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Humans use episodic memory to access features of past experience for flexible
decision making

Jonathan Nicholas
New York University
Department of Psychology
jonathan.nicholas@nyu.edu

Abstract

Our choices often require us to prioritize some features of our
rich sensory experience over others. Past work suggests that
humans solve this problem by focusing on relevant information
while discarding that which is irrelevant. Yet learning which
features to prioritize requires extensive experience. Moreover,
features that are irrelevant now may become relevant in the fu-
ture. One way to address these issues is by sampling individ-
ual richly encoded experiences from episodic memory. Here
we hypothesize that episodic memory is used to guide deci-
sions based on multiple features of past events. We test this
hypothesis using an experiment in which participants made
choices about the value of features that were present in mul-
tiple past experiences. We find evidence suggesting that par-
ticipants used episodic memories to flexibly access features of
past events during decision making. Overall, these results sug-
gest that episodic memory promotes adaptive decisions when
knowledge of multiple features is necessary.

Keywords: decision making; episodic memory; reinforcement
learning

Introduction

In many daily tasks only a few features of our experience are
relevant for the decisions we make, necessitating that some
features be prioritized over others. For example, deciding
where to go for lunch may generally depend more on a restau-
rant’s quality of food rather than whether a particular col-
league has joined you there in the past. Previous work has
argued that people tend to discard irrelevant features when
making these types of choices (Leong, Radulescu, Daniel,
DeWoskin, & Niv, 2017; Niv et al., 2015; Wilson & Niv,
2012). Yet this approach can be problematic should features
deemed previously irrelevant become relevant in the future—
if your colleague proposes to have lunch at the restaurant you
visited together last week but all you remember is the qual-
ity of the food, you will likely be dining alone. How do we
preserve the ability to make flexible decisions based on many
features of past events?

One way to solve this problem is by retaining information
about all previously encountered features to reference what-
ever is needed for a choice in the moment. Formalizing such
a strategy is possible using the computational framework of
reinforcement learning (RL), which delineates how people
gradually learn to estimate the value of choice options over
many past experiences (Sutton & Barto, 2018). This frame-
work provides a straightforward mechanism for summarizing
the past without maintaining a memory of every individual
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experience. In this way, RL agents can learn to choose be-
tween options with multiple features by tracking the value of
each feature separately. Yet this strategy does not scale; as the
number of features to be learned grows, so do computational
complexity and memory requirements. This well-known is-
sue, typically called the “curse of dimensionality” (Sutton &
Barto, 2018), limits the applicability of RL algorithms to de-
cisions in the real-world.

This issue can be mitigated by allowing an agent to iden-
tify a small subset of relevant features to attend to while fore-
going new information about the rest (Wilson & Niv, 2012).
Taking an approach like this works well under circumstances
in which it is possible to infer a feature’s relevance, and it
is likely that people deploy such a strategy in these kinds of
environments (Leong et al., 2017; Niv et al., 2015). But aug-
menting RL with attention enforces rigid learning, ultimately
harming future choices that may depend on features that were
initially ignored. Separately, standard RL algorithms are most
successful when experiences are certain to be repeated. Yet
due to the sheer richness of our sensory input, actual experi-
ences are unlikely to be encountered more than a single time.

Instead, another way to learn information about many fea-
tures is to try and maintain the “raw data” of experienced
events (Gershman & Daw, 2017; Lengyel & Dayan, 2008).
Humans have developed a fast and dedicated memory system
for precisely this purpose: episodic memory. Episodic mem-
ory has two primary properties that, together, distinguish it
from other forms of memory: i) the ability to store individual
events experienced in one-shot and ii) the ability to store the
many spatial and temporal details of these events (Tulving,
1972). Importantly, these properties are each ideally suited to
fill the gaps left by traditional RL approaches.

Although it has long been suggested that episodic mem-
ory may provide a number of advantages for adaptive behav-
ior (Anderson & Milson, 1989; Bartlett, 1932; Schacter &
Addis, 2007), it has only recently been found that episodic
memory is frequently relied upon during decision making.
In particular, past work has focused on the one-shot nature
of episodic memory, finding that it allows humans to refer-
ence single past events to support fast and accurate decisions
(Bornstein & Norman, 2017; Bornstein, Khaw, Shohamy, &
Daw, 2017; Duncan, Semmler, & Shohamy, 2019; Mason,
Madan, Simonsen, Spetch, & Ludvig, 2020; Nicholas, Daw,
& Shohamy, 2022; Plonsky, Teodorescu, & Erev, 2015). De-

In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



A B
1. Encoding 3. Decision ==
w animal R;& g
b take leave
B 0 W
+3 which? -4 - - §
Q
- Memory - -
free recall... .

2. Distractor

g

4L

Category

Figure 1: Task Design. A) The four phases completed by participants in each round of the experiment. B) The full set of images
shown to participants. Six images were sampled to be shown in each round. Here, an example six images are highlighted in
red. Images were sampled such that a differing number (between 1 and 3) were required to compute the value of each feature.

spite this progress, no studies have investigated whether the
ability of episodic memory to encode experiential details pro-
vides its own advantages for choice.

By storing rich details of experienced events, episodic
memory should theoretically provide substantial benefits over
traditional learning algorithms. Specifically, episodic mem-
ory may grant us the ability to make flexible decisions about
stimuli with multiple feature dimensions, such as those that
are commonly encountered outside of the laboratory. Rather
than focusing only on some currently prioritized features
when encoding an event, an agent using episodic memory
can instead encode the full event with all features, deferring
feature selection to a later time, such as when a choice is re-
quired. This proposal is based on previous suggestions that
an attentional filter may be applied to multidimensional stim-
uli at choice time rather than at the time of encoding (Dayan,
Kakade, & Montague, 2000; Gershman & Daw, 2017). The
flexibility afforded by this approach may be one reason for
our ability to remember so many details of the past, but this
idea has yet to be tested experimentally.

Here we ask whether episodic memory is indeed used to
guide decisions based on multiple features of past events. We
test this hypothesis using a novel behavioral experiment in
which participants were required to make choices about fea-
tures that were present in multiple past experiences. Criti-
cally, participants were free to adopt either an RL-style strat-
egy or an episodic memory-based strategy when completing
the experiment. After first validating this task across two in-
dependent samples, we find evidence suggesting that partic-
ipants tend to reference episodes during these types of de-
cisions. Overall, our results suggest that humans use their
episodic memory to access features of past experience during
decision making.

Methods
Participants

We recruited undergraduate students from the New York Uni-
versity subject pool. Participants were compensated with
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course credit. 83 participants with normal or corrected-to-
normal vision were recruited to participate in the primary ex-
periment, and another 58 participants were recruited to par-
ticipate in a replication sample. Participants were excluded
if they indicated on a post-task questionnaire that they either
i) wrote any information down during the task or ii) did not
try their best or reported being distracted throughout the task.
Participants were further excluded if they provided nonsense
responses to this questionnaire. Based on these criteria, 16
subjects were excluded from the primary sample and 11 sub-
jects were excluded from the replication sample, leading to
final Ns of 67 and 47 in each sample, respectively.

Experimental Procedure

Participants completed a four-part experiment over the course
of a single online session designed to measure whether people
access individual episodes to make decisions based on multi-
ple features of past experiences (Figure 1A). Completing all
four parts (a “round”) took approximately five minutes, and
participants completed five rounds in total. Unless otherwise
noted, all procedures were identical between the main and
replication samples.

Stimuli We selected stimuli that varied across two features:
color (red, yellow, blue, or green) and category (animal, ob-
ject, food, scene). A total of sixteen possible items were used
throughout the task, with a subset of six pseudo-randomly
sampled to be used in each round. All items and an example
subset (highlighted in red) are shown in Figure 1B.

Encoding Phase In the first part of a round, participants
completed a task designed to allow them to encode individual
items and their associated value (which we refer to through-
out as an “episode”). Each item was presented on the screen
for 1 second, after which its value appeared alongside it for
another 6 seconds. An item’s value was a pseudo-randomly
sampled integer between -9 and 9 (excluding 0). Immediately
after viewing the episode, participants completed an attention
check consisting of the item alongside two options, either the



value that was just shown or another randomly selected value.
They had 3 seconds to respond. Each episode was viewed
once, for a total of six trials per round.

Distractor Phase Immediately following the encoding
task, participants completed a 90 second distractor task to
prevent active rehearsal of the episodes. This distractor con-
sisted of a 2-back working memory task in which participants
were shown one of several letters in sequence. Participants
were asked to identify whether the current letter matched the
one presented two steps earlier.

Decision Phase Immediately following the distractor task,
participants then made up to six decisions based on the fea-
tures of each item (all six possible decisions were made in the
main sample, while only a subset of three out of six decisions
were made in the replication sample.). Each decision con-
sisted of an offer in which a single feature (e.g. “animal”) was
displayed on the screen, and participants were asked to either
take or leave this offer. Participants were informed that the
value of each offer consisted of the sum of each episode that
was described by the offer (e.g. the the value of the “animal”
offer would be the sum of all animals seen during encoding),
and that they should take positive offers and leave negative
offers. Participants had 7.5 seconds to make each decision.

Importantly, there are at least two possible strategies that
can be used to make good decisions in this task. The first
(which we refer to as an incremental strategy) is an RL-
style strategy that relies on extracting useful information from
episodes at encoding time (in this case, a running sum for
each of the six features). This strategy does not require
that traces of each episode be maintained following encod-
ing because the value of each offer is effectively computed
at encoding time. In contrast, the second (which we refer
to as an episodic strategy) relies on carrying the memory of
each episode through to the decision phase, and then using
these memories to compute an offer’s value on-the-fly. This
strategy offers the advantage of being more flexible, as each
episode can be used and re-used according to the demands of
the present decision.

Memory Phase Finally, immediately after the decision
task, we assessed participants’ memory for the episodes in
two ways. First, participants were asked to freely recall the
items that they saw in each round. They were provided with
six empty text boxes and were told to enter the items in the
order in which they remembered them. Participants were fur-
ther told to halt their recall and move on to the next task if
they could no longer remember any items. Following the free
recall portion, participants were shown each item and were
asked to provide their memory for the value of each item.

Analytical Approach

Behavioral Models All data was analyzed with regression
models estimated using hierarchical Bayesian inference such
that group-level priors were used to regularize subject-level
estimates. All predictors were specified as fixed effects along-
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side random slopes and intercepts that were allowed to vary
across subjects. Logistic regression was used to model choice
data, linear regression with a shifted log-normal response
distribution was used to model reaction time data, and lin-
ear regression with a normal response distribution was used
otherwise. The joint posterior was approximated using No-
U-Turn Sampling as implemented in stan (Hoffman & Gel-
man, 2014). Four chains with 2000 samples (1000 discarded
as burn-in) were run for a total of 4000 posterior samples
per model. Chain convergence was determined by ensuring
that the Gelman-Rubin statistic R was close to 1. Default
weakly-informative priors implemented in the brms package
were used for each regression model (Biirkner, 2017). For
all models, fixed effects are reported in the text as the mean
of each parameter’s marginal posterior distribution alongside
95% credible intervals (CIs), which indicate where that per-
centage of the posterior density falls. Parameter values out-
side of this range are unlikely given the model, data, and pri-
ors. Thus, if the range of likely values does not include zero,
we conclude that a meaningful effect was observed.

Model Comparison Where applicable, model fit was as-
sessed by separating the data into 10-folds and performing a
cross-validation procedure by leaving out N/10 subjects per
fold, where N is the number of subjects in each sample. The
expected log pointwise predictive density (ELPD) was then
computed and used as a measure of out-of-sample predictive
fit for each model. Higher ELPD values suggest better model
fit, as they indicate a higher likelihood of accurately predict-
ing new data.
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Figure 2: Overall choice performance. A) The average pro-
portion of correct choices (choosing take when an offer is
objectively positive or choosing leave when an offer is ob-
jectively negative) made by each subject across rounds (indi-
vidual points) and at the group-level (filled points). B) The
proportion of take choices that were made as a function of
objective summed offer value. Points are binned value and
the line represents a logistic regression fit. All error bars and
bands represent 95% confidence intervals.



Overall choice performance

Before turning to answer our primary question, we first in-
vestigated whether participants learned to make effective de-
cisions in the task. Participants’ choices reflected their ability
to compute the value of each offer by summing over indi-
vidual experiences. At the group-level, they tended to cor-
rectly choose to take positive offers and leave negative offers
(Main sample: B = 0.61, 95% CI = [0.58, 0.64]; Replication
sample: Bo = 0.59, 95% CI = [0.55, 0.63]; Figure 2A). Fur-
thermore, participants were sensitive to the summed value of
each offer, as they were more likely to choose to take an offer
that was more positive, and to leave an offer that was more
negative (Main sample: Baue = 0.17, 95% CI = [0.13, 0.21];
Replication sample: B,qm. = 0.14, 95% CI = [0.08, 0.20];
Figure 2B). Overall, these results indicate that participants
successfully performed the task.

Overall memory performance

Our next goal was to examine whether participants main-
tained memory traces for the individual episodes encoded in
the first part of each round. To accomplish this, we analyzed
participants’ explicit responses on the memory phase, which
consisted of free recall and value memory questions.

When asked to freely recall the six items they had seen in
each round, participants in both samples tended to forget only
one item on average and were highly accurate (Main Sam-
ple: Bo =0.78, 95% CI = [0.73, 0.82]; Replication Sample:
Bo = 0.82, 95% CI = [0.78, 0.86]; Figure 3A). To further
characterize whether this recall adhered to typical properties
of episodic memory, we asked whether items that were pre-
sented close together in time at encoding were more likely
to be recalled after one another (commonly referred to as the
contiguity effect (Kahana, 2020)). To do so, we computed the
conditional response probability, which quantifies the likeli-
hood of recalling a specific item based on its position in the
initial encoding order relative to a previously recalled item.
Replicating classic findings in episodic memory, we found
that items immediately following or preceding a recalled item
in the initial encoding order were more likely to be recalled
next (Figure 3B).

Finally, we assessed participants’ ability to accurately re-
call the value of each item presented in a round. Overall,
there was a strong positive relationship between participants’
remembered value of each item and the item’s actual value
(Main sample: Brecatiedvaiue = 0.51, 95% CI = [0.43, 0.58];
Replication sample: Biecaiieavaine = 0.44, 95% CI = [0.34,
0.54]; Figure 3C).

Together, these results demonstrate that participants re-
tained strong memories for each episode beyond the deci-
sion making phase. Critically, while these findings indicate
that individual memories were available for potential recall
at choice time, they do not provide direct evidence for any
particular decision making strategy. Thus, we next sought to
determine whether participants’ episodic memories were re-
called during choice.
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Impact of episodes on choice

Having established that participants generally made good de-
cisions in the task and exhibited strong memory for both the
items and values of individual episodes, we were next po-
sitioned to investigate whether participants used either an
incremental or episodic strategy for their decisions. Only
an episodic strategy relies on information contained in sin-
gle episodes. Accordingly, we reasoned that any impact of
individual episodes on choice should provide evidence for
this strategy. To test this idea, we used participants’ re-
sponses during the memory phase to guide a re-analysis of
their choice behavior.

We first asked whether participants’ choices were better
predicted by their reported memories rather than each offer’s
veridical value. To do so, we computed each participant’s
recalled value of an offer by summing over the remembered
value of each offer-relevant item that was also recalled dur-
ing the free recall phase. Participants’ choices were sensitive
to recalled offer value (Main sample: Becaiteavaiue = 015,
95% CI = [0.11, 0.18]; Replication sample: Becarieavaive =
0.12, 95% CI = [0.08, 0.17]; Figure 4A), and direct com-
parisons revealed that recalled offer value better predicted
choices relative to the true value of an offer (Main sample:
ELPDyye = -875.12, SE = 13.13, ELPD,ocqiiea = -850.02,
SE = 14.05; Replication sample: ELPD;,,, = -871.18, SE
= 13.07, ELPDecatieq = -854.71, SE = 14.31). This result
indicates that information contained in individual episodes,
namely the identity and value of items, affected participants’
choices.

To further examine which strategy was used during the
task, we next considered the amount of time it took for par-
ticipants to make their choices. We reasoned that recalling
an individual episode should take time, and that referencing
more episodes during choice should lead to longer decisions.
Importantly, an incremental strategy makes no such predic-
tion, as all choices can be based on a single summed value
regardless of the number of episodes that were present at en-
coding time. Thus, the presence of a positive relationship be-
tween the number of memories recalled and response times
during choice is evidence for an episodic strategy.

In addition to using this analysis to rule out the presence
of either strategy, we tested two specific hypotheses about
how episodes may be used to compute the value of each of-
fer. The first was that participants may have recalled only
memories that matched the feature presented during an offer
(e.g. animal), while ignoring those that did not (e.g. recalling
only animals). We tested this idea by examining whether the
number of recalled memories that matched each offer pre-
dicted participants’ response times. Our second hypothesis
was that participants may have instead approached their deci-
sions by determining whether each item they remembered in
a round matched an offer, or not (e.g. recalling all episodes).
We tested this second idea by examining whether participants
took more time to respond to offers during rounds in which
they recalled a greater number of items.
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Figure 3: Overall memory performance. A) Average accuracy on the free recall task, computed as the proportion of correctly
recalled items by each subject across rounds (individual points) and at the group-level (filled points). B) Lag-conditional
reponse probability (CRP) curve demonstrating the classic contiguity effect in free recall data. The line represents the group-
level average. C) The relationship between remembered item value and actual item value. Points are binned value and the line
represents a linear regression fit. All error bars and bands represent 95% confidence intervals.

In line with this second possibility, participants took longer
to make choices on rounds in which they remembered more
items during the subsequent free recall phase (Main sample:
Bustemories = 0.05, 95% CI = [0.02, 0.09]; Replication sam-
ple: Bustemories = 0.08, 95% CI = [0.03, 0.13]; Figure 4B).
This finding provides evidence that an episodic strategy was
indeed used for decisions throughout the task. Interestingly,
there was no consistent effect of the number of matching
memories on response time across our samples (Main sam-
ple: Bupemories = -0.05, 95% CI = [-0.08, -0.02]; Replication
sample: Bupemories = 0.01, 95% CI = [-0.06, 0.10]).

Taken together, these findings support the hypothesis that
people use episodic memories to make decisions that require
knowledge of the value of multiple features of past events.
Further, they suggest that such an episodic strategy relies
upon referencing an overall pool of memories during each
choice rather than isolating recall to only those memories that
are most relevant for a choice.

Discussion

Research on learning about and choosing between stimuli
with multiple features has focused primarily on how repeated
experiences with these stimuli allow people to filter out infor-
mation about task-irrelevant features (Leong et al., 2017; Niv
et al., 2015; Wilson & Niv, 2012). This approach has suc-
cessfully described choice behavior under scenarios in which
stimuli are both highly familiar and when it is clear which
features are most valuable in the present. Yet neither of
these assumptions are commonly met outside of laboratory
experiments, and past explanations fail to capture situations
in which they are weakened.

Here we demonstrate that augmenting decision making
with episodic memory can fill the gaps left by this work.
We used a task that asked participants to compute the over-
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all value of different features from the value of experiences
seen only once, and found evidence suggesting that they ref-
erenced these episodes at the time a decision was made. In
particular, we found that participants’ subsequent memory
for individual episodes explained multiple aspects of their
choices, including the time it took to generate a response as
well as the response that was ultimately given.

While these findings lend initial support to the idea that
episodic memory is used for decisions requiring flexible
knowledge about multiple stimulus features, the present work
cannot speak to whether memories were directly accessed
during choice. This is because our memory measures were
collected immediately following choice rather than during the
choice itself. We did not ask participants to directly recall
items during their decisions because our aim was to assess
the strategy participants relied upon without instructing them
to use any strategy in particular, and we reasoned that this ap-
proach may bias them toward using their episodic memories
for choice.

One way to circumvent this limitation would be to record
neural activity during the decision phase. For example, past
approaches using magnetoencephalography (MEG) have suc-
cessfully decoded both the recall of individual episodes dur-
ing standard memory tasks (Michelmann, Staresina, Bow-
man, & Hanslmayr, 2019; Wimmer, Liu, Vehar, Behrens, &
Dolan, 2020) and the rapid replay of sequences of memo-
ries during decision making (Liu, Mattar, Behrens, Daw, &
Dolan, 2021; McFadyen, Liu, & Dolan, 2023; Wimmer, Liu,
McNamee, & Dolan, 2023). One possible future direction
would be to similarly attempt to decode memory access in
the present task. In addition to providing direct evidence for
the recall of individual memories during choice, taking such
an approach may provide multiple insights into the ways in
which value is computed from memories. For example, the
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present findings suggest that participants likely recalled all
possible memories for each choice, and participants also re-
called items according to the temporal context in which they
were encoded. A neural decoding study could directly test hy-
potheses about both the number and order of memories that
are recalled during decision making.

Another limitation of our design was that, at encoding time,
participants were likely aware of the features that would be
needed for future choices. This type of information is rarely
available in the real-world. While our results demonstrate
that episodic memory is used even under these circumstances,
we expect that episodes should provide even more benefits
when this information is unknown. We plan to explore this
possibility in future studies.

Separately, other work has suggested that people tend to
trade off between different systems for learning and memory
depending on which is most dependable for the task at hand
(Daw, Niv, & Dayan, 2005; Lee, Shimojo, & O’Doherty,
2014). A recent study in this vein found that episodic mem-
ory is recruited for decisions when incrementally constructed
estimates are uncertain or difficult to track, and that individ-
uals with worse episodic memory tend to rely more on in-
cremental learning instead (Nicholas et al., 2022). Based on
this work, it seems likely that, while episodic memory was
used in the present task, there may exist situations in which
incremental strategies are more dominant. Another potential
direction may be to alter the relative ease in which either strat-
egy can be used. Here we kept equivalent the number of in-
dividual values that must be tracked at encoding time across
both strategies (each round had either the value of six possible
episodes to remember or of six possible features to sum over).
Yet these quantities could be altered relative to one another in
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future versions, such that increasing the number of memories
may push people toward relying upon an incremental strategy
at encoding, whereas increasing the number of features may
instead give preference to episodic memory. Regardless, here
we found that episodic memory dominated when the amount
of information to be learned was matched across strategies.

Finally, the present work connects at least two established
but largely separate literatures on memory and choice. First, a
number of studies focused on decision making have explored
the ways in which individual experiences may be recalled for
choice (Biele, Erev, & Ert, 2009; Plonsky et al., 2015). This
work, typically grouped under the heading “decision by sam-
pling”, proposes that decision variables may be constructed
by drawing samples from memory, and explains a number
of ways in which peoples’ choice behavior differs when in-
formation is learned from experience rather than instructed
descriptions (Hertwig & Erev, 2009). Second, other work
has proposed that episodic memory plays a critical role in
our ability to infer new information about the world by al-
lowing the formation of new links between past experiences
(Schlichting & Preston, 2017; Whittington et al., 2020; Bider-
man, Bakkour, & Shohamy, 2020). Critical to this proposed
role is episodic memory’s ability to store multiple features of
experience, because each feature provides another opportu-
nity to relate past events with one another. Here we connect
these ideas by suggesting that features of episodes may allow
for the formation of new decision variables on-the-fly, when
they are needed for a choice.

In conclusion, our findings support the idea that one func-
tion of episodic memory is to allow adaptive decisions to be
reached when knowledge of the value of multiple features is
necessary.
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