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Abstract 
 
Tools That Teach Too: Exploring the Role of Interaction in the Development 

of Useful Cognitive Residuals 
 

Morgan Magnus Fleming 
 

Cognitive and Information Sciences 
 

University of California, Merced 2019 
 

Professor Paul Maglio, Chair 
 

 
Tools help us perform tasks. But they also change the way we think. In five 

studies, I explored the lasting effects — the cognitive residuals — of using two 
common forms of automated spelling assistance, spell-checking and autocorrect. 
These different spelling assistance systems aim to provide similar spelling outcomes, 
but users interact quite differently with each. By comparing differences in spelling 
skills after using these different types of spelling assistance, I assessed differences 
in the cognitive residuals that arise from direct interaction (spell-checking) and 
passive support (autocorrect). Results suggest that the passive support provided by 
autocorrect is just as good as for the development of spelling skill as the direct 
interaction offered by traditional forms of spell-checking. However, I also 
demonstrate a new type of direct-interaction spell-checking that outperforms 
traditional approaches in creating cognitive residuals for users that help improve 
their spelling skills. 



 
 

 1 

Chapter 1 - Introduction 
 
    The studies presented here support the conclusion that both autocorrect 

and spell-check offer incidental learning opportunities that distinguish them from 
other modern tools. They also support a secondary claim, that there exist other ways 
of interacting with spelling support systems that can further enhance these 
incidental learning opportunities. Modern devices that utilize button-style interfaces 
lack many of the affordances for learning that were inherent to old “physical” tools 
(e.g., hammers and knives) (Osiurak, Navarro, and Reynaud 2018; Osiurak & 
Heinke, 2018). The process of use for these modern devices is divorced from the 
process of actually solving the task they aim to assist, and when these devices assist 
with cognitive tasks, the result can be a failure to develop task-relevant skills 
(Osiurak & Heinke, 2018). Consequently, these devices prove not only inept with 
regards to user skill development but can even prove to be detrimental to user skill 
development. 

Researchers have found that after using modern button-style interfaces, 
people end up less capable in the tasks that the devices assisted them with 
(Ishikawa, Fujiwara, Imai, & Okabe, 2008; Fenech, Drews, & Bakdash, 2010; 
Sparrow et al., 2011; Henkel, 2014; Dong & Potenza 2015). However, in line with 
prior research on spelling support systems (Arif, Sylla, & Mazalek, 2016; Lin, Liu, & 
Paas, 2017), I found that interacting with spell-checking and autocorrect systems 
does not incur an associated loss of editing skill (Study 3 and 5). On the contrary, 
interacting with these systems produced users that were better able to spell after 
using these devices.  

I had initially anticipated that differences in the method of interaction 
between autocorrect and spell-checking would produce different levels of user-skill 
development. This seemed like a sensible anticipation, given the importance of self-
driven manual interaction and task-relevant feedback on the development of 
cognitive residuals in tool use (van Andel, Cole, & Pepping, 2017; D’Angelo, di 
Pellegrino, Seriani, Gallina, & Frassinetti, 2018; Cardinali, Jacobs, Brozzoli, 
Frassinetti, Roy, & Farnè, 2012). Autocorrect does not naturally afford involvement 
in the spelling correction process and does not guide user attention to any 
corrections it makes. I found that, within the Microsoft family of spelling support 
systems, participants that were provided access to a spell-checking support system 
performed better on an unsupported post-test than users that were provided an 
autocorrect support system (Study 1).

However, this difference does not appear to be driven by the method of 
interaction, but the relative success at delivering correctly spelled words of 
Microsoft’s autocorrect system. I performed three follow-up studies in which I 
attempted to isolate the effects of the interaction method from the different quality 
of service provided by the two spelling support systems. When these corrections were 
made to the systems, and the performance between autocorrect and spell-checking 
was comparable, user skill development was not significantly different between 
autocorrect and spell-checking (Studies 2, 3, and 4). This lack of significant 
difference between the conditions was apparent when the difficulty of the task was 
low (Study 2), when the difficulty of the task was high (Study 3), and when the spell-



 
 

 

2 

checking system presented the user with no ambiguity as to the correct selection 
(Study 4). From this, we can conclude that the more active, user-involved spell-
checking process is no better at supporting the development of a user’s spelling 
ability than autocorrect. 

My last study presented here (Study 5) explores new means of interacting 
with spelling support systems. I introduce two new forms of user input for spell-
checking systems, part-word and full-word, and a new form of 
autocorrect, autohighlight. The new spell-checking systems (part-word and full-
word) aimed to create more user engagement by requiring users to either edit an 
incorrect word or type out the entirety of a correct word for themselves. The 
autohighlight system aimed to better inform users of changes made by the system 
and highlighted words that the system had corrected. Participants were asked to use 
these new tools, as well as traditional spell-checking and autocorrect systems, to 
correct passages containing misspelled words. The findings here indicate that only 
part-word system does more for creating useful cognitive residuals than 
conventional methods of spelling-assistant interaction. Beyond that, the affordances 
offered by the part-word system create a lasting performance enhancement better 
than if the user was provided the correct answers. The traditional means of 
interaction explored here were not able to accomplish this.  

From these results, I argue that it may be possible to mitigate the skill loss 
observed in commonly used support systems by creating opportunities for task-
relevant user interaction. User skill can be preserved without putting performance 
at risk, and it is possible to improve user skills while still providing the same level of 
support to the user. Rather than losing skills to our tools, it is entirely possible to 
imbue ourselves with skills through well-designed devices. I call this endeavor 
“Instructive Design.” 

Before I cover my findings in greater detail, I will now provide some 
background information regarding existing research on the effects of tool use on 
human cognition. I will begin with a survey of ways in which humans developed to 
be sensitive to information from our tools. After I have established why we are 
sensitive to tools, I will review cases in which our tools have incidentally impaired 
the development of our abilities. Finally, I will explore some of the existing 
explanations for why these detriments arise.  

 
The Cognitive Consequences of Tool Use 

 
The term “tool” will be used here to refer to a recognizable and usable object 

or class of objects that enhances or creates a capability that allows a user to pursue 
a goal. Successful tool use requires (in part) knowledge about how to co-ordinate 
with the tool in a manner that achieves the user’s goals (Baber, 2006). We have 
evolved to better co-ordinate with an environment rich in tools, or potential tools.   

 Unlike our extant ape relatives, humans appear better able to more carefully 
control our motor systems to create finer edges in stone tools (Byrne, 2004). We can 
see that as the brain developed, so did the quality and specificity of our tools (Stout, 
Toth, Schick, & Chaminade, 2008). Our parietal cortex, compared to that of non-
human primates, is particularly sensitive to the type of 3D rotation movements 
useful for manual tool manipulation (Orban et al., 2006), and object recognition 
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(Kastner, Chen, Jeong, & Mruczek, 2017). Our cognitive systems, both perceptual 
and motor, make rapid adjustments to help us engage with tools (Orban & Caruana, 
2014). As a result, we come to conform to a set of behaviors and aims suited to the 
affordances presented by our environment (Pezzulo & Cisek; Noack 2012; de Wit, de 
Vries, van der Kamp, & Withagen, 2017).   

 The cognitive changes that we make while co-ordinating with tools leave a 
lasting imprint on us. Using tools cognitively changes the user, and in humans this 
effect can be seen in changes to our cognitive processes and capabilities. Brief usage 
of hand tools can modify our sense of self and can change our beliefs on what we are 
capable of ourselves (Cardinali et al., 2012). In developing motor routines and 
perceptual expectations for engaging hand tools, we develop a tool-person system 
(van Andel, Cole, & Pepping, 2017; D’Angelo et al., 2018). The cognitive elements 
that both inform and execute the actions necessary to work in coordination with the 
tool are known as schema, or schemes (Baber, 2006; Plant & Stanton, 2013). The 
schemes we develop are in turn, shaped by the demands placed on us by the tool, 
and features of the schemes change based on the tool used (Salmon et al., 2014; 
Baber, 2006). The schemes and other learned tendencies produced by interaction 
with a tool that are created not as a direct aim of the device in question are known 
as cognitive residuals. 

 Cognitive residuals are the lasting effects on cognitive processes of using a 
device (Salomon, Perkins, & Globerson, 1991). These lasting effects are distinct from 
the effects with technology, a term to distinguish the change in capabilities of users 
when they work with a device. While using a crutch to help one walk is an effect of 
working with the device, the opportunity to heal (or hurt, in the case of overreliance) 
through its use is an effect of using the device. The focus of this document will be on 
the cognitive impact of tool use, as the cognitive consequences of learning with a 
device are the focus of other research programs. The reason for this focus is found in 
the apparent consequences of ignoring these effects. 

 Cognitive residuals do not necessarily support the development of 
independent user skill. People who navigate with GPS tend to develop worse 
knowledge about the path they took (Ishikawa et al., 2008; Fenech et al., 2010). 
Similarly, people who use digital storage systems to either store information or as 
reference show reduced ability to recall the information stored on these devices 
(Sparrow et al., 2011; Dong & Potenza 2015). More generally, people who develop in 
a context that is rich with these digital tools exhibit breadth-based cognitive styles, 
and difficulty focusing in classroom environments or single tasks for extended 
periods of time (Dempsey, Lyons, & McCoy 2018; Kirschner & De Bruyckere, 2017; 
Loh, & Kanai 2016; Firth et al., 2019). The cognitive residuals that tools imbue us 
with are a subject worthy of further inspection. 

 These detriments appear to be caused by changes to how we interact with 
our tools. We are well equipped to discern technical knowledge from interactions 
with physical tools, but it is not clear if this the case for modern tools, whose actions 
are arbitrary relative to their outcomes (Osiurak, Navarro, and Reynaud 
2018; Osiurak & Heinke, 2018). Similarly, we are more frequently relying on our 
tools to perform tasks for us, rather than using tools to assist us in performing these 
tasks for ourselves (Firth et. al, 2019; Hamilton & Benjamin, 2019; Heersmink & 
Sutton, 2018). Offloading responsibility for accomplishing these tasks can free up 
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cognitive resources we need for learning (Paas, Renkl, & Sweller, 2004; Risko & 
Gilbert, 2016), but offloading must be carefully managed, or we risk further 
diminishing the opportunities for us to learn for ourselves (Jonassen, 1995; Van 
Merriënboer, Kirschner, & Kester, 2003; Ayres, 2006; Paas, Van Gog, & Sweller, 
2010; Risko & Gilbert, 2016) 

 These detriments are not observed in all digital tools, however. Spelling 
support systems, or at least spell-check and autocorrect, appear to support the 
development of independent user spelling skill (Arif, Sylla, & Mazalek, 2016; Lin, 
Liu, & Paas, 2017). However, these tools differ with regards to their level of user 
engagement, and the amount of information they present that is relevant to the 
task.  Thus, this difference will be the focus of inquiry across these five studies.   

I hope to demonstrate in these studies that by considering the types of 
actions demanded by a tool’s affordances, it is possible to construct tools that, in 
turn, create cognitive residuals that support tool-independent user skill.  To that 
end I conducted five studies exploring the development of cognitive residuals during 
the use of autocorrect and spell-checking.  A review of the findings of these studies 
will be conducted below.  

   
Interactive Spell-Checker, Passive Autocorrect: Findings 

 
My studies on spell-checking and auto-correct serve two purposes. The first is 

to explore the effects of existing spelling assistant technology on the creation of 
cognitive residuals (measured by user spelling skills). The second is to explore the 
effects on user skill development of engaging users in the editing process, or 
passively supporting them in the editing process. The results from these studies 
suggest that only certain types of engagement, providing them information while 
requiring them to complete the task for themselves, can assist a user more than 
passive assistance.  

Spell-check and auto-correct were created to support the same task, creating 
correctly spelled words. While the aim of the tools is the same, the tools differ in the 
user roles they create.  Spell checking systems require the user to identify the 
misspelled words and then select the correct spelling from a list of alternative 
spellings. In contrast, auto-correct systems perform the identification and selection 
task for the user, providing a correct spelling for any misspelled words entered by 
the user. This provides a natural contrast between devices, as they offer the same 
product (correctly spelled words) yet differ concerning the tasks they require the 
user to accomplish. 

I explored the consequences of this difference on cognitive residuals across a 
set of five studies wherein I looked at the performance of users in a spelling task 
before and after using either a spell-checking or auto-correcting device. The results 
of these studies suggest that both of these devices can create useful cognitive 
residuals in their users, by merely presenting them with relevant information. While 
I observed enhanced performance in users provided access to spell-checking system 
in the first of the four studies, this difference did not survive subsequent studies in 
which stricter criteria for successful performance during the training trials were 
included. However, it is important to note that as the performance was constrained 
across these subsequent studies, the task the user was faced with also changed. A 
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look at the tasks necessary to successfully correct a misspelled word show that as 
the options for selection were diminished and the difficulty in selecting the correct 
spelling was eliminated, the observed difference in effect size between spell-checking 
and auto-correct also diminished. 

These studies appear to suggest that interaction by itself is not a crucial 
component for spelling-skill development, and that passive presentation of 
information is enough to improve spelling capabilities. Conversely, these results 
may also suggest that a diminished user role also carries with it diminished the 
task-relevant value for the cognitive residuals generated by the tool.  

 
A New Way to Interact with Spell-Checking: Findings 

 
In my last experiment, I compare the performance of spell-checking and 

autocorrect systems with the mere presentation of task-relevant information. I 
accomplished this by creating a new control called the corrected condition, in which 
participants were provided a correctly spelled document (rather than a document 
they are asked to correct). Further, in the interest of exploring the enhancement of 
cognitive residuals, I also explored the effects of introducing two new modes of user 
interaction for a spell-checking system and one new mode of user interaction for 
autocorrect. The new spell-checking systems were designed to ensure that they 
required that the user was taking physical actions relevant to correcting a 
misspelled word for themselves. The new autocorrect system was designed to ensure 
that participants were made aware of the changes made by the system. 

The two new spell-checking systems still provided the basic highlighting and 
dictionary functions of a modern spell-checking system. In other words, misspelled 
words were still underlined in red, and right-clicking on these incorrectly spelled 
words would produce a list of adequately spelled correct words. In the interest of 
ensuring high-accuracy during the training trials, the list of words provided only 
contained one option for each misspelled word.  

The first new system, referred to in this document as part-word, required 
that users perform the required edit themselves to correct the misspelled word. They 
were able to right-click the misspelled word, but rather than being able to click on 
the context menu to replace the misspelled word, the user would have to type in the 
correct word themselves manually. The second new system, referred to from here on 
as full-word required that users rewrite the entire misspelled word. When a 
misspelled word is right-clicked, the word was removed entirely from the textbox. 
The correct spelling was still provided in the context menu produced by the right-
click, but the user had to re-enter the correct word into the document manually. 

Both of these conditions feature a form of input that is relevant to the task of 
manually editing spelling in a document. They require that the user perform either 
part or the entirety of typing the correctly spelled word. In the case of the part-word 
system, the user is provided with ample opportunity to compare the misspelling in 
the original document to the correctly spelled word supplied by the spell-checker. 
The user of the full-word system was, in contrast, afforded less of an opportunity to 
compare the misspelling and the correct spelling.  Instead they were required to 
practice typing out the entirety of the correctly spelled word. 
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The new autocorrect system, which I am calling autohighlight, provided users 
visual feedback of recently corrected items. This autocorrect system was modeled 
after the system used by Arif et al. (2017). After the autocorrect system replaced an 
incorrectly spelled word with a correctly spelled word, the corrected word was 
highlighted in the document. This highlighting remained present as the user worked 
on the rest of the document, allowing the user to review where the system had 
intervened. 

To satisfy the question of whether or not spell-checking and autocorrect were 
any better at creating useful cognitive residuals than merely presenting task-
relevant information, a new control was introduced in this study. This control 
consisted of a correctly spelled document and was referred to as the “corrected” 
condition. Participants were provided a correctly spelled document and were made 
aware that this document was correctly spelled. Through this, users would receive 
both exposure to the correct spellings, as well as practice typing in the correctly 
spelled words. This would provide a basis for comparison of cognitive residuals 
created through mere exposure to those produced through interactions with a spell-
checking or auto-correct device. 

Results from these studies support the hypothesis that traditional means of 
auto-correct and spell-checking do not create cognitive residuals that are observably 
more useful than the cognitive residuals generated from mere exposure to the 
correctly spelled words. However, this does not appear to be the case for only one of 
the new spelling support systems, part-word.  The results discussed here will 
demonstrate that the part-word system provides observably more useful cognitive 
residuals than those created from mere exposure to the correctly spelled words.  

 
Conclusion 

 
This dissertation aims to demonstrate that useful cognitive residuals can be 

created in our interactions with technology. To begin, there will be review prior work 
that explores the cognitive effects of tool use, concerns regarding the development of 
detrimental cognitive residuals through tool use, and potential routes by which we 
can enhance our tools to assist the development of our skills instead. In the studies 
presented after the review, I will demonstrate what I have discovered regarding the 
development of spelling skills through the use of spelling support systems. I will 
show that the modern autocorrect and spell-checking systems are likely supporting 
the development of user spelling skills by providing relevant information to users 
and that learning new words can be supported by both of these modern spelling 
support systems about equally (though no better than if they had simply reviewed 
the proper spellings). Finally, I will demonstrate that there are ways that users can 
interact with their spelling support systems that are better for developing user skill 
than existing methods.  
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Chapter 2 - Tool Use and Human Cognition  
 

Spell-checking and auto-correct represent two forms of spelling support 
system. These systems both deliver the same product to the user: a correctly spelled 
word. However, they differ in the required user action.  Autocorrect passively 
provides a user with a correction to a mistake. The user enters a misspelled word, an 
autocorrect system attempts to determine the intended word, and then without 
further user intervention, replaces the misspelling with a correctly spelled word. 
Spell-checking requires a user to engage in the process of producing a correct 
spelling actively. When a misspelled word is entered, a spell-checking system 
underlines the misspelling until the user takes action (such a clicking a mouse 
button), at which point the user is presented with options for possible corrections to 
select, further engaging the user in the correction process. 

This difference between autocorrect and spell-checking systems allowed me to 
explore the effect of a tool's interaction style on human cognitive development. In 
particular, the differences represent a means of identifying the role of active user 
engagement in the development of spelling skill. This chapter provides some 
background on the possible cognitive impacts of spelling support systems by making 
two key points. First, this review aims to establish that we can reasonably assume 
that human cognition is affected by our tools not just through intended use of 
educational systems, but from mere exposure to nearly all other devices as well. We 
usually understand humans as creators and users of tools. But a review of our 
evolutionary history and our particular cognitive quirks regarding tools will show 
that we are also a creation of our devices. The term “creation” is meant here in both 
a historically and individually meaningful sense. Humankind evolved alongside the 
tools they wielded, and this journey has made how we think intimately connected to 
the types of devices we use. As a result of this development, human cognition 
changes with respect to the tools we use. Through everyday interaction with tools, 
humans develop cognitive residuals that reflect task-relevant information garnered 
from those ordinary interactions (Salomon, Perkins, & Globerson, 1991). Specific 
tools or devices, such as GPS, digital reference systems, and even simple grasping 
tools, induce cognitive changes in their users that diminish or change user 
capabilities in tasks relevant to the types of interactions they have with these 
devices (Ishikawa et al., 2008; Fenech, Drews, and Bakdash, 2010; Sparrow, Liu, & 
Wegner 2011).  Therefore, it seems reasonable to explore spell-checking and 
autocorrect as devices that may change user cognitive processes as well.  

The second key point is that occlusion and diminished user responsibility are 
aspects of modern tools that impair user skill development. While humans are 
capable of deducing the functionally relevant aspects of mechanical tools through 
use, digital tools do not naturally afford such learning opportunities (Osiurak, 
Navarro, and Reynaud 2018; Osiurak & Heinke, 2018). The occlusion of task-
relevant functional information is expected to limit the ability of users to learn from 
their devices. Autocorrect, compared to spell-checking, occludes the user from the 
spelling correction process by not alerting the user to an improper spelling. 
Identification of an incorrect spelling is no longer a process that involves the user, as 
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it does with spell-checking. Thus, it is reasonable to explore the effects of 
autocorrect's increased occlusion of the spell correction process on user learning. 

Diminished user responsibility also presents a problem for skill development. 
As tool designers automate tasks, they consequently also reduce the required 
capabilities of their users. Reducing the cognitive capacities needed of users in a 
task by modifying the environment is often referred to as a form of cognitive 
offloading (Risko & Gilbert, 2016). Cognitive offloading is the process in which the 
performance of a cognitive task is either assisted, enhanced, or replaced by an 
element of the environment. However when the burden of solving a task is removed 
from a user, this can interfere with the development of germane cognitive resources 
by removing the need for their growth in the user (Jonassen, 1995; Van Merriënboer, 
Kirschner, & Kester, 2003; Ayres, 2006; Paas, Van Gog, & Sweller, 2010; Risko & 
Gilbert, 2016). As germane resources represent the task-relevant capabilities of a 
user, the reduced user responsibilities present a threat to the ability of users to 
learn in the course of using a tool. Autocorrect, compared to spell-checking, creates a 
diminished user role. Thus, it is reasonable to explore the effects of this reduced role 
and enhanced occlusion on user learning.   
 
Human Cognition is Affected by Our Tools 

 
Tool use is intricately linked to cognitive development. Tools have been 

central to human cognitive development for as long as humans, and our close 
ancestors, have walked the earth. Tool-use is believed to have predated the 
emergence of modern humans, being a feature of social hominids that predate the 
first Homo sapiens sapiens fossils (Semaw et al., 2003).  

Tool use appears to have given our ancestors distinct biological advantages, 
such as allowing access to new food sources (Power & Williams, 2018) and the ability 
to rapidly deploy new capabilities in the face of changing environments (Chase et al., 
2018). To make better use of these capabilities, hominid bodies, in particular, hands, 
adapted across generations to make better use of tools (Williams-Hatala et al., 
2018). We appear to have far greater fine-motor control than our closest relatives. 
This capability allows humans to execute more complex manual tasks and is 
believed to have assisted early hominids in the development of more regularly and 
finely made tools (Byrne, 2004). Hands, and hand control represent at least one way 
in which technology has modified humans. 

Our ancestors necessarily must have changed cognitively as well. Modern 
humans also appear to be uniquely adapted to learning the processes for developing 
tools. We exhibit the capability of rapid acquisition of manufacturing techniques for 
ancient stone tools.  This process is associated with activation of brain areas 
developed relatively late in the primate lineage (Stout et al., 2008). Compared to our 
close relative, modern chimpanzees, modern human brains show far higher 
sensitivity to tool properties (Stout et al., 2008; Kastner et al., 2017). While it is not 
the case that this establishes that it was the presence of tools in our ancestor’s lives 
that spurred the development of such sensitivity, it does confirm that the brain is at 
least highly responsive to tools. 

Humans also have a far richer set of linguistic and social capabilities that 
assist in the integration and transmission of new tools (Orban et al., 2006; Orban & 
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Caruana, 2014).  Further, changes in our dorsal-parietal visual pathway seem to 
support our ability to identify tool capabilities and generalize knowledge about these 
capabilities to new objects (Kastner et al., 2017).  Across generations, humans have 
developed both behaviorally and physically in a manner that has made us better at 
using tools than seemingly any other organism on earth. 

 
Cognitive Residuals and Tool-Shaped Interactions 

 
The studies presented here focus on how tools change an individual. This 

section aims to establish that humans are prone to tool-influenced cognitive changes 
within short periods.  Rapid adaptation to a diverse set of tools and potential 
applications requires that we cognitively change when we attempt to detect and 
engage the affordances in our environment (de Wit et al., 2017).  For example, our 
concept of peripersonal space adjusts to the affordances of the tools we wield; Our 
sense of 'reachability' dynamically changes to match the reachable space accessible 
with the tools we have just used (Martel, Cardinali, Roy, & Farnè, 2016). 
Importantly, this phenomenon seems to arise only in two particular settings: when 
the perceptual feedback generated through tool use is task-relevant (van Andel, 
Cole, & Pepping, 2017), and when the user has some indication of agency in the 
process (D'Angelo, di Pellegrino, Seriani, Gallina, & Frassinetti, 2018).   

These changes do not just affect tool-users as they are using tools; 
interactions with these tools appear to imbue users with observable cognitive 
residuals. Using hand tools for reaching affects our perception of our tool-less self as 
well. These effects are realized in two senses: (1) we see changes in our sense of the 
peripersonal space accessible by our hand as a result of interactions with tools, and 
(2) we see that our sense of peripersonal space remains changed even after we stop 
interacting with the device (Bourgeois, Farnè, & Coello, 2014).   

Changes in post-tool cognition appear to be driven by motor rather than 
perceptual interactions with tools (Cardinali et al., 2012). Cardinali et al. (2012) 
show that after using a small device for gripping objects at a distance, users would 
grasp small blocks differently when only using their hands. These changes were not 
observed with participants that used the tool to estimate the size of the block. Using 
the tool to move the block proved to have a more significant impact on the user's un-
assisted grip characteristics (grip strength, the velocity of reaching moment) than 
merely observing the block while holding the tool and assessing the possible 
affordances of the device. Manual, goal-relevant action appears to play an essential 
role in the cognitive residuals that tools imbue on us, at least in the cases described 
above. 

The lasting cognitive effects of tool use can be considered a result of 
technology, rather than an effect rendered with technology (Salomon, 1990). This 
distinction helps us understand that there are two separate consequences of tool use 
for the tool user. The effects with technology refer to changes in capabilities that 
arise as a result of the user being engaged with technology. As in the case of the 
reaching tools described above, these would be the changes in future reaching 
actions created by having a longer reaching range. Effects with technology include 
applications that tool designers intended their tools to solve, as well as the 
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affordances offered by the tool that is discovered by the user. Effects of technology 
include the cognitive residuals, lasting effects on cognition that persist even after 
the tool use has ceased, and that arise from interactions with devices. For instance, 
while one can produce notes of an event with either a pen and paper or a laptop, the 
effects of using a pen and paper provides users with greater memory of the contents 
of the notes (Smoker, Murphy, & Rockwell, 2009; Mueller, & Oppenheimer, 2014). 

One well-known form of cognitive residual is the scheme (Plant, & Stanton, 
2017).  A scheme is a set of related concepts, action plans, and expectations that help 
organisms make use of environmental affordances.  Schemes are generated through 
interaction with the environment and are in turn shaped with the elements of our 
environment that we either engage with, or are engaged by (Baber, 2006).  As we 
learn about affordances and the success of our action sequences in utilizing them to 
achieve our goals, our actions (and thereby our schemes) adjust to better make use of 
the affordances presented to us. 

This affordance-sensitive adjustment is to overcome the obstacles natural to 
self-conduct in a physical environment and achieve the goals we select for ourselves 
(Pezzulo, & Cisek, 2016). Pezzulo and Cisek (2016) propose that our sensitivity to 
affordances is created through neural systems devoted to the covert simulation of 
prior experience with overt action sequences in order to produce sensory 
expectations.  Effectively, how we used tools in the past forms the basis of how we 
see objects as tools in the future.  Pezzulo and Cisek further suggest that evidence of 
this supposedly central cognitive process should be found in residual products of 
experiencing specific action sequences. In other words, how we use the tools should 
change the way we think in observable ways. 

One possible explanation for why humans appear to be so sensitive to 
affordances lies in the function of the frontal areas of the brain.  Noack (2012) 
theorized that one of the defining characteristics of human cognition is rich feedback 
instituted and managed by the frontal cortices. At some point in primate evolution, 
the brain switched from a feed-forward dynamic in which information from sensory 
areas guided dynamics in the motor association areas, to a feedback dynamic of 
activation in which motor association areas govern sensory area dynamics.  This 
feedback allows the creation of a category attractor-action scheme complex, a system 
by which the brain associates a variety of sensory inputs (a category) with relevant 
action sequences.    

To summarize, human brains form memories of perceptual experiences as 
they relate to motor experiences in a manner respectful of the type of goals a human 
might seek (Pezzulo & Cisek, 2012; Noack, 2012).   Our perceptual systems, and 
what we know about the world through them, are in turn shaped by the types of 
tools we use (Martel, Cardinali, Roy, & Farnè, 2016).   Further, how we use these 
tools shapes how our cognitive systems are prepared to take actions in the future 
(Cardinali, Jacobs, Brozzoli, Frassinetti, Roy, & Farnè, 2012). The types of cognitive 
changes created by using a tool include changes that were not intended in the 
design, the effects of technology (Salomon, 1990).  The tools that we use leave us 
with cognitive residuals relevant to their use.  
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Detrimental Cognitive Residuals 
 
So far, I have discussed the biological consequences of humans developing in 

line with their tools, explaining why we expect humans to be cognitively sensitive to 
tools and demonstrating that indeed humans are cognitively sensitive to tools. 
Further, I have touched upon some of the existing explanations for that sensitivity 
and provided a name for this sensitivity, “cognitive residuals.” In this section, I show 
that cognitive residuals are a recognized consequence of tool use, and that cognitive 
residuals can inadvertently be harmful to the user. 

Not all cognitive residuals are inherently valuable for users. Some frequently 
used modern devices appear to have detrimental effects on related user-skills. 
Google, the most commonly used search engine (Davies, 2018), has been shown to 
interfere with declarative memory capabilities (Sparrow, Liu, & Wegner, 2011). 
While such findings are limited regarding actual usage of Google, Sparrow et al.’s 
results primarily speak to the effects of interacting with a digital information 
storage system similar to a modern Windows or Apple Operating System. In their 
study, participants were offered the opportunity to read about trivia facts, type out 
passages about those facts, and then save their typed documents to a position in a 
digital folder system (e.g., “C:\Desktop\TriviaNotes”). If participants believed their 
typed passages were saved and remained retrievable in the system, their recall of 
the content of those passages was worse than for participants who thought that their 
messages had been erased. If a person believed the information was stored on a 
computer, they were less likely to recall the content of that information accurately. 
Sparrow et al. then demonstrate that this occurs within participants, on an 
interaction by interaction basis. For a given participant, if their notes concerning a 
fact were believed to be saved, that fact was less likely to be remembered, while if 
they were told their notes regarding a fact would be deleted that fact was more 
likely to be remembered. Effectively, the information people understood to be stored 
by the computer was more likely to be forgotten. 

Similar results were found by Dong & Potenza (2015), who showed that 
participants that prepared for a memory task by using the internet for reference 
performed worse on a recall task than participants who prepared by using an 
encyclopedia.  Participants exhibited lower confidence in known facts, and fewer 
remembered facts if they learned them through the internet.  This was coupled with 
the observation that participants that had used the internet showed less activation 
in temporal-parietal-occipital associative network that “integrates information from 
different sensory areas and relate the information to past experiences.”  Across both 
sets of participants, greater activation of this area was associated with better recall.   

The loss of task-relevant memories also occurs when people use cameras to 
take pictures of their environment (Henkel, 2014).  When participants were asked to 
take pictures on a museum tour, Henkel showed that their memory for the things 
that participants took a picture of was less accurate than the memory of the objects 
they were not instructed to photograph.  It would appear that the act of creating a 
photograph impairs people’s memory of that photo’s subject.  Interestingly this effect 
is very subject dependent.  When participants were asked to zoom in on only a 
portion of the object before taking a photo, their memory for the whole object was 
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comparable to baseline (no photo).  Users did not experience memory impairment 
when they knew the image of the whole object would not be “stored” in the photo. 

The creation of detrimental cognitive residuals is not a phenomenon limited 
to digital storage systems, as we can see similar detriments arise from users of GPS 
navigational systems. Ishikawa, Fujiwara, Imai, and Okabe (2008) showed that 
people using GPS for wayfinding while navigating a route for the first time 
performed more poorly on path recall than participants that were either given prior 
experience of the route (without GPS assistance) or provided a map to help them 
navigate the route for the first time. Participants were not instructed to memorize 
the route they walked, so GPS systems appear to have interfered with incidental 
learning processes in the user.  

A failure to develop familiarity with routes also appears to happen when the 
GPS provides users with turn-by-turn directions. Fenech, Drews, and Bakdash 
(2010) explored a virtual driving scenario in which participants drove a specified 
route twice. The virtual city was organized such that streets in one direction were 
sequentially numbered (e.g. “2nd Street” is between “1st Street” and “3rd Street”), 
and cross streets were sequentially lettered (e.g. “B Street” is between “C Street” 
and “A Street”). Participants were then asked to navigate to a house on “E Street, 
between 3rd and 4th street”. In the participant’s first drive-through, they were 
either provided turn-by-turn directions as they would receive from most commercial 
GPS systems, or they were required to find the destination using street names alone. 
Participants that received turn-by-turn directions took significantly longer on their 
second drives, while participants that had to determine for themselves the proper 
path based on street names took less time on their second drives.  

Fenech, Drews, and Bakdash (2010) attribute this difference in drive time to 
a failure of the GPS users to develop familiarity with the route. This failure to 
develop familiarity is further supported by their findings in a scene recall task. 
Participants in the driving task were asked to determine if a visual scene came from 
the route they had just driven. Participants that were provided turn-by-turn 
directions could not recall visual scenes from the route as accurately as participants 
that were not provided turn-by-turn directions. Fenech, Drews, and Bakdash 
suggest that this difference may be attributed to inattentional blindness created by 
being provided turn-by-turn directions. As will be discussed in later sections, the 
difference in accuracy may be attributed to differences in user demands, and the 
development of a transactional relationship between the participant and the turn-
by-turn GPS. 

More broadly, though, being immersed in digital technology appears to have 
lasting effects on cognition (Loh, & Kanai 2016; Firth et. al, 2019). “Digital Natives,” 
a term used by Loh and Kanai (2016) to refer to people that develop in the presence 
of internet technologies from an early age, exhibit cognitive profiles distinct from 
“Digital Immigrants” (those who only began to use internet technologies in adult-
hood). For instance, children that own a smartphone early in life perform more 
poorly on standardized tests than children that received a smartphone later in life 
(Dempsey, Lyons, & McCoy 2018).  “Digital Natives” exhibit less in-depth 
information processing and increased attempts at multitasking. They appear to 
adopt a breadth-biased attentional control style that is better suited towards the 
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integration of multiple sources of information at the cost of long-term retention and 
greater susceptibility to distracting information.  

However, it is important to note that operating like a “Digital Native” 
appears to be a consequence of familiarity with and usage of current digital 
technologies rather than a consequence of having developed in an environment rich 
with digital tools (Kirschner & De Bruyckere, 2017; Firth et. al, 2019). A digitally 
rich environment both lends itself to, and may even demand, multitasking. The 
concept of multitasking is constructed from the observation that people can perform 
two separate tasks in close temporal proximity, seemingly at the same time. This 
apparent dual-task performance belies the nature of the process, where scrutiny of 
users often reveals that they are not actually performing the tasks concurrently, but 
instead switching rapidly between the two tasks to manage load in various cognitive 
bottlenecks (Salvucci & Taatgen, 2008). Multitasking is frequently seen in the 
modern-day when people will opt to use social media while they perform other tasks. 
In the case of students, this decision often impairs their ability to learn (Rosen, 
Carrier, & Cheever 2013).  

 
Explaining the Detriments  

 
I have reviewed some cases in which the cognitive residuals of tool use were 

detrimental to users. It would appear that users of digital devices may occasionally, 
if not frequently, develop cognitive deficits as a consequence of using these devices. 
Identifying why exactly these tools may impair rather than enhance user skills is 
essential to inform effective tool design. I propose that digital devices may create 
cognitive deficits for two reasons: (1) occlusion of technical information relevant to 
how the device achieves its goal, and (2) displacement of the user as a task-
responsible party (commonly referred to as offloading).  

 
Technical Occlusion 
 
One possible cause for the loss of particular skills may be a product of how we 

make our tools. Whereas physical tools have associations between their accessible 
properties (such as length, weight, color, or shape), modern devices hide how they 
accomplish their tasks. Hiding the solution limits what we can learn about an object, 
and by extension, the task it assists. Osiurak and Heinke (2018), in a tool cognition 
framework they have called Intooligence, distinguish three types of interactions we 
can have with our tools. Tools can use be assistive, arbitrary, or free. Assistive tools 
do not require users to be aware of their desire to use them. They are the kind of 
tools that can be created once and can be used again by others without the user 
conceiving them as a means to an end. Unlike deciding to use a television, a knife, or 
a car, we can use assistive tools without intending to make use of them. We do not 
need to decide to use a road, an awning, a wall, or even a support system like 
autocorrect. These systems can be used without the user intentionally employing 
them for a purpose. 

Arbitrary tools must be intentionally selected (or “mentally made”, to use the 
words of Osiurak & Heinke) by a user, but their proper use does not require an 
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understanding of the technical processes by which they accomplish a goal. This 
category includes things like television remotes, calculators, and smartphones. 
These are objects with a limited set of interactive procedures for use. Only pressing 
on the buttons, and in a tool-arbitrary order, will allow the user to make use of the 
object. For many arbitrary devices, only knowledge of the correct procedure is 
necessary for successful usage.   

Finally, free use tools require the user to envision how the tool will be used in 
order to accomplish a goal. One must know how to move a knife to cut a tomato, but 
one must also know the relationship between sharpness, pressure, the ripeness of 
the tomato, and the desired thickness of the slice. To use a knife, one must know 
something about how they (the tool and the user) interact with general physical 
principles about the world. 

Osiurak and Heinke use physical tools as the primary example of what they 
mean by free tools. The relationship between the purpose of the device and how the 
tool solved a problem tended to be represented in the physical properties of our old 
tools, the identification of which we seem uniquely able to discern (Penn, Holyoak, & 
Povinelli, 2008). Our modern tools tend not to offer the same level of transparency 
regarding how they accomplish their functions (Osiurak, Navarro, & Reynaud, 
2018). Instead, the association between the function and shape of the tool are 
divorced in modern devices. How the tool accomplishes, the task is hidden behind 
interfaces that reduce interactions into task-arbitrary actions.  

Consider the act of typing on a keyboard. The development of useful routines 
for accurate and rapid use of a keyboard is unlikely to contribute to a deeper 
understanding of how a keyboard transforms key presses into letters on a screen. 
The inability to derive lessons about the function of a keyboard by using a keyboard 
stands in contrast to using a hammer. Learning to wield a hammer properly is quite 
likely to confer information on how mass and leverage help perform the hammer’s 
task. The keyboard’s task-arbitrary actions do not provide the information necessary 
to develop technical reasoning abilities. Instead, they support the development of 
procedural memories to assist the user in generating the proper motor sequences 
necessary to complete the task. Humans are generally quite adept at learning the 
mechanical principles behind the physical tools they use (Osiurak Navarro, & 
Reynaud, 2018). Tools that are built to be interacted with through an interface, not 
directly applied to physical problems, do not naturally afford the same learning 
opportunities.  

This phenomenon is what I am referring to as technical occlusion. Technical 
occlusion is the degree to which a tool hides the process with which it solves a 
problem. Tools such as hammers and knives typically have low levels of technical 
occlusion, in that the information regarding how they assisted a task is apparent. It 
is through the application of force in a particular manner and the respective shapes 
of the tools. Tools such as smartphones have high levels of technical occlusion. They 
do not make the mechanical and physical processes by which information is 
displayed and transmitted available to the user; that information is hidden behind 
the interface. This hiding of the solution can also occur with other types of 
information relevant to solving a problem, not just the physical aspects. A map has a 
low degree of technical occlusion. In using a map, the user has access to location-
relevant information for each point of the journey. They can discover how close 
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destinations are by referring to the area between two points and can learn the 
names of intervening or surrounding streets for their destination. Receiving turn-by-
turn GPS directions, however, reduces the information relevant to navigation to 
when and in which direction the user should turn. This form of navigation 
assistance would be said to exhibit a high level of technical occlusion.  

  
User Responsibilities 
  
Aside from the inscrutability of the mechanisms by which modern digital 

devices solve the problems that they do, modern digital technologies also suffer as a 
source of skill development in that automation does not naturally create learning 
opportunities for users. Automated functions aim to reduce the burden upon users, 
and successfully automated tasks require minimal user input. Consequently, when a 
task is automated correctly, the user never has the opportunity to experience how to 
perform the task themselves. 

Whereas our old tools enhanced our capabilities, modern tools often provide 
us capabilities by automating the tasks that underlie them. The impact of this shift 
in task responsibility can be seen in the explanation for the effects of digital memory 
storage on user memory capabilities (Firth et al., 2019). The maintenance, storage, 
and organization of that information are entirely automated relative to the user, 
who only has to engage in the process of retrieving the information (assuming the 
source is trusted). Modern digital reference systems can be seen as part of our 
“transactive memory system” (Hamilton & Benjamin, 2019), the store of information 
we have access to through exchange with other entities, e.g., other people and digital 
reference systems. This “transactive memory” offers both information we could not 
possibly have generated ourselves, as well as resilient storage of what would 
otherwise have to be committed to rote memory.  

Digital transactive memory may not be appropriately called a transactive 
memory system in the traditional sense (Heersmink & Sutton, 2018). In social 
contexts, where transactive memory systems were first described, responsibility for 
the information is often developed through explicit negotiation of which individuals 
are responsible for which information. In the case of the internet, or devices outside 
of the user’s designs (i.e., not created directly by the user), this relationship is 
frequently non-existent. The information stored on the internet that users have not 
created, endorsed the creation of, or agreed for others to create, dwarfs the 
information they have put on the internet themselves. Users have not agreed to 
delegate knowledge about the weather to www.weather.com, but nonetheless the 
website still generates, gathers, and stores information relevant to the weather.  

The information exchange between the user and the internet is not quite like 
the user operating in a community of peers to accomplish a memory task jointly. It is 
more like the user operating in a community of potential experts who have already 
solved memory tasks (generate, gathering, and storing information) that the user 
can peruse at their discretion. Unlike traditional “Transactive Memory Systems,” 
where users store information for one another, the “Transactive Memory Systems” 
formed with the internet are frequently more one-way. For instance, the vast 
majority of people visiting www.weather.com are not doing so to store new 
information but to access what was already stored for them. Effectively these devices 
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primarily form one-way information transactions, providing information to users 
without requiring any reciprocation. 

Engaging with transactive memory systems, either in a traditional 
bidirectional exchange or in a one-way reception relation between user and tool, is 
referred to as a form of cognitive offloading (Risko & Gilbert, 2016). Cognitive 
offloading occurs when humans utilize environmental elements to ease or enhance 
the performance of cognitive tasks. If carefully managed, the process of offloading 
can benefit learning (Jonassen, 1995; Oviatt, 2006). A user that is not attempting to 
improve their skill in memorizing numbers but wishes to improve their ability with 
long division can keep track of the numbers they’re practicing with on a sheet of 
paper. By offloading the storage of these numbers into the environment, users can 
free up resources for learning (Paas, Renkl, & Sweller, 2004). 

However, when the system in question promotes the offloading of task-
relevant information, learning outcomes can be impaired (Jonassen, 1995; Van 
Merriënboer, Kirschner, & Kester, 2003; Ayres, 2006; Paas, Van Gog, & Sweller, 
2010). Risko and Gilbert (2016) suggest, citing the work of Sparrow et al., (2011), 
that this type of interaction trains users not to develop the same skills that the 
systems assist. Users cannot be expected to learn how to perform the tasks that the 
system accomplishes for them. Risko and Gilbert (2016) propose that this entails 
that designers should take particular care when constructing tools for educational 
purposes, as assistance in the task the user is being trained in can interfere with the 
user’s learning. 

 
Conclusion 

 
Human cognition is oriented towards utilizing the environment as a tool (or 

rather, a set of tools).  Perceptual and motor systems in the human brain are highly 
sensitive to the affordances offered by elements of the environment.  The affordances 
of our devices can change the way we think, even after the user has disengaged with 
the part of the environment that was used as a tool.  The residual effects on our 
cognition appear to be shaped by both what service the tools provide us and how 
they provide that service to us.  Modern and emerging technologies are trending 
towards greater automation and less transparency in how they perform their 
functions. 

Autocorrect represents a step towards greater automation and less 
transparency relative to spell-checking.  The following set of studies will compare 
the cognitive residuals that arise from interacting with these devices.  I expect that 
autocorrect, being both less transparent and involving greater automation, will 
prove less effective at increasing (if not detrimental to) a user’s ability to correct a 
document’s spelling than a spell-checking system.  
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Chapter 3 - Studies 
 

Study 1 - A Comparison of Editing Skill Development Using Microsoft Word’s 
Autocorrect and Spell-Checking Support Systems 

 
Word processing is a real-life, everyday task for people all over the world.  

Modern word processing systems allow for document editing with a suite of support 
systems, such as those that assist with organization, typesetting, multi-user 
coordination, and spelling.  These next few studies will focus on the cognitive effects 
of the sorts of spelling support systems that are included in many modern word 
processing programs, such as Microsoft Word.  Of particular focus will be the 
spelling support systems that “autocorrect” misspelled words automatically and 
spelling support systems that do “spell-checking” to highlight misspelled words for 
user action. 

As spelling support systems, both present users with roughly the same result: 
correctly spelled words.  However, they differ significantly in how spelling support is 
delivered.  Autocorrect systems may be thought of as user-passive and spell-
checking systems may be thought of as user-active.   

For autocorrect, once a misspelled word is entered, the identification of the 
misspelled word, the selection of the proper word, and the replacement of the 
misspelled word with the properly spelled word all occur without any further user 
input.  No information is provided to the user outside of the corrected word, and 
occasionally a brief visual indication, such as an underline of the corrected word that 
fades over time.  The user remains passive in the editing process.  

For spell-checking, upon the entry of a misspelled word, a spell-checking 
system will identify the misspelled word for the user and underline or otherwise 
draw attention to the possible misspelling.  It is up to the user to determine if the 
highlighted word is actually different from what was intended, and further, it is up 
to the user to engage a selection process to find the correct spelling, for instance, by 
bringing up a context menu with suggested corrections for the highlighted word.  
Once the user identifies a candidate alternative spelling, the misspelled word can 
then be replaced by clicking on the candidate.  The multiple points in this process 
that require user input means that the user is far more active in the editing process 
compared to autocorrect.  A comparison of user-active and user-inactive systems for 
editing spelling allows us to explore the importance of user-active participation in 
the development of useful cognitive residuals.  

Prior research into the effects of spell-checking systems shows that spell-
checkers can assist users in learning the proper spelling of English words through 
the act of editing a document with the spell-checker (Lin, Liu, & Paas 2017).  As the 
goal before students was to use the device to correct the spelling, rather than to 
learn new words, we can say that learning the words is a cognitive residual (Lin et 
al. refer to the effects as a product of incidental learning) of having used the spell-
checker.  However, this study did not look at the effects of autocorrect, a relatively 
new method of spelling assistance. 
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Conceivably both of these systems should produce cognitive residuals, as both 
provide the user the opportunity to see correctly spelled words.  However, the user-
passive technique presented by autocorrect creates the sort of one-way information 
interactions that Heersmink and Sutton (2018) claim characterizes interactions with 
modern internet devices.  In the parlance of Osiurak and Heinke (2018), this also 
shifts autocorrect to an almost purely “assistive tool,” having required a massive 
amount of planning and design on the part of the creator, but little to no effort on 
the part of the user to adequately use the tool.  When it functions properly, one does 
not have to go out of the way to engage the autocorrection function.   

Spell-checking, in contrast, would fall into the category of “arbitrary” tool-use 
(Osiurak & Heinke, 2018).  It would constitute an “arbitrary tool” as it requires 
specific but task-arbitrary user inputs to function.  “Arbitrary tools” require users to 
develop procedural memories unique to the process of using the device.  To know 
how to use a light-switch, an “arbitrary tool,” one needs to know that certain actions 
will be successful while others will not.  Only manipulating the up and down 
position of the switch will allow the user to make use of the primary affordances 
provided by the device while pressing, pushing, pulling, or smashing the device will 
not produce any useful effects. 

Whereas it is conceivable that autocorrect and spell-checking systems both 
create cognitive residuals, it is reasonable to assume that the cognitive residuals 
created by each are different, as the two differ in the need for user input and in the 
demand that need places on the user to create procedural memories necessary to 
deliver that input.  As a result of this extra need for procedural memory, I 
hypothesize that current spell-check systems will produce a better incidental 
learning experience than current autocorrect systems.  This hypothesis can be tested 
by comparing the success of users on a spelling task, before and after using a spell-
check or autocorrect support system. 
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Table 1 - Phases of the Spelling Assistance Process 

System Identification Selection Execution 
Autocorrect  No new 

information is 
presented to the 
user for this step 

 

Spell-
Checking  

 
 

This table summarizes the steps the user takes in correcting a spelling error with either 
Microsoft Word’s autocorrect, or spell-checking assistant.  Of particular note are the 

differences in the identification and selection steps.  In the identification step, autocorrect 
provides no indication of a misspelling.  Spell-check, on the other hand, draws the user’s 

attention to the misspelling with a red underline.  In the selection step, autocorrect handles 
the process of selecting a properly spelled word without prompting the user in any manner.  
Spell-check requires that the user perform the selection process (in part) themselves.  Spell-
check offers the user candidate properly spelled words, and the user must select the proper 

spelling from that list.  In both cases the final step is replacing the misspelling with a 
properly spelled word. 

Methods 
 
Data Collection 
 
To test the hypothesis that cognitive residuals will differ between the 

different sorts of spelling support systems, I conducted a study comparing the 
incidentally learned spelling skills of users who used either an autocorrect or a spell-
checking system to correct the spelling of a set of misspelled words in a short 
document.  A total of 18 participants were recruited from the UC Merced subject 
pool through the Sona Experiment Management System and participated in 
exchange for class credit.  Participants were randomly assigned to either the spell-
check or autocorrect conditions (i.e., a between-subjects design).  

In this study, participants were asked to copy three short passages from a 
paper document into a Microsoft Word (Microsoft, 2018) document and correct the 
spelling mistakes the passages contained.  These three passages composed a set (see 
Appendix A.1.2-A.1.4), and this set of three passages was repeated three times per 
participant.  The first instance of the set was called the pre-test period.  This set was 
used to establish the participant’s base rate of word correction without any support 
system present.  The second instance of the set was in an experimentally 
manipulated condition in which participants used either the autocorrect system or 
the spell-checking system native to Microsoft Word (Microsoft, 2018). The third 
instance of the set was called the post-test period and was used to establish whether 
any spellings were learned.  In addition, after this post-test, participants also copied 
one additional passage that contained all the misspelled words in the set but in a 
different order and context than in the original passages (see Appendix A.1.5), 
constituting a transfer test.   



 
 

 

20 

 
Figure 1 - Diagram of a Set

 
Each set was composed of three trials.  Each trial consisted of one passage containing 
misspelled words.  Participants were instructed to correct the spelling in each of these 

passages.  Passages 1, 2, and 3 all contain different misspelled words and are reproduced in 
Appendix A.1.2.2-A.1.2.4.  Each set contained the same three passages, presented in the 

same order. 

 
  

Figure 2 - Diagram of Experiment Flow

 
Participants saw the same set of passages (described above) three times.  The first set 

constituted a “Pre-Test”, in which base-line spelling performance was established by having 
participants correct the spelling in the passages without assistance.  The second set 

constituted a “Manipulated” condition, in which participants corrected the same three 
passages they saw in the pre-test.  The difference between the “Manipulated” condition and 

the “Pre-Test” condition was that participants were provided a spelling assistant (either 
autocorrect or spell-check) while they corrected the spelling in the passages.  The third 

instance of the set was a “Post-Test”, where once again participants were asked to correct the 
spelling in the passage without a spelling assistant.  Finally, participants were asked to 

complete a “Transfer Test”, in which participants were again asked to correct the spelling of 
a passage, though this time it was a passage they had not seen before.  The transfer test 
passage contained the same target words, but in a different order within a new passage 

(passage is reproduced in Appendix A.1.2.5). 

 
The passages were constructed from a Wikipedia list of commonly misspelled 

English words (Wikipedia contributors, 2017), and are reproduced in Appendix A.  A 
total of 27 words were used, with eleven misspellings in the first passage, seven 
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misspellings in the second passage, and nine misspellings in the last passage.  A 
custom dictionary was constructed for the Word document to ensure that the 
misspellings produced spell-checking options that contained the correct spelling of 
the target word (Microsoft, 2018).  Participants were allotted 3 minutes for each 
trial.  If the trial ended before the 3 minutes, the experiment proceeded anyway.  
Any student unable to complete all trials was not included in this study.   

 
Assessment 
 
Scores were calculated for each set as the number of spelling errors 

remaining in the documents submitted across all three trials.  This means there was 
a pre-test score, “manipulated” score (from the trials with either autocorrect or spell-
checking available), and a post-test score.  Both misspellings (e.g. “misspellng”) and 
substitutions (e.g., “misstopping”) were considered errors.  Thus, a lower score 
indicated better performance. Scores on the pre-test and post-test were compared to 
assess how much participants improved across trials and between conditions.    A 
generalized Poisson mixed model was fit to the data, and the relative rate ratio for 
the number of errors on the post-test was estimated for spell-checking compared to 
auto-correct. 

 Scores on the set with a support system (the “manipulated” set) were 
compared between support systems (spell-check, autocorrect) to assess how effective 
these support systems were in providing assistance.  To ensure that performance 
was comparable between autocorrect and spell-check, a Kruskal-Wallis rank sum 
test was applied to participant’s scores on the “manipulated” set.  If performance 
was comparable between the two conditions, we would expect a non-significant value 
for the Kruskal-Wallis test statistic. 

 
Regression 
 
The statistical software R  (R Core Team, 2018) was used to construct and 

test a generalized Poisson mixed model, using the lme4 package (Bates et al., 2015).    
The response variable for this model was the total number of errors remaining in the 
post-test set.  The model used the sum of the total number of errors made on the pre-
test set, as well as the condition as independent variables.  An observation-level 
random effect (OLRE) was also included in the model to account for the over-
dispersion common to count data (Harrison, 2014).   

To assess the impact of spell-checking on editing skills, a Poisson mixed 
model was constructed to predict performance on an editing task after using a spell-
checker or an autocorrect system.  The Poisson distribution is suggested for handling 
count data (Coxe, West, & Aiken, 2009).  Because there were only 27 target words, 
the response variable violated the Poisson model assumption of a theoretically 
infinite possible count (Ferrari, & Comelli, 2016), but both quasi-Poisson and 
generalized linear mixed models have shown to be robust in cases where this 
assumption is violated (Lazic, 2015).  Poissonality of the observed data was assessed 
by plotting estimated Poisson quantiles of the post-test scores against observed 
quantiles, with a 95% confidence band.  All values fell within the bands, indicating 



 
 

 

22 

that a Poisson distribution is an appropriate model for the data (see Appendix 
A.2.1.2). 

The error structure offered by generalized linear mixed models (GLMM) 
allows us to model count data where the mean is not exactly equal to the variance of 
the data, a core assumption of the Poisson distribution (Harrison, 2014).  Due to the 
presence of singularity while fitting the generalized linear mixed model with an 
OLRE, a second generalized linear model with a quasi-Poisson link function and no 
OLRE was fit as well.  This produced no errors, and the results were compared.  No 
concerning differences were observed between the estimates, and the results from 
these fits are reproduced in Appendix A.2.3. 

The predictor variables included Pre-Test Score (a count of the number of 
errors made on the pre-test) and Condition (a two-level categorical variable 
representing either the use of auto-correct or spell-checking during the middle 
trials).  No interaction terms were included, as data exploration determined no need 
for an interaction term (Appendix A.2.1.1).  To account for over-dispersion an OLRE 
term, ID, was included. 

Verification of the model was done by plotting Pearson residuals against 
fitted values, all covariates included in the model, and one covariate not included in 
the model (Zuur & Ieno, 2016).  These plots can be found in Appendix A.2.2.2.  No 
issues were found in these plots. A Levene’s test of the assumption that variance 
was homogenous across grouping levels was also performed, and also indicated that 
there was no significant violation of this assumption.  Results are available in 
Appendix A.2.2.1.  R2 was calculated using the r.squaredGLMM in the MuMIn 
package (Bartoń, 2019), and output is reported in Appendix A.2.3.  The OLRE was 
estimated to have a mean less than 0.001 and a standard deviation of less than 
0.001.  The results from the tri-gamma estimation of R2 will be reported, per the 
recommendation of Nakagawa & Schielzeth (2017). 
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Results and Discussion 
 

Figure 3 -Pre-Test and Post-Test Scores, by Condition 

 
This is a violin plot of the distributions of pre-test and post-test scores, grouped by condition.  
Lower scores indicate fewer errors.  Participants in the spell-checking condition, on the post-
test, produced fewer errors than participants in the autocorrect condition.  This was despite 
having produced more errors in the pre-test.  The difference between pre-test and post-test 

scores varied significantly across conditions, with participants in the spell-checking condition 
producing fewer errors in the post-test  (bCondition = -0.461  ,p<0.05).  

 
Participants in the spell-checking condition outperformed the participants in 

the autocorrect condition.  The hypothesis was that the number of errors on the post-
test would be lower for participants that were in the spell-checking condition than 
those in the autocorrect condition, in a manner that differed relative to their initial 
ability as measured by the number of errors they had on the pre-test.  Results 
support this hypothesis. 

The model accounted for 43.8% more variance than the null model (tri-
gamma R2c = 0.4383).   Both the score on the pre-test (Pre-Test) and the tool 
(Condition) were significant predictors in the model (bPre-Test = 0.131,  p<0.05; bCondition 
= -0.461  ,p<0.05).  According to the model, we should expect that participants in 
spell-checking conditions to produce 36.9% fewer errors on the post-test than 
participants in an autocorrect condition.  The lower bound of this estimate is 9.5%, 
and the higher bound is 56.5%.  
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The transfer test model accounted for 31.5% more variance than the null 
model (tri-gamma R2c = 0.3150).   The score on the pre-test (Pre-Test), but not the 
tool (Condition), was a significant predictor in the model (bPre-Test = 0.110,  p<0.05; 
bCondition = -0.240  ,p = 0.2062).   
 

Table 2 - Table of Regression Coefficients for Study 1 

Variable 
Name 

Estimate Std. 
error 

z-
value 

P-value Rate 
Ratio 

2.5% 
C.I. 
RR 

97.5% 
C.I. 
RR 

Intercept 0.707 0.412 1.719 0.086 2.027 0.906 4.527 

Pre-Test 0.131 0.036 3.678 <0.05 1.140 1.063 1.223 

Condition: 
Spell-
Check 

-0.461 0.190 -2.431 <0.05 0.631 0.435 0.915 

Alpha level for all tests presented here was a = 0.05.  The rate ratio was calculated as the 
exponentiated regression coefficient.  Upper and lower bounds confidence interval bounds 

were calculated using the ‘emmeans’ package from R (Lenth, 2019).   

 
The use of the two spelling support systems appeared to have different rates 

of success during use.  All of the autocorrect users had at least two errors during the 
trials that they had access to an autocorrect system, while only 22.2% of participants 
in the spell-checking condition had one or more errors.  This difference was detected 
by the Kruskal-Wallis one-way analysis of variance  c2(1, N=18) = 8.086, p < 0.005.  
Density plot and results from the Kruskal-Wallis test can be found in Appendix 
A.2.1.1. 
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Figure 4 - Distribution of Scores (Number of Errors) on Manipulated Trials 

 
This is a violin plot depicting the distribution of errors (score) in the trials where participants 
were using either Microsoft’s spell-checking or autocorrect support system to correct errors in 
the passage. The width of each ‘violin’ represents the number of observations at that level.  A 

wider point in the violin corresponds to more observations, while a narrower point in the 
violin corresponds to fewer observations.  Participants in the autocorrect condition (A) never 
achieved perfect performance (a score of zero), unlike the majority of the participants (seven 
of ten) in the spell-checking condition (S).  Spell-checking had the highest single score of four 

errors (the passages contained 27 spelling errors to begin with).   
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Conclusions for Study 1 
 

Results indicate that users supported by spell-checking performed better 
than users supported by autocorrect on an unsupported editing task after using the 
support system.  However, the size of this effect (i.e., the 95% confidence interval) 
ranges widely, from about 10% to 33% improvement. In addition, spell-check and 
autocorrect also produced different error rates for the trials where participants had 
access to one of these support systems.  To ensure improvement observed in 
participants in the spellchecking condition is attributable to the difference in how 
the tool is used (either actively with spell-checking, or passively with autocorrect) 
rather than in the relative success of the spelling support systems, user performance 
during these trials should be strictly controlled. 
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Study 2 – Interaction Styles and Word Learning:  Comparing Autocorrect and 
Spell-Check When Support System Performance is Controlled 

 
In the prior study, participants that used a spell-checker performed better on 

the post-test than participants that used an autocorrect device.  This suggests that 
spell-checking is a better system for developing spelling skills than autocorrect.   
However, the first study does not demonstrate that this difference is due to how the 
user interacts with the two systems.  Participants that used a spell-checking device 
also saw more correctly spelled words during the training trials than participants in 
the autocorrect condition.  In order to explore the effects of the method of interaction 
on word learning, rather than the relative success of each device in assisting the 
user with spelling, performance during training trials should be better controlled.  If 
both sets of participants see the same set of properly spelled words, differences in 
performance on the post-test can be more reasonably attributed to differences in 
delivery.  

In this study, we controlled performance during the trials where participants 
had access to a spelling support system.  We controlled for performance to shift focus 
from the question of “how do these devices perform,” to “how does the method of 
interaction impact what the user learns”.  Assuming that participants see roughly 
the same number of words in either condition, then differences in score on the post-
test should be the result of how those words were delivered by each system. Either 
participants are witnessing these words as a product of their intentional selection in 
a spell-checking interface, or they are witnessing these words as a product of the 
passive intervention offered by an auto-correct interface.   If we control for the 
different levels of performance observed in Study 1, we can interrogate the method 
of interaction as a possible source of differences in post-test scores. 

As one further step of control, scores for this study were counted as the 
number of correctly spelled target words.  This is technically a different measure 
than that of Study 1, where the number of errors were counted instead.  Study 1 
aimed to explore the effects of different commercially available devices on user 
editing skills.  Here the aim is to see if people will differently integrate the 
information provided to them by either spell-checking or autocorrect style feedback.   

This study was undertaken to test the following hypothesis: 
 

  Interaction with a spell-checking system will improve participants’ post-test 
scores more than interaction with an auto-correct system. 

 
Methods 
 
Performance Control 
To control for the differences in performance during the training phase of 

Study 1, I performed a web-based study that used a JavaScript auto-correct system. 
It is based off the npm javascript package ‘autocorrect’ created by Yefim (2016) 
(https://www.npmjs.com/package/autocorrect).  The system interfaces with standard 
HTML textbox objects.  This allows it to be deployed and used in most modern 
browsers.   In order to emulate the function of modern autocorrect systems, when a 
user presses space while typing into a textbox this autocorrect system ‘checks’ the 
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last set of letters entered after the previous space (the most recent word entered).  
This ‘check’ constitutes a comparison between the word entered, and the words 
contained in the system’s internal dictionary.  In all cases the word entered is finally 
replaced with the closest dictionary match, as measured by Levenshtein distance.    

This autocorrect system replaces every word that a participant enters with a 
correctly spelled word.  This aims to avoid the issue observed in the first study 
where participants using an autocorrect system saw fewer target words during the 
training trial.  This new system also featured a customizable internal dictionary, 
and by ensuring that the autocorrect system had a limited dictionary the novel 
misspellings entered by users (i.e. misspellings that were different from those in the 
passage) had fewer non-target words from which to select corrections.  These two 
features, ubiquitous replacement and limited selection for corrections, helped ensure 
that autocorrect users are far more likely to produce the target words than they 
were in Study 1.     

Further steps were also taken to control for performance on trials with a 
support system present.  First, a performance criterion was set at 90% of the target 
words spelled correctly.  If participants spelled fewer than 25 out of 27 words spelled 
correctly on the trials with a support system present, they would be rejected from 
further participation in the trial.   

The misspelling for each target word was selected both to ensure that the 
first option presented in the context menu by the browser’s spell-checking system 
was the target word associated with that misspelling (e.g. “freind” if right-clicked 
while spell-checking was enabled would produce ”friend” as the top result). This was 
done to ensure participants in the spell-checking condition could reliably achieve the 
strict performance criterion set.  Participants in the spell-checking condition were 
made aware of these affordances, and were told that if they entered the misspelling 
into the text box they could be certain that the first option presented by the spell-
checking system would be the correct one. 
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Data Collection 
 

Figure 5 - Screenshot of Website Used to Gather Data 

 
 
A total of 22 participants were recruited from the Amazon Mechanical Turk 

system and participated in exchange for $7.51 for 30-45 minutes of work.  
Participants were part of the master class of mTurk Workers (Barr, 2018), and were 
all responding from IP addresses within the US.   

The structure of the experiment remained the same to that of Study 1, with 
the exception that the administration of the task was managed via website rather 
than administered in person. Participants were asked to type out three short 
passages that were displayed in their browser and correct any spelling mistakes 
these passages may contain.  Participants were allotted 3 minutes to complete each 
trial.  Responses were submitted through a textbox on the webpage.  

The three passages composed a set, and this set was repeated three times.  
The first instance was a pre-test period to establish their base rate of word 
correction without any support system offered in the webpage.  The second instance 
was an experimentally manipulated condition referred to as the training trials.  In 
this instance participants were able to use either the autocorrect system described 
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above, or the spell-checking system native to their browser.  Participants were 
randomly assigned to either of these conditions.  The third instance was a post-test 
period in the same unsupported condition as the pre-test.  There was no transfer test 
included to limit the cost of data collection.   

The same passages were used as the ones used in Study 1.  Passages are fully 
reproduced in Appendix B.1.2.2-B.1.2.4.  The transfer test was removed. 

 
Assessment and Regression 
 
Scores were calculated for each set of trials as the number of target words 

spelled correctly across all three trials.  Thus, a higher score indicated better 
performance on the task.   A Poisson mixed model was fit and a Kruskal-Wallis 
goodness-of-fit test was run using the same steps described in Study 1. 

Poissonality of the observed data was assessed by plotting estimated Poisson 
quantiles of the post-test scores against observed quantiles, with a 95% confidence 
band.  All values except for two fell within the bands, indicating that a Poisson 
distribution is an appropriate model for the data.   These plots can be found in 
Appendix B.2.1.2. 

The predictor variables included Pre-Test Score (a count of the number of 
errors made on the pre-test) and Condition (a two-level categorical variable 
representing either the use of auto-correct or spell-checking during the training 
trials).  No interaction terms were included, as data exploration determined no need 
for an interaction term (Appendix B.2.1.1).  To account for over-dispersion an OLRE 
term, ID, was included. 
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Because there were only 27 target words, the response variable necessarily 

violates the Poisson model assumption of a theoretically infinite possible count 
(Ferrari, A., & Comelli, M. 2016).  However, both quasi-Poisson and generalized 
linear mixed models have shown to be robust in cases where this assumption is 
violated (Lazic, 2015).  For this model the response variable is the proportion of 
words spelled correctly over the total number of target words.   

Verification of the model was performed by plotting Pearson residuals 
against fitted values and all covariates included in the model (Zuur & Ieno, 2016).  
These plots can be found in Appendix B.2.2.2.  No issues were found in these plots. A 
Levene’s test of the assumption that variance was homogenous across grouping 
levels was also performed, and also indicated that there was no significant violation 
of this assumption.  Results are available in Appendix B.2.2.1.  R2 was calculated 
using the r.squaredGLMM in the MuMIn package (Bartoń, 2019), and output is 
reported in Appendix B.2.3.  The OLRE was estimated to have a mean less than 
0.001 and a standard deviation of less than 0.001.   

 
 

Results and Discussion 
 

Figure 6 -Pre-test and Post-test Scores, grouped by Condition 

 
This is a violin plot of pre-test and post-test scores, grouped by condition.  Pre-test and post-
test differences were not significantly different between the conditions.  Participants in spell-
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checking were observed correctly spelling more words on the post-test than participants in 
the autocorrect condition, but this difference was not significantly different.    

Results indicate that there was not a significant difference in post-test scores 
between the participants that had access to spell-checking software and the 
participants that had access to autocorrect software. The model accounted for 47.6% 
of more variance than the null model (tri-gamma R2c = 0.476).  The score on the pre-
test (Pre-Test) was a significant predictor in the model (bPre-Test = 0.041,  p<0.05) 
while the tool they used (Device) was not significant (bCondition = 0.038  , p = 0.685).  
According to the model, we observed that participants in spell-checking conditions to 
produce 3.9% more correctly spelled words on the post-test than participants in an 
autocorrect condition.  The lower bound of this estimate is 13.6% fewer correctly 
spelled words, and the higher bound is 25% more correctly spelled words.  This 
range includes zero, suggesting that this difference is not reliable.  

The performance controls were successful in ensuring that participants had 
similar performance during the training trials.  The use of the two devices did not 
appear to have different rates of success during the training trials.  The group that 
used a spell-checking system and the group that used an auto-correct system had an 
identical distribution.  This difference was not detected by the Kruskal-Wallis one-
way analysis of variance.  Density plot and results from the Kruskal-Wallis test can 
be found in Appendix B.2.1.1. 
 

Table 3 - Table of Regression Coefficients for Study 2  

Variable 
Name 

Estimate Std. 
error 

z 
value 

P-
value 

Rate 
Ratio 

2.5% 
C.I. 
RR 

97.5% 
C.I. 
RR 

Intercept 2.308 0.188 12.274 <0.05 10.054 6.909 14.445 

Pre-Test 0.041 0.010 4.058 <0.05 1.041 1.021 1.062 

Condition: 
Spell-
Check 

0.038 0.094 0.406 0.685 1.039 0.864 1.250 

Alpha level for all tests presented here was a = 0.05.  The rate ratio was calculated as the 
exponentiated regression coefficient.  Upper and lower bounds confidence interval bounds 

were calculated using the ‘emmeans’ package from R (Lenth, 2019).   

Conclusions for Study 2 
 
The new auto-correct system proved successful in limiting the number of 

errors during usage, which helped avoid the differences in performance during the 
training trials observed in Study 1.  Further, spell-checking did not appear to 
significantly assist users in learning more words beyond what they would have 
learned with an auto-correct system. This may have been an issue with the difficulty 
of the stimuli.  On the post-test a number of participants achieved perfect 
performance, raising the possibility that the words in this study were too easy for 
participants to learn. 



 
 

 

33 

Study 3 - Interaction Styles and Word Learning:  Comparing Spell-Check to 
Autocorrect with Difficult Words 

 
Study 2 tells us that with regards to users correcting familiar words, users of 

either spell-checking or autocorrect learn roughly the same amount.  This, however, 
may have been due to the apparent ceiling effect observed in Study 2.  Furthermore, 
there has yet to be a comparison of auto-correct and spell-checking with unsupported 
conditions.  This third study aimed to answer both of the following questions.  First, 
autocorrect and spell-checking provide similar skill improvement when users are 
simply learning to detect errors in familiar words.  Are there observable differences 
that arise when users are faced with far fewer familiar words?  Second, do either of 
these devices actually create useful cognitive residuals?   

To answer the first question, this study used new words and new passages.  
These words were selected from a list of words used for adult spelling bees (The 
National Senior Spelling Bee, 2018.)  Adult spelling bees are contests that hope to 
challenge adults on their ability to recognize and spell difficult words.  The passages 
contained 20 target words each.  The hypothesis is that these more difficult words 
will help avoid the ceiling effect in the previous study, and that spell-checking 
systems will have a significantly greater impact on post-test scores than auto-correct 
systems.  

To answer the second question, this study employed a control condition.  This 
control condition featured training trials in which participants did not have access to 
a spelling support system.  This offers an opportunity to explore how participant 
spelling skill compares between supported and unsupported conditions.  If these 
systems create useful cognitive residuals, then we would anticipate that both      
spell-checking and auto-correct systems will positively impact user post-test scores 
when compared to the unsupported (control) condition.  

 
Methods  
 
A total of 56 participants were recruited from the Amazon Mechanical Turk 

and participated in exchange for $7.51 for 30-45 minutes of work.  Participants were 
part of the master class of mTurk Workers (Barr, 2018), and were all responding 
from IP addresses within the US.   
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Figure 7- Screenshot of Website Used to Gather Data 

 
 
The structure of the experiment remained the same to that of Study 2, with 

the exception of an additional control condition and the removal of a time limit.  In 
the control condition participants all saw the same sets of trials (Pre-Test, 
Manipulated, Post-Test) as the other conditions.  However, during their 
manipulated trials, participants received no support system.  They were asked to try 
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their best to correct the words and, as was the case for all the other conditions, 
refrain from using outside resources to assist them.  Performance was also 
controlled for by setting a performance criterion of 90% for the trials with a spelling 
support system, as was done in Study 2.  This criterion was not enforced for 
participants in the control condition, given that they did not have access to any form 
of assistance.   

The time limit was removed with the intention of allowing participants as 
much time as they needed to get through all 60 misspellings.  Participants were able 
to freely submit their work by pressing a “Submit” button at the bottom of the 
textbox.  Participants were only provided pay if they completed all trials, and no 
participants that failed to complete all the trials were included in the analysis. 

The passages consisted entirely of words taken from the 2018 National 
Senior Spelling Bee (The National Senior Spelling Bee, 2018).  They are reproduced 
in Appendix A.  A total of 60 words were used, with twenty misspellings presented 
for each trial.  Passages are fully reproduced in Appendix C.  

To ensure consistent performance between the autocorrect and spell-checking 
conditions, the words and the misspellings were selected such that upon entry of the 
misspelling, the target word would be the first option presented by the browser’s 
spell-checking system.  This was confirmed in Google Chrome, Mozilla Firefox, and 
Safari browsers.   A custom dictionary was also constructed for the auto-correct 
system to ensure that the misspellings produced the correct target word from the 
passage. 

 
Assessment 
 
Scores were calculated for each set of trials as the number of target words 

spelled correctly across all three trials.  Thus, a higher score indicated better 
performance on the task.   Scores on the trials with a support system were compared 
between support systems (spell-check, autocorrect) to assess how effective these 
support systems were in providing assistance.  To ensure that performance was 
comparable between autocorrect and spell-check a Kruskal-Wallis rank sum test 
was applied to participant’s scores on the supported trials.  Scores on the pre-test 
and post-test were compared to assess how much participants improved across trials 
and between conditions.    A generalized linear mixed model in the Poisson family 
was fit to the data, and the relative rate ratio for the number of correctly spelled 
words on the post-test was estimated for both spell-checking and auto-correct 
conditions.  

 
Regression 
 
The statistical software R (R Core Team, 2018) was used to construct and test 

a generalized mixed Poisson model, using the lme4 package (Bates et al., 2015).  The 
response variable for this model was the total number of words correctly spelled in 
the post-test set.  All models used the sum of the total number of words correctly 
spelled on the pre-test set, as well as the device participants used during the trials 
as independent variables.  An observation-level random effect (OLRE) was also 
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included in the generalized linear mixed Poisson model, to account for the over-
dispersion common to count data (Harrison, 2014).   

In order to assess the impact of spell-checking on editing skills, a Poisson 
mixed model was constructed to predict performance on an editing task after using a 
spell-checker or an autocorrect system.  The Poisson distribution is suggested for 
handling count data (Coxe, West, & Aiken, 2009).  Because there were only 60 target 
words, the response variable necessarily violated the Poisson model assumption of a 
theoretically infinite possible count (Ferrari & Comelli, 2016).  However, both quasi-
Poisson and generalized linear mixed models have shown to be robust in cases where 
this assumption is violated (Lazic, 2015).  Poissonality of the observed data was 
assessed by plotting estimated Poisson quantiles of the post-test scores against 
observed quantiles, with a 95% confidence band.  All values fell within the bands, 
indicating that a Poisson distribution is an appropriate model for the data.   These 
plots can be found in Appendix C.2.2. 

The predictor variables included Pre-Test Score (a count of the number of 
errors made on the pre-test) and Condition (a two-level categorical variable 
representing either the use of auto-correct or spell-checking during the training 
trials).  No interaction terms were included, as data exploration determined no need 
for an interaction term (Appendix D.2.1).  To account for over-dispersion an OLRE 
term, ID, was included.  The OLRE was estimated to have a mean less than 0.3157 
and a standard deviation of 0.5619.   

If autocorrect and spell-checking systems create useful cognitive residuals, 
we anticipated that regression coefficient for “Condition” to be significantly positive 
for both of these systems.  To test the hypothesis that spell-checking systems create 
more useful cognitive residuals than autocorrect systems, the glht function of the 
multicomp package will be used to compare the regression coefficient for spell-
checking and autocorrect (Hothorn, Bretz, & Westfall, 2008).  If spell-checking 
produces more useful cognitive residuals than autocorrect, then the regression 
coefficient should be significantly larger for spell-checking than autocorrect.  Results 
from this test can be found in Appendix C.3.3. 

The error structure offered by generalized linear mixed models (GLMM) 
allows us to model count data where the mean is not exactly equal to the variance of 
the data, a core assumption of the Poisson distribution (Harrison, 2014).  Due to the 
presence of singularity while fitting the generalized linear mixed model with an 
OLRE, a second generalized linear model of the quasi-Poisson family (without an 
OLRE) was fit as well.  This produced no errors, and the results were compared.  No 
concerning differences were observed between the estimates, and the results from 
these fits are reproduced in Appendix C.3.3. 
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Figure 8 - Scores on the Pre-Test and Post-Test, Grouped by Condition 

 
This is a violin plot of user pre-test and post-test scores, grouped by condition.  Participants 

in the control condition primarily produced the same number of correctly spelled words in the 
post-test as they did in the pre-test.  Only one participant in the control condition had a score 
in the post-test above 40 correctly spelled words.  Both autocorrect and spell-check conditions 

were associated with significantly greater differences between the pre-test and post-test 
scores (bautocorrect = 0.807,  p<0.05 and bspell-check = 0.599,  p<0.05).  Spell-check and autocorrect 

were not significantly different from one another, with regards to user’s improvement on 
spelling. 

 

Verification of the model was performed by plotting Pearson residuals 
against fitted values and all covariates included in the model (Zuur & Ieno, 2016).  
These plots can be found in Appendix C.3.2.  No issues were found in these plots. A 
Levene’s test of the assumption that variance was homogenous across grouping 
levels was also performed, and also indicated that there was no significant violation 
of this assumption.  Results are available in Appendix C.3.1.  R2 was calculated 
using the r.squaredGLMM in the MuMIn package (Bartoń, 2019), and output is 
reported in Appendix C.3.3.  The results from the tri-gamma estimation of R2 will be 
reported, per the recommendation of Nakagawa & Schielzeth (2017). 

 
Results and Discussion 
 
The model accounted for 62.5% more variance than the null model (tri-

gamma R2c = 0.625).  The hypothesis was that the number of correctly spelled words 
on the post-test would be higher for participants that were in the spell-checking 
condition than those in the autocorrect condition, in a manner that differed relative 
to their initial ability as measured by the number of correctly spelled words they had 
on the pre-test.  The score on the pre-test (Pre-Test) was a significant predictor in 
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the model (bPre-Test = 0.058,  p<0.05) while both spell-checking (bspell-check = 0.599,  
p<0.05)  and auto-correct (bautocorrect = 0.807,  p<0.05) significantly predicted higher 
scores on the post-test compared to the control. According to the model, we should 
expect that participants in spell-checking conditions to produce 124.1% more 
correctly spelled words on the post-test than participants in the control condition.  
The lower bound of this estimate is 48.7% more correctly spelled words, and the 
higher bound is 250.4% more correctly spelled words.  For participants in the 
autocorrect condition, we should expect that participants to produce 82.2% more 
words than participants in the control condition.  The lower bound of this estimate is 
21% more correctly spelled words, and the higher bound is 182.9% more correctly 
spelled words.  Despite this difference, results from the planned post-hoc comparison 
of coefficient regressions between auto-correct and spell-checking did not show a 
significant difference between the two conditions.   

 
Table 4 - Table of Regression Coefficients for Study 3 

Variable 
Name 

Estimate Std. 
error 

z 
value 

P-
value 

Rate 
Ratio 

2.5% 
C.I. 
RR 

97.5% 
C.I. 
RR 

Intercept 1.526 0.203 7.524 <0.05 4.600 2.950 6.693 

Pre-Test 0.058 0.008 7.776 <0.05 1.060 1.045 1.078 

Condition: 
AutoCorrect 

0.600 0.210 2.864 <0.05 1.822 1.210 2.829 

Condition: 
Spell-Check 

0.807 0.212 3.812 <0.05 2.241 1.487 3.504 

Alpha level for all tests presented here was a = 0.05.  The rate ratio was calculated as the 
exponentiated regression coefficient.  Upper and lower bounds confidence interval bounds 

were calculated using the ‘emmeans’ package from R (Lenth, 2019).   

 
The use of the two devices appeared to have different rates of success during 

usage.  The group that used a spell-checking system never achieved a perfect score 
in the trials where they were allowed to use a spell-checking system, while the group 
that used an auto-correct system primarily achieved perfect scores on the same 
trials.  This difference was detected by a Kruskal-Wallis rank sum test c2(1, N= 56 ) 
= 22.101, p < 0.0001. 
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Figure 9-Number of Correctly Spelled Words on Trials with Assistant, by Assistant Type 

 

The violin plot indicates that participants in the autocorrect condition saw at least 57 
correctly spelled words, while the participants in the spell-checking condition saw at least 54 

correctly spelled words and at most 59 correctly spelled words. 
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Conclusions for Study 3 
 
It appears that both spell-checking and autocorrect create useful cognitive 

residuals above and beyond what can be achieved without them.  It does not appear 
that spell-checking significantly assisted users more than autocorrect.  This appears 
to remain true even when dealing with words that are considered difficult to spell 
for adults.   

Unfortunately, the Kruskal-Wallis rank-sum test indicated that 
performances were different in the training trials across autocorrect and spell-
checking conditions.  This appears to be a limitation of spell-checking systems in 
scenarios where the software has a high degree of certainty in the selection.  Even if 
a fully automated system knows the proper spelling, users are still able to select 
non-target words.  Unfortunately, this interferes with inferring the impact that 
interaction has on the development of useful cognitive residuals 
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Study 4- Interaction Styles and Word Learning:  A Comparison of Selecting a 
Word with Receiving a Word 

  
Spell-checking requires the user to select an alternative spelling, whereas 

autocorrect passively provides alternative spellings to the user.  This study aimed to 
test if this act of selection required in using a spell-checking system is more useful in 
the creation of spelling-relevant cognitive residuals compared to autocorrect.  This 
may be affected by the difficulty of the words, so the effects should be surveyed 
across both difficult and easy words.       

Further, the commercially available spell-checking software embedded into 
modern browsers presents users with the opportunity to select incorrect words.  
While this feature is important in assessing the application of existing spell-
checking software as a tool to assist in learning spelling, this feature interferes with 
the ability to assess the impact of user-interaction on the development of cognitive 
residuals.  To correct for this issue, this study used a java-script spell-checking 
system with a custom dictionary.  This device functioned like most other spell-
checking systems by underlining the misspelled word and allowing the user to select 
a correctly spelled alternative from a list.  The important feature is that both the 
dictionary and the software remained the same across all systems.  Misspellings and 
words were selected for the purpose of creating only a single option for each 
misspelled word.  
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Methods 
 
Performance Control 
 

Table 5 - Software Assistance Table 

Spelling 
Support 
System 

Identification 
Assistance Selection Assistance Execution 

Spell-
Checking 

   

Autocorrec
t 

 

This step is handled by the 
support system 

 
 Visual depictions of each phase of the usage procedure for each device.  Selection assistance 

is not displayed for the autocorrect support system, as selection is performed without any 
visible change in state. 

The same measures as Study 2 were taken here to control for performance.  
This means that all trials with a device had a performance criterion of 90%, all 
words were selected such at their misspellings aligned with target words, and 
participants in the autocorrect condition used the javascript autocorrect system 
described in Study 2. 

In addition to the above controls, a javascript spell-checking system was 
implemented.  This was based off of the “Javascript SpellChecker” software provided 
by Nanospell (Nanospell, 2018).  Their product provides the option to create a 
custom dictionary for a client-side spell-checking system.  This software functioned 
much like a browser or Windows Word spell-checking system.  When a user entered 
a misspelled word, the system would underline this misspelling in red.  If the user 
clicks on the misspelling, a context menu containing a properly spelled alternative 
word would appear.  The user can then select that word by clicking on the context 
menu button, and the correctly spelled alternative will replace the red underlined 
word.  The custom dictionary feature allowed us to limit the number of possible 
correctly spelled alternatives to only the words contained within the passage.  This 
helped ensure that users were not selecting non-target words, as they did in Study 3. 
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Data Collection 
 

Figure 10 – Screenshot of Webpage Used for Data Collection 

 
This is a screenshot taken from the first pre-test trial.  The directions are repeated at the top 

of the screen for users, they are provided a timer to display their remaining time, the trial 
passage they are to copy is in the textbox below the timer, and finally the box in which the 

user types the passage is located just below the passage textbox.  Trials proceeded 
automatically once the timer reached zero. 

 
A total of 36 participants were gathered using Amazon’s Mechanical Turk.  

Participants were asked to copy three short passages and correct any spelling 
mistakes they may contain.  They had 3 minutes to copy each passage before the 
system would move on to the next trial.  They repeated these three times.  The first 
instance was a pre-test period to establish their base rate of word correction without 
any support system present.  The second instance was an experimentally 
manipulated condition where participants were able to use either an autocorrection 
system or a “right-click on the underlined word” spell-checking system. The third 
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instance was a post-test period in the same non-supported condition as the first 
period. 

Participants then repeated the above steps, with a separate set of words and 
the device that they had not used in the previous manipulated condition. 
Participants saw two different sets of pre-train-post tests:  One containing difficult 
words, and another containing easy words.  If they had used spell-checking with 
hard words in the first pre-con-post set, then they would use autocorrect with easy 
words in the second pre-con-post set.  Easy and hard words were selected from two 
separate collections, with difficulty being assessed from the source context.  Easy 
words were collected from a Wikipedia list on commonly misspelled English words 
(Wikipedia contributors, 2017), and the hard words were taken from the 2018 
National Senior Spelling Bee (The National Senior Spelling Bee, 2018).  Passages 
are available in Appendix D.1.2. 
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Table 6 - Target Words 

Easy 
Misspellings 

Easy 
Proper 
Spelling 

Hard 
Misspellings 

Hard 
Proper 
Spelling 

freind friend brasero bracero 
Portugese Portuguese vellar Velar 
propoganda propaganda darma dharma 
neccessary necessary trychina trichina 
religous religious pompeno pompano 
resistence resistance scanscion scansion 
foriegn foreign faillet faille 
beleive believe bateste batiste 
assasination assassination hallyard halyard 
buisness business alacrety alacrity 
bizzare bizarre mitsvah mitzvah 
calender calendar aballone abalone 
collegue colleague chrore crore 
Carribbean Caribbean ewwer ewer 
concious conscious chanchre chancre 
tendancy tendency sashey sashay 
forseeable foreseeable centavvo centavo 
goverment government mackenaw mackinaw 
remeber remember paruke peruke 
gaurd guard dellft delft 
posession possession kuay quay 
occassion occasion wildebeast wildebeest 
agression aggression selesta celesta 
neaderthal Neanderthal eloadea elodea 
pharoah Pharaoh  ayuah ayah  
humourous humorous xeolite zeolite 
chauffer chauffeur gymkana gymkhana 

27 “easy” words were selected from Wikipedia list on commonly misspelled English words 
(Wikipedia contributors, 2017), and 27 “hard” words were taken from the 2018 National 

Senior Spelling Bee (The National Senior Spelling Bee, 2018).  All misspellings were 
generated with the intention of ensuring that both the autocorrect and spell-checking 

systems were able to generate their corresponding proper spellings. 
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Scores were calculated for each set of trials as the number of target words 
spelled correctly across all three trials. The statistical software R (R Core Team, 
2018) was used to construct and test a generalized mixed Poisson model, using the 
lme4 package (Bates et al., 2015).    The response variable for this model was the 
total number of words correctly spelled in the post-test set.  The model used the sum 
of the total number of words correctly spelled on the pre-test set, as well as the 
device used as independent variables.  An observation-level random effect was also 
included in the model, to account for the over-dispersion common to count data 
(Harrison, 2014).   

 
Regression 
 
The statistical software R (R Core Team, 2018) was used to construct and test 

a generalized mixed Poisson model, using the lme4 package (Bates et al., 2015).  The 
response variable for this model was the total number of words correctly spelled in 
the post-test set.  Difficult and easy words were analyzed separately, using their 
respective pre-test and post-test scores.  All models used the sum of the total 
number of words correctly spelled on the pre-test set, as well as the device 
participants used during the trials as independent variables.  An observation-level 
random effect (OLRE) was also included in the generalized linear mixed Poisson 
model, to account for the over-dispersion common to count data (Harrison, 2014).   

In order to assess the impact of spell-checking on editing skills, a Poisson 
mixed model was constructed to predict performance on an editing task after using a 
spell-checker or an autocorrect system.  The Poisson distribution is suggested for 
handling count data (Coxe, West, & Aiken, 2009).  Because there were only 27 target 
words for each set, the response variable necessarily violated the Poisson model 
assumption of a theoretically infinite possible count (Ferrari & Comelli, 2016).  
However, both quasi-Poisson and generalized linear mixed models have shown to be 
robust in cases where this assumption is violated (Lazic, 2015).  Poissonality of the 
observed data was assessed by plotting estimated Poisson quantiles of the post-test 
scores against observed quantiles, with a 95% confidence band.  For difficult words, 
only 3 values fell outside the 95% confidence band.  For easy words, 5 values fell 
outside the 95% confidence band, with the majority being at higher values of the 
distribution.  These were deemed acceptable errors. 

The predictor variables for both models included Pre-Test Score (a count of 
the number of errors made on the pre-test) and Condition (a two-level categorical 
variable representing either the use of auto-correct or spell-checking during the 
training trials).  No interaction terms were included, as data exploration determined 
no need for an interaction term (Appendix D.2.1).  To account for over-dispersion an 
OLRE term, ID, was included.  For the easy word set the OLRE was estimated to 
have a mean less than 0.0001 and a standard deviation less than 0.0001.  For 
difficult words the OLRE was estimated to have a mean of 0.126 and a standard 
deviation of 0.354.  
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Because there were only 27 target words for each set, the response variable 
necessarily violates the Poisson model assumption of a theoretically infinite possible 
count (Ferrari, A., & Comelli, M. 2016).  However, both quasi-Poisson and 
generalized linear mixed models have shown to be robust in cases where this 
assumption is violated (Lazic, 2015).  For this model the response variable is the 
proportion of words spelled correctly over the total number of target words.   

The error structure offered by generalized linear mixed models (GLMM) 
allows us to model count data where the mean is not exactly equal to the variance of 
the data, a core assumption of the Poisson distribution (Harrison, 2014).  Due to the 
presence of singularity while fitting the generalized linear mixed model with an 
OLRE for easy words, a second generalized linear model of the quasi-Poisson family 
(without an OLRE) was fit for easy words as well.  This produced no errors, and the 
results were compared.  No concerning differences were observed between the 
estimates, and the results from these fits are reproduced in Appendix D.3.3. 

Verification of the model was performed by plotting Pearson residuals 
against fitted values and all covariates included in the model (Zuur & Ieno, 2016).  
These plots can be found in Appendix D.3.2.  No issues were found in these plots. A 
Levene’s test of the assumption that variance was homogenous across grouping 
levels was also performed and indicated that there was no significant violation of 
this assumption for the difficult word set.  There was, however, excess heterogeneity 
of variance detected in the easy set F(1,34)=6.8749, p=0.013.   Results are available 
in Appendix D.3.1.  R2 was calculated using the r.squaredGLMM in the MuMIn 
package ( Bartoń, 2019), and output is reported in Appendix D.3.3.  The results from 
the tri-gamma estimation of R2 will be reported, per the recommendation of 
Nakagawa and Schielzeth (2017). 
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Results and Discussion 
 

Figure 11 - Pre-Test and Post-Test Scores, by Condition (Hard Words) 

 
This is a violin plot depicting the distributions for both pre-test and post-test scores for trials 
containing the hard words, grouped by condition.  Distributions appear very similar across 

conditions, as was confirmed by the model (bCondition-Hard = -0.004,  p = 0.764) .  
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Figure 12 - Pre-Test and Post-Test Scores, by Condition (Easy Words) 

 
 This is a violin plot depicting the distributions for both pre-test and post-test scores for trials 

containing the easy words, grouped by condition.  Distributions appear very similar across 
conditions, as was confirmed by the model (bCondition-Easy= -0.0125,  p = 0.980).  

 
The hypothesis was that the number of correctly spelled words on the post-

test would be higher for participants that were in the spell-checking condition than 
those in the autocorrect condition, in a manner that differed relative to their initial 
ability as measured by the number of correctly spelled words they had on the pre-
test.  This hypothesis was not confirmed by this study.  There were not significant 
differences observed between participants across the conditions.  This was true of 
both participants working with hard words, and participants working with easy 
words. 

The model for the set with easy words accounted for 31.0% more variance 
than the null model (tri-gamma R2c = 0.310).  For the model built for the easy set of 
words, the score on the pre-test (Pre-Test) was a significant predictor in the model 
(bPre-Test = 0.033,  p<0.05) while the device used during the training trials was not 
significant (bCondition-Easy= -0.0125,  p = 0.980).  According to the model, we should 
expect that participants in spell-checking conditions to produce 1.2% fewer correctly 
spelled words on the post-test than participants in the autocorrect condition.  The 
lower bound of this estimate is 13.8% fewer correctly spelled words, and the higher 
bound is 13.1% more correctly spelled words (than participants in the autocorrect 
condition). 
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  The model for the set with hard words accounted for 73.0% more variance 
than the null model (tri-gamma R2c = 0.730).  For the model built for the hard set of 
words, the score on the pre-test (Pre-Test) was a significant predictor in the model 
(bPre-Test = 0.040,  p<0.05) while the device used during the training trials was not 
significant (bCondition-Hard = -0.004,  p = 0.764).  For participants in the spell-checking 
condition, we should expect that participants to produce 0.4% fewer words than 
participants in the autocorrect condition.  The lower bound of this estimate is 26.2% 
fewer correctly spelled words, and the higher bound is 34.2% more correctly spelled 
words.   
 

Table 7 - Table of Coefficients, Easy Words in Study 4 

Variable 
Name 

Estimate Std. 
error 

z 
value 

P-
value 

Rate 
Ratio 

2.5% 
C.I. 
RR 

97.5% 
C.I. 
RR 

Intercept 2.458 0.112 13.078 <0.05 11.691 8.050 16.823 

Pre-Test 0.033 0.005 3.846 <0.05 1.034 1.017 1.052 

Condition: 
Spell-Check 

0.005 0.042 -0.076 0.940 0.995 0.867 1.142 

Alpha level for all tests presented here was a = 0.05.  The rate ratio was calculated as the 
exponentiated regression coefficient.  Upper and lower bounds confidence interval bounds 

were calculated using the ‘emmeans’ package from R (Lenth, 2019). 

 
Table 8 - Table of Coefficients, Hard Words in Study 4 

Variable 
Name 

Estimate Std. 
error 

z 
value 

P-
value 

Rate 
Ratio 

2.5% 
C.I. 
RR 

97.5% 
C.I. 
RR 

Intercept 2.586 0.128 20.284 <0.05 11.691 10.108 17.015 

Pre-Test 0.041 0.015 2.722 <0.05 1.034 1.011 1.075 

Condition: 
Spell-Check 

-0.014 0.151 -0.093 0.926 0.995 0.722 1.342 

 Alpha level for all tests presented here was a = 0.05.  The rate ratio was calculated as the 
exponentiated regression coefficient.  Upper and lower bounds confidence interval bounds 

were calculated using the ‘emmeans’ package from R (Lenth, 2019).   
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The use of the two devices did not appear to have different rates of success 
during usage.   The group that used a spell-checking system and the group that used 
an auto-correct system had an approximately identical distribution.  The differences 
between the two conditions were not detected by the Kruskal-Wallis rank sum test 
(Hard Words c2 (1, N= 36)=0.0327, p = 0.8565; Easy Words c2 (1, N = 36) = 0.0229, p 
= 0.8798).  Density plot and results from the Kruskal-Wallis test can be found in 
Appendix D.2.1.1. 
 

Figure 13- Violin Plot of Scores on Trials with Support Systems Enabled 

 
Participants in the spell-checking condition properly spelled between 25 and 27 of the 27 

target words.  Participants in the autocorrect condition correctly spelled between 26 and 27 
of the 27 target words.  This difference was not found to be significant (Appendix D.2.1.1.) 

 

Conclusions for Study 4 
 
 Both devices appear to have given users comparable exposure to 

correctly spelled words, as is indicated by the results of the Kruskal-Wallis rank 
sum test.  These devices did not appear to differ in their ability to create useful 
cognitive residuals.  Consequently, it may be reasonable to conclude that the mere 
act of selecting a word from a context menu does not create a more useful cognitive 
residual than passive correction (autocorrect).  This appears to be true whether or 
not users are dealing with common or uncommon words.
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Study 5 - Building a Spell-Check That Teaches:  Instructive Design Through 
Procedure or Perception 

  
Study 1 showed that spelling performance on a post-test differs across 

commercially available spell-checking and autocorrect systems. Study 3 showed that 
both autocorrect and spell-checking systems can create useful cognitive residuals.  
Yet taken together, the findings of Studies 2, 3, and 4 show that if each system 
provides equal success in finding the correct spelling of a word, spell-checking and 
autocorrect systems do not create comparatively more or less word learning.  Unlike 
in Studies 2 and 4, the scores on training trials in Study 1 differed significantly, 
meaning differences on the post-test could be attributed to a different number of 
properly spelled words seen during the training trials.  If performance correlated 
with exposure to properly spelled words, the best way to instruct users in spelling 
may be to reserve spelling instruction to intervals separate from on-line editing.  

To determine if the interaction with these systems is useful for learning, 
rather than if the systems are only useful in that they provide us proper spellings, 
we can compare the performance development experienced by spelling support 
system users to that of participants exposed only to properly spelled words.  Users 
that have to copy a passage that already contains correctly spelled words can 
provide such a comparison.  If participants are only asked to copy a properly spelled 
passage, then they will have witnessed and interacted with the proper spellings 
independent of a spelling support system.  If we compare their performance on the 
post-test to the performance of spelling support system users, we can get an 
impression of how the user’s mode of interaction (supported or unsupported) affects 
the development of useful cognitive residuals. 

After the previous studies, I do not believe that either of these systems 
provide users the basis necessary to develop cognitive residuals beyond what could 
be achieved by copying the correctly spelled words.  My reasoning follows.  From 
Studies 2, 3, and 4, participants that were asked to select properly spelled words 
from a list (spell-checking) and participants that had proper spelling provided to 
them automatically (autocorrect) performed roughly equivalently with regards to 
improving their post-test scores.  Compared to the act of copying a properly spelled 
word, receiving a correction from an autocorrect system is a seemingly information 
impoverished learning opportunity.  Users of an autocorrect system are required to 
take no action beyond making a mistake.  Neither of these systems create a chance 
for the user to either practice typing out the word, nor do they encourage the user to 
consider the proper spelling once it is provided.   

Consequently, it seems reasonable to believe that users of either system 
would perform (with regards to spelling skill development), at best, equivalently 
with users who simply copied a fully corrected passage.  Copying a corrected passage 
requires users to both practice seeing and typing the correctly spelled word.  Both 
spell-checking and autocorrect systems require a user to make a mistake, and in 
that act, they must practice typing an incorrect spelling.  The most consideration a 
user needs to place in correcting this misspelling is with a spell-checking system.  
Even then though, the user needs only to identify if the proper spelling offered by 
the system closely resembles the word they are correcting.  They do not need to 
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consider the differences in spelling between the proper spelling and the misspelling, 
nor the details of the proper spelling.    

However, there are more ways to interact with spell-checking systems rather 
than just list selection and automatic replacement.  Selecting a properly spelled 
word from a list is the method of input provided by most modern spell-checking 
systems.  Modern autocorrect systems automatically replace misspelled words.  But 
more actions exist for users to participate in the assisted editing process than are 
represented by these two systems. 

Of particular note are methods of user interaction that align well with the act 
of properly spelling words.  This includes typing out the properly spelled word, as 
one might do if they had genuine prior knowledge of the proper spelling as well as 
the act of correcting a misspelled word by modifying an existing misspelling.  Rather 
than typing out the entire correction, users that discover a misspelled word in their 
work can often opt to modify the existing misspelling into the properly spelled word 
(e.g. “helllo” becomes “hello” by simply deleting the extra “l”).  Spell-checking 
systems can be modified to require that users take these actions, either by typing 
out the entire word or by modifying an existing misspelling.  This study included 
spell-checking software that made such requirements, in order to explore the 
potential of new methods of user interaction in creating useful cognitive residuals. 

Similarly, autocorrect may be attentionally enhanced to assist users in 
learning from their mistakes.  For instance, the act of correcting a mistake provides 
a moment in which the system is capable of spelling a word that the user has not.  In 
addition to simply providing the correction, the system can draw the attention of the 
user to the correction.  Some existing autocorrect software has this function and 
provides the user a fleeting visual cue that a given word has been corrected.  
Additionally, color highlighting of corrections in an autocorrect system has been 
explored as a means of enhancing spelling learning in children (Arif, Sylla, & 
Mazalek, 2016).  Highlighting misspelled words that the autocorrect system assisted 
the user with can potentially enhance the opportunity for users to practice seeing 
properly spelled words. 

 
New Devices 
 
To explore these methods of spell-checking and autocorrecting as they relate 

to both copying properly spelled words and unassisted performance, I constructed 
the following seven conditions for this study.  Participants were placed in one of 
seven conditions.  In the trials between the pre-test and post-test, referred to as the 
training trials, participants were either provided one of the five support systems 
created for the study or they were required to copy the passage without any 
assistance.  Screenshots of the support systems in action can be found in Appendix 
F.1.3.  

The control condition provided users no spelling support systems and asked 
them to attempt to correct the spelling in the passages.  These trials were identical 
to those in the pre- and post- tests.  Additionally, participants in the control 
condition did not have to satisfy the 90% performance criterion.  This condition 
aimed to represent user spelling ability development in the absence of a support 
system.   
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The corrected condition formed a second control condition.  In this condition 
users were provided passages containing the correctly spelled target words.  The 
passages did not require further editing, and participants were made aware of this 
fact.  Participants were instructed to copy these passages rather than copy and 
correct them.  Participants in the corrected condition were required to spell at least 
90% of the target words correctly. This condition aimed to represent user spelling 
ability development through exposure (seeing the correctly spelled word) and 
practice (typing the correctly spelled word).  

The spell-checking condition used the javascript spell-checking system that 
was introduced in Study 4.  This system functioned similarly to modern spell-
checking devices found in Microsoft Word and modern browsers.  The system 
indicated misspelled words for users by underlining the misspelling with a red line.  
Right clicking this misspelling opened a context menu with properly spelled words 
as potential substitution candidates.  The user was then able to select one of these 
words and the system would replace the underlined misspelling with the selected 
word. This condition aimed to represent user spelling ability development through 
use of commercially available spell-checking systems. 

The full-word condition used a modified version of the javascript spell-
checking system introduced in Study 4.  The system was designed with the intention 
to ensure that users practiced typing out the correctly spelled word.  Users who 
entered a misspelling would still receive the underline characteristic of traditional 
spell-checking systems.  The selection step was modified to delete the word upon 
opening the context menu.  The execution step was modified to prevent replacement 
of the misspelled word with the target word.  By deleting the word and removing the 
usual replacement function, the only way for the user to make use of the proper 
spelling was to type out the word themselves.  Thus, in order to use the device 
participants would need to practice typing out the properly spelled word.   

The part-word condition also used a modified version of the javascript spell-
checking system introduced in Study 4.  This system was designed with the 
intention to ensure that users practiced editing an incorrectly spelled word.  Only 
the execution step was modified to prevent replacement of the misspelled word with 
the target word.  This ensured that participants would have to modify the 
misspelling themselves in order to create a properly spelled word.  Thus, in order to 
use the device successfully participants would need to edit the misspelled word 
themselves. 

The autocorrect condition used the same autocorrection system first used in 
Study 2.  This system replaces misspelled words as the user types.  Whenever the 
user pressed the space bar, the last word in the text they had written would be 
substituted with a word from the system’s dictionary.  This was done automatically 
and without indication to the user that it had been performed. This condition aimed 
to represent user spelling ability development through use of commercially available 
autocorrect systems. 

The autohighlight condition used the same autocorrection system as the 
autocorrect condition, with one modification.  Target words were highlighted in light 
blue.  This change was made with the intention of giving users a durable indication 
of which words the autocorrect system had to correct. 
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I designed this study to address the following theoretical questions: 
 

1. Are selecting from a list and automatic replacement, the methods of text-
interaction provided by spell-checking and autocorrect respectively, able to 
teach users how to correct spelling errors?  Are they able to teach users better 
than if those users had practiced seeing and typing the correct word without 
the support system? 

2. Are there other ways to interact with spelling support systems that can 
passively enhance the user’s own spelling capabilities?  If so, are they able to 
teach users how to correct spelling errors better than if they practiced seeing 
and typing the correct word without the support system? 

 
The new spelling support systems described above (and in more detail below) 

introduce new ways for users to interact with the spell-checking process.  The 
corrected condition provided a standard for assessing the effects of how the user 
interacted with the spell-checking process, by showing the effects of simply having 
the solutions provided.  This allowed me to test the corresponding hypotheses: 

 
1. The autocorrect and spell-checking systems do not have a greater positive 

impact on post-test scores than copying the passages in the corrected 
condition, but they do have a greater positive impact on post-test scores than 
copying the passages in the control condition. 

2.   The new spelling support systems (part-word, full-word, autohighlight) have 
a greater positive impact on post-test scores than simply copying the 
passages in the corrected or control condition.  
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Methods 
 
Data Collection 
 

Figure 14 - Screenshot of the Website Used to Gather Data 
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A total of 126 participants were gathered using both the UC Merced SONA 

system(N=62) and Amazon’s Mechanical Turk (N=64).  Participants were asked to 
copy three short passages and correct any spelling mistakes they may contain.  They 
repeated these three times.  The first instance was a pre-test period to establish 
their base rate of word correction without any support system present.  The second 
instance was an experimentally manipulated condition where participants were able 
to use a spelling support system or were placed in one of two control conditions.  
Participants in the control conditions were either provided a misspelled passage 
during these trials and asked to correct the passage, or they were provided a 
properly spelled passage and asked to copy the passage into the text-box.  
Participants that were provided a spelling support system were instructed to correct 
the spelling in a misspelled passage and were required to correctly spell at least 90% 
of the words in these trials correctly.   The third instance was a post-test period in 
the same non-supported condition as the first period.  This matches the pre-training-
post-transfer structure of Study 1. 

Participants saw two different sets of pre-train-post tests:  One containing 
difficult words, and another containing easy words.  Easy and hard words were 
selected from two separate collections, with difficulty being assessed from the 
context of the collection.  Easy words were collected from a Wikipedia list on 
commonly misspelled English words (Wikipedia contributors, 2017), and the hard 
words were taken from the 2018 National Senior Spelling Bee (The National Senior 
Spelling Bee, 2018). 

All data was collected with a website in the style of the one presented in 
Study 2.  Both UC Merced SONA students and Amazon mTurk workers used this 
same website to participate in the study.  The only modification made between the 
two communities were instructions relating to their SONA and Mechanical Turk 
IDs. 

Scores were calculated for each set of trials as the number of target words 
spelled correctly across all three trials. The score for the transfer test was the total 
number of target words spelled correctly during the transfer test. The statistical 
software R (R Core Team, 2018) was used to construct and test a generalized mixed 
Poisson model, using the lme4 package (Bates et al., 2015).    The response variable 
for this model was the total number of words correctly spelled in the post-test set.  
The model used the sum of the total number of words correctly spelled on the pre-
test set, as well as the condition as independent variables.  An observation-level 
random effect was also included in the model, to account for the over-dispersion 
common to count data (Harrison, 2014).   
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Regression 
 

In order to assess the impact of the different forms of spelling assistance on 
editing skills, a Poisson mixed model was constructed to predict performance on an 
editing task.  This model was constructed using the same process described in Study 
2 and 3.  Poissonality of the observed data was assessed by plotting estimated 
Poisson quantiles of the post-test scores against observed quantiles, with a 95% 
confidence band.  12 observations fell outside these bands.  Given the size of the 
sample (n=126), this was deemed an acceptable deviation and these observations 
were used in the model. 

The predictor variables for the model included Pre-Test Score (a count of the 
number of errors made on the pre-test) and Device (a seven-level categorical variable 
representing the use of one of the seven support systems described above).  No 
interaction terms were included, as data exploration determined no need for an 
interaction term (Appendix F.2.1).  To account for over-dispersion an OLRE term, 
ID, was included.  For the easy word set the OLRE was estimated to have a mean 
less than 0.102 and a standard deviation less than 0.319.   

Because both hypotheses depend on specific levels of the variable Device, a 
comparison of the regression coefficients for all levels will be made to all other levels 
using the multiple comparisons function glht in the R package emmeans (Hothorn, 
Bretz, & Westfall, 2008).  If the first hypothesis is correct, then estimates for the 
regression coefficients for both autocorrect and spell-checking should be significantly 
larger than the regression coefficient for participants in the control condition.  
Additionally, estimates for the regression coefficients for both autocorrect and spell-
checking conditions should not be significantly larger than the regression coefficient 
for participants in the corrected condition.  If the second hypothesis is correct, then 
estimates for the regression coefficients for part-word, full-word, and autohighlight 
should all be significantly greater than the regression coefficients for participants in 
both the corrected and control conditions. 
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Figure 15 - Pre-Test Scores Grouped by Device 

 
 These are the distributions of scores from the pre-test (Pre-Test Scores), grouped by the type 

of spelling support system provided in the training trials (Device).  

Figure 16 - Post-Test Scores Grouped by Device 

 
These are the distributions of scores on the post-test, grouped by the type of spelling support 

system provided in the training trials (Device). 
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Results and Discussion 
 
The results confirm the hypothesis that autocorrect and spell-checking 

systems do not have a greater positive impact on post-test scores than copying the 
passages in the corrected condition.  Autocorrect and spell-check, however, do have a 
greater positive impact on post-test scores than copying passages in the control 
condition.  The model these conclusions are based on accounted for 85.3% more 
variance than the null model (tri-gamma R2c = 0.8533).  Both autocorrect (bautocorrect = 
1.079,  p<0.05) and spell-checking (bspell-checking = 1.032,  p<0.05) conditions had 
significantly greater regression coefficients than the control condition.  They both 
also had greater regression coefficients than the corrected condition (bcorrected= 0.851, 
p<0.05), but this difference was not significant (RatioAutocorrect/Corrected = 0.2281, z = 
1.631, p =0.6598; RatioCorrected/Spell-Check = 0.1812, z = 1.292, p = 0.8547).   
 

Table 9 - Table of Regression Coefficients 

Variable 
Name 

Estimate Std. 
error 

z 
value 

P-
value 

Rate 
Ratio 

2.5% 
C.I. 
RR 

97.5% 
C.I. 
RR 

Intercept 1.350 0.139 9.678 <0.05 3.857 2.886 5.015 

Pre-Test 0.049 0.006 7.978 <0.05 1.050 1.038 1.063 

Corrected 0.851 0.164 5.157 <0.05 2.341 1.699 3.269 

Spell-Check 1.032 0.164 6.291 <0.05 2.806 2.046 3.922 

Full-Word 1.219 0.163 7.485 <0.05 3.383 2.475 4.724 

Part-Word 1.327 0.162 8.201 <0.05 3.768 2.763 5.252 

Autocorrect 1.079 0.163 6.604 <0.05 2.941 2.146 4.104 

AutoHighlight 1.045 0.163 6.395 <0.05 2.844 2.074 3.968 

Alpha level for all tests presented here was a = 0.05.  The rate ratio was calculated as the 
exponentiated regression coefficient.  Upper and lower bounds confidence interval bounds 

were calculated using the ‘emmeans’ package from R (Lenth, 2019). 

 
Of the new spelling support systems (part-word, full-word, autohighlight), 

only part-word showed a greater positive impact on post-test scores than simply 
copying the passages in the corrected or control condition.  The new spelling support 
systems part-word (bpart-word = 1.327, p<0.05), full-word (bfull-word = 1.219, p<0.05), and 
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autohighlight (bautohighlight = 1.045, p<0.05) had a greater positive impact on post-test 
scores than not having access to a support system (the control condition).  However, 
full-word and autohighlight had regression coefficients that were not significantly 
different from the corrected condition (RatioCorrected/Full-Word= 0.3682, z = 2.650, p = 
0.11; RatioAutohighligh/ Correctedt= 0.1945, z = 1.396, p = 0.8024). Only the regression 
coefficient associated with part-word was significantly greater than the regression 
coefficient associated with the corrected condition(RatioPart-Word/Corrected = 0.4759, z = 
3.460, p < 0.05).  

Results for the transfer test contained similar patterns.  Due to a singularity 
in fitting the Poisson GLM with an OLRE, results reported for this section regard an 
equivalent Quasi-Poisson model.  The model accounted for 49.4% more variance 
than the null model (tri-gamma R2c = 0.4938).   All systems tested, as well as the 
corrected condition, produced users with higher transfer test scores than the control 
condition(bfull-word = 1.0308, p <0.05; bpart-word = 1.0862, p <0.05; bspell-check = 0.7677, p 
<0.05; bautohighlight= 0.8818, p <0.05; bautocorrect = 0.8900, p <0.05; bcorrected = 0.6574, p 
<0.05).  Only the part-word condition outperformed the corrected condition (RatioPart-
Word/Corrected= 0.4288, z = 3.211, p <0.05).    
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Figure 17 - Predicted Post-Test Score Grouped by Type of Spelling Support System Used 
During Training Trials 

 
The estimated marginal means for post-test score is represented by the point, and the 

corresponding 95% confidence interval in that estimation is represented by the purple bar.  
Estimated marginal means were computed using the emmeans package in R (Lenth, 2019).  

The part-word spelling support system outperformed all other conditions, including 
significantly surpassing the post-test scores from participants in the corrected condition. 

 
Conclusions for Study 5 
 
All support systems tested here had a significant impact on the spelling 

abilities of users.  Compared to the control condition, having access to any of the 
spelling support systems explored here increased the post-test scores of participants.  
Both traditional autocorrect and spell-checking increased post-scores higher than 
had participants not had access to any spelling support system.  From this, it would 
appear that yes, both of these devices can teach their users how to correct spelling 
errors in a document. 

However, neither of these spelling support systems significantly 
outperformed users who practiced seeing and typing the correctly spelled words.  
While participants that were asked to copy a correctly spelled passage did perform 
worse than participants that used either spell-checking or autocorrect, this was not 
significantly so. It does not appear that autocorrect or spell-checking improves 
spelling beyond what could be achieved by practicing typing and seeing the properly 
spelled words. 
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Only participants in the part-word condition significantly exceeded the 
performance of the participants in the corrected condition.  It appears that neither 
drawing their attention to automatically provided proper spellings (as in the 
autohighlight condition) nor requiring the user to practice typing out the proper 
spelling (as in the full-word condition) exceeded the performance improvements 
observed when participants simply saw and copied properly spelled passages.  
However, allowing participants to edit existing misspellings while providing them 
the proper spelling did appear to raise their post-test scores beyond those who saw 
and copied properly spelled passages. 

The results suggest that modern autocorrect and spell-checking systems 
provide users the means to improve their spelling abilities. Compared to the absence 
of any spelling support system, participants that use a spelling support system are 
provided both a means of identifying misspellings and a means of acquiring a 
properly spelled word. And they are able to take advantage of these affordances in 
order to learn to identify and correct misspellings. 

As shown above, traditional spell-checking and autocorrect are not the only 
ways spelling support systems could provide users this information. With regard to 
skill development, they are also not the best ways for users to interact with spelling 
support systems. Providing users with a properly spelled passage and asking them 
to copy it enhanced their ability to spell the words about as well as either of these 
systems. The only system that exceeded the learning experienced by participants in 
the corrected condition was the part-word system. The part-word system required 
that users make the edit themselves. This encouraged them to more deeply consider 
what was wrong about the initial misspelling, and what constituted a proper 
spelling of that word. It appears that this created cognitive residuals that were 
useful to the task at hand.  
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Chapter 4 - Conclusion 
 
This project began with the aim of comparing different methods of interaction 

for existing spelling support systems offered by Microsoft to explore their ability to 
foster user spelling skill development. I demonstrated that within the domain of 
Microsoft Word, users can expect to get better at editing for spelling if they use 
Microsoft’s spell-checker rather than Microsoft’s autocorrect. However, further study 
suggests that this result is not tied to a difference in interactive affordances. By 
taking steps to control for performance between autocorrect and spell-checking 
systems, it became apparent that selecting an adequately spelled word from a 
context menu, as one does with spell-checking, does not confer any additional benefit 
beyond what is offered by autocorrect. That said, both systems did help users 
improve their spelling abilities. 

 The opportunities for autocorrect and spell-checking to create incidental 
spelling skill improvement appear to lie mostly in their provision of correctly spelled 
words. Traditional spell-checking and autocorrect systems do not improve users’ 
spelling skills any more than providing users correctly spelled words would. Neither 
do autocorrect systems that highlight corrections, nor spell-checking systems that 
require users to type out the correctly spelled word. Only a spelling support system 
that requires users to make edits themselves significantly outperformed participants 
that were provided a correctly spelled document. 

What follows is a review of the studies that established these conclusions. 
After that, a brief discussion of the shortcomings of this study. Finally, a mention of 
possible future directions. 

  
Review 

  
I conducted five studies to explore the impact of different ways of interacting 

with a spelling device on the development of user skill. The first study established 
that for users of Microsoft Word, their ability to correct errors was better improved 
by spell-checking rather than autocorrect. Errors on the post-test were 36.9% lower 
for participants that had previously been allowed access to Microsoft’s spell-checking 
function rather than Microsoft’s autocorrect capability. I observed this difference in 
conjunction with slightly lower scores for autocorrect users during the supported 
trials. Participants that had access to the autocorrect support system had more 
errors in the trials in which they had access to autocorrect, compared to participants 
that had access to the spell-checking system. It may be the case that post-test score 
differences arose not from how users interacted with these tools, but the relative 
success of these tools at delivering correctly spelled words. Regardless of the cause, 
it would appear that users that wish to improve their editing ability would derive 
more benefit from using Microsoft’s spell-checking system rather than Microsoft’s 
autocorrect system.

The second study aimed to explore further the differences in skill 
development driven by the method of interaction, rather than the capabilities of the 
spelling support system to render the correct, correctly spelled word. Here I 
introduced a limited-dictionary autocorrect system and was able to create 



 

 

65 

comparable spelling correction performance between autocorrect and spell-checking 
systems. Users scored roughly the same on trials supported by either autocorrect or 
spell-checking systems. With this performance during supported trials controlled, no 
significant differences between conditions were observed in the post-test scores.       

The third study explored if increasing the difficulty of the target words would 
expose differences in post-test scores between participants in the spell-checking and 
autocorrect conditions. It also aimed to establish whether or not either system 
conferred useful cognitive residuals to their users. Again, as was found in the second 
study, no reliable differences were observed between participants that had access to 
spell-check or autocorrect with regards to their post-test scores. However, 
participants that were provided either support system outperformed the participants 
who were never provided a support system. From this study, we can conclude that 
even if the user is dealing with words that are considered challenging to spell, 
autocorrect and spell-checking offer similar beneficial cognitive residuals. 

The fourth study aimed to explore more specific aspects of interaction with 
spell-checking devices. In particular, the object of inquiry was the act of selecting a 
correctly spelled word. I introduced a spell-checking system in which the user was 
presented with a single option and compared their performance on a post-test with 
users that were provided an autocorrect support system. This comparison was made 
with two sets of words, both challenging and easy, to ensure that the results of this 
test did not vary with difficulty. The results indicated that there was no reliable 
difference in post-test performance between users that selected a word offered by 
spell-check, and those that had their corrections automatically handled by 
autocorrect. 

With the fifth study, I explored alternative designs for spell-checking and 
autocorrect support systems, and if the type of interaction they provide is doing 
more for users than merely presenting them with valuable information. I introduced 
three new designs for spelling support systems: part-word, full-word, and 
autohighlight. The first two systems, part-word, and full-word, aimed to develop new 
ways to engage users in the editing process by requiring users to make the 
corrections themselves. The third system, autohighlight, introduced automatic 
highlighting of corrected words as a means for notifying users about the corrections 
that the autocorrect system. These three systems, as well as the traditional 
autocorrect and spell-checking systems, were compared to a control in which 
participants practiced typing an already corrected set of passages. This control 
ensured that participants received all the same information they would have if the 
spelling support systems duly delivered it. After correcting for differences in user’s 
capabilities, it was only the part-word edit that appeared to outperform the new 
control condition. It was the only system providing the user more than just the 
information regarding the corrected word. 

It is interesting that when users are presented with a challenge to spell 
words correctly, neither users of autocorrect nor spell-checking exhibit a loss of 
relevant skills. This lack of skill-loss would distinguish editing a document with a 
spell-checker from navigating with GPS or using digital storage for reference 
(Ishikawa et al., 2008; Fenech et al., 2010; Sparrow et al., 2011; Dong & Potenza, 
2015). GPS, certain forms of digital storage, and spelling support systems all provide 
users information relevant to the solution of their respective task domains. GPS 
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provides a route, digital storage provides a reference, and spelling support systems 
provide a proper spelling. Unlike GPS and digital storage systems, both forms of 
spelling support systems benefitted the development of independent spelling skills 
in users. This improvement in skill agrees with the findings of Lin et al. (2017) and 
Arif et al. (2016), who showed that both spell-checking and autocorrect (respectively) 
could improve user’s abilities to spell in educational contexts. This point warrants 
further exploration, as it is still not clear why spelling support systems are not prone 
to the same sorts of detrimental cognitive residuals observed in these other systems. 

The incidental learning opportunities that allow users to develop useful 
cognitive residuals while using autocorrect and spell-checking do not appear to be 
unique to these systems’ methods of interaction. As was shown in Study 5, the user 
skill improvement created by traditional autocorrect and spell-checking support 
systems was directly comparable to the user skill improvement created by exposing 
users to correctly spelled words. As further evidence against the importance of the 
method of interaction, when performance between the devices was carefully 
controlled (Studies 2, 3, and 4), differences in user skill-development between 
autocorrect and spell-check became insignificant. It does not appear that the greater 
user responsibility and exposure to the correction process confer more useful 
cognitive residuals than the passive provision of correct words. 

Luckily these are not the only ways of interacting with spelling support 
systems. The part-word support system significantly outperformed directly exposing 
users to correctly spelled words (Study 5). Interestingly, neither the full-word 
support system nor the autohighlight support system was able to outperform simple 
exposure. This failure of all other tested interaction methods to exceed simple 
exposure suggests that there was something unique to the part-word support 
system. The part-word support system made available information regarding the 
solution, which was present in all conditions, but it also allowed prolonged user 
exposure to the error they were attempting to correct as well. The full-word support 
system accomplished the task of requiring users to input the entire correct spelling 
by deleting the misspelled word. The autohighlight support system automatically 
eliminated the misspelled word by replacing it with the correctly spelled word. The 
part-word support system, however, kept the misspelling on the screen while the 
user edited the word. Given that spelling correction can only occur once an error is 
detected, this may have offered users a better chance to become acquainted with the 
nature of the error. 

 
Methodological Issues 
 
The studies presented here suffered from several methodological issues. 

These studies aimed to explore incidental spelling skill development that arose from 
using autocorrect and spell-checking devices. Consequently, the use of a pre-test 
phase may have interfered with this goal. By providing users an opportunity to 
compare their performance between the unsupported pre-test and the supported set 
of trials, it is possible they were incentivized to pursue learning. If this were the 
case, it would be difficult to describe this as a form of incidental learning. However, 
Sparrow et al. (2011) noted that the memory deficits they observed with digital 
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reference systems were present regardless of whether or not participants were 
explicitly instructed to remember the facts they were trained on or not. 

These studies also used the same misspellings in all sets of trials. 
“Improvements in spelling ability” may, therefore, be a misnomer, as there is no 
evidence to show that participants' overall ability to spell words improved. Instead, 
these studies used “the ability to spell the tested words” as a stand-in for overall 
“spelling ability”. In one sense, this is reasonable, as overall spelling ability can only 
be measured in the number of words that participants can correctly spell. If one can 
spell more words, one can say that they have improved their spelling abilities. The 
issue arises when looking at adult spelling skills as a whole. While orthographic 
memorization is fundamental to spelling skill in English, spelling skill also involves 
understanding phonetic/orthographic relationships, spelling rules, and 
morphological units (Holmes & Malone, 2004). These elements are outside of the 
scope of this study. They also are not directly relevant to the functions of either of 
the primary spelling support systems explored here. They are, however, interesting 
in their own right. The cognitive residuals conferred by either autocorrect and spell-
checking may be relevant to some of these more in-depth concepts. 

 
Future Directions 
 
This study does not explore the longitudinal effects of the regular use of 

either spell-checking or autocorrect devices. Due to the recognized long-term effects 
of using digital devices (Loh, & Kanai 2016; Firth et al., 2019; Kirschner & De 
Bruyckere, 2017), it seems like it will be necessary to try to extend these results into 
a study of spelling skill as it develops across time. Early adopters of spelling support 
systems may have different spelling skill trajectories than people who adopt the 
technology early. 

Another element worth exploring is the importance of user motivation in 
incidental skill development. This study was structured with the intention of 
exploring incidental, or rather non-intentional, learning in users. Findings regarding 
the actual “incidental-ness” of the learning in this paradigm, such as by asking 
participants if they were intentionally trying to learn from the systems, could help 
explore if the effects observed here are incidental or driven by the intentions of the 
user. 

Additionally, the findings here are limited to the realm of spell-checking. It 
would be interesting to see if similar approaches to deepening user involvement can 
assist in skill development in fields such as navigation or memory. The results here 
suggest that if users are required to participate in solving a problem while using a 
digital assistant, they may better develop their own independent abilities. It is 
conceivable to consider similar actions being worked into GPS and storage systems, 
or that such affordances may already exist. Modifying the act of looking something 
up that is stored in digital memory, such as requiring users to recall exact passages 
from the material (assuming the information being referred to is in the form of 
written material), may assist with recall. Similarly, asking users to identify 
landmarks while navigating with GPS may enhance a user’s ability to recall the 
route they’ve taken. This study has not confirmed that deepening user involvement 
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extends beyond word learning from spelling support systems, though it appears that 
it may be a fruitful space to explore. 

It also seems imperative to explore precisely why autocorrect and spell-check 
do not induce the type of skill loss associated with other digital devices (Ishikawa et 
al., 2008; Fenech et al., 2010; Sparrow et al., 2011; Henkel, 2014; Dong & Potenza 
2015). Given the relatively diminished role of interaction in how these spelling 
support systems foster user skill development, we must look to other aspects of 
either their design, use, or domain of application (assisting spelling) that could 
explain why they create (rather than impair) user skill development. The results 
here would suggest that this reason lies in their domain of application. Varying the 
design and method of use for these tools never created a situation in which the 
devices created a loss of user skill. Further, directly providing users proper spellings 
appeared to increase user spelling skills as well. It seems likely that spelling is a 
task that is well suited to incidental learning through exposure to proper solutions, 
and digital devices (such as GPS and reference systems) appear well equipped to 
expose users to agreed-upon solutions (such as properly spelled words).         
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Summary 
 
        Spelling support systems can create useful cognitive residuals for their 

users. Assuming that both systems are comparably successful in providing proper 
spellings, their ability to support user skill development is not significantly different 
from one another. Further, the ability to create useful cognitive residuals does not 
appear to extend beyond what can be achieved by exposing users to correctly spelled 
words. However, the incidental learning benefits of spelling support systems can 
still be enhanced by requiring the user to make the necessary edits themselves. 
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Appendix A 
A.1 Materials 
 A.1.1 Stimuli 
  A.1.1.1 Target Words 
 

Table 10 - Target Words 

Misspelling Proper 
Spelling 

Misspelling Proper 
Spelling 

Misspelling Proper 
Spelling 

freind friend buisness business forseeable foreseeable 
Portugese Portuguese bizzare bizarre goverment government 
propoganda propaganda calender calendar remeber remember 
neccessary necessary collegue colleague gaurd guard 
religous religious Carribbean Caribbean posession possession 
resistence resistance chauffer chauffeur occassion occasion 
foriegn foreign concious conscious agression aggression 
beleive believe tendancy tendency neaderthal Neanderth

al 
assasination assassination humourous humorous pharoah Pharaoh  

This is a list of the target words and the associated misspellings. 

 
 
  A.1.1.2 Trial 1 Passage 
 
“Hello freind, we welcome Portugese propoganda producer and neccessary 

politician, Ken.   Religous head of resistence by foriegn appointment, I beleive.  
Publicly his assasination buisness has been seen as bizzare.” 

 
 
  A.1.1.3 Trial 2 Passage 
 
“A calender filled with meetings with a specific collegue in the Carribbean, 

concious avoidance of his chauffer, and his tendancy for humourous rants gave him 
away.” 

 
  A.1.1.4 Trial 3 Passage 
 
“For the forseeable goverment tenure, remeber that a glamourous gaurd 

must remain in posession of his wits for this occassion.  Agression will be punished.  
Remember, do not be a neaderthal, be a pharoah.” 

 
  A.1.1.5 Transfer Test Passage 
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"Calender in some goverment resistence," he told the Carribean assasination 
team. Buisness posession was still the strategy of the Portugese, or so his collegue 
told him. Their tendancy toward the publicly bizzare was neccessary to not be 
caught off gaurd. "Stay conscious in the forseeable future, chauffer the propoganda 
team, and manage my agression" he thought to himself.  While humourous, his 
freind would have to wait. "A pharoah and a glamourous religous leader" was the 
pass phrase he has to remeber. Beleive it or not this occassion was foriegn to him 
and his Netherdal brain.  
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A.2 Model Verification 
A.2.1 Data Exploration 

A.2.1.1 Distributions 
Assessment of Device 

Figure 18 - Distribution of Scores (Number of Errors) on Manipulated Trials 

 
This is a violin plot depicting the distribution of errors (score) in the trials where participants 
were using either Microsoft’s spell-checking or autocorrect support system to correct errors in 
the passage. The width of each ‘violin’ represents the number of observations at that level.  A 

wider point in the violin corresponds to more observations, while a narrower point in the 
violin corresponds to fewer observations.  Participants in the autocorrect condition (A) never 
achieved perfect performance (a score of zero), unlike the majority of the participants (seven 
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of ten) in the spell-checking condition (S).  Spell-checking had the highest single score of four 
errors (the passages contained 27 spelling errors to begin with). 

   

Figure 19 - Results from the Kruskal-Wallis Rank Sum Test 

 
Results indicate that participants in the autocorrect condition, during the trials where they 
used a spelling support system, had a significantly different distribution of errors from the 

participants in the spell-checking condition.  Overall, participants that were using 
Microsoft’s autocorrect corrected fewer errors than the participants using Microsoft’s spell-

checking feature. 
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Assessment of Residuals 
 

Figure 20 - Population chart of Pre-Post Score Differences 

 
Here are the distributions of pre-post differences in scores, grouped by condition (“A”: 

Autocorrect; “S”: Spell-check).  Differences in scores were overall higher for participants in 
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the spell-checking condition, with the modal difference in score being close to 7 fewer errors 
on the post-test than the pre-test. 

Figure 21 - Violin Plot of Pre-Test 

 
Post-Test Scores, by Condition – This diagram depicts the difference between pre-test and 

post-test scores for each condition (“A”: Autocorrect; “S”: Spell-check).  The top performers in 
the spell-checking condition outperformed the top performers in the autocorrect condition.  
Additionally, the lowest performers in the spell-checking condition also outperformed the 

lowest performers in the autocorrect condition. 
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Figure 22 - Pre-Test vs Post-Test Score, by Condition 
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Figure 23 - Pre-Test vs Post-Test Score, by Condition (With Guiding Line) 
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A.2.1.2 Poissonality 
 

Figure 24- Measure of Poissonality of Response Variable 
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  A.2.1.3 Outliers 
 

Figure 25 - Cleaveland Dot Chart of Scores on Post-Test  

 
A plot of the number of errors participants made on the post-test.  Each line represents a 

participant, and the dot on each line represents their score on the post-test.  Plot indicates 
that most of the participants scored four our higher, with only one participant achieving zero 

spelling errors on the post-test. 
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Figure 26 - Cleaveland Dot Chart of Scores on Post-Test, Grouped by Condition 

 
This presents the same information as above, but with points in gold, labelled “A” for 

“Autocorrect”, representing participants in the “autocorrect” condition and points in blue, 
labelled “S” for “Spell-checker”.  Performance between the two conditions appears similar, 

with the participant at 0 still appearing to be the most distant from the group. 
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Figure 27 -Cleaveland Dot Chart of Pre-Test Scores

 
Each line on the chart represents an individual participant, and the dot represents the 

number of spelling errors in their pre-test. 
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Figure 28 - Cleaveland Dot Chart of Pre-Test Scores, by Condition 

 
Each line on the chart represents an individual participant, and the dot represents the 

number of spelling errors in their pre-test.  Participants are grouped by Condition, where “A” 
are participants in the “Autocorrect” condition and “S” in the “Spell-Checking” condition.   
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Figure 29 - Influential Observation Diagnostic Plot 

 
Produced using the ‘infIndexPlot’ function of the R package ‘car’ (Fox & Weisberg, 2011).  

Influence diagnostics for generalized linear mixed models were calculated with the 
‘influence.lme4’ function of the ‘lme4’ package for R (Bates, Maechler, Bolker, & Walker, 

2015). A large number of observations, namely observations 9,11,12,13, 17 and 18. Follow-up 
analysis included looking at how estimated parameters of the change as a result the removal 

of these observations. 
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Table 11 - Parameter Estimations with Influential Observations Removed 

Observation Index Intercept Pre-Test Condition 

9 0.6366 0.1435 -0.5559 

11 0.5214 0.1479 -0.5884 

12 0.8207 0.1209 -0.5164 

13 1.0045 0.1042 -0.3229 

17 0.4907 0.1506 -0.5629 

18 0.3098 0.1668 -0.4452 

Full-Model 0.7075 0.1311 -0.4609 

Each Observation Index corresponds to a given participant that was observed with a Cook’s 
D above 0.2 (see above).  Model parameters are re-estimated for the model via the 

‘influence.lme4’ function of the ‘lme4’ package for R (Bates et al., 2015).  Estimates for the 
intercept varied the most across all observation removals, and the influence of pre-test varied 
the least.  Estimates for condition remain negative, indicating that estimates for participant 
errors in the post-test are consistently lower for participants that were in the spell-checking 

condition. 

 
A.2.2 Model Validation 
A.2.2.1 Heterogeneity 
 

Figure 30-Output from Levene Test of Homogeneity of Variance on Pearson residuals, by 
Condition 

  
 Results indicate that observed heterogeneity does not exceed the assumption of homogenous 

variance between conditions. 
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  A.2.2.2 Residual Plots 
 

Figure 31 - Pearson Residuals vs Fitted Post-Test Scores 

 
Pearson residuals were calculated and plotted against the model-predicted post-test scores.  

Distribution appears centered around 0 in both the auto-correct and spell-checking condition.  
Heterogeneity across Condition is further explored in section B.3.3.2 

 
 
 
 

4 6 8 10 12

-2
-1

0
1

2

4 6 8 10 12

Fitted Post-Test Scores

P
ea

rs
on

 R
es

id
ua

ls

A

S

Pearson Residuals vs Fitted Post-Test Scores



 
 

 

92 

Figure 32 - Pearson Residuals vs Pre-Test Scores 

 
Residuals appear evenly distributed around zero.  No issues were noted. 
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Figure 33 -Pearson Residuals vs Transfer Test Scores 

 

To determine if the data is overfit to the response variable, a non-model covariate can be 
plotted against residuals.  These residuals should be evenly distributed around 0.  Transfer 
Test was a covariate of Post-Test score that was not a term included in the model. Residuals 

appear evenly distributed around 0, indicating no issue. 
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A.2.3 Model Fit 
 

Figure 34 - Results of GLMM 

 
Results of a generalized linear mixed model fit with the ‘lme4’ package in ‘R’ (Bates et al., 

2015)., using the log-link function in the poisson family.  An OLRE was included to capture 
overdispersion frequently found in count data.  The fit was determined to be singular and the 

estimate for the variance and standard deviation of the OLRE were both estimated to be 
zero.  To determine if this was detrimental to the estimate of the fixed effect co-efficients, a 

GLM was also fit without the OLRE.  Results without the ORLE are described below. 

 
Table 12 - Table of Generalized Poisson Mixed Mode Regression Coefficients 

 Estimate Std. Error z value P-value 

Intercept 0.70746 0.42261 1.719 0.085656 

Pre-Test 
Score 

0.13113 0.03566 3.678 0.000235* 

Spell-
Checking 

-0.46094 0.18963 -2.431 0.015067* 
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Figure 35 - R2 of GLMM 

 
 
 

 
Figure 36 - Result of GLM 

 
Removal of the OLRE resolved the singularity.  Estimates for the fixed-effect co-efficients 

remained the same after removal of the OLRE. 
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Figure 37 - GLM for Transfer Test 

 
 

Figure 38 – R2 for Transfer Test Model 
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Appendix B 
B.1 Materials 
 B.1.1 Website and Support Systems 
 

Figure 39 - Screenshot of Website Used to Gather Data 
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 B.1.2  Stimuli 
  B.1.2.1 Target Words 

 

Table 13 - Target Words 

Misspelling Proper 
Spelling 

Misspellin
g 

Proper 
Spelling 

Misspellin
g 

Proper 
Spelling 

freind friend buisness business forseeable foreseeable 
Portugese Portuguese bizzare bizarre goverment government 
propoganda propaganda calender calendar remeber remember 
neccessary necessary collegue colleague gaurd guard 
religous religious Carribbean Caribbean posession possession 
resistence resistance chauffer chauffeur occassion occasion 
foriegn foreign concious conscious agression aggression 
beleive believe tendancy tendency neaderthal Neandertha

l 
assasinatio
n 

assassinatio
n 

humourous Humorou
s 

pharoah Pharaoh  

 These are the target words and their associated misspellings used in Study 2.  They are the 
same words as those used in Study 1. 

 
  B.1.2.2 Passage 1 
 “Hello freind, we welcome Portugese propoganda producer and 

neccessary politician, Ken.   Religous head of resistence by foriegn appointment, I 
beleive.  Publicly his assasination buisness has been seen as bizzare.” 

 
  B.1.2.3 Passage 2 
“A calender filled with meetings with a specific collegue in the Carribbean, 

concious avoidance of his chauffer, and his tendancy for humourous rants gave him 
away.” 

 
  B.1.2.4 Passage 3 
“For the forseeable goverment tenure, remeber that a glamourous gaurd 

must remain in posession of his wits for this occassion.  Agression will be punished.  
Remember, do not be a neaderthal, be a pharoah.” 
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B.2 Model Verification 

 B.2.1 Data Exploration 
B.2.1.1 Distributions 
 

Assessment of Device 
 

Figure 40- Violin Plot of Scores on Trials with Device, by Condition

 
The distribution of scores on the trials with a spelling assistant were identical.  For each 

group exactly four participants scored 26, and the other seven scored 27. 
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Figure 41 - Kruskal-Wallis Rank Sum Test Between Conditions 

 
Score distributions on these trials were identical.  For each group, exactly four people 

correctly spelled 26 words while exactly seven people spelled 27 words correctly. 

 
 

Figure 42 - Score on Pre-Test vs Score on Post Test, Grouped by Condition 
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Figure 43 - Score on Pre-Test vs Score on Post-Test, Grouped by Condition 
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B.2.1.2 Poissonality 
 

 
Figure 44 - Q-Q Plot of Estimated Poisson Quantiles and Observed Scores on Post-Test 
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B.2.1.3 Outliers 
 

Figure 45 - Cleaveland Plot of Pre-Test Scores 
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Figure 46 - Cleaveland Plot of Post-Test Scores 

 
Figure 47 - Cleaveland Plot of Pre-Test Scores, Grouped by Condition 

 

10 15 20 25

Cleaveland Dot Chart of Post-Test Scores

AC

SC

10 15 20 25

Cleaveland Dot Chart of Pre-Test Scores

Score on Pre-Test

P
ar
tic
ip
an
t



 
 

 

105 

Figure 48 - Cleaveland Plot of Post-Test Scores, Grouped by Condition 

 
 
 

Figure 49 - Outlier Diagnostic Charts for Poisson Model with OLRE
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Table 14- Table of Regression Coefficients After Outlier Removal 

Observation Index Intercept Pre-Test Condition 

10 2.1869 0.0474 0.0019 

12 2.4482 0.0349 0.0087 

20 2.3931 0.0370 0.0230 

Full-Model 2.3083 0.0406 0.0383 

This table summarizes the new regression coefficients when the corresponding outlier is 
removed.  Observations 10 and 12 appear to have the largest impact on the non-significant 

differences observed between conditions. 
 
 
 
 
 
B.2.2 Model Validation 
 
B.2.2.1 Heterogeneity 
 

Figure 50- Levene's Test of Homogeneity of Variance for Poisson Regression with OLRE  
 

 
Results indicate no violation of the assumption of homogeneity for the model. 
 
 
 
 
 
 
 
 
 
B.2.2.2 Residual Plots 
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Figure 51 - Pearson Residuals from Poisson Regression with OLRE vs Observed Score on 
Pre-Test 
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Figure 52 - Pearson Residuals from Poisson Regression with OLRE vs Predicted Score on 

Post-Test 
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B.2.3 Model Fit 
 

Figure 53 - Results from GLMM (Poisson) Regression with OLRE 
 

 
 

Table 15- Table of GLMM Coefficients 

 Estimate Std. Error z value P-value 

Intercept 2.3083 0.18806 12.274 <2e-16 

Pre-Test 
Score 

0.0406 0.0010 4.058 4.95e-05 

Spell-
Checking 

0.0383 0.0942 0.406 0.685 

 

Figure 54 -R2 of GLMM 
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Figure 55 - Results from Quasipoisson Regression 
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Appendix C 
C.1 Materials 

 C.1.1 Website and Support Systems 
 

Figure 56- Screenshot of Website Used to Gather Data 
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Table 16 - Table of Use Steps for Spelling Support Systems 

Spelling 
Support 
System 

Identification 
Assistance Selection Assistance Execution 

Spell-
Checking 

   

Autocorrec
t 

 

Selection is handled by 
system 

 

This table shows what the user saw during each step of using their respective support 
system.  Selection is not depicted for the autocorrect, as the selection step is handled by the 

support system, without any user prompting 
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C.1.2 Stimuli 
 
C.1.2.1 Target Words 
 

Table 17 - Target Words 

Misspelling Correct 
Spelling 

Misspelling Correct 
Spelling 

Misspelling Correct 
Spelling 

harbenger harbinger preogue prorogue kehpi kepi 
tricina trichina zhloty zloty treuculent truculent 
pompanoh pompano piaza piazza pheaton phaeton 
hallyard halyard aggar agar cenobyte cenobite 
allacrity alacrity zerography xerography yttreaum yttrium 
mitzvuh mitzvah Dirck dirk vectual victual 
ewwer ewer Rollic rollick schemma schema 
chankre chancre zephear zephyr upsillion upsilon 
centayvo centavo cayene cayenne bouffahnt bouffant 
macinaw mackinaw illeum ileum scherso scherzo 
alegiac elegiac raffea raffia exturpate extirpate 
dellft delft sacharin saccharin rheeum rheum 
quuay quay panashe panache oshiose otiose 
wildbeast wildebeest wapeeti wapiti bouillubaisse bouillabaisse 
selesta celesta fisile fissile vallise valise 
gymkhanah gymkhana ginko ginkgo ententae entente 
kerfufle kerfuffle grohsbeak grosbeak raymin ramie 
moetet motet bracerro bracero braem bream 
aberant aberrant toowhee towhee ginghum gingham 
jadite jadeite bragadocio braggadocio sepiya sepia 

These are the target words, and associated misspellings, used in Study 3 

 
C.1.2.2 Trial 1 

 “harbenger tricina pompanoh hallyaard allacrity mitzvuh ewwer 
chankre centayvo macinaw alegiac dellft quuay wildebeast selesta gymkhanah 
kerfufle moetet aberant jadite” 

 
 
  C.1.2.3 Trial 2 
 
“prerogue zhloty piaza aggar zerography dirck rollic zephear cayene illeum 

raffea sacharin panashe wapeeti fisile ginko grohsbeak bracerro toowhee 
bragadocio” 

.” 
 
 
 
  C.1.2.4 Trial 3 
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“kehpi treuculent pheaton cenobyte yttreaum vectual schemma upsillon 
bouffahnt scherso exturpate rheeum oshiose bouillubaisse vallise ententae raymie 
braem ginghum sepiya.” 
 
C.2 Model Verification 

C.2.1 Data Exploration 
 
  C.2.1.1 Assessment of Device  
 

Figure 57 - Kruskal-Wallis Rank Sum Test 

 
 Results indicate that for difficult words, users that had access to the browser based spell-
checking systems performed significantly differently from users of the autocorrect system.  

This was for trials where they had access to the support systems. 
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Figure 58-Number of Correctly Spelled Words on Trials with Assistant, by Assistant Type 

 

The violin plot indicates that participants in the autocorrect condition saw at least 57 
correctly spelled words, while the participants in the spell-checking condition only saw at 

least 54 correctly spelled words and at most 59 correctly spelled words. 

C.2.1.2 Post-Test Performance  
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Figure 59 - Post-Test Scores vs Pre-Test Scores, Grouped by Condition 
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Figure 60 - Post-Test Scores vs Pre-Test Scores, Grouped by Condition (line) 
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  C.2.1.3 Poissonality 
 
Figure 61 - Q-Q Plot of Estimated Poisson Quantiles vs Observed Score on Post-Test 

 

 

15 20 25 30

0
10

20
30

40
50

Q-Q Plot of Poisson Estimate of Post-Test Scores (Spell Check)

Poisson Quantiles

C
ou

nt
 o

f T
ar

ge
t W

or
ds

 S
pe

lle
d 

C
or

re
ct

ly
 o

n 
P

os
t-T

es
t

1

16

15 20 25 30

0
10

20
30

40
50

Q-Q Plot of Poisson Estimate of Post-Test Scores (Control)

Poisson Quantiles

C
ou

nt
 o

f T
ar

ge
t W

or
ds

 S
pe

lle
d 

C
or

re
ct

ly
 o

n 
P

os
t-T

es
t

16

3

15 20 25 30

0
10

20
30

40
50

Q-Q Plot of Poisson Estimate of Post-Test Scores (Autocorrect)

Poisson Quantiles

C
ou

nt
 o

f T
ar

ge
t W

or
ds

 S
pe

lle
d 

C
or

re
ct

ly
 o

n 
P

os
t-T

es
t

18

19

15 20 25 30

0
10

20
30

40
50

Q-Q Plot of Poisson Estimate of Post-Test Scores

Poisson Quantiles

C
ou

nt
 o

f T
ar

ge
t W

or
ds

 S
pe

lle
d 

C
or

re
ct

ly
 o

n 
P

os
t-T

es
t

18 53



 
 

 

119 

   
 
 
 
 
 
 
 
 

C.2.1.4 Outliers 
 

Figure 62-Cleaveland Plot of Post-Test Scores 
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Figure 63- Cleaveland Plot of Post-Test Scores, Grouped by Condition 

 
 
 

Figure 64 - Cleaveland Plot of Pre-Test Scores 
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Figure 65 - Cleaveland Plot of Pre-Test Scores by Condition 

 
 

Figure 66-Outlier Diagnostics for Poisson Model with OLRE 

 
Outliers were selected as being 2 standard deviations away from the average Cook’s D.   
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Table 18- Table of Regression Coefficients After Removal of Outliers 

Observation Index Intercept Pre-Test Autocorrect Spell Check 

3 1.5171 0.0554 0.6420 0.7862 

20 1.6037 0.0550 0.5806 0.8484 

37 1.4561 0.0635 0.5993 0.8852 

Full-Model 1.5261 0.0585 0.6000 0.8069 

This table summarizes the regression coefficients estimated by the model when the 
corresponding observed outlier is removed.  Removing observation 3 lowers the estimated 

effect of spell-check by 2.09%, while removing observation 37 increases the estimated effect 
of spell-check by 8.14%. 

 
 
 
 
C.2.2 Model Validation 
 
  C.2.2.1 Heterogeneity 
 

Figure 67 - Levene's Test for Homogeneity in Poisson Model with OLRE 

 
 Results indicate no violation of the assumption of homogeneity of variance between levels. 

 
  C.2.2.2 Residual Plots 
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Figure 68-Pearson Residuals from Poisson Regression vs Predicted Number of Target Words 
Spelled Correctly on Post-Test 

 
 

Figure 69- Pearson Residuals for Model vs Score on Pre-Test, Grouped by Condition
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C.2.3 Model Fit 
 

Figure 70 - Results from Poisson Regression with OLRE 

 
 

Figure 71- Results from Quasipoisson Regression 
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Figure 72 -R2 for GLMM 

 
 

Figure 73 - Multiple Comparisons Between Conditions,Output From 'glht' (Hothorn, Bretz, & 
Westfall, 2008).
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Appendix D 
D.1 Materials 

 
D.1.1 Website and Devices 

 

Figure 74 - Screenshot of Website Used to Collect Data 
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Table 19- Phases of the Spelling Assistance Process 

Spelling 
Support 
System 

Identification Assistance Selection Assistance Execution 

Spell-
Checkin
g 

   

Autocorr
ect 

 

All words are spelled 
correctly 

 

This table summarizes the steps the user takes in correcting a spelling error with either the 
autocorrect, or spell-checking assistant created for this study.  Of particular note are the 

differences in the identification and selection steps.  In the identification step, autocorrect 
provides no indication of a misspelling.  Spell-check, on the other hand, draws the user’s 

attention to the misspelling with a red underline.  In the selection step, autocorrect handles 
the process of selecting a properly spelled word without prompting the user in any manner.  
Spell-check requires that the user perform the selection process (in part) themselves.  Spell-
check offers the user candidate properly spelled words, and the user must select the proper 

spelling from that list.  In both cases the final step is replacing the misspelling with a 
properly spelled word. 
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D.1.2 Stimuli 
 
  D.1.2.1 Target Words 
 
 

Table 20 - Table of Target Words for Study 4 

Easy 
Misspellings 

Easy 
Proper 
Spelling 

Hard 
Misspellings 

Hard 
Proper 
Spelling 

freind friend brasero bracero 
Portugese Portuguese vellar velar 
propoganda propaganda darma dharma 
neccessary necessary trychina trichina 
religous religious pompeno pompano 
resistence resistance scanscion scansion 
foriegn foreign faillet faille 
beleive believe bateste batiste 
assasination assassination hallyard halyard 
buisness business alacrety alacrity 
bizzare bizarre mitsvah mitzvah 
calender calendar aballone abalone 
collegue colleague chrore crore 
Carribbean Caribbean ewwer ewer 
concious conscious chanchre chancre 
tendancy tendency sashey sashay 
forseeable foreseeable centavvo centavo 
goverment government mackenaw mackinaw 
remeber remember paruke peruke 
gaurd guard dellft delft 
posession possession kuay quay 
occassion occasion wildebeast wildebeest 
agression aggression selesta celesta 
neaderthal Neanderthal eloadea elodea 
pharoah Pharaoh  ayuah ayah  
humourous humorous xeolite zeolite 
chauffer chauffeur gymkana gymkhana 

Two lists of words were used in the study, categorized as ‘Easy’ and ‘Hard’.  These lists come 
from Studies 1 and 3 respectively. 

   
D.1.2.2 Easy Passage 1 

“Hello freind, we welcome Portugese propoganda producer and neccessary 
politician, Ken.   Religous head of resistence by foriegn appointment, I beleive.  
Publicly his assasination buisness has been seen as bizzare.” 
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  D.1.2.3 Easy Passage 2 
“A calender filled with meetings with a specific collegue in the Carribbean, 

concious avoidance of his chauffer, and his tendancy for humourous rants gave him 
away.” 

 
D.1.2.4 Easy Passage 3 

“For the forseeable goverment tenure, remeber that a glamourous gaurd 
must remain in posession of his wits for this occassion.  Agression will be punished.  
Remember, do not be a neaderthal, be a pharoah.” 

 
  D.1.2.5 Hard Passage 1 
“The brasero with a vellar lisp spoke about the darma calmly.  Like a 

trychina worm or a pompeno we flow along a scanscion as smooth as faillet or 
bateste cloth.  Hoist your hallyard and maintain your alacrety, and you can better 
fulfill your mitsvah and find your happiness.” 

 
  D.1.2.6 Hard Passage 2 
“He scooped out the aballone, now worth a chrore and a half.  The medicine in 

the ewwer eased the chanchre plaguing the patient.  Sashey for a centavvo was too 
low of a price.  Upon the patient’s front was their mackenaw. “ 

 
  D.1.2.7 Hard Passage 3 
“His paruke toppled into the dellft bowl on the ground, just above the kuay 

below.  A wildebeast herd outside stamped about like a selesta, and eloadea sat just 
under the surface of the owater.  The ayuah went to the shelf to grab the xeolite to 
the tune of that gymkana from nature. “  

 
D.2 Model Verification 

 D.2.1  Data Exploration 
  D.2.1.1 Device Assessment 
 

Figure 75 - Rank Sum Test (Hard Words) 
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Figure 76- Rank Sum Test (Easy Words) 

 
 

Figure 77 - Violin Plot of Score on Test with Support System (Easy Words) 
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Figure 78- Violin Plot of Score on Test with Support System (Hard Words)
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D.2.1.2 Distributions 
 

Figure 79 - Plot of Post-Test Scores for Hard Words vs Pre-Test Scores for Hard Words, 
Grouped by Condition 

 
 

Figure 80 - Plot of Post-Test Scores for Easy Words vs Pre-Test Scores for Easy Words, 
Grouped by Condition  
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D.2.1.3 Poissonality 
 

D.2.1.3.a Q-Q Plots for Hard Words 
 

Figure 81 - Q-Q Plots of Poisson Quantile Estimates of Post-Test Scores vs Observed Post-
Test Scores with Hard Words 

 
Only three values fall outside of the 95% confidence interval band.  Issues with poissonality 

appear to be mostly the result of over estimation of post-test scores at lower values. 
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D.2.1.3.b Q-Q Plots for Easy Words 
 

Figure 82 - Q-Q Plots of Poisson Quantile Estimates of Post-Test Scores vs Observed Post-
Test Scores With Easy Words 

 
 

6 values fall outside the 95% confidence interval bands.  This appears to have been the result 
of over estimation of lower post-test scores, and under estimation of three data points at the 

top end of the distribution. 
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  D.2.1.4 Outliers 
 
D.2.1.4.a Outliers - Hard Words 
 

Figure 83-Cleaveland Plot of Post-Test Scores With Hard Words-  

 

 
Figure 84-Cleaveland Plot of Post-Test Scores with Hard Words, Grouped by Condition 
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Figure 85 - Diagnostic Plot for Outliers, Hard Words 

 
 
 

Table 21 - Table of Regression Coefficients After Removal of Outliers, Hard Words 

Observation Index Intercept Pre-Test Spell Check 

32 2.6374 0.0340 0.0555 

Full-Model 2.5902 0.0404 -0.0037 

This table summarizes the regression coefficients estimated by the model when the 
corresponding observed outlier is removed.   
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D.2.1.4.b Outliers - Easy Words 
 

Figure 86- Cleaveland Plot of Post-Test Scores with Easy Words 

 
 

Figure 87- Cleaveland Plot of Post-Test Scores with Easy Words, Grouped by Condition 
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Figure 88 - Diagnostic Outlier Plot, Easy Words 

 
 
 

Table 22 - Table of Regression Coefficients After Removal of Outliers, Easy Words 

Observation Index Intercept Pre-Test Spell Check 

12 2.5946 0.0271 0.0065 

Full-Model 2.4744 0.0329 -0.0125 

This table summarizes the regression coefficients estimated by the model when the 
corresponding observed outlier is removed.   
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D.2.2 Model Validation 
  D.2.2.1 Heterogeneity 
 

Figure 89- Levene's Test, Easy Words 

 
 

Figure 90- Levene's Test, Hard Words 

 
   
 
 
 
 

D.2.2.2 Residual Plots 
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Figure 91- Pearson Residuals from Easy Model vs Predictor Variable: Pre-Test

 

 
 
 

 

Figure 92- Pearson Residuals from Easy Model vs Predicted Post-Test Scores 
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Figure 93 - Pearson Residuals from Hard Model vs Predicted Post-Test Scores 
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Figure 94 - Pearson Residuals from Hard Model vs Predictor: Pre-Test 

 

0 5 10 15

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

0 5 10 15

Number of Words Spelled Correctly on Pre-Test (Hard)

P
ea

rs
on

 R
es

id
ua

ls

A

S

Given : HardCon



 
 

 
  

144 

Figure 95 - Pearson Residuals from Easy Model vs Non-Model Co-Variate 
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Figure 96 - Pearson Residuals from Hard Model vs Non-Model Co-Variate 
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D.2.3 Model Fit 
 

Figure 97- Poisson Regression with ORLE for Easy Words  
 

 
Results from the regression indicate a singular fit.  This is likely from the near zero value for 

the random effect. 
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Figure 98 - QuasiPoisson Fit for Easy Words 

 
Fit after the detection of a singularity in the GLMM with OLRE for the set with easy words.  
Regression coefficients remain about the same.  Pre-test score (EasyPreSum) significantly 

correlates with post-test scores.  The type of device used during experimentally manipulated 
trials (EasyCon) does not significantly correlate with post-test scores. 

 
 
 

Figure 99 - R2 for Model of Easy Words 
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Figure 100- Poisson Regression with OLRE for Hard Words 
 

 
Fit indicates no errors.  For the set that includes difficult words, pre-test scores 

(HardPreSum) significantly correlated with post-test scores.  This was not the case for the 
type of device (HardCon), which was not significantly correlated with the post-test score. 

Figure 101 - R2 for Hard Word Model 
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Appendix F 
F.1 Materials  

 
F.1.1 Website and Devices 
 

Figure 102 - Screenshot of the Website Used to Gather Data 
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Table 23 - Phases of the Spelling Assistance Process 

This table summarizes the steps the user takes in correcting a spelling error with the five 
support systems (traditional spell-check, full-word, part-word, autocorrect, autohighlight) or 
in either of the control conditions (control, complete). Below is a description of the steps for 

the spell-checking systems, a description of the steps for the autocorrect systems, and finally, 
a description of the steps for the ’control’ and ‘complete’ conditions. 

In the identification step, the traditional spell-check, part-word, and full-word systems all 
provide a red underline to help the user identify misspelled words. The user can then access 
the selection assistance features by right-clicking on a word with a red underline. When an 

underlined word is right-clicked by the user, the spell-check, part-word, and full-word 
systems all provide the user with a context menu containing correctly spelled words. The 

full-word system additionally deletes the word that the user right-clicked on.  This extra step 
was taken in order to ensure that users have to enter the correctly spelled word for 

themselves in the execution step. In the traditional spell-checking system, the selection 
process can be completed by selecting a proper spelling from the context menu.  

The execution step proceeds directly from the selection step.  Upon selecting a proper 
spelling in the traditional spell-checking system, the edit is executed automatically for the 

Conditi
on 

Identification 
Assistance 

Selection 
Assistance Execution 

Extra 
Keyboard 
Entry 

Spell-
Check 

   

None 

Full-
Word 

    

Part-
Word 

    

Autocor
rect 

 

Handled by 
System 

 

None 

Autohig
hlight 

 

Handled by 
System 

 

None 

Control None None None None 

Comple
te 

All words are 
spelled correctly 

All words are 
spelled 
correctly 

All words are 
spelled correctly None 
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user.  For both full-word and part-word systems, selecting a word from the context menu 
produces no change in the system. Instead, the user can only visually select a proper 

spelling. 

 
For the autocorrect and autohighlight systems, the majority of steps are handled by the 

system.  The systems complete the spelling process with no prompting or necessary 
interaction to proceed through the steps. The system identifies the misspelling, selects a 

candidate word, and then executes the edit for the user. A critical difference between 
autocorrect and autohighlight lies in the execution step. Upon replacing a misspelled word, 
the autohighlight system highlights the word that was replaced. This highlight remains on-

screen for the remainder of the trial. 
 

In the ‘control’ and ‘complete’ conditions, participants were not offered any support systems. 
They were also asked not to use outside resources of any sort. The passages in the control 

condition were identical to the passages in the traditional spell-check, full-word, part-word, 
autocorrect, and autohighlight conditions. The passages in the complete condition only 

contained correctly spelled words. This difference in the passages distinguishes the control 
and complete conditions across the identification, selection, and execution steps. Participants 
in the control condition had to identify the misspelled words, select proper spellings from the 
proper spellings they knew of, and then correctly spell the words themselves. Participants in 

the ‘complete’ condition were provided proper spellings, ensuring that there were no 
misspellings that they had to identify. They did not need to select proper spellings for any 

misspellings, and correctly spelling the words consisted of merely copying what was already 
contained in the passage. 
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 F.1.2 Stimuli 
 
F.1.2.1 Target Words 
 

Table 24 - Target Words 
Misspellings Proper 

Spelling 
brasero bracero 
vellar velar 
darma dharma 
trychina trichina 
pompeno pompano 
scanscion scansion 
faillet faille 
bateste batiste 
hallyard halyard 
alacrety alacrity 
mitsvah mitzvah 
aballone abalone 
chrore crore 
ewwer ewer 
chanchre chancre 
sashey sashay 
centavvo centavo 
mackenaw mackinaw 
paruke peruke 
dellft delft 
kuay quay 
wildebeast wildebeest 
selesta celesta 
eloadea elodea 
ayuah ayah  
xeolite zeolite 
gymkana gymkhana 

 
  F.1.2.2 Passage 1 
“The brasero with a vellar lisp spoke about the darma calmly.  Like a 

trychina worm or a pompeno we flow along a scanscion as smooth as faillet or 
bateste cloth.  Hoist your hallyard and maintain your alacrety, and you can better 
fulfill your mitsvah and find your happiness.” 

 
  F.1.2.3 Passage 2 
“He scooped out the aballone, now worth a chrore and a half.  The medicine in 

the ewwer eased the chanchre plaguing the patient.  Sashey for a centavvo was too 
low of a price.  Upon the patient’s front was their mackenaw. “ 
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  F.1.2.4 Passage 3 
“His paruke toppled into the dellft bowl on the ground, just above the kuay 

below.  A wildebeast herd outside stamped about like a selesta, and eloadea sat just 
under the surface of the water.  The ayuah went to the shelf to grab the xeolite to 
the tune of that gymkana from nature. “  

 
  F.1.2.5 Transfer Test Passage 
“The paruke upon the ayuah hid a chanchre shaped like an aballone.  Under 

the injury, thoughts of the year's pompeno harvest flowed freely.  They sat above a 
mouth known for its vellar annunciations that were as smooth as bateste cloth.  The 
darma that guided this soul played the bones and tendons like a beautiful selesta 
when pleased, and like a raucous gymkana when not.  Below the soul swept vast 
fields of eloadea, hidden under the dellft like reflections of the sea.  The soul took a 
swig from their ewwer with an alacrety that spoke to their thirst.  The faillet 
hallyard was drawn tight, like a mackenaw wrapped around a particularly rotund 
individual.  The wildebeast meat would have been a nice accouterment, but that was 
lost to the kuay the soul had launched from.  The soul's brasero companion whittled 
at a xeolite figure he'd been carving.  It was his mitsvah, he claimed.  More like the 
goading of some trychina meme, scoffed the soul.  At the sound of a loud bang, both 
parties surveyed the surroundings, like a scanscion in preparation for the crescendo.  
"I bet you a centavvo you don't see what I see," the soul said with a sashey. "Make it 
a chrore, and you're on," replied the companion.” 
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F.2 Model Verification  
 
 F.2.1 Data Exploration 
  F.2.1.1 Device Assessment 
 

Figure 103 – Rank Sum Test (includes Corrected Control) 
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F.2.1.2 Distributions 
 

Figure 104 - Pre-Test Scores Grouped by Device 

 
This is a diagram of pre-test scores for each condition.  Participants in the autohighlight 

condition had the greatest variation in pretest scores, though traditional spell-check 
contained the highest performer overall. 

Figure 105 - Post-Test Scores Grouped by Device 

 
This is a diagram of post-test scores for each condition.  Participants in the part-word 

condition showed the highest mean score on the post-test trials 
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Figure 106 – Q-Q Plot of Estimated Poisson Distribution and Observed Values, by Condition 

 

Scores across all conditions (pictured: top) approximate the theoretical poisson distribution.  
Exceptions include an abundance of  
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F.2.1.3 Outliers 
 

Figure 107- Cleaveland Dot Chart of Pre-Test Scores 
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Figure 108 - Cleaveland Dot Chart of Pre-Test Scores by Condition 
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Figure 109- Cleaveland Dot Chart of Post-Test Scores by Condition 

 
 

Table 25 - Parameter Estimates with Outliers Removed 

Obs. 
Index 

Intercept PreTotal Corrected Spell-
Check 

Full-
Word 

Part-
Word 

Auto 
Highlight 

Auto 
Correct 

6 1 .2211 0.0486 0.9860 1.1649 1.3489 1.4557 1.1771 1.2136 
7 1.2529 0.0471 0.9634 1.1409 1.3252 1.4333 1.1563 1.1877 
17 1.2805 0.0474 0.9299 1.1098 1.2952 1.4032 1.1246 1.1563 
29 1.3487 0.0485 0.8630 1.0329 1.2199 1.3277 1.0462 1.0797 
32 1.3731 0.0467 0.8960 1.0234 1.2072 1.3153 1.0394 1.0701 
36 1.3732 0.0468 0.8971 1.0227 1.2065 1.3146 1.0385 1.0695 
124 1.3771 0.0466 0.8455 1.0211 1.2044 1.3125 1.0373 1.1211 
Model 1.3498 0.0485 0.8507 1.0319 1.2189 1.3266 1.0452 1.0788 
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F.2.2 Model Validation 
 
  F.2.2.1 Heterogeneity 
   

Figure 110 - Levene's Test for Homogeneity of Variance for GLMM

 
 Heterogenity was detected in this Levene Test of the residuals of the GLMM.  Results 

indicate that the variance between estimated scores on the post-test did not remain the same 
across participants who used different tools (variable “Device” in the over-all model). 

  
Figure 111 - Levene's Test for Homogeneity of Variance for Quasipoisson GLM 

 
 In order to ensure that the results of the GLMM were not a spurious result of the GLMM’s 
violation of homogeneity across different levels of “Device”, a Quasipoisson GLM without an 
ORLE term was fit and the results were compared between the Quasipoisson GLM and the 

GLMM.  Results indicate that the Quasipoisson GLM did not violate the assumption of 
homogeneity, and results from the GLM and GLMM will be compared below. 
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F.2.3 Model Fit 
 

Figure 112- Generalized Poisson Mixed Model for Post-Test Scores 

 
 

Figure 113  - R2 for Generalized Poisson Mixed Model (Post-Test Scores) 
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Figure 114 – Generalized Poisson Mixed Model for Transfer Test Scores  

 
 
 

Figure 115 – R2 for Generalized Poisson Mixed Model (Transfer Test) 
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Figure 116 -Quasi-Poisson Model for Transfer Test Scores 

 
Figure 117 - R2 for Quasi-Poisson Model (Transfer Test Scores) 
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Figure 118 - Tukey Post-Hoc Test for Post-Test Scores 

 
Multiple comparisons were made between the estimated mean coefficients for each level of 

“Device” with a Tukey p-value adjustment. The ‘glht’ package in R was used to compute 
these contrasts (Hothorn, Bretz, & Westfall, 2008).  All conditions performed better than the 
uncorrected control (“AControl”).  Only the part-word editing device (“Part-Word”)  condition 

outperformed the corrected control (“Corrected”). 
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Figure 119 -Tukey Post-Hoc Test for Transfer Test Scores (Quasi-Poisson) 

 
 

 

 
 
 
 




