panel data takes the following form:

yit = µi + ω′itβi + hi(xit) + uit uit = σi(ωit, xit)εit (1.1)

where i = 1, 2, ..., N , t = 1, 2, ..., T . ωit is a p × 1 vector of regressors. xit is a d × 1 vector

of controls that affect the outcome through hi(xit). µi’s represent the unobserved individual

fixed effects which might be correlated with ωit and xit. εit has mean 0 and variance 1 and

is independent of {ωit, xit}, so uit is the error term with mean 0 and variance σ2
i (ωit, xit)

conditional on {ωit, xit}.

I denote the true value of βi as β0
i , and hi(xit) as h0

i (xit) with a compact support X .

I assume that the finite-dimensional parameters βi’s and infinite-dimensional functions hi’s

exhibit the following group pattern

β0
i =

K0∑
k=1

α0
k1{i ∈ G0

k} (1.2)

h0
i (xit) =

K0∑
k=1

f 0
k (xit)1{i ∈ G0

k} for any xit ∈ X (1.3)

7



which means that individuals within group k share the same parameter α0
k and same func-

tion f 0
k . {G0

k, k = 1, 2, ...K0} are mutually exclusive, meaning that ∪K0
k=1G

0
k = {1, 2, ..., N},

and G0
k ∩ G0

j = ∅ if j 6= k. Nk = #G0
k denotes the cardinality of G0

k, and obviously∑K0

k=1Nk = N . The notations I use are consistent with Su, Shi, and Phillips (2016).

Following Sun (2005), Lin and Ng (2012), Bonhomme and Manresa (2015) and Su, Shi,

and Phillips (2016), I assume that individual group identity doesn’t change over time. Let

α = (α1, ..., αK0)′, f = (f1, ..., fK0)′ and denote the corresponding true values as α0 and f 0,

respectively.

The goal is to determine individuals’ group identities and to estimate the group-specific

parameters α and f .

Remark. For nonparametric panel data models, equation 1.1 becomes

yit = µi + hi(xit) + uit uit = σi(ωit, xit)εit (1.4)

I no longer have βi and only need to focus on hi, i = 1, ..., N , and fk, k = 1, ..., K0. The

group structure is shown in equation 1.3 and the parameter of interest is group-specific f .

1.2.2 Sieve Approximation

I propose first to approximate hi, i = 1, ..., N and fk, k = 1, ..., K0 by a linear combination of

a tensor-product linear sieve basis. A tensor product linear sieve is the product of univariate

sieves. In this paper, I focus on univariate B-splines of order κ (or degree κ− 1).

I assume that fk(xit), k = 1, ..., K0 share the same compact support, which is, with loss of

generality, normalized to [0, 1]d. Following Chen (2007) and Ai and Chen (2003), I consider

the Hölder space Λr([0, 1]d) of order r > 0. Let
¯
r denote the largest integer satisfying

¯
r < r.

The Hölder space is a space of functions f : [0, 1]d → R such that the first
¯
r derivatives are

bounded, and the
¯
r-th derivatives are Hölder continuous with the exponent r −

¯
r ∈ (0, 1].

8



The Hölder space becomes a Banach space when endowed with the Hölder norm:

‖f‖Λr = sup
x

∣∣f(x)
∣∣+ max

a1+a2+···+adx=
¯
r

sup
x 6=x′

∣∣∇af(x)−∇af(x′)
∣∣(

‖x− x′‖F
)r−

¯
r <∞

where for any d× 1 nonnegative vector a = (a1, ..., ad)′, I write |a| = a1 + · · ·+ad and denote

the |a|th derivative of function g as

∇af(x) = ∂|a|

∂xa1
1 · · · ∂xadd

f(x)

A Hölder ball with radius c is defined as Λr
c([0, 1]d) ≡

{
f ∈ Λr([0, 1]d) :‖f‖Λr 6 c <∞

}
. It

is known that functions in Λr
c([0, 1]d) could be uniformly well approximated by B-splines of

order κ >
¯
r + 1. Let BJ(xit) denote J × 1 basis functions, then I could approximate hi(xit)

and fk(xit) by BJ(xit)′γi and BJ(xit)′πk, respectively, where γi and πk are J × 1 vectors:

hi(xit) =BJ(xit)′γi + δhi(xit) i = 1, ..., N

fk(xit) =BJ(xit)′πk + δfk(xit) k = 1, ..., K0

where δhi(xit) and δfk(xit) are the corresponding approximation errors.

Then I could rewrite 1.1 as

yit = µi + ω′itβi +BJ(xit)′γi + eit (1.5)

where eit = δhi(xit) + uit.

Define zit ≡
(
ω′it,
√
JBJ(xit)′

)′
and θi ≡

(
β′i,

1√
J
γ′i
)′
, i = 1, ..., N , it could be expressed as

yit = µi + z′itθi + eit (1.6)

where 1√
J
is the normalization parameter.

9



At the same time, 1.3 becomes

γ0
i =

K0∑
k=1

π0
k1{i ∈ G0

k}

Let ηk =
(
α′k,

1√
J
π′k
)′
, 1.2 and 1.3 could be compressed as

θ0
i =

K0∑
k=1

η0
k1{i ∈ G0

k} (1.7)

Remark. For nonparametric panel data models, equation 1.7 becomes

1√
J
γ0
i =

K0∑
k=1

1√
J
π0
k1{i ∈ G0

k}

Furthermore, I need to change θ and η to 1√
J
γ and 1√

J
π respectively whenever possible.

Note that I keep the normalization factor 1√
J
to emphasize that I focus on the normalized

parameters for simplicity.

1.2.3 Penalized Estimation of α and f

Given the model specified in 1.6, I first take the deviation from the mean across individuals

to concentrate out the individual effects µi’s and obtain

yit − ȳi = (zit − z̄i)′ θi + eit − ēi (1.8)

where ȳi = 1
T

∑T
t=1 yit, with similar definitions for z̄i and ēi.

For simplicity, I further define ỹit = yit − ȳi and similarly for z̃it, ẽit, then 1.8 could be

compressed as

ỹit = z̃′itθi + ẽit (1.9)

To estimate θi, I minimize the following least square criterion function:

10



QNT (θ) = 1
NT

N∑
i=1

T∑
t=1

(
ỹit − z̃′itθi

)2
(1.10)

where θ = (θ1, ..., θN).

To include the latent group structure in my model, I propose to estimate θ and η by

minimizing the following criterion function:

QNT,λ(θ, η) = QNT (θ) + λ

N

N∑
i=1

K0∏
k=1
‖θi − ηk‖F (1.11)

where λ is the tuning parameter. The additional penalty item is used to shrink the individual

parameters θi, i = 1, ..., N to particular unknown group-specific parameters ηk, k = 1, ..., K0

while at the same time to classify individuals into a priori unknown groups.

1.3 Asymptotic Properties

This section include 5 subsections. They are organized as follows: in Subsection 1.3.1, I

make general assumptions about the model. Based on that, I characterize the preliminary

convergence rates for individual coefficients θi, i = 1, ..., N and group-specific parameters

ηk, k = 1, ..., K0 in Subsection 1.3.2. Subsection 1.3.3 presents the results of classification

consistency. After that, Subsection 1.3.4 reports the asymptotically distribution of group-

specific parameters αk and fk, k = 1, ..., K0. Subsection 1.3.5 discusses how to determine

the number of groups.

1.3.1 Assumptions

Assumption 1.1. (i) For each i = 1, ..., N , {ωit, xit, εit} is stationary strong mixing with

mixing coefficient αi(·). α(·) ≡ maxi6i6N αi(·) satisfies α(j) 6 cα exp(−ρj) for some

0 < cα <∞, 0 < ρ <∞. {ωit, xit, εit} are independent across i.

11



(ii) There exists positive c̄ such that max16i6N IE‖ωit‖qF < c̄ <∞ and

max16i6N IE‖uit‖qF < c̄ <∞ for some q > 6.

(iii) For the parametric component,

(i) ωit does not contain 1.

(ii) Let B denote the parameter space for βi. B is compact and convex subset of Rp

such that β0
i lies in the interior of B for each i.

(iv) For the nonparametric component,

(i) For k = 1, ..., K0, IE[fk(xit)] = 0.

(ii) For k = 1, ..., K0, f 0
k ∈ F = Λr1

c ([0, 1]d) with r1 > 0.

(iii) For each i = 1, ..., N , denote the marginal density function of {xit} as f(xi·), then

there exist positive constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
inf

xi·∈[0,1]d
{f(xi·)} 6 max

16i6N
sup

xi·∈[0,1]d
{f(xi·)} < c̄ <∞

(v) There exist
¯
c > 0 such that

min
16j 6=k6K0

{∥∥∥α0
j − α0

k

∥∥∥2

F
+
∥∥∥f 0

j − f 0
k

∥∥∥2

2

}
>

¯
c

(vi) For j = 1, ..., p, IE[ωjit|xit] ∈ F = Λr2
c ([0, 1]d) with r2 > 0.

(vii) There exist positive constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
µmin

(
Var(zit)

)
6 max

16i6N
µmax

(
Var(zit)

)
< c̄ <∞

0 <
¯
c < min

16i6N
µmin

(
Var(ωit)

)
6 max

16i6N
µmax

(
Var(ωit)

)
< c̄ <∞
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(viii) Nk
N
→ τk for each k = 1, .., K0 as N →∞. There exists positive constants

¯
c and c̄ such

that 0 <
¯
c < min16k6K0{τk} 6 max16k6K0{τk} < c̄ < 1

Assumption 1.1(i) implies that the strong mixing coefficients α(l) decay exponentially

fast to 0 as l → ∞ uniformly. Similar conditions are assumed in Su, Shi, and Phillips

(2016), Su, Wang, and Jin (2019), Vogt and Linton (2017), etc. For more discussions on

this, I refer readers to Su, Wang, and Jin (2019). Assumption 1.1(ii) imposes the moment

condition restrictions for ωit and uit. Assumption 1.1(iii) specifies restrictions on the para-

metric component. The first part means that I do not include the intercept in the parametric

component. The second part imposes restrictions on the finite dimensional parameter space,

which is commonly assumed in the literature.

Assumption 1.1(iv) imposes restrictions on the nonparametric component. The first part

is a harmless normalization. The second one is the smooth condition such that I could

approximate any function fk ∈ F well using the tensor-product of univariate B-splines. By

the approximation theory, there exists πk ∈ RJ such that

sup
x∈[0,1]d

∥∥∥fk(x)−BJ ′πk
∥∥∥
∞

= O(J−
r1
d )

Similarly, for each individual, there exists γi such that

sup
x∈[0,1]d

∥∥∥hi(x)−BJ ′γi
∥∥∥
∞

= O(J−
r1
d )

Then, after controlling for the approximation error, the difference between fk(x) and hi(x)

is reflected by the difference between πk and γi. The third part is also assumed in Vogt and

Linton (2017). First, it makes the functions hi(xit) comparable across individuals. Second,

it guarantees that hi(xit) could be estimated uniformly well.

Assumption 1.1(v) specifies that the group-specific parameters are well separated from

each other. This condition considers the parametric and nonparametric parameters simulta-

neously. Most importantly, it implies that the group-specific vectors are well separated from
13



each other. Consider
∥∥∥f 0

j − f 0
k

∥∥∥
2
first,

∥∥∥f 0
j − f 0

k

∥∥∥
2

6
∥∥∥f 0

j −BJ ′πj
∥∥∥

2
+
∥∥∥f 0

k −BJ ′πk
∥∥∥

2
+

∥∥∥∥∥∥
√
JBJ ′

(
1√
J

(πj − πk)
)∥∥∥∥∥∥

2

=O(J−
r1
d ) +


(

1√
J

(πj − πk)
)′ ∫

[0,1]d
JBJ(x)BJ(x)′dx

(
1√
J

(πj − πk)
)

1
2

�
∥∥∥∥∥ 1√

J
(πj − πk)

∥∥∥∥∥
F

where the last equation holds because the eigenvalues of
∫

[0,1]d JB
J(x)BJ(x)′dx are bounded

above and away from 0.

Similarly,

∥∥∥∥∥ 1√
J

(πj − πk)
∥∥∥∥∥
F

�

∥∥∥∥∥∥
√
JBJ ′

(
1√
J

(πj − πk)
)∥∥∥∥∥∥

2

6
∥∥∥f 0

j − f 0
k

∥∥∥
2

+
∥∥∥f 0

j −BJ ′πj
∥∥∥

2
+
∥∥∥f 0

k −BJ ′πk
∥∥∥

2

=
∥∥∥f 0

j − f 0
k

∥∥∥
2

+O(J−
r1
d )

�
∥∥∥f 0

j − f 0
k

∥∥∥
2

Thus
∥∥∥f 0

j − f 0
k

∥∥∥2

2
�
∥∥∥ 1√

J
(πj − πk)

∥∥∥2

F
, consequently

∥∥∥α0
j − α0

k

∥∥∥2

F
+
∥∥∥f 0

j − f 0
k

∥∥∥2

2

�
∥∥∥α0

j − α0
k

∥∥∥2

F
+
∥∥∥∥∥ 1√

J
(πj − πk)

∥∥∥∥∥
F

=
∥∥∥η0

j − η0
k

∥∥∥2

F

where ηk =
(
α′k,

1√
J
π′k
)′
. I have transformed the difference between two groups into Euclidean
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distance between two vectors. Similarly I could get that

‖βi − αk‖2
F +‖hi − fk‖2

2

�‖θi − ηk‖2
F

if i /∈ G0
k. This result guarantees that the penalty item in 1.11 could shrink the individual

coefficients to some group-specific parameters.

Assumption 1.1(vi) imposes smooth conditions on the conditional expectation of ωit given

xit. Similarly as the second part of Assumption 1.1(iv), this condition guarantees that I could

approximate IE[ωit|xit] well with B-splines. There are two approximation errors involved in

the semiparametric model if I aim to estimate the parametric parameters. For an excellent

illustration, I refer to Chernozhukov et al. (2018).

Assumption 1.1(vii) is the identification condition with sieve approximation. As demon-

strated in Section 1.2.3, I take the demean approach to get rid of the individual fixed effect,

consequently requiring that IE[z̃itz̃′it] is positive definite to identify the coefficients. The cor-

responding population value is Var(zit). It is better to understand this condition by thinking

of the partitioned matrix

Var(zit) =

 Var(ωit) Cov(ωit,
√
JBJ(xit))

Cov(
√
JBJ(xit), ωit) Var(

√
JBJ(xit))



Consider Var(
√
JBJ(xit)) first. Define B̆J(x) ≡ BJ(x) −

∫
[0,1]d B

J(x)dx and B̃J(x) ≡

BJ(x) − IE[BJ(x)]. By the properties of B-splines, eigenvalues of J
∫

[0,1]d B̆
J(x)B̆J(x)′dx

are bounded above and away from certain constant numbers. Combining the third part

of Assumption 1.1(iv) and more properties of B-splines, I could get that eigenvalues of

J
∫

[0,1]d B̃
J(x)B̃J(x)′dx are also bounded above and away from some constant numbers, say
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µ̄ and
¯
µ, respectively. Furthermore, I could conclude that

max
16i6N

µmax
(
Var(
√
JBJ(xit))

)
6 µ̄c̄

and

min
16i6N

µmin
(
Var(
√
JBJ(xit))

)
>

¯
µ
¯
c

Define S̃pl(κ) ≡
{
B̃J(x)′a, x ∈ [0, 1]d, a ∈ RJ

}
as the demeaned polynomial spline sieve of

order κ (I choose the same order for all univariate B-splines). Define p(xit) as the projection of

IE[ω̃it|xit] onto S̃pl(κ). For each i = 1, ..., N , one sufficient condition for positive definiteness

of Var(zit) is that IE
[(
ω̃it − p(xit)

) (
ω̃it − p(xit)

)′] is positive definite. However, it is tedious

to give lower-level conditions for the uniform positive definiteness of Var(zit) for i = 1, ..., N .

Assumption 1.1(viii) is commonly assumed in the classification literature, which implies

that each group would include an asymptotically non-negligible number of individuals.

Assumption 1.2. As (N, T )→∞, λ→ 0, J →∞, J2(lnT )3T−1 → 0,

N2T 1− q2 (lnT )
3q
2 → 0.

Assumption 1.2 specifies several restrictions on J , N and T . The condition J2(lnT )3T−1 →

0 is very similar to Assumption 2 in Newey (1997) on independent observations, only up to

a small logarithmic factor (lnT )3 The last condition requires that T cannot increase too

slow compared with N . The intuition is clear: as T grows, more and more information of

each individual is revealed, and it becomes easier to tell different observations from different

groups apart. The q is the moment restriction I make in Assumption 1.1(ii), which is set to

be larger than 6 to allow that N and T increase at the same rate.

Remark. For nonparametric panel data models, I could simply 1) exclude all the assump-

tions solely involving α and ωit, e.g., Assumption (iii) and (vi) are no longer needed; 2) delete
16



the part with α and ωit for assumptions with both α and f , e.g., Assumption (v) becomes:

There exist
¯
c > 0 such that

min
16j 6=k6K0

∥∥∥f 0
j − f 0

k

∥∥∥2

2
>

¯
c.

Most of the changes are trivial, so I don’t bother to list all of them.

1.3.2 Preliminary Rates of Convergence

The following result gives the preliminary rates of convergence for θi, i = 1, ..., N and ηk,

k = 1, ..., K0.

Theorem 1.1. Suppose Assumption 1.1, 1.2 hold, then

(i) ‖θ̂i − θ0
i ‖F = Op(J−

r1
d + J

1
2T−

1
2 + λ) for i = 1, 2, ..., N

(ii) 1
N

∑N
i=1‖θ̂i − θ0

i ‖2
F = Op(J−2 r1

d + JT−1)

(iii) ‖η̂(k)− η0
k‖F = Op(J−

r1
d + J

1
2T−

1
2 ), for k = 1, ..., K0, where (η̂(1), ..., η̂(K0)) is a suitable

permutation of (η̂1, ..., η̂K0)

Theorem 1.1(i) and (ii) give the pointwise and mean square convergence rate of θ̂i. In

Theorem 1.1(i), the first item, J−
r1
d , comes from the approximation error. The second

one, J 1
2T−

1
2 , demonstrates the contribution of interaction between B-splines and the error

term. Similar as other Lasso-like estimators, the penalty item is reflected by λ. However,

in Theorem 1.1(ii), the penalty item disappears. I direct interested readers to the details

in the proof. The convergence rate of ηk, similarly, does not depend on λ. It is worth

emphasizing that the convergence rate of ηk depends on the mean square instead of the

pointwise convergence rate of θi.

By Assumption 1.2, it is clear that θ̂i and η̂(k) converges in probability to θ0
i and η0

k,
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respectively. For simplicity, I denote η̂k as η̂(k). I further define

Ĝk =
{
i ∈ {1, ..., N} : β̂i = α̂k

}
k = 1, ..., K0

which denote the set of individuals that are classified into group k.

1.3.3 Classification Consistency

To ensure the consistency of classification, I require more assumptions.

Assumption 1.3. As (N, T ) → ∞, λT 1
2J−

1
2 (lnT )−3−v → ∞ , λJ

r1
d (lnT )−v → ∞ ,

T
1
2J−

1
2 (lnT )−3−v →∞ and λ(lnT )v → 0 for some v > 0.

Assumption 1.3 imposes restrictions on λ and some further ones on J . Intuitively, I

require that λ dominates all the other errors from approximation or uit such that the penalty

item will take effect and shrink the individual coefficients to some group-specific parameters.

Following Su et al. (2016), I define

ÊkNT,i ≡
{
i /∈ Ĝk|i ∈ G0

k

}
F̂kNT,i ≡

{
i /∈ G0

k|i ∈ Ĝk

}

where i = 1, ..., N and k = 1, ..., K0. And ÊkNT = ∪i∈G0
k
ÊkNT,i, F̂kNT = ∪i∈ĜkF̂kNT,i. ÊkNT

denotes the event of classifying individuals that belong to G0
k into groups other than Ĝk; and

F̂kNT denotes the event of classifying individuals into Ĝk but it turns out that they don’t

belong to G0
k.

The following theorem demonstrates that I achieve consistent classification.

Theorem 1.2. Suppose Assumption 1.1, 1.2 and 1.3 hold, then

(i) P (∪K0
k=1ÊkNT ) 6 ∑K0

k=1 P (ÊkNT )→ 0 as (N, T )→∞
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(ii) P (∪K0
k=1F̂kNT ) 6 ∑K0

k=1 P (F̂kNT )→ 0 as (N, T )→∞

Theorem 1.2 guarantees that with probability approaching 1, I correctly classify individ-

uals in the same group, say G0
k, into one group Ĝk, and those classified into the same group,

Ĝk, belong to one correct group G0
k.

There might exist some individuals that are not classified into any group Ĝk, k = 1, ..., K0.

However, as well explained in Su, Shi, and Phillips (2016), empirically, I could modify the

classifier and classify individuals into the closest group, while theoretically, I can ignore the

problem in the large sample.

In the simulation, since the sample size is small, I force every individual classified into

some group. For every individual i, I classify it into Ĝk if

k = arg min
16j6K0

{∥∥∥θ̂i − η̂j∥∥∥
F

}

1.3.4 The Oracle Property and Asymptotic Distributions

The C-lasso method simultaneously accomplishes two tasks: to classify individuals into

different groups and to estimate θi, i = 1, ..., N , and ηk, k = 1, ..., K0. Given the estimated

coefficients, I could conduct inference for the estimators I am interested in: α̂k and f̂k(x),

where α̂k is part of η̂k and f̂k(x) could be constructed by f̂k(x) =
√
JBJ(x)′η̂k.

An alternative strategy would be to implement the post-Lasso approach. Given the

estimated groups Ĝk, k = 1, ..., K0, I could pool the observations classified into the same

group together and estimate group-specific parameters. I denote the post-Lasso estimators

as α̂Ĝk and f̂Ĝk(x).

My goal is to show that the C-lasso and post-Lasso estimators exhibit the oracle prop-

erty, i.e., they are asymptotically equivalent to the infeasible estimators as if the group

membership is known. Before I give precise results, more definitions and assumptions are

required.
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Let ui = (ui1, ui2, ..., uiT ). Var(ui|ωi, xi) = Σ
1
2
i ViΣ

1
2
i , where

Σi =diag(σ2
i (ωi1, xi1), ..., σ2

i (ωiT , xiT ))

Vi =IE[εiε′i]

Assumption 1.4. (i) For k = 1, ..., K0, there exists two positive constants
¯
cv and c̄v such

that

0 <
¯
cv 6 lim

N,T→∞
min
i∈G0

k

µmin(Vi) 6 lim
N,T→∞

max
i∈G0

k

µmax(Vi) 6 c̄vδNT

for some nondecreasing sequence δNT which satisfies δNTN−1 → 0 as N, T →∞.

(ii) There exists positive c̄ such that max16i6N IE
∥∥ωitσi(ωit, xit)∥∥qF < c̄ <∞ for q > 6.

(iii) Let zit,σ ≡ zitσi(ωit, xit), ωit,σ ≡ ωitσi(ωit, xit) and Bit,σ ≡
√
JBJ

it(xit)σi(ωit, xit). There

exist positive constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
µmin

(
Var

(
zit,σ

))
6 max

16i6N
µmax

(
Var(zit,σ)

)
< c̄ <∞

0 <
¯
c < min

16i6N
µmin

(
Var(ωit,σ)

)
6 max

16i6N
µmax

(
Var(ωit,σ)

)
< c̄ <∞

0 <
¯
c < min

16i6N
µmin

(
Var(Bit,σ)

)
6 max

16i6N
µmax

(
Var(Bit,σ)

)
< c̄ <∞

The Assumptions are analogous to Assumption A.3 in Su, Wang, and Jin (2019). As-

sumption 1.4(i) imposes restrictions on the covariance matrix of εi. Assumption 1.4(ii)

specifies more moment conditions. The first condition in Assumption 1.4(iii) assures that

the eigenvalues of the interactive items of zit and the error term are bounded above and

away from 0 uniformly. Moreover, since I am interested in αk and fk(x) instead of ηk, the

other two conditions are required.

Assumption 1.5. (i) As (N, T )→∞, NTJ−2 r1
d J−2 r2

d → 0.
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(ii) As (N, T )→∞, NTJ−2 r1
d → 0.

Assumption 1.5(i) is used to guarantee that the group-specific finite-dimensional estima-

tors, α̂k and α̂Ĝk , achieves
√
NT convergence rate. Assumption 1.5(ii), on the other hand,

is used to establish the pointwise convergence rate of the group-specific infinite-dimensional

estimators f̂k(x)) and f̂Ĝk(x).

The following theorem establishes the asymptotic distribution of αk.

Theorem 1.3. Suppose Assumption 1.1, 1.2, 1.3, 1.4 and 1.5(i) hold. Then for any k ∈

{1, ..., K0},

(i) √
NkTV

− 1
2

k,ω

(
α̂k − α0

k

)
D→ N(0, 1)

(ii) √
NkTV

− 1
2

k,ω

(
α̂Ĝk − α

0
k

)
D→ N(0, 1)

where

Vk,ω =
(
Q̂G0

k
,ω̃\B̃

)−1 1
Nk

∑
i∈G0

k

1
T
W ′
i·,ω̃\B̃Σ

1
2
i ViΣ

1
2
i Wi·,ω̃\B̃

(
Q̂G0

k
,ω̃\B̃

)−1

in which

Q̂G0
k
,ω̃\B̃ = Q̂G0

k
,ω̃ω̃ − Q̂G0

k
,ω̃B̃Q̂

−1
G0
k
,B̃B̃

Q̂′G0
k
,ω̃B̃

Wit,ω̃\B̃ = ω̃it − Q̂G0
k
,ω̃B̃Q̂

−1
G0
k
,B̃B̃

√
JB̃J

it

Wi·,ω̃\B̃ =
(
Wi1,ω̃\B̃,Wi2,ω̃\B̃, ...,WiT,ω̃\B̃

)′

and Q̂G0
k
,ω̃ω̃ ≡ 1

NkT

∑T
t=1

∑
i∈G0

k
ω̃itω̃

′
it. Q̂G0

k
,B̃B̃ and Q̂G0

k
,ω̃B̃ are similarly defined.
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Theorem 1.4. Suppose Assumption 1.1, 1.2, 1.3, 1.4 and 1.5(ii) hold. Then for any k ∈

{1, ..., K0},

(i) √
NkT/JV

− 1
2

k,B

(
f̂k(x)− f 0

k (x)
)

D→ N(0, 1)

(ii) √
NkT/JV

− 1
2

k,B

(
f̂Ĝk(x)− f 0

k (x)
)

D→ N(0, 1)

where

Vk,B = BJ(x)′
(
Q̂G0

k
,B̃\ω̃

)−1 1
Nk

∑
i∈G0

k

1
T
W ′
i·,B̃\ω̃Σ

1
2
i ViΣ

1
2
i Wi·,B̃\ω̃

(
Q̂G0

k
,B̃\ω̃

)−1
BJ(x)

in which the different components are similarly defined as those in Theorem 1.3.

Theorems 1.3 and 1.4 indicate that the C-Lasso and post-Lasso estimators of both αk

and fk(x) are asymptotically equivalent to the infeasible estimators, which are denoted as

α̂G0
k
and f̂G0

k
. Thus both C-Lasso and post-Lasso estimators exhibit oracle properties.

In my simulation results, the C-Lasso and post-Lasso estimators are of no much difference.

Remark. For nonparametric panel data models, Theorem 1.3 no longer exists and the state-

ment of Theorem 1.4 needs minor modifications.

1.3.5 Determination of Number of Groups

In this section, I discuss how to use the Information Criterion(IC) to decide the number of

groups K0. As is common in the literature, I need to assume that K0 is bounded above from

a finite integer Kmax. I make the dependence of θ̂i and η̂k on K and λ explicit by denoting

them as θ̂i(K,λ) and η̂k(K,λ).
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Using the post-Lasso estimator η̂Ĝk(K,λ), I could calculate

σ̂2
Ĝ(K,λ) = 1

NT

K∑
k=1

∑
i∈Ĝk(K,λ)

T∑
t=1

(
ỹit − z̃′itη̂Ĝk(K,λ)

)2

Then I choose K to minimize the following information criterion

IC(K,λ) = ln
(
σ̂2
Ĝ(K,λ)

)
+ ρNT (p+ J)K

where ρNT is another tuning parameter. Let K̂(λ) ≡ arg min16K6Kmax IC(K,λ).

Let G(K) ≡
{
GK,1, ..., GK,K

}
be any K-partition of {1, ..., N} and GK a collection of all

such partitions. Further define

σ̂2
G(K) ≡

1
NT

K∑
k=1

∑
i∈ĜK,k

T∑
t=1

(
ỹit − z̃′itη̂ĜK,k

)2

Some more assumptions are required.

Assumption 1.6. As (N, T ) → ∞, min16K<K0 infG(K)∈GK σ̂
2
G(K)

P→
¯
σ2 > σ2

0, where σ2
0 =

plim(N,T )→∞
1
NT

∑N
i=1

∑T
t=1 u

2
it.

Assumption 1.7. As (N, T )→∞, ρNTJ → 0 and ρNTNT →∞.

When to decide the correct number of groups, there are three different situations to

consider: K < K0, K = K0, and K > K0, corresponding to under-fitted, correct, and

over-fitted models respectively. Assumption 1.6 is used to guarantee that in the under-fitted

models, the first item in the IC criterion is more significant than that in the correct model.

As long as the second item is dominated, which is imposed in Assumption 1.7, I will not

choose under-fitted models with probability approaching 1. Assumption 1.7 further implies

that the over-fitted models will not be picked out with probability approaching one as well.

The following theorem formally summarizes this intuition.
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Theorem 1.5. Suppose Assumptions 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 and 1.7 hold. Then P (K̂(λ) =

K0)→ 1 as (N, T )→∞.

Theorem 1.5 shows that the IC criterion is useful in deciding the correct number of

groups asymptotically. However, in finite samples, I suggest that readers use it with caution.

There is always a positive probability that misspecified models are selected. Thus I rec-

ommend readers try different numbers of groups, compare the results, and discuss possible

implications.

1.4 Simulation

In this section, I evaluate the finite sample performance of the classification and estimation

procedure.

1.4.1 Data Generating Process

Restate the model: yit = µi + ω′itβi + hi(xit) + uit. The data generating process(DGP) I

consider has the following settings:

(i) There are 3 different groups with equal group size N/3.

(ii) The B-splines are of order 4(degree 3) and the number of interior points, J0, is set to

be the closest integer to (NT ) 1
5 . Note that J = J0 + d.

(iii) The penalty parameter λ is chosen to be (NT )− 1
8 . Note the settings are consistent

with all the assumptions under the situation that N and T grow at the same speed.

(iv) The individual fixed effects, µi, are independently drawn from a uniform [0, 1] distri-

bution. Since they are demeaned away anyway, this is a harmless setting.

(v) The regressors, ωit and xit, are independently drawn from Uniform [0, 1].

(vi) The error terms, uit, are independently distributed and uit ∼ N(0, 1).
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DGP 1: For different groups, the finite dimensional coefficients and the infinite-dimensional

functions are set to be

β0
i =



1 if i ∈ G0
1

2 if i ∈ G0
2

3 if i ∈ G0
3

and h0
i (x) =



sin(2πx) if i ∈ G0
1

sin(4πx) if i ∈ G0
2

sin(6πx) if i ∈ G0
3

I consider different combinations of N and T . For each combination, I simulate 200 times.

1.4.2 Main Result

For C-lasso estimators, since there are three different groups each involving parametric and

nonparametric estimators, I report both the maximum RMSE of α̂k and f̂k, and RMSE of α̂

and f̂ , where α̂ ≡ (α̂1, α̂2, ..., α̂K0) and f̂ ≡ (f̂1, f̂2, ..., f̂K0). Denote the number of repetitions

as M . The maximum RMSE of α̂ is defined as

max{RMSE}α̂ ≡
1
M

M∑
m=1

√
max

16k6K0

∥∥∥α̂k,m − α0
k

∥∥∥2

F

where α̂k,m denotes the estimated parametric parameters of kth group in mth repetition and

α0
k is the corresponding true value. Similarly, the maximum RMSE of f̂ is

max{RMSE}f̂ ≡
1
M

M∑
m=1

√
max

16k6K0

∥∥∥f̂k,m − f 0
k

∥∥∥2

2

where f̂k,m and f 0
k are defined similarly. We further define RMSE of α̂ and f̂ as

{RMSE}α̂ ≡
1
M

M∑
m=1

√√√√K0∑
k=1

∥∥∥α̂k,m − α0
k

∥∥∥2

F

{RMSE}f̂ ≡
1
M

M∑
m=1

√√√√K0∑
k=1

∥∥∥f̂k,m − f 0
k

∥∥∥2

2
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For post-Lasso estimators α̂Ĝ and f̂Ĝ, and oracle estimators α̂G0 and f̂G0 , I similarly define

maximum RMSE and RMSE, where α̂Ĝ ≡ (α̂Ĝ1
, α̂Ĝ2

, ..., α̂ĜK0
), f̂Ĝ ≡ (f̂Ĝ1

, f̂Ĝ2
, ..., f̂ĜK0

) and

α̂G0 ≡ (α̂G0
1
, α̂G0

2
, ..., α̂G0

K0
), f̂G0 ≡ (f̂G0

1
, f̂G0

2
, ..., f̂G0

K0
).

The main results are reported in Table 1.2 and 1.3. I discuss Table 1.2 first. When T

is relatively small (T = 60), the classification error is comparatively large. Around 25%

(N = 90) or 20% (N = 180) of individuals are classified into wrong groups. Consequently,

the maximum RMSE of α̂, f̂ and α̂Ĝ, f̂Ĝ are considerable compared with that of the oracle

estimators. However, as T increases, the classification error shrinks quickly. For the case

N = 90, T = 90, N = 180, T = 90 and N = 270, T = 90, more than 90% of individuals are

assigned the correct group identity. As a result, the maximum RMSE of C-lasso and post-

lasso estimators decrease. When I further consider N = 180, T = 180 and N = 270, T = 180,

the classification errors are only 1.2% and 0.2% respectively, and the RMSE of C-lasso and

post-lasso estimators are almost the same as that of the oracle estimators. If I increase T to

270 and consider N = 270, I achieve almost 100% correct classification. Consequently, the

RMSE of C-lasso, post-Lasso and oracle estimators are of no difference. In Table 1.3, I get

similar results.

By carefully comparing the results in Table 1.2 and 1.3, I further find that most of RMSE

of C-lasso and post-lasso estimators could be attributed to the maximum RMSE of them.
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1.4.3 Comparison with Complete Homogeneity and Heterogene-

ity

To further illustrate the advantages of C-lasso and post-Lasso estimators over complete

parameter homogeneity or complete parameter heterogeneity, I compare the results of the

three different approaches.

To make the approaches comparable, I define RMSE of C-lasso estimators in a different

way.

{RMSE}ind
β̂
≡ 1
M

M∑
m=1

√√√√ 1
N

N∑
i=1

∥∥∥β̂i,m − β0
i

∥∥∥2

F

{RMSE}ind
ĥ
≡ 1
M

M∑
m=1

√√√√ 1
N

N∑
i=1

∥∥∥ĥi,m − h0
i

∥∥∥2

2

where β̂i,m and ĥi,m denotes the estimated parametric and nonparametric parameters of

individual i in mth repetition using C-lasso.

For post-lasso and oracle estimators, I similarly define {RMSE}ind
β̂Ĝ

, {RMSE}ind
ĥĜ

and

{RMSE}ind
β̂G0

, {RMSE}ind
ĥG0

, respectively.

If we assume individual share the same parameters, I denote the corresponding defined

RMSE of parametric and nonparametric estimators as {RMSE}ind
β̂ho

and {RMSE}ind
f̂ho

. If we

allow for complete parameter heterogeneity, I use {RMSE}ind
β̂he

and {RMSE}ind
f̂he

.

The results are reported in Table 1.4. Under complete parameter homogeneity, the

model is misspecified. {RMSE}ind
β̂ho

and {RMSE}ind
f̂ho

don’t change much as N and T vary.

While under complete parameter homogeneity, we fail to account for the group structure.

When T is comparatively small (T = 60), C-lasso and post-lasso estimators don’t necessarily

outperform those under complete parameter homogeneity and heterogeneity. However, as

long as T is large enough (T = 90, 180, 270), C-lasso and post-lasso estimators perform much

better.
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1.4.4 Comparison with Misspecified Parametric model

In terms of classification, there is a concern that it might not be necessary to use semi-

nonparametric models, because we might still achieve good classification even the model is

misspecified as fully parametric.

To address this concern, I compare the classification errors of two different models: the

true model and misspecified parametric model.

We first use DGP 1 as before. The results are shown in Table 1.5. The classification

errors of the true model are always smaller than those of the misspecified model.

Table 1.5: Comparison with Misspecified Parametric Model in DGP 1

N T % of Correct Classification
True Model Misspecified Model

DGP 90 60 76.9 48.9
90 90 90.7 56.5
180 60 80.8 51.1
180 90 94.1 62.0
180 180 98.8 83.2
270 90 94.0 65.9
270 180 99.8 87.3
270 270 99.99 94.2

As T increases, the classification error of the misspecified model decreases, so one might

conclude that it is still plausible to do classification using the misspecified model. However,

under certain circumstances, the classification error of the misspecified model is large and

does not improve even as T increases. To illustrate this idea, I consider a new model and

DGP 2:

yit = µi + hi(xit) + uit
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where

h0
i (x) =



cos(2πx) if i ∈ G0
1

cos(4πx) if i ∈ G0
2

cos(6πx) if i ∈ G0
3

The other setting are the same as DGP 1.

Then the misspecified parametric model is

yit = µi + xitφi + uit

After simple calculation, we could see that for individuals from different groups, the

parameters are the same under the misspecified model, thus it is theoretically impossible to

classify individuals into correct groups. The simulation results are shown in Table 1.6. With

the misspecified model, the percentage of correct classification is at most 40.6% and doesn’t

increase as T increases. Considering that with three equally-sized groups, there is at least

33.3% correct classification under suitable permutation, the error almost achieves its upper

bound. On the contrary, with nonparametric model, I could still achieve good classification

and the classification error shrinks as T increases.

Table 1.6: Comparison with Misspecified Parametric Model in DGP 2

N T % of Correct Classification
True Model Misspecified Model

DGP 90 60 81.4 40.6
90 90 94.5 40.2
180 60 84.4 38.2
180 90 95.6 37.9
180 180 99.8 38.3
270 90 95.1 37.2
270 180 99.8 37.1
270 270 99.99 37.2
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1.5 Conclusion

I propose a semi-nonparametric panel data model with latent group structures. I first approx-

imate the infinite-dimensional parameters with a sieve expansion. Then using the C-Lasso

method, I simultaneously classify individuals into different groups and estimate the group-

specific parameters. The C-Lasso and post-Lasso estimators achieve uniform classification

consistency and exhibit the oracle property. Simulations demonstrate an excellent finite

sample performance of this approach.

It is possible to extend this research in several different directions. First, what if I

consider high-dimensional panel data models where the response mechanisms exhibit het-

erogeneity? Although it seems plausible, it is not trivial at all to apply my method to

high-dimensional data. Certain highly-mathematical techniques are required. Thus I leave

it for future research. Second, it is natural to generalize my approach to unbalanced panels

with some minor changes. Third, cross-sectional dependence could also be introduced into

my framework, although much more technical details need to be taken care of.
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Appendix

1.A Proofs of the Main Results

I use ‖·‖ to denote Frobenius norm in the Appendix for simplicity.

Proof of Theorem 1.1

Proof. (i) For each individual, I define

Qi(θi) ≡
1
T

T∑
t=1

(ỹit − z̃′itθi)2

and

Qi(θi, η) ≡ Qi(θi) + λ
K0∏
k=1
‖θi − ηk‖

Since θ̂i minimizes Qi(θi, η̂), I have Qi(θ̂i, η̂) 6 Qi(θ0
i , η̂), which is equivalent to

(
Qi(θ̂i)−Qi(θ0

i )
)

+ λ

K0∏
k=1

∥∥∥θ̂i − η̂k∥∥∥− K0∏
k=1

∥∥∥θ0
i − η̂k

∥∥∥
 6 0

• Consider the first part:

Qi(θ̂i)−Qi(θ0
i )

= 1
T

T∑
t=1

(ỹit − z̃′itθ̂i)2 − 1
T

T∑
t=1

(ỹit − z̃′itθ0
i )2

=(θ̂i − θ0
i )′Q̂i,z̃z̃(θ̂i − θ0

i )− 2(θ̂i − θ0
i )′Q̂i,z̃ẽ

where Q̂i,z̃z̃ = 1
T

∑T
t=1 z̃itz̃

′
it, Q̂i,z̃ẽ = 1

T

∑T
t=1 z̃itẽit, ẽit = δ̃hi(xit) + ũit.
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• Consider the second part, I have

∣∣∣∣∣∣
K0∏
k=1

∥∥∥θ̂i − η̂k∥∥∥− K0∏
k=1

∥∥∥θ0
i − η̂k

∥∥∥
∣∣∣∣∣∣

6

∣∣∣∣∣∣
K0−1∏
k=1

∥∥∥θ̂i − η̂k∥∥∥ (∥∥∥θ̂i − η̂K0

∥∥∥−∥∥∥θ0
i − η̂K0

∥∥∥)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
K0−2∏
k=1

∥∥∥θ̂i − η̂k∥∥∥∥∥∥θ0
i − η̂K0

∥∥∥ (∥∥∥θ̂i − η̂K0−1

∥∥∥−∥∥∥θ0
i − η̂K0−1

∥∥∥)
∣∣∣∣∣∣

+ · · ·

+

∣∣∣∣∣∣
K0∏
k=2

∥∥∥θ0
i − η̂k

∥∥∥ (∥∥∥θ̂i − η̂1

∥∥∥−∥∥∥θ0
i − η̂1

∥∥∥)
∣∣∣∣∣∣

6c1i,NT (θ̂, θ0, η̂)
∥∥∥θ̂i − θ0

i

∥∥∥
where c1i,NT (θ̂, θ0, η̂) ≡ ∏K0−1

k=1

∥∥∥θ̂i − η̂k∥∥∥+∏K0−2
k=1

∥∥∥θ̂i − η̂k∥∥∥∥∥∥θ0
i − η̂K0

∥∥∥+· · ·+∏K0

k=2

∥∥∥θ0
i − η̂k

∥∥∥.
Together I have

(θ̂i − θ0
i )′Q̂i,z̃z̃(θ̂i − θ0

i )

6
∣∣∣2(θ̂i − θ0

i )′Q̂i,z̃ẽ

∣∣∣+ λc1i,NT (θ̂, θ0, η̂)
∥∥∥θ̂i − θ0

i

∥∥∥
62
∥∥∥θ̂i − θ0

i

∥∥∥∥∥∥Q̂i,z̃ẽ

∥∥∥+ λc1i,NT (θ̂, θ0, η̂)
∥∥∥θ̂i − θ0

i

∥∥∥
By Lemma 1.3, µmin(Q̂i,z̃z̃) > ¯

c > 0 w.p.a. 1, then I have w.p.a. 1,

∥∥∥θ̂i − θ0
i

∥∥∥ 6
¯
c−1

(
2
∥∥∥Q̂i,z̃ẽ

∥∥∥+ λc1i,NT (θ̂, θ0, η̂)
)

By Lemma 1.3,
∥∥∥Q̂i,z̃ẽ

∥∥∥ = Op(J−
r1
d + J

1
2T−

1
2 ), thus

∥∥∥θ̂i − θ0
i

∥∥∥ = Op(J−
r1
d + J

1
2T−

1
2 + λ)

Remark. The argument depends on the condition that c1i,NT (θ̂, θ0, η̂) = Op(1).
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We show this by considering a constrained optimization problem.

Define

Bb ≡
{
β :‖βi‖F 6 c <∞, i = 1, ..., N

}
Rb ≡

{
γ :
∣∣∣γij∣∣∣ 6 c <∞, i = 1, ..., N, j = 1, ..., J

}
Ab ≡

{
α :‖αk‖F 6 c <∞, k = 1, ..., K0

}
Πb ≡

{
π :
∣∣∣πkj∣∣∣ 6 c <∞, k = 1, ..., K0, j = 1, ..., J

}

where c is a generic constant which varies.

Further define Θb ≡ {θ : β ∈ Bb, γ ∈ Rb}, Hb ≡ {η : α ∈ Ab, π ∈ Πb}. Remember that

θ = (θ1, ..., θN), where θi ≡
(
β′i,

1√
J
γ′i
)′
, i = 1, ..., N , and η = (η1, ..., ηK0), where

ηk ≡
(
α′k,

1√
J
π′k
)′
, k = 1, ..., K0.

If c is large enough, 1) by Assumption 1.1(iii), I could imply that β0 and α0 lie in the

interior of Bb and Ab respectively; 2) Similarly, by Assumption 1.1(iv), I could get that

γ0 and π0 lie in the interior of Rb and Πb respectively, thus θ0 ∈ Θb and η0 ∈ Hb

Then I search over Θb and Hb to minimize the objective function 1.11, namely

(
θ̂, η̂

)
= arg min

θ∈Θb,η∈Hb

1
NT

N∑
i=1

T∑
t=1

(
ỹit − z̃′itθi

)2
+ λ

N

N∑
i=1

K0∏
k=1
‖θi − ηk‖F

The restrictions guarantee that c1i,NT (θ̂, η̂) = O(1).

Practically, I set c large enough and conduct the constrained optimization, which works

well in my simulations.

(ii) Let mJT = J−
r1
d + J

1
2T−

1
2 and v denotes a (p+ J)×N matrix. In order to show that

1
N

∑N
i=1‖θ̂i− θ0

i ‖2 = Op(J−2 r1
d + JT−1), I just need to prove that for any ε, there exists
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a constant M = M(ε) such that, for sufficiently large N and T ,

P

 inf
1
N

∑N

i=1‖vi‖
2=M

QNT (θ0 +mJTv, η̂) > QNT (θ0, η0)

 > 1− ε

This implies that w.p.a.1 there exists a local minimum {θ̂, η̂} such that 1
N

∑N
i=1‖θ̂i −

θ0
i ‖2 = Op(J−2 r1

d + JT−1) holds.

m−2
JT

(
QNT (θ0 +mJTv, η̂)−QNT (θ0, η0)

)
= 1
N

N∑
i=1

v′iQ̂i,z̃z̃vi −
2
N
m−1
JT

N∑
i=1

v′iQ̂i,z̃ẽ + λ

N

N∑
i=1

K0∏
k=1

∥∥∥θ0
i +mJTvi − η̂k

∥∥∥
>

¯
c

1
N

N∑
i=1
‖vi‖2 − 2

 1
N

N∑
i=1
‖vi‖2


1
2
m

−2
JT

N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2


1
2

where the last inequality holds w.p.a 1 by Lemma 1.3.

By Lemma 1.3, 1
N

∑N
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(J−2 r1

d + JT−1), then m−2
JT

N

∑N
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(1),

thus for sufficiently large M , I have m−2
JT

(
QNT (θ0 +mJTv, η̂)−QNT (θ0, η0)

)
> 0

w.p.a.1.

(iii) Further consider c1i,NT (θ̂, θ0, η), where θ̂ and η lie in the interior of Θb and Hb respec-
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tively.

c1i,NT (θ̂, θ0, η)

=
K0−1∏
k=1

∥∥∥θ̂i − ηk∥∥∥+
K0−2∏
k=1

∥∥∥θ̂i − ηk∥∥∥∥∥∥θ0
i − ηK0

∥∥∥+ · · ·+
K0∏
k=2

∥∥∥θ0
i − ηk

∥∥∥
6

K0−1∏
k=1

(∥∥∥θ̂i − θ0
i

∥∥∥+
∥∥∥θ0
i − ηk

∥∥∥)+
K0−2∏
k=1

(∥∥∥θ̂i − θ0
i

∥∥∥+
∥∥∥θ0
i − ηk

∥∥∥)∥∥∥θ0
i − ηK0

∥∥∥
+ · · ·+

K0∏
k=2

∥∥∥θ0
i − ηk

∥∥∥
6

K0−1∑
s=0

c1si,NT (θ0, η)
∥∥∥θ̂i − θ0

i

∥∥∥s +
K0−2∑
s=0

c2si,NT (θ0, η)
∥∥∥θ̂i − θ0

i

∥∥∥s
+ · · ·+

0∑
s=0

cK0si,NT (θ0, η)
∥∥∥θ̂i − θ0

i

∥∥∥s
6

K0−1∑
s=0

csi,NT (θ0, η)
∥∥∥θ̂i − θ0

i

∥∥∥s
6c2i,NT (θ0, η)

K0−1∑
s=0

∥∥∥θ̂i − θ0
i

∥∥∥s
6c2i,NT (θ0, η)

(
1 + 2

∥∥∥θ̂i − θ0
i

∥∥∥)

where c2i,NT (θ0, η) = max16s6K0 csi,NT (θ0, η) and csi,NT (θ0, η) = ∑K0

k=1 cksi,NT (θ0, η).

The last inequality holds w.p.a 1.

Define pNT (θ, η) ≡ 1
N

∑N
i=1

∏K0

k=1‖θi − ηk‖, then

∣∣∣pNT (θ̂, η)− pNT (θ0, η)
∣∣∣

6
1
N

N∑
i=1

c1i,NT (θ̂, θ0, η)
∥∥∥θ̂i − θ0

i

∥∥∥
6
c2i,NT (θ0, η)

N

N∑
i=1

(∥∥∥θ̂i − θ0
i

∥∥∥+ 2
∥∥∥θ̂i − θ0

i

∥∥∥2
)

6c2i,NT (θ0, η)
 1
N

N∑
i=1

∥∥∥θ̂i − θ0
i

∥∥∥2
 1

2

+ c2i,NT (θ0, η) 1
N

N∑
i=1

∥∥∥θ̂i − θ0
i

∥∥∥2

=Op(J−
r1
d + J

1
2T−

1
2 )
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where I use c2i,NT (θ0, η) = O(1), which is implied by a similar argument as that in the

proof of Theorem 1.1(i).

Since pNT (θ̂, η̂) 6 pNT (θ̂, η0), note that pNT (θ0, η0) = 0,

0 >pNT (θ̂, η̂)− pNT (θ̂, η0)

=
(
pNT (θ̂, η̂)− pNT (θ0, η̂)

)
+
(
pNT (θ0, η̂)− pNT (θ0, η0)

)
−
(
pNT (θ̂, η0)− pNT (θ0, η0)

)
=Op(J−

r1
d + J

1
2T−

1
2 ) + pNT (θ0, η̂)

=Op(J−
r1
d + J

1
2T−

1
2 ) +

K0∑
j=1

Nj

N

K0∏
k=1

∥∥∥η0
j − η̂k

∥∥∥

Then there exists a permutation of {1, ..., K0} such that
∥∥∥η̂k − η0

k

∥∥∥ = Op(J−
r1
d +J 1

2T−
1
2 ).

Proof of Theorem 1.2

Proof. (i) For any i ∈ G0
k and l 6= k, by Theorem 1.1,

∥∥∥θ̂i − η̂l∥∥∥ p→
∥∥∥η0

k − η0
l

∥∥∥ 6= 0. Suppose

that
∥∥∥θ̂i − η̂k∥∥∥ 6= 0 for some i ∈ G0

k, which means that i /∈ Ĝk, then the first order

condition with respect to θi is

0p+J =− 2Q̂i,z̃ũ +

2Q̂i,z̃z̃ + λ∥∥∥θ̂i − η̂k∥∥∥
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥
(θ̂i − η̂k)

− 2Q̂i,z̃δ̃ + 2Q̂i,z̃z̃

(
η̂k − θ0

i

)
+ λ

K0∑
j=1,j 6=k

êij
K0∏

l=1,l 6=j

∥∥∥θ̂i − η̂l∥∥∥
≡Âi1 + Âi2 + Âi3 + Âi4 + Âi5

where êij = θ̂i−η̂j
‖θ̂i−η̂j‖ if

∥∥∥θ̂i − η̂j∥∥∥ 6= 0 and
∥∥∥êij∥∥∥

F
6 1 otherwise.

From the proof of Theorem 1.1, I have that

∥∥∥θ̂i − θ0
i

∥∥∥ 6
¯
c−1

(
2
∥∥∥Q̂i,z̃ẽ

∥∥∥+ λc1i,NT (θ̂, θ0.η̂)
)
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Let µ1,JT =
(
J−

r1
d + J

1
2T−

1
2 (lnT )3 + λ

)
(lnT )v and µ2,JT =

(
J−

r1
d + J

1
2T−

1
2 (lnT )3

)
(lnT )v

for some v > 0. By Lemma 1.3, I could show that

P

(
max

16i6N

∥∥∥θ̂i − θ0
i

∥∥∥ > cµ1,JT

)
=o(N−1)

P
(∥∥∥η̂k − η0

k

∥∥∥ > cµ2,JT

)
=o(N−1)

for any c > 0.

Let ĉik = ∏K0

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥, then

ĉik =
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥
=

K0∏
l=1,l 6=k

∥∥∥∥(θ̂i − η0
k

)
−
(
η̂l − η0

l

)
+
(
η0
k − η0

l

)∥∥∥∥
=

K0∏
l=1,l 6=k

∥∥∥η0
k − η0

l + op(1)
∥∥∥

=Op(1)

Similarly let c0
ik = ∏K0

l=1,l 6=k

∥∥∥θ0
i − η0

l

∥∥∥. Define c̄0
k = maxi∈G0

k
c0
ik and

¯
c0
k = mini∈G0

k
c0
ik.

P

(
¯
c0
k

2 6 ĉik 6 2c̄0
k

)
= 1− o(N−1)

And P
(

maxi∈G0
k

∥∥∥Âi5∥∥∥ > Cλµ1,JT

)
= o(N−1) for large enough C > 0.

Define

ΞkNT ≡
{

¯
c0
k

2 6 ĉik 6 2c̄0
k

}
∩
{∥∥∥η̂k − η0

k

∥∥∥ 6 c
(
J−

r1
d + J

1
2T−

1
2 (lnT )3

)
(lnT )v

}

∩
{

0 <
¯
c < min

06i6N
µmin(Q̂i,z̃z̃) 6 max

06i6N
µmax(Q̂i,z̃z̃) < c̄ <∞

}

∩
{

max
16i6N

∥∥∥Q̂i,z̃δ̃

∥∥∥ 6 CθNT

}
∩
{

max
16i6N

∥∥∥θ̂i − θ0
i

∥∥∥ 6 cµ1,JT

}
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for some C > 0 and c > 0. θNT ≡ max16k6K0 supx∈[0,1]d
∥∥∥f 0

k (x)−BJ ′π0
k

∥∥∥ = O(J−
r1
d ).

Then P (ΞkNT ) = 1− o(N−1).

Let φik = θ̂i−η̂k
‖θ̂i−η̂k‖ . Conditional on ΞkNT , I have that uniformly in i ∈ G0

k, with

probability 1− o(N−1),

∣∣∣φ′ikÂi2∣∣∣ > 2
¯
c
∥∥∥θ̂i − η̂k∥∥∥+ λĉik > λ¯

c0
k

2∣∣∣φ′ikÂi3∣∣∣ 6 2
∥∥∥Q̂i,z̃δ̃

∥∥∥ 6 2CθNT∣∣∣φ′ikÂi4∣∣∣ 6 2c̄
∥∥∥η̂k − η0

k

∥∥∥ 6 2c̄c
(
J−

r1
d + J

1
2T−

1
2 (lnT )3

)
(lnT )v∣∣∣φ′ikÂi5∣∣∣ 6 max

i∈G0
k

∥∥∥Âi5∥∥∥ 6 Cλµ1,JT

Then

∣∣∣∣φ′ik (Âi2 + Âi3 + Âi4 + Âi5
)∣∣∣∣

>φ′ikÂi2 −
∣∣∣∣φ′ik (Âi3 + Âi4 + Âi5

)∣∣∣∣
>λ¯

c0
k

2 −
[
2CθNT + 2c̄c

(
J−

r1
d + J

1
2T−

1
2 (lnT )3

)
(lnT )v + Cλµ1,JT

]

>λ¯
c0
k

4

where I use Assumption 1.2 and 1.3.
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Thus

P
(
ÎEkNT,i

)
=P

(
i /∈ Ĝk|i ∈ G0

k

)
=P

(
−Âi1 = Âi2 + Âi3 + Âi4 + Âi5

)
6P

(∣∣∣φ′ikÂi1∣∣∣ > ∣∣∣∣φ′ik (Âi2 + Âi3 + Âi4 + Âi5
)∣∣∣∣
)

6P

(∣∣∣Âi1∣∣∣ > λ¯
c0
k

4 ,ΞkNT

)
+ P (Ξc

kNT )

=o(N−1)

Thus, with probability 1−o(N−1) such that‖θi − ηk‖ is not differentiable with respect

to θi for some i ∈ G0
k, which means that P (‖θi − ηk‖ = 0|i ∈ G0

k) = 1− o(N−1).

Then

P
(
∪K0

k=1ÎEkNT

)
6

k0∑
k=1

P
(
ÎEkNT

)

6
K0∑
k=1

∑
i∈G0

k

P
(
ÎEkNT,i

)

6
K0∑
k=1

∑
i∈G0

k

P (∣∣∣Âi1∣∣∣ > λ¯
c0
k

4 ,ΞkNT

)
+ P (Ξc

kNT )


6N max
16i6N

P

(∥∥∥Q̂i,z̃ũ

∥∥∥ > λ¯
c0
k

4

)
+ o(1)

6NP

(
max

16i6N

∥∥∥Q̂i,z̃ũ

∥∥∥ > λ¯
c0
k

4

)
+ o(1)

=o(1)

where I use λT 1
2J−

1
2 (lnT )−3 →∞.

(ii) The proof is similar to Su, Shi, and Phillips (2016) Theorem 2.2 (ii) and thus omitted.
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Proof of Theorem 1.3

Proof. First, I will prove that
√
NkT

(
α̂k − α̂Ĝk

)
= op(1). Then as long as I could prove (ii),

consequently (i) holds as well.

• The first order conditions with respect to θi and ηk are

0(p+J)×1 =− 2
T

T∑
t=1

z̃it(ỹit − z̃′itθ̂i) + λ
K0∑
j=1

êij
K0∏

l=1,l 6=j

∥∥∥θ̂i − η̂l∥∥∥
0(p+J)×1 =λ

N∑
i=1

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥

where êij = θ̂i−η̂j
‖θ̂i−η̂j‖ if θ̂i 6= η̂j and êij 6 1 otherwise.

Note that (1) if i ∈ Ĝk,
∥∥∥θ̂i − η̂k∥∥∥ = 0. (2) if i ∈ Ĝk and l 6= k,

∥∥∥θ̂i − η̂l∥∥∥ =
∥∥∥∥(θ̂i − η0

k

)
+
(
η0
k − η0

l

)
−
(
η̂l − η0

l

)∥∥∥∥ �∥∥∥η0
k − η0

l

∥∥∥
Let Ĝ0 be the set of unclassified individuals.

Then I have

∑
i∈Ĝk

K0∑
j=1

êij
K0∏

l=1,l 6=j

∥∥∥θ̂i − η̂l∥∥∥
=
∑
i∈Ĝk

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥+
∑
i∈Ĝk

K0∑
j=1,j 6=k

êij
K0∏

l=1,l 6=j

∥∥∥θ̂i − η̂l∥∥∥
=
∑
i∈Ĝk

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥
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While

N∑
i=1

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥
=
∑
i∈Ĝk

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥+
∑
i∈Ĝ0

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥+
K0∑

j=1,j 6=k

∑
i∈Ĝj

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥
=
∑
i∈Ĝk

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥+
∑
i∈Ĝ0

êik
K0∏

l=1,l 6=k

∥∥∥θ̂i − η̂l∥∥∥
Thus I have

2
N̂kT

T∑
t=1

∑
i∈Ĝk

z̃it(ỹit − z̃′itη̂k) + λ

N̂k

∑
i∈Ĝ0

êik
K0∏

l=1,l 6=k
‖η̂k − η̂l‖ = 0 (1.12)

Let Q̂Ĝk,z̃z̃
≡ 1

N̂kT

∑T
t=1

∑
i∈Ĝk z̃itz̃

′
it, then

η̂k =Q̂−1
Ĝk,z̃z̃

1
N̂kT

T∑
t=1

∑
i∈Ĝk

z̃itỹit + Q̂−1
Ĝk,z̃z̃

λ

2N̂k

∑
i∈Ĝ0

êik
K0∏

l=1,l 6=k
‖η̂k − η̂l‖

=η̂Ĝk + R̂k

where R̂k = Q̂−1
Ĝk,z̃z̃

λ
2N̂k

∑
i∈Ĝ0

êik
∏K0

l=1,l 6=k‖η̂k − η̂l‖.

For any c > 0,

P

(√
N̂kT

∥∥∥η̂k − η̂Ĝk∥∥∥ > c

)

=P
(√

N̂kT
∥∥∥R̂k

∥∥∥ > c

)

6
K0∑
k=1

∑
i∈G0

k

P
(
i ∈ Ĝ0|i ∈ G0

k

)

6
K0∑
k=1

∑
i∈G0

k

P
(
i /∈ Ĝk|i ∈ G0

k

)

=o(1)
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Thus
√
N̂kT

(
α̂k − α̂Ĝk

)
= op(1). By Theorem 1.2, similar to the proof in the first

part, I could get that

N̂k
P→ Nk

Thus
√
NkT

(
α̂k − α̂Ĝk

)
= op(1).

• Now I focus on α̂Ĝk .

Let

Q̂Ĝk,ω̃\B̃ =Q̂Ĝk,ω̃ω̃
− Q̂Ĝk,ω̃B̃

Q̂−1
Ĝk,B̃B̃

Q̂′
Ĝk,ω̃B̃

Ŵit,ω̃\B̃ =ω̃it − Q̂Ĝk,ω̃B̃
Q̂−1
Ĝk,B̃B̃

√
JB̃J

it

∆̂it,ω̃\B̃ =IE[ω̃it|xit]− Q̂Ĝk,ω̃B̃
Q̂−1
Ĝk,B̃B̃

√
JB̃J

it

where Q̂Ĝk,ω̃ω̃
, Q̂Ĝk,ω̃B̃

are defined similar to Q̂Ĝk,z̃z̃
.

Then I have that

√
N̂kT α̂Ĝk

=
(
Q̂Ĝk,ω̃\B̃

)−1 1√
N̂kT

T∑
t=1

∑
i∈Ĝk

Ŵit,ω̃\B̃

(
ω̃′itθ

0
i +
√
JB̃J

it

′ 1√
J
γ0
i + δ̃hi,it + ũit

)

=
(
Q̂Ĝk,ω̃\B̃

)−1 1√
N̂kT

T∑
t=1

∑
i∈Ĝk

Ŵit,ω̃\B̃

(
ω̃′itθ

0
i +
√
JB̃J

it

′ 1√
J
γ0
i

)

+
(
Q̂Ĝk,ω̃\B̃

)−1 1√
N̂kT

T∑
t=1

∑
i∈Ĝk

∆̂it,ω̃\B̃ δ̃hi,it

+
(
Q̂Ĝk,ω̃\B̃

)−1 1√
N̂kT

T∑
t=1

∑
i∈Ĝk

(
ωit − IE[ωit|xit]

)
δ̃hi,it

+
(
Q̂Ĝk,ω̃\B̃

)−1 1√
N̂kT

T∑
t=1

∑
i∈Ĝk

Ŵ ˜it,ω\B̃ũit

=B̂k1 + B̂k2 + B̂k3 + B̂k4
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By Theorem 1.2, similar to the proof in the first part, I could get that

N̂k
P→ Nk

Q̂Ĝk,ω̃\B̃
P→ Q̂G0

k
,ω̃\B̃

Furthermore, I could prove that in the following analysis, whenever I encounter Ĝk, I

could safely replace it with G0
k, only up to op(1) error.

(The proofs are similar to Corollary 2.3 in Su, Shi, and Phillips (2016) and Lemma

A.6 in Su, Wang, and Jin (2019) and thus omitted.)

By the properties of the approximation error, B̂k2 = oP (1), B̂k3 = op(1).

Now I consider B̂k1,

(
Q̂Ĝk,ω̃\B̃

)−1 1√
N̂kT

T∑
t=1

∑
i∈Ĝk

Ŵit,ω̃\B̃

(
ω̃′itθ

0
i +
√
JB̃J

it

′ 1√
J
γ0
i

)

=
(
Q̂G0

k
,ω̃\B̃

)−1 1√
NkT

T∑
t=1

∑
i∈G0

k

Wit,ω̃\B̃

(
ω′itθ

0
i +
√
JB̃J

it

′ 1√
J
γ0
i

)
+ op(1)

=
(
Q̂G0

k
,ω̃\B̃

)−1 1√
NkT

T∑
t=1

∑
i∈G0

k

Wit,ω̃\B̃

(
ω̃′itα

0
k +
√
JB̃J

it

′ 1√
J
π0
k

)
+ op(1)

=
√
NkTα

0
k + op(1)

I apply the similar procedure to B̂k5. Thus I have

√
NkT

(
α̂Ĝk − α

0
k

)
=op(1) +

(
Q̂G0

k
,ω̃\B̃

)−1 1√
NkT

T∑
t=1

∑
i∈G0

k

Wit,ω̃\B̃ũit

Let∑T
t=1Wit,ω̃\B̃ũit = W ′

i·,ω̃\B̃ui = W ′
i·,ω̃\B̃Σ

1
2
i εi, c be a p×1 nonrandom vector satisfying

‖c‖ = 1. Let
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Bk =c′
(
Q̂G0

k
,ω̃\B̃

)−1 1√
NkT

∑
i∈G0

k

W ′
i·,ω̃\B̃Σ

1
2
i εi

=
∑
i∈G0

k

aiξi

where ai =
(

1
NkT

c′
(
Q̂G0

k
,ω̃\B̃

)−1
W ′
i·,ω̃\B̃Σ

1
2
i ViΣ

1
2
i Wi·,ω̃\B̃

(
Q̂G0

k
,ω̃\B̃

)−1
c

) 1
2

and {ξi}Ni=1

are independent with mean 0 and variance one conditional on {ωi, xi}Ni=1. Next, I just

need to check the Lindeberg condition that if

maxi∈G0
k
a2
i∑

i∈G0
k
a2
i

= op(1)

then
∑

i∈G0
k
aiξi∑

i∈G0
k
a2
i

D→ N(0, 1).

Note that

max
i∈G0

k

a2
i

= max
i∈G0

k

1
NkT

c′
(
Q̂G0

k
,ω̃\B̃

)−1
W ′
i·,ω̃\B̃Σ

1
2
i ViΣ

1
2
i Wi·,ω̃\B̃

(
Q̂G0

k
,ω̃\B̃

)−1
c

6
1
Nk

max
i∈G0

k

µmax(Vi)µmax

(
1
T
W ′
i·,ω̃\B̃ΣiWi·,ω̃\B̃

)(
µmin

(
Q̂G0

k
,ω̃\B̃

))−2

‖c‖

=op(1)
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Then

maxi∈G0
k
a2
i∑

i∈G0
k
a2
i

6

1
Nk

maxi∈G0
k
µmax(Vi)µmax

(
1
T
W ′
i·,ω̃\B̃ΣiWi·,ω̃\B̃

)(
µmin

(
Q̂G0

k
,ω̃\B̃

))−2

µmin(Vi)µmin

(
1
T
W ′
i·,ω̃\B̃ΣiWi·,ω̃\B̃

)(
µmax

(
Q̂G0

k
,ω̃\B̃

))−2

=op(1)

Apply the central limit theorem, I have

√
N̂kT

c′
(
α̂Ĝk − α

0
k

)
∑
i∈G0

k
a2
i

D→ N(0, 1)

Consequently, √
N̂kTV

− 1
2

k,ω

(
α̂k − α0

k

)
D→ N(0, 1p)

where Vk,ω =
(
Q̂G0

k
,ω̃\B̃

)−1
1
Nk

∑
i∈G0

k

1
T
W ′
i·,ω̃\B̃Σ

1
2
i ViΣ

1
2
i Wi·,ω̃\B̃

(
Q̂G0

k
,ω̃\B̃

)−1
.

Proof of Theorem 1.4

Proof. The proof of Theorem 1.4 is similar to that of Theorem 1.3 and thus omitted.
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1.B Proofs of Technical Lemmas

I use ‖·‖ to denote Frobenius norm in the Appendix for simplicity. I use C to indicate some

generic constant, which varies.

Lemma 1.1. Let ξit be a Rdξ random variable and IE[ξit] = 0 for all i, t. For each i = 1, ..., N ,

ξit is stationary strong mixing with mixing coefficient αi(j). α(j) ≡ max16i6N αi(j) satisfies

α(j) 6 cα exp(−ρj) for some 0 < cα <∞, 0 < ρ <∞. ξit are independent across i. Assume

that IE[‖ξit‖q] <∞ for some q > 3,Then

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξit

∥∥∥∥∥∥ > CT−
1
2 (lnT )3

 = o(N−1)

for large enough C > 0 if N2T 1− q2 = O(1).

Proof. This lemma is adapted from Su, Shi, and Phillips (2016) Lemma S1.2 and could be

derived using Theorem 2 of Merlevède et al. (2009). A slightly weaker version is

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξit

∥∥∥∥∥∥ > cλ

 = o(N−1)

for any c > 0 and λ satisfies that T− 1
2 (lnT )3 = o(λ). For convenience, I could choose

λ = T−
1
2 (lnT )3+v for some v > 0.

Lemma 1.2. Let ξit be a Rdξ random variable and IE[ξit] = 0 for all i, t. For each i = 1, ..., N ,

ξit is stationary strong mixing with mixing coefficient αi(j). α(j) ≡ max16i6N αi(j) satisfies

α(j) 6 cα exp(−ρj) for some 0 < cα <∞, 0 < ρ <∞. ξit are independent across i. Assume

that max16i6N max16t6T IE[‖ξit‖
q
2 ] < ∞ for some q > 6 such that N2T 1− q2 (lnT )

3q
2 → 0 as

N, T →∞. Then

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξit

∥∥∥∥∥∥ > c

 = o(N−1)

for any c > 0.
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Proof. Let λNT = N2T 1− q2 (lnT )
3q
2 and ηNT = T (lnT )−3 λ

2
q

NT . Let τξ be an arbitrary dξ × 1

nonrandom vector with
∥∥∥τξ∥∥∥ = 1. Let 1it = 1{‖ξit‖ 6 ηNT} and 1̄it = 1− 1it. Define

ξ1,it = τ ′ξ
{
ξit1it − IE [ξit1it]

}
ξ2,it = τ ′ξξit1̄it

ξ3,it = τ ′ξIE[ξit1̄it]

Then ξ1,it + ξ2,it − ξ3,it = τ ′ξξit since IE[ξit] = 0. I prove the lemma by showing that for any

c > 0

(i) NP
(

max16i6N

∥∥∥ 1
T

∑T
t=1 ξ1,it

∥∥∥ > c
)

= o(1)

(ii) NP
(

max16i6N

∥∥∥ 1
T

∑T
t=1 ξ2,it

∥∥∥ > c
)

= o(1)

(iii) max16i6N

∥∥∥ 1
T

∑T
t=1 ξ3,it

∥∥∥ = o(1)

To prove (i),

NP

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξ1,it

∥∥∥∥∥∥ > c


6N

N∑
i=1

P


∥∥∥∥∥∥ 1
T

T∑
t=1

ξ1,it

∥∥∥∥∥∥ > c


6N

N∑
i=1

exp

− C0T
2c2

Tv2
0 + η2

NT + TcηNT (lnT )2


6N2 exp

− C0T
2c2

Tv2
0,max + η2

NT + TcηNT (lnT )2


6 exp

−
C0T

2c2

Tv2
0,max + T 2 (lnT )−6 λ

4
q

NT + TcT (lnT )−3 λ
2
q

NT (lnT )2
+ 2 lnN


→0
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To prove (ii),

NP

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξ2,it

∥∥∥∥∥∥ > c


6NP

(
max

16i6N
max
16t6T

‖ξit‖ > ηNT

)

6N2T max
16i6N

max
16t6T

P (‖ξit‖ > ηNT )

6N2T
1

T
q
2 (lnT )− 3q

2 λNT
max

16i6N
max
16t6T

IE
‖ξit‖ q2 1

{
‖ξit‖ > T (lnT )−3λ

2
q

NT

}
=o

(
N2T 1− q2 (lnT )

3q
2 λ−1

NT

)
=o(1)

To prove (iii),

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξ3,it

∥∥∥∥∥∥
6 max

16i6N
max
16t6T

∥∥∥∥IE [ξit1̄it]∥∥∥∥
6 max

16i6N
max
16t6T


(

IE‖ξit‖
q
2

) 2
q (
P
(
‖ξit‖ > ηNT

)) q−2
q


6 max

16i6N
max
16t6T


(

IE‖ξit‖
q
2

) 2
q

× max
16i6N

max
16t6T

{(
P
(
‖ξit‖ > ηNT

)) q−2
q

}

6cξ max
16i6N

max
16t6T


(
η
− q−2

2
NT IE

[
‖ξit‖

q
2 1

{
‖ξit‖ > ηNT

}]) q−2
q


=o(1)

This completes the proof.

Lemma 1.3. Suppose that Assumption 1.1 and 1.2 hold, then

(i)

P (0 <
¯
c < min

06i6N
µmin(Q̂i,z̃z̃) 6 max

06i6N
µmax(Q̂i,z̃z̃) < c̄ <∞) = 1− o(N−1)
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(ii) ∥∥∥Q̂i,z̃ẽ

∥∥∥ = Op(J−
r1
d + J

1
2T−

1
2 )

(iii)
1
N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(J−2 r1

d + JT−1)

(iv)

P

(
max

06i6N

∥∥∥Q̂i,z̃ẽ

∥∥∥ > c
(
J−

r1
d + J

1
2T−

1
2 (lnT )3

)
(lnT )v

)
= o(N−1)

for any c > 0 and some v > 0.

Proof. (i) Consider the difference between Var(zit) and Q̂i,z̃z̃.

Let µk(A) be the kth largest eigenvalue of matrix A. Denote Sp+J as the permutation

group of {1, ..., p+ J}. By Hoffman-Wielandt inequality,

min
σ∈Sp+J

p+J∑
k=1

∣∣∣µk(Q̂i,z̃z̃)− µσ(k)
(
Var(zit)

)∣∣∣2 6∥∥∥Q̂i,z̃z̃ − Var(zit)
∥∥∥2

Because

∥∥∥Q̂i,z̃z̃ − Var(zit)
∥∥∥2

62
∥∥∥Q̂i,zz − IE[zitz′it]

∥∥∥2
+ 2

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

z′it − IE[zit]IE[z′it]

∥∥∥∥∥∥
2

(i) Consider the first item, for any c > 0,

• By Lemma 1.2,

P

max
16i6N

∣∣∣∣∣∣ 1T
T∑
t=1

ωit,jωit,k − IE[ωit,jωit,k]

∣∣∣∣∣∣ > c

 = o(N−1)
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• Similar as the proof in Lemma 1.2, I could get that

P

max
16i6N

max
16k6J

∣∣∣∣∣∣ 1T
T∑
t=1

ωit,j
√
JBJ

it,k − IE
[
ωit,j
√
JBJ

it,k

]∣∣∣∣∣∣ > cJ−
1
2

 = o(N−1)

where I use λNT = N2T 1−qJq(lnT )3q → 0 as (N, T ) → ∞, which could be

derived by J2(lnT )3T−1 → 0 and N2T 1− q2 (lnT )
3q
2 → 0. And I set ηNT =

TJ−1(lnT )−3λ
1
q

NT and ξit,jk = ωit,jB
J
it,k.

• Similar as the proof in Lemma 1.2 (only the first step is enough),

P

max
16i6N

max
16j6J

max
16k6J

∣∣∣∣∣∣ 1T
T∑
t=1

JBJ
it,jB

J
it,k − IE

[
JBJ

it,jB
J
it,k

]∣∣∣∣∣∣ > cJ−
1
2


=o(N−1)

Note that there are only O(J) nonzero elements in BJ
itB

J
it
′ − IE

[
BJ
itB

J
it
′].

Thus for any c > 0,

P

(
max

16i6N

∥∥∥Q̂i,zz − IE[zitz′it]
∥∥∥2

> c

)
= o(N−1)

(ii) Consider the second item, for any c > 0, similar as the proof in Lemma 1.2,

•

P

max
16i6N

∣∣∣∣∣∣ 1T
T∑
t=1

ωit,j − IE[ωit,j]

∣∣∣∣∣∣ > cJ−
1
2

 = o(N−1)

•

P

max
16i6N

max
16k6J

∣∣∣∣∣∣ 1T
T∑
t=1

√
JBJ

it,k − IE
[√
JBJ

it,k

]∣∣∣∣∣∣ > cJ−1

 = o(N−1)
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Thus I could get

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

z′it − IE[zit]IE[z′it]

∥∥∥∥∥∥
2

> c

 = o(N−1)

Combining part (i) and (ii) together, I have

P

 min
σ∈Sp+J

p+J∑
k=1

∣∣∣µk(Q̂i,z̃z̃)− µσ(k)
(
Var(zit)

)∣∣∣2 6 c

 = 1− o(N−1)

(ii) Let Q̂i,z̃δ̃ = 1
T

∑T
t=1 z̃itδ̃hi,it and Q̂i,z̃ũ = 1

T

∑T
t=1 z̃itũit, where δ̃hi,it = h̃0

i,it − B̃J
it

′
γ0
i , then I

have
∥∥∥Q̂i,z̃ẽ

∥∥∥ 6∥∥∥Q̂i,z̃δ̃

∥∥∥+
∥∥∥Q̂i,z̃ũ

∥∥∥.
For the first part, since

∥∥∥Q̂i,z̃δ̃

∥∥∥
=

∥∥∥∥∥∥Q̂i,zδ −
1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
6
∥∥∥Q̂i,zδ

∥∥∥+

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
• For the first item,

IE
[∥∥∥Q̂i,zδ

∥∥∥2
]

= IE


∥∥∥∥∥∥ 1
T

T∑
t=1

ω′itδhi,it

∥∥∥∥∥∥
2
+ IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

it

′
δhi,it

∥∥∥∥∥∥
2
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(i)

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

ω′itδhi,it

∥∥∥∥∥∥
2


= 1
T 2

T∑
t=1

T∑
s=1

IE
[
ω′itωisδhi,itδhi,is

]

6θ2
NT

1
T 2

T∑
t=1

T∑
s=1

IE
[∣∣∣ω′itωis∣∣∣]

6θ2
NT

1
T 2

T∑
t=1

T∑
s=1

√
IE
[
‖ωit‖2

]√
IE
[
‖ωis‖2

]
6θ2

NT max
16i6N

max
16t6T

IE
[
‖ωit‖2

]
=O

(
J−2 r1

d

)

(ii)

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

it

′
δhi,it

∥∥∥∥∥∥
2


= 1
T 2

T∑
t=1

T∑
s=1

IE
[
JBJ

it

′
BJ
isδhi,itδhi,is

]

6θ2
NTJ

1
T 2

T∑
t=1

T∑
s=1

IE
[
BJ
it

′
BJ
is

]

=θ2
NTJIE

 1
T

T∑
t=1

BJ
it

′ 1
T

T∑
s=1

BJ
it


=θ2

NTJ
J∑
j=1

IE
 1
T

T∑
t=1

BJ
it,j

1
T

T∑
s=1

BJ
it,j


=O

(
J−2 r1

d

)

Thus IE
[∥∥∥Q̂i,zδ

∥∥∥2
]

= O
(
J−2 r1

d

)
.
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• For the second item,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2


=IE


∥∥∥∥∥∥ 1
T

T∑
t=1

ωit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2
+ IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

it

1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2


Similarly, I could get that

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2
 = O

(
J−2 r1

d

)

For the second part, similarly

∥∥∥Q̂i,z̃ũ

∥∥∥
=

∥∥∥∥∥∥Q̂i,zu −
1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
6
∥∥∥Q̂i,zu

∥∥∥+

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
• Consider the first item,

IE
[∥∥∥Q̂i,zu

∥∥∥2
]

= IE


∥∥∥∥∥∥ 1
T

T∑
t=1

ω′ituit

∥∥∥∥∥∥
2
+ IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

it

′
uit

∥∥∥∥∥∥
2
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(i)

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

ω′ituit

∥∥∥∥∥∥
2


= 1
T 2

T∑
t=1

T∑
s=1

IE
[
ω′itωituituis

]

= 1
T 2

T∑
t=1

T∑
s=1

IE
[
‖ωit‖2 u2

it

]
+ 2
T 2

T−1∑
t=1

T∑
s=t+1

IE
[
ω′itωisuituis

]

=O(T−1) + 2
T 2

p∑
j=1

T−1∑
t=1

T∑
s=t+1

IE
[
ωit,jωis,juituis

]

6O(T−1) + C

T 2

p∑
j=1

max
16i6N

max
16t6T

IE
[∣∣∣ωit,juit∣∣∣ q2

]
4
q T∑
t=1

∞∑
l=1

(
α(l)

) q−4
q

=O(T−1)

(ii)

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

it

′
uit

∥∥∥∥∥∥
2


= 1
T 2

T∑
t=1

T∑
s=1

IE
[
JBJ

it

′
BJ
isuituis

]

6
CJ

T 2

T∑
t=1

T∑
s=1

IE [uituis]

=O(T−1J)

Thus IE
[∥∥∥Q̂i,zu

∥∥∥2
]

= O(T−1J).
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• Consider the second item,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
2


=IE


∥∥∥∥∥∥ 1
T

T∑
t=1

ωit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
2
+ IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

it

1
T

T∑
t=1

uit

∥∥∥∥∥∥
2


=O(T−1)

Thus
∥∥∥Q̂i,z̃ũ

∥∥∥ = Op(J
1
2T−

1
2 ).

In sum, I have proved that

∥∥∥Q̂i,ze

∥∥∥ = Op(J−
r1
d + J

1
2T−

1
2 )

(iii) Consider

IE
 1
N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2


= 1
N

N∑
i=1

IE
[∥∥∥Q̂i,z̃ẽ

∥∥∥2
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6
2
N

N∑
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(
IE
[∥∥∥Q̂i,z̃δ̃

∥∥∥2
]

+ IE
[∥∥∥Q̂i,z̃ũ

∥∥∥2
])

Note that from the proof of (ii), I could strengthen the results to

max
16i6N

IE
[∥∥∥Q̂i,z̃δ̃

∥∥∥2
]

= O
(
J−2 r1

d

)
max

16i6N
IE
[∥∥∥Q̂i,z̃ũ

∥∥∥2
]

= O(T−1J)

Consequently,

IE
 1
N

N∑
i=1

∥∥∥Q̂i,ze

∥∥∥2
 = O(J−2 r1

d + T−1J)
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This completes the proof.

(iv) Note that
∥∥∥Q̂i,z̃ẽ

∥∥∥ =
∥∥∥Q̂i,z̃δ̃

∥∥∥ +
∥∥∥Q̂i,z̃ũ

∥∥∥. To prove (iv), I can show that for large enough

C > 0, any c > 0 and any v > 0,

P

(
max

16i6N

∥∥∥Q̂i,z̃δ̃

∥∥∥ > CJ−
r1
d

)
= o(N−1)

P

(
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16i6N

∥∥∥Q̂i,z̃ũ

∥∥∥ > cJ
1
2T−

1
2 (lnT )3+v

)
= o(N−1)

(i) For the first part, consider
∥∥∥Q̂i,zδ

∥∥∥ and
∥∥∥ 1
T
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t=1 zit

1
T

∑T
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2
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2. By Lemma 1.2, for any c > 0,
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Then for large enough C > 0, I could show that
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Next consider 1
T

∑T
t=1B

J
it,j, for any c > 0 and 1 6 j 6 J , I want to show
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As long as (lnT )3 JT−1 = o(1), I could get the result. Then for large enough

C > 0 and for any 1 6 j 6 J ,
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Thus for large enough C > 0,
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Combining the previous results, I have for large enough C > 0
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Similarly, I could prove that for large enough C > 0
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Similarly,
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max
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This completes the proof.
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Chapter 2

Nonparametric Additive Panel

Regression Models with Grouped

Heterogeneity
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2.1 Introduction

Panel regression models have attracted considerable attention in both theoretical and applied

econometrics. They provide researchers a convenient way to tackle unobserved heterogeneity

that plays an important role in panel data analysis. Over the past few decades, substantial

progress has been made in terms of the identification and estimation of various panel regres-

sion models; see Arellano and Honoré (2001), Mátyás and Sevestre (2013) and Baltagi (2015)

for a comprehensive review. However, most of the literature uses fixed effects to control for

individual-specific heterogeneity. Even though such a modeling scheme facilitates technical

analysis, it ignores the potential nonlinear effects of explanatory variables and non-additive

heterogeneity, both of which have been emphasized by multiple empirical studies. For ex-

ample, using panel data of listed firms in the Chinese stock market, Ni, Wang, and Xue

(2015) found that investor sentiment has nonlinear effects on stock returns, and such effects

are heterogeneous across different subgroups of stocks.

To address the problem of non-additive heterogeneity in the data, recent econometrics

literature has studied panel regression models with grouped heterogeneity; see Su, Shi, and

Phillips (2016), Vogt and Linton (2017), Miao, Su, and Wang (2020), among many others.

There are two main features in the models: first, every individual is assumed to have a unique

unobserved group membership; second, the functional relationship between the dependent

and independent variables is homogeneous within the same group but heterogeneous across

different groups. By introducing the grouped heterogeneity, such models can reach a good

balance between flexibility and parsimony compared with panel regression models with fixed

effects and classical random coefficients panel models. To our best knowledge, the current

literature in this area mainly focuses on linear panel regression models, which has motivated

us to fill such a gap by considering a nonparametric counterpart.

In this paper, we propose a nonparametric additive panel regression model with grouped

heterogeneity, which can simultaneously consider both nonlinear effects of explanatory vari-

ables and non-additive heterogeneity. Additive regression models have a wide variety of
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applications in economics, statistics and many other disciplines; see Sperlich, Tjøstheim,

and Yang (2002), Profit and Sperlich (2004), Mammen, Støve, and Tjøstheim (2009) and

Huang, Horowitz, and Wei (2010), etc. Therefore, this paper naturally contributes to the

literature of additive regression models by incorporating grouped heterogeneity into consid-

eration. It is worth noting that Vogt and Linton (2017) and Vogt and Linton (2020) also

considered nonparametric panel regression models with grouped heterogeneity. The cluster-

ing methods developed in these two papers suffer from the curse of dimensionality. Also,

their approach can not be easily generalized to additive regression models.

To estimate the proposed model, we adopt a sieve-approximation-based penalized esti-

mation method, which can identify the latent group structure and estimate parameters of

interest in a single step. Our estimation method evolves from the so-called Classifier-Lasso

estimation method for panel regression models that was first proposed in Su, Shi, and Phillips

(2016). Su, Wang, and Jin (2019) applied a similar sieve-approximation-based estimation

method to estimate time-varying coefficients panel models. However, the time-varying coef-

ficients considered in Su, Wang, and Jin (2019) are nonrandom; thus, the asymptotic prop-

erties derived in their paper do not directly apply to the nonparametric additive regression

models considered here. More importantly, unlike previous literature on the Classifier-Lasso

estimation method, which defines the group structure based on all the coefficients, we take a

different approach by considering the subgroup structure of each additive component. This

refinement allows us to handle models with a relatively large number of groups since it is

the product of group numbers of each nonparametric component. In practice, these group

numbers are usually unknown ex ante and have to be estimated from the observed data, so

we further develop a BIC-type information criterion that can consistently determine group

numbers for the model. We establish the convergence rate of the nonparametric compo-

nents’ estimators and their linear functionals’ asymptotic normality under some regularity

conditions. We also demonstrate the finite sample performance of the estimation method

and the BIC-type information criterion through Monte Carlo simulations. The results show
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that both perform well in general.

We illustrate the usefulness of the proposed model and estimation method by applying

them to study the consumer demand for cigarettes in the United States using panel data

of 46 states from 1963 to 1992. We find that group heterogeneity exists in the effect of the

retail price of a pack of cigarettes on cigarette sales. More specifically, all 46 states can be

classified into two groups according to their price elasticity of demand for cigarettes. There

are 28 states in the first group and 18 states in the second group, and those in the first group

are, on average, more sensitive to price. However, we do not find evidence indicating there

exists grouped heterogeneity in the effect of real per capita disposable income on cigarette

sales.

The rest of the paper is organized as follows. We introduce the nonparametric additive

panel regression model with grouped heterogeneity in Section 2.2. In Section 2.3, we describe

the proposed sieve-approximation-based Classifier-Lasso estimation method. Section 2.4

establishes the asymptotic properties of the proposed estimator. Section 2.5 reports the

Monte Carlo simulation results. An empirical application is presented in Section 2.6. Finally,

Section 2.7 concludes.

Notation: For any matrix A, we denote‖A‖F = (tr(AA′))1/2 as its Frobenius norm, A′ as

its transpose and A−1 as its Moore-Penrose generalized inverse. If A is also a squared matrix,

we denote λmax(A) and λmin(A) as its largest and smallest eigenvalues, ‖A‖S = (λmax(AA′))

as its spectral norm. The Lq-norm of a p-dimensional vector v is denoted by ‖v‖q, where

‖v‖q ≡ (∑p
i=1 |vi|q)1/q when 1 ≤ q < ∞ and ‖v‖q ≡ maxi=1,...,p |vi| when q = ∞. For a

vector-valued function f(·) defined on [0, 1], we let ‖f‖2 to be its L2−norm, i.e., ‖f‖2 =

(
∫ 1

0
∥∥f(x)

∥∥ dx)1/2. For a set G, its cardinality is denoted by |G|. For a set [N ], we define

[N ] ≡ {1, 2, ..., N}. For functions f(n) and g(n), we let f(n) & g(n) and g(n) . f(n)

mean f(n) ≥ cg(n) for a generic constant c > 0, f(n) � g(n) denote both f(n) & g(n)

and f(n) & g(n) hold. We let (N, T ) → ∞ denote N and T diverging to infinity joint, P−→

convergence in probability, D−→ convergence in probability. As a general rule for this paper,
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we write c as positive generic constants that are independent of n in different places.

2.2 Model

In this section, we introduce the nonparametric additive panel regression model with grouped

heterogeneity. Suppose researchers observe panel data of N individuals for T periods, i.e.,

{{yit, x′it}Ni=1}Tt=1. The primary interest here is to study the effect of the explanatory vari-

ables x on the explained variable y. We assume yit is generated according to the following

econometric model:

yit = µi +
p∑
j=1

hi,j(xit,j) + uit, uit = σi(xit)εit, (2.1)

for i = 1, ..., N and t = 1, ..., T , where xit = (xit,1, ..., xit,p)′ is a p × 1 vector of explanatory

variables, µi denotes the unobserved individual fixed effect which can be correlated with xit,

εit is an error term which has mean zero and variance one and is uncorrelated with xit and

uit is an error term with mean zero and variance σ2
i (xit) conditional on xit. In addition,

hi,j(x) is a smooth function defined on a compact support Xj for j = 1, ..., p, and we assume

Xj = [0, 1] without loss of generality. Throughout this paper, we let h0
i,j(x) denote the true

parameter of interest to be estimated.

To capture the non-additive unobserved heterogeneity that can affect the functional rela-

tionship directly, we impose the following group structure on the nonparametric components

{h0
i,1, ..., h

0
i,p}Ni=1:

h0
i,j(x) =

K0
j∑

k=1
f 0
k,j(x)1{i ∈ G0

k,j} for any x ∈ [0, 1] and j = 1, ..., p, (2.2)

where f 0
k,j(x) is some smooth function defined on [0, 1], G0

k,j denote the k-th group of the

nonparametric function of the j-th explanatory variable xit,j,K0
j is the total number of groups

of h0
i,j(x). We assume {G0

k,j}
K0
j

k=1 are mutually exclusive, i.e., ∪K
0
j

k=1G
0
k,j = {1, 2, ..., N} for all
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1 6 j 6 p, and G0
m,j ∩ G0

n,j = ∅ if m 6= n. Furthermore, we let Nk,j denote the cardinality

of the set G0
k,j, i.e., Nk,j = |G0

k,j|, and we have ∑K0
j

k=1Nk,j = N by definition. Finally, we

let fj =
(
f1,j, ..., fK0

j ,j

)′
for j = 1, ..., p, which is the vector of the j-th infinite-dimensional

parameters to be estimated. Following the convention in the literature, we assume that the

group memberships do not vary across different time periods.

Based on the above setup, our goals include (1) estimating {hi,1(x), ..., hi,p(x)} for i =

1, ..., N ; (2) estimating the group-level parameters {f1,j(x), ..., fKj ,j(x)} for j = 1, ..., p; (3)

identifying the group memberships {G0
1,j, ..., G

0
Kj ,j
} for j = 1, ..., p. It is worth noting that

the nonparametric additive panel regression model given by equations 2.1 and 2.2 is fairly

general since it takes account of both the additive heterogeneity represented by the individ-

ual fixed effect as well as the non-additive heterogeneity that directly affect the functional

relationships. Such a model can be regarded as a natural extension of the linear panel

regression models with grouped heterogeneity. Because of the additive structure, we can

avoid the curse of dimensionality and still capture the nonlinearity in the marginal effects of

explanatory variables. Therefore, our model can become an appealing choice for empirical

studies in economics, sociology, and many other fields.

2.3 Estimation

In this section, we propose the sieve-approximation-based Classifier-Lasso estimation method.

This section includes two subsections. In Subsection 2.3.1, we discuss the sieve approxima-

tion for nonparametric functions hi,j(x) and fk,j(x) for all i = 1, ..., N , j = 1, ..., p and

k = 1, ..., Kj. In Subsection 2.3.2, we introduce the optimization problem and the related

estimators.
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2.3.1 Sieve Approximation

Since the infinite-dimensional parameters are unknown functions, we first approximate them

using the sieve approximation method; see Ai and Chen (2003) and Chen (2007) for more

details on sieve estimation. In this paper, we use the B-spline polynomials of order κ (or

degree κ − 1) to form basis functions on [0, 1] because it is well-known that the B-splines

have good properties and are computationally easy.

We first use the B-spline basis functions to approximate hi,j and fk,j, for k = 1, ..., K0
j ,

j = 1, ..., p and i = 1, ..., N . We assume that these functions are contained in the Hölder

space, which is defined as follows. We consider the Hölder space Λr([0, 1]) of order r > 0.

Let
¯
r denote the largest integer satisfying

¯
r < r. The Hölder space is a space of functions

f : [0, 1] → R such that the first
¯
r derivatives are bounded, and the

¯
r-th derivatives are

Hölder continuous with the exponent r −
¯
r ∈ (0, 1]. The Hölder space becomes a Banach

space when endowed with the Hölder norm:

‖f‖Λr = sup
x

∣∣f(x)
∣∣+ sup

x 6=x′

∣∣∇¯
rf(x)−∇¯

rf(x′)
∣∣(

‖x− x′‖F
)r−

¯
r <∞,

where for any nonnegative scalar a,

∇¯
rf(x) = ∂¯

r

∂x¯
r
f(x).

A Hölder ball with radius c is defined as Λr
c([0, 1]) ≡

{
f ∈ Λr([0, 1]) :‖f‖Λr 6 c <∞

}
. It

is known that functions in Λr
c([0, 1]) could be approximated sufficiently well by the B-spline

polynomials of order κ >
¯
r + 1. Let BJ(xit,j) denote J × 1 basis functions, then we could

approximate hi,j(xit,j) and fk,j(xit,j) by BJ(xit,j)′γi,j and BJ(xit,j)′πk,j, respectively, where
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γi,j and πk,j are J × 1 vectors:

hi,j(xit,j) =BJ(xit,j)′γi,j + δhi,j(xit,j), i = 1, ..., N, j = 1, ..., p,

fk,j(xit,j) =BJ(xit,j)′πk,j + δfk,j(xit,j), k = 1, ..., K0
j , j = 1, ..., p,

where δhi,j(xit,j) and δfk,j(xit,j) are corresponding approximation errors.

Define zit,j ≡
√
JBJ(xit,j) and θi,j ≡ 1√

J
γi,j, i = 1, ..., N , then equation 2.1 could be

expressed as

yit = µi +
p∑
j=1

z′it,jθi,j + eit (2.3)

where 1√
J
is the normalization term and eit = uit +∑p

j=1 δhi,j(xit,j).

At the same time, we let ηk,j = 1√
J
πk,j, then equation 2.2 implies

θ0
i,j =

K0
j∑

k=1
η0
k,j1{i ∈ G0

k,j}. (2.4)

Thus we have constructed the sieve approximations for hi,j(x) and fk,j(x), respectively.

2.3.2 Penalized Estimation of h and f

Since our main interest is to quantify the effect of different explanatory variables on the

explained variable, we use standard transformation to eliminate the individual fixed effect µi

and thus get rid of the potential incidental parameter problem caused by the individual fixed

effects. We take the deviation from the mean across individuals, which gives the following

equation

yit − ȳi =
P∑
j=1

(zit,j − z̄i,j)′θi,j + eit − ēi, (2.5)

where ȳi = 1
T

∑T
t=1 yit, with similar definitions for z̄i,j and ēi.

For the sake of notational simplicity, we further define ỹit = yit− ȳi and similarly for z̃it,j,
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ẽit, then equation 2.5 could be written as

ỹit =
p∑
j=1

z̃′it,jθi,j + ẽit. (2.6)

At this moment, we assume that K0
j is known in the estimation procedure. Later we will

discuss how to use a BIC-type criterion to consistently estimate K0
j , for j = 1, ..., p. Recall

our goals are to estimate both hi,j(x), fk,j(x) and identify the latent group structure. To

achieve these goals, we propose to minimize the following criterion function:

QNT,λ(θ, η) = QNT (θ) + λ

N

N∑
i=1

p∑
j=1

K0
j∏

k=1

∥∥∥θi,j − ηk,j∥∥∥
F
, (2.7)

where

QNT (θ) = 1
NT

N∑
i=1

T∑
t=1

ỹit − p∑
j=1

z̃′it,jθi,j

2

. (2.8)

In equations 2.7 and 2.8, we let θ = (θ1, ..., θN), in which θi = (θ′i,1, ..., θ′i,p)′, and η =

(η′1, ..., η′p)′, in which ηj = (η′1,j, ..., η′Kj ,j)
′. λ is some positive tuning parameter which depends

on N and T . The additional penalty is used to shrink the individual parameters θi,j, i =

1, ..., N to a particular unknown group-specific parameters ηk,j for some k ∈ {1, ..., K0
j } while

at the same time to classify individuals into a priori unknown groups.

Let θ̂ and η̂ be the solution to the minimization problem given by equation 2.7. Then

{ĥi,1(x), ..., ĥi,p(x)} for i = 1, ..., N , and {f̂1,j(x), ..., f̂Kj ,j(x)} for j = 1, ..., p are given by

ĥi,j(x) =
√
JBJ(x)′θ̂i,j for j = 1, ..., p,

f̂k,j(x) =
√
JBJ(x)′η̂k,j for k = 1, ..., K0

j , j = 1, ..., p.

The latent group structure is identified using the following rule: i ∈ Ĝk,j if ĥi,j = f̂k,j.

As pointed out in Su, Shi, and Phillips (2016), all individuals will be classified into certain

groups asymptotically. However, in finite samples, it may be the case that some individuals
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are left as unclassified if the tuning parameter is relatively small. When such situation

appears, we can use another decision rule to determine the latent group structure: i ∈ Ĝk,j

if
∥∥∥ĥi,j − f̂k,j∥∥∥

F
6
∥∥∥ĥi,j − f̂l,j∥∥∥

F
, for all l = 1, ..., Kj.

2.4 Asymptotic Properties

In this section, we establish the asymptotic properties for the estimators proposed in Section

2.3. This section include four subsections. They are organized as follows: in Subsection

2.4.1, we characterize the preliminary convergence rates for individual coefficients θ̂i,j, for

i = 1, ..., N and j = 1, ..., p and the group-specific parameters η̂k,j, for j = 1, ..., p and

k = 1, ..., K0
j . Subsection 2.4.2 presents the results of classification consistency. After that,

Subsection 2.4.3 reports the asymptotic distribution of group-specific parameters fk,j, for

j = 1, ..., p and k = 1, ..., K0
j . Subsection 2.4.4 discusses how to determine the number of

groups.

2.4.1 Preliminary Rates of Convergence

We first give the necessary assumptions for establishing the convergence rate of θ̂ and η̂.

Define xit ≡ (xit,1, ..., xit,p)′ and zit ≡ (z′it,1, ..., z′it,p)′.

Assumption 2.1. (i) For each i = 1, ..., N , {xit, εit : t ≥ 1} is stationary strong mixing

with mixing coefficient αi(j). α(j) ≡ max16i6N αi(j) satisfies α(j) 6 cα exp(−ρj) for

some 0 < cα <∞, 0 < ρ <∞. {xit, εit} are independent across i.

(ii) There exists positive c̄ such that maxi,t‖uit‖qF < c̄ <∞ for some q > 6.

(iii) For the nonparametric functions {f 0
1,j, ..., f

0
K0
j ,j
}pj=1, we have

(i) IE[f 0
k,j(xit,j)] = 0, for j = 1, ..., p and k = 1, ..., K0

j .

(ii) f 0
k,j ∈ F = Λr

c([0, 1]) with r > 0, for j = 1, ..., p and k = 1, ..., K0
j .
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(iii) ∀i ∈ {1, ..., N}, let fit,j(x) denote the marginal density function of {xit,j}, we have

fit,j(x) = fi,j(x) for all 1 6 t 6 T and x ∈ [0, 1]. Furthermore, there exist positive

constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
min

16j6p
inf

x∈[0,1]
{fi,j(x)} 6 max

16i6N
max
16j6p

sup
x∈[0,1]

{fi,j(x)} < c̄ <∞.

(iv) There exist
¯
c > 0 such that for any j = 1, ..., p,

min
16m6=n6K0

j

∥∥∥f 0
m,j − f 0

n,j

∥∥∥2

2
>

¯
c.

(v) There exist positive constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
µmin

(
Var(zit)

)
6 max

16i6N
µmax

(
Var(zit)

)
< c̄ <∞.

(vi) Nk,j
N
→ τk,j for j = 1, ..., p and k = 1, .., K0

j as N →∞. There exists positive constants

¯
c and c̄ such that

0 <
¯
c < min

16j6p
min

16k6K0
j

{τk,j} 6 max
06j6p

max
16k6K0

j

{τk,j} < c̄ < 1

Assumption 2.1(i) implies that the strong mixing coefficients α(l) decay exponentially

fast to 0 as l → ∞ uniformly. Similar conditions are made in Su, Shi, and Phillips (2016),

Su, Wang, and Jin (2019), Vogt and Linton (2017), etc. For more discussions on this, we

refer readers to Su, Wang, and Jin (2019). Assumption 2.1(ii) imposes moment restrictions

for uit.

Assumption 2.1(iii) imposes restrictions on the nonparametric functions. The first part

is a harmless normalization. The second one is the smooth condition which ensures we can

approximate any function f ∈ F sufficiently well using the tensor-product of univariate
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B-splines. By results from the approximation theory, there exists πk,j ∈ RJ such that

sup
x∈[0,1]

∥∥∥fk,j(x)−BJ ′πk,j
∥∥∥
∞

= O(J−r)

Similarly, for each individual, there exists γi,j such that

sup
x∈[0,1]

∥∥∥hi,j(x)−BJ ′γi,j
∥∥∥
∞

= O(J−r).

Then, after controlling for the approximation error, the difference between fk,j(x) and hi,j(x)

is reflected by the difference between πk,j and γi,j. The third part is also assumed in Vogt

and Linton (2017). First, this condition makes the functions hi,j(xit) comparable across

individuals. Second, it guarantees that hi,j(xit) could be estimated uniformly well.

Assumption 2.1(iv) specifies that the group-specific parameters are well separated from

each other. At the same time, it also implies that the group-specific vectors π and η are well

separated. For 1 6 m 6= n 6 Kj, let’s consider
∥∥∥f 0

m,j − f 0
n,j

∥∥∥
2
first. Notice that

∥∥∥f 0
m,j − f 0

n,j

∥∥∥
2

6
∥∥∥f 0

m,j −BJ ′πm,j
∥∥∥

2
+
∥∥∥f 0

n,j −BJ ′πn,j
∥∥∥

2
+

∥∥∥∥∥∥
√
JBJ ′

(
1√
J

(πm,j − πn,j)
)∥∥∥∥∥∥

2

=O(J−r) +


(

1√
J

(πm,j − πn,j)
)′ ∫

[0,1]
JBJ(x)BJ(x)′dx

(
1√
J

(πm,j − πn,j)
)

1
2

�
∥∥∥∥∥ 1√

J
(πm,j − πn,j)

∥∥∥∥∥
F

,

where the last equation holds because the eigenvalues of
∫

[0,1]d JB
J(x)BJ(x)′dx are bounded

above and away from zero.
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Similarly, we have

∥∥∥∥∥ 1√
J

(πm,j − πn,j)
∥∥∥∥∥
F

�

∥∥∥∥∥∥
√
JBJ ′

(
1√
J

(πm,j − πn,j)
)∥∥∥∥∥∥

2

6
∥∥∥f 0

m,j − f 0
n,j

∥∥∥
2

+
∥∥∥f 0

m,j −BJ ′πm,j
∥∥∥

2
+
∥∥∥f 0

n,j −BJ ′πn,j
∥∥∥

2

=
∥∥∥f 0

m,j − f 0
n,j

∥∥∥
2

+O(J−r)

�
∥∥∥f 0

m,j − f 0
n,j

∥∥∥
2

Therefore, we have
∥∥∥f 0

m,j − f 0
n,j

∥∥∥2

2
�
∥∥∥ 1√

J
(πm,j − πn,j)

∥∥∥2

F
=
∥∥∥η0

m,j − η0
n,j

∥∥∥2

F
. In a similar

fashion, we can get ∥∥∥hi,j − fk,j∥∥∥2

2
�
∥∥∥θi,j − ηk,j∥∥∥2

F
.

if i /∈ G0
k,j. This result guarantees that the penalty item in the criterion function 2.7 could

shrink the individual coefficients to some group-specific parameters.

Assumption 2.1(v) is a standard identification condition for sieve estimation. As demon-

strated in Section 2.3.2, we take the demean approach to get rid of the individual fixed

effects, which consequently requires that IE[z̃itz̃′it] is positive definite to identify the coeffi-

cients. Then notice that the corresponding population value is Var(zit). Assumption 2.1(vi)

is commonly assumed in the classification literature, which implies that each group would

include an asymptotically non-negligible number of individuals.

Assumption 2.2. As (N, T ) → ∞, we have λ → 0, J → ∞, J 3
2 (lnT )3T−1 → 0 and

N2T 1− q2 → 0.

Assumption 2.2 specifies several restrictions on J , N and T . Let’s first focus on the

first part of the condition, i.e., J 3
2 (lnT )3T−1 → 0. This condition is comparable to the

Assumption 2 in Newey (1997) for independent observations. The last condition requires

that T cannot increase too slow compared with N . The intuition is clear: as T grows,
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more information of each individual is revealed, making it easier to identify the latent group

structures. The q is the moment restriction we make in Assumption 2.1(ii), which is set to

be larger than 6 to allow that N and T increase at the same rate.

We are now ready to establish the preliminary convergence rates for θ̂ and η̂, which are

given in Theorem 2.1.

Theorem 2.1. Suppose Assumption 2.1, 2.2 hold, then

(i) ‖θ̂i − θ0
i ‖F = Op(J−r + J

1
2T−

1
2 + λ) and ‖θ̂i,j − θ0

i,j‖F = Op(J−r + J
1
2T−

1
2 + λ) for

i = 1, 2, ..., N, j = 1, ..., p.

(ii) 1
N

∑N
i=1‖θ̂i− θ0

i ‖2
F = Op(J−2r + JT−1) and 1

N

∑N
i=1‖θ̂i,j − θ0

i,j‖2
F = Op(J−2r + JT−1) for

j = 1, ..., p.

(iii) ‖η̂(k),j−η0
k,j‖F = Op(J−r+J

1
2T−

1
2 ), for k = 1, ..., K0

j , j = 1, ..., p, where (η̂(1),j, ..., η̂(K0
j ),j)

is a suitable permutation of (η̂1,j, ..., η̂K0
j ,j

) for j = 1, ..., p.

Theorem 2.1(i) and (ii) give the pointwise and mean square convergence rates of θ̂i,j for

j = 1, ..., p. In Theorem 2.1(i), the first term, J−r, comes from the approximation error. The

second term, J 1
2T−

1
2 , demonstrates the contribution of the interaction between B-splines and

the error term. Similar as other Lasso-like estimators, the penalty item is reflected by λ.

However, in Theorem 2.1(ii), the penalty term disappears. We direct interested readers to

the details in the proof. The convergence rate of η̂k,j, similarly, does not depend on λ.

By Assumption 2.2 and Theorem 2.1, it is clear that θ̂i,j and η̂(k),j converges in probability

to θ0
i,j and η0

k,j, respectively. For notational simplicity, we denote η̂(k),j as η̂k,j and further

define

Ĝk,j =
{
i ∈ {1, ..., N} : θ̂i,j = η̂k,j

}
for k = 1, ..., K0

j ,

which denotes the set of individuals whose functions of the j-th explanatory variable are

classified into the k-th group, for 1 6 k 6 K0
j .
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2.4.2 Classification Consistency

To ensure the group classification’s consistency, we need to impose more assumptions, which

are given in Assumption 2.3.

Assumption 2.3. As (N, T )→∞, λT 1
2J−

1
2 (lnT )−3−v →∞ , λJr(lnT )−v →∞ , T 1

2J−
1
2 (lnT )−3−v →

∞ and λ(lnT )v → 0 for some v > 0.

Assumption 2.3 imposes restrictions on λ and some further ones on J . Intuitively, we re-

quire that λ dominates all other errors of approximation or uit to make sure the penalty term

can effectively shrink the individual coefficients to corresponding group-specific parameters.

Following Su, Shi, and Phillips (2016) and Su, Wang, and Jin (2019), we define

Êik,j ≡
{
i /∈ Ĝk,j|i ∈ G0

k,j

}
F̂ik,j ≡

{
i /∈ G0

k,j|i ∈ Ĝk,j

}

where i = 1, ..., N , j = 1, ..., p and k = 1, ..., K0
j . We let Êk,j = ∪i∈G0

k,j
Êik,j, F̂k,j =

∪i∈Ĝk,j F̂ik,j. Here Êk,j denotes the event of classifying individuals that belong to G0
k,j into

groups other than Ĝk,j; and F̂k,j denotes the event of classifying individuals who don’t belong

to G0
k,j into Ĝk,j. These two events mimic the Type I and Type II errors in hypothesis testing

literature, respectively.

The following theorem establishes the consistency of the group membership estimator.

Theorem 2.2. Suppose Assumption 2.1, 2.2 and 2.3 hold, then

(i) P (∪pj=1 ∪
K0
j

k=1 Êk,j) 6
∑p
j=1

∑K0
j

k=1 P (Êk,j)→ 0 as (N, T )→∞.

(ii) P (∪pj=1 ∪
K0
j

k=1 F̂k,j) 6
∑p
j=1

∑K0
j

k=1 P (F̂k,j)→ 0 as (N, T )→∞.

Theorem 2.2 guarantees that with probability approaching 1, we can correctly classify

individuals in the same group, say G0
k,j, into one group Ĝk,j, and those classified into the

same group, Ĝk,j, belong to one correct group G0
k,j for j = 1, ..., p and k = 1, ..., K0

j .
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2.4.3 The Oracle Property and Asymptotic Distributions

As mentioned previously, the Classifier-lasso estimation method can simultaneously ac-

complish two tasks: to classify individuals into different groups and to estimate θi,j, for

i = 1, ..., N and j = 1, ..., p, and ηk,j, for k = 1, ..., K0
j and j = 1, ..., p. Given the estimated

coefficients, we might want to conduct statistical inference on the functionals of the nonpara-

metric components. For example, f̂k,j(x), which is constructed by f̂k,j(x) =
√
JBJ(x)′η̂k,j.

An alternative strategy would be to implement the post-Lasso approach. Given the

estimated groups Ĝk,j, for j = 1, ..., p and k = 1, ..., K0
j , we could conduct a constrained

optimization to estimate group-specific parameters. We denote the post-Lasso estimators as

f̂Ĝk,j(x).

Our goal in this subsection is to show that both the C-lasso estimator and the post-Lasso

estimator enjoy the oracle property, i.e., they are asymptotically equivalent to the infeasible

estimators as if the group memberships are known ex ante. Before we move to the results,

more definitions and assumptions are required.

Let ui = (ui1, ui2, ..., uiT ), εi = (εi1, εi2, ..., εiT ) and Var(ui|xi) = Σ
1
2
i ViΣ

1
2
i , where

Σi =diag(σ2
i (xi1), ..., σ2

i (xiT ))

Vi =IE[εiε′i]

We then formally demonstrate how to construct the oracle estimators. Given the correct

group membership G0
k,j for 1 6 k 6 K0

j and 1 6 j 6 p, define z̃it,G0 ≡ (z̃′it,G0
1
, z̃′it,G0

2
, ..., z̃′it,G0

p
)′,

where

z̃it,G0
j
≡ (0′J×1, ...,

G0
k,jth︷︸︸︷
z̃′it,j , ..., 0′J×1︸ ︷︷ ︸

K0
j vectors

)′

for 1 6 j 6 p. z̃it,G0
j
is composed of K0

j column vectors of length J . All the vector are 0J×1

except for the G0
k,jth, which equals to z̃it,j. Then z̃it,G0 is a

(
J
∑p
j=1K

0
j

)
× 1 vector.
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The regression equation is

ỹit = z̃′it,G0η + ẽit

where η is a
(
J
∑p
j=1K

0
j

)
× 1 vector. Let η ≡ (η′1, η′2, ..., η′p)′, and ηj ≡ (η′1,j, η′2,j, ..., ηK0

j ,j
)′

for 1 6 j 6 p.

Denote the estimated η as η̂G0 with all the components η̂G0
k,j
. Then construct the corre-

sponding f̂G0
k,j
≡ z′it,j η̂G0

k,j
for 1 6 k 6 K0

j and 1 6 j 6 p, which is the oracle estimator.

Define

VG0 ≡
(
IE[z̃it,G0 z̃′it,G0 ]

)−1
IE
[
z̃i·,G0Σ1/2

i ViΣ1/2
i z̃′i·,G0

] (
IE[z̃it,G0 z̃′it,G0 ]

)−1

where z̃i·,G0 = (z̃i1,G0 , z̃i2,G0 , ..., z̃iT,G0). We could divide VG0 into different cells VG0
k,j

for

1 6 k 6 K0
j and 1 6 j 6 p according to the true group structure.

Assumption 2.4. (i) For j = 1, ..., p and k = 1, ..., K0
j , there exists two positive constants

¯
cv and c̄v such that

0 <
¯
cv 6 lim

N,T→∞
min
i∈G0

k,j

µmin(Vi) 6 lim
N,T→∞

max
i∈G0

k,j

µmax(Vi) 6 c̄vδNT

for some nondecreasing sequence δNT which satisfies δNTN−1 → 0 as N, T →∞.

(ii) Let Bit,σ ≡
√
JBJ

it(xit)σi(xit). There exist positive constants
¯
c and c̄ such that

0 <
¯
c < min

16i6N
µmin

(
Var(Bit,σ)

)
6 max

16i6N
µmax

(
Var(Bit,σ)

)
< c̄ <∞

Assumptions 2.4 is analogous to Assumption A.3 in Su, Wang, and Jin (2019). Assump-

tion 2.4(i) imposes restrictions on the covariance matrix of εi. Assumption 2.4(ii) assures

that the eigenvalues of the interactive items of zit and the error term are bounded above and

away from zero uniformly.
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Assumption 2.5. As (N, T )→∞, NTJ−2r → 0.

Assumption 2.5 is used to establish the pointwise convergence rate of the group-specific

infinite-dimensional estimators f̂k,j(x) and f̂Ĝk,j(x). The following Theorem 2.3 establishes

the asymptotic distribution of the estimated functional of fk,j.

Theorem 2.3. Suppose Assumption 2.1, 2.2, 2.3, 2.4 and 2.5 hold. Then for any j ∈

{1, ..., p}, k ∈ {1, ..., K0
j },

(i) √
Nk,jT/JV

− 1
2

k,j,B

(
f̂k,j(x)− f 0

k,j(x)
)

D→ N(0, 1)

(ii) √
Nk,jT/JV

− 1
2

k,j,B

(
f̂Ĝk,j(x)− f 0

k,j(x)
)

D→ N(0, 1)

where

Vk,j,B = BJ(x)′VG0
k,j
BJ(x)

and VG0
k,j

is the corresponding cell in VG0.

Theorems 2.3 indicates that the Classifier-lasso and post-Lasso estimators of fk,j(x) are

asymptotically equivalent to the infeasible estimators, which are denoted as fG0
k,j
. Thus both

C-Lasso and post-Lasso estimators exhibit oracle properties.

2.4.4 Determination of Number of Groups

In this section, we discuss how to use a BIC-type information criterion to determine the

number of groups K0
j , j = 1, ..., p. Define K0 = (K0

1 , ..., K
0
p). Following the literature, we

assume that K0
j is bounded above from a finite integer Kmax for all j = 1, ..., p. We make the

dependence of θ̂i,j and η̂k,j on K and λ explicit by denoting them as θ̂i,j(K,λ) and η̂k,j(K,λ).
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Using the post-Lasso estimator η̂Ĝ(K,λ), we could calculate

σ̂2
Ĝ(K,λ) = 1

NT

N∑
i=1

T∑
t=1

(
ỹit − z̃′itη̂Ĝ(K,λ)

)2
.

Then we choose K = (K1, ..., Kp) to minimize the following information criterion

IC(K,λ) = ln
(
σ̂2
Ĝ(K,λ)

)
+ ρNT · pJ

p∑
j=1

Kj

where ρNT is the tuning parameter. Let K̂(λ) ≡ arg min16Kj6Kmax,j=1,...,p IC(K,λ). We

next show that the above information criterion can consistently select the number of groups

for each nonparametric component. Let G(K)
j ≡

{
GK,1,j, ..., GK,K,j

}
be any K-partition of

{1, ..., N} for variable j, and GK a collection of all such partitions for all 1 6 j 6 p. Further

define

σ̂2
G(K) ≡

1
NT

N∑
i=1

T∑
t=1

(
ỹit − z̃′itη̂ĜK,k

)2
.

We first introduce some assumptions.

Assumption 2.6. As (N, T ) → ∞, min16Kj<K0
j ,16j6p infG(K)∈GK σ̂

2
G(K)

P→
¯
σ2 > σ2

0, where

σ2
0 = plim(N,T )→∞

1
NT

∑N
i=1

∑T
t=1 u

2
it.

Assumption 2.7. As (N, T )→∞, ρNTJ → 0 and ρNTNT →∞.

When to decide the correct number of groups, there are three different situations to

consider: Kj < K0
j , Kj = K0

j , and Kj > K0
j for each 1 6 j 6 p, corresponding to under-

fitted, correct, and over-fitted models, respectively. Assumption 2.6 is used to guarantee

that in the under-fitted models, the first term in the IC criterion is always larger than in

the correct model. It implies that we will not choose under-fitted models with probability

approaching one as long as the second term in the IC criterion is dominated, which is ensured

by Assumption 2.7. Similarly, Assumption 2.7 is a condition to ensure that the over-fitted
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models will not be picked out with probability approaching one. The following theorem

formally summarizes such intuition.

Theorem 2.4. Suppose Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 hold. Then P (K̂(λ) =

K0)→ 1 as (N, T )→∞.

Theorem 2.4 shows that the IC criterion can consistently determine the correct number

of groups for each nonparametric component. However, in finite samples, we suggest that

readers use it with caution. There is always some probability, even though quite small that

a misspecified model is selected. Thus we recommend that readers try different numbers of

groups, compare the results, and discuss possible implications in empirical studies.

2.5 Simulation

In this section, we investigate the finite sample performance of the sieve-approximation-based

Classifier-Lasso estimation method for nonparametric additive panel regression models.

2.5.1 Data Generating Process

We consider three different data generating processes (DGPs). In all three DGPs, we let xit,s

follow a standard normal distribution across both i and t for s = 1, ..., p, µi follows a standard

normal distribution for all individuals i, and uit ∼i.i.d. N(0, 1) across both i and t. For each

DGP, we consider four different combinations of (N, T ) to investigate their influence on the

estimates. These four combinations are: (1) (N, T ) = (100, 40); (2) (N, T ) = (100, 80); (3)

(N, T ) = (200, 80); (4) (N, T ) = (200, 160), which analogize various data structures in the

real-world data sets. The three DGPs are detailed as follows.

DGP 1 In this data generating process, we assume yit is given by the following specifi-

cation

yit = µi + hi,1(xit,1) + hi,2(xit,2) + uit,
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where

hi,1(x) =


x− 1

2 if i ∈ G0
1,1,

3x2 − 1 if i ∈ G0
2,1,

and

hi,2(x) =


sin(2πx) if i ∈ G0

1,2,

sin(4πx) if i ∈ G0
2,2.

Here G0
k,j denotes the set of individuals such that the individual-specific function hi,j is in

the k−th group of the function of xit,j. Furthermore, we assume G0
1,1 = {1, 2, ..., 1

2N} and

G0
1,2 = {1, 2, ..., 1

2N}.

DGP 2 In this data generating process, we assume yit is given by the following specifi-

cation

yit = µi + hi,1(xit,1) + hi,2(xit,2) + hi,3(xit,3) + uit,

where

hi,1(x) =


sin(2πx) if i ∈ G0

1,1,

sin(4πx) if i ∈ G0
2,1,

and

hi,2(x) =


cos(2πx) if i ∈ G0

1,2,

cos(4πx) if i ∈ G0
2,2,

and

hi,3(x) =


x− 1

2 if i ∈ G0
1,3,

3x2 − 1 if i ∈ G0
2,3.

Here we let G0
1,1 = {1, 2, ..., N4 }, G

0
1,2 = {1, 2, ..., N2 } and G

0
1,3 = {1, 2, ..., 3

4N}.

DGP 3 In this data generating process, we assume yit is given by the following specifi-

cation

yit = µi + hi,1(xit,1) + hi,2(xit,2) + hi,3(xit,3) + uit,
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where

hi,1(x) =


sin(2πx) if i ∈ G0

1,1,

sin(4πx) if i ∈ G0
2,1,

and

hi,2(x) =


cos(2πx) if i ∈ G0

1,2,

cos(4πx) if i ∈ G0
2,2,

and

hi,3(x) =



x− 1
2 if i ∈ G0

1,3,

3x2 − 1 if i ∈ G0
2,3,

x3 − 3x2 + 3
4 if i ∈ G0

3,3.

Here we let G0
1,1 = {1, 2, ..., N4 }, G

0
1,2 = {1, 2, ..., N2 }, G

0
1,3 = {1, 2, ..., 1

4N} and G
0
2,3 = {1

4N +

1, ..., 3
4N}.

As the number of nonparametric functions and the number of groups for each nonpara-

metric component increases from DGP 1 to DGP 3, grouped heterogeneity in each nonpara-

metric component becomes stronger and stronger,

For a fixed DGP and a given combination of (N, T ), we estimate the model using the

iterative procedure introduced in Su, Wang, and Jin (2019) and simulate with 100 repetitions.

We let the tuning parameter λ = (NT )−1/8, which satisfies all the related assumptions on λ

given in Section 2.4 to ensure the consistency of the estimators. We use the cubic B-splines

(B-splines of order 4) for sieve approximation, and we let the number of interior points J0

to be the integer closest to (NT ) 1
5 .

To measure the accuracy of the estimation approach developed in this paper, we report

the root mean sqaure errors (RMSE) of both individual-specific and group-specific unknown

functions as well as the rate of correct classification for each unknown function. More

specifically, for the j-th nonparametric function, the RMSE of the group-specific estimates
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are given by

RMSE = 1
R

R∑
r=1

√√√√√K0
j∑

k=1

∥∥∥ĥk,j − h0
k,j

∥∥∥2

2
,

respectively, where R is the number of repetitions which equals 100 in our setting. The

correct classification rate for the j-th nonparametric component is given by

CCj = 1
R

R∑
r=1

{ 1
N

N∑
i=1

K0
j∑

k=1
1{i ∈ Ĝk,j, i ∈ G0

k,j}
}
.

We reprot the RMSE for both C-Lasso and Post-Lasso estimates as well as the oracle esti-

mates. Here the oracle estimates is estimated assuming the group memberships are known.

2.5.2 Simulation Results

Table 2.1, Table 2.2, and Table 2.3 report the simulation results for the group-specific pa-

rameters in DGP 1, DGP 2, and DGP 3, respectively. There are several interesting findings.

First, we can see that the rate of correct classification (CC Rate) increases when both N and

T increase. When (N, T ) = (100, 80), the rate of correct classification is larger than 98%

in DGP 1 and DGP 2, and when (N, T ) = (200, 160), the misclassification error is almost

zero in all DGPs, showing that the estimation method has satisfying performance. Second,

the correct classification rate is higher in DGP 1 than in DGP 2 and DGP 3 when (N, T )

is fixed, which shows that the complexity of the group structure will also affect the finite

sample performance of the estimation method. Third, the RMSEs of the C-Lasso estimators

are usually larger than the RMSEs of the post-Lasso estimators. In addition, the finite sam-

ple performance of the post-Lasso estimators is very close to that of oracle estimators when

(N, T ) is large, which is consistent with the theoretical justification in Section 2.4 and the

simulation findings in Su, Shi, and Phillips (2016) and Su, Wang, and Jin (2019). Based on

these findings, we recommend using the post-Lasso estimators in empirical studies.
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Table 2.1: Simulation Results for Group-specific Parameters in DGP 1

Function N T CC Rate RMSE (C-Lasso) RMSE (Post-Lasso) RMSE (Oracle)

h0
1 100 40 84.49% 0.1577 0.1557 0.0893

100 80 98.71% 0.0708 0.0693 0.0674
200 80 98.38% 0.0568 0.0530 0.0501
200 160 99.96% 0.0372 0.0364 0.0364

h0
2 100 40 94.65% 0.1356 0.1364 0.0965

100 80 99.81% 0.0724 0.0718 0.0708
200 80 99.72% 0.0535 0.0520 0.0512
200 160 100.00% 0.0374 0.0372 0.0372

Table 2.2: Simulation Results for Group-specific Parameters in DGP 2

Function N T CC Rate RMSE (C-Lasso) RMSE (Post-Lasso) RMSE (Oracle)

h0
1 100 40 96.11% 0.1356 0.1305 0.1088

100 80 99.87% 0.0809 0.0764 0.0761
200 80 99.81% 0.0632 0.0588 0.0580
200 160 100.00% 0.0439 0.0425 0.0425

h0
2 100 40 90.92% 0.1776 0.1753 0.0948

100 80 99.76% 0.0750 0.0717 0.0707
200 80 99.64% 0.0548 0.0514 0.0500
200 160 100.00% 0.0383 0.0366 0.0366

h0
3 100 40 74.17% 0.3233 0.2926 0.1023

100 80 98.64% 0.0948 0.0801 0.0760
200 80 97.98% 0.0808 0.0629 0.0568
200 160 99.95% 0.0530 0.0415 0.0414
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Table 2.3: Simulation Results for Group-specific Parameters in DGP 3

Function N T CC Rate RMSE (C-Lasso) RMSE (Post-Lasso) RMSE (Oracle)

h0
1 100 40 96.87% 0.1409 0.1367 0.1108

100 80 99.90% 0.0814 0.0800 0.0787
200 80 99.87% 0.0608 0.0591 0.0578
200 160 100.00% 0.0440 0.0434 0.0434

h0
2 100 40 92.29% 0.1645 0.1603 0.0951

100 80 99.83% 0.0733 0.0701 0.0687
200 80 99.67% 0.0546 0.0511 0.0496
200 160 99.99% 0.0374 0.0366 0.0366

h0
3 100 40 63.73% 1.8325 1.4873 0.1441

100 80 92.74% 0.1586 0.1479 0.1063
200 80 90.48% 0.1526 0.1372 0.0783
200 160 99.90% 0.0599 0.0589 0.0588

2.6 Empirical Illustration

In this section, we apply the model and the estimation method developed in this paper

to analyze a textbook example: exploring the effects of different explanatory variables on

cigarettes sales in the United States. The data set is from Baltagi, Griffin, and Xiong (2000),

which covers 46 American states over the period 1963 - 1992. The explanatory variables

included in this data set are the yearly per capita sales of cigarettes, the yearly average

retail price of a pack of cigarettes measured at the price level in 1992, the yearly real per

capita disposable income and the minimum real price of cigarettes in neighboring states. In

Baltagi, Griffin, and Xiong (2000), they modeled the cigarettes sales using a dynamic linear

panel regression model which is specified as

ln yit = α + β1 ln yi,t−1 + β2 ln xit,1 + β2 ln xit,2 + β3 ln xit,3 + uit, (2.9)

where i represents the i-th state (i = 1, ..., 46), t represents the t-th year (t = 1, ...29), yit

denotes the yearly per capita sales of cigarettes, xit,1 is the yearly average retail price of

a pack of cigarettes measured at the price level in 1983, xit,2 is the yearly real per capita
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disposable income, xit,3 is the minimum real price of cigarettes in neighboring states and uit

denotes the unobserved demand shock.

Baltagi, Griffin, and Xiong (2000) estimated the model 2.9 using various estimation

techniques such as OLS, 2SLS, Shrinkage OLS, etc. However, the estimation results in

2.9 can give very different policy implications since the signs of β’s are opposite when using

different estimation techniques. It might be caused by the parametric restriction of the linear

panel regression model because the marginal effects of explanatory variables are restricted

to be constant. It is well known that the consumer demand for many goods often exhibits

diminishing returns to scale, i.e., consumer demand may depend on the absolute scale of

certain explanatory variables. Therefore, using linear panel regression models to estimate

the demand can also be problematic from consumer theory. To address this problem, we

propose to estimate the consumer demand for cigarettes using the nonparametric additive

panel regression model with grouped heterogeneity developed in this paper. The grouped

heterogeneity of consumer demand may be induced by culture, customs, social norms, and

many other latent factors shared by different states. It is worth noting that Mammen,

Støve, and Tjøstheim (2009) used a similar additive panel regression model to analyze this

data set. Compared with their work, our analysis takes account of the state-level unobserved

heterogeneity in the consumer demand for cigarettes, which provides a more accurate picture

of the consumer demand on cigarettes. We consider the following model

ln yit = β1 ln yi,t−1 + hi,1(xit,1) + hi,2(xit,2) + αi + uit, (2.10)

where x1,it is the yearly average retail price of a pack of cigarettes measured at the price

level in 1983, x2,it is the yearly real per capita disposable income. We don’t include the

minimum real price of cigarettes in neighboring states in model 2.10 because the effect of

this variable on the cigarette sales is negligible compared with other explanatory variables.

Since our model is nonparametric, it requires a larger amount of observations to ensure the
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accuracy of estimation, and thus we omit less relevant variables here.

We impose latent group structures on both hi,1(xit,1) and hi,2(xit,2) for all i = 1, ..., N .

The values of explanatory variables are normalized to [0, 1] . Using the information criterion

and the estimation method proposed above, we find that there exist two groups of hi,1(xit,1).

However, we do not find evidence indicating there is grouped heterogeneity in hi,2(xit,2). We

use post-Lasso estimator to recover the estimated functions of h1(x) and h2(x), respectively.

The estimated functions of h1(x) are shown in Figure 2.1.

Figure 2.1: Estimated Functions of h1

For h1(x), there are 28 states in Group 1 and 18 states in Group 2. Group 1 includes

Arizona, Arkansas, California, Connecticut, Florida, Georgia, Indiana, Iowa, Kansas, Ken-

tucky, Maine, Michigan, Mississippi, Missouri, Nebraska, Nevada, New Hampshire, New

Jersey, Ohio, Oklahoma, Pennsylvania, South Carolina, South Dakota, Texas, Utah, Ver-

mont, Virginia, and Washington. On the other hand, Group 2 includes Alabama, Delaware,

DC, Idaho, Illinois, Louisiana, Maryland, Massachusetts, Minnesota, Montana, New Mexico,

New York, North Dakota, Rhode Island, Tennessee, West Virginia, Wisconsin, andWyoming.
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From Figure 2.1, we can see that consumers living in the states of Group 1 are, on average,

more sensitive to the price of cigarettes, meaning that their price elasticity of demand is

more considerable.

For h2(x), the estimation method indicates that only one group exists, and the estimated

function is shown in Figure 2.2.

Figure 2.2: Estimated Functions of h2

Figure 2.2 implies that states with a higher real per capita disposable income have larger

amounts of cigarette sales. This is consistent with the findings in Baltagi and Levin (1992)

and Mammen, Støve, and Tjøstheim (2009). It is worth noting that the estimated function

of h2(x) also indicates that the real per capita disposable income will have a negative impact

on cigarette sales if it exceeds some threshold. We conjecture that such reduction of cigarette

sales is because people with higher income are usually more aware of the harms of smoking

on health.
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2.7 Conclusion

In this paper, we study a nonparametric additive panel regression model with grouped het-

erogeneity. This model contributes to the literature on both nonparametric panel regression

models and panel models with grouped heterogeneity. The proposed model can handle both

the nonlinear effects of explanatory variables and the non-additive heterogeneity at the same

time, making it an appealing choice for empirical studies. To estimate the model, we develop

a sieve-approximation-based Classifier-Lasso estimation method, which can simultaneously

estimate the parameters of interest and identify the latent group structure. We successfully

establish the asymptotic properties of the proposed estimator and the consistency of the

group classification. In addition, we show that the proposed estimation method enjoys the

so-call oracle property, which means that parameters are estimated as if the latent group

structure is known in advance. Such finding is consistent with Su, Shi, and Phillips (2016)

and Su, Wang, and Jin (2019). Since group numbers are usually unknown in general and

have to be estimated from the observed data, we further develop a BIC-type information cri-

terion to determine them. We show that this criterion can consistently estimate the number

of groups for each nonparametric component under some regularity conditions. We investi-

gate the finite sample performance of the proposed estimators and the information criterion

through Monte Carlo simulations. Both work well. Finally, we apply the model and esti-

mation method developed in this paper to estimate the demand for cigarettes in the United

States using panel data of 46 American states from 1963 to 1992.
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Appendix

2.A Proofs of the Main Results

We use ‖·‖ to denote Frobenius norm in the Appendix for simplicity.

Proof of Theorem 2.1

Proof. (i) For each individual, I define

Qi(θi) ≡
1
T

T∑
t=1

ỹit − p∑
j=1

z̃′it,jθi,j

2

= 1
T

T∑
t=1

(
ỹit − z̃′itθi

)2

and

Qi(θi, η) ≡ Qi(θi) + λ
p∑
j=1

K0
j∏

k=1
‖θi,j − ηk,j‖

Since θ̂i minimizes Qi(θi, η̂), I have Qi(θ̂i, η̂) 6 Qi(θ0
i , η̂), which is equivalent to

(
Qi(θ̂i)−Qi(θ0

i )
)

+ λ
p∑
j=1

K0
j∏

k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥− K0
j∏

k=1

∥∥∥θ0
i,j − η̂k,j

∥∥∥
 6 0

• Consider the first part:

Qi(θ̂i)−Qi(θ0
i )

= 1
T

T∑
t=1

(ỹit − z̃′itθ̂i)2 − 1
T

T∑
t=1

(ỹit − z̃′itθ0
i )2

=(θ̂i − θ0
i )′Q̂i,z̃z̃(θ̂i − θ0

i )− 2(θ̂i − θ0
i )′Q̂i,z̃ẽ

where Q̂i,z̃z̃ = 1
T

∑T
t=1 z̃itz̃

′
it, Q̂i,z̃ẽ = 1

T

∑T
t=1 z̃itẽit, ẽit = ∑p

j=1 δ̃hi,j(xit,j) + ũit.
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• Consider the second part, I have

∣∣∣∣∣∣∣
K0
j∏

k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥− K0
j∏

k=1

∥∥∥θ0
i,j − η̂k,j

∥∥∥
∣∣∣∣∣∣∣

6

∣∣∣∣∣∣∣
K0
j−1∏
k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥
(∥∥∥∥θ̂i,j − η̂K0

j ,j

∥∥∥∥−∥∥∥∥θ0
i,j − η̂K0

j ,j

∥∥∥∥
)∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
K0
j−2∏
k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥∥∥∥∥θ0
i,j − η̂K0

j ,j

∥∥∥∥
(∥∥∥∥θ̂i,j − η̂K0

j−1,j

∥∥∥∥−∥∥∥∥θ0
i,j − η̂K0

j−1,j

∥∥∥∥
)∣∣∣∣∣∣∣

+ · · ·

+

∣∣∣∣∣∣∣
K0
j∏

k=2

∥∥∥θ0
i,j − η̂k,j

∥∥∥ (∥∥∥θ̂i,j − η̂1,j

∥∥∥−∥∥∥θ0
i,j − η̂1,j

∥∥∥)
∣∣∣∣∣∣∣

6c1ji,NT (θ̂, θ0, η̂)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥
where c1ji,NT (θ̂, θ0, η̂) ≡ ∏K0

j−1
k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥+∏K0
j−2

k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥∥∥∥∥θ0
i,j − η̂K0

j ,j

∥∥∥∥+· · ·+∏K0
j

k=2

∥∥∥θ0
i,j − η̂k,j

∥∥∥.
Thus

∣∣∣∣∣∣∣
p∑
j=1

K0
j∏

k=1

∥∥∥θ̂i,j − η̂k,j∥∥∥− K0
j∏

k=1

∥∥∥θ0
i,j − η̂k,j

∥∥∥

∣∣∣∣∣∣∣

6
p∑
j=1

c1ji,NT (θ̂, θ0, η̂)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥
6pc1i,NT (θ̂, θ0, η̂)

∥∥∥θ̂i − θ0
i

∥∥∥
where c1i,NT (θ̂, θ0, η̂) = max16j6p c1ji,NT (θ̂, θ0, η̂).
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Together I have

(θ̂i − θ0
i )′Q̂i,z̃z̃(θ̂i − θ0

i )

6
∣∣∣2(θ̂i − θ0

i )′Q̂i,z̃ẽ

∣∣∣+ λpc1i,NT (θ̂, θ0, η̂)
∥∥∥θ̂i − θ0

i

∥∥∥
62
∥∥∥θ̂i − θ0

i

∥∥∥∥∥∥Q̂i,z̃ẽ

∥∥∥+ λpc1i,NT (θ̂, θ0, η̂)
∥∥∥θ̂i − θ0

i

∥∥∥
By Lemma 2.3, µmin(Q̂i,z̃z̃) > ¯

c > 0 w.p.a. 1, then I have w.p.a. 1,

∥∥∥θ̂i − θ0
i

∥∥∥ 6
¯
c−1

(
2
∥∥∥Q̂i,z̃ẽ

∥∥∥+ λpc1i,NT (θ̂, θ0, η̂)
)

By Lemma 2.3,
∥∥∥Q̂i,z̃ẽ

∥∥∥ = Op(J−r + J
1
2T−

1
2 ), thus

∥∥∥θ̂i − θ0
i

∥∥∥ = Op(J−r + J
1
2T−

1
2 + λ)

Consequently we could get

‖θ̂i,j − θ0
i,j‖ = Op(J−r + J

1
2T−

1
2 + λ)

for i = 1, 2, ..., N and j = 1, ..., p.

Remark. The argument depends on the condition that c1i,NT (θ̂, θ0, η̂) = Op(1).

We show this by considering a constrained optimization problem.

Define

Rb ≡
{
γ :
∣∣∣γi,jm∣∣∣ 6 c <∞, i = 1, ..., N, j = 1, ..., p,m = 1, ..., J

}
Πb ≡

{
π :
∣∣∣πk,jm∣∣∣ 6 c <∞, k = 1, ..., K0

j , j = 1, ..., p,m = 1, ..., J
}

where c is a generic constant, γ = (γ1, ..., γN), γi = (γ′i,1, ..., γ′i,p)′ for i = 1, ..., N ,

π = (π′1, ..., π′p)′, πj = (π′1,j, ..., π′Kj ,j)
′ for j = 1, ..., p.
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Further define Θb ≡ {θ : γ ∈ Rb}, Hb ≡ {η : π ∈ Πb}. Remember that θ = (θ1, ..., θN),

where θi ≡ 1√
J
γi, i = 1, ..., N , and η =

(
η′1, ..., η

′
p

)′
, where ηj ≡ 1√

J
πj, j = 1, ..., p.

If c is large enough,by Assumption 2.1(iii), we could get that γ0 and π0 lie in the

interior of Rb and Πb respectively, thus θ0 ∈ Θb and η0 ∈ Hb.

Then we search over Θb and Hb to minimize the objective function 2.7, namely

(
θ̂, η̂

)
= arg min

θ∈Θb,η∈Hb

1
NT

N∑
i=1

T∑
t=1

(
ỹit − z̃′itθi

)2
+ λ

N

N∑
i=1

p∑
j=1

K0
j∏

k=1

∥∥∥θi,j − ηk,j∥∥∥
F

The restrictions guarantee that c1i,NT (θ̂, θ0, η̂) = O(1).

Practically, we set c large enough and conduct the constrained optimization, which

works well in my simulations.

(ii) Let mJT = J−r + J
1
2T−

1
2 and v denotes a (pJ) × N matrix. In order to show that

1
N

∑N
i=1‖θ̂i − θ0

i ‖2 = Op(J−2r + JT−1), I just need to prove that for any ε, there exists

a constant M = M(ε) such that, for sufficiently large N and T ,

P

 inf
1
N

∑N

i=1‖vi‖
2=M

QNT (θ0 +mJTv, η̂) > QNT (θ0, η0)

 > 1− ε

This implies that w.p.a.1 there exists a local minimum {θ̂, η̂} such that 1
N

∑N
i=1‖θ̂i −

θ0
i ‖2 = Op(J−2r + JT−1) holds.

m−2
JT

(
QNT (θ0 +mJTv, η̂)−QNT (θ0, η0)

)
= 1
N

N∑
i=1

v′iQ̂i,z̃z̃vi −
2
N
m−1
JT

N∑
i=1

v′iQ̂i,z̃ẽ + λ

N

N∑
i=1

p∑
j=1

K0
j∏

k=1

∥∥∥θ0
i,j +mJTvi,j − η̂k,j

∥∥∥
>

¯
c

1
N

N∑
i=1
‖vi‖2 − 2

 1
N

N∑
i=1
‖vi‖2


1
2
m

−2
JT

N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2


1
2

where the last inequality holds w.p.a 1 by Lemma 2.3.
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By Lemma 2.3, 1
N

∑N
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(J−2r + JT−1), then m−2

JT

N

∑N
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(1),

thus for sufficiently large M , I have m−2
JT

(
QNT (θ0 +mJTv, η̂)−QNT (θ0, η0)

)
> 0

w.p.a.1.

Since 1
N

∑N
i=1‖θ̂i,j − θ0

i,j‖2 6 1
N

∑N
i=1‖θ̂i − θ0

i ‖2, we also have 1
N

∑N
i=1‖θ̂i,j − θ0

i,j‖2 =

Op(J−2r + JT−1).

(iii) Further consider c1ji,NT (θ̂, θ0, η), where θ̂ and η lie in the interior of Θb and Hb respec-

tively.

c1ji,NT (θ̂, θ0, η)

=
K0
j−1∏
k=1

∥∥∥θ̂i,j − ηk,j∥∥∥+
K0
j−2∏
k=1

∥∥∥θ̂i,j − ηk,j∥∥∥∥∥∥∥θ0
i,j − ηK0

j ,j

∥∥∥∥+ · · ·+
K0
j∏

k=2

∥∥∥θ0
i,j − ηk,j

∥∥∥
6

K0
j−1∏
k=1

(∥∥∥θ̂i,j − θ0
i,j

∥∥∥+
∥∥∥θ0
i,j − ηk,j

∥∥∥)+
K0
j−2∏
k=1

(∥∥∥θ̂i,j − θ0
i,j

∥∥∥+
∥∥∥θ0
i,j − ηk,j

∥∥∥)∥∥∥∥θ0
i,j − ηK0

j ,j

∥∥∥∥
+ · · ·+

K0
j∏

k=2

∥∥∥θ0
i,j − ηk,j

∥∥∥
6

K0
j−1∑
s=0

c1jsi,NT (θ0, η)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥s +
K0
j−2∑
s=0

c2jsi,NT (θ0, η)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥s
+ · · ·+

0∑
s=0

cK0
j psi,NT

(θ0, η)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥s

6
K0
j−1∑
s=0

cjsi,NT (θ0, η)
∥∥∥θ̂i,j − θ0

i,j

∥∥∥s

6c2ji,NT (θ0, η)
K0
j−1∑
s=0

∥∥∥θ̂i,j − θ0
i,j

∥∥∥s
6c2ji,NT (θ0, η)

(
1 + 2

∥∥∥θ̂i,j − θ0
i,j

∥∥∥)

where c2ji,NT (θ0, η) = max16s6K0
j
cjsi,NT (θ0, η) and cjsi,NT (θ0, η) = ∑K0

j

k=1 ckjsi,NT (θ0, η).

The last inequality holds w.p.a 1.
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Define pNT (θ, η) ≡ 1
N

∑N
i=1

∑p
j=1

∏K0
j

k=1

∥∥∥θi,j − ηk,j∥∥∥, then
∣∣∣pNT (θ̂, η)− pNT (θ0, η)

∣∣∣
6

1
N

N∑
i=1

p∑
j=1

c1ji,NT (θ̂, θ0, η)
∥∥∥θ̂i − θ0

i

∥∥∥
6

1
N

N∑
i=1

p∑
j=1

c2ji,NT (θ0, η)
(∥∥∥θ̂i − θ0

i

∥∥∥+ 2
∥∥∥θ̂i − θ0

i

∥∥∥2
)

6pc2i,NT (θ0, η)
 1
N

N∑
i=1

∥∥∥θ̂i − θ0
i

∥∥∥2
 1

2

+ pc2i,NT (θ0, η) 1
N

N∑
i=1

∥∥∥θ̂i − θ0
i

∥∥∥2

=Op(J−r + J
1
2T−

1
2 )

where c2i,NT (θ0, η) = max16j6p c2ji,NT (θ0, η) and we use c2ji,NT (θ0, η) = O(1), which is

implied by a similar argument as that in the proof of Theorem 2.1(i).

Since pNT (θ̂, η̂) 6 pNT (θ̂, η0), note that pNT (θ0, η0) = 0,

0 >pNT (θ̂, η̂)− pNT (θ̂, η0)

=
(
pNT (θ̂, η̂)− pNT (θ0, η̂)

)
+
(
pNT (θ0, η̂)− pNT (θ0, η0)

)
−
(
pNT (θ̂, η0)− pNT (θ0, η0)

)
=Op(J−r + J

1
2T−

1
2 ) + pNT (θ0, η̂)

=Op(J−r + J
1
2T−

1
2 ) +

p∑
j=1

K0
j∑

m=1

Nm,j

N

K0
j∏

k=1

∥∥∥η0
m,j − η̂k,j

∥∥∥

Then there exists a permutation of {1, ..., K0
j } for j = 1, ..., p such that

∥∥∥η̂k,j − η0
k,j

∥∥∥ =

Op(J−r + J
1
2T−

1
2 ).

Proof of Theorem 2.2

Proof. (i) For any i ∈ G0
kj ,j

, j = 1, ..., p and l 6= kj, by Theorem 2.1,
∥∥∥θ̂i,j − η̂l,j∥∥∥ p→∥∥∥η0

kj ,j
− η0

l,j

∥∥∥ 6= 0.
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Define a set Si =
{
j;
∥∥∥θ̂i,j − η̂kj ,j∥∥∥ 6= 0, i ∈ G0

kj ,j
, ∀1 6 kj 6 K0

j

}
, which means that i ∈

G0
kj ,j

and i /∈ Ĝkj ,j if and only if j ∈ Si, then the first order condition with respect to

θi,j, j ∈ Si is

0J =− 2Q̂i,z̃ũ,j − 2Q̂i,z̃δ̃,j + 2
p∑
r=1

Q̂i,z̃z̃,jr

(
θ̂i,r − θ0

i,r

)

+ λ∥∥∥θ̂i,j − η̂kj ,j∥∥∥
K0
j∏

l=1,l 6=kj

∥∥∥θ̂i,j − η̂l,j∥∥∥ (θ̂i,j − η̂kj ,j)

+ λ

K0
j∑

m=1,m 6=kj
êim,j

K0
j∏

l=1,l 6=m

∥∥∥θ̂i,j − η̂l,j∥∥∥
=− 2Q̂i,z̃ũ,j − 2Q̂i,z̃δ̃,j + 2

∑
r∈Si

Q̂i,z̃z̃,jr

(
θ̂i,r − η̂kj ,r

)

+ λ∥∥∥θ̂i,j − η̂kj ,j∥∥∥
K0
j∏

l=1,l 6=kj

∥∥∥θ̂i,j − η̂l,j∥∥∥ (θ̂i,j − η̂kj ,j)

+ 2
∑
r∈Si

Q̂i,z̃z̃,jr

(
η̂kj ,r − θ0

i,r

)

+ λ

K0
j∑

m=1,m 6=kj
êim,j

K0
j∏

l=1,l 6=m

∥∥∥θ̂i,j − η̂l,j∥∥∥
+ 2

∑
r/∈Si

Q̂i,z̃z̃,jr

(
θ̂i,r − θ0

i,r

)

≡Âi1,j + Âi2,j + Âi3,j + Âi4,j + Âi5,j + Âi6,j + Âi7,j

≡Âi,j

where êim,j = θ̂i,j−η̂m,j
‖θ̂i,j−η̂m,j‖ if

∥∥∥θ̂i,j − η̂m,j∥∥∥ 6= 0 and êim,j 6 1 otherwise, and Q̂i,z̃ũ,j =
1
T

∑T
t=1 z̃it,jũit, Q̂i,z̃δ̃,j = 1

T

∑T
t=1 z̃it,j δ̃hi,it, δ̃hi,it = ∑p

j=1 δ̃hi,j ,it, Q̂i,z̃z̃,jr = 1
T

∑T
t=1 z̃it,j z̃

′
it,r.

From the proof of Theorem 2.1, I have that

∥∥∥θ̂i − θ0
i

∥∥∥ 6
¯
c−1

(
2
∥∥∥Q̂i,z̃ẽ

∥∥∥+ λpc1i,NT (θ̂, θ0, η̂)
)

Let µ1,JT =
(
J−r + J

1
2T−

1
2 (lnT )3 + λ

)
(lnT )v and µ2,JT =

(
J−r + J

1
2T−

1
2 (lnT )3

)
(lnT )v
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for some v > 0. By Lemma 2.3, I could show that

P

(
max

16i6N

∥∥∥θ̂i − θ0
i

∥∥∥ > cµ1,JT

)
=o(N−1)

P
(∥∥∥η̂k − η0

k

∥∥∥ > cµ2,JT

)
=o(N−1)

for any c > 0.

Let ĉikj ,j = ∏K0
j

l=1,l 6=kj

∥∥∥θ̂i,j − η̂l,j∥∥∥, then

ĉikj ,j =
K0
j∏

l=1,l 6=kj

∥∥∥θ̂i,j − η̂l,j∥∥∥
=

K0
j∏

l=1,l 6=kj

∥∥∥∥(θ̂i,j − η0
kj ,j

)
−
(
η̂l,j − η0

l,j

)
+
(
η0
kj ,j
− η0

l,j

)∥∥∥∥
=

K0
j∏

l=1,l 6=kj

∥∥∥η0
kj ,j
− η0

l,j + op(1)
∥∥∥

=Op(1)

Similarly let c0
ikj ,j

= ∏K0
j

l=1,l 6=kj

∥∥∥θ0
i,j − η0

l,j

∥∥∥. Define c̄0 = maxj∈Si maxi∈G0
kj,j

c0
ikj ,j

and

¯
c0 = minj∈Si mini∈G0

kj,j
c0
ikj ,j

, then for all j ∈ Si,

P

(
¯
c0

2 6 ĉikj ,j 6 2c̄0
)

= 1− o(N−1)

And P
(

maxi∈G0
kj,j

∥∥∥Âi6,j∥∥∥ > Cλµ1,JT

)
= o(N−1) for large enough C > 0.

Define

ΞkNT ≡
{

¯
c0

2 6 ĉikj ,j 6 2c̄0,∀j ∈ Si
}
∩
{∥∥∥η̂k,j − η0

k,j

∥∥∥ 6 cµ2,JT ,∀1 6 k 6 K0
j ,∀1 6 j 6 p

}

∩
{

0 <
¯
c < min

06i6N
µmin(Q̂i,z̃z̃) 6 max

06i6N
µmax(Q̂i,z̃z̃) < c̄ <∞

}

∩
{

max
16i6N

∥∥∥Q̂i,z̃δ̃,j

∥∥∥ 6 CθNT ,∀1 6 j 6 p

}
∩
{

max
16i6N

∥∥∥θ̂i − θ0
i

∥∥∥ 6 cµ1,JT

}
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for some C > 0 and c > 0. θNT ≡ max06j6p max16k6K0
j

supx∈[0,1]

∥∥∥f 0
k,j(x)−BJ ′π0

k,j

∥∥∥ =

O(J−r).

Then P (ΞkNT ) = 1− o(N−1).

For all j ∈ Si, define ψikj ≡
((
θ̂i,j − η̂kj ,j

)′
, j ∈ Si

)′
and φikj ≡

∥∥∥ψikj∥∥∥. I multiply Âi,j

from left by

(
θ̂i,j−η̂kj,j

)′
φikj

, and then take summation for all j ∈ Si, then I could get

0 =− 2 1
φikj

∑
j∈Si

(
θ̂i,j − η̂kj ,j

)′
Q̂i,z̃ũ,j − 2 1

φikj

∑
j∈Si

(
θ̂i,j − η̂kj ,j

)′
Q̂i,z̃δ̃,j

+ 2 1
φikj

∑
j∈Si

∑
r∈Si

(
θ̂i,j − η̂kj ,j

)′
Q̂i,z̃z̃,jr

(
θ̂i,r − η̂kj ,r

)

+ 1
φikj

∑
j∈Si

(
θ̂i,j − η̂kj ,j

)′ λ∥∥∥θ̂i,j − η̂kj ,j∥∥∥
K0
j∏

l=1,l 6=kj

∥∥∥θ̂i,j − η̂l,j∥∥∥ (θ̂i,j − η̂kj ,j)

+ 2 1
φikj

∑
j∈Si

∑
r∈Si

(
θ̂i,j − η̂kj ,j

)′
Q̂i,z̃z̃,jr

(
η̂kj ,r − θ0

i,r

)

+ λ
1
φikj

∑
j∈Si

(
θ̂i,j − η̂kj ,j

)′ K0
j∑

m=1,m6=kj
êim,j

K0
j∏

l=1,l 6=m

∥∥∥θ̂i,j − η̂l,j∥∥∥
+ 2 1

φikj

∑
j∈Si

(
θ̂i,j − η̂kj ,j

)′∑
r/∈Si

Q̂i,z̃z̃,jr

(
θ̂i,r − θ0

i,r

)

≡Âi1 + Âi2 + Âi3 + Âi4 + Âi5 + Âi6 + Âi7

Conditional on ΞkNT , I have that uniformly in i ∈ G0
kj ,j

, j ∈ Si, with probability

1− o(N−1),

∣∣∣Âi3 + Âi4
∣∣∣ > 2

¯
cφikj + λmin

j∈Si
ĉikj ,j > λ¯

c0

2∣∣∣Âi2∣∣∣ 6 2
∥∥∥Q̂i,z̃δ̃,j

∥∥∥ 6 2CθNT∣∣∣Âi5∣∣∣ 6 2Cµ2,JT∣∣∣Âi6∣∣∣ 6 Cλµ1,JT∣∣∣Âi7∣∣∣ 6 Cλµ1,JT
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Then

∣∣∣Âi2 + Âi3 + Âi4 + Âi5 + Âi6
∣∣∣

>
∣∣∣Âi2∣∣∣−∣∣∣Âi3 + Âi4 + Âi5 + Âi6

∣∣∣
>λ¯

c0

2 −
[
2CθNT + 2Cµ2,JT + 2Cλµ1,JT

]
>λ¯

c0

4

where I use Assumption 2.2 and 2.3.

Thus

P
(
i /∈ Ĝkj ,j|i ∈ G0

kj ,j
, j ∈ Si

)
=P

(
−Âi1 = Âi2 + Âi3 + Âi4 + Âi5 + Âi6 + Âi7

)
6P

(∣∣∣Âi1∣∣∣ > ∣∣∣Âi2 + Âi3 + Âi4 + Âi5 + Âi6 + Âi7
∣∣∣)

6P

(∣∣∣Âi1∣∣∣ > λ¯
c0

4 ,ΞkNT

)
+ P (Ξc

kNT )

=o(N−1)

For any Si ⊆ {1, ..., p}, the result holds. So I could further get that P (Êik,j) =

P
(
i /∈ Ĝk,j|i ∈ G0

k,j

)
= o(N−1).
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Then

P (∪pj=1 ∪
K0
j

k=1 ÎEk,j)

6
p∑
j=1

k0
j∑

k=1
P
(
ÎEk,j

)

6
p∑
j=1

k0
j∑

k=1

∑
i∈G0

k,j

P
(
ÎEik,j

)

6
p∑
j=1

k0
j∑

k=1

∑
i∈G0

k,j

P (∣∣∣Âi1∣∣∣ > λ¯
c0

4 ,ΞkNT

)
+ P (Ξc

kNT )


6Np max
16i6N

P

(∥∥∥Q̂i,z̃ũ

∥∥∥ > λ¯
c0

4

)
+ o(1)

6NpP

(
max

16i6N

∥∥∥Q̂i,z̃ũ

∥∥∥ > λ¯
c0

4

)
+ o(1)

=o(1)

where I use λT 1
2J−

1
2 (lnT )−3 →∞.

(ii) The proof is similar to Su, Shi, and Phillips (2016) Theorem 2.2 (ii) and thus omitted.

Proof of Theorem 2.3

Proof. The proof of Theorem 2.3 is similar to the one in Su, Wang, and Jin (2019) and thus

is omitted.
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2.B Proofs of Technical Lemmas

We use ‖·‖ to denote Frobenius norm in the Appendix for simplicity and use C to indicate

some generic constant, which varies.

Lemma 2.1. Let ξit be a Rdξ random variable and IE[ξit] = 0 for all i, t. For each i = 1, ..., N ,

ξit is stationary strong mixing with mixing coefficient αi(j). α(j) ≡ max16i6N αi(j) satisfies

α(j) 6 cα exp(−ρj) for some 0 < cα <∞, 0 < ρ <∞. ξit are independent across i. Assume

that IE[‖ξit‖q] <∞ for some q > 3,Then

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξit

∥∥∥∥∥∥ > CT−
1
2 (lnT )3

 = o(N−1)

for large enough C > 0 if N2T 1− q2 = O(1).

Proof. It is the same as Lemma 1.1 and thus omitted.

Lemma 2.2. Let ξit be a Rdξ random variable and IE[ξit] = 0 for all i, t. For each i = 1, ..., N ,

ξit is stationary strong mixing with mixing coefficient αi(j). α(j) ≡ max16i6N αi(j) satisfies

α(j) 6 cα exp(−ρj) for some 0 < cα <∞, 0 < ρ <∞. ξit are independent across i. Assume

that max16i6N max16t6T IE[‖ξit‖
q
2 ] < ∞ for some q > 6 such that N2T 1− q2 (lnT )

3q
2 → 0 as

N, T →∞. Then

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

ξit

∥∥∥∥∥∥ > c

 = o(N−1)

for any c > 0.

Proof. It is the same as Lemma 1.2 and thus omitted.

Lemma 2.3. Suppose that Assumption 2.1 and 2.2 hold, then

(i)

P (0 <
¯
c < min

06i6N
µmin(Q̂i,z̃z̃) 6 max

06i6N
µmax(Q̂i,z̃z̃) < c̄ <∞) = 1− o(N−1)
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(ii) ∥∥∥Q̂i,z̃ẽ

∥∥∥ = Op(J−r + J
1
2T−

1
2 )

(iii)
1
N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2
= Op(J−2r + JT−1)

(iv)

P

(
max

06i6N

∥∥∥Q̂i,z̃ẽ

∥∥∥ > c
(
J−r + J

1
2T−

1
2 (lnT )3

)
(lnT )v

)
= o(N−1)

for any c > 0 and some v > 0.

Proof. (i) Consider the difference between Var(zit) and Q̂i,z̃z̃.

Let µk(A) be the kth largest eigenvalue of matrix A. Denote SpJ as the permutation

group of {1, ..., pJ}. By Hoffman-Wielandt inequality,

min
σ∈SpJ

pJ∑
k=1

∣∣∣µk(Q̂i,z̃z̃)− µσ(k)
(
Var(zit)

)∣∣∣2 6∥∥∥Q̂i,z̃z̃ − Var(zit)
∥∥∥2

Because

∥∥∥Q̂i,z̃z̃ − Var(zit)
∥∥∥2

62
∥∥∥Q̂i,zz − IE[zitz′it]

∥∥∥2
+ 2

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

z′it − IE[zit]IE[z′it]

∥∥∥∥∥∥
2

(i) Consider the first item, for any c > 0, v > 0,

• Similar as the proof in Lemma 2.2, we could get

P

max
16r6p

max
16s6p

max
16i6N

max
16j6J

max
16k6J

∣∣∣∣∣∣ 1T
T∑
t=1

JBJ
rit,jB

J
sit,k − IE

[
JBJ

rit,jB
J
sit,k

]∣∣∣∣∣∣ > cJ−
1
2


=o(N−1)

Note that there are only O(J) nonzero elements in BJ
itB

J
it
′ − IE

[
BJ
itB

J
it
′].
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Thus for any c > 0,

P

(
max

16i6N

∥∥∥Q̂i,zz − IE[zitz′it]
∥∥∥2

> c

)
= o(N−1)

(ii) Consider the second item, for any c > 0, similar as the proof in Lemma 2.2,

P

max
16r6p

max
16i6N

max
16j6J

∣∣∣∣∣ 1T
√
JBJ

rit,j − IE
[√
JBJ

rit,j

]∣∣∣∣∣ > cJ−1

 = o(N−1)

Thus we could get

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

z′it − IE[zit]IE[z′it]

∥∥∥∥∥∥
2

> c

 = o(N−1)

Combining part (i) and (ii) together, we have

P

min
σ∈SpJ

pJ∑
k=1

∣∣∣µk(Q̂i,z̃z̃)− µσ(k)
(
Var(zit)

)∣∣∣2 6 c

 = 1− o(N−1)

(ii) Let Q̂i,z̃δ̃ = 1
T

∑T
t=1 z̃itδ̃hi,it, and Q̂i,z̃ũ = 1

T

∑T
t=1 z̃itũit, where δ̃hi,it = ∑p

j=1 δ̃hi,j ,it, then

we have
∥∥∥Q̂i,z̃ẽ

∥∥∥ 6∥∥∥Q̂i,z̃δ̃

∥∥∥+
∥∥∥Q̂i,z̃ũ

∥∥∥.
For the first part, since

∥∥∥Q̂i,z̃δ̃

∥∥∥
=

∥∥∥∥∥∥Q̂i,zδ −
1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
6
∥∥∥Q̂i,zδ

∥∥∥+

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
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• For the first item,

IE
[∥∥∥Q̂i,zδ

∥∥∥2
]

=
p∑
r=1

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

′
δhi,it

∥∥∥∥∥∥
2


For any 1 6 r 6 p,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

′
δhi,it

∥∥∥∥∥∥
2


= 1
T 2

T∑
t=1

T∑
s=1

IE
[
JBJ

rit

′
BJ
risδhi,itδhi,is

]

6θ2
NTJ

1
T 2

T∑
t=1

T∑
s=1

IE
[
BJ
rit

′
BJ
ris

]

=θ2
NTJIE

 1
T

T∑
t=1

BJ
rit

′ 1
T

T∑
s=1

BJ
rit


=θ2

NTJ
J∑
j=1

IE
 1
T

T∑
t=1

BJ
rit,j

1
T

T∑
s=1

BJ
rit,j


=O

(
J−2r

)

Thus IE
[∥∥∥Q̂i,zδ

∥∥∥2
]

= O
(
J−2r

)
.

• For the second item,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2


=
p∑
r=1

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2


Similarly, we could get that

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥
2
 = O

(
J−2r

)
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For the second part, similarly

∥∥∥Q̂i,z̃ũ

∥∥∥
=

∥∥∥∥∥∥Q̂i,zu −
1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
6
∥∥∥Q̂i,zu

∥∥∥+

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
• Consider the first item,

IE
[∥∥∥Q̂i,zu

∥∥∥2
]

=
p∑
r=1

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

′
uit

∥∥∥∥∥∥
2


For any 1 6 r 6 p,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

′
uit

∥∥∥∥∥∥
2


= 1
T 2

T∑
t=1

T∑
s=1

IE
[
JBJ

rit

′
BJ
risuituis

]

6
CJ

T 2

T∑
t=1

T∑
s=1

IE [uituis]

=O(T−1J)

Thus IE
[∥∥∥Q̂i,zu

∥∥∥2
]

= O(T−1J).
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• Consider the second item,

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

uit

∥∥∥∥∥∥
2


=
p∑
r=1

IE


∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

1
T

T∑
t=1

uit

∥∥∥∥∥∥
2


=O(T−1)

Thus
∥∥∥Q̂i,z̃ũ

∥∥∥ = Op(J
1
2T−

1
2 ).

In sum, we have proved that

∥∥∥Q̂i,ze

∥∥∥ = Op(J−r + J
1
2T−

1
2 )

(iii) Consider

IE
 1
N

N∑
i=1

∥∥∥Q̂i,z̃ẽ

∥∥∥2


= 1
N

N∑
i=1

IE
[∥∥∥Q̂i,z̃ẽ

∥∥∥2
]

6
2
N

N∑
i=1

(
IE
[∥∥∥Q̂i,z̃δ̃

∥∥∥2
]

+ IE
[∥∥∥Q̂i,z̃ũ

∥∥∥2
])

Note that from the proof of (ii), we could strengthen the results to

max
16i6N

IE
[∥∥∥Q̂i,z̃δ̃

∥∥∥2
]

= O
(
J−2r

)
max

16i6N
IE
[∥∥∥Q̂i,z̃ũ

∥∥∥2
]

= O(T−1J)

Consequently,

IE
 1
N

N∑
i=1

∥∥∥Q̂i,ze

∥∥∥2
 = O(J−2r + T−1J)
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This completes the proof.

(iv) Note that
∥∥∥Q̂i,z̃ẽ

∥∥∥ =
∥∥∥Q̂i,z̃δ̃

∥∥∥+
∥∥∥Q̂i,z̃ũ

∥∥∥. To prove (iv), we can show that for large enough

C > 0, any c > 0 and any v > 0,

P

(
max

16i6N

∥∥∥Q̂i,z̃δ̃

∥∥∥ > CJ−r
)

= o(N−1)

P

(
max

16i6N

∥∥∥Q̂i,z̃ũ

∥∥∥ > cJ
1
2T−

1
2 (lnT )3+v

)
= o(N−1)

(i) For the first part, consider
∥∥∥Q̂i,zδ

∥∥∥ and
∥∥∥ 1
T

∑T
t=1 zit

1
T

∑T
t=1 δhi,it

∥∥∥ separately. First,

∥∥∥Q̂i,zδ

∥∥∥2

=
p∑
r=1

∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

ritδhi,it

∥∥∥∥∥∥
2

6θ2
NTJ

p∑
r=1

J∑
j=1

 1
T

T∑
t=1

BJ
rit,j

2

Consider 1
T

∑T
t=1 B

J
rit,j, for any c > 0 and 1 6 j 6 J , we want to show

P

max
16r6p

max
16j6J

max
16i6N

∣∣∣∣∣∣ 1T
T∑
t=1

BJ
rit,j − IE

[
BJ
rit,j

]∣∣∣∣∣∣ > cJ−1

 = o(N−1)

Since

NP

max
16r6p

max
16j6J

max
16i6N

∣∣∣∣∣∣ 1T
T∑
t=1

BJ
rit,j − IE

[
BJ
rit,j

]∣∣∣∣∣∣ > cJ−1


6pN

N∑
i=1

p∑
r=1

J∑
j=1

P


∣∣∣∣∣∣ 1T

T∑
t=1

BJ
rit,j − IE

[
BJ
rit,j

]∣∣∣∣∣∣ > cJ−1


6pN2J exp

− C0c
2T 2J−2

Tv0,max + 2 + 2cTJ−1 (lnT )2



As long as (lnT )3 JT−1 = o(1), we could get the result. Then for large enough
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C > 0 and for any 1 6 j 6 J ,

P

max
16r6p

max
16j6J

max
16i6N

1
T

T∑
t=1

BJ
rit,j > CJ−1


6P

max
16r6p
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16j6J

max
16i6N

1
T

T∑
t=1

IE
[
BJ
rit,j

]
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16j6J
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∣∣∣∣∣∣ 1T
T∑
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BJ
rit,j − IE

[
BJ
rit,j

]∣∣∣∣∣∣ > CJ−1


=o(N−1)

Thus for large enough C > 0,

P
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J
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J∑
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T
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rit,j
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J2p max
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6P
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max
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1
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BJ
rit,j

2
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Combining the previous results, we have for large enough C > 0

P

(
max

16i6N

∥∥∥Q̂i,zδ

∥∥∥ > CJ−r
)

6P

(
max

16i6N

∥∥∥Q̂i,zδ
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> C2J−2r

)

6P
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NT max

16i6N
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J∑
j=1

 1
T

T∑
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rit,j
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6P

max
16i6N

J
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r=1

J∑
j=1

 1
T

T∑
t=1

BJ
rit,j

2

> C


=o(N−1)

Similarly, we could prove that for large enough C > 0

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

zit
1
T

T∑
t=1

δhi,it

∥∥∥∥∥∥ > CJ−r

 = o(N−1)

Thus P
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max16i6N

∥∥∥Q̂i,z̃δ̃

∥∥∥ > CJ−r
)

= o(N−1).

(ii) For the second part, since
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∥∥∥
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∑T
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√
JBJ

rituit
∥∥∥, By Lemma 2.1, for any c > 0 and v > 0,

P

max
16i6N

∥∥∥∥∥∥ 1
T
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√
JBJ

rituit

∥∥∥∥∥∥ > cJ
1
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1
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Similarly,

P

max
16i6N

∥∥∥∥∥∥ 1
T

T∑
t=1

√
JBJ

rit

1
T

T∑
t=1

uit

∥∥∥∥∥∥ > cJ
1
2T−

1
2 (lnT )3+v

 = o(N−1)

This completes the proof.
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Chapter 3

A Network Sample Selection Model
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3.1 Motivation

The problem of selection bias is pervasive whenever there is non-random sampling. Since

Heckman (1974), there grows a large literature on how to correct for selection bias in various

different models(e.g., Kyriazidou (1997), Greene (1994), Terza (1998), Das, Newey, and

Vella (2003) and Newey (2009)). The most popular method is the Heckman Selection model

(HSM), which includes two equations: the selection equation (or link formation equation

in network data models) and the outcome equation. However, it remains a challenge to

apply the HSM to network data models when bilateral fixed effects are introduced in the

selection equation to control for unobserved heterogeneity from both sides. To fill this gap, I

propose a network sample selection model in which 1) bilateral fixed effects enter the pairwise

outcome equation additively; 2) link formation depends on latent variables from both sides

nonparametrically.

The link formation equation follows Auerbach (2019). I assume that each knot is repre-

sented by a latent variable (discrete or continuous), deciding whether it forms a link with

another knot. Then I use a statistic introduced by Auerbach (2019) to measure the distance

between two different knots. In the outcome equation, I introduce a four-cycle structure

to difference out additive bilateral fixed effects. Using the distance statistics from the link

formation equation, I use the kernel function to control for selection bias.

My paper is closely related to two strands of literature: sample selection and network

formation. In the former literature, Heckman develops the HSM in a series of papers (Heck-

man (1974), Heckman (1976), Heckman (1979) and Heckman (1990)). Ahn and Powell

(1993), Powell (1994), Kyriazidou (1997), Andrews and Schafgans (1998) and Newey (2009)

generalize HSM to semiparametric models and Das, Newey, and Vella (2003) considers a

nonparametric version. My paper is close to Ahn and Powell (1993) and Kyriazidou (1997)

in the sense that we both difference out fixed effects and use kernel function to control for

selection bias, but their methods are not applicable directly to network selection models

when bilateral fixed effects are present.
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In the network formation literature, I mainly discuss random utility models. To construct

networks, there are several different ways of modeling: from subgraphs (e.g, Chandrasekhar

and Jackson (2014)); to consider strategic interactions between links(e.g., Ridder and Sheng

(2015), Sheng (2018), De Paula, Richards-Shubik, and Tamer (2018), Menzel (2015), Jack-

son and Wolinsky (1996), Bala and Goyal (2000), Jackson (2008) Goldsmith-Pinkham and

Imbens (2013)); to assume that different links are conditional independent (e.g., Auerbach

(2019), Graham (2017), Candelaria (2016) and Chernozhukov, Fernandez-Val, and Weidner

(2018)). My paper falls into the last category.

In addition, there are also several papers that develop sample selection models using

network data, like Johnsson and Moon (2017), Hsieh and Lee (2016) and Chernozhukov,

Fernández-Val, and Luo (2018).

My contributions are three-fold. First, I introduce a fully nonparametric link formation

model and study pairwise outcomes. Whether two knots are connected is purely decided

by some unobserved latent variables. Fewer parametric or functional form assumptions are

required, thus avoiding as much model specification bias as possible. The model is used in

Auerbach (2019) and discussed in Johnsson and Moon (2017), but I first apply it to the

studies of pairwise outcomes. Furthermore, I generalize this model to the directed network,

which is new in the literature.

Second, I contribute to the partially linear model literature by using a novel four-cycle

structure in network data models. I explore this structure to difference out additive bilateral

fixed effects. Although Graham (2017) also considered a similar structure, I use it in a very

different way.

Third, compared with the traditional approach dealing with two-way fixed effects in the

link formation equation, I no longer need to deal with the incidental parameter problem

encountered in Fernández-Val and Weidner (2016), Chernozhukov, Fernandez-Val, and Wei-

dner (2018), and Chernozhukov, Fernández-Val, and Luo (2018), making the analysis much

more straightforward.
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To further illustrate the applications of my method, I discuss the following example.

Example: Determinants of Trade Flows

To study the determinants of trade flows between countries is important. (for instance,

Helpman, Melitz, and Rubinstein (2008), Rose (2004) and Haveman and Hummels) It is nat-

urally a network problem where knots are different countries and links are pairwise imports

and exports between them. However, only about 50% of all country pairs are with non-zero

trade flows (See Figure 3.1 from Helpman, Melitz, and Rubinstein (2008)).

Figure 3.1: Trade Flows

Whether two countries trade with each other is a mutually rational choice. Thus it is

crucial to correct for the selection bias. Simultaneously, to control for unobserved hetero-

geneity from both sides, it is natural to add bilateral fixed effects to both the link formation

and outcome equations.

Outline: The rest of the paper is organized as follows. Section 3.2 discusses the model.

Section 3.3 presents the estimation strategy. Section 3.4 studies the asymptotic properties

of the estimator. Section 3.5 extends the model to directed networks. Section 3.6 concludes.
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All proofs of the main results are given in the Appendix.

Notation: There are i = 1, 2, ...N agents (individuals, households, firms, countries, etc)

randomly sampled from the population and n =
(
N
2

)
= 1

2N(N − 1) pairs (dyads). Dij = 1

if i and j are connected and 0 otherwise. I assume the links are undirected, and there is no

self-connection. The N×N adjacent matrix is denoted as D. I consider only dense networks

where P (Dij = 1) = ρ0 > 0.

3.2 Model Setup

In Helpman, Melitz, and Rubinstein (2008), the model setting is:

Dij = 1{z′ijγ + Ai + Aj + ηij > 0}

yij =


x′ijβ +Bi +Bj + εij if Dij = 1

0 if otherwise

where Dij indicates whether two countries i and j trade with each other, yij is the size

of trade flows between country i and j. In the link formation equation, zij are pairwise

characteristics; Ai and Aj are bilateral fixed effects and ηij is the error term. xij, Bi, Bj and

εij are similarly defined.

The goal is to estimate β.

The two-step approach is usually used: 1) estimate the link formation equation and get

γ̂, Âi and Âj. Then let θ̂ ≡ z′ij γ̂ + Âi + Âj. (See Graham (2017) with logistic error term

and Chernozhukov, Fernandez-Val, and Weidner (2018) on distribution regression.) 2) the

outcome equation could be expressed as

IE[yij|Dij = 1] =IE[x′ijβ +Bi +Bj|Dij = 1] + IE[εij|Dij=1]

=IE[x′ijβ +Bi +Bj|Dij = 1] + f(θ̂)
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However, there are two main issues with this approach. First, the link formation equation

follows a parametric form, and certain particular distribution assumptions need to be made

for ηij. (Normal or Logistic distributions are two common choices.). Second, the estimation

of Ai suffers an incidental parameter problem and is hard to deal with.

To fix the potential issues in the traditional approach, I propose an alternative model

where the link formation is purely nonparametric, and the incidental parameter problem is

no longer an issue. The model I consider is:

Dij = 1{ηij 6 f(ωi, ωj)}

yij =


x′ijβ +Bi +Bj + εij if Dij = 1

0 if otherwise

where ωi, ωj and ηij follow standard uniform distribution, which is a harmless normal-

ization. f : [0, 1]2 → [0, 1] is Lebesgue-measurable and symmetric in its arguments. εij and

ηij are correlated, causing sample selection bias.

3.2.1 Explanation of the Link Formation Process

I will use international trade as an example to better explain the formation process. Please

step back and rethink it.

(i) Suppose US and UK trade with the same countries, from the perspective of the for-

mation, they are the same. See Figure 3.2, where 1, 2, 3 denote different countries.

(ii) Add some randomness, if US and UK trade with different countries with the same

probability, they are the same. I denote that they are of the same type. See Figure

3.3.
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Figure 3.2: Trade with Same Countries

Figure 3.3: Trade with Same Countries with Same Probabilities

(iii) Thus, I could classify different countries into different types, which are indicated by

different shapes. See Figure 3.4.

Figure 3.4: Countries of the Same Type

(iv) On the contrary, countries of different types would trade with the same type of countries

with different probabilities. See Figure 3.5, where p1I 6= p1U or p2I 6= p2U or p3I 6= p3U .
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Figure 3.5: Countries of Different Types

Mathematically, I formalize this intuition as

Dij = 1{ηij 6 f(ωi, ωj)}

3.3 Estimation Strategy

To estimate the model, I first introduce some assumptions on the model setup.

Assumption 3.1. (i) The random sequence {xij, εij} are independent and identically dis-

tributed. {Bi} are i.i.d. {Bi} and {xij} are independent of {εij}.

(ii) ηij and ωi follow standard uniform marginals. {ηij} and {ωi} are independent.

(iii) εij and ηmn are independent if (i, j) 6= (m,n).

(iv) f : [0, 1]2 → [0, 1] is Lebesgue-measurable and symmetric in its arguments.

I consider a four-cycle structure demonstrated in Figure 3.6:

Let Tijkl = DijDjkDklDil, then
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Figure 3.6: Four Cycle

• •

• •
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IE[yij|Tijkl=1] = IE[x′ijβ +Bi +Bj + εij|Tijkl = 1]

IE[yjk|Tijkl=1] = IE[x′jkβ +Bj +Bk + εjk|Tijkl = 1]

IE[ykl|Tijkl=1] = IE[x′klβ +Bk +Bl + εkl|Tijkl = 1]

IE[yil|Tijkl=1] = IE[x′ilβ +Bi +Bl + εil|Tijkl = 1]

Using Assumption 3.1, I have that

IE[εij|Tijkl = 1] = IE[εij|Dij = 1]

Define Λ(f(ωi, ωj)) ≡ IE[εij|Dij = 1] = IE[εij|ηij 6 f(ωi, ωj)]. To estimate β, there are

three steps.
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Step 1: I difference out the fixed effects B. Consider

IE[yij + ykl − yjk − yil|Tijkl = 1]

=IE[(xij + xkl − xjk − xil)′β|Tijkl = 1]

+ (Λ(f(ωi, ωj))− Λ(f(ωj, ωk)))

+ (Λ(f(ωk, ωl))− Λ(f(ωi, ωl)))

Define

yij,kl =yij + ykl − yjk − yil

xij,kl =xij + xkl − xjk − xil

Then I have

IE[yij,kl|Tijkl = 1]

=IE[x′ij,klβ|Tijkl = 1]

+ (Λ(f(ωi, ωj))− Λ(f(ωj, ωk)))

+ (Λ(f(ωk, ωl))− Λ(f(ωi, ωl)))

Step 2 : To control for the selection bias, I want to find i and k similar enough such

that (Λ(f(ωi, ωj)) − Λ(f(ωj, ωk))) ≈ 0 and (Λ(f(ωk, ωl)) − Λ(f(ωi, ωl))) ≈ 0. (Note that f

is symmetric in its arguments.)

I utilize the result from Auerbach (2019) and define average agent degree and average

codegree.
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Definition. Average agent degree:

1
N − 1

∑
i 6=j

Dij

Then the agent’s population degree is
∫
fωi(τ)dτ . Define fωi(·) := f(ωi, ·).

Definition. Average codegree of i and j:

1
N − 2

∑
t6=i,j

DitDjt

The population codegree of i and j: p(ωi, ωj) =
∫
fωi(τ)fωj(τ)dτ . Define pωi(·) := p(ωi, ·).

Mathematically, I use
∥∥∥fωi − fωk∥∥∥2

to measure the similarity between i and k. If
∥∥∥fωi − fωk∥∥∥2

is small enough,

(Λ(f(ωi, ωj))− Λ(f(ωj, ωk))) + (Λ(f(ωk, ωl))− Λ(f(ωi, ωl)))

is negligible.

Now the target is to find a statistic to bound
∥∥∥fωi − fωk∥∥∥2

. It turns out that

∥∥∥pωi − pωk∥∥∥2
= 0 =⇒

∥∥∥fωi − fωk∥∥∥2
= 0

The sample analogue of
∥∥∥pωi − pωk∥∥∥2

is

δ̂ik =
 1
N

N∑
t=1

(
1

N − 2

N∑
s=1

Dts(Dis −Dks)
)2
1/2

which is used to measure the distance between i and k.
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Step 3: Define

εij,kl =εij + εkl − εjk − εil

Thus the estimator could be constructed as

β̂ =
( ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl xij,klx
′
ij,kl K

(
δ̂ik
hN

))−1

( ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl xij,kl yij,kl K
(
δ̂ik
hN

))

= β +
((

N

4

)−1 ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl xij,klx
′
ij,kl K

(
δ̂ik
hN

))−1

((
N

4

)−1 ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl xij,kl εij,kl K
(
δ̂ik
hN

))

where Π4 is a permutation; K(·) is a kernel function and hN is the bandwidth.

3.4 Asymptotic Properties

This section includes three subsections. Subsection 3.4.1 studies the consistency of the

estimator. Subsection 3.4.2 and 3.4.3 discusses the asymptotic distribution of the estimator

when ωi is discrete or continuous, respectively.

3.4.1 Consistency

More assumptions are required.

Assumption 3.2. (i) xij, εij both have finite fourth moments.

(ii) IE[Tijkl xij,klx′ij,kl | ‖fωi − fωk‖2 = 0] = Γ0 is positive definite.

(iii) IE[Tijkl xij,kl εij,kl | ‖fωi − fωk‖2 = 0] = 0.
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Assumption 3.3. (i) limh→0 IE[Tijkl xij,klx′ij,kl | ‖fωi−fωk‖2 = h] = Γ0 is positive definite.

(ii) limh→0 IE[Tijkl xij,kl εij,kl | ‖fωi − fωk‖2 = h] = 0.

The following assumption imposes restrictions on the kernel function and bandwidth.

Assumption 3.4. (i) The bandwidth sequences hN → 0, N1−γh2
N → ∞ for some γ > 0

as N →∞.

(ii) Let

rN = IE
[
K

(
‖pωi − pωk‖2

hN

)]

and NrN →∞ as N →∞.

(iii) K is supported, bounded, differentiable on [0, 1], strictly positive on [0, 1) and has

bounded first derivative.

Remark. (i) The kernel functions could be Epanechnikov, Quartic, Triweight, etc, and I

restrict to the positive part.

(ii) Nrn →∞ implies that the number of pairs "close" enough increases with N .

(iii) Assumptions 3.2, 3.3, 3.4 together imply that if I randomly draw 4 agents i, j, k, l, the

probability that 1) Tijkl = 1 and 2) i and k are close enough is large than 0.

I need to utilize two lemmas from Auerbach (2019).

Lemma 3.1. Under Assumption 3.1 and 3.4, I have

max
i 6=k
|δ̂ik − ‖pωi − pωj‖2| = oa.s.(n−γ/4hN)

Lemma 3.2. Under Assumption 3.1, I have that ∀ε > 0, there exists a δ > 0 such that with

probability 1− ε2/4

‖pωi − pωk‖2 6 δ → ‖fωi − fωk‖2 6 ε
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They formalize the intuition that

δ̂ik
Lemma 1−−−−−→ ‖pωi − pωj‖2

Lemma 2−−−−−→ ‖fωi − fωk‖2

The following theorem demonstrates the consistency of the estimator.

Theorem 3.1. Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold, β̂ → β in probability.

3.4.2 Asymptotic Distribution when ωi has Finite Support

An additional technical assumption is required to study the asymptotic distribution of the

estimator.

Assumption 3.5. xij = g(Xi,Xj), where g is symmetric and Lebesgue-measurable.

The following theorem establishes the asymptotic distribution of β when ω is discrete.

Theorem 3.2. Suppose Assumptions 3.1-3.5 hold, using Theorem 1.1 of Chatterjee et al.

(2006) and Theorem 1 of Graham (2017), when ωi is finite, I can get

√
nα−1

2,Nc
′(β̂ − β)√

c′Γ−1
0 ∆̃NΓ−1

0 c

d−→ N(0, 36)

for any k × 1 vector of real constants c, where

∆̃N = 1
n

n∑
i=1

∆̃i

∆̃i = α−1
2,N IE[ūiū

′
i | X,ω]

ūi = IE[r−1
N uijkl | Xi, Xj, ωi, ωj, εij]
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3.4.3 Asymptotic Distribution when ωi is Continuous

When ωi is Continuous, it becomes more challenging, and more technical assumptions are

required.

Assumption 3.6. There exists an integer K and a partition of [0, 1) into K equally spaced,

adjacent and non-intersecting intervals ∪Kt=1[x1
t , x

2
t ) with x1

1 = 0 and x2
K = 1 such that for any

t ∈ {1, ..., K} and almost every x, y ∈ [x1
t , x

2
t ) and s ∈ [0, 1], |f(x, s)− f(y, s)| 6 C6|x− y|α,

for some C6 > 0 and α > 0.

Assumption 3.6 imposes more structure restrictions on f .

Assumption 3.7. IE[Tijkl xij,kl εij,kl | ‖fωi − fωk‖2 = h] 6 C7h
ζ for some C7, ζ > 0 and for

all h in a small neighborhood to the right of 0.

Assumption 3.7 imposes more restrictions on the conditional expectation.

More regularity conditions on the bandwidth sequence and the kernel function are also

needed.

Assumption 3.8. The bandwidth sequence hn = C8 × n−ρ for ρ ∈ ( α
4+8α ,

α
2+4α) and some

C8 > 0. K(
√
u) is supported, bounded, and twice differentiable on [0, 1], and strictly positive

on [0, 1).

The following theorem establishes the asymptotic distribution of β when ω is continuous.

Theorem 3.3. Suppose Assumptions 3.1-3.3 and 3.5-3.8 hold. Further assume that a× ζ >

1/2, using the theorem 1.1 of Chatterjee et al. (2006) and Theorem 1 of Graham (2017),

when ωi is continuous, I can get

√
nα−1

2,Nc
′(β̂ − βhn)√

c′Γ0
−1∆̃NΓ0

−1c

d−→ N(0, 36)

for any k × 1 vector of real constants c, where

βhn = β + 1
Γ0rN

IE
[
Tijkl xij,kl εij,kl K

(
δik
hN

)]
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Remark. There are several methods in the literature to deal with the bias brought by the

kernel method. First, one could introduce additional smoothness conditions and use jackknife

bias correction. Second, I could choose slight smaller h to get a consistent estimator while

sacrificing some efficiency. This is not the focus of the paper and thus omitted.

3.5 Extension to Directed Networks

Our approach could be easily extended to the directed networks, which is of practical im-

portance. The model should be revised as

Di→j = 1{ηij 6 f(ωi, ωj)}

yi→j =


x′ijβ +Bi→ +Bj← + εij if Di→j = 1

0 if otherwise

where Di→j = 1 if i exports to j; f : [0, 1]2 → [0, 1] is not symmetric anymore; yi→j is the

trade flow from i to j; Bi→ is country i’s export fixed effect and Bj← is country j’s import

fixed effect.

The definitions should be changed accordingly.

Definition. Average out degree:
1

N − 1
∑
j 6=i

Di→j

Define fωi→(·) := f(ωi, ·), and the agent’s population out degree is
∫
fωi→(τ)dτ .

Definition. Average in degree:
1

N − 1
∑
j 6=i

Dj→i

Define fωi←(·) := f(·, ωi), and the agent’s population out degree:
∫
fωi←(τ)dτ .
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Definition. Average out codegree of i and j:

1
N − 2

∑
t6=i,j

Di→tDj→t

The population out codegree of i and j: p→(ωi, ωj) =
∫
fωi→(τ)fωj→(τ)dτ . Define pωi→(·) :=

p(ωi, ·).

Definition. Average in codegree of i and j:

1
N − 2

∑
t6=i,j

Dt→iDt→j

The population in codegree of i and j: p←(ωi, ωj) =
∫
fωi←(τ)fωj←(τ)dτ . Define pωi←(·) :=

p(ωi, ·).

To measure the similarities of i and k, I use the following two different strategies:

• Use ‖pωi→ − pωk→‖2 to bound ‖fωi→ − fωk→‖2.

• Use ‖pωi← − pωk←‖2 to bound ‖fωi← − fωk←‖2.

The structure needs some modifications as well. Instead of a non-directed four-cycle, I

use a directed one.

The construction of the estimator would be:

Let Tij,kl = Di→jDk→jDi→lDk→l.

IE[yi→j|Tij,kl = 1] = x′ijβ +Bi→ +Bj← + Λ(f(ωi, ωj))

IE[yk→j|Tij,kl = 1] = x′kjβ +Bk→ +Bj← + Λ(f(ωk, ωj))

IE[yk→l|Tij,kl = 1] = x′klβ +Bk→ +Bl← + Λ(f(ωk, ωl))

IE[yi→l|Tij,kl = 1] = x′ilβ +Bi→ +Bl← + Λ(f(ωi, ωl))
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Figure 3.7: Directed Four Cycle

• •

• •
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Then

IE[yi→j + yk→l − yk→j − yi→l|Tij,kl = 1]

=(xij + xkl − xkj − xil)′β

+ (Λ(f(ωi, ωj))− Λ(f(ωk, ωj)))

+ (Λ(f(ωk, ωl)− Λ(f(ωi, ωl)))

One could use ‖fωi→ − fωk→‖2 to measure the similarity of ωi and ωk as exporters.

Alternatively, rearrange the above equation, I get that

IE[yi→j + yk→l − yk→j − yi→l|Tij,kl = 1]

=(xij + xkl − xkj − xil)′β

+ (Λ(f(ωi, ωj))− Λ(f(ωi, ωl)))

+ (Λ(f(ωk, ωl)− Λ(f(ωk, ωj)))

which means I could also use ‖fωj← − fωl←‖2 to measure the similarity of ωj and ωl as
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importers.

The following procedures are very similar and thus omitted.

3.6 Conclusion

I propose a network sample selection model. In this model, the link formation depends

on two latent variables from both sides nonparametrically. Using the statistics offered by

Auerbach (2019), I could measure the distance between two knots. Then in the outcome

equation, I propose a four-cycle structure to difference out bilateral fixed effects. At the

same time, I use kernel function to control for selection bias. The asymptotic properties of

the estimators are studied. Finally, I extend the model to directed networks.
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Appendix

Proof of Theorem 3.1

Proof. The estimator is constructed as:

β̂ =
( ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl x
2
ij,kl K

(
δ̂ik
hN

))−1

( ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl xij,kl yij,kl K
(
δ̂ik
hN

))

= β +
((

N

4

)−1 ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl x
2
ij,kl K

(
δ̂ik
hN

))−1

((
N

4

)−1 ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl xij,kl εij,kl K
(
δ̂ik
hN

))

Then

β̂ = β +
((

N

4

)−1 ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl x
2
ij,kl K

(
δ̂ik
hN

))−1

((
N

4

)−1 ∑
i<j<k<l

1
4!
∑
π∈Π4

Tijkl xij,kl εij,kl K
(
δ̂ik
hN

))

=β +
((

N

4

)−1 ∑
i<j<k<l

v̂ijkl

)−1((
N

4

)−1 ∑
i<j<k<l

ûijkl

)

=β + V̂ −1
N ÛN

Remark: For these items with replacing δ̂ik with ‖pωi − pωk‖2, I similarly define vijkl, VN ,

uijkl and UN .

The estimator could be simplified as

β̂ = β + V̂ −1
N ÛN ≈ β + V −1

N UN

To prove that β̂ is consistent, I just need to prove that
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•
1
rN
VN −

1
rN

IE
[
Tijkl x

2
ij,kl K

(
δik
hN

)]
p−→ 0

•
1
rN
UN −

1
rN

IE
[
Tijkl xij,kl εij,kl K

(
δik
hN

)]
p−→ 0

where

rN = E

[
K

(
‖pωi − pωk‖2

hN

)]

By Chebyshev’s inequality,

P (|X − E[X]| > ε) 6 Var(X)
ε2

It is sufficient to prove that 1
r2
N

Var(UN)→ 0 and 1
r2
N

Var(VN)→ 0 as N →∞.

Consider Var(UN), define

∆q,N = Cov(r−1
N uijkl, r

−1
N umnop)

where {i, j, k, l} and {m,n, o, p} have q agents in common.

Observation: ∆0,N = 0.

So as long as ∆q,N <∞, q = 1, 2, 3, 4, Consistency is trivial.

∆q,N < ∞, q = 1, 2, 3, 4 is guaranteed by that xij, εij has finite fourth moments and the

kernel function is bounded.

Proof of Theorem 3.2

Proof. Following the proof of Theorem 3.1 We focus on 1
rN
UN .
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One important observation:

• ∆1,N = 0 as well. Actually, for any two dyads sharing no links, their contribution to

Var(UN) is trivial.

Remark: Consider

u1 = 1
rN
Tijkl xij,kl εij,kl K

(
δik
hN

)
u2 = 1

rN
Tmnop xmn,op εmn,op K

(
δmo
hN

)

where they share no links (possibly sharing 0, 1 or 2 agents.).

Since

εij,kl = selection bias + link specific error term

The first part is 0 if ωi = ωk. the second item makes 0 contribution to the covariance if they

share no links.

Then

1
r2
N

Var(UN) =
(
N

4

)−1(4
2

)(
N − 4

2

)
∆2,N

+
(
N

4

)−1(4
3

)(
N − 4

1

)
∆3,N

+
(
N

4

)−1(4
4

)(
N − 4

4

)
∆4,N

As long as ∆2,N , ∆3,N and ∆4,N make the same order nontrivial contributions to Var(UN).

The first item dominates.

Using Theorem 1.1 of Chatterjee et al. (2006) and Theorem 1 of Graham (2017), I finish

the proof.

135



Bibliography

Abraham, Christophe, Pierre-André Cornillon, ERIC Matzner-Løber, and Nicolas Molinari.

2003. “Unsupervised curve clustering using B-splines.” Scandinavian journal of statistics

30 (3):581–595.

Ahn, Hyungtaik and James L Powell. 1993. “Semiparametric estimation of censored selection

models with a nonparametric selection mechanism.” Journal of Econometrics 58 (1-2):3–

29.

Ai, Chunrong and Xiaohong Chen. 2003. “Efficient estimation of models with conditional

moment restrictions containing unknown functions.” Econometrica 71 (6):1795–1843.

Ai, Chunrong and Qi Li. 2008. “Semi-parametric and Non-parametric methods in panel data

models.” In The Econometrics of Panel Data. Springer, 451–478.

Ando, Tomohiro and Jushan Bai. 2014. “Asset pricing with a general multifactor structure.”

Journal of Financial Econometrics 13 (3):556–604.

———. 2016. “Panel data models with grouped factor structure under unknown group

membership.” Journal of Applied Econometrics 31 (1):163–191.

———. 2017. “Clustering huge number of financial time series: A panel data approach with

high-dimensional predictors and factor structures.” Journal of the American Statistical

Association 112 (519):1182–1198.

136



Andrews, Donald WK and Marcia MA Schafgans. 1998. “Semiparametric estimation of the

intercept of a sample selection model.” The Review of Economic Studies 65 (3):497–517.

Arellano, Manuel and Bo Honoré. 2001. “Panel data models: some recent developments.” In

Handbook of econometrics, vol. 5. Elsevier, 3229–3296.

Atkin, David and Dave Donaldson. 2015. “Who’s getting globalized? The size and implica-

tions of intra-national trade costs.” Tech. rep., National Bureau of Economic Research.

Atkin, David, Amit K Khandelwal, and Adam Osman. 2017. “Exporting and firm perfor-

mance: Evidence from a randomized experiment.” The Quarterly Journal of Economics

132 (2):551–615.

Auerbach, Eric. 2019. “Identification and estimation of a partially linear regression model

using network data.” arXiv preprint arXiv:1903.09679 .

Bala, Venkatesh and Sanjeev Goyal. 2000. “A noncooperative model of network formation.”

Econometrica 68 (5):1181–1229.

Baltagi, Badi H, Georges Bresson, and Alain Pirotte. 2008. “To pool or not to pool?” In

The econometrics of panel data. Springer, 517–546.

Baltagi, Badi H, James M Griffin, and Weiwen Xiong. 2000. “To pool or not to pool:

Homogeneous versus heterogeneous estimators applied to cigarette demand.” Review of

Economics and Statistics 82 (1):117–126.

Baltagi, Badi H and Dan Levin. 1992. “Cigarette taxation: Raising revenues and reducing

consumption.” Structural Change and Economic Dynamics 3 (2):321–335.

Baltagi, Badi Hani. 2015. The Oxford handbook of panel data. Oxford Handbooks.

Bester, C Alan and Christian B Hansen. 2016. “Grouped effects estimators in fixed effects

models.” Journal of Econometrics 190 (1):197–208.

137



Bonhomme, Stéphane and Elena Manresa. 2015. “Grouped patterns of heterogeneity in

panel data.” Econometrica 83 (3):1147–1184.

Browning, Martin and Jesus Carro. 2007. “Heterogeneity and microeconometrics modeling.”

Econometric Society Monographs 43:47.

Browning, Martin and Jesus M Carro. 2010. “Heterogeneity in dynamic discrete choice

models.” The Econometrics Journal 13 (1):1–39.

———. 2014. “Dynamic binary outcome models with maximal heterogeneity.” Journal of

Econometrics 178 (2):805–823.

Candelaria, Luis E. 2016. “A semiparametric network formation model with multiple linear

fixed effects.” Duke University .

Chandrasekhar, Arun G and Matthew O Jackson. 2014. “Tractable and consistent random

graph models.” Tech. rep., National Bureau of Economic Research.

Chatterjee, Sourav et al. 2006. “A generalization of the Lindeberg principle.” The Annals of

Probability 34 (6):2061–2076.

Chen, Xiaohong. 2007. “Large sample sieve estimation of semi-nonparametric models.” Hand-

book of econometrics 6:5549–5632.

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,

Whitney Newey, and James Robins. 2018. “Double/debiased machine learning for treat-

ment and structural parameters.” The Econometrics Journal 21 (1):C1–C68. URL

https://doi.org/10.1111/ectj.12097.

Chernozhukov, Victor, Iván Fernández-Val, and Siyi Luo. 2018. “Distribution regression

with sample selection, with an application to wage decompositions in the UK.” arXiv

preprint arXiv:1811.11603 .

138

https://doi.org/10.1111/ectj.12097


Chernozhukov, Victor, Ivan Fernandez-Val, and Martin Weidner. 2018. “Network and panel

quantile effects via distribution regression.” arXiv preprint arXiv:1803.08154 .

Chiou, Jeng-Min and Pai-Ling Li. 2007. “Functional clustering and identifying substruc-

tures of longitudinal data.” Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 69 (4):679–699.

Clemens, Michael A, Ethan G Lewis, and Hannah M Postel. 2018. “Immigration restrictions

as active labor market policy: Evidence from the mexican bracero exclusion.” American

Economic Review 108 (6):1468–87.

Das, Mitali, Whitney K Newey, and Francis Vella. 2003. “Nonparametric estimation of

sample selection models.” The Review of Economic Studies 70 (1):33–58.

De Paula, Áureo, Seth Richards-Shubik, and Elie Tamer. 2018. “Identifying preferences in

networks with bounded degree.” Econometrica 86 (1):263–288.

Durlauf, Steven N, Andros Kourtellos, and Artur Minkin. 2001. “The local Solow growth

model.” European Economic Review 45 (4-6):928–940.

Fan, Jianqing, Jinchi Lv, and Lei Qi. 2011. “Sparse high-dimensional models in economics.”

Annu. Rev. Econ. 3 (1):291–317.

Fernández-Val, Iván and Martin Weidner. 2016. “Individual and time effects in nonlinear

panel models with large N, T.” Journal of Econometrics 192 (1):291–312.

Goldsmith-Pinkham, Paul and Guido W Imbens. 2013. “Social networks and the identifica-

tion of peer effects.” Journal of Business & Economic Statistics 31 (3):253–264.

Graham, Bryan S. 2017. “An econometric model of network formation with degree hetero-

geneity.” Econometrica 85 (4):1033–1063.

Greene, William H. 1994. “Accounting for excess zeros and sample selection in Poisson and

negative binomial regression models.” .
139



Hahn, Jinyong and Hyungsik Roger Moon. 2010. “Panel data models with finite number of

multiple equilibria.” Econometric Theory 26 (3):863–881.

Haveman, Jon and David Hummels. ???? “Alternative hypotheses and the volume of

trade: the gravity equation and the extent of specialization.” Canadian Journal of Eco-

nomics/Revue canadienne d’économique .

Heckman, James. 1974. “Shadow prices, market wages, and labor supply.” Econometrica:

journal of the econometric society :679–694.

———. 1990. “Varieties of selection bias.” The American Economic Review 80 (2):313–318.

Heckman, James J. 1976. “The common structure of statistical models of truncation, sample

selection and limited dependent variables and a simple estimator for such models.” In

Annals of economic and social measurement, volume 5, number 4. NBER, 475–492.

———. 1979. “Sample selection bias as a specification error.” Econometrica: Journal of the

econometric society :153–161.

Helpman, Elhanan, Marc Melitz, and Yona Rubinstein. 2008. “Estimating trade flows:

Trading partners and trading volumes.” The quarterly journal of economics 123 (2):441–

487.

Hsiao, Cheng and M Hashem Pesaran. 2008. “Random coefficient models.” In The econo-

metrics of panel data. Springer, 185–213.

Hsiao, Cheng and A Kamil Tahmiscioglu. 1997. “A panel analysis of liquidity constraints

and firm investment.” Journal of the American Statistical Association 92 (438):455–465.

Hsieh, Chih-Sheng and Lung Fei Lee. 2016. “A social interactions model with endogenous

friendship formation and selectivity.” Journal of Applied Econometrics 31 (2):301–319.

Huang, Jian, Joel L Horowitz, and Fengrong Wei. 2010. “Variable selection in nonparametric

additive models.” Annals of statistics 38 (4):2282.
140



Jackson, Matthew O. 2008. “Average distance, diameter, and clustering in social net-

works with homophily.” In International Workshop on Internet and Network Economics.

Springer, 4–11.

Jackson, Matthew O and Asher Wolinsky. 1996. “A strategic model of social and economic

networks.” Journal of economic theory 71 (1):44–74.

Johnsson, Ida and Hyungsik Roger Moon. 2017. “Estimation of peer effects in endogenous

social networks: Control function approach.” USC-INET Research Paper (17-25).

Ke, Zheng Tracy, Jianqing Fan, and Yichao Wu. 2015. “Homogeneity pursuit.” Journal of

the American Statistical Association 110 (509):175–194.

Kyriazidou, Ekaterini. 1997. “Estimation of a panel data sample selection model.” Econo-

metrica: Journal of the Econometric Society :1335–1364.

Lee, Kevin, M Hashem Pesaran, and Ron Smith. 1997. “Growth and convergence in a multi-

country empirical stochastic Solow model.” Journal of applied Econometrics 12 (4):357–

392.

Lin, Chang-Ching and Serena Ng. 2012. “Estimation of panel data models with parameter

heterogeneity when group membership is unknown.” Journal of Econometric Methods

1 (1):42–55.

Luan, Yihui and Hongzhe Li. 2003. “Clustering of time-course gene expression data using a

mixed-effects model with B-splines.” Bioinformatics 19 (4):474–482.

Mammen, Enno, Bård Støve, and Dag Tjøstheim. 2009. “Nonparametric additive models

for panels of time series.” Econometric Theory 25 (2):442–481.

Mátyás, László and Patrick Sevestre. 2013. The econometrics of panel data: handbook of

theory and applications, vol. 28. Springer Science & Business Media.

141



Menzel, Konrad. 2015. “Strategic network formation with many agents.” Tech. rep., Working

papers, NYU.

Merlevède, Florence, Magda Peligrad, Emmanuel Rio et al. 2009. “Bernstein inequality and

moderate deviations under strong mixing conditions.” In High dimensional probability V:

the Luminy volume. Institute of Mathematical Statistics, 273–292.

Miao, Ke, Liangjun Su, and Wendun Wang. 2020. “Panel threshold regressions with latent

group structures.” Journal of Econometrics 214 (2):451–481.

Newey, Whitney K. 1997. “Convergence rates and asymptotic normality for series estima-

tors.” Journal of econometrics 79 (1):147–168.

———. 2009. “Two-step series estimation of sample selection models.” The Econometrics

Journal 12:S217–S229.

Ni, Zhong-Xin, Da-Zhong Wang, and Wen-Jun Xue. 2015. “Investor sentiment and its

nonlinear effect on stock returns—New evidence from the Chinese stock market based on

panel quantile regression model.” Economic Modelling 50:266–274.

Phillips, Peter CB and Donggyu Sul. 2007. “Transition modeling and econometric conver-

gence tests.” Econometrica 75 (6):1771–1855.

Powell, James L. 1994. “Estimation of semiparametric models.” Handbook of econometrics

4:2443–2521.

Profit, Stefan and Stefan Sperlich. 2004. “Non-uniformity of job-matching in a transi-

tion economy–A nonparametric analysis for the Czech Republic.” Applied Economics

36 (7):695–714.

Ridder, Geert and Shuyang Sheng. 2015. “Estimation of large network formation games.”

Tech. rep., Working papers, UCLA.

142



Rose, Andrew K. 2004. “Do we really know that the WTO increases trade?” American

Economic Review 94 (1):98–114.

Sarafidis, Vasilis and Neville Weber. 2015. “A partially heterogeneous framework for ana-

lyzing panel data.” Oxford Bulletin of Economics and Statistics 77 (2):274–296.

Sheng, Shuyang. 2018. “A structural econometric analysis of network formation games

through subnetworks.” forthcoming in Econometrica, mimeo UCLA .

Sperlich, Stefan, Dag Tjøstheim, and Lijian Yang. 2002. “Nonparametric estimation and

testing of interaction in additive models.” Econometric Theory 18 (2):197–251.

Su, Liangjun and Qihui Chen. 2013. “Testing homogeneity in panel data models with inter-

active fixed effects.” Econometric Theory 29 (6):1079–1135.

Su, Liangjun and Gaosheng Ju. 2018. “Identifying latent grouped patterns in panel data

models with interactive fixed effects.” Journal of Econometrics 206 (2):554–573.

Su, Liangjun, Zhentao Shi, and Peter CB Phillips. 2016. “Identifying latent structures in

panel data.” Econometrica 84 (6):2215–2264.

Su, Liangjun and Aman Ullah. 2011. “Nonparametric and semiparametric panel econometric

models: estimation and testing.” Handbook of empirical economics and finance :455–497.

Su, Liangjun, Xia Wang, and Sainan Jin. 2019. “Sieve estimation of time-varying panel data

models with latent structures.” Journal of Business & Economic Statistics 37 (2):334–349.

Sun, Yixiao. 2005. “Estimation and inference in panel structure models.” Available at SSRN

794884 .

Tarpey, Thaddeus. 2007. “Linear transformations and the k-means clustering algorithm:

applications to clustering curves.” The American Statistician 61 (1):34–40.

143



Terza, Joseph V. 1998. “Estimating count data models with endogenous switching: Sample

selection and endogenous treatment effects.” Journal of econometrics 84 (1):129–154.

Ullah, Aman and Nilanjana Roy. 1998. “Nonparametric and semiparametric econometrics

of panel data.” STATISTICS TEXTBOOKS AND MONOGRAPHS 155:579–604.

Vogt, Michael and Oliver Linton. 2017. “Classification of non-parametric regression functions

in longitudinal data models.” Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 79 (1):5–27.

———. 2020. “Multiscale clustering of nonparametric regression curves.” Journal of Econo-

metrics .

Wang, Wuyi, Peter CB Phillips, and Liangjun Su. 2018. “Homogeneity pursuit in panel data

models: Theory and application.” Journal of Applied Econometrics 33 (6):797–815.

144


	Semi-Nonparametric Panel Data Models with Latent Structures
	Introduction
	Penalized Sieve Estimation
	Semi-Nonparametric Panel Data Structure Models
	Sieve Approximation
	Penalized Estimation of  and f

	Asymptotic Properties
	Assumptions
	Preliminary Rates of Convergence
	Classification Consistency
	The Oracle Property and Asymptotic Distributions
	Determination of Number of Groups

	Simulation
	Data Generating Process
	Main Result
	Comparison with Complete Homogeneity and Heterogeneity
	Comparison with Misspecified Parametric model

	Conclusion
	Proofs of the Main Results
	Proofs of Technical Lemmas

	Nonparametric Additive Panel Regression Models with Grouped Heterogeneity
	Introduction
	Model
	Estimation
	Sieve Approximation
	Penalized Estimation of h and f

	Asymptotic Properties
	Preliminary Rates of Convergence
	Classification Consistency
	The Oracle Property and Asymptotic Distributions
	Determination of Number of Groups

	Simulation
	Data Generating Process
	Simulation Results

	Empirical Illustration
	Conclusion
	Proofs of the Main Results
	Proofs of Technical Lemmas

	A Network Sample Selection Model
	Motivation
	Model Setup
	Explanation of the Link Formation Process

	Estimation Strategy
	Asymptotic Properties
	Consistency
	Asymptotic Distribution when i has Finite Support
	Asymptotic Distribution when i is Continuous

	Extension to Directed Networks
	Conclusion




