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Matrix Factorisation of Morse-Bott functions

Constantin Teleman∗

October 31, 2016

Abstract

For a function W ∈ C[X ] on a smooth algebraic variety X with Morse-Bott critical locus Y ⊂ X ,
Kapustin, Rozansky and Saulina [KRS] suggest that the associated matrix factorisation category
MF(X ;W ) should be equivalent to the differential graded category of 2-periodic coherent complexes
on Y (with a topological twist from the normal bundle of Y ). I confirm their conjecture in the
special case when the first neighbourhood of Y in X is split, and establish the corrected general
statement. The answer involves the full Gerstenhaber structure on Hochschild cochains. This note
was inspired by the failure of the conjecture, observed by Pomerleano and Preygel [PP], when X
is a general one-parameter deformation of a K3 surface Y .
Acknowledgements: The author is most thankful to Dan Halpern-Leistner, Dan Pomerleano and
Toly Preygel for bringing up the problem and for extended conversations on it. This work was
partially supported by NSF grant DMS-1406056.

1. Statements

Associated to a regular function W on a smooth algebraic variety X is a differential super1-category
MF(X;W ) of matrix factorisations [O1, O2, LP, P]. For quasi-projective X, objects in MF are
represented by pairs of vector bundles and maps, d0 : E0 ⇄ E1 : d1, with d1 ◦ d0 = W · IdE0

and
d0 ◦ d1 = W · IdE1

. Restricted away from the zero-fiber W−1(0), and (less obviously) away from the
critical locus Y of W within W−1(0), the category is quasi-equivalent to 0. For more general X, the
global category can be obtained by patching local objects via quasi-isomorphisms [LP, O2].

(1.1) Split Morse-Bott case. When W has a single, Morse critical point y, MF(X;W ) is quasi-
equivalent to the category of Clifford super-modules based on TyX, with the Hessian form ∂2W
of W (Proposition 2.3). According to the parity of dimX, Bott periodicity [ABS] reduces us to the
category of super-vector spaces, or to super-modules over the rank one Clifford algebra Cliff(1).

A tempting generalisation to Morse-Bott functionsW with critical locus Y ∈W−1(0) would assert
the equivalence of MF(X;W ) with DSCoh(Y ), the differential super-category of 2-periodic complexes
of coherent OY -modules (or OY ⊗Cliff(1), if Y has odd co-dimension). A topological correction to this
guess arises from the first two normal Stiefel-Whitney classes of Y in X. These classes assemble with
the co-dimension parity into an element τ = (±, w1, w

c
2) of the super-Brauer group [DK] and define

the τ -twisted differential super-category DSCohτ (Y ) (see §2.1). The first result is

Theorem 1. If the first neighbourhood of Y in X is split, then MF(X;W ) ≡ DSCohτ (Y ).

This was conjectured in [KRS], §B without the splitting assumption, supported by physics arguments.
However, the equivalence does depend on the splitting, and while Theorem 1 does generalise to the
non-split case (Theorem 2 below), the stated equivalence fails.

∗All Souls College, Oxford and UC Berkeley
1We use the word grading for a Z-grading and super for a Z/2-grading.
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(1.2) Presentation of X. We describe a germ of X near Y as a deformation of (a germ within) its
normal bundle ν : N → Y . In the holomorphic setting, this is controlled by Kodaira-Spencer-Kuranishi
theory, and for convenience, I also encode it in the Dolbeault model. Algebraic information may be
lost when Y is not projective; but the relevant deformation theory is formal (we only need the formal
neighbourhood of Y in X for the matrix factorisation category) and is thus controlled by the algebraic
Hochschild complex. The reader may substitute algebraic models of this complex for Dolbeault forms;
the statements and their proof can be adjusted, at the price of making the answer less explicit.

There is no higher cohomology along ν, so a full Kodaira-Spencer deformation datum ϕ for the
germ of X lives in Ω(0,1)(Y ; ν∗T (N)), the Dolbeault forms on Y with coefficients in the push-down
of the holomorphic tangent sheaf T (N) of the total space N . (Only the formal germ of ϕ along Y
is relevant.) As we wish to fix the zero-section Y and the normal bundle N , we choose a ϕ which
vanishes on Y and whose vertical vector component vanishes quadratically. (The normal derivative of
the vertical component of ϕ lives in Ω(0,1)(Y ;N∨ ⊗N); if not exact, it deforms N .)

Integrability of ϕ and holomorphy of W on X are expressed using the Schouten bracket { , }:

∂̄ϕ+
1

2
{ϕ,ϕ} = 0 (Maurer-Cartan), ∂̄ϕ(W ) := ∂̄W + {ϕ,W} = 0.

The special form of ϕ forcesW to be ∂̄-holomorphic along the fibres of ν (but ν itself is not holomorphic
for ∂̄ϕ, unless ϕ is fully vertical). The normal Hessian form ∂2W at Y is ∂̄-holomorphic on N .

(1.3) Local simplification. Locally, over small Stein open subsets U ⊂ Y , we can choose holomorphic
Morse coordinates {ti} on X normal to U . Then, W = 1

2

∑

t2i , while the vector component of ϕ is
purely horizontal with respect to the ti. The Morse coordinates are also ∂̄-holomorphic along each
fibre of ν. The algebraic analogue holds formally near an affine U .

(1.4) The general Morse-Bott case. According to Kontsevich’s formality theorem [DTT], formal de-
formations of DSCoh(Y ) as a super-category are controlled by the Dolbeault-Hochschild complex
Ω(0,•)(Y ; Λ•TY ): to wit, the formal, even Maurer-Cartan solutions therein. Deformations of the
twisted versions DSCohτ (Y ) are controlled in the same way, because τ is a locally constant twist.
The Morse-Bott matrix factorisation question is answered by an even Maurer-Cartan element Φc ∈
Ω(0,•)(Y ; Λ•TY ) describing how MF(X;W ) differs from DSCohτ (Y ). Let us find it.

The shifted cotangent bundles T∨Y [1], T∨N [1] are (shifted) holomorphic symplectic manifolds,
related by a Lagrangian correspondence L(ν) := ν∗T∨Y [1] which is induced from the projection
N

ν
−→ Y . Extend all structure sheaves quasi-isomorphically by replacing OY with its Dolbeault

resolution. The DG algebras of functions become

Ω(0,•)(Y ; Λ•
T (Y )), Ω(0,•)(Y ; ν∗Λ

•
T (N)), Ω(0,•)(Y ; ν∗O(N)⊗ Λ•

T (Y )) (1.5)

localising holomorphically along the fibres of the projection to Y , smoothly on the base, and carrying
the ∂̄-differential. If needed, we emphasize the DG structure by appending ∂̄. Thus, Φ := W + ϕ
is a function on (T∨N [1], ∂̄). Restrict Φ to the (co-isotropic) DG-submanifold (L(ν), ∂̄). As W is
Morse-Bott and ϕ is nilpotent, the critical locus C ⊂ L(ν) of Φ along the projection to T∨Y [1] is C∞

isomorphic to the base, and the critical value Φc becomes a function on (T∨Y [1], ∂̄).

1.6 Proposition. Φc is a Maurer-Cartan element of
⊕

p>1Ω
(0,p)(Y ; ΛpT (Y )).

Theorem 2. MF(X;W ) is equivalent to the deformation of DSCohτ (Y ) by Φc.

1.7 Remark. These results have conceptual counterparts in Proposition 3.2 and Theorem 3 below.

1.8 Remark. The normal derivative of ϕ at Y is ∂̄-closed in Ω(0,1)(Y ;N∨ ⊗ TY ), and its class in
Ext1Y (N ;TY ) obstructs the splitting the first neighbourhood of Y in X. In the split case, we can
remove it by a gauge transformation. Once ϕ vanishes quadratically at Y , C is the zero-section
T∨Y [1] and Φc = 0, so Theorem 2 implies Theorem 1.
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1.9 Example. Take N = Y × SpecC[[t]], W = t2/2, and describe X as a deformation of N by the
Maurer-Cartan path ϕ(t) =

∑

n≥1 ϕnt
n, ϕn ∈ Ω(0,1)(Y ;TY ). The critical point equation

Φ′(t) = t+ ϕ′(t) = 0

may be solved degree-by-degree, as deg t = 0 and degϕ = 2. We get the solution and critical value

tc = −ϕ1 + 2ϕ1ϕ2 − 4ϕ1ϕ
2
2 + 3ϕ2

1ϕ3 +O(8),

Φc =W (tc) + ϕ(tc) = −
1

2
ϕ2
1 + ϕ2

1ϕ2 − 2ϕ2
1ϕ

2
2 − ϕ3

1ϕ3 +O(10).

Universally, Φc is a power series in the ϕn, but on a fixed Y it truncates to ϕ-degree dimY . One can
see that ϕn first appears in a monomial of ϕ-degree n+ 1, so Φc only depends on the neighbourhood
of Y of order (dimY − 1).

Since Φc starts in degree 4, it vanishes when Y is a curve. For a surface, we only see −1
2ϕ

2
1, repre-

senting a Dolbeault class in H2(Y ; Λ2TY ). For a K3 surface, this gives a single number obstructing
the [KRS] conjecture. This obstruction was found by Pomerleano and Preygel [PP].

2. Refreshers

I collect in this section some quick and basic background facts that may help the reader.

(2.1) Clifford bundles. Let Y be a variety, N → Y a vector bundle and W ∈ C[N ] a regular
function which is non-degenerately quadratic along the fibres of N . The bundle of super-algebras
Cliff(N,W ) over Y is generated over OY by sections of N , declared to be odd, with relations
σσ′ + σ′σ = ∂2W/∂σ∂σ′. This algebra is invertible over OY modulo Morita equivalence, with in-
verse Cliff(N,−W ). Invertibility gives an isomorphism between the deformation spaces (and stacks)
of the categories of super-complexes of coherent OY -modules and Cliff(N,W ) super-modules.

If a global Spinc-module S± for Cliff(N) exists (the projetive bundle always does), then its endo-
morphism algebra E is OY or OY ⊗Cliff(1), according to the parity of dimN , and S± gives a Morita
equivalence of Cliff(N,W ) with E . The existence of S± is obstructed by Stiefel-Whitney classes of the
orthogonal bundle N , specifically w1 ∈ H1(Y ;Z/2) and the image wc

2 of w2 in H2(Y ;O×); however,
the same Morita argument shows that the category of super Cliff(N)-modules depends on N only via
the Brauer twist τ = (±, w1, w

c
2), and we denote it by DSCohτ (Y ).

The twisted category can also be built as follows. Locally, equivalences between super-modules
for Cliff(N) and E are mediated by a Spin module S±. On overlaps, the orthogonal group acts
projectively on S±, with projective cocycle classified by wc

2. This gives a non-trivial topological action
on the Clifford module categories, patching them to DSCohτ (Y ), rather than DSCoh(Y ).

(2.2) The case of vector bundles. The relation between matrix factorisations of quadratic functions
and Clifford modules is summarised in the following Thom isomorphism, a special case of Theorem 1,
deforming the classical equivalence between symmetric and exterior algebra modules.

2.3 Proposition. The DS category MF(N ;W ) is quasi-equivalent to DSCohτ (Y ).

Proof. The equivalence is given by the Atiyah-Bott-Shapiro Thom class [ABS]: the graded-projective
Spinor bundle S± of N splits locally into its even and odd parts, interchanged globally by w1 ∈
H1(Y ;Z/2). Pulled back to the total space N , S± carries a pair d0 : S

+
⇄ S− : d1 of endomorphisms,

which at a point n ∈ N are the Clifford multiplications by the vector n. This curved complex is an
object in MF(N ;W )⊗DSCohτ (Y ) and defines a pair of adjoint functors between the two categories,
which can be checked to induce a local Morita equivalences between the local respective categories
over Y , and therefore a global quasi-equivalence. (This is a version of Knörrer periodicity [O1].)

2.4 Remark. We can use, instead of the Spin module, the Clifford bundle version of the Thom class,
with fiber Cliff(N ;W ) and right Clifford multiplications. This a bi-module gives a Morita equivalence
between MF(N ;W ) and Cliff(N ;W )-modules, and deforms the traditional Koszul duality between
symmetric and exterior algebra modules.
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(2.5) L∞ structures and maps. Let V be a (cohomologically) graded vector space and denote by V [1]
the same space with the grading shifted down by one. An L∞ structure on V is a degree-one vector
field B on V [1] whose Lie action squares to zero, LB ◦ LB = 0. Classically, V is a Lie algebra and
the purely quadratic vector field B is one-half of the Lie bracket V ∧2 → V ; the null-square condition
is the Jacobi identity. Slightly more generally, a linear component of B is a differential on V . An L∞

map µ : (V,B) → (V ′, B′) is a graded (but not necessarily linear) map V → V ′ compatible with the
vector fields. As a loop space, V [1] is naturally based at 0, so one usually requires that B vanishes
at the origin and µ(0) = 0 and defines µ to be a quasi-isomorphism if dµ is so on tangent spaces at
0 ∈ V ; this amounts to completing V at 0. (In Theorem 3 below, we secretly base the first spaces at
the element 1

2∂
2W , using a translation.)

The Koszul-Chevalley complex Chev∗(V,B) of V,B is the commutative DG algebra of functions
(usually, Taylor series at 0) on V with differential LB , and the notion of L∞ quasi-isomorphism
reduces to that of commutative DG algebras in this localisation. The DG space SpecChev(V,B) is
the derived moduli stack of solutions of the Maurer-Cartan equation ∂v + 1

2 [v, v] = 0 in V in the
case of DG Lie algebras,2 modulo formal gauge transformations. In the case when V is the (shifted
down by one) Hochschild cochain complex of a linear category, with its L∞ structure, a formal but
fundamental result identifies this with the moduli stack of formal deformations of the category.

(2.6) Kontsevich formality (after Tamarkin). The Hochschild-Kostant-Rosenberg theorem identifies
HH∗ of a regular variety with the Gerstenhaber algebra of its polyvector fields. The E2 Hocshild
cohomology of the latter, which classifies its formal deformations [F], is just C, so DG enhancements
of this same Gerstenhaber algebra is classified by the de Rham group H3(C×) (and vanishes locally).
Since there is no such characteristic class of complex manifolds, polyvector fields are the local model
for the deformation Gerstenhaber complex, and its Dolbeault resolution is the correct global model.
(The same absence of characteristic classes makes the statement equivariant under the group of local
coordinate changes.) This makes our computation of the deformation class intrinsically meaning-
ful. Unfortunately, there is no universal flabby differential Gerstenhaber resolution in the algebraic
category, and the Dolbeault resolution leads to a more explicit answer.

3. Deformation theory proof

In the special case of the normal bundle, Theorem 1 is a Koszul duality between Clifford module
and matrix factorisation categories. An isomorphism between their respective (derived) deformation
moduli stacks underlies Theorem 2, which asserts a bijection between the complex points of these
stacks. This isomorphism comes from an L∞ quasi-isomorphisms between the controlling differential
super-Lie algebras (in fact, one of DS Gerstenhaber algebras). I will spell it out geometrically and
algebraically. Geometrically, the critical locus C is a super-submanifold not of (T∨N [1], ∂̄), but of
the variant (T∨N [1], ∂̄ +Φ) with the same super-algebra, but modified differential ∂̄ + {Φ, }. This is
quasi-isomorphic to the holomorphic DS manifold T∨X[1] with differential {W, }. Before spelling out
this refinement of Proposition 1.6, we verify the original statement, since we need the computation.

Proof of Proposition 1.6. Consider first the special case of Example 1.9. The (p, p) form of Φc is clear.
Next, Φ′(tc) = 0, so Φ(t) = Φc +O(t− tc)

2, and then

∂̄Φc +
1

2
{Φc,Φc} = ∂̄ (Φ(t)) +

1

2
{Φ(t),Φ(t)} +O(t− tc). (3.1)

On the right, the term written out vanishes identically in t, so setting t = tc shows that the left side is
zero. For general X, the statement is local over Y , so we repeat this in Morse coordinates (§1.3).

3.2 Proposition. The space C, with DS algebra of functions Ω(0,•) (Y ; Λ•T (Y )) and differential
∂̄ + {Φc, }, is a super-submanifold of (T∨N [1], ∂̄ +Φ). The embedding is a quasi-equivalence.

2The zero-locus of B, in general.
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Proof. The statement is local and we can use the simplified coordinates of §1.3, assuming for notational
ease that only one such coordinate t is present. Substitute Φ′(t) = (t − tc)Φ

′′(tc) + O(t − tc)
2 in the

identity ∂̄Φ′(t) + {Φ(t),Φ′(t)} ≡ 0 to get

(

∂̄(t− tc) + {Φ(t), (t − tc)}
)

· Φ′′(tc) = O(t− tc).

Since Φ′′(tc) is invertible, it follows that the ideal (t− tc) is closed under ∂̄ + {Φ(t), }.
A local ∂̄-holomorphic frame n of N defines a function Hn on (T∨N [1], ∂̄), which cuts out L(ν)

within T∨N [1] and gives the second generator of the ideal IC of C. The associated Hamiltonian flow
{Hn, } is vertical translation by n; therefore, ∂̄Hn+{Φ,Hn} = −∂Φ/∂n vanishes on the critical locus
C, and so IC is invariant under ∂̄Φ(t).

The same old relation Φ(t)− Φc = O(t− tc)
2 shows that ∂̄Φ(t) becomes ∂̄Φc

mod IC .
Quasi-equivalence is checked locally, in a holomorphic product presentation of X near U ⊂ Y ; the

complex (Λ•T (X), {W, }) then resolves the skyscraper sheaf Λ•T (Y ) on U .3

(3.3) The L∞ equivalence. Denote by W2 the quadratic part of W . For the Hochschild complexes of
DSCohτ (Y ) and MF(N,W2), we use the first two Dolbeault function spaces in (1.5), save that ∂̄ in
the second is replaced by ∂̄+{W2, }. The relevant L∞ algebras are their down-shifts by one (with the
Schouten bracket). A non-linear map χ between these is defined by sending a function η on T∨N [1] to
the critical value Φc along the projection L(ν) → T∨Y [1] of (the restriction to L(ν) of) Φ :=W2 + η.
Here, we treat a degree-zero component of η as a small deformation, so that W2 is the leading term.

Theorem 3. χ is an L∞ quasi-isomorphism. It is equivalent to the one induced on formal deformation
stacks by the Koszul quasi-equivalence MF(N,W2) ≡ DSCohτ (Y ) of categories.

Quasi-isomorphy having been seen in Proposition 3.2, we must check the L∞ property and lift χ to
the universal bundles of deformed categories over the Maurer-Cartan deformation stacks.

The L∞ property. In a holomorphic local frame of N with Morse coordinates {ti}, we project one
coordinate at a time, reducing the verification to a single t. At a point η(t) = ϕ(t) + ψ(t) · ∂/∂t,

dχ : (δϕ, δψ) 7→
(

tc + ϕ′(tc)
)

· δtc + δϕ(tc) = δϕ(tc),

having called tc the critical point of Φ(t) := 1
2t

2 + ϕ(t) and δtc its first variation.
At a general even point η(t) = ϕ(t) + ψ(t) · ∂/∂t (valued in a super-commutative algebra C[εi], so

that the coefficients in ϕ are even and those in ψ odd), the value of the structural vector field is

∂̄ϕ(t) + ∂̄ψ(t) · ∂/∂t− tψ(t) +
1

2
[ϕ,ϕ](t) + ψ(t)ψ′(t)∂/∂t − ϕ′(t)ψ(t) + [ϕ,ψ](t)∂/∂t,

and applying dχ and using criticality of tc gives

(∂̄ϕ)(tc) +
1

2
[ϕ,ϕ](tc)−

(

tc + ϕ′(tc)
)

· ψ(tc) = (∂̄ϕ)(tc) +
1

2
[ϕ,ϕ](tc). (3.4)

The right side agrees with ∂̄Φ(t) + 1
2{Φ(t),Φ(t)} evaluated at t = tc, and formula (3.1) leads us to

∂̄Φc +
1
2{Φc,Φc}, which is the value of the structural vector field at Φc.

Matching the deformed categories. In a local Morse frame of N , the constant map Φc 7→ (η(t) ≡
Φc) provides a left inverse to χ. The Thom isomorphism (Proposition 2.3) identifies DSCohτ (U)
with MF(N,W2), by tensoring with the ABS Thom class. Local frames differ by orthogonal gauge
transformations, whose (projective) action on S± renders this identification (2.3) gauge equivariant.4

A generalised deformation (U,ϕ), ϕ ∈ Ω(0,•)(U ; Λ•TU ) gives, in each Morse frame of N , a product
deformation of N and a matching Thom equivalence of its MF category with DSCohτ (U,ϕ). Now,
the stabiliser, in the group of gauge transformations, of the Maurer-Cartan class of this product

3This last identification is only valid locally: globally, we deform Y .
4We act on DSCohτ (Y ) via the Pinc central extension, §2.1.
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deformation of N acts on the Thom bimodule in the usual (projective) manner. This extends the
gauge equivariance of the local equivalence between the base category DSCohτ (U,ϕ) and the deformed
MF categories, and assembles, on overlaps between the various U ⊂ Y , to a global equivalence between
universally deformed categories.
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