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The capacity for human exercise performance can be enhanced with prolonged exercise
training, whether it is endurance- or strength-based. The ability to adapt through exercise
training allows individuals to perform at the height of their sporting event and/or maintain
peak physical condition throughout the life span. Our continued drive to understand how to
prescribe exercise to maximize health and/or performance outcomes means that our knowl-
edge of the adaptations that occur as a result of exercise continues to evolve. This review will
focus on current and new insights into endurance and strength-training adaptations and will
highlight important questions that remain as far as how we adapt to training.

In response to exercise, humans alter the phe-
notype of their skeletal muscle; changing the

store of nutrients, amount and type of metabolic
enzymes, amount of contractile protein, and stiff-
ness of the connective tissue, to name but a few
of the adaptations. The shift in phenotype is the
result of the frequency, intensity, and duration of
the exercise in combination with the age, genetics,
gender, fueling, and training history of the indi-
vidual (Joyner and Coyle 2008; Brooks 2011).
Therefore, even though exercise is often referred
to as a single stimulus and we have looked for
generalized responses, how any individual re-
sponds to exercise training will vary based on
things we understand and (likely) many more
that we do not. As is the norm, this article will
focus on the things that we already understand,
but will highlight important questions that re-
main as far as how we adapt to training.

Exercise is generally separated into aerobic/
endurance and power/strength activities. En-
durance exercise is classically performed against
a relatively low load over a long duration, where-
as strength exercise is performed against a rela-
tively high load for a short duration. However,
pure endurance and pure strength exercise is
rare. Most activities combine endurance and
strength and this type of training has been
termed concurrent exercise. Furthermore, re-
cent work showing that short high-intensity ex-
ercise can lead to endurance adaptations and
low-load exercise that approaches failure can
lead to strength adaptations has challenged
our understanding of which type of exercise
results in which phenotypic shift in muscle.
Classic endurance training is known to result
in enhanced cardiac output, maximal oxygen
consumption, and mitochondrial biogenesis
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(Holloszy 1967; Coyle et al. 1983, 1986, 1988;
Holloszy and Coyle 1984; Favier et al. 1986).
The overall improvement in both central and
peripheral tissues allows for enhanced exercise
economy and a greater ability for an individual
to run for longer distances and times (Brooks
2011). In contrast, strength training results in
increases in muscle size (cross-sectional area
[CSA]), neural adaptations (motor output),
and improved strength (maximal force produc-
tion) (Narici et al. 1989; Staron et al. 1991; Pyka
et al. 1994; Häkkinen et al. 1998a). These pos-
itive alterations in physical capacity allow an
individual to be stronger, more powerful, and
maintain a better quality of life throughout the
life span (Visser et al. 2005; Goodpaster et al.
2006; Newman et al. 2006).

Indeed, both endurance and strength-train-
ing adaptations not only contribute toward
potential sporting excellence but, in most in-
stances, contribute toward the delayed onset of
age-related diseases (McGregor et al. 2014;
Zampieri et al. 2015; Cartee et al. 2016). This
article focuses on recent concepts and new lit-
erature in the field of endurance and strength
training and how this new information has
changed the dogma of how exercise enhances
physical performance and overall adaptation.
Finally, the combination of endurance and
strength exercise and recent advances in our un-
derstanding of concurrent training will also be
briefly discussed in the latter part of this article.

ENDURANCE TRAINING

Endurance training leads to adaptations in both
the cardiovascular and musculoskeletal system
that supports an overall increase in exercise
capacity and performance (Brooks 2011). The
local adaptations in skeletal muscle, such as in-
creased mitochondrial biogenesis and capillary
density, aid in the body’s ability to transport
and use oxygen to generate energy and therefore
delay the onset of muscle fatigue during pro-
longed aerobic performance (Joyner and Coyle
2008). The mitochondrion is the main
organelle for energy production through the
generation of adenosine triphosphate (ATP)
via the electron transport system (ETS), using

substrates generated in the tricarboxylic acid
(TCA) cycle (Egan and Zierath 2013; Bishop
et al. 2014). Recent studies have begun to inves-
tigate the impact of exercise-induced mito-
chondrial biogenesis adaptations from the per-
spective of mitochondrial content and function
with varying exercise intensity paradigms (Ser-
piello et al. 2012; Granata et al. 2016a,b; Mac-
Innis et al. 2016). Studies investigating the role
of the intensity and volume of exercise on mi-
tochondrial adaptations have been conducted
using long slow-distance (LSD) training, sprint
interval training ([SIT]; �30 sec maximal
bouts) and high-intensity interval training
(HIIT; 1–4 min all-out bouts) (Gibala et al.
2014). Traditional LSD training entails an indi-
vidual sustaining a submaximal workload for a
long period of time, or successfully completing
a fixed distance/time through a higher than av-
erage power output (Coyle 1995). On the other
hand, HIIT and SIT require the individual to
perform repeated bouts at close to maximal in-
tensity for a short period of time with a reduced
training volume (Laursen and Jenkins 2002; Gi-
bala et al. 2006). Many studies have highlighted
similarities in adaptations for mitochondria
markers (e.g., peroxisome proliferator-acti-
vated receptor g coactivator 1a [PGC-1a])
and skeletal muscle oxidative capacity in both
training models (Gibala et al. 2009; Little et al.
2010b, 2011; Jacobs et al. 2013b; Cochran et al.
2014), and, therefore, HIIT/SIT has been pro-
posed as a time-effective strategy for enhancing
aerobic adaptations (Gibala and McGee 2008;
Gillen and Gibala 2013).

More recent studies have begun to directly
address the importance of exercise intensity ver-
sus volume in relation to mitochondrial content
and function (Daussin et al. 2008; Jacobs et al.
2013b; Cochran et al. 2014; Granata et al. 2016b;
MacInnis et al. 2016). Granata and colleagues
(2016b) used all three exercise protocols (LSD,
HIIT, and SIT), matching volume in the tradi-
tional and HIIT groups, on young moderately
trained men. After 4 wk of training, the investi-
gators observed a 25% increase in maximal
mitochondrial respiration only in the SIT
group, with no changes seen in either the LSD
or HIIT groups. The increased level of mito-
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chondrial respiration within the SIT group was
accompanied by changes in PGC-1a, p53, and
PHF20 protein content. PHF20 is important
for both stabilizing and up-regulating p53 (Cui
et al. 2012; Park et al. 2012), whereas p53 is a
tumor suppressor and involved in the regula-
tion of mitochondrial function (Matoba et al.
2006; Park et al. 2009). In contrast to the Gra-
nata study, HIITalone has been shown to influ-
ence mitochondrial content and respiration
(Daussin et al. 2008; Jacobs et al. 2013b). Jacobs
et al. (2013b) observed increased mitochondrial
respiration along with alterations in content
(measured by cytochrome c oxidase [COX] ac-
tivity) culminating in increased exercise capac-
ity after only 2 wk of HIIT training. Further
support for mitochondrial adaptations with
HIIT comes from a within-subject study that
showed 2 wk of training resulted in increased
mitochondrial volume density and respira-
tion (MacInnis et al. 2016). The discrepancies
between these studies may be because of differ-
ences in subject training status, experimental
design, and methodological measures imple-
mented for assessing mitochondrial adapta-
tions. The optimal study to conclusively address
this issue would use all three training models
and a within-subject crossover design.

When the intensity of training is maintained
and only the volume manipulated, the mito-
chondrial adaptation differs again, using a de-
sign in which 10 subjects performed HIITonce a
day three times a week, then twice a day three
times a week, followed by once a day two times a
week. Granata and colleagues (Granata et al.
2016b) showed that mitochondrial respiration
and citrate synthase (CS) activity increased
(�50%) during only the high-volume training
period. The increase in mitochondrial respira-
tion was accompanied by increased ETS and
regulatory proteins, such as PGC-1a, p53, and
PHF20. Following 2 wk of decreased training
volume, mitochondrial-specific respiration re-
mained high, with a slight decrease in CS activ-
ity being the only sign of detraining. Overall,
these studies suggest that high-intensity training
is important for increasing mitochondrial ac-
tivity, whereas a greater training volume is need-
ed to increase mitochondrial mass (Fig. 1)

(MacInnis et al. 2016). However, the predomi-
nant marker used to determine alterations in
mitochondrial content has been CS activity.
Future studies should look to use electron mi-
croscopy and identify other markers that may
more be reflective of mitochondrial activity
(e.g., subsarcolemma vs. intermyofibrillar loca-
tion of mitochondria) and mass changes in
skeletal muscle.

Classically, PGC-1a has been anointed as
the “master regulator of mitochondrial biogen-
esis” and a fundamental component of exercise-
induced adaptations with endurance training
(Baar et al. 2002; Pilegaard et al. 2003; Little et
al. 2010a). In recent years, another protein, p53,
has emerged as a key player in substrate metab-
olism and mitochondrial biogenesis (Park et al.
2009; Saleem and Hood 2013; Bartlett et al.
2014). p53 was the first tumor suppressor pro-
tein discovered (Baker et al. 1989; Nigro et al.
1989). In this role, p53 regulates cell-cycle ar-
rest, apoptosis, angiogenesis, DNA repair, and
cell senescence (Levine et al. 2006). Initial stud-
ies using mouse knockout (KO) models lacking
p53 identified a further role for this protein in
controlling mitochondrial content, with KO
mice displaying reduced mitochondria in both
subsarcolemmal and intermyofibrillar com-
partments, together with reduced COX activity
and PGC-1a compared with wild-type animals
(Saleem et al. 2009). Furthermore, the loss of
p53 and subsequent decrease in mitochondrial
content and function resulted in reduced exer-
cise capacity and performance (Park et al. 2009).
The current proposed mechanisms for how
p53 may regulate mitochondrial biogenesis is
through targeting the mitochondrial genome
and specifically interacting with mitochondrial
transcription factor A (Tfam) (Saleem and
Hood 2013). Saleem and Hood (2013) reported
that, with acute exercise and muscle contrac-
tion, p53 translocates from the nucleus and pos-
itively modulates Tfam activity. In terms of cur-
rent human data, Bartlett et al. (2012) observed
increased p53 phosphorylation 3 h postexercise,
although this alteration in p53 phosphorylation
occurred after acute bouts of both continuous
endurance and HIIT exercise. In contrast, Gra-
nata and colleagues showed that p53 increases
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with maximal sprint training, whereas HIIT
or continuous endurance training has no effect
on p53 content (Granata et al. 2016b). It is
important to note that the regulation of p53
may not only be influenced by exercise intensity
but also the nutritional status of the working
muscle during training sessions, for example,
reduced carbohydrate availability (Bartlett et
al. 2013). Future research is required to un-
derstand the time course of p53 activation and
involvement in mitochondrial biogenesis with
respect to endurance exercise (Bartlett et al.
2014). Understanding this signaling cascade
will not only be important from a human per-
formance perspective but also from a health
standpoint in which exercise might be used to
support treatments in cancer therapy (Saleem
and Hood 2013).

In addition to alterations in oxygen deliv-
ery, substrate metabolism, and mitochondrial
mass within skeletal muscle after endurance
training, other factors contribute toward the
resulting enhanced exercise performance and
improved running economy (Saunders et al.
2004; Barnes and Kilding 2015). One such fac-
tor is the stiffness of the muscle–extracellular
matrix (ECM)–tendon unit, because adapta-
tions within this system will enhance the body’s

ability to store and use elastic energy more ef-
ficiently. An increase in elastic energy storage
and recoil results in decreased ground contact
time and reduced energy cost (Arampatzis et al.
2006; Fletcher et al. 2010). Indeed, runners who
display and/or develop a longer and stiffer
musculotendonous system appear to have a
lower oxygen uptake (VO2) when performing
at submaximal running velocities (Craib et al.
1996; Albracht and Arampatzis 2013; Barnes
et al. 2014). A second factor contributing to
improved running and cycling economy is neu-
ral adaptation. Muscle recruitment patterns
vary greatly between highly trained individuals
and novice counterparts (Paavolainen et al.
1999b,c; Chapman et al. 2008). Highly trained
individuals may have the capacity to elicit in-
creased muscle coactivation, leg stiffness, and
greater eccentric to concentric muscle activity,
which allows for more efficient usage of stored
elastic energy, lowering the metabolic cost of
exercise (Paavolainen et al. 1999b; Heise et al.
2008). In contrast, stretching interventions
used to enhance flexibility tend to decrease
economy, although these results have been
equivocal (Craib et al. 1996; Nelson et al.
2001; Shrier 2004). Some of the possible rea-
sons for the contrasting evidence with stretch-

Mitochondrial respiration Mitochondrial content

VolumeIntensity

SIT HIIT LSD

Figure 1. Schematic diagram of training intensity and volume on mitochondrial respiration versus content
adaptations through endurance training. Recent evidence suggests that increases in exercise intensity (sprint
interval training [SIT]; high-intensity interval training [HIIT]) lead to enhanced mitochondrial respiration and
function, whereas prolonged low-intensity and high-volume (long slow-distance [LSD] training) endurance
exercise appears to aid in increased mitochondrial content within skeletal muscle.
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ing include the length of intervention program
(acute vs. chronic), the influence of gender in
pooled studies, methodological designs, and
treadmill familiarization (Craib et al. 1996;
Nelson et al. 2001; Shrier 2004; Allison et al.
2008; Trehearn and Buresh 2009).

Training to improve the connective tissue
stiffness and neuromuscular components is
quite different than classic endurance training.
Here, training is based on strength/power and
plyometric exercises to heighten the neuromus-
cular adaptations (e.g., muscle activation,
motor unit recruitment) and the stiffness of
the muscle–ECM–tendon unit (Storen et al.
2008; Yamamoto et al. 2008; Beattie et al.
2014). A good example of this work is an early
study by Paavolainen and colleagues (1999a)
who investigated the impact of explosive-type
strength training in well-trained endurance
athletes on endurance performance (5-km
time trial, running economy, etc.). After 9 wk
of training, the investigators reported a 3% im-
provement in 5-km time trial with a tendency to
decrease VO2max. The improved performance
resulted largely from improvements in running
economy. Subsequent research has highlighted
an additive effect of incorporating a strength-
training program into the training of predomi-
nately endurance-trained athletes, both during
preseason and in season (Rønnestad et al. 2010).
The proposed mechanisms for these improve-
ments in endurance performance are improved
neural function (maximal voluntary contrac-
tion, rate of force development [RFD]), in-
creases in type IIA muscle fibers (less fatigable),
and increased muscle–ECM–tendon stiffness
(Aagaard and Andersen 2010; Aagaard et al.
2011). Further, the addition of strength training
has been observed to improve exercise economy
better than endurance training alone (Sunde
et al. 2010; Beattie et al. 2014; Vikmoen et al.
2015) and the inclusion of strength training
may enhance performance during the later
stages of competition (Rønnestad et al. 2011).
One way to distinguish between the muscle–
ECM–stiffness and neural adaptations would
be to perform the strength/plyometric training
on one leg and determine whether cross-limb
transfer has resulted in improved performance

in the opposite limb indicative of a neural adap-
tation (see below). However, these experiments
have yet to be performed with endurance-type
exercise. Further, caution is warranted for
strength training to improve endurance perfor-
mance as there is also evidence to suggest that
increasing endurance and strength training vol-
ume together may lead to impairments in both
adaptations and performance (Hickson 1980;
Rønnestad et al. 2012; Jones et al. 2013).

The last adaptation to endurance exercise
training that we would like to highlight is muscle
hypertrophy and growth (Harber et al. 2009b,
2012; Konopka and Harber 2014). Over a 12-wk
endurance-training program, muscle mass
has been reported to increase by 7% to 11%
(Konopka et al. 2010; Trappe et al. 2011; Harber
et al. 2012). This increase in muscle mass is com-
parable to resistance exercise training over the
same time period (Trappe et al. 2011; Mitchell
et al. 2012). These reported increases in muscle
mass with endurance training have been pre-
dominately observed in the quadriceps muscle,
the mode of exercise used was cycling, and the
individuals undertaking training had a limited
level of exercise experience and/or sedentary
lifestyle (Konopka and Harber 2014). Nonethe-
less, it appears that hypertrophy occurs in the
quadriceps muscle with classical motor endur-
ance training if the frequency of training and
load are high enough (Konopka and Harber
2014). From a mechanistic perspective, acute
studies have reported increases in muscle pro-
tein synthesis (MPS) with aerobic exercise, in-
dependent of age (Short et al. 2004; Harber et al.
2009a, 2010; Durham et al. 2010). For example,
Short and colleagues (2004) observed a 22%
increase in MPS with 4 mo of cycling (up to
45 min at 80% peak heart rate, 3–4 days/wk).
The observed increases in MPS with aerobic
exercise do not appear to be driven by complex
1 of the mechanistic target of rapamycin com-
plex 1 (mTORC1) (Durham et al. 2010; Philp
et al. 2015). Using rapamycin (an inhibitor of
mTORC1 activation), Philp and colleagues
(2015) reported increases in muscle and mito-
chondrial protein synthesis rates following en-
durance exercise in rats, even when mTORC1
signaling was completely suppressed. The find-
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ings by Philp and colleagues are in contrast
with previous findings reporting increased
MPS and mTORC1 activation with aerobic ex-
ercise (Mascher et al. 2011; Edgett et al. 2013;
Di Donato et al. 2014). As mentioned previous-
ly with other facets of endurance adaptation,
the impact of exercise intensity, modality, and
level of muscle fiber recruitment may be a
potential explanation for the contrast in find-
ings between studies. Specifically, hypertrophy
has been observed almost exclusively following
training for cycling. Future studies should seek
to implement other modes of endurance exer-
cise such as running using different loads/
modes (uphill vs. flat) with the same volume
to determine whether this affects MPS acutely
and muscle size following training. From a
mechanistic standpoint, subsequent studies
will need to assess the contributions of feeding,
myostatin signaling, and other mTOR-inde-
pendent mechanisms toward endurance-related
muscle hypertrophy.

STRENGTH TRAINING

Strength training leads to an increase in muscle
strength and power as a result of neuromuscular

adaptations, increases in muscle CSA, and alter-
ations in connective tissue stiffness (Knuttgen
and Kraemer 1987). The result is a rapid initial
increase in strength as an individual learns an
exercise (Fig. 2) (Sale 1988), followed by slowed
progression as the muscle grows (Fry 2004; Fol-
land and Williams 2007; Wernbom et al. 2007).
Strength training has classically varied the ex-
ternal load and volume to enhance either the
neuromuscular drive or muscle CSA, generally
training with a load between 1RM (repetition
maximum) to 10RM and a volume of four to
12 repetitions (Fry 2004). The adaptations to
resistance training are generally evident after 8
to 12 wk (Häkkinen et al. 1998b; Folland and
Williams 2007). However, some studies have
observed increases in muscle strength and
CSA after only 2 to 4 wk (Staron et al. 1994;
Seynnes et al. 2007; DeFreitas et al. 2011; Brook
et al. 2015; Damas et al. 2016). This early in-
crease in strength is likely caused by neuromus-
cular and connective tissue adaptations (Sale
1988), whereas the early increases in muscle
CSA size may be the result of edema (Damas
et al. 2016).

Because of the rapid nature of the neuro-
muscular adaptations and the ability to mea-

Training
studies

Long-term
strength training

Elite
athletes

Neural adaptation

Muscle mass

Strength changes

Time

Im
pr

ov
em

en
t

Figure 2. Alterations in strength, mass, and neural adaptations with resistance exercise over time. Resistance
exercise studies (8 to 12 wk of training) display an early increase in strength as a result of neural adaptations. With
prolonged strength training, muscle mass slowly increases and drives the later changes in strength after neural
adaptations begin to plateau. Finally, at the elite level, individuals show small changes in all three core adap-
tations that accompany strength training. At this point, new stimuli (possibly targeting the extracellular matrix
[ECM]) are needed to increase strength.
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sure changes in CSA, most early studies within
this field have focused on these responses (Cu-
reton et al. 1988; Narici et al. 1989; Staron et al.
1991, 1994). Adaptations observed within the
neuromuscular system have centered on in-
creases in skill acquisition through the nervous
system and increased maximal muscle activa-
tion by way of motor unit synchronization,
muscle recruitment, and increased neural acti-
vation (Enoka 1988; Jones et al. 1989). In terms
of hypertrophy, the main focus for adaptation
has been on increases in CSA for individual
muscle fibers, adding sarcomeres in parallel
(Cureton et al. 1988; Frontera et al. 1988; Staron
et al. 1990). Early mechanistic studies focused
on alterations within the hormone milieu after
acute resistance exercise as a potential contrib-
uting factor toward hypertrophy (Kraemer et al.
1991; Häkkinen and Pakarinen 1993; McCall
et al. 1999). However, recent evidence appears
to cast doubt over the hypothesis that hormones
contribute to exercise-induced muscle hyper-
trophy and growth (West et al. 2009, 2010,
2012; Schroeder et al. 2013; Morton et al. 2016).

The importance of the central neural com-
ponent on strength adaptations is most evident
when one limb is trained and the other limb
goes untrained. In this situation, muscle CSA
does not change in the untrained leg, yet a sig-
nificant increase in strength occurs from train-
ing the contralateral limb (Houston et al. 1983;
Yasuda and Miyamura 1983; Munn et al. 2004,
2005). A meta-analysis on the contralateral
strength-training effect suggests that strength
improves 7.6% in the nonexercised limb (56%
of what happens in the exercised limb), with
training lasting for between 15 and 48 sessions
(Munn et al. 2004; Carroll et al. 2006). Some of
the proposed mechanisms for this phenome-
non are localized muscle adaptations, cross-
limb cortical interaction, and adaptations in
spinal cord excitability (Carroll et al. 2006). Ul-
timately, the unilateral strength training may
cause adaptations in neural drive that “spill
over” into the untrained limb and, in addition,
the untrained limb may access the neuromuscu-
lar adaptations that occur within the control
system with this type of training (Carroll et al.
2006). Most recently, Kidgell and colleagues

(2015) highlighted a greater cross-transfer of
strength with an eccentric (47%) versus concen-
tric (28%) loading group. One of the possible
reasons for the greater effect with eccentric
loading was a larger increase in corticospinal
excitability, which has been proposed as the
mechanism underlying the effect (Latella et al.
2012). However, given that it was first observed
in 1894 (Scripture et al. 1894), we still under-
stand very little about the contralateral strength-
training effect and the role of the systemic
environment in this phenomenon (Yasuda
and Miyamura 1983; West et al. 2015).

Another adaptation observed with strength
training is an increase in the RFD (Aagaard et al.
2002; Suetta et al. 2004; Andersen and Aagaard
2006; Maffiuletti et al. 2016). The RFD refers to
the rate of increase in force at the onset of con-
traction, that is, the slope of the force–time
curve (Sleivert and Wenger 1994; Aagaard
et al. 2002). An early study by Aagaard and col-
leagues (2002) demonstrated a 15% increase in
RFD after 14 wk of heavy strength training. In
addition, there were increases in both EMG am-
plitude and rate of EMG increase with training,
indicating an enhancement in neural drive. This
suggests that RFD is related to alterations in
neural drive. Other factors that contribute to
RFD are muscle fiber type and force transfer.
Studies on the role of fiber type indicate that
type II fibers show a greater RFD (Korhonen
et al. 2006; Aagaard et al. 2007); thus, increases
in type II fiber CSAwith strength training would
complement the increased neural drive (Staron
et al. 1990, 1991; Mero et al. 2013). Our under-
standing of how force transfer contributes to
RFD is in its infancy (Hughes et al. 2015). The
cytoskeletal network within muscle transmits
force both along the length of each muscle fiber
(longitudinally) and from the center to the out-
side of the fiber (laterally) (Hughes et al. 2015).
Importantly, .80% of force produced within a
fiber is transferred laterally from proteins within
the fiber to ECM proteins outside the fiber
(Ramaswamy et al. 2011). Key components of
the force transfer apparatus include intracellular
proteins (titin, dystrophin, etc.), transitional
complexes (dystrophin-associated glycoprotein
complex [DAGC] and integrins), and extracel-
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lular proteins (collagens I, III, IV, V, and VI)
(Fig. 3). Dystrophin is essential for lateral force
transmission (Ramaswamy et al. 2011; Hughes
et al. 2015), whereas titin and nebulin are more
important for transmitting force longitudinally
and the stiffness of the sarcomere (Ottenheijm
et al. 2012; Herzog et al. 2016; Powers et al.
2016). The essential role of ECM proteins in
RFD was most clearly shown by Mebes and col-
leagues (2008) in women with Ehlers–Danlos
syndrome ( joint hypermobility). In this work,
women with hypermobile joints showed a 15%
slower RFD with no difference in maximal
force, showing the essential role of connective
tissue in RFD. There is limited data on the ad-
aptations of these cytoskeleton proteins to
strength training, with some studies reporting
no changes (McGuigan et al. 2003; Woolsten-
hulme et al. 2006) and other studies indicating
improvements (Lehti et al. 2007; Kosek and
Bamman 2008; Parcell et al. 2009; Macaluso

et al. 2014). Interestingly, there is cross-section-
al evidence for differing levels of force transfer
proteins between trained and untrained athletes
(McBride et al. 2003). However, more studies
are required to address the influence of strength
training on the cytoskeleton protein network
and force transmission. This is especially true
as these groups of proteins appear to play a key
role in protecting against contraction-induced
muscle injury and possibly in mechanotrans-
duction (Lovering and De Deyne 2004; Boppart
et al. 2006; Palmisano et al. 2015; Hughes et al.
2016).

As with endurance training, a shift in the
existing muscle hypertrophy paradigm appears
to be emerging because recent evidence suggests
that load does not determine the increase in
CSA that occurs with strength training. In these
studies, lifting a low load to positive failure pro-
duces equal hypertrophy to using a high load
and fewer repetitions to reach failure (Mitchell

Types I and III
(fibrillar)

collagens

Type VI collagen

Type IV
collagen

DAGC

Actin
Dystrophin

Laminin-2α

β α

β

α

Integrins

Figure 3. Interaction of the extracellular matrix (ECM), connective tissue, and cytoskeleton protein networks
surrounding skeletal muscle myofibrils. Research on the cellular adaptations that occur with strength training
have predominantly focused within skeletal muscle. Recent research has begun to highlight the role of the
dystrophin-associated glycoprotein complex (DAGC) and integrin complexes in force transmission and the
possible contribution of structures outside the muscle to force transfer and overall strength. Few studies have
investigated the contribution of the ECM to muscle force transfer and/or how these complexes may adapt over a
period of time with training. However, hyperlax individuals (with mutations in collagen VI) show slowed rates of
force development, indicating that the ECM is important in muscle function.
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et al. 2012; Ogasawara et al. 2013; Schoenfeld et
al. 2015; Morton et al. 2016). In the new para-
digm, momentary muscular failure is impor-
tant for hypertrophy. The hypothesis for the
importance of failure centers on muscle fiber
recruitment; at failure, all motor units are re-
cruited regardless of the load (Counts et al.
2016). In an interesting recent investigation,
Counts and colleagues (2016) used a “no-
load” intervention in which individuals repeat-
edly contracted a muscle as hard as they could
through a full range of motion. The investiga-
tors observed similar increases in muscle thick-
ness in the “no-load” and high-load groups.
However, even though the increase in CSA
with no-, low-, and high-load training is equiv-
alent, high loads are needed to maximize
strength gains (Schoenfeld et al. 2015). The ef-
fect of low-load training on muscle mass should
not be surprising given the ability of cycling to
increase muscle mass (see above); however, the
molecular pathways that convert any load into a
biochemical signal that results in muscle hyper-
trophy remain elusive. Acute studies have sug-
gested that there is a load-dependent increase in
mTORC1 activity after resistance exercise that
correlates with the resulting increase in muscle
mass following training (Baar and Esser 1999).
The increase in mTORC1 activity is the result
of signaling through a PI3K/Akt-independent
RxRxxS/T kinase (Jacobs et al. 2013a). How-
ever, whether the increase in mTORC1 activity
following acute resistance exercise is driving
muscle hypertrophy or simply reflects the
amount of injury and subsequent inflammatory
response and how the mTORC1 response is al-
tered by exercising to failure has yet to be shown.
Similarly, the role of mTORC1-independent
mechanisms, such as myostatin signaling and
ribosomal biogenesis, requires more research
before their role in training-induced muscle hy-
pertrophy is understood.

CONCURRENT TRAINING

Simultaneously participating in both endur-
ance and strength-training programs results in
a similar increase in VO2max but impaired
strength adaptations when compared with

strength training alone (Hickson 1980). There
is some evidence that concurrent training
prevents muscle hypertrophy (Kraemer et al.
1995); however, when the frequency or intensity
of concurrent training is decreased below 4 days
a week and 70% of VO2max, muscle growth can
occur normally. This suggests that something
about the volume and/or the intensity of
training underlies the concurrent training ef-
fect. One suggestion is that the greater training
volume and intensity results in a significantly
greater caloric deficit and that this decreases the
protein synthetic response to feeding (Areta
et al. 2014). Examining the caloric cost of
training from the Hickson study (Fig. 4) shows
that at week 5 of the study, the concurrent train-
ing group was expending �6000 kcal per week
compared with �2000 kcal per week in the
strength training alone group, and this differ-
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Figure 4. The impact of strength training and concur-
rent exercise on energy consumption. The classic
Hickson (1980) study was the first to observe a de-
cline in strength improvement and strength perfor-
mance (1RM [repetition maximum] squat) over time
with concurrent training (closed blue squares). The
decline in strength adaptations occurred once the
concurrent group was expending double the kcal/
wk of the strength training only group (open circles).
This suggests that the impairment in strength adap-
tations with concurrent exercise could reflect the role
of negative energy balance on muscle hypertrophy.
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ence continued to increase for the last 5 wk of
the study. The resulting 4000 kcal per week dif-
ference in energy expenditure could easily un-
derlie the difference in muscle size and strength.
Another possible explanation for the impaired
strength adaptation is that endurance training
decreases the neural drive associated with
strength training. McCarthy and colleagues
(2002) would argue against this hypothesis
because they showed that there was no differ-
ence in EMG amplitude in men who performed
10 wk of concurrent training compared
with those who performed strength training
alone. However, it should be noted that these
investigators failed to see an effect of concurrent
training on the strength adaptation, indicating
that the training intensity or volume was not
enough to see a concurrent training effect. As
with other training modalities, the effect of
concurrent training on force transfer has yet to
be described. Grosset and colleagues (2009)
have suggested that endurance training de-
creases force transfer; however, whether this
could contribute to the concurrent training ef-
fect has yet to be determined.

As far as molecular mechanisms, the inter-
action between the AMP-activated protein ki-
nase (AMPK), which is activated by high-inten-
sity endurance exercise, and mTORC1, which is
activated by resistance exercise, has been the
major focus of the research. This focus is the
result of work in vitro in dividing cells that
shows that AMPK can directly inhibit mTORC1
via three distinct mechanisms (Inoki et al. 2002;
Gwinn et al. 2008; Zhang et al. 2014). In agree-
ment with the cell culture data, in rodent mod-
els in which animals are treated with the AMPK-
activating drug AICAR, the activation of
mTORC1 is clearly decreased following resis-
tance exercise (Thomson et al. 1985). However,
in human studies, the activation of AMPK by
high-intensity endurance exercise has minimal
effects on mTORC1 activation following resis-
tance exercise (Apro et al. 2015). The difference
between the rodent and human data could re-
flect the fact that exercise preferentially activates
the a2 isoform of AMPK (Lee-Young et al.
2008), whereas AICAR would activate both
the a1 and a2 isoforms. Interestingly, the a1

isoform of AMPK is activated to inhibit load-
induced muscle growth in vivo (McGee et al.
2008) and when this protein is knocked out
the result is greater load-induced muscle hyper-
trophy (Mounier et al. 2009). This suggests that
the inhibition of mTORC1 as a result of activa-
tion of AMPK by endurance exercise is likely not
the molecular mechanism underlying the im-
paired hypertrophy and strength with concur-
rent training.

GENETICS

An important aspect to all training adaptations,
be they strength or endurance, is genetics (Bou-
chard et al. 2011). Over the last decade, the
literature has begun to detail the role played
by heritability and genetic differences (poly-
morphisms) in training adaptations (Beunen
and Thomis 2004; Huygens et al. 2004; Tim-
mons et al. 2010; Bouchard et al. 2011; Hughes
et al. 2011). Numerous studies have highlighted
the diversity of responses to endurance (Tim-
mons et al. 2010) or strength-training programs
(Petrella et al. 2008; Erskine et al. 2010) in hu-
mans and in rats (Koch et al. 2013), often clas-
sifying individuals as nonresponders or extreme
responders based on the muscle phenotypes
measured (Petrella et al. 2008; Timmons et al.
2010; Davidsen et al. 2011; Thalacker-Mercer
et al. 2013; Churchward-Venne et al. 2015;
Stec et al. 2016). However, Churchward-Venne
and colleagues (2015) have challenged the idea
of nonresponders to resistance exercise. In a ret-
rospective analysis of a resistance-type exercise
program in older men and women, these inves-
tigators reported that, even though a large het-
erogeneity in the adaptive responses existed, all
of the individuals displayed the capacity to
adapt with resistance-type exercise training. A
similar challenge has recently been raised for
endurance exercise, suggesting that nonre-
sponders who exercised harder were able to
show some adaptation (Montero and Lundby
2017). Although the existence of true nonre-
sponders remains controversial, the extent of
strength and endurance adaptations that occur
through training does vary widely (Petrella et al.
2008; Thalacker-Mercer et al. 2013; Stec et al.
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2016) based on messenger RNA (mRNA) and
microRNA profiles and translational capacity
(Timmons et al. 2010; Davidsen et al. 2011;
Phillips et al. 2013; Thalacker-Mercer et al.
2013; Stec et al. 2016). Further, the fact that
rats and mice can be bred for more or less im-
provement in running capacity indicates that
there are clearly genes that are determining
our response to training (Koch et al. 2013).
Once we better understand the variability in
adaptations, we may be able to use this infor-
mation to determine the optimal training pro-
gram for a given individual. However, these ad-
vancements will heavily depend on the usage of
large cohorts through collaborative initiatives
such as the Molecular Transducers of Physi-
cal Activity in Humans National Institutes of
Health consortium (commonfund.nih.gov/
MolecularTransducers).

SUMMARY

The effect of exercise training on muscle phe-
notype has been appreciated for millennia. In
general, individuals who train by exercising for a
long time will develop better oxygen delivery to
muscle and endurance capacity, whereas those
who work against a heavy load will get bigger
and stronger muscles. However, recent work
using high-intensity short-duration interval
training to increase endurance and low-load re-
sistance training to failure to increase muscle
size and strength have challenged the classical
view of training specificity. For us to truly un-
derstand and predict the adaptation that will
result from a given exercise, we need to better
understand the molecular mechanisms that un-
derlie the change in muscle phenotype with
training. Our progress in this area has been
slow because of the inherent bias toward signal-
ing molecules that have already been identified.
To take the next step forward, we need to assess
the molecular events that are initiated after dif-
ferent types of exercise (following acclimatiza-
tion) that result in similar muscular adaptations
in an unbiased manner. When we have identi-
fied potential candidate molecules, we will then
need to understand how these events interact
with our response to feeding because, in the

end, a combination of exercise and nutrition
are required for the changes that we see in mus-
cle phenotype with training.

REFERENCES

Aagaard P, Andersen JL. 2010. Effects of strength training on
endurance capacity in top-level endurance athletes.
Scand J Med Sci Sports 20: 39–47.

Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-
Poulsen P. 2002. Increased rate of force development and
neural drive of human skeletal muscle following resis-
tance training. J Appl Physiol (1985) 93: 1318–1326.

Aagaard P, Magnusson PS, Larsson B, Kjær M, Krustrup P.
2007. Mechanical muscle function, morphology, and fi-
ber type in lifelong trained elderly. Med Sci Sports Exerc
39: 1989–1996.

Aagaard P, Andersen J, Bennekou M, Larsson B, Olesen J,
Crameri R, Magnusson SP, Kjaer M. 2011. Effects of re-
sistance training on endurance capacity and muscle fiber
composition in young top-level cyclists. Scand J Med Sci
Sports 21: e298–e307.

Albracht K, Arampatzis A. 2013. Exercise-induced changes
in triceps surae tendon stiffness and muscle strength af-
fect running economy in humans. Eur J Appl Physiol 113:
1605–1615.

Allison SJ, Bailey DM, Folland JP. 2008. Prolonged static
stretching does not influence running economy despite
changes in neuromuscular function. J Sports Sci 26:
1489–1495.

Andersen LL, Aagaard P. 2006. Influence of maximal muscle
strength and intrinsic muscle contractile properties on
contractile rate of force development. Eur J Appl Physiol
96: 46–52.

Apro W, Moberg M, Hamilton DL, Ekblom B, van Hall G,
Holmberg HC, Blomstrand E. 2015. Resistance exercise-
induced S6K1 kinase activity is not inhibited in human
skeletal muscle despite prior activation of AMPK by
high-intensity interval cycling. Am J Physiol Endocrinol
Metab 308: E470–E481.

Arampatzis A, De Monte G, Karamanidis K, Morey-Klaps-
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