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ABSTRACT OF THE THESIS 
 

Evaluating spatial variability in courtship-associated sounds of Nassau Grouper Epinephelus 

striatus at a multi-species spawning aggregation site 

 

 

by 

 

Cameron Van Horn 

 

Master of Science in Marine Biology 

University of California San Diego, 2022 

Professor Brice X. Semmens, Chair 
 

 

Passive acoustic monitoring (PAM) is a cost-effective, minimally invasive technique 

commonly used to study behavior and population dynamics of soniferous fish species. To 

understand the strengths and limitations of PAM for this purpose requires an assessment of the 

variability in courtship-associated sounds (CAS) as a function of time, space, and proximity for 

spawning fishes of interest. Here we evaluate temporal and spatial trends in CAS by Nassau 

Groupers (Epinephelus striatus) using an array of six hydrophones deployed at a large Nassau 

Grouper fish spawning aggregation (FSA) on Little Cayman, Cayman Islands. We collected 



 

x 

 

continuous data for nine days during a winter spawning season, and subsequently employed an 

automatic classifier to extract the embedded Nassau Grouper CAS. Using these data, we 

qualitatively and quantitatively analyzed variability in temporal trends across the spatial array 

with a Bayesian mixed effects model. We found a clear degradation in accuracy of temporal 

calling patterns at the FSA as distance from the spawning site increased, and observed higher 

correlations in CAS rates among the most proximal hydrophone pairs than the most separated 

pairs. Our model predicted strong effects of fish proximity, spawning behavior, and crepuscular 

periods on detected calling rates of Nassau Grouper that corroborate with and add to the present 

literature.  Our findings suggest a high degree of variability within relatively short distances from 

a sonic target, thus imploring a need for better spatial resolution in acoustic analyses. 



1 

 

1. Introduction 

Marine fisheries are globally important in the context of economic stability (US$164B in 

export value), societal function (260 million jobs), and food security (17% of total animal protein 

consumed globally), the latter of which is considerably important in tropical and subtropical 

coastal communities (Milich 1999, Teh & Sumaila 2013, Worm & Branch 2012, FAO 2020). 

Government actions to sustain fishery productivity, such as intensive fishery-independent at-sea 

surveys, are often more financially limited in these regions than those of industrialized nations. 

These fisheries thus operate in data-poor conditions that threaten the ability to sustain catch over 

time. Because of this, there is a need to develop and employ cost-effective tools for monitoring 

populations that will allow for informed management action. In these lower latitudes, many 

targeted fish species in need of cheap monitoring methods are those that form highly dense and 

predictable fish spawning aggregations (FSAs).  

FSAs, or mass gatherings of fish for reproductive purposes, recruit individuals from 

potentially hundreds of miles away and occur over very short annual time scales (Domeier & 

Colin 1997). Species that form FSAs typically do so to maximize their reproductive fitness. 

However, because these events are often highly predictable in space and time, aggregating 

populations can be intensively fished once discovered, which in turn can lead to overexploitation 

and ultimately collapse of the fishery. More than half of all documented FSAs in the tropical 

West Atlantic no longer form (Sadovy de Mitcheson et al. 2008). But because FSAs concentrate 

the entire reproductive biomass of a region into relatively small areas at predictable times, they 

present an opportunity to census stocks for the purposes of assessing health, recruitment, and 

recovery in depleted populations. To do so, however, requires monitoring tools that are effective, 
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low cost, and that can function in underwater environments that are otherwise difficult to access 

by researchers.  

Passive acoustic monitoring (PAM), a widely used tool in bioacoustic research, is a 

rapidly growing technique for monitoring FSAs (Lindseth and Lobel 2018). Commonly used to 

study terrestrial species such as birds, bats, and insects (Laiolo 2010), PAM has been applied to a 

diverse range of marine soundscape projects. PAM lends itself to FSA monitoring because many 

species that form FSAs produce courtship-associated sounds (CAS) while aggregating (Rowell et 

al. 2017). Fish produce CAS to recognize conspecifics and signal mating readiness, thereby 

serving as a mechanism for sexual selection and reproduction (Lobel 1992, Webb et al. 2008). 

When actively acoustic fishes form FSAs, the CAS frequencies at these sites generally scale with 

density, a phenomenon that when quantified can be used to estimate fish abundance for the 

purpose of fisheries management (Rowell et al. 2012, 2017, Scharer et al. 2012, Sanchez et al. 

2017, Caiger et al. 2020, Looby et al. 2022). Monitoring FSAs with acoustic instruments has the 

potential to enable CAS data collection without temporal restrictions often associated with visual 

fish survey methods, and it can be applied to environments in which visual monitoring is difficult 

(Rountree et al. 2006, Luczkovich et al. 2008, Marques et al. 2013). Furthermore, visual methods 

such as underwater visual census (UVC) or diver operated video (DOV) can be invasive to the 

target environment and affect estimates of biodiversity and abundance (Emslie et al. 2018).  

While PAM presents a minimally invasive strategy to monitoring FSAs, challenges 

remain, including (1) the need for time-intensive classification of CAS from recordings, and (2) a 

poor understanding of the relationship between CAS frequency and the proximity/abundance of 

fish in relation to the recorder. The plethora of recorded acoustic data can pose a significant 

problem for timely analysis because of the inherent necessity to detect acoustic signatures, which 
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is often done by hand (Aalbers and Sepulveda 2012, Scharer et al. 2012, Rowell et al. 2012). 

Advancements in the field of machine learning algorithms have produced novel solutions in the 

form of automatic classifiers (Stowell et al. 2019, Munger et al. 2022). Rapid automatic 

classification enables large swaths of raw acoustic data to be analyzed for specific spectral 

signatures in a fraction of the time, and has been applied to fish species such as Atlantic cod 

(Gadus morhua) and several Sciaenids (Caiger et al. 2020, Monczak et al. 2019). For grouper 

species that form FSAs in the tropical Western Atlantic, Ibrahim et al. (2018) developed FADAR 

(Fish Acoustic Detection Algorithm Research), an automatic classifier designed to detect spectral 

signatures of CAS. To date, however, the performance of FADAR across differing FSA locations 

and recording hardware remains largely untested.  

Rapid automatic classification of CAS expands the potential for PAM, however a poor 

understanding of how CAS detections vary in space and time persists. The accuracy of passive 

acoustic data relies on successful transmission of an acoustic signal by a source to a recorder, the 

likelihood of which is high if the fish calls near the hydrophone.  The spectral features of a CAS 

dictate its detectable range; however, this range is not likely to be known for a target species 

given the large paucity of studies into sound-producing fishes (Looby et al. 2022). Because 

passive acoustic methods often deploy a single hydrophone to monitor a population, inherent fish 

movement can leave the hydrophone beyond the CAS detection range. While the high 

spatiotemporal predictability of FSAs may warrant dismissal of these concerns, observed shifts 

in the specific GPS of spawning fish at several FSAs across years suggests reliance on past FSA 

geolocations can also risk accuracy of the data (Colin 1992, Aguilar-Perera 2006, Caiger et al. 

2020). Understanding the spatial and temporal variability of CAS detections is therefore 

important for passive acoustic methods, though this has not been explored in the literature. We 
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attempt to resolve this knowledge gap by studying spatiotemporal trends in CAS production by a 

well-studied species known to form FSAs. 

The Nassau Grouper (Epinephelus striatus) is a gonochoristic large-bodied opportunistic 

predator whose commercial, cultural, and ecological value have been known throughout the 

Caribbean for generations (Smith 1972, Colin 1992, Domeier & Colin 1997, Sadovy & Eklund 

1999). Nassau Grouper are a long-lived, highly fecund, and late-maturing species that form 

transient FSAs near shelf edges (Winemiller & Rose 1992, Domeier & Colin 1997, Sadovy & 

Eklund 1999). Individuals demonstrate strong fidelity to the reef at which they aggregate and 

reproduce, a behavior perhaps socially transmitted from older, experienced fish (Bolden 2000, 

Semmens et al. 2007, Starr et al. 2007, Nemeth 2012, Dahlgren et al. 2016, Blincow et al. 2020). 

Migration to the FSA occurs around the winter full moons in the central Caribbean, where 

Nassau Grouper densities drastically increase and spawning behavior (stark coloration shifts and 

following, circling movements) is observed soon after (Smith 1972, Colin 1992, Sadovy & 

Eklund 1999, Starr et al. 2007, Archer et al. 2012). 

Nassau Grouper are listed as Critically Endangered by the International Union for the 

Conservation of Nature and Natural Resources due to overfishing at FSAs throughout its historic 

range (Sadovy & Eklund 1999, Sadovy de Mitcheson et al. 2008, Sadovy et al. 2018). Perhaps 

the most well documented collapse, and subsequent recovery, of the species occurred in the 

Cayman Islands, a small island nation to the Southwest of Cuba. In 1986, local fishermen 

reported noticeable declines in Nassau Grouper catch, prompting the Cayman Islands 

Department of the Environment (CI-DoE) to begin monitoring the known FSAs of the species. 

By 2001, ongoing heavy catch at the last remaining FSA of the species (off the west end of Little 

Cayman) motivated the Cayman Islands government to implement an Alternate Year Fishing 
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Law in 2002 alongside other protective measures surrounding Nassau Grouper reproduction. By 

2004, all known FSAs throughout the Caymans were protected by an 8-year fishing ban (Bush et 

al. 2006). Continued efforts to conserve and monitor Nassau Grouper populations have proven 

fruitful, as recovery has been observed at FSAs off Little Cayman and Cayman Brac (Heppell et 

al. 2012, Waterhouse et al. 2020, Stock et al. 2021).  

Here we present a case study on spatio-temporal distribution of Nassau Grouper CAS 

across the west end Little Cayman FSA site during the winter spawning season in 2020. The 

acoustic, behavioral and reproductive ecology of Nassau Grouper at this FSA site is part of an 

ongoing monitoring program (The Grouper Moon Project; GMP), and thus lends itself to an 

intensive acoustic survey under known conditions of fish presence, spatial distribution, and 

reproductive behaviors.  Using an array of 6 simultaneously recording hydrophones, we recorded 

the FSA soundscape over a 9-day period, and subsequently parsed the recordings through the 

FADAR CAS classifier. With the derived CAS counts from the classifier, we compare spatial 

distributions of averaged hourly CAS detection rates through qualitative and quantitative 

methods to determine the spatial synchrony/asynchrony in CAS patterns at locations across the 

FSA. Lastly, we assess drivers of variability in CAS by using a mixed effects model of Nassau 

Grouper CAS detections as a function of variables presumed to affect calling behavior (e.g. time 

of day, day of spawning season, location of aggregating fish relative to the hydrophone). 

Collectively, these analyses provide an assessment of the spatial, temporal and biological factors 

outside fish abundance that influence hydrophone specific CAS detection rates. 
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2. Methods 

2.1 Study Site 

The Cayman Islands hosts a large FSA of Nassau Grouper off the west end of Little 

Cayman (Figure 1B), and has been the target of numerous projects studying the ecology and 

recovery of Nassau Grouper populations (Whaylen et al. 2004, 2007; Heppell et al. 2009, 2012; 

Waterhouse et al. 2020; Stock et al. 2021). Much of the research in this region (including this 

paper) has been conducted at the west end Little Cayman FSA site by GMP, a collaborative 

group of researchers from the CI-DoE and Reef Environmental Education Foundation (REEF). 

GMP has had a profound impact on the protection efforts for the species as demonstrated by 

recent findings of stock recovery in some local populations. As of 2016, conservation measures 

by the CI-DoE include: no-take zones covering 45% of total shelf area, seasonal closures on all 

Nassau harvest from December 1 to April 31, and strict take and gear restrictions in open season 

(Waterhouse et al. 2020). 

 

2.2 Data Collection 

Hydrophone Array Deployment 

To monitor Nassau Grouper CAS across the spawning site, we deployed a six-

hydrophone linear array along the western shelf edge of Little Cayman from February 8 to 

February 17, 2020 (Figure 1C). This time period generally reflects the average residence time of 

Nassau Grouper at aggregation sites (Starr et al. 2007, Archer et al. 2012), with the full moon 

observed on February 9, 2020.  Divers stationed the hydrophones in a linear path along the shelf 

edge at roughly 30 m depth with a 150 m distance between each (estimated by divers towing a 
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150 m line between deployments). At a subset of hydrophone stations, divers deployed surface 

marker buoys (SMBs) and a surface support team used a Garmin Etrex 20x GPS to geolocate the 

stations. We subsequently estimated the coordinates of the remaining stations using GPS 

waypoints taken at drop points of the diver teams and known distances between stations.  

Figure 1: Little Cayman, Cayman Islands. (A) The Cayman Islands in the Caribbean Sea relative 

to Cuba, Florida, U.S., and Mexico. Grand Cayman, the largest island in the Caymans, is just 

southwest of the drawn black box. (B) Little Cayman and Cayman Brac. A black diamond off 

Little Cayman’s west end signifies the FSA location. (C) Bathymetry of the west end of Little 

Cayman. Blues lighten to symbolize increasing depth on the order of 10 meters, with land 

represented in black. A black ‘X’ marks the FSA observed by divers, and a black ‘*’ marks the 

traditional FSA location. Triangles represent hydrophones and are labeled with their station. 

Black triangles signify ST hydrophones and white triangles represent LARS hydrophones.  

 

We used two brands of low-cost, long-lasting passive acoustic recorders to comprise the 

array: Loggerhead LARS-HF (LARS) and Ocean Instruments SoundTrap Model 300HF (ST). 

We alternated the model at each station along our array (Figure 1C). STs recorded continuously 

at a sample rate of 48kHz with high preamp gain and no high pass filter. LARSs recorded 
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continuously at a sample rate of 192 kHz and a sensitivity of -170 dB with no high pass filter. 

Audio was captured onto 256 GB memory cards as 16-bit .wav files of six-hour and one-minute 

increments for STs and LARSs, respectively, with date and time upon recording embedded 

within each file name. We stationed the hydrophones between 09:00-10:00 on February 8 and 

retrieved them the morning of February 17 between 09:00-10:00 (these and all times listed 

throughout are in Eastern Standard Time, the local time of the Cayman Islands). 

 

GoPro Camera Deployments 

To estimate Nassau Grouper presence and movement around the FSA, divers stationed 

GoPro HERO3 White cameras opportunistically along the array throughout the study period 

(LARS1 omitted). To extend battery life, we installed CamDo TL-004 intervalometers into the 

extra battery slot of the GoPros and programmed it to turn on and record for 2 minutes every 18 

minutes. Beginning at ST2, divers opportunistically retrieved and redeployed the GoPros 

multiple times each day, repositioning the cameras nearest to where the fish were observed. Six 

GoPros were used in total with no more than two at a given station. Divers installed the GoPros 

within several meters of a given hydrophone on the reef bed with non-uniform angle positioning 

(i.e. some faced parallel to the floor while others faced upward around a 45º incline). In instances 

where a station had two GoPros, the cameras were positioned on different parts of the adjacent 

reef angled opposite each other for a better composite image. 

 

Video Transects of the FSA 

We opportunistically collected video transects of the FSA when fish schooled into a band 

along the shelf edge. To collect a video transect, a diver used a Canon 1DX mark ii – Sigma 18-
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35mm f/1.8 Lens – Nauticam Wide Angle Conversion Port (WACP) and a Dive X Piranha P1 

Scooter to traverse the length of the band while keeping aggregating fish within the camera 

frame. Divers collected video censuses during multiple dives throughout the spawning period. 

We examined each video census to determine (1) the daily/hourly locations of the band of fish at 

the spawning site, and (2) where the fish were most abundant during each dive using underwater 

visible landmarks and marking buoys. 

 

In Situ Diver Observations 

Researchers conducted 3 dives each day in the morning, afternoon, and evening with 

exceptions on the first, penultimate, and final days of hydrophone data collection. Divers noted 

fish location, presence, abundance, and movement around the spawning site. For spatial 

accuracy, divers approximated fish position and movement using established moorings, 

landmarks, and stations along the shelf edge. These in situ diver observations, in concert with 

GoPro recordings and video transects, were later used to approximate the coordinates for the 

bulk of the aggregating fish, as well as estimated northern and southern boundary limits of the 

FSA.  

 

2.3 Data Processing 

Hydrophone Array 

To analyze spatial variability of Nassau Grouper CAS during the recording period, the 

large volume of data generated by PAM required a standardization effort to produce CAS 

frequencies per hour for each hydrophone. We began this process by considering differences in 

data generation by each hydrophone model and instances of sonic intrusion by loud 
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anthropogenic sources. We segmented the acoustic data from ST hydrophones, initially recorded 

in six-hour lengths, into one-minute intervals to facilitate temporal comparisons with the 

automatically segmented LARS data.  

Boats frequented the aggregation site during recording, creating low-frequency 

interference at sporadic intervals. While daily research dive operations constituted most of this 

boat traffic, small local fishing vessels periodically visited the site in the morning while fishing 

for tuna just off the shelf. The frequency range of vessel noise overlaps with Nassau Grouper 

CAS and masks detections while present. Also, we found that FADAR confused some instances 

of low-frequency anthropogenic noise with Nassau Grouper calls and overestimated CAS counts 

therein. For these reasons, we removed all segmented acoustic data containing vessel noise from 

our analysis. Because we recorded over 1,000 hours of the FSA soundscape, the likelihood of 

encountering anthropogenic noise in any given minute was low. To efficiently identify instances 

of vessel interference at all hydrophones, we subset each dataset to represent 1 minute for every 

5 recorded minutes. We then ingested the subset recordings into Audacity 2.4.2 to visually 

inspect the spectrograms for anthropogenic noise. We defined minutes as containing interference 

if at least half of the file’s length contained anthropogenic noise between frequencies of 0-600 

Hz. Because we did not inspect every minute recorded, we assumed identified instances of 

interference also occurred 2 minutes prior to and after the observed instance. After cleaning the 

data of anthropogenic noise, we tracked minutes annotated within all hours at each hydrophone 

to normalize CAS detections per hour by annotation effort. 

 

Call Classification 
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The spectral qualities and statistics of Nassau Grouper CAS are well known (Scharer et 

al. 2012, Rowell et al. 2018, Wilson et al. 2020). Because of the volume of acoustic data 

generated in our study, we used a combination of automatic CAS classification using the 

FADAR software (Ibrahim et al. 2018) and manual classification. Nassau Groupers have three 

unique identified CAS, and a hypothesized fourth CAS by Wilson et al. (2020) that we did not 

include in this study because FADAR has not been trained to detect it at present. In agonistic 

encounters, Nassau Grouper often produce a sequence of individual pulse sounds (termed pulse 

trains). The individual pulse segments last on the order of 0.09 ± 0.02 s while the full train can 

last up to 3 s, and has a peak frequency of 77.4 ± 30.3 Hz (Scharer et al. 2012, Wilson et al. 

2020). During courtship, Nassau Grouper emit a low-frequency tonal sound that lasts 1.6 ± 0.3 s 

and has a peak frequency of 99.0 ± 33.6 Hz (Scharer et al. 2012). Lastly, Rowell et al. (2018) 

identified a third Nassau Grouper CAS described as akin to that of a heartbeat. The CAS has 

properties similar to the pulse train, with a mean duration of 0.37 s and mean peak frequency of 

117.7 Hz (Rowell et al. 2018). FADAR does not specify which Nassau CAS it detects, thus the 

CAS counts in this study are nonspecific.  

FADAR operates by ingesting an acoustic signal and (1) denoising the signal through 

discrete wavelet transformation, (2) processing the signal through long short-term memory 

(LSTM) layered networks, and (3) attributing discriminative features of the signal for final 

classification of the origin species. FADAR divides the time series of the acoustic spectra into 

signals of 2-second lengths. Each of these 2-second bins can only have 1 attributable CAS, if 

any, regardless of species. The classifier sums CAS detections and links their associated 2-

second bins within each audio file (e.g. a CAS detected at seconds 33-37 will be noted as 1 CAS 

occurring between seconds 32-38). 
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2.4 Data Analysis 

Confusion matrices 

To assess FADAR’s automatic classification performance, we developed confusion 

matrices and calculated relevant estimates of accuracy indices. First, we randomly sampled 200 

minutes of recordings from each hydrophone for analysis in FADAR. We then had a trained 

researcher listen to the acoustic samples in Audacity to identify instances of Nassau Grouper 

CAS. To prevent any bias in our evaluation of FADAR, we enumerated CAS along the same 

constraints as that of the classifier. Specifically, FADAR assigns time stamps to detected CAS by 

dividing the acoustic time series into bins of 2-second lengths and assigning no more than 1 CAS 

to each bin. This method may prevent FADAR from, for instance, detecting a short tonal CAS 

that occurs within the same 2-second bin as a proximal pulse CAS. We therefore required the 

trained researcher doing manual CAS identification to provide time stamps in intervals of 2-

seconds for all identified CAS and barred any given CAS from temporally overlapping with 

another CAS.  We termed detections heard by the human researcher as ‘true’ CAS and FADAR 

as ‘predicted’ CAS. The comparison of these two metrics forms confusion matrices: true 

positives (agreed presence), true negatives (agreed absence), false positives (predicted presence 

that was absent) and false negatives (predicted absence that was present). FADAR predicts if 

CAS are present in 2-second windows, thus in each minute (the length of an analyzed file) the 

classifier makes 30 predictions. Because CAS presence is a relatively rare event, many of these 

predictions are likely to be true negatives, adding positive bias in accuracy estimates of FADAR. 

Therefore, we defined true negatives as full minutes with no detected or present CAS. When we 

sampled 200 minutes from each hydrophone, the subsets from LARS1 and ST6 yielded 
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substantially fewer CAS detections (regardless of method) relative to ST2, ST4, and LARS5. We 

therefore added additional random draws to the test datasets of these hydrophones to meet a 

minimum threshold of 100 ‘true’ CAS present in test data.  

We calculated the following statistics for all confusion matrices: accuracy, 

misclassification rate, rates for all true/false positive/negative terms, precision, prevalence, null 

error, and Cohen’s Kappa. Variables to inform all evaluative statistics included the four 

true/false positive/negative terms along with summed values for predicted positives, predicted 

negatives, actual positives, actual negatives, and total detections (present and absent). Equations 

to relate these parameters to the above statistics can be found in the appendix. 

FADAR performed poorly within ST2 and ST4s datasets (Table 1 & 2), prompting a 

subsequent manual (human) classification effort for all the data from these hydrophones. 

Because these datasets contained nearly 26,000 cumulative minutes, we subset the data to 

represent 1 minute for every 5 minutes of recording (identical to that of the anthropogenic 

parsing effort in 2.3). We ingested the acoustic .wav files into Audacity to visualize the acoustic 

spectra for CAS identification and restricted observable frequencies between 0 and 600 Hz, with 

20 dB gain and a range of 80 dB. We used a frequencies algorithm with a Hamming window size 

of 16384 and a zero-padding factor of 1. To maintain consistency among CAS extraction in all 

hydrophones, we mimicked FADAR’s execution by enumerating CAS solely through visual 

identification in spectrograms. We also similarly confined detected CAS to 2 s windows with no 

more than one CAS detection per window.  

We evaluated the human classification effort identically to that of FADAR. We defined 

visually detected CAS as ‘predicted’ and audial CAS detections as ‘true’. Upon confirming that 

the human effort compared well with that of FADAR, we proceeded with analysis. 
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Table 1: Data from evaluating classification of Nassau Grouper CAS by automatic (FADAR) 

and manual (human) efforts within all hydrophone datasets. Only ST2 and ST4 required human 

evaluation due to poor performance by FADAR within their respective datasets. 
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GoPro and diver observations 

We sought to categorize the proximity of the bulk of Nassau Groupers to each 

hydrophone for all recorded hours. To do this, we gathered visual census data from simultaneous 

GoPro recordings and observations of fish presence and movement from dive logs. We inspected 

all GoPro files to categorize Nassau Grouper abundances per hour into one of five categories: 

absent (0), individual (1), few (2), many (3), and abundant (4). Because individuals would swim 

in and out of the camera’s view, we categorized abundances based on the greatest observed 

density of Nassau Grouper (i.e. if a large school of Nassau was only visible at the end of the 

recording, the assigned category would be ‘many’ or ‘abundant’ depending on the size of the 

school).  

While GoPro data reflected observable Nassau Grouper abundances, limitations with 

respect to light and resources presented challenges that restricted cameras to observe no more 

than two hydrophones at a time during hours of adequate sunlight. Dive logs and video pans 

conducted multiple times daily provided supplementary abundance estimates and Nassau 

presences. Divers recorded Nassau behavior, movement, and relative proximity to nearest 

hydrophones using unique landmark and mooring descriptors for high spatial resolution. We 

used these diver observations to estimate where fish moved around the array for all recorded 

daylight hours as well as their abundances at hydrophones not observed by GoPros. We then 

combined the estimated position and relative abundances of Nassau Groupers from dive logs 

with the categorized abundances from the GoPro data to create proximities of Nassau Groupers 

to each hydrophone for all observable hours. We divided these proximities into three categories: 

not observed (0), where neither divers nor GoPros observed fish within 100 meters of the 

hydrophone; nearby (1), where GoPros or divers observed fish within 100 meters of the 
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hydrophone; and present (2), where GoPros or divers observed fish within 20 meters of the 

hydrophone.  

 

Correlation 

Before modeling CAS as a function of time and space covariates (see below), we 

calculated simple correlations of detected CAS per hour among hydrophone pairs and compared 

the coefficient rho (ρ) to distances between each pair. Predicted Nassau Grouper CAS were 

summed per hour at each hydrophone for all hours in the study period and normalized by 

observation effort within each hour. Several sporadic hours contained no observable minutes of 

CAS, and were removed from the dataset. Further, due to an anomalous error at ST4 that halted 

recording, only data prior to February 15 was included. We calculated distances between pairs of 

hydrophones from their estimated coordinate data using the ‘geosphere’ package in R. 

Correlation matrices and their respective 95% confidence intervals were calculated using the 

‘corrplot’ package in R. 

 

Model 

Because we are interested in the spatiotemporal variability of CAS, we used the number 

of detected CAS for hydrophone j at time interval i of the study (Vij) as a Poisson distributed 

response variable in a Bayesian hierarchical modeling framework: 

𝑉𝑗,𝑖 ~ Poisson (λ) 

 
log λ𝑗,𝑖 = (𝑇𝑖 + 𝐷𝑖 + 𝐹𝑃𝑖 + ℎ𝑗,𝑖) ∗ 𝑚𝑗,𝑖/60 
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𝑇𝑗  ~ Normal(0,1) 

 
𝐷𝑗  ~ Normal(0,1) 

 
𝐹𝑃𝑗  ~ Normal(0,1) 

 
𝜎𝑑  ~ Exponential(1) 

 
𝐑 ~ LKJcorr(8) 

 

In the above model formulation, the number of CAS detected at a given hydrophone and hour is 

a function of time of day (24 categories reflecting hour of day; Ti), day of the spawning season 

relative to night of first spawn (7 categories reflecting -4 to +2 days after first spawn DAFS; Di), 

proximity of the bulk of spawning fish relative to each hydrophone (categorical estimate with 3 

levels; FPi), and a random effect of recording time interval (each hour of the study; hj,i). We 

define these hj,i values to be multivariate normal within each time interval in order to account for 

the expected correlated nature of CAS detections between hydrophones related to the spatial 

nature of fish behaviors and CAS at the spawning site. Within the covariance structure (SH), each 

hydrophone has a separate variance, while the covariance of hydrophones (R) is assumed to be 

fixed across hours.  That is, we expected limited hydrophone detection ranges coupled with 

complex aggregating behaviors (e.g., dispersing from or coalescing to a specific location within 

the array as a function of time of day or ocean condition) would lead to correlations in CAS 
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detections across hydrophones that would not be captured simply by the proximity of spawning 

fish to each hydrophone independently. 

We confined time intervals to hour segments across the entire study period. In some 

instances, a hydrophone only recorded a portion of a given hour interval, defined as mj,i (the 

number of minutes per hour recorded). To address these disparities, we standardized the 

expected CAS value for each Vj,i by including the term mj,i /60. 

We specified weakly regularizing priors for all priors in our model formulation above and 

fit the model using STAN (Stan Development Team 2022) via the ulam function in the Statistical 

Rethinking R package (McElreath R 2020). We ran four chains concurrently with 10000 

iterations per chain, and evaluated convergence based on trace plots and Gelman-Rubin scores 

(all parameters ~1, indicating efficient mixing among MCMC chains and model convergence). 

All data and model code used in our analysis are available at https://github.com/cjvanhorn. 

 

3. Results 

Most hydrophones in the deployed array recorded for the duration of the study period. 

However, LARS3 malfunctioned early in the recording period and did not gather sufficient data 

for analysis. In addition, ST4 abruptly ended its recording near midnight on February 15, two 

days prior to the end of the study period. Despite these issues, we collected over 1000 hours of 

acoustic data. Classifications from FADAR had an overall accuracy of 76.0%, and an associated 

Cohen’s Kappa (K) estimate of 51.4. The software also produced an inflated false negative rate 

(FNR) of 46.8% and a low true positive rate (TPR, or recall) of 53.2%. However, an 

investigation into the classifier’s performance for each hydrophone indicated particularly poor 

performance within ST2 and ST4. Upon removing ST2 and ST4 samples from the cumulative 

https://github.com/cjvanhorn
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subset, FADARs performance improved considerably. Summed samples from LARS1, LARS5, 

and ST6 generated a high accuracy of 85.6%, high recall of 73.5%, low FNR of 26.5%, and a K 

of 70.5. FADAR yielded a low average false positive rate (FPR) of 2.0% for all stations, with the 

well-performing stations (LARS1, LARS5, and ST6) yielding a comparable average of 2.9%. 

Because of FADAR’s relatively poor performance on stations ST2 and ST4, we used 

manual classification. Manual classification accuracy was comparable to that of FADAR, and 

performed better with higher recall and lower FNR; however, it also yielded poorer specificity 

and FPR, with a marginally lower K. Manual classification within stations ST2 and ST4 were 

highly comparable to each other, suggesting no bias within either sample.  
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Table 2: Parameters to measure accuracy and reliability of Nassau Grouper CAS classification 

by FADAR and human efforts, estimated using counts found in Table 1. Equations to calculate 

each parameter can be found in the appendix. 
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3.1 Spatiotemporal trends 

Regardless of distance, all stations detected crepuscular patterns in Nassau calling rates 

(Figure 2A). Hours in which the sun rose or set had the highest average CAS frequencies per 

hour, specifically 06:00-08:00 and 18:00-20:00 (Figure 2A). All stations detected greater CAS 

calling rates in the evening hours compared to the morning, except for LARS1 which detected an 

equivalent share of CAS in both periods. ST6 had the highest variability of CAS calling rates as 

exemplified by low median rates and exceptionally high upper quartile ranges during most 

daylight hours. Hydrophones nearest to the FSA (ST4, LARS5, and ST6) detected CAS more 

frequently during days in which individuals spawned (0 to +2 DAFS; Figure 2B). On most days 

during the study period CAS frequencies showed crepuscular patterns across all hydrophones 

(Figure 2C). Both daylight and nighttime hours contained comparably low frequencies of CAS.  

Proximal hydrophone pairs demonstrated higher correlations in CAS detections through 

time than distant pairs (Figure 3). Estimated correlation (rho) decreased with increasing distance 

between pairs, ranging from 0.75 to -0.27 at separation distances of 122.6 m and 602.9 m, 

respectively (Figure 4). Correlation regressed over distance between pairs estimated correlation 

equaling zero at roughly 590 meters of separation between hydrophones (Figure 4). The 

comparison of ST4–LARS5 yielded the highest estimate of rho (0.75) while other comparisons 

of adjacent hydrophones yielded estimates above 0.50. Despite being placed 262.0 m apart, ST4 

and ST6 were found to have a high rho estimate (0.73) – likely due to their positions on opposite 

sides of the aggregation.  
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Figure 2: Temporal trends of effort normalized Nassau Grouper CAS production rates across all 

hydrophones. Because ST4 abruptly halted recording at midnight of 3 DAFS, black rectangles 

cover 3-5 DAFS for ST4 in (B) and (C). (A) Box plots of CAS production rates for all hours of 

day at each hydrophone. Dark grey rectangles signify hours at night while light grey rectangles 

signify hours in which the sun rose (06:00) and set (18:00). (B) Box plots of CAS production 

rates averaged by day at each hydrophone. Yellow circles outlined black symbolize the full 

moon which occurred -3 DAFS. (C) CAS production rates for all continuous hours of 

observation. A green spline fits to the orange points by the loess method with a span factor of 

0.1. The dark grey shade around the fitted spline represents the 89% confidence. Dotted black 

lines separate days.  
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Figure 3: Correlation matrix plot of correlations among each hydrophone pair. The slope and 

color of the ellipses symbolize the strength of correlation (e.g. strong positive correlations are 

narrow ellipses angled positively and colored dark green). Straight, positively sloped lines 

occupy comparisons of identical pairs (e.g. LARS1-LARS1). 
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Figure 4: Linear regression of correlation coefficients against distance between hydrophone 

pairs in meters. Light green points symbolize the correlation coefficient of all hydrophone pairs 

at their distance of separation, with corresponding labels of the pair adjacent to each point. 

Whiskers extending from each point represent 95% confidence in the estimated coefficient. 95% 

confidence in the regression is highlighted in light grey. 

 

3.2 Model 

Time of day, day of spawning period, and proximity of the mass of fish to each 

hydrophone were all strong predictors of CAS rates (Figure 5). As with the correlation analysis, 

ST4’s shorter recording period limited predictions to -4 to +2 DAFS. Model estimated Nassau 

Grouper CAS rates were higher during sunset (19:00) than sunrise (07:00) though there was 

small overlap in estimated 95% confidence intervals (Table A1). Crepuscular hours (defined as 

06:00-08:59 and 18:00-20:59) had the highest estimated CAS rates. Nassau Groupers were least 

likely to produce CAS during the middle of the night (02:00) and day (13:00; Table A1).  
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Model estimated Nassau Grouper CAS rates increased from the first day of observation 

and peaked during spawning. The first day of observation, occurring just before the full moon 

and four days before spawning, had the lowest predicted Nassau Grouper CAS rates (-4 DAFS; 

Table A1). Estimated CAS rates increased from the first day of observation and peaked at 1 

DAFS, though there was overlap in confidence intervals in both the prior and subsequent days 

(Table A1). Fish proximity to the hydrophone strongly predicted hydrophone-specific Nassau 

CAS detection rates. We considered other models with different predictors, such as current 

velocity, temperature, and hydrophone model, for their potential implications in Nassau 

spawning behavior thus CAS production (Colin 1992, Dahlgren et al. 2016). Comparisons using 

WAIC found these models to have weaker predictive ability than the model we selected for 

analysis. 
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Figure 5: Box plots of posterior predictions of the parameters (A) Ti, (B) Di, and (C) FPi (see 2.4 

for variable descriptions). (A) Posterior predictions of CAS production rates by Ti. Dark grey 

panels signify nighttime hours, with light grey panels representing the hours of sunrise (06:00) 

and sunset (18:00). (B) Posterior predictions of CAS production rates by Di. A yellow circle 

outlined black signifies the full moon on -3 DAFS. (C) Posterior predictions of CAS production 

rates by FPi. Cartoons roughly representing each category at the top of the panel jig slightly left 

for ease of viewing.  
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4. Discussion 

Nearly all prior investigations into the temporal dynamics of spawning-related CAS 

sounds for Nassau Grouper and related tropical grouper species have relied on a single 

hydrophone deployment at or near the FSA. Given the potential for limited detection ranges 

relative to movements of fish at the spawning site (Schärer et al. 2012, Wilson et al. 2020), any 

temporal dynamics inferred from these studies at least partially reflect both temporal patterns in 

CAS and the movements of spawning fishes relative to the hydrophone. The goal of our study 

was to capture the spatial field of CAS across the spawning site per unit time, while 

simultaneously documenting dynamics in the location of spawning fish relative to each 

hydrophone in our array. By accounting for these spatial dynamics in our subsequent modeling 

efforts, we were able to quantify the influence of movement on CAS dynamics at the level of 

individual hydrophones. Moreover, we were able to separate the influence of spatial dynamics 

from the temporal dynamics in CAS (time or day, day of spawning period). The resulting 

estimates of temporal dynamics are thus uniquely “clean” estimates of temporal dynamics and 

rates of soniferous behaviors at the spawning site. 

 

4.1. Nassau Grouper calling trends 

While the change in raw CAS detection rates across days of the spawning period varied 

widely by individual hydrophone (Figure 2C), the model estimated average daily CAS detection 

rates across the array (after accounting for spatial dynamics in fish behavior) showed a gradual 

increase following the full moon and an exponential increase once fish began spawning, with a 

peak on the 2nd night of spawning.  
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The relationship of the winter full moon and Nassau Grouper spawning behavior in the 

Caribbean has been reported in the literature as early as 1972 (Smith), and there is general 

consensus that the winter lunar cycle is a key environmental cue in migratory and aggregating 

behaviors (Domeier & Colin 1997, Bolden 2000, Sala et al. 2001). While the drivers behind 

individuals’ directed migrations to the FSA are unclear, there is evidence that first-time spawners 

follow more experienced fish, a behavior that may be mediated by sound production in older 

Nassau Groupers (Rowell et al. 2015, Dahlgren et al. 2016). The role of CAS in migration and 

spatial organization at the FSA appears to be evident in the CAS production rates observed at 

LARS1 and ST2. These hydrophones were the furthest to the Southeast (away from where the 

spawning ultimately occurred; Figure 1C) and recorded the highest CAS rates at the beginning 

and end of the spawning period, presumably when migrating fish were entering/leaving the 

spawning grounds. Conversely, those hydrophones closest to where the FSA formed (Figure 1C) 

recorded the highest rates of CAS on spawning days (Figure 2B). Collectively, the hydrophones 

appear to capture the temporal pattern of arrival, staging, and ultimately coalescing to spawn, all 

of which are reflected in CAS variability across space and time. 

Nassau Grouper produced the highest CAS rates during nights of spawning. At 

hydrophones nearest to the aggregation, CAS production peaked from 0 to +2 DAFS, the same 

time frame in which divers observed spawning behavior (e.g. release of gametes into the water 

column). Nassau Grouper often produce the low-frequency tonal call while exhibiting courtship 

behavior, which can include body coloration shifts (Archer et al. 2012, Schärer et al. 2012). 

Tonal CAS are hypothesized to signal a readiness to mate among individuals, and to cue 

spawning synchrony for the greater population (i.e. FSA formation; Schärer et al. 2012). At the 

Little Cayman west end spawning site, peaks in tonal CAS occur as thousands of individuals 



32 

 

concentrate into a narrow band along a short section of the shelf break. In previous studies, 

researchers were unable to partition the rise in spawning-associated CAS rates due to the 

increased concentration of individuals versus increases in per capita CAS production. By 

accounting for the spatial distribution of fish at the spawning site across time in our model, we 

were able to approximately separate spatial effects of CAS rates from per capita CAS rates, and 

in so doing demonstrate that both factors mediate the detection rates of CAS at a given 

hydrophone. 

Nassau Grouper exhibited increased CAS rates during crepuscular periods, regardless of 

the day of spawning period or where on the spawning grounds they were (near or far from the 

FSA). All hydrophone stations across the recording period recorded greater frequencies of CAS 

during dawn and dusk hours than all other times of day, with dusk typically containing the 

highest CAS density (Figure 2C). The increase in average CAS production rates during hours 

leading up to sunset likely reflects individuals signaling readiness to spawn. Throughout their 

range, Nassau Groupers spawn near sunset, presumably because this timing reduces egg 

predation (Colin 1992) and/or predation on spawning adults (e.g. Caribbean Reef Sharks at the 

study site, often observed attacking Nassau Grouper during gamete release).  Overnight, 

simultaneous cross-shelf wind-driven currents help transport eggs on-shore to nursery habitat 

(Shenker et al. 1993). CAS production near dusk may be an evolutionary response to motivate 

spawning for high larval settlement.  However, why would increases in CAS in crepuscular 

periods occur even well away from the FSA and outside nights of spawning? It seems likely that 

courtship behavior among individuals is protracted, occurring over multiple days and well before 

evenings of gamete release – in such a scenario, mate selection at spawning may result from 

many previous nights of pairwise interactions, particularly during evening periods when 
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individuals take on spawning colorations (Archer et al. 2012) that presumably reflect both fitness 

and readiness to spawn. Alternatively, CAS rates could increase during crepuscular periods 

simply because these time periods are when Nassau Grouper are most active (regardless of 

spawning season). Blincow et al. (2020) found Nassau Groupers were more likely to increase 

vertical swimming activity in dawn and dusk hours and linked this behavior to possible hunting 

strategies. Nassau Groupers are known to hunt in light-limited conditions as it benefits their 

ambush-style predation (Carter et al. 1994). Though there is no present evidence that links CAS 

to hunting behavior, Nassau Groupers do produce a pulse CAS (described as akin to a heartbeat; 

Rowell et al. 2018) during agonistic displays of defense for a mate. The novelty of this CAS and 

its ties to aggression suggest sound production may be used in hunting, perhaps to defend a 

territory well suited for ambush, though this is speculative. 

 

4.2. Spatial variability 

The location of hydrophones on the spawning grounds had a remarkably strong effect on 

the temporal variability in CAS detections. Simple correlation comparisons among hydrophone 

datasets indicate the potential for the acoustic picture of an FSA to fully invert (highest CAS 

rates outside nights of peak spawning) if the distance between a hydrophone and the FSA 

exceeds only several hundred meters. While the time of day and spawning behavior by Nassau 

Grouper drove CAS production, fish presence near a hydrophone strongly influenced CAS 

detection rates, suggesting variability in fish movement around an FSA can severely impact 

temporal acoustic trends. Our results indicate a clear need for future studies to either verify the 

proximities of fish near the recording hydrophone or alternatively implement a hydrophone array 

that captures spatio-temporal variability across the spawning grounds. This is particularly true if 
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researchers intend to compare CAS rates across spawning seasons or between spawning grounds 

– that is, unless the spatial effects of CAS rates we document here are accounted for in studies 

seeking to approximate spawner abundance (relative or absolute), the resulting findings are 

likely to be hopelessly compromised.   

Perhaps unsurprisingly, we found a strong decay in CAS detection rate correlations 

between hydrophones as a function of distance. Previous studies have suggested that the 

detection range of Nassau Grouper CAS at a particular hydrophone is roughly 200 meters 

(Schärer et al. 2012, Wilson et al. 2020). Our findings generally support this range. Moreover, at 

a distance of 300 meters, correlations between our hydrophone detections became negative, a 

reflection of strong, small-scale spatial patterns in CAS rates on the spawning grounds. From a 

monitoring perspective, the interactive effects of limited detection ranges and relatively fine-

scale acoustic behaviors mean that hydrophone placements are a critically important part of 

efforts to capture spawning dynamics and spawner abundance. 

FSAs are typically thought of as fixed, immutable locations that afford opportunities for 

population assessment that otherwise might be cost-prohibitive or impossible given low densities 

of some aggregating species when they are on their home reefs. However, mounting evidence 

suggests that the spatial nature of aggregations is dynamic at scales ranging from 100s of meters 

to 10s of km or more (Colin 1992, Aguilar-Perera 2006, Caiger et al. 2020). The Nassau Grouper 

FSA we targeted is no exception; during our study, we observed individuals several hundred 

meters north of the traditional FSA location (based on previous years of FSA monitoring; Figure 

1C). Because this shift in FSA location was larger than the apparent range of any given 

hydrophone, we captured trends in CAS rates on ST2 (the functional hydrophone nearest the 

traditional FSA site) that were not representative of the true trends in CAS rates across the 
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spawning period – naively, such a finding in the absence of diver observations might be 

interpreted as evidence of spawning failure. More generally, CAS patterns coupled with a 

weaker correlation among hydrophones nearer to the historic FSA compared to hydrophones 

nearer to the observed FSA suggest reliance on past estimates of FSA locations can introduce 

greater uncertainty in recorded data. 

The diver and GoPro estimated abundance of Nassau Grouper within 20 to 100 meters of 

a given hydrophone was a strong predictor of recorded CAS rates for that hydrophone. In fact, 

regardless of time of day or day of spawning season, when the aggregation of fish was within 

20m of a hydrophone (present), CAS rates were approximately 10 times as high as when fish 

were not visibly present near a hydrophone (not observed; Figure 5A). This finding provides 

strong evidence that the movements of fish around the spawning grounds, on the scale of hours 

to days, can have dramatic impacts on hydrophone-specific CAS detection rates that are 

unrelated to the tendencies of individual fish to call more or less frequently as a function of time. 

Why might this matter from a monitoring perspective? Even when researchers deploy an array of 

hydrophones to address spatial variance in calling frequencies, if unobserved fish movements at 

the spawning site are synchronized to temporal patterns of interest (e.g. the FSA moves in close 

proximity to a specific hydrophone each evening), spatial movements may erroneously be 

interpreted as temporal changes in CAS rates in subsequent modeling efforts. At a minimum, 

researchers should be aware of this potential confounding effect in future studies. Should time 

and support allow, we recommend pairing some amount of visual monitoring (in situ or with 

imaging technologies) in order to help parse the relative effects of time and space in driving CAS 

rates.   
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The spectral structures of CAS and other biotic sounds are species-specific, which 

enables researchers to distinguish between calls of several taxa. Particularly in tropical systems, 

FSAs can be composed of multiple soniferous species that have temporally overlapping 

spawning periods. Our study site is an example of such multi-species FSAs as it is the spawning 

ground for several other soniferous grouper species, including (Red Hind (E. guttatus), 

Yellowfin Grouper (Mycteroperca venenosa), and Black Grouper (M. bonaci)). The CAS of 

these groupers share spectral qualities with that of Nassau Grouper, which, coupled with spatial 

overlap of aggregating behaviors, can contribute to a noisy soundscape that partially masks target 

CAS (Wilson et al. 2020). Sonic interference can occur from anthropogenic sources as well. As 

we observed in our data, motorized vessels create loud, long-lasting sounds at low frequencies 

that overlap with CAS of several fish species and can thus prevent detection (Webb et al. 2008). 

As with the potential for spatial movement patterns to generate spurious trends in CAS rates, 

biogenic or anthropogenic interference may also alter patterns in CAS rates.   

The presumptive spatiotemporal predictability of FSAs and use of CAS by aggregating 

species has resulted in the broad adoption of PAM as an efficient, cost-effective tool to collect 

data on aggregating populations. However, turning the acoustic recordings these tools generate 

into metrics that reflect metrics of stock status has proven challenging. By using an array of 

hydrophones and monitoring the location of aggregating fishes in relation to these hydrophones 

across time, we were able to partition the competing effects of time, space and behaviors on CAS 

rates. Understanding each of these effects and their collective influence on CAS detections at a 

given hydrophone is a necessary step in effort to get CAS rates as a function of population size. 

It is thus recommended that any study focused on inferring ecological behaviors and 

distributions of a soniferous species should report, or acknowledge uncertainty in, the separation 
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between the sound source and the receiver. Otherwise, substantial error from imprecise methods 

may significantly misrepresent a species’ ecology and reduce the efficacy of subsequently 

informed management actions. 
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Appendix 
 

Equation A1: Calculate classifier accuracy (A) from true positive (TP), true negative (TN), and 

total (n) parameters. Misclassification rate (MCR) can be found by subtracting A from 1.  

 

𝐴 =
(𝑇𝑃 + 𝑇𝑁)

𝑛
 

 

Equation A2: Calculate True Positive Rate (or recall; TPR) from true positive (TP) and actual 

presence (AP) parameters. False Negative Rate (TNR) can be found by subtracting TPR from 1. 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝐴𝑃
 

 

Equation A3: Calculate False Positive Rate (FPR) from false positive (FP) and actual absence 

(AA) parameters. True Negative Rate (TNR) can be found by subtracting FPR from 1.  

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐴𝐴
 

 

Equation A4: Calculate Cohen’s Kappa (K) from true positive (TP), true negative (TN), false 

negative (FN), and false positive (FP) parameters. 

 

𝐾 = 2 ∗
(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑁 ∗ 𝐹𝑃)

((𝑇𝑃 + 𝐹𝑃) ∗ (𝐹𝑃 + 𝑇𝑁)) + ((𝑇𝑃 + 𝐹𝑁) ∗ (𝐹𝑁 + 𝑇𝑁))
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Table A3: Results of Bayesian mixed effects model for modeling CAS rates by hour of day, day 

of spawning period, and fish proximity to a given hydrophone. Bolded data points reflect local 

maximums in posterior means. Data and model code can be found at 

https://github.com/cjvanhorn.  
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