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The Lexical Distance Model and Word Priming

Noel E. Sharkey
Centre for Connection Science
University of Exeter

The Lexical Distance (LD) model, presented here, functions as the front end
of a connectionist Natural Language Understanding system (e.g. Sharkey,
1989a and b). The lexicon consists of a vector of microfeatures which are
divided among 3 classes: orthographic, semantic and situational. Treating
lexical space as an energy landscape, the entry for each word is learned as a
minimum of the energy function E (see Kawamoto, in press for a similar
treatment). Initial access to the lexicon is via the graphemic microfeatures.
When these are activated by the visual presentation of an word, the lexical net
is destabilised and the system begins gradient descent in the energy function
until it relaxes in an attractor basin which represents the meaning of the input
word. The model characterises context effects in word recognition
experiments by deriving time predictions based on the movement of the
system from its initial state to the target state. Two classes of context are
discussed along with their interactions with word frequency and stimulus
degradation. The research demonstrates how these effects fall quite naturally
out of the processing specifications of the LD model without need for ad hoc
parameters.

Contextual effects on word recognition may be divided into two classes: those that occur as a
result of processes within the lexicon (lexical effects) and those that occur as a result of
processes occurring after proposition construction (textual effects). The class of effect is
determined by the priming stimulus used. Lexical effects are found when single-word primes
such as DOCTOR precede targets such as NURSE. Alternatively, textual effects occur only
when the priming comes from complete propositions. For example, Sharkey and Mitchell
(1985) found that sentences such as, "Colonel Jones realised that he was late as he rushed into
the station.’ could be used to prime words such as BENCH. The resulting effects are textual
in the sense that they rely on the construction (or activation) of related propositions. In the
"Colonel Jones example’, BENCH is primed by propositions containing the reader’s
knowledge about stations i.e. people waiting for trains sit on benches.

The distinction between textual and lexical effects may be maintained empirically as follows:
The lexical effects are instantaneous (Neely, 1976) and can be disrupted by one intervening
item (e.g. Meyer, Schvaneveldt & Ruddy, 1972; Gough, Alford, & Holly-Wilcox, 1981;
Foss, 1982; A.J.C. Sharkey, 1989). The textual effects have a slow onset i.e. they appear only
after an unfilled delay (Kintsch & Mross, 1985) or a filled delay (Till, Mross, & Kintsch,
1988; A.J.C. Sharkey, 1989). In addition, textual priming has been shown to sustain over a
number of unrelated items (Foss, 1982; Sharkey & Mitchell, 1985; A.J.C. Sharkey, 1989),
and is deactivated only when textual cues indicate that a new knowledge domain is in focus
(Sharkey & Mitchell, 1985).

In the new model presented here, lexical effects (from single-word primes) are entirely
bottom-up in the serise that they occur within the lexicon without influence from other
modules. However, in word priming which is textual by an assembly of text propositions,
there is minimal a top-down component which is supported in a number of studies (e.g.
Glucksberg, Kreutz, & Rho, 1986; Tabossi, 1988; Blutner & Sommer, 1988; Keenan,
Golding, Potts, Jennings, & Aman, in press). Although, the empirical arguments currently
present a muddy picture, the LD model was built partly out of engineering considerations and
so shows one efficient way in which to model context effects. It is not argued here that it is
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the only way to model them. Nonetheless, by building an explicit alternative computational
model with precise process predictions it is hoped that some of the issues can be resolved
empirically. The model has recently been empirically compared to the Kintsch (1988)
model and been shown to fit the data better (Sharkey and Sharkey, 1989).

THE LEXICAL DISTANCE MODEL

Traditionally the lexicon has been considered to be a store of information about words e.g.
information about their meanings, syntactic class, orthography etc. In the current model, the
lexicon consists of a set of units such that each unit corresponds to a microfeature. This leads
to quite a different class of model than previous models of word recognition (c.f. Sharkey,
1989b, for a detailed comparison). In earlier models, a concept, where mentioned, is
represented either as a single network node or similarly, as the contents of some addressed
location in memory. The radical change here is that the concept associated with a word does
not occupy a single location in memory. Instead, it is distributed across several different
memory locations. Each concept is composed of a number of microfeatures which represent
elements of its meaning (see Sutcliffe, 1988). Such meaning microfeatures may be thought of
as propositional predicates (e.g. a stereotypical set of microfeatures for man might be: is
male, 1s tall, is strong, can’t cook, likes women etc.). In the present model meaning is not
only represented by semantic microfeatures such as is-male, has-wings, etc. It is also
represented by situational microfeatures which provide information about the activities or
events that a word is involved in, or locations in which it may be found. The lexical net is
illustrated in Figure 1. Moreover, each microfeature may appear in several concepts. Thus
DOCTOR shares many situational microfeatures with NURSE - they are both persons and
they have overlapping job roles. This distributed representation makes it difficult to maintain
the old addressing metaphor because each lexical entry would occupy a number different
addresses. Of course there is more to the lexicon than meaning microfeatures. There may also
be phonemic, and syntactic microfeatures etc. (e.g. Kawamoto, in press). Meaning
microfeatures are the main concern of the current model, but it is the graphemic
microfeatures that are used to gain access to the lexicon.

SOME PROPERTIES OF THE MODEL

(1) Each microfeature in the lexicon may be thought of as having an activation value. Thus a
lexical entry may be characterised as a vector of microfeature activations. And, more
importantly, each vector of microfeature activations may be identified as a point in an n
-dimensional energy landscape (called lexical space here), where n is the number of
microfeatures in the lexicon.

CLASSES OF MICROFEATURES

SEMANTIC SITUATION ORTHOGRAPHIC

BIT CODED
INPUT WORD

Figure 1. A diagramatic representation of the lexical net in the LD model showing
three categories of microfeatures. A bit coded word activates the graphemic
microfeatures in order to retrieve its appropriate meaning.
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More formally, each collection of microfeatures representing a word’s meaning and its visual
characteristics (its lexical entry) is installed as a minimum of an energy function E (Hopfield
1982) given by:

E=1/2 Zsjwjjsj + Ls;0
i=j J

where s; is the activation level of the ith unit, wij is the weight between the ith and jth units.

This provides a new formalism with which to discuss the lexicon. Rather than considering a
lexical entry as having a location or address in memory, it may now be considered as a point
in an n-dimensional energy landscape created by the E function as shown in Figure 2. Each
microfeature assembly is represented as a low point or basin in this landscape. Thus lexical
access is characterised as a point moving through energy space to relax on appropriate
assemblages of microfeatures. (Note that the new metaphor could be aligned with the old by
saying that the unique point in n-dimensional space is a location for a lexical entry and that
the vector of microfeature activations is the address of that entry).

(11) Hopfield’s (1982) gradient descent method is used to retrieve the meaning microfeatures
which best fit the graphemic input constraints. Such a scheme is easy to implement on a
parallel machine because an important property of Hopfield’s formalism is that a given unit
can locally compute the difference in energy a change in its state from 1 to O or vice versa
will make. This is done simply by summing the total activity that a unit receives from all
other active units in the network.

The change in energy for a unit is given by AEij = :S-:Siwij-

i
The gradient descent rule is then simple. If the energy change results in a positive number,
the unit adopts a +1 state, and if it results in a negative number the unit adopts a 0 state.
Eventually the system will settle in a minimum of the energy function (one of the attractor
basins as shown in Figure 2 i.e. a state which prevents the system from moving downwards in
energy regardless of a change of state in any of the units. When the system relaxes in one of
these stable states it is said to have retrieved that state 1.¢. the set of microfeatures
corresponding to word meaning. One problem with gradient descent is that the system will
only move in a downward direction. So when a new word in input, the system will be stuck
in the minimum corresponding to the previous word’s meaning. To overcome this problem,
the pulse mechanism was employed here (c.f. Sharkey, Sutcliffe, Wobcke, 1986). Essentially,
this means that when a new unit, not in the current microfeature set, comes on, it will pulse
(switch off) all units to which it is negatively connected. This has the effect that the state of
the lexical net jumps to a high point in the energy landscape which will be closer to the
appropriate microfeature minimum than to any other minima in the net; only the
microfeatures shared by the old and new pattern will stay active.

Figure 2: A three dimensional idealisation of an Energy landscape. The wells or
minima are points representing lexical entries.
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(iii). The relationship between the outside world and the lexicon in this model is via word
units. These may be thought of as being like the outputs from McClelland and Rumelhart’s
(1981) interactive activation model. That is, in the simple simulation reported below, the
output from the visual features of a word is represented as a single unit. The association
between this unit and the graphemic microfeatures is learned using the delta rule. A property
of this learning is that the weights for more frequently presented stimuli are stronger than the
weights for less frequently occurring stimuli. (c.f. Sharkey, 1989 for a discussion of
frequency and learning.

(iv). The activation values passed between the visual features and the graphemic
microfeatures are incremental and continuous. The activity on a graphemic microfeature
affects the probability of it adopting the +1 state during an update in the lexicon.

A SIMULATION OF CONTEXT EFFECTS

To model the experimental findings, a simulation was conducted for pairs of related words
such as DOCTOR/NURSE, KNIFE/FORK, BREAD/BUTTER, DOG/3ONE, and
FOOT/SHOE. This simulation was exploratory and so ten microfeatures were arbitrarily
assigned to each word in the lexicon. Four of these represented graphemic microfeatures,
three represented semantic microfeatures and the other three represented situational
microfeatures. The three situational microfeatures for each word were shared with its
associate e.g. DOCTOR shared three situational microfeatures with NURSE.

Installing the meanings. The lexical microfeature sets, corresponding to lexical entries, were
installed in the lexical net using an autoassociative version of the delta rule in combination
with the pulse mechanism (Sharkey, Sutcliffe, & Wobcke, 1986). Briefly, the lexical entries
of words were collated as patterns of microfeature activations to be learned by the system.
The patterns were then presented to the system one at a time. Each pattern was used to
activate a set of input-units. The states of these units were then propagated across a set of
weights to produce values on a set of output-units. These output values were compared with
the values of the corresponding input-units to produce an error vector d, where 8 = (input-
unitj - output-unitj). The change in weights between the input-units is given by AW =ndi,
where AW is the weight change matrix, h is the learning rate parameter, and i is the vector of
input-unit values.

Once the learning had been completed the system was started in one of two initial states;
either (i) a stable state resulting from the presentation of a prime word, or (ii) an arbitrary
state resulting from the presence of a neutral (e.g. a row of Xs). A prime word activates a set
of microfeature units and sets the system on a downward descent in the energy function until
a stable minimum has been reached. This minimum will be the lexical entry for the prime
word. In contrast, when the target is preceded by a neutral instead of a prime, the resulting
starting state will be arbitrary (and it may not be a minimum of E). Now, when a target word
is presented, some new graphemic units are activated, and the system begins to move from
the current state to a state which best fits the input.

Timing predictions. The metric used to derive the time predictions is the distance which must
be traversed to get from an initial state to a target state in the lexicon, where distance, d, is
defined as the length between two points in n-dimensional lexical space. To make this
clearer, imagine two vectors of microfeature activations in the lexical space Ln. Let these
vectors represent the starting state of the system s and the required or target state r.  Then
the distance between the two points s and r is given by lis - rll1/2, where length lvil = (v .
v)1/2. A major assumption of the model is that the greater the distance from an initial state to
a target state, the longer will be the recognition time for a target word.

Context effects. The model makes the correct time predictions for context effects because a

target that shares a number of microfeatures with a prime (semantically and/or situationally

related), will be closer to the prime than a word which shares no features (semantically and

situationally unrelated). Thus, by definition, the state resulting from presentation of a related
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prime will be closer, in lexical space, to the target state than the state resulting from an
unrelated prime. Figure 3 plots distance against energy for two pairs of words
DOCTOR/NURSE and DOCTOR/FORK. For simplicity binary activation has been used here
and so the graph shows the energy of the system as it moves from the initial DOCTOR state
to the NURSE and FORK states. Note that FORK is much further from DOCTOR than
NURSE is and that there is a much steeper ascent and descent to reach FORK. In the
DOCTOR/NURSE graph, the first circle indicates the state of the system with only the shared
microfeatures on, and second circle indicates the state after all of the graphemic
microfeatures have come on and the pulse mechanism has been run. If the second circle is
compared to the circle on the DOCTOR/FORK graph, it can be seen that NURSE is
considerably closer than FORK to the initial state (DOCTOR). Therefore, the NURSE state
will take less time to reach.

Lexical priming. This simulation presents a very simple and entirely bottom-up model of
lexical context effects in which lexical priming is a measure of network distance from an
initial to a decision state. The main factor in time to respond (e.g. Lexical Decision) is the
relationship between the target and the initial state of the system. It is assumed that, overall,
the target states are further away from the arbitrary Neutral state than from the Related prime
states; but the target states may, on average, be closer to the Neutral states than to the
Unrelated prime states.

Textual priming. It was shown that textual effects can be produced by exactly the same
processes as the lexical effects i.e. through shared situational features. However, the different
onset/offset properties of the two types of priming result from processes which operate
externally to the lexicon. There is not space to delve into these processes here (but see
Sharkey, 1989b and in press). Briefly, in reading text, the primary aim is to construct
meaning propositions. In the Sharkey (1989b) model, once a proposition has been
constructed, it activates a knowledge-net which results in a stable state of situationally related
propositions. This stable state is maintained until cues from the text indicate otherwise
(Sharkey & Mitchell, 1985). In order to explain the sustain of textual priming on word
decisions in the current model, the stable state in the knowledge-net holds the situational
microfeatures active in the lexicon. Moreover, the time taken to construct a proposition
explains why the onset of textual priming is slower than lexical priming. Note that this
minimal top-down view is different from previous top-down models. It is not claimed that
particular lexical items are expected. Nor are particular words or visual features being
anticipated. On the contrary, it is only the shared abstract contextual properties of

+5

=10 —

Energy

=5 =

-39 +——— ——————— =4

Distance

Figure 3: A graph of the movement in the lexicon from DOCTOR to NURSE and
from DOCTOR to FORK. This is plotted as Distance against Energy. See the text
for a discussion.
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words (the situational microfeatures) which are held active. Thus the system is, in a sense,
predisposed to receive certain contextual classes of words. This saves on the computational
complexity of earlier models and serves the function of disambiguating word meaning].
However, before the utility of this model can be assessed, it is important to examine whether
it accurately predicts the interaction of context effects with other variables such as word
frequency and stimulus quality.

Rate of microfeature activation. In order to understand the predictions arising from the model
on the combined effects of word frequency, context, and stimulus quality, the way in which
the rate of graphemic microfeature activation affects movement from the initial to the target
state is first examined. At time t(), just before presentation of the target, and therefore before
any new graphemic units have been aﬁ'&vatcd, the distance from the start state s to the
required or target state r is 8 = lls - rll /=, At time ty, the presentation of the target will
activate the word unit vector v, and at t2 this activation will be broadcast across the weights
W using the limiting function LIMIT[Wv] = f, where f is the vector of new graphemic
microfeature activations. The the graphemic microfeatures are activated at t3 by adding f to
the initial lexical vector s. So the new state of the system, before update at t4, will be s + f,
and the distance will now be & = li(s + ) - rll1/2, Thus the magnitude? of the new
microfeature activations, f, will affect the distance moved between the start state and the
target states; the greater f the smaller the difference between s and r. The process described
in these four time cycles continues to iterate until a stable state is attained.

Stimulus quality and frequency effects. Predictions concerning frequency effects rely on a
property of learning to associate the visual features with the graphemic microfeatures. In
delta rule learning, the weights for more frequently presented stimuli are larger than the
weights for less frequently occurring stimuli. Now, as shown above, the distance moved by
the system towards the target state depends on the magnitude of f which in turn depends on
two factors: the structure of the weights W and the magnitude of word unit vector v. Since
frequency is encoded in W, when the stimulus quality in v is held constant, low frequency
targets take longer to maximise activation on the graphemic microfeatures than do high
frequency targets. In other words, the stronger the connection between a set of graphemes
and their lexical representation, the greater will be the rate of microfeature activation. Thus
high frequency targets will be responded to faster than low frequency targets.

The effect of degrading the quality of a stimulus word is simulated in the model by varying
the magnitude of v while holding frequency constant. It should be clear from the above
analysis that the smaller the magnitude of v (stimulus quality), the smaller the magnitude of f,
and consequently the longer it will take to maximise activation on the graphemic
microfeatures. Thus the model predicts that degraded stimuli will take longer to recognise.

Combined effects of context, frequency and stimulus quality. The model predicts that both
stimulus quality and frequency will interact with context. This is because the closer the initial
state s is to the target state r, the less effect the magnitude of f will have on the movement of
the system from s to r. An initial state close to a target state will reach the target state before
the microfeature activations have been maximised. Because of the nature of update, the
lexicon will in effect "clean up" degraded stimulus. These predictions have been supported
empirically. Becker and Killion (1977) and Becker (1979) found context by frequency
interactions, and interactions of context and stimulus quality have been demonstrated by
Meyer, Schvaneveldt, and Ruddy (1975), and Becker and Killion (1977). Moreover, since
frequency and stimulus quality effects are brought about by changes in the magnitude of f,
our model predicts an additive effect of stimulus quality and frequency. However,
demonstrations have had mixed results. Some research has shown frequency and stimulus

1By derivation from the Kawamoto (in press) model, the current model can also explain the lexical ambiguity
effects (c.f. Sharkey, in press).

2For mathematical simplicity, it is assumed here that after initial activation, f does not change direction.
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quality to be interactive (Stanner, Jastrzembski, and Westbrook, 1975) though the majority
have found them to be additive (Norris, 1984; Becker & Killion, 1977).

It should be noted that the distance metric has parallels with the older Location Shifting
model (e.g. Meyer, Schvaneveldt & Ruddy, 1972; Posner & Snyder, 1975). Both models
accurately predict that associative priming effects can be disrupted by the presentation of an
unrelated item between the prime and the target (e.g. Meyer, Schvaneveldt & Ruddy, 1972;
Gough, Alford, & Holly-Wilcox, 1981; Foss, 1982; A.J.C. Sharkey, 1988). In both models,
an unrelated intervening item would move the state/location of the system to a new
state/location. And it is this new state/location which would be the initial state/location before
the presentation of the target. Therefore, priming of the target would be disrupted. However,
because we use the computational power of a distributed representation, it is not possible, as
in Posner & Snyder (1975), to speak of the location for a concept; it may share meanings
with other concepts in more than one location. Instead, location is discussed more abstractly
in terms of n-dimensional energy space and Euclidean vector distance. In addition, the LD
model makes prediction about textual priming which would not be possible from the older
model.

CONCLUSIONS

It has been shown how a simple connectionist model can generate accurate predictions for
both lexical and textual context effects and their interactions with frequency and stimulus
quality. There are no hidden processes in this model and all of the associations are learned.
The model provides an entirely bottom-up account of lexical effects which does not rely on
fast spreading activation to contextually related concepts; recognition threshold adjustments;
plausibility checks; or shortlist search. Indeed, it does not require any special purpose
mechanisms to handle context effects; the effects fall naturally out of the normal operation of
the lexicon during access. If the prime word is contextually related to the target word, in the
restricted definition of sharing microfeatures, the lexicon will have less distance to travel in
order to stabilise on the best fitting lexical microfeatures. Moreover, textual effects fall out of
the same lexical processes as the lexical effects. The two types of priming differ only in
processes that occur externally to the lexicon. For textual priming, the activation of a
propositional knowledge-net holds active the situational microfeatures in the lexicon and thus
provides a sustain of priming. Since the knowledge net is most responsive to propositional
input, the time taken to construct propositions accounts for the slow onset of textual priming.
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