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ABSTRACT OF THE DISSERTATION

Approximations in Operator Theory

and Free Probability

by

Paul Daniel Skoufranis

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Dimitri Y. Shlyakhtenko, Chair

We will investigate several related problems in Operator Theory and Free Probability. The

notion of an exact C∗-algebra is modified to reduced free products where it is shown, by

examining another exact sequence of Toeplitz-Pimsner Algebras, that every C∗-algebra is

freely exact. This enables a discussion of strongly convergent random variables where we

show that strong convergence is preserved under reduced free products. We will also an-

alyze the distributions of freely independent random variables where it is shown that the

distribution of a non-trivial polynomial in freely independent semicircular variables is atom-

less and has an algebraic Cauchy transform. These results are obtained by considering an

analogue of the Strong Atiyah Conjecture for discrete groups and by considering algebraic

formal power series in non-commuting variables respectively. More information about the

distributions of operators will be obtained by examining when normal operators are limits

of nilpotent operators in various C∗-algebras including von Neumann algebras and unital,

simple, purely infinite C∗-algebras. The main techniques used to examine when a normal

operator is a limit of nilpotent operators come from known matrix algebra results along with

the projection structures of said algebras. Finally, using specific information about norm

convergence of nilpotent operators, we will examine the closed unitary and similarity orbits

of normal operators in von Neumann algebras and unital, simple, purely infinite C∗-algebras.

ii



The dissertation of Paul Daniel Skoufranis is approved.

Eric D’Hoker

Sorin Popa

Edward G. Effros

Dimitri Y. Shlyakhtenko, Committee Chair

University of California, Los Angeles

2014

iii



TABLE OF CONTENTS

1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Classical Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Purely Infinite C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Free Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Exact C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Strong Atiyah Conjecture for Groups . . . . . . . . . . . . . . . . . . . . . . 32

1.8 Single Operator Theory on Hilbert Spaces . . . . . . . . . . . . . . . . . . . 34

2 Free Exactness and Strong Convergence . . . . . . . . . . . . . . . . . . . . 39

2.1 Construction of Sequence of Free Product C∗-Algebras . . . . . . . . . . . . 40

2.2 An Exact Sequence of Toeplitz-Pimsner Algebras . . . . . . . . . . . . . . . 42

2.3 Every C∗-Algebra is Freely Exact . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Strong Convergence is Preserved by Free Products . . . . . . . . . . . . . . . 62

3 Freely Independent Random Variables with Non-Atomic Distributions . 75

3.1 Summary of Main Results on Distributions of Non-Atomic Random Variables 75

3.2 The Atiyah Property for Tracial ∗-Algebras . . . . . . . . . . . . . . . . . . 80

3.3 Atiyah Property for Freely Independent Random Variables . . . . . . . . . . 85

3.4 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Algebraic Cauchy Transforms of Polynomials in Semicircular Variables . . . 103

4 Normal Limits of Nilpotent Operators in C∗-Algebras . . . . . . . . . . . 113

iv



4.1 Type I von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Type III von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Restrictions by Tracial States . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4 Type II1 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.5 Type II∞ Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.6 Normal Limits of Sums of Nilpotent Operators in Von Neumann Algebras . . 149

4.7 Distance from Projections to Nilpotent Operators in Von Neumann Algebras 154

4.8 Purely Infinite C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.9 AFD C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.10 C∗-Algebras with Dense Subalgebras of Nilpotent Operators . . . . . . . . . 177

5 Closed Unitary and Similarity Orbits in Purely Infinite C∗-Algebras . . 183

5.1 Dadarlat’s Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.2 Closed Unitary Orbits of Normal Operators . . . . . . . . . . . . . . . . . . 185

5.3 Distance Between Unitary Orbits of Normal Operators . . . . . . . . . . . . 197

5.4 Closed Similarity Orbits of Normal Operators . . . . . . . . . . . . . . . . . 216

v



ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Dimitri Shlyakhtenko for all of his advice and support

these past five years. Due to his council, my research projects have flourished and I would

not have succeeded in my program without his aid. I would also like to thank Dimitri

Shlyakhtenko for his permission for our joint paper [72] to be included in this dissertation.

Dimitri Shlyakhtenko’s contribution to [72] was having the main idea behind our result

in which we were together able to fill in the details. I would also like to acknowledge that

parts of this dissertation were supported financially by the National Science and Engineering

Research Council of Canada’s post-graduate fellowship program.

vi



VITA

2007 Teacher/Tutor/Teaching Assistant, Bronte College of Canada, Missis-

sauga, Ontario.

2009 B.Math. (Pure Mathematics, Physics Minor, Cooperative Program), Uni-

versity of Waterloo.

2009 Awarded NSERC PGS M Research Scholarship.

2010 Awarded NSERC PGS D3 Research Scholarship.

2010–2011 Teaching Assistant, Mathematics Department, UCLA. Taught discussion

sections of MATH 3C, MATH 31B, MATH 33A, and MATH 115A.

2012–2013 Boot Camp Teaching Assistant, Mathematics Department, UCLA. Taught

discussion sections of the Linear Algebra portion of the Mathematics De-

partment Summer Program for new graduate students.

2013 Course Instructor, Mathematics Department, UCLA. Taught lecture sec-

tions of MATH 32B.

2013–2014 Teaching Assistant Coordinator, Mathematics Department, UCLA. Taught

discussion sections of MATH 495 to train new graduate students to teach

college mathematics.

PUBLICATIONS

I. Charlesworth, B. Nelson, and P. Skoufranis, On Two-Faced Families of Non-Commutative

Random Variables, preprint (2014), 26 pages.

vii



D. Shlyakhtenko and P. Skoufranis, Freely Independent Random Variables with Non-Atomic

Distributions, accepted to Transactions of the American Mathematics Society (2014), 25

pages.

P. Skoufranis, Closed Unitary and Similarity Orbits of Normal Operators in Purely Infinite

C∗-Algebras, Journal of Functional Analysis, 265 (2013), no. 3, 474-506.

P. Skoufranis, Normal Limits of Nilpotent Operators in C∗-Algebras, accepted to Journal of

Operator Theory (2013), 23 pages.

P. Skoufranis, Normal Limits of Nilpotent Operators in von Neumann Algebras, Integral

Equations and Operator Theory, 77 (2013), no. 3, 407-439.

P. Skoufranis, On a Notion of Exactness for Reduced Free Products of C∗- Algebras, accepted

to Journal für die reine und angewandte Mathematik (2013), 25 pages.

K. Hare and P. Skoufranis, The Smoothness of Orbital Measures on Exceptional Lie Groups,

Journal of Lie Theory, 21 (2011), no. 4, 987-1007.

viii



CHAPTER 1

Introduction and Background

In this introduction, a brief outline of background material essential to the comprehension

of the mathematics contained in this dissertation will be provided. This introduction is not

meant to be fully comprehensive so we advise the interested reader to consult alternative

material as necessary.

1.1 Classical Probability

The main focus of classical probability theory is the study and manipulation of random

variables.

Definition 1.1.1. A measure space is a pair (X ,Ω) where X is a set, Ω is a σ-algebra of

subsets of X (that is, Ω consists of subsets of X including the empty set ∅ and X such that

Ω is closed under countable unions and complementation).

Definition 1.1.2. A probability space is a triple (X ,Ω, µ) where (X ,Ω) is a measure space

and µ : Ω→ [0, 1] is a probability measure on Ω.

Definition 1.1.3. Given a probability space (X ,Ω, µ) and a measure space (X ′,Ω′), a

random-variable X on (X ,Ω, µ) to (X ′,Ω′) is a measurable function X : X → X ′ (that

is, if S ∈ Ω′, then X−1(S) := {t ∈ X | X(t) ∈ S} ∈ Ω).

Given a real-valued random variable X, we can define a new probability measure µX on

Ω′ such that

µX(S) := µ({t ∈ X | X(t) ∈ S})

1



for all S ∈ Ω′.

Definition 1.1.4. Let X be a real-valued random variable. The measure µX described above

is called the measure associated to the random variable X or the probability distribution of

X.

Definition 1.1.5. In this setting, for a subset S of Ω′, we define the probability that X is

in S by

Prob(X ∈ S) := µX(S).

In particular, for an subset S ⊆ Ω′,

Prob(X ∈ S) =

∫
S

1 dµX(t).

Definition 1.1.6. Given a measureable function f on (X ′,Ω′), we defined the expected

value of f(X) to be the quantity

E(f(X)) =

∫
X ′
f(t) dµX(t).

The map E taking a measurable function f on (X ′,Ω′) to its expected value is called the

expectation map.

For the most part, we will restrict our attention to random variables X such that X =

X ′ = R and Ω and Ω′ are the Borel subset of R. We will further assume that µX is compactly

supported (that is, there exists a, b ∈ R such that µX((−∞, a)) = 0 and µX((b,∞)) = 0).

This restriction implies the polynomial functions are µX-integrable and thus allow us to

make the following definition.

Definition 1.1.7. Let X be a real-valued random variable on R with associated measure

µX . For n ∈ N ∪ {0}, the nth moment of X, denoted mX
n , is defined by

mX
n :=

∫
R
tn dµX(t).

2



Notice, by definitions, that mX
0 = 1 and E(X) = mX

1 (which is also called the expectation

of X). Another important quantity in classical probability theory is the following.

Definition 1.1.8. The variance of X, denoted Var(X), is defined to be

Var(X) := mX
2 −

(
mX

1

)2
.

The main reason we restricted our attention to random variables X with compact support

is that the moment sequence
(
mX
n

)
n≥1

completely characterizes X. Indeed, since µX is

compactly supported, the polynomial functions are dense in the space of continuous functions

on the support of µX and completely characterize µX as a measure on R (that is, if Y is

another random variable such that
(
mX
n

)
n≥1

=
(
mY
n

)
n≥1

then µX = µY ). Thus, instead of

considering the measure associated with a random variable, we can consider the sequence of

real numbers
(
mX
n

)
n≥1

.

One important way of viewing the moments is via the following definition.

Definition 1.1.9. Let µ be a compactly supported probability measure on R. The Cauchy

transform of µ, denoted Gµ, is the function defined on {z ∈ C | Im(z) > 0} by

Gµ(z) :=

∫
R

1

z − t
dµ(t).

Remarks 1.1.10. Given a real-valued random variable X, notice that

GµX (z) =
∫
R

1
z−t dµX(t)

=
∫
R

1
z

1
1− t

z

dµX(t)

=
∫
R
∑

n≥0
tn

zn+1 dµX(t)

= 1
z

+
∑

n≥1
mXn
zn+1 .

Note that the above computation only makes sense analytically if we have
∣∣ t
z

∣∣ < 1 for all

t in the support of µX . Alternatively we can define GµX as a formal power series via the

3



expression

GµX (z) =
1

z
+
∑
n≥1

mX
n

zn+1
.

In particular, we see that
1

z
GµX

(
1

z

)
= 1 +

∑
n≥1

mX
n z

n

in which case GµX completely encapsulates all of the moments and thus the random variable

X.

The main focus of classical probability theory is the study of groups of random variables

with a specific property.

Definition 1.1.11. Let X := (X1, . . . , Xd) : R→ Rd be a random variable defined by

X(t) = (X1(t), . . . , Xd(t))

for all t ∈ R where X1, . . . , Xd : R → R are random variables (in this setting, µX is called

the joint distribution of X1, . . . , Xd). We say that X1, . . . , Xd are independent if

Prob(X ∈ [a1, b1]× [a2, b2]× · · · × [ad, bd]) =
d∏
j=1

Prob(Xj ∈ [aj, bj])

for every [a1, b1], [a2, b2], . . . , [ad, bd] ⊆ R.

Remarks 1.1.12. It is elementary to see that if X1, . . . , Xd are independent random vari-

ables, then the joint distribution satisfies

µX = µX1 × µX2 × · · · × µXd

(that is, µX must be the product measure of µX1 , . . . , µXd).

As polynomials in one variable determined the probability distribution of a single random

variable, polynomials in multiple variables determine the probability distribution of a random

variable X : R→ Rd

4



Definition 1.1.13. Let X := (X1, . . . , Xd) : R→ Rd be a random variable defined by

X(t) = (X1(t), . . . , Xd(t))

for all t ∈ R where X1, . . . , Xd : R→ R are random variables. For a polynomial in d-variables

p(x1, . . . , xd), we defined the expected value of p(X1, . . . , Xd) to be

E(p(X1, . . . , Xn)) =

∫
Rd
p(t1, . . . , td) dµX(t1, . . . , td).

For `1, . . . , `d ∈ N ∪ {0}, the (`1, `2, . . . , `d)-moment of X1, . . . , Xd is defined to be

mX1,...,Xd
`1,...,`d

:= E(X`1
1 X

`2
2 · · ·X

`d
d ).

Remarks 1.1.14. In the case that X1, . . . , Xd are independent, we see that

mX1,...,Xd
`1,...,`d

=
∫
Rd t

`1
1 · · · t

`d
d dµX(t1, . . . , td)

=
∫
Rd t

`1
1 · · · t

`d
d dµX1(t1)dµ2(t2) · · · dµd(td)

=
∏d

j=1 m
Xj
`j
.

Thus, in the case of independent random variables, the moments of the joint probability

distribution are easily obtained from the moments of the individual distributions.

One distribution that plays an essential role in classical probability theory and indepen-

dent random variables is the following.

Definition 1.1.15. The normalized Gaussian distribution is the measure µGaus on R defined

by

µGaus([a, b]) =
1

2π

∫ b

a

e−
x2

2 dx

for all [a, b] ⊆ R.

The following theorem is one of the central theorems in classical probability theory.

5



Theorem 1.1.16 (Central Limit Theorem). Let X1, X2, . . . be independent, identically dis-

tributed random variables (that is, Xj are all independent and have the same probability

distributions) with E(Xj) = 0 and Var(Xj) = 1 for all j ∈ N. Then, for all [a, b] ⊆ R,

lim
n→∞

Prob

(
1√
n

n∑
j=1

Xj ∈ [a, b]

)
= µGaus([a, b]).

One idea related to the above theory is the question, “If X1 and X2 are independent

random variables, what is the distribution of X1 + X2?” Examining the above, we see for

each n ∈ N that

E((X1 +X2)n) =

∫
R

∫
R
(t1 + t2)n dµX1(t1)dµX2(t2) =

∫
R
tn d(µX1 ∗ µX2)

where µX1 ∗ µX2 is the convolution measure of µX1 and µX2 (which may be uniquely defined

via the above formula).

1.2 C∗-Algebras

The notion of a C∗-algebra is an essential concept in the study of Operator Theory and

Operator Algebras. For a complete introduction to C∗-algebras, we refer the reader to [21].

Before discussing C∗-algebras, we begin with some basic definitions.

Definition 1.2.1. Let V be a vector space over the complex numbers. A norm on V is a

function ‖ · ‖ : V → [0,∞) such that

1. ‖v‖ = 0 if and only if v = ~0,

2. ‖λv‖ = |λ| ‖v‖ whenever v ∈ V and λ ∈ C,

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

A normed linear space is a pair (V, ‖ · ‖) where V is a vector space over the complex numbers

and ‖ · ‖ is a norm on V .

6



Remarks 1.2.2. Even though a normed linear space is a pair (V, ‖ · ‖), we will often say

that V is a normed linear space meaning that V comes equipped with a fixed canonical

norm.

Definition 1.2.3. A normed linear space X is said to be complete if whenever (xn)n≥1 is a

sequence of elements in X with the property that for every ε > 0 there exists an N ∈ N such

that

‖xn − xm‖ < ε

for all n,m ≥ N (such a sequence is said to be Cauchy), then there exists an x ∈ X such

that for every ε > 0 there exists an N ∈ N such that

‖x− xn‖ < ε

for all n ≥ N (in which case we write x = limn→∞ xn). That is, a norm linear space is

complete if every Cauchy sequence converges. A complete normed linear space is called a

Banach space.

Definition 1.2.4. A Banach algebra is a Banach space A equipped with an algebra structure

over the complex numbers such that

‖AB‖ ≤ ‖A‖ ‖B‖

for all A,B ∈ A. That is, a Banach algebra is a normed algebra over the complex numbers

that is complete and whose norm is submultiplicative.

There is significant theory dedicated to Banach algebras that applies to C∗-algebras.

For the purposes of this dissertation, we will focus only on said theory in the context of

C∗-algebras. In order to define a C∗-algebra, we will need the following.

Definition 1.2.5. Let A be an algebra over the complex numbers. An involution on A is a

function ∗ : A → A such that

7



1. (A∗)∗ = A for all A ∈ A (i.e. ∗ is idempotent),

2. (A+B)∗ = A∗ +B∗ for all A,B ∈ A (i.e. ∗ is additive),

3. (λA)∗ = λA∗ for all A ∈ A and λ ∈ C (i.e. combining with (2), ∗ is conjugate linear),

and

4. (AB)∗ = B∗A∗ for all A,B ∈ A (i.e. ∗ is antimultiplicative).

Definition 1.2.6. A C∗-algebra is a Banach algebra A together with an involution ∗ : A→ A

such that

‖A∗A‖ = ‖A‖2

for all A ∈ A. The above equation is called the C∗-equation or the C∗-identity.

Remarks 1.2.7. Given a ∗-algebra, there is at most one C∗-norm on said algebra.

Example 1.2.8. The complex numbers C is a C∗-algebra when equipped with its usual

algebra structure, the absolute value as its norm, and complex conjugation as its involution.

Example 1.2.9. Let X be a compact Hausdorff space. The continuous functions on X,

denoted C(X), is a C∗-algebra when equipped with the algebra structure given by pointwise

addition and multiplication, with

‖f‖∞ := sup{|f(x)| | x ∈ X}

as its norm, and pointwise complex conjugation as its involution.

Example 1.2.10. LetMn(C) denote the set of n by n matrices with entries in the complex

numbers. Then Mn(C) is a C∗-algebra when equipped with matrix addition and matrix

multiplication, with the operator norm (see Remarks 1.2.16) as its norm, and the conjugate

transpose as its involution.

To fully understand the above example and construct more examples, we consider the

following.

8



Definition 1.2.11. Let V be a vector space over the complex numbers. An inner product

on V is a function 〈 ·, · 〉V : V × V → C such that

1. 〈v, v〉V ≥ 0 for all v ∈ V ,

2. for v ∈ V , 〈v, v〉V = 0 implies v = ~0,

3. 〈λv + w, x〉V = λ〈v, x〉V + 〈w, x〉V for all v, w, x ∈ V and λ ∈ C, and

4. 〈x, λv + w〉V = λ〈x, v〉V + 〈x,w〉V for all v, w, x ∈ V and λ ∈ C.

An inner product space is a pair (V, 〈 ·, · 〉V ) where V is a vector space over the complex

numbers and 〈 ·, · 〉V is an inner product on V .

Remarks 1.2.12. Even though an inner product space is a pair (V, 〈 ·, · 〉V ), we will often

say that V is an inner product space meaning that V comes equipped with a fixed canonical

inner product.

Remarks 1.2.13. If V is an inner product space, it is easy to see that the function ‖ · ‖ :

V → [0,∞) defined by

‖v‖ =
√
〈v, v〉

is a norm on V .

Definition 1.2.14. A Hilbert space H is an inner product space that is complete with

respect to the norm defined in Remarks 1.2.13.

Definition 1.2.15. Let H be a Hilbert space. A linear map T : H → H is said to be

bounded if

sup{‖Tξ‖ | ξ ∈ H, ‖ξ‖ ≤ 1} <∞.

We will denote the set of bounded linear maps on a Hilbert space H by B(H).

Remarks 1.2.16. Given a Hilbert space H, there is a canonical norm on B(H), known as

the operator norm, defined by

‖T‖ := sup{‖Tξ‖ | ξ ∈ H, ‖ξ‖ ≤ 1}

9



for all T ∈ B(H). It is possible to show that B(H) is complete with respect to the operator

norm and thus a Banach space. Moreover, it is not difficult to show that if T, S ∈ B(H)

then

‖TS‖ ≤ ‖T‖ ‖S‖

and thus B(H) is a Banach algebra.

Given an element T ∈ B(H), it is possible to find a (unique) element T ∗ ∈ B(H), called

the adjoint of T , such that

〈T ∗ξ, η〉H = 〈ξ, Tη〉H

for all ξ, η ∈ H. The map that takes an operator T to the adjoint of T is an involution on

B(H). In fact, B(H) is then a C∗-algebra when equipped with its Banach algebra structure

and the adjoint as its involution.

Remarks 1.2.17. It is not difficult to see that if A is a norm closed ∗-subalgebra of B(H),

then A is a C∗-algebra. In fact, every C∗-algebra can be represented this way (see Theorem

1.2.34).

Example 1.2.18. Let H be a Hilbert space and let K denote the set of compact operators

on H (that is, K is the closure of the finite rank operators on H). The Calkin algebra,

denoted Q(H), is the quotient algebra B(H)/K. The Calkin algebra can be shown to be a

C∗-algebra.

There has been significant study of elements of a C∗-algebra. To discuss some of this

theory, we consider the following definitions.

Definition 1.2.19. Let A be a unital C∗-algebra (that is, there exists an element IA ∈ A

known as the identity of A such that AIA = A = IAA for all A ∈ A). An element A ∈ A is

said to be invertible if there exists an element B ∈ A such that AB = BA = IA.

Remarks 1.2.20. Given a unital C∗-algebra A, we will denote the set of invertible elements

by A−1. It is not difficult to see that A−1 contains IA and is a group under multiplication.

10



Moreover, it is possible to show that A−1 is an open subset of A. This implies the connected

component of the identity of A−1, denoted A−1
0 , is an open subgroup of A−1 containing IA.

Remarks 1.2.21. Given a non-unital C∗-algebra A, there is a canonical way to construct a

C∗-algebra Ã, called the unitization of A, such that A is a maximal ideal in Ã.

Definition 1.2.22. Let A be a unital C∗-algebra and let A ∈ A. The spectrum of A, denoted

σ(A), is the set

σ(A) := {λ ∈ C | λIA − A /∈ A−1}.

For a non-unital C∗-algebra A and an element A ∈ A, we define the spectrum of A, denoted

σ(A), to be the spectrum of A when we view A as an element of the unitization Ã of A.

Remarks 1.2.23. For an element A of a C∗-algebra A, σ(A) is always a compact subset of

C. Moreover, given two C∗-algebras A and B with A ⊆ B, if A ∈ A ⊆ B then the spectrum

of A viewed as an element of A is the same as the spectrum of A viewed as an element of B.

Remarks 1.2.24. Let q : B(H) → Q(H) be the canonical quotient map from B(H) onto

the Calkin algebra. For an operator T ∈ B(H), the essential spectrum of T , denoted σe(T ),

is σe(T ) := σ(q(T )).

With the above definitions in hand, we can now discuss various types of operators of

C∗-algebras.

Definition 1.2.25. Let A be a C∗-algebra. An element T ∈ A is said to be:

1. normal if T ∗T = TT ∗.

2. self-adjoint if T ∗ = T .

3. positive if T is normal and σ(T ) ⊆ [0,∞).

4. a projection if T 2 = T ∗ = T .

5. a unitary if A is unital and T ∗T = TT ∗ = IA.
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The set of normal elements of A will be denoted Nor(A), the set of self-adjoint elements of

A will be denote Asa, the set of positive elements of A will be denoted A+, and the set of

unitary elements of A will be denoted U(A). We will write A ≥ 0 whenever A ∈ A+.

Remarks 1.2.26. It is not difficulty to show that A+ ⊆ Asa ⊆ Nor(A), that every projection

in A is positive, and U(A) ⊆ Nor(A).

It turns out the structure theory of normal operators inside a C∗-algebra is very nice. To

understand such structure, consider the following.

Definition 1.2.27. Let A and B be C∗-algebras. An algebra homomorphism π : A→ B is

said to be a ∗-homomorphism if π(A∗) = π(A)∗ for all A ∈ A. In the case that B = B(H),

a ∗-homomorphism is also called a representation.

Remarks 1.2.28. It is possible to show that any ∗-homomorphism between C∗-algebras is

a contractive map.

Definition 1.2.29. Two C∗-algebras A and B are said to be isomorphic if there exists a

bijective ∗-homomorphism π : A→ B.

The structure theory of normal operators in C∗-algebras is now apparent.

Theorem 1.2.30 (The Continuous Functional Calculus for Normal Operators). Let A be a

C∗-algebra and let N ∈ A be a normal operator. Let C∗(N) denote the (abelian) C∗-subalgebra

of A generated by N and N∗. Then C∗(N) is isomorphic to C(σ(N)).

Remarks 1.2.31. Note that Theorem 1.2.30 implies that if N is a normal operator on a

C∗-algebra A and f is a continuous function on σ(N), then it makes sense to consider f(N).

In order to comprehend and study C∗-algebras, it is essential to understand the theory of

the representations of a C∗-algebra. The following definitions and theorems allow just that.

Definition 1.2.32. Let A be a C∗-algebra. A state on A is a linear functional ϕ : A → C

such that ‖ϕ‖ = 1 and ϕ(A) ≥ 0 whenever A ∈ A+.
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Remarks 1.2.33. If A is a unital C∗-algebra and ϕ is a state on A, then ϕ(IA) = 1.

Theorem 1.2.34 (GNS Construction). Let A be a (unital) C∗-algebra. For every state ϕ

on A there exists a (unital) representation πϕ : A → B(Hϕ) for some Hilbert space Hϕ and

a unit vector ξϕ ∈ Hϕ such that

ϕ(A) = 〈πϕ(A)ξϕ, ξϕ〉Hϕ

for all A ∈ A. The triple (Hϕ, πϕ, ξϕ) is called the GNS representation of ϕ. In particular,

given any C∗-algebra A there exists a Hilbert space H and an injective (also called faithful)

representation π : A→ B(H) for A.

In particular, Theorem 1.2.34 allows us to view any C∗-algebra as a C∗-subalgebra of

B(H) for some Hilbert space H. This allows us various constructions of new C∗-algebras.

Definition 1.2.35. Let H1 and H2 be Hilbert spaces. The tensor product of H1 and H2,

denoted H1 ⊗H2 is the Hilbert space completion of the algebraic tensor product of H1 and

H2, denoted H1 �H2, under the inner product 〈 ·, · 〉H1⊗H2 such that

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉H1⊗H2 = 〈ξ1, ξ2〉H1〈η1, η2〉H2

for all ξ1 ⊗ η1, ξ2 ⊗ η2 ∈ H1 �H2.

Remarks 1.2.36. It is possible to show that if T ∈ B(H1) and S ∈ B(H2) then there exists

a unique element T ⊗ S ∈ B(H1 ⊗H2) such that

(T ⊗ S)(ξ ⊗ η) = Tξ ⊗ Sη

for all ξ ∈ H1 and η ∈ H2. Furthermore, it is possible to show that

‖T ⊗ S‖ ≤ ‖T‖ ‖S‖
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and

(T ⊗ S)∗ = T ∗ ⊗ S∗.

Definition 1.2.37. Let A1 and A2 be C∗-algebras and, for each j ∈ {1, 2}, let πj : Aj →

B(Hj) be a faithful representation of Aj. The minimal (or spacial) tensor product of A1 and

A2, denoted A1 ⊗min A2 (or A1 ⊗σ A2) is the C∗-completion of the image of A1 � A2 under

the map

π : A1 � A2 → B(H1 ⊗H2)

defined by

π(A1 ⊗ A2) = π1(A1)⊗ π2(A2)

for all A1 ∈ A1 and A2 ∈ A2.

Remarks 1.2.38. A priori it appears that the minimal tensor product of two C∗-algebras

depends on the representations of those C∗-algebras on Hilbert spaces. It is a technically

difficult proof to show that this is not the case.

Another way to construct other C∗-algebras is the following which leads to an important

concept in the theory of C∗-algebras.

Remarks 1.2.39. Given a Hilbert space H, the set of n by n matrices with entries from

B(H), denoted Mn(B(H)), has a canonical ∗-algebra structure. However, it is possible to

show thatMn(B(H)) is isomorphic to B(H⊕n) as ∗-algebras (where, given two Hilbert spaces

H1 and H2, H1⊕H2 is the Hilbert space given by the vector space direct sum of H1 and H2

with the inner product

〈(ξ1, η1), (ξ2, η2)〉H1⊕H2 = 〈ξ1, ξ2〉H1 + 〈η1, η2〉H2

for all ξ1, ξ2 ∈ H1 and η1, η2 ∈ H2, and the direct sum of more that two Hilbert spaces is

defined recursively (where a completion must be taken in the case there are infinitely many

Hilbert spaces)). Hence Mn(B(H)) is a C∗-algebra. Furthermore, given a C∗-algebra A
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we can view A as a C∗-subalgebra of B(H) and thus we can view Mn(A) as a ∗-algebra of

Mn(B(H)). It is possible to show thatMn(A) is complete with respect to the norm induced

by Mn(B(H)) and thus a C∗-algebra.

Definition 1.2.40. Let A and B be C∗-algebras. A linear map ϕ : A → B is said to be a

completely positive map if for each n ∈ N the map ϕn :Mn(A)→Mn(B) defined by

ϕn([Ai,j]) = [ϕ(Ai,j)]

for all [Ai,j] ∈Mn(A) is such that

ϕn([Ai,j]) ≥ 0

whenever [Ai,j] ∈Mn(A) is such that [Ai,j] ≥ 0.

Example 1.2.41. It is not difficult to show that every ∗-homomorphism between C∗-algebras

is completely positive as is every state on a C∗-algebra.

For more on completely positive maps, see [51].

1.3 Purely Infinite C∗-Algebras

One important concept in C∗-algebra theory is the study of the projections of a C∗-algebra.

The main tool for comparing projections is the following.

Definition 1.3.1. Let A be a C∗-algebra and let P1, P2 ∈ A be projections. We write P1 ≤ P2

if P1P2 = P2P1 = P1. We say that P1 and P2 are Murray-von Neumann equivalent if there

exists an element V ∈ A (called a partial isometry) such that P1 = V ∗V and P2 = V V ∗.

Example 1.3.2. Two projections P1, P2 ∈ Mn(C) are Murray-von Neumann equivalent if

and only if rank(P1) = rank(P2).

Example 1.3.3. Two projections P1, P2 ∈ B(H) are Murray-von Neumann equivalent if and

only if rank(P1) = rank(P2).
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Remarks 1.3.4. It is not difficult to see that Murray-von Neumann equivalence of projec-

tions is an equivalence relation.

Some important classes of projections are as follows.

Definition 1.3.5. Let A be a C∗-algebra. A projection P ∈ A is said to be infinite if

there exists a projection P1 ∈ A such that P1 ≤ P , P1 6= P , and P and P1 are Murray-von

Neumann equivalent. A projection P ∈ A is said to be finite if P is not infinite.

Definition 1.3.6. Let A be a C∗-algebra. A projection P ∈ A is said to be properly infinite

if there exists projections P1, P2 ∈ A such that P1 + P2 ≤ P and P1, P2, and P are all

Murray-von Neumann equivalent.

Example 1.3.7. A projection P ∈ B(H) is infinite if and only if P is properly infinite if

and only if rank(P ) is infinite.

Remarks 1.3.8. If A is a unital C∗-algebra with an infinite projection, then the identity of

A is infinite. To see this, we notice that if P is an infinite projection in A, then there exists

a projection P1 ∈ A such that PP1 = P1P = P1, P1 6= P , and P and P1 are Murray-von

Neumann equivalent. It is easy to see that P1 + (IA − P ) is a projection in A that does not

equal IA yet is Murray-von Neumann equivalent to IA. Hence IA is an infinite projection.

One important class of C∗-algebras can be described as follows.

Definition 1.3.9. Let A be a C∗-algebra. A C∗-subalgebra B of A is said to be hereditary

if whenever A ∈ A and B ∈ B are positive operators such that 0 ≤ A ≤ B, then A ∈ A.

Definition 1.3.10. A C∗-algebra A is said to be simple if the only closed ideals of A are

{0} and A.

Definition 1.3.11. Let A be a unital, simple C∗-algebra. We say that A is purely infinite

if every non-zero hereditary C∗-subalgebra of A has an infinite projection.

Example 1.3.12. For an infinite dimensional Hilbert space H, the Calkin algebra Q(H)

can be shown to be a unital, simple, purely infinite C∗-algebra.
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Example 1.3.13. The universal C∗-algebra generated by two operator V1 and V2 such that

V ∗1 V1 = I = V ∗2 V2 and V1V
∗

1 + V2V
∗

2 = I is called the Cuntz algebra and is denoted O2. It is

possible to show that O2 is a unital, simple, purely infinite C∗-algebra.

Remarks 1.3.14. Notice that if A is a unital, simple, purely infinite C∗-algebra and P ∈ A

is a non-zero projection, then PAP is a hereditary C∗-subalgebra of A and thus contains an

infinite projection. Since P is the identity element of PAP , Remarks 1.3.8 implies that P is

an infinite projection in PAP and thus is an infinite projection in A. Hence every non-zero

projection in a unital, simple, purely infinite C∗-algebra is infinite.

In fact, the projection structure of unital, simple, purely infinite C∗-algebras is even

more elaborate than the above remarks describes. For proofs of the following theorems, see

[21, Chapter V].

Theorem 1.3.15. If A is a simple C∗-algebra and P is an infinite projection in A, then for

every n ∈ N there exists projections P1, . . . , Pn ∈ A such that P1, . . . , Pn, P are all Murray-

von Neumann equivalent and
∑n

j=1 Pj ≤ P . Hence every infinite projection in A is properly

infinite.

Theorem 1.3.16. Let A be a simple C∗-algebra and let P1, P2 ∈ A be projections. If P1 is

infinite then P2 is Murray-von Neumann equivalent to a subprojection of P1.

Theorem 1.3.17. Every unital, simple, purely infinite C∗-algebra A has real rank zero. That

is, the set of self-adjoint elements of A with a finite number of points in their spectrum are

dense in Asa.

Theorem 1.3.17 is nice as it allows self-adjoint operators in a unital, simple, purely infinite

C∗-algebra to be approximated by self-adjoint elements with a finite number of points in their

spectrum (which is nice as the Continuous Functional Calculus implies some interesting

results). The same concept can be discussed for normal operators.

Definition 1.3.18. Let A be a unital C∗-algebra. We say that A has the finite normal

property (property (FN)) if every normal operator in A is the limit of normal operators from
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A with finite spectrum. We say that A has the weak finite normal property (property weak

(FN)) if every normal operator N ∈ A such that λIA−N ∈ A−1
0 for all λ /∈ σ(N) is the limit

of normal operators from A with finite spectrum.

Theorem 1.3.19 ([40, Theorem 4.4]). Every unital, simple, purely infinite C∗-algebra has

property weak (FN).

Remarks 1.3.20. Given a unital C∗-algebra A, there are two abelian groups K0(A) and

K1(A) that encapsulate information about the projection structure and unitary operator

structure of A respectively. For a unital, simple, purely infinite C∗-algebra A, K0(A) and

K1(A) are very nice. For more information, see [16].

1.4 Von Neumann Algebras

The class of von Neumann algebras plays an important role in the theory of C∗-algebras due

to the additional properties held by said algebras. We begin the definitions of said algebras.

Definition 1.4.1. Let H be a Hilbert space. The weak operator topology on B(H), ab-

breviated WOT, is the topology on B(H) where a net (Tλ)λ∈Λ converges in the WOT to an

operator T ∈ B(H) if and only if

lim
Λ
〈Tλξ, η〉H = 〈Tξ, η〉H

for all ξ, η ∈ H.

Definition 1.4.2. A C∗-subalgebra M of B(H) is said to be a von Neumann algebra if M

is closed in the weak operator topology; that is, if (tλ)Λ is a net of operators from M that

converge in the weak operator topology to an operator T ∈ B(H), then T ∈M.

Example 1.4.3. It is clear that B(H) is a von Neumann algebra for every Hilbert space H.

Example 1.4.4. Let (X,µ) be a measure space. It is possible to show that L∞(X,µ), the

essentially bounded functions on (X,µ), is a von Neumann subalgebra of B(L2(X,µ)) via
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the representation

(Mfg)(x) = f(x)g(x)

for all f ∈ L∞(X,µ) and g ∈ L2(X,µ).

Example 1.4.5. Let G be a group (which we view as equipped with the discrete topology)

and let `2(G) denote the Hilbert space with {δg}g∈G as an orthonormal basis. For each

h ∈ G, define λ(h) ∈ B(H) to be the operator defined by

λ(h)δg = δhg

for all g ∈ G. The C∗-algebra generated by {λ(h) | h ∈ G} is called the reduced group

C∗-algebra of G and is denoted C∗red(G). The weak operator topology closure of C∗red(G) is

then a von Neumann algebra called the group von Neumann algebra of G and is denoted

L(G).

Example 1.4.6. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras. The tensor

product of M and N, denoted M⊗N, is the von Neumann subalgebra of B(H⊗K) obtained

by taking the weak operator topology closure of M⊗min N.

One important class of von Neumann algebras are described below.

Definition 1.4.7. Let M be a von Neumann subalgebra of B(H). The commutant of M in

B(H), denoted M′ is the set

M′ := {T ∈ B(H) | TA = AT for all A ∈M}.

Definition 1.4.8. A von Neumann subalgebra M of B(H) is said to be a factor if M∩M′ =

CIH.

Remarks 1.4.9. Factors are an important class of von Neumann algebras as every von

Neumann algebra can be written as a direct integral of factors. For a more detailed exposition

on this, see [35].
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It turns out that von Neumann algebras have a plethora of projection operators and the

structure of said projections aids in classifying von Neumann algebras. In particular, there

are three main types of von Neumann algebras cleverly called type I, type II, and type III

von Neumann algebras. Type I von Neumann algebras can be further subdivided type In

von Neumann algebras (where n is a cardinal number) with a type In von Neumann algebra

being called finite if n is a natural number. Type II von Neumann algebras can be further

subdivided into type II1 von Neumann algebras (also called finite type II von Neumann

algebras) and type II∞ von Neumann algebras.

It is possible to show that every von Neumann algebra is the direct sum of type In, type

II1, type II∞, and type III von Neumann algebras. Furthermore, each von Neumann algebra

of a fixed type is the direct integral of factors of the same type.

Finite von Neumann algebras (which correspond to the von Neumann algebras described

above where the identity projection is finite) are particular interesting because of the follow-

ing objects.

Definition 1.4.10. Let A be a C∗-algebra. A state τ on A is said to be tracial if

τ(AB) = τ(BA)

for all A,B ∈ A.

Example 1.4.11. Let G be a discrete group. Using the notation of Example 1.4.5, we define

τG : L(G)→ C by

τG(T ) = 〈Tδe, δe〉`2(G)

for all T ∈ L(G). It is not difficult to verify that τG is a tracial state on L(G) (in fact, τG is

faithful).

Remarks 1.4.12. It is possible to show that every finite von Neumann algebra (that is,

one that is a sum of finite type I and finite type II von Neumann algebras) has a faithful

tracial state τ (that is, the GNS representation of τ is injective). Finite type I von Neumann

20



algebras look like matrices of continuous functions whereas type II1 von Neumann algebras

are more mysterious. In particular, type II1 factors behave like continuous analogues of

matrix algebras and many experts believe type II1 factors are the correct setting to study

linear algebra.

Remarks 1.4.13. The projection structure of factors is very nice. Every type In factor is

isomorphic to Mn(C) where we understand the projection structure. Every type I∞ factor

is isomorphic to B(H) where we also understand the projection structure. If M is a type

III factor, then every non-zero projection in M is properly infinite and any two non-zero

projections are Murray-von Neumann equivalent. If M is a type II1 factor, then there is

a unique faithful tracial state τ on M and two projections P1, P2 ∈ M are Murray-von

Neumann equivalent if and only if τ(P1) = τ(P2). If M is a type II∞ factor, there is a type

II1 factor N such that M = N⊗B(H) for some infinite dimensional Hilbert space H and the

projection structure of M can be induced from this isomorphism.

1.5 Free Probability

In [77], Voiculescu introduce the notion of free probability with the goal of solving the

following open question.

Question 1.5.1. For each n ∈ N, let Fn be the free group on n generators. For n,m ∈ N\{1}

does L(Fn) ' L(Fm) imply n = m?

In doing so, Voiculescu created a non-commutative probability theory now known as free

probability. The following serves as motivation for how to take classical probability theory

and derive a non-commutative probability theory.

Remarks 1.5.2. Let X1, . . . , Xd be independent real-valued random variables on R with

compact support. Then for each j ∈ {1, . . . , d} it is then possible to view each Xj as an

element of B(L2(µXj)) by the formula

(Xj(f))(t) := tf(t)
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for all t ∈ R and f ∈ L2(µXj). If ξj ∈ L2(µXj) is the constant function one (that is ξj(t) = 1

for all t ∈ R), we easily see that

〈Xn
j ξj, ξj〉L2(µXj ) =

∫
R
tn dµj(t) = E(Xn

j )

for all n ∈ N. Therefore, if we consider the unit vector

ξ0 := ξ1 ⊗ · · · ⊗ ξd ∈ L2(µX1)⊗ · · · ⊗ L2(µXd)

and the operators

T1, . . . , Td ∈ B(L2(µX1))⊗ · · · ⊗ B(L2(µXd))

defined by

Tj = IL2(µX1
) ⊗ · · · ⊗ IL2(µXj−1

) ⊗Xj ⊗ IL2(µXj+1)
⊗ · · · ⊗ IL2(µXd )

(where Xj appears as the jth element in the tensor) for all j ∈ {1, . . . , d}, then it is easy to

see for each `1, . . . , `d ∈ N ∪ {0} that

〈(
T `11 · · ·T

`d
d

)
ξ0, ξ0

〉
L2(µX1

)⊗···⊗L2(µXd )
= mX1,...,Xd

`1,...,`d
.

Thus the operators T1, . . . , Td completely describe the joint distribution of X1, . . . , Xd

Note that our operators are in

B(L2(µX1))⊗ · · · ⊗ B(L2(µXd)) ⊆ B(L2(µX1)⊗ · · · ⊗ L2(µXd)) = B(L2(µ))

where µ = µX1×· · ·×µXd . Thus, saying that X1, . . . , Xd are independent random variables is

equivalent to saying that when we view X1, . . . , Xd as operators on a Hilbert space with the

correct joint distribution, the Hilbert space decomposes as a tensor product of smaller Hilbert

spaces where X1, . . . , Xd act on different tensor products corresponding to their individual
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moments.

Notice that the operators T1, . . . , Td in the above remarks commute (that is, TjTk = TkTj

for all j, k ∈ {1, . . . , d}). Thus the notion of independence in classical probability theory can

be viewed as a commutativity property. As, in algebra, tensor products correspond to com-

mutativity and free products correspond to non-commutativity, we desire a way to represent

our operators as free products of operators. This leads us to the following definitions.

Definition 1.5.3. For j ∈ {1, . . . , d}, let Hj be a Hilbert space, let ξj ∈ Hj be a unit vector,

and let H0
j := Hj 	 Cξj. The free product of H1, . . . ,Hd with respect to the unit vectors

ξ1, . . . , ξd is the Hilbert space

∗dj=1(Hj, ξj) := Cξ0 ⊕


⊕

n ≥ 1, {jk}nk=1 ⊆ {1, . . . , d},

jk 6= jk+1 for k ∈ {1, . . . , n− 1}

H0
j1
⊗H0

j2
⊗ · · · ⊗ H0

jn


.

(the unit vector ξ0 is called the distinguished unit vector). In the case d = 2, we will write

(H1, ξ1) ∗ (H2, ξ2) instead of ∗2
j=1(Hj, ξj).

Remarks 1.5.4. For ∗dj=1(Hj, ξj), the distinguished vector ξ0 can be viewed as an amalga-

mation of all of the ξj’s at once.

Next we desire to determine how operators should act on ∗dj=1(Hj, ξj).

Construction 1.5.5. For j ∈ {1, . . . , d} let Aj be a unital algebra, let πj : Aj → B(Hj)

be a faithful, unital representation, and let ξj ∈ Hj be a unit vector (often one can take

Aj ⊆ B(Hj) and when Aj are ∗-algebras, we take πj to be ∗-representations). There is a

canonical action of each Aj on ∗dj=1(Hj, ξj). To define this action let H(j) be the smallest

Hilbert subspace of ∗dj=1(Hj, ξj) containing the distinguished vector along with all direct

summands H0
j1
⊗ · · · ⊗ H0

jn of arbitrary length with j1 = j. Then there exists a canonical
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isomorphism Uj : Hj ⊗H(j)→ ∗dj=1(Hj, ξj) defined by

Uj :



Cξj ⊗ Cξ0

H0
j ⊗ Cξ0

Cξj ⊗H0
j1
⊗H0

j2
⊗ · · · ⊗ H0

jn

H0
j ⊗H0

j1
⊗H0

j2
⊗ · · · ⊗ H0

jn

'→

Cξ0

H0
j

H0
j1
⊗H0

j2
⊗ · · · ⊗ H0

jn

H0
j ⊗H0

j1
⊗H0

j2
⊗ · · · ⊗ H0

jn

where Uj is the canonical isomorphism in each of the four parts listed. We define the action

of Aj on ∗dj=1(Hj, ξj) by Aζ := U(πj(A)⊗ Id)U∗ζ for all A ∈ Aj and for all ζ ∈ ∗dj=1(Hj, ξj).

Definition 1.5.6. With the above notation and construction, the algebra generated by

A1, . . . ,Ad on B
(
∗dj=1(Hj, ξj)

)
is called the reduced free product of A1, . . . ,Ad with respect

to π1, . . . , πd and is denoted ∗dj=1(Aj, πj, ξj). In the case A1, . . . ,Ad are C∗-algebras, we

will also use ∗dj=1(Aj, πj, ξj) to denote the C∗-subalgebra of B
(
∗dj=1(Hj, ξj)

)
generated by

A1, . . . ,Ad.

Remarks 1.5.7. Given real-valued random variables X1, . . . , Xd on R, if for each j ∈

{1, . . . , d} we view Xj ∈ B(L2(µXj)), let Aj be the subalgebra of B(L2(µXj)) generated

by Xj, and consider ∗dj=1(Aj, πj, ξj) where πj is the inclusion representation of ξj is the

constant function one in L2(µXj) (see Remarks 1.5.2), it is possible to see that elements of

∗dj=1(Aj, πj, ξj) satisfy an interesting relation with respect to the state

ϕ(T ) := 〈Tξ0, ξ0〉∗dj=1(L2(µXj ),ξj)
.

Indeed this leads us to the following definitions.

Definition 1.5.8. A non-commutative probability spaces is a pair (A, ϕ) where A is a unital

algebra and ϕ : A → C is a linear functional such that ϕ(IA) = 1.

Remarks 1.5.9. In free probability, the linear function ϕ plays the role of the expectation

map E does in classical probability.
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Definition 1.5.10. Let (A, ϕ) be a non-commutative probability space. Unital subalgebras

A1, . . . ,Ad of A are said to be free with respect to ϕ if

ϕ(A1A2 · · ·An) = 0

whenever n ∈ N, j1, . . . , jn ∈ {1, . . . , d} are such that jk 6= jk+1 for all k ∈ {1, . . . , n − 1},

and Ak ∈ Ajk for all k ∈ {1, . . . , n} are such that ϕ(Ak) = 0.

Similarly, operators A1, . . . , Ad ∈ A are said to be free with respect to ϕ if the algebras

generated by each individual Ak are free with respect to ϕ.

Example 1.5.11. Let X1, . . . , Xd be real-valued random variables on R. Consider the non-

commutative probability space
(
∗dj=1(Aj, πj, ξj), ϕ

)
as in Remarks 1.5.7. Then X1, . . . , Xd

are free with respect to ϕ.

Remarks 1.5.12. The advantage of considering a non-commutative probability space (A, ϕ)

instead of a probability space (X ,Ω, µ) is the fact that elements of A need not commute

which leads to a more interesting structure. Indeed, due to the non-commutativity of (A, ϕ),

the correct analogue for the moments is more complicated.

Definition 1.5.13. Let A1, . . . , Ad be elements of a non-commutative probability space

(A, ϕ). For each n ∈ N and j1, . . . , jn ∈ {1, . . . , d}, the (j1, . . . , jn)-moment of A1, . . . , Ad is

mA1,...,Ad
(j1,...,jn) = ϕ(Aj1 · · ·Ajn).

Remarks 1.5.14. In general, due to the non-commutative structures, given freely indepen-

dent elements A1, . . . , Ad ∈ (A, ϕ) the (j1, . . . , jn)-moment of A1, . . . , Ad does not simply

depend on how many jk’s are equal to ` for each ` ∈ {1, . . . , d} as does for independent

random variables (see Remarks 1.1.14). Indeed, if X1 and X2 are freely independent with

respect to ϕ, it need not be the case that ϕ(X1X2X1X2) and ϕ(X1X1X2X2) agree. For
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example, suppose ϕ(X1) = 0 = ϕ(X2) and ϕ(X2
1 ) = 1 = ϕ(X2

2 ). Then

ϕ(X1X2X1X2) = 0

by the freeness of X1 and X2. However, again by the freeness of X1 and X2,

0 = ϕ ((X2
1 − ϕ (X2

1 )) (X2
2 − ϕ (X2

2 )))

= ϕ(X1X1X2X2)− 2ϕ(X2
1 )ϕ(X2

2 ) + ϕ(X2
1 )ϕ(X2

2 )

so ϕ(X1X1X2X2) = ϕ(X2
1 )ϕ(X2

2 ) = 1 6= ϕ(X1X2X1X2).

Remarks 1.5.15. Given random variables X1, . . . , Xd that are freely independent with

respect to ϕ, the trick of considering Xn
j − ϕ(Xn

j ) along with a recursive argument may be

used to show that the joint moments of X1, . . . , Xd depend only on the individual moments

of each Xj.

As the Gaussian distribution distribution (see Definition 1.1.15) plays a central role in

classical probability theory, the following distribution lies at the centre of free probability.

Definition 1.5.16. The normalized semicircular distribution centred at zero is the measure

µsemi on [−2, 2] defined by

µsemi([a, b]) =
1

2π

∫ b

a

√
4− x2 dx

for all [a, b] ⊆ [−2, 2].

Remarks 1.5.17. It is a simple computation to show that the nth-moment of µsemi is zero

if n is odd and otherwise, if n = 2k, the 2kth-moment of µsemi is the kth Catalan number

ck := 1
k+1

(
2k
k

)
.

The following theorem is then the free analogue of Theorem 1.1.16.

Theorem 1.5.18 (Free Central Limit Theorem). Let X1, X2, . . . be freely independent,

identically distributed random variables in a non-commutative probability space (A, ϕ) with
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ϕ(Xj) = 0 and ϕ(X2
j ) = 1 for all j ∈ N. Then, for all m ∈ N,

lim
n→∞

ϕ

((
1√
n

n∑
j=1

Xj

)m)
=

∫ 2

−2

tm dµsemi(t).

Remarks 1.5.19. As in classical probability theory, it is possible to determine the distribu-

tion of X1 +X2 when X1 and X2 are freely independent random variables. Indeed this was

first done in [78] where the answer is the free additive convolution of µX1 and µX2 , denoted

µX1 � µX2 .

1.6 Exact C∗-Algebras

The notion of an exact C∗-algebra has played a fundamental role in the theory of C∗-algebras

and has been well-studied by Kirchberg, Wassermann, and others (see [37] and [83]). Exact

C∗-algebras are generally well-behaved and many of the common and interesting examples

of C∗-algebras are exact. In addition, the property that a C∗-algebra is exact is preserved

under many common operations such as taking subalgebras, taking direct sums, taking

minimal tensor products, and taking reduced free products (for example, see [14] and the

references therein). Over the years many equivalent definitions of an exact C∗-algebra have

been developed and the most common are listed in the following theorem.

Theorem 1.6.1 (Due to Kirchberg, Wassermann, and others; see [14] for the proof of the

first three equivalences). Let B be a C∗-algebra. Then the following are equivalent:

1. For every Hilbert space H and faithful representation σ : B → B(H) there exist nets

(ϕλ : B→Mnλ(C))Λ and (ψλ :Mnλ(C)→ B(H))Λ of contractive, completely positive

maps such that

lim
Λ
‖σ(B)− ψλ(ϕλ(B))‖ = 0

for all B ∈ B.
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2. For every exact sequence of C∗-algebras 0→ J
i→ A

q→ (A/J)→ 0 the sequence

0→ J⊗min B
i⊗IdB−→ A⊗min B

q⊗IdB−→ (A/J)⊗min B→ 0

is exact.

3. For any sequence (An)n≥1 of unital C∗-algebras the ∗-homomorphism

(∏
n≥1 An⊕
n≥1 An

)
�B→

(∏
n≥1 An

)
⊗min B(⊕

n≥1 An

)
⊗min B

defined by (
(An)n≥1 +

⊕
n≥1

An

)
⊗B 7→ (An)n≥1 ⊗B +

(⊕
n≥1

An

)
⊗min B

is continuous with respect to the minimal tensor norm on
(∏

n≥1 An⊕
n≥1 An

)
�B.

4. If An and A are unital C∗-algebras, k ∈ N, {Ai}ki=1 ⊆ A, and {Ai,n}ki=1 ⊆ An are such

that ‖p(A1, . . . , Ak)‖A = lim supn→∞ ‖p(A1,n, . . . , Ak,n)‖An for every polynomial p in k

non-commuting variables and their complex conjugates, then for all B1, . . . , Bk ∈ B

∥∥∥∥∥
k∑
i=1

Ai ⊗Bi

∥∥∥∥∥
A⊗minB

= lim sup
n→∞

∥∥∥∥∥
k∑
i=1

Ai,n ⊗Bi

∥∥∥∥∥
An⊗minB

.

If one of the above conditions holds then B is said to be an exact C∗-algebra.

The proof of the equivalence of the third and fourth conditions is non-standard yet simple

and thus is presented below.

Lemma 1.6.2. For any C∗-algebra B and any sequence of unital C∗-algebras (An)n≥1 there

exists an injective ∗-homomorphism

Φ :

(∏
n≥1 An

)
⊗min B(⊕

n≥1 An

)
⊗min B

→
∏

n≥1(An ⊗min B)⊕
n≥1(An ⊗min B)
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defined by

Φ

(
(An)n≥1 ⊗B +

(⊕
n≥1

An

)
⊗min B

)
:= (An ⊗B)n≥1 +

⊕
n≥1

(An ⊗min B)

for all (An)n≥1 ∈
∏

n≥1 An and B ∈ B.

Proof. Consider the map π0 :
(∏

n≥1 An

)
�B→

∏
n≥1(An ⊗min B) defined by

π0((An)n≥1 ⊗B) := (An ⊗B)n≥1.

It is easy to verify that π0 is well-defined, continuous, and isometric with respect to the

minimal tensor products and thus induces a injective ∗-homomorphism

π :

(∏
n≥1

An

)
⊗min B→

∏
n≥1

(An ⊗min B).

Clearly

π

((⊕
n≥1

An

)
⊗min B

)
⊆
⊕
n≥1

(An ⊗min B).

Therefore the ∗-homomorphism

Φ :

(∏
n≥1 An

)
⊗min B(⊕

n≥1 An

)
⊗min B

→
∏

n≥1(An ⊗min B)⊕
n≥1(An ⊗min B)

as described in the statement of the lemma exists.

To see Φ is injective, suppose T ∈
(∏

n≥1 An

)
⊗min B and

π(T ) ∈
⊕
n≥1

(An ⊗min B).
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Let (Bλ)Λ be a C∗-bounded approximate identity for B. For each n ∈ N and λ ∈ Λ let

En,λ := (IA1 , IA2 , · · · , IAn , 0, 0, · · · )⊗Bλ ∈

(⊕
n≥1

An

)
⊗min B.

Define a partial ordering on N×Λ by (n, λ) ≤ (m,λ′) if and only if n ≤ m and λ ≤ λ′. It is

easy to verify that (En,λ)N×Λ is a C∗-bounded approximate identity for
(⊕

n≥1 An

)
⊗min B

and (π(En,λ))N×Λ is a C∗-bounded approximate identity for
⊕

n≥1(An ⊗min B). Whence

lim
N×Λ
‖π(TEn,λ − T )‖ = lim

N×Λ
‖π(T )π(En,λ)− π(T )‖ = 0.

Since π is isometric, limN×Λ ‖TEn,λ − T‖ = 0 so

T = lim
N×Λ

TEn,λ ∈

(⊕
n≥1

An

)
⊗min B.

Thus ker(π) =
(⊕

n≥1 An

)
⊗min B so Φ is injective.

Proof that the third and fourth statements of Theorem 1.6.1 are equivalent. Let

T =
k∑
i=1

Ai ⊗Bi ∈

(∏
n≥1 An⊕
n≥1 An

)
�B

be arbitrary. For all i ∈ {1, . . . , k} there exists Ai,n ∈ An such that

‖p(A1, . . . , Ak)‖A = lim sup
n→∞

‖p(A1,n, . . . , Ak,n)‖An

for every polynomials p in k non-commutating variables and their complex conjugates (that
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is, choose a lifting of each Ai). If B satisfies the fourth statement of Theorem 1.6.1 then

‖T‖ = lim supn→∞

∥∥∥∑k
i=1 Ai,n ⊗Bi

∥∥∥
=

∥∥∥∥(∑k
i=1Ai,n ⊗Bi

)
n≥1

+
⊕

n≥1 (An ⊗min B)

∥∥∥∥
=

∥∥∥∑k
i=1 (Ai,n)n≥1 ⊗Bi +

(⊕
n≥1 An

)
⊗min B

∥∥∥
where the last equality follows from Lemma 1.6.2. Thus the fourth statement of Theorem

1.6.1 implies the third statement.

For the other direction, suppose B satisfies the third statement in Theorem 1.6.1. Let

An and A be unital C∗-algebras, let k ∈ N, let A1, . . . , Ak ∈ A, and let {Ai,n}ki=1 ⊆ An be

such that

‖p(A1, . . . , Ak)‖A = lim sup
n→∞

‖p(A1,n, . . . , Ak,n)‖An

for every non-commutative polynomials p in k-variables and their complex conjugates. We

may assume that A = ∗-alg(A1, . . . , Ak) by properties of the minimal tensor product.

Fix B1, . . . , Bk ∈ B. The third equivalence in Theorem 1.6.1 implies that the canonical

inclusion (∏
n≥1 An⊕
n≥1 An

)
�B→

(∏
n≥1 An

)
⊗min B(⊕

n≥1 An

)
⊗min B

is continuous with respect to the minimal tensor product and extends to an injective inclusion

on the minimal tensor product. By the assumptions on A, A ⊆ (
∏

n≥1 An)/(
⊕

n≥1 An) via

the identification of Ai with (Ai,n)n≥1 +
⊕

n≥1 An. Thus

∥∥∥∑k
i=1Ai ⊗Bi

∥∥∥ =
∥∥∥∑k

i=1

(
(Ai,n)n≥1 +

(⊕
n≥1 An

))
⊗Bi

∥∥∥
=

∥∥∥∑k
i=1(Ai,n)n≥1 ⊗Bi +

(⊕
n≥1 An

)
⊗min B

∥∥∥
=

∥∥∥∑k
i=1(Ai,n)n≥1 ⊗Bi +

⊕
n≥1 (An ⊗min B)

∥∥∥
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(where the last equality follows from Lemma 1.6.2) so

∥∥∥∥∥
k∑
i=1

Ai ⊗Bi

∥∥∥∥∥
A⊗minB

= lim sup
n→∞

∥∥∥∥∥
k∑
i=1

Ai,n ⊗Bi

∥∥∥∥∥
An⊗minB

as desired.

1.7 Strong Atiyah Conjecture for Groups

The Strong Atiyah Conjecture for Groups was introduced via a question in [8] where Atiyah

asked whether the analytic L2-Betti numbers of certain Riemannian G-manifolds were always

rational. We will briefly outline the material pertaining to the Strong Atiyah Conjecture

related to this dissertation (for a more comprehensive treatment, see [44]).

Definition 1.7.1. Let G be a discrete group and let H be a separable Hilbert space with

an orthonormal basis {en}n≥1. For a positive operator T ∈ B(`2(G)⊗H), we define the von

Neumann trace of T to be the element of [0,∞] defined by

trL(G)(T ) :=
∑
n≥1

〈T (δe ⊗ en), δe ⊗ en〉`2(G)⊗H.

Definition 1.7.2. Let G be a discrete group, let H be a finite dimensional Hilbert space,

let PM be a projection in L(G)⊗B(H), and let M ⊆ `2(G) ⊗ H denote the range of PM.

We define the von Neumann dimension of M to be

dimL(G)(M) := trL(G)(PM) ∈ [0,∞).

Example 1.7.3. If G = {1}, then L(G) = C and trL(G) is the standard trace on `2(G)⊗H '

H for any Hilbert space H. Thus the von Neumann dimension of a closed subspace is the

complex dimension of the subspace.

Example 1.7.4. Let G = Z. Then we can view L(G) as L∞(T) acting on L2(T) as in

Remarks 1.5.2. Therefore, if X ⊆ T is a measureable subset, the characteristic function of
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X, denoted χX , is a projection in L∞(T) and thus its image defines a closed subspace of

L2(T). In this case

trL(G)(χX) = 〈χXδe, δe〉 =

∫
T
χX(x)dm(x) = m(X)

where m(X) is the Lebesgue measure of X. Thus it possible to obtain a closed subspace

with von Neumann dimension to be any number in [0, 1].

With the notion of von Neumann dimension complete, we can begin to examine the

Strong Atiyah Conjecture.

Definition 1.7.5. Let G be a discrete group and let FIN (G) denote the set of all finite

subgroups of G. We denote by 1
|FIN (G)|Z the (additive) subgroup of Q generated by the set

of rational numbers 1
n

where n = |H| for some element H ∈ FIN (G).

Conjecture 1.7.6 (Strong Atiyah Conjecture). A discrete group G satisfies the strong

Atiyah Conjecture if

dimL(G)(ker(λn(A))) ∈ 1

|FIN (G)|
Z

for any matrix A ∈Mn(CG).

Since the only finite subgroup of a free group is the trivial group, the Strong Atiyah

Conjecture for the free groups reduces to the following.

Theorem 1.7.7 (Strong Atiyah Conjecture for Free Groups). If Fm is the free group gen-

erated by m ∈ N ∪ {∞} elements, then

dimL(Fm)(ker(λn(A))) ∈ Z

for any matrix A ∈Mn(CFm).

Unfortunately, it is known that Conjecture 1.7.6 is false.
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Example 1.7.8. The lamplighter group L is the group

L :=

(⊕
n∈Z

Z2

)
o Z

where the semidirect product is taken with respect to the shift automorphism on
⊕

n∈Z Z2

sending (gn)n≥1 to (gn−1)n≥1. Let e0 ∈
⊕

n∈Z Z2 be the elements whose entries are all zero

except for the entry at zero (which then must be 1) and let S denote the generator of Z in

L. It is then easy to see that {e0, S} generates L as a group.

Let M : `2(G) → `2(G) be the operator defined by left multiplication by 1
4
(e0S + S +

(e0S)−1 + S−1). Then it is possible to show that the von Neumann dimension of the kernel

of M with respect to the group L is 1
3

yet every finite subgroup of L has cardinality of the

form 2n so 1
3
/∈ 1
|FIN (L)|Z. For references, see [44, Theorem 10.23].

However, Theorem 1.7.7 is true. For a simple proof, see [44]. Alternatively, Theorem

3.3.1 provides a more general result and thus a complicated proof that Theorem 1.7.7 is true.

1.8 Single Operator Theory on Hilbert Spaces

Single Operator Theory on Hilbert spaces is a large area of functional analysis dedicated to

determining properties and approximations of operators on Hilbert spaces. We will briefly

outline some results in Single Operator Theory.

Definition 1.8.1. Let A be a C∗-algebra. An element T ∈ A is said to be nilpotent if

there exists an n ∈ N such that T n = 0. An element T ∈ A is said to be quasinilpotent

if σ(T ) = {0}. We will denote the set of nilpotent elements of A by Nil(A) and the set of

quasinilpotent elements of A by QuasiNil(A).

It is not difficult to see that Nil(Mn(C)) = QuasiNil(Mn(C)) and both of these sets

are closed in the operator topology. However, if H is an infinite dimensional Hilbert space,

Nil(B(H)) 6= QuasiNil(B(H)) and neither set is closed in the operator topology. In [27,
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Problem 7] Halmos posed the question, “Is every quasinilpotent operator in B(H) the norm

limit of nilpotent operators?” An affirmative answer to this question was first given in [7], a

subsequent proof was given in [6], and a simpler proof was given in [3].

However Halmos realized that his question was ‘wrong’ in the sense that there are non-

quasinilpotent operators in B(H) that are in the closure of the nilpotent operators (see [28]).

This led to the question, “What is the closure of the set of nilpotent operators in B(H)?”

The answer to this question was first given in [4]:

Theorem 1.8.2 ([4], see [32, Theorem 5.1] for a proof). Let T ∈ B(H). Then T is a norm

limit of nilpotent operators from B(H) if and only if the following conditions are satisfied:

1. The spectrum of T is connected and contains zero.

2. The essential spectrum of T is connected and contains zero.

3. The Fredholm index of λIH−T is zero for all λ ∈ C such that λIH−T is semi-Fredholm.

A significant amount of work on this problem was done by Herrero (see [29], [30], and

[31]). In particular, before [4], Herrero proved the following interesting result that is a specific

case of Theorem 1.8.2.

Theorem 1.8.3 ([29, Theorem 7], also see [32, Proposition 5.6]). Let N ∈ B(H) be a normal

operator. Then the following are equivalent:

1. N is a norm limit of nilpotent operators from B(H).

2. N is a norm limit of quasinilpotent operators from B(H).

3. The spectrum of N is connected and contains zero.

Another interesting proof of Theorem 1.8.3 was given in [26]. In fact, the techniques for one

direction of the proof of Theorem 1.8.3 implies the following.

Lemma 1.8.4. Let A be a C∗-algebra and let T ∈ A be a limit of quasinilpotent operators

from A. Then the spectrum of T is connected and contains zero.
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Proof. If T ∈ A is a limit of quasinilpotent operators from A then zero must be in the spec-

trum of T since quasinilpotent operators are not invertible and the set of invertible elements

of A is an open set. Furthermore, if the spectrum of T is not connected, the spectrum of

T would be contained in the union of two disjoint open sets. By the semicontinuity of the

spectrum, this would imply that any sequence of elements from A converging to T must

eventually have spectrum contained in both open sets. As the spectrum of a quasinilpotent

operator is a singleton, a contradiction is reached.

While studying this problem in B(H), a solution to the same question for the Calkin

algebra was developed.

Theorem 1.8.5 ([32, Theorem 5.34]). Let B(H) be the bounded linear operators on a com-

plex, separable Hilbert space H, let A be the Calkin algebra, let q : B(H)→ A be the canonical

quotient map, and let T ∈ B(H). Then q(T ) is a norm limit of nilpotent operators from A

if and only if the essential spectrum of T is connected and contains zero and the Fredholm

index of λIH − T is zero for all λ such that λIH − T is semi-Fredholm.

For an excellent summary of the above work, see [32] and [2].

Definition 1.8.6. Let A be a unital C∗-algebra and let A ∈ A. The unitary orbit of A,

denoted U(A), is the set

U(A) := {UAU∗ ∈ A | U ∈ U(A)}.

The similarity orbit of A, denoted S(A), is the set

S(A) :=
{
V AV −1 ∈ A | V ∈ A−1

}
.

Remarks 1.8.7. Notice if B ∈ A then B ∈ U(A) if and only if A ∈ U(B) and B ∈ S(A) if

and only if A ∈ S(B). We will denote B ∈ U(A) by A ∼u B and we will denote B ∈ S(A)

by A ∼ B. Clearly ∼u and ∼ are equivalence relations.
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Example 1.8.8. Given two normal matrices N1, N2 ∈ Mn(C), N1 ∼u N2 if and only if N1

and N2 have the same eigenvalues (counting multiplicities).

Example 1.8.9. Given two matrices A,B ∈ Mn(C), A ∼ B if and only if A and B have

the same Jordan Normal Form.

Example 1.8.10. If N1, N2 ∈ B(H) are normal operators and H is infinite dimensional, it

is possible that σ(N1) = σ(N2) yet N1 and N2 are not unitarily equivalent. The main issue

comes from the fact that it is possible that N1 has eigenvalues whereas N2 has no eigenvalues

and thus N1 and N2 cannot be unitarily equivalent. Thus, for an arbitrary C∗-algebra, we

should consider slightly different objects.

Remarks 1.8.11. We will use U(A) and S(A) to denote the norm closures in A of the

unitary and similarity orbits of A respectively. Note if B ∈ U(A) then A ∈ U(B) and

B ∈ S(A). If B ∈ U(A) we will say that A and B are approximately unitarily equivalent

in A and will write A ∼au B. Clearly ∼au is an equivalence relation. Furthermore if A is

a normal operator and A ∼au B then B is a normal operator. If B ∈ S(A) then it is not

necessary that A ∈ S(B) and B need not be normal if A is normal. However if B ∈ S(A)

and C ∈ S(B) then C ∈ S(A).

For B(H) and Q(H), the answer to the question of when two normal operators are

approximately unitarily equivalent is well known (and amazing mathematics).

Theorem 1.8.12 (Weyl-von Neumann-Berg Theorem). Let N1, N2 ∈ B(H) be normal op-

erators. Then N1 ∼au N2 if and only if

1. σ(N1) = σ(N2), and

2. if λ ∈ σ(N1) is an isolated point, dim(ker(λIH −N1)) = dim(ker(λIH −N2)).

Theorem 1.8.13 (Brown-Douglas-Fillmore Theorem; see [12]). Let N1, N2 ∈ Q(H) be nor-

mal operators. Then N1 ∼au N2 if and only if

1. σe(N1) = σe(N2), and
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2. if λ /∈ σ(N1) then λI −N1 and λI −N2 are in the same connect component of A−1.

Closed similarity orbits are more complicated than closed unitary orbits.

Remarks 1.8.14. It is an easy application of the semicontinuity of the spectrum to show

that if A,B ∈ A are such that B ∈ S(A) then σ(A) ⊆ σ(B) and σ(A) intersects every

connected component of σ(B). Thus σ(A) = σ(B) whenever A,B ∈ A are approximately

unitarily equivalent.

An almost complete classification (which excludes certain pathelogical examples) of the

closed similarity orbit of an arbitrary bounded linear operator on a complex, infinite dimen-

sional Hilbert space was announced in [5, Theorem 1] and a proof was given in [2, Theorem

9.2]. An easy modification of the proof of [5, Theorem 1] led to an almost complete classifica-

tion of the closed similarity orbit of an arbitrary operator in the Calkin algebra (announced

in [5, Theorem 2] and proved in [2, Theorem 9.3]). The following is a reduction of these

results to normal operators in the Calkin algebra.

Theorem 1.8.15 ([5, Theorem 2], see [2, Theorem 9.3] for a proof). Let N and M be normal

operators in the Calkin algebra. Then N ∈ S(M) if and only if

1. σe(M) ⊆ σe(N),

2. each component of σe(N) intersects σe(M),

3. the Fredholm index of λI −M and λI −N agree for all λ /∈ σe(N), and

4. if λ ∈ σe(N) is not isolated in σe(N), the component of λ in σe(N) contains some

non-isolated point of σe(M).
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CHAPTER 2

Free Exactness and Strong Convergence

In this chapter, which is based on the author’s work in [73], we will analyze how the second

and fourth equivalences in Theorem 1.6.1 can be adapted to the context of reduced free

products. In Section 2.1 we will modify the second equivalence in Theorem 1.6.1 by replacing

the minimal tensor product with the reduced free product. First we will demonstrate a way

to take the reduced free product of a short exact sequence of C∗-algebras against a fixed

C∗-algebra. Our main result is that every C∗-algebra is ‘freely exact’; that is, taking the

reduced free product of a short exact sequence of C∗-algebras against a fixed C∗-algebra

preserves exactness. This will be accomplished by embedding these short sequences into

short exact sequences involving Toeplitz-Pimsner algebras (Section 2.2) and restricting back

to our original sequences (Section 2.3).

In Section 2.4 we will analyze how the fourth equivalence of Theorem 1.6.1 can be adapted

to the context of reduced free products. It will be demonstrated that the conclusion of fourth

equivalence of Theorem 1.6.1 holds when the minimal tensor product is replaced with the

reduced free product for any C∗-algebra. This will be accomplished by first proving the

result for the C∗-algebra generated by a finite number of free creation operators (previously

proven in the appendix of [47] due to Shlyakhtenko), then for exact C∗-algebras, and finally

for arbitrary C∗-algebras.
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2.1 Construction of Sequence of Free Product C∗-Algebras

The purpose of this section is to replace the tensor products with reduced free products in

the second equivalence in Theorem 1.6.1 and examine the result. We begin by describing a

reduced free product analog of taking the tensor product of an exact sequence with a fixed

C∗-algebra. Most typical results for the reduced free product of C∗-algebras requires the

states used in the construction to have faithful GNS representations and thus hinders the

consideration of quotient maps. The solutions is to go straight to the construction of the

reduced free product of two C∗-algebras.

Construction 2.1.1. Let A1 and A2 be unital C∗-algebras, let J be an ideal of A1, let

π1,0 : A1/J → B(H1,0), π1,1 : A1 → B(H1,1), and π2 : A2 → B(H2) be unital representations

such that π1,0 and π2 are faithful and, if H1 := H1,0 ⊕ H1,1 and q : A1 → A1/J is the

canonical quotient map, π1 := (π1,0 ◦ q) ⊕ π1,1 : A1 → B(H1) is faithful, and let ξ1 ∈ H1,0

and ξ2 ∈ H2 be unit vectors. Consider the reduced free products (A1/J, π1,0, ξ1) ∗ (A2, π2, ξ2)

and (A1, π1, ξ1) ∗ (A2, π2, ξ2). Let 〈J〉A1∗A2 denote the closed ideal of (A1, π1, ξ1) ∗ (A2, π2, ξ2)

generated by J.

By the construction of the free product of Hilbert spaces, (H1,0, ξ1) ∗ (H2, ξ2) can be

viewed canonically as a Hilbert subspace of (H1, ξ1) ∗ (H2, ξ2). Since (A1, π1, ξ1) ∗ (A2, π2, ξ2)

acts on (H1, ξ1) ∗ (H2, ξ2) and (A1/J, π1,0, ξ1) ∗ (A2, π2, ξ2) acts on (H1,0, ξ1) ∗ (H2, ξ2), by

considering the action of (A1, π1, ξ1) ∗ (A2, π2, ξ2) on (H1,0, ξ1) ∗ (H2, ξ2) ⊆ (H1, ξ1) ∗ (H2, ξ2)

it is easily seen that (H1,0, ξ1)∗(H2, ξ2) is an invariant subspace of (A1, π1, ξ1)∗(A2, π2, ξ2) and

(A1/J, π1,0, ξ1) ∗ (A2, π2, ξ2) is the compression of (A1, π1, ξ1) ∗ (A2, π2, ξ2) to this subspace.

Thus there is a well-defined surjective ∗-homomorphism

π : (A1, π1, ξ1) ∗ (A2, π2, ξ2)→ (A1/J, π1,0, ξ1) ∗ (A2, π2, ξ2)

defined by

π(T ) := P(H1,0,ξ1)∗(H2,ξ2)T |(H1,0,ξ1)∗(H2,ξ2)
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where P(H1,0,ξ1)∗(H2,ξ2) is the orthogonal projection onto (H1,0, ξ1) ∗ (H2, ξ2).

If J ∈ J then it is easily seen that J |(H1,0,ξ1)∗(H2,ξ2) = 0. Therefore the algebraic ideal

generated by J in (A1, π1, ξ1) ∗ (A2, π2, ξ2) is in the kernel of π and thus 〈J〉A1∗A2 ⊆ ker(π).

Hence we can consider the sequence of C∗-algebras

0→ 〈J〉A1∗A2

i→ (A1, π1, ξ1) ∗ (A2, π2, ξ2)
π→ (A1/J, π1,0, ξ1) ∗ (A2, π2, ξ2)→ 0

where i is the inclusion map. Clearly i is injective, π is surjective, and 〈J〉A1∗A2 ⊆ ker(π).

Hence the sequence is exact if and only if ker(π) ⊆ 〈J〉A1∗A2 ; that is there is no element

of (A1, π1, ξ1) ∗ (A2, π2, ξ2) \ 〈J〉A1∗A2 that is zero on the copy of (H1,0, ξ1) ∗ (H2, ξ2) inside

(H1, ξ1) ∗ (H2, ξ2).

The requirements on π1,0, π1, and π2 are necessary to ensure we are considering objects

related directly to A1/J, A1, and A2. The conditions on π1,0, π1, π2, ξ1, and ξ2 are also

designed so the vectors ξ1 and ξ2 give rise to vector states on our C∗-algebras. Moreover

π1,0, π1, and π2 are assumed to be unital so the C∗-algebras under consideration are truly

reduced free products of C∗-algebras. Finally the consideration of (A1, π1, ξ1) ∗ (A2, π2, ξ2)

was necessary to ensure the ∗-homomorphism π existed.

Our main goal is to prove the following result.

Theorem 2.1.2. Let A1 and A2 be unital C∗-algebras, let J be an ideal of A1, let π1,0 :

A1/J → B(H1,0), π1,1 : A1 → B(H1,1), and π2 : A2 → B(H2) be unital representations such

that π1,0 and π2 are faithful and, if H1 := H1,0 ⊕ H1,1 and q : A1 → A1/J is the canonical

quotient map, π1 := (π1,0 ◦ q)⊕ π1,1 : A1 → B(H1) is faithful, and let ξ1 ∈ H1,0 and ξ2 ∈ H2

be unit vectors. Under these assumptions, the sequence of C∗-algebras

0→ 〈J〉A1∗A2

i→ (A1, π1, ξ1) ∗ (A2, π2, ξ2)
π→ (A1/J, π1,0, ξ1) ∗ (A2, π2, ξ2)→ 0

is exact.

The proof of Theorem 2.1.2 will be completed at the end of Section 2.3.
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2.2 An Exact Sequence of Toeplitz-Pimsner Algebras

In this section we will examine a short exact sequence of C∗-algebras involving Toeplitz-

Pimsner algebras.

Construction 2.2.1. Extending the notation of Construction 2.1.1, let H2,0 := H2 and let

π2,0 := π2 : A2 → B(H2,0). For all i ∈ {1, 2} and n ∈ N let

Li,n := Hi1 ⊗ · · · ⊗ Hin

where {ik}nk=1 ⊆ {1, 2}, i1 = i, and ik 6= ik+1 for k ∈ {1, . . . , n− 1}. Let K := K1⊕K2 where

Ki :=
⊕
n∈N

Li,n.

Let S ∈ B(K) be the isometry defined by

S(η1 ⊗ · · · ⊗ ηn) = ξj ⊗ η1 ⊗ · · · ⊗ ηn ∈ Lj,n+1

for all η1 ⊗ · · · ⊗ ηn ∈ Li,n where i 6= j and i, j ∈ {1, 2}. Notice that A1 ⊕ A2 has a faithful

representation on K given by

(A1 ⊕ A2)(η1 ⊗ · · · ⊗ ηn) = (πi(Ai)η1)⊗ η2 ⊗ · · · ⊗ ηn

for all η1 ⊗ · · · ⊗ ηn ∈ Li,n, Aj ∈ Aj, and i ∈ {1, 2}. Let C∗(A1 ⊕ A2, S) denote the

C∗-subalgebra of B(K) generated by A1 ⊕ A2 and S. The C∗-algebra C∗(A1 ⊕ A2, S) is

called a Toeplitz-Pimsner C∗-algebra (usually it is required that π1 and π2 are faithful GNS

representations).
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Similarly, by considering the Hilbert space K0 := K1,0 ⊕K2,0 where

Ki,0 :=
⊕

n ≥ 1, {ik}nk=1 ⊆ {1, 2}, i1 = i

ik 6= ik+1 for k ∈ {1, . . . , n− 1}

Hi1,0 ⊗ · · · ⊗ Hin,0

for i ∈ {1, 2} and an isometry S0 ∈ B(K0) in the same manner as S ∈ B(K), we can

construct a second Toeplitz-Pimsner algebra C∗((A1/J)⊕A2, S0). Notice K0 may be viewed

canonically as a Hilbert subspace of K since H1,0 ⊆ H1 and H2,0 = H2. By considering the

actions of A1, A2, S, and S∗, it is easy to see that K0 is a reducing subspace of C∗(A1⊕A2, S).

By restricting the compression map of K onto K0 to C∗(A1 ⊕ A2, S) we obtain a surjective

∗-homomorphism

π′ : C∗(A1 ⊕ A2, S)→ C∗((A1/J)⊕ A2, S0).

Let 〈J〉A1⊕A2 be the ideal of C∗(A1 ⊕ A2, S) generated by J ⊆ A1. Since π1,0(J) = 0 for

all J ∈ J, it is clear that 〈J〉A1⊕A2 ⊆ ker(π′).

The main result of this section is the following.

Theorem 2.2.2. With the notation as in Construction 2.2.1, the sequence

0→ 〈J〉A1⊕A2 → C∗(A1 ⊕ A2, S)
π′→ C∗((A1/J)⊕ A2, S0)→ 0

is exact.

The proof of Theorem 2.2.2 will be completed through a sequence of easily verifiable

lemmas.

Lemma 2.2.3. For all i, j ∈ {1, 2} with i 6= j and A,B ∈ Ai,

S∗AS = 〈Aξi, ξi〉HiPKj , ASB = 0, AS∗B = 0, PKjSA = SA, and AS∗PKj = AS∗
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where PKj is the orthogonal projection of K onto Kj. Thus the span of all operators of the

form

(A1S) · · · (AnS)An+1(S∗An+2) · · · (S∗An+m+1)

where n,m ≥ 0, {ik}n+m+1
k=1 ⊆ {1, 2}, ik 6= ik+1 for k ∈ {1, . . . , n+m}, and Ak ∈ Aik is dense

in C∗(A1 ⊕ A2, S).

Proof. Fix i ∈ {1, 2}, let j ∈ {1, 2} \ {i}, and let A ∈ Ai. If ζ ∈ Ki then Sζ ∈ K2 so

S∗ASζ = 0. However, if η1 ⊗ · · · ⊗ ηn ∈ Lj,n then

S∗AS(η1 ⊗ · · · ⊗ ηn) = S∗A(ξi ⊗ η1 ⊗ · · · ⊗ ηn)

= S∗((Aξi)⊗ η1 ⊗ · · · ⊗ ηn)

= 〈Aξi, ξi〉Hiη1 ⊗ · · · ⊗ ηn

Whence, by linearity and density, S∗AS = 〈Aξi, ξi〉HiPKj .

Fix i ∈ {1, 2}, j ∈ {1, 2} \ {i}, and A,B ∈ Ai. To see ASB = 0 notice A(Lj,n) = {0}

and B(Lj,n) = {0} for all n. However S(B(Li,n)) ⊆ Lj,n+1 and thus ASB = 0. Similarly

AS∗B = 0. To see PKjSA = SA notice SA(Lj,n) = {0} and SA(Li,n) ⊆ Lj,n+1 ⊆ Kj. Hence

PKjSA = SA. Similarly AS∗PKj = AS∗.

Using the fact that alg(A1,A2, S, S
∗) is dense in C∗(A1 ⊕ A2, S), A1 ⊕ A2 is unital, the

fact that PKj ∈ Aj for all j ∈ {1, 2}, and the above results, we obtain that the desired span

is dense in C∗(A1 ⊕ A2, S).

The next step in the proof is to define a action of the unit circle T on B(K). For each

θ ∈ [0, 2π) define Uθ ∈ B(K) by

Uθ(η1 ⊗ · · · ⊗ ηn) = e−nθ
√
−1η1 ⊗ · · · ⊗ ηn

for all η1 ⊗ · · · ⊗ ηn ∈ Li,n. It is clear that Uθ is a unitary operator with U∗θ = U−θ and

UθUβ = Uθ+β (where we view θ + β mod 2π). Notice each Uθ defines a ∗-homomorphism
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αθ : B(K)→ B(K) by

αθ(T ) = U∗θTUθ

for all T ∈ B(K).

Lemma 2.2.4. If T ∈ C∗(A1 ⊕ A2, S) and αθ(T ) = T for all θ ∈ [0, 2π) then

T (Li,n) ⊆ Li,n

for all i ∈ {1, 2} and for all n ∈ N.

Proof. First it is clear that( ⊕
n=1 mod 2

L1,n

)
⊕

( ⊕
n=2 mod 2

L2,n

)

and ( ⊕
n=1 mod 2

L2,n

)
⊕

( ⊕
n=2 mod 2

L1,n

)
are reducing subspaces of C∗(A1 ⊕ A2, S) since each is invariant under A1, A2, S, and S∗.

Suppose otherwise that there exists an i ∈ {1, 2}, an m ∈ N, and an h ∈ Li,m so that

T (h) /∈ Li,m. Without loss of generality suppose

Li,m ⊆

( ⊕
n=1 mod 2

L1,n

)
⊕

( ⊕
n=2 mod 2

L2,n

)
.

Thus T (h) ∈ (
⊕

n=1 mod 2 L1,n)⊕ (
⊕

n=2 mod 2 L2,n). Write

T (h) =
⊕
j≥1

hj

where hj ∈ L1,j if j is odd and hj ∈ L2,j when j is even. Since T (h) /∈ Li,m, there exists a
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k ∈ N \ {m} such that hk 6= 0. However

⊕
j≥1 hj = T (h) = αθ(T )h

= U−θTUθh

= U−θTe
−mθ

√
−1h

= e−mθ
√
−1U−θ

(⊕
j≥1 hj

)
=
⊕

j≥1(e−(m−j)θ
√
−1)hj

for all θ ∈ [0, 2π). Therefore hk = e−(m−k)θ
√
−1hk for all θ ∈ [0, 2π). As k 6= m and hk 6= 0,

this is an impossibility.

Lemma 2.2.5. For all θ ∈ [0, 2π) and all A ∈ A1 ⊕ A2, αθ(S) = eθ
√
−1S and αθ(A) = A.

Therefore θ 7→ αθ(T ) is a continuous map for all T ∈ C∗(A1 ⊕ A2, S). Hence the map

E : C∗(A1 ⊕ A2, S)→ C∗(A1 ⊕ A2, S) given by

E(T ) :=
1

2π

∫ 2π

0

αθ(T ) dθ

is a well-defined, contractive linear map with the property that αθ(E(T )) = E(T ) for all

T ∈ C∗(A1 ⊕ A2, S) and θ ∈ [0, 2π).

Proof. The fact that αθ(A) = A for all θ ∈ [0, 2π) and A ∈ A1⊕A2 comes from the fact that

each Li,n is an invariant subspace of A1 ⊕ A2 and thus Uθ ∈ (A1 ⊕ A2)′ (the commutant of

A1 ⊕ A2). Notice for each i ∈ {1, 2} and each η1 ⊗ · · · ⊗ ηn ∈ Li,n that

αθ(S)(η1 ⊗ · · · ⊗ ηn) = U−θS
(
e−nθ

√
−1η1 ⊗ · · · ⊗ ηn

)
= U−θ

(
e−nθ

√
−1ξj ⊗ η1 ⊗ · · · ⊗ ηn

)
= e(n+1)θ

√
−1e−nθ

√
−1ξj ⊗ η1 ⊗ · · · ⊗ ηn

= eθ
√
−1S(η1 ⊗ · · · ⊗ ηn)

where j ∈ {1, 2} \ {i}. Whence αθ(S) = eθ
√
−1S by linearity and density.

To see θ 7→ αθ(T ) is a continuous map for all T ∈ C∗(A1 ⊕ A2, S), notice the result

holds for all T ∈ alg(A1⊕A2, S, S
∗) by the above results. Since each αθ is a contraction and
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alg(A1 ⊕ A2, S, S
∗) is dense in C∗(A1 ⊕ A2, S), the result follows.

The fact that E is a well-defined, contractive linear map is then trivial and the fact that

αθ(E(T )) = E(T ) for all T ∈ C∗(A1 ⊕ A2, S) follows from the fact that αθ ◦ αβ = αθ+β

(as UθUβ = Uθ+β) and the fact that the Lebesgue measure on the unit circle is translation

invariant.

If T ∈ C∗(A1 ⊕ A2, S) is of the form

T = (A1S) · · · (AnS)An+1(S∗An+2) · · · (S∗An+m+1)

where n,m ≥ 0, {ik}n+m+1
k=1 ⊆ {1, 2}, ik 6= ik+1 for k ∈ {1, . . . , n + m}, and Ak ∈ Aik , then

E(T ) = 0 whenever n 6= m and E(T ) = T whenever n = m.

Lemma 2.2.6. For all T ∈ C∗(A1 ⊕ A2, S) and n ∈ N define

Σn(T ) :=
n∑
j=0

(
1− j

n+ 1

)
(S∗)jE(SjT ) +

n∑
j=1

(
1− j

n+ 1

)
E(T (S∗)j)Sj.

Then limn→∞ ‖T − Σn(T )‖ = 0.

Proof. Notice for all T ∈ C∗(A1 ⊕ A2, S) that

Σn(T ) = 1
2π

∫ 2π

0

(∑n
j=0

(
1− j

n+1

)
(S∗)jαθ(S

jT ) +
∑n

j=1

(
1− j

n+1

)
αθ(T (S∗)j)Sj

)
dθ

= 1
2π

∫ 2π

0

(∑n
j=−n

(
1− |j|

n+1

)
ejθ
√
−1
)
αθ(T )dθ

= 1
2π

∫ 2π

0
σn(θ)αθ(T )dθ

where σn(θ) :=
∑n

j=−n

(
1− |j|

n+1

)
ejθ
√
−1 is Fejér’s kernel. Recall

{
1

2π
σn(θ)dθ

}
n≥1

define

probability measures on T that converge weak∗ (from C(T)) to the point mass at 0. Thus

‖Σn(T )‖ ≤ 1

2π

∫ 2π

0

σn(θ) ‖αθ(T )‖ dθ = ‖T‖

for all n ∈ N. Since E and thus Σn is linear for all n ∈ N and each Σn is a contraction, it
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suffices to prove the result on a set whose span is dense; namely

{A1SA2S · · ·AnSBS∗C1S
∗ · · ·S∗Bm | n,m ≥ 0, Ai, B, Cj ∈ A1 ⊕ A2}

by Lemma 2.2.3.

To complete the proof, notice if T = A1SA2S · · ·AnSBS∗C1S
∗ · · ·S∗Bm where n,m ≥ 0

and Ai, B, Cj ∈ A1 ⊕ A2 then

E(SkT ) =

 SkT if k + n = m

0 otherwise

and

E(T (S∗)k) =

 T (S∗)k if n = m+ k

0 otherwise

Whence Σk(T ) =
(

1− |n−m|
k+1

)
T for all k ≥ |n − m| which clearly converges to T as k →

∞.

To prove Theorem 2.2.2 it suffices to prove ker(π′) ⊆ 〈J〉A1⊕A2 . It is trivial to prove that

E (〈J〉A1⊕A2) ⊆ 〈J〉A1⊕A2 , E(ker(π′)) ⊆ ker(π′), and E (〈J〉A1⊕A2) ⊆ E(ker(π′)). Using these

facts and Lemma 2.2.6 gives the following reduction of our problem.

Lemma 2.2.7. If E (〈J〉A1⊕A2) = E(ker(π′)) then ker(π′) = 〈J〉A1⊕A2.

Proof. By Construction 2.2.1 it suffices to show that ker(π′) ⊆ 〈J〉C∗(A1⊕A2,S). Let T ∈

ker(π′). Recall T = limn→∞Σn(T ) by Lemma 2.2.6. Moreover SkT ∈ ker(π′) and T (S∗)k ∈

ker(π′) for all k ≥ 0 as T ∈ ker(π′). Whence

E(SkT ), E(T (S∗)k) ∈ E(ker(π′)) = E
(
〈J〉C∗(A1⊕A2,S)

)
⊆ 〈J〉C∗(A1⊕A2,S)

for all k ≥ 0. This implies that Σn(T ) ∈ 〈J〉C∗(A1⊕A2,S) for all n and thus T ∈ 〈J〉C∗(A1⊕A2,S).

48



To begin the process of showing E (〈J〉A1⊕A2) = E(ker(π′)) we will examine the structure

of 〈J〉A1⊕A2 . Notice if J ∈ J then JS = 0 as Jξ1 = 0. Whence S∗J = 0 for all J ∈ J.

Therefore, using the property that the algebraic ideal generated by J in alg(A1,A2, S, S
∗) is

dense in 〈J〉A1⊕A2 and the results and ideas from Lemma 2.2.3, the span of all operators of

the form

(AnS) · · · (A1S)J(S∗B1) · · · (S∗Bm)

where n,m ≥ 0, J ∈ J, Ai, Bj ∈ A1 if i, j = 0 mod 2, and Ai, Bj ∈ A2 if i, j = 1 mod 2 is

dense in 〈J〉A1⊕A2 .

For each n ≥ 0 and k ∈ {1, 2}, let Ak,(n) be the span of all operators of the form

(AnS) · · · (A1S)A(S∗B1) · · · (S∗Bn)

where A ∈ Ak, Ai, Bj ∈ A1 if i, j 6= k mod 2, and Ai, Bj ∈ A2 if i, j = k mod 2. Let J(n)

denote the subset of A1,(n) consisting of all operators of the above form with A ∈ J.

Lemma 2.2.8. The span of
⋃
n≥0

(
A1,(n) ∪ A2,(n)

)
is dense in E(C∗(A1 ⊕ A2, S)) and the

span of
⋃
n≥0 J(n) is dense in E (〈J〉A1⊕A2).

Proof. We will only prove the first claim as the second follows verbatim with the aid of

Lemma 2.2.3. It is clear
⋃
n≥0 J(n) ⊆ E

(
〈J〉C∗(A1⊕A2,S)

)
.

Let T ∈ E
(
〈J〉C∗(A1⊕A2,S)

)
and let ε > 0. As T ∈ 〈J〉C∗(A1⊕A2,S) there exists an

R ∈ span

(AnS) · · · (A1S)J(S∗B1) · · · (S∗Bm)

∣∣∣∣∣∣∣∣∣
n,m ≥ 0, J ∈ J,

Ai, Bj ∈ A1 if i, j = 0 mod 2,

Ai, Bj ∈ A2 if i, j = 1 mod 2


such that ‖T −R‖ < ε. Then E(T ) = T since T ∈ E

(
〈J〉C∗(A1⊕A2,S)

)
and thus

‖T − E(R)‖ = ‖E(T −R)‖ ≤ ‖T −R‖ < ε.
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Clearly

E

span

(AnS) · · · (A1S)J(S∗B1) · · · (S∗Bm)

∣∣∣∣∣∣∣∣∣
n,m ≥ 0, J ∈ J,

Ai, Bj ∈ A1 if i, j = 0 mod 2,

Ai, Bj ∈ A2 if i, j = 1 mod 2




= span

(AnS) · · · (A1S)J(S∗B1) · · · (S∗Bn)

∣∣∣∣∣∣∣∣∣
n ≥ 0, J ∈ J,

Ai, Bj ∈ A1 if i, j = 0 mod 2,

Ai, Bj ∈ A2 if i, j = 1 mod 2


= span

(⋃
n≥0

J(n)

)
.

Thus E(R) ∈ span
(⋃

n≥0 J(n)

)
which completes the claim.

Now we will examine how A1,(n), A2,(n), and J(n) act on K. We will only discuss A1,(n)

and J(n) as the analysis of A2,(n) will be similar.

Since E(T ) = T for all T ∈ A1,(n)

(
T ∈ J(n)

)
, T (Li,m) ⊆ Li,m for all i ∈ {1, 2} and m ∈ N

by Lemma 2.2.4. Fix

T = (AnS) · · · (A1S)A(S∗B1) · · · (S∗Bn)

where Ai, Bj ∈ A1 if i, j = 0 mod 2, Ai, Bj ∈ A2 if i, j = 1 mod 2, and A ∈ A1 (A ∈ J).

If k ∈ {1, 2} and k = n mod 2 then T (Lk,m) = {0} for all m ∈ N. Fix k ∈ {1, 2}

with k 6= n mod 2 and let ` ∈ {1, 2} \ {k}. Then it is possible to show that for all

η = η1 ⊗ · · · ⊗ ηn+1 ∈ Lk,n+1

T (η) = 〈η1 ⊗ · · · ⊗ ηn, ζ〉Lk,n(ω ⊗ Aηn+1)

where

ζ := B∗nξk ⊗B∗n−1ξ` ⊗ · · · ⊗B∗2ξ1 ⊗B∗1ξ2

and

ω := Anξk ⊗ An−1ξ` ⊗ · · · ⊗ A2ξ1 ⊗ A1ξ2.
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Moreover T acts as the zero operator on elements of Lk,m for all m ≤ n since the mth S∗

will act on an element of L1,1 ⊕ L2,1. Finally if m ≥ n+ 1 notice Lk,m = Lk,n+1 ⊗ Lk,m−n−1

if n + 1 is even and Lk,m = Lk,n+1 ⊗ L`,m−n−1 if n + 1 is odd. Therefore, if R = T |Lk,n+1
, it

is easy to see that T acts on Lk,m as R⊗ ILk,m−n−1
when n+ 1 is even and m ≥ n+ 1 and T

acts on Lk,m as R⊗ IL`,m−n−1
when n+ 1 is odd and m ≥ n+ 1.

For i ∈ {1, 2} let Ni = Aiξi which is a Hilbert subspace of Hi,0 ⊆ Hi containing ξi. Thus,

for a fixed k ∈ {1, 2} with k 6= n mod 2 and with ` ∈ {1, 2} \ {k}, by restricting to Lk,n

and taking limits of elements of A1,(n)

(
J(n)

)
over A1, . . . , An, B1, . . . , Bn where Ai, Bj ∈ A1

if i, j = 0 mod 2 and Ai, Bj ∈ A2 if i, j = 1 mod 2, every operator in B(Lk,n) of the form

η1 ⊗ · · · ⊗ ηn+1 7→ 〈η1 ⊗ · · · ⊗ ηn, ζ1 ⊗ · · · ⊗ ζn〉Lk,n(ζ ′1 ⊗ · · · ⊗ ζ ′n ⊗ Aηn+1)

where ζi, ζ
′
j ∈ Nk if i, j = 1 mod 2, ζi, ζ

′
j ∈ N` if i, j = 0 mod 2, and A ∈ A1 (A ∈ J) may

be obtained.

Lastly, by describing the action of A2,(n) on K, it is possible to show that if T ∈ A1,(n),

R ∈ A2,(n), k, ` ∈ {1, 2}, k = n mod 2, and ` 6= n mod 2 then the actions of T and R are

completely determined by their actions on L1,n+1⊕L2,n+1 with T (Lk,m) = {0} for all m ∈ N,

R(L`,m) = {0} for all m ∈ N, and

‖T +R‖ = max{
∥∥T |L`,n+1

∥∥ ,∥∥R|Lk,n+1

∥∥}.
The above structure will be important as we will consider the restriction of E (〈J〉A1⊕A2)

and E(ker(π′)) to the subspaces L1,n⊕L2,n of K. For m,n ∈ N and i ∈ {1, 2} let Pi,m be the

orthogonal projection of K onto Li,m, let Pm be the orthogonal projection onto L1,m⊕L2,m,

and let Qn :=
∑n

j=1 Pj which is the orthogonal projection of K onto
⊕n

k=1(L1,k ⊕ L2,k).

Therefore, using the above discussion, Ai,(n)Pm = {0} for all m ≤ n and if m > n + 1 then

each element T ∈ A1,(n)∪A2,(n) acts on Lj,m by (Pj,n+1TPj,n+1)⊗I where I is the appropriate

identity. Using the Pn’s and the above information about the actions of A1,(n), A2,(n), and
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J(n) on L1,n ⊕ L2,n, we obtain the following.

Lemma 2.2.9. The set Qn

(
span

(⋃
m<n J(m)

))
Qn is dense in QnE(ker(π′))Qn for all n ∈ N.

Proof. Clearly Qn

(
span

(⋃
m<n J(m)

))
Qn ⊆ QnE(ker(π′))Qn for all n ∈ N. Thus it suffices

to show that each element of E(ker(π′)) can be approximated uniformly on QmK by an

element of span
(⋃

m<n J(m)

)
. We proceed by induction on n.

Let T ∈ E(ker(π′)) and let ε > 0. As T ∈ E(C∗(A1 ⊕ A2, S)) Lemma 2.2.8 implies that

there exists an m ∈ N, T1,j ∈ A1,(j), and T2,j ∈ A2,(j) such that
∥∥∥T −∑2

i=1

∑m
j=0 Ti,j

∥∥∥ < ε.

Therefore

‖P1TP1 − P1T1,0P1 − P1T2,0P1‖ =

∥∥∥∥∥P1

(
T −

2∑
i=1

m∑
j=0

Ti,j

)
P1

∥∥∥∥∥ < ε.

Note T1,0 ∈ A1,(0) = A1 and T2,0 ∈ A2,(0) = A2. However P1TP1(H1,0) = {0} and

P1T2,0P1(H1,0) = {0}. Whence

‖T1,0h‖ = ‖P1TP1h− P1T1,0P1h− P1T2,0P1h‖ ≤ ε ‖h‖

for all h ∈ H1,0. Since A1 acts on H1,0 via π1,0 ◦ q, ‖π1,0(q(T0))‖ < ε. Thus ‖q(T0)‖A1/J
< ε so

there exists a J ∈ J such that ‖T1,0 − J‖ < ε. Similarly P1TP1(H2) = {0} and T1,0(H2) =

{0}. Hence ‖T2,0‖ < ε. Thus J ∈ J(0) and

‖P1TP1 − P1JP1‖ ≤ ‖P1TP1 − P1T1,0P1 − P1T2,0P1‖+ ‖T2,0‖+ ‖T1,0 − J‖ < 3ε

as desired.

Suppose the result is true for some n ≥ 1. By the inductive hypothesis there exists an

R ∈ span
(⋃

m<n J(m)

)
such that ‖QnTQn −QnRQn‖ < ε and thus

∥∥∥∥∥QnRQn −Qn

(
2∑
i=1

n−1∑
j=0

Ti,j

)
Qn

∥∥∥∥∥ < 2ε.
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By the above discussions and by considering direct sums,

‖Qn+1TQn+1 −Qn+1RQn+1 −Qn+1T1,nQn+1 −Qn+1T2,nQn+1‖ < 3ε.

Thus it suffices to approximate T1,n + T2,n ∈ A1,(n) + A2,(n) uniformly on Qn+1K with an

element of J(n). Since elements of A1,(n), A2,(n) and J(n) are zero when restricted to QnK,

it suffices to perform the approximation on L1,n+1 ⊕ L2,n+1. Moreover, as T1,n and T2,n act

on orthogonal spaces and map into orthogonal spaces, it suffices to consider each operator

separately.

As in the base case T , T1,n, and R vanish on the domain of T2,n giving the estimate

‖T2,n‖ < 3ε. To approximate T1,n with an element of J(n) fix k ∈ {1, 2} with k 6= n mod 2

and let ` ∈ {1, 2} \ {k}. Hence T1,n is completely determined by its action on Lk,n+1 and

‖Pk,n+1TPk,n+1 − Pk,n+1RPk,n+1 − Pk,n+1T1,nPk,n+1‖ < 3ε

by the above inequality and the fact that Pk,n+1T2,nPk,n+1 = 0 by the above discussion. Write

T1,n =

p∑
q=1

(
A(q)
n S

)
· · ·
(
A

(q)
1 S

)
A(q)

(
S∗B

(q)
1

)
· · ·
(
S∗B(q)

n

)
,

where A
(q)
i , B

(q)
j ∈ A1 if i, j = 0 mod 2, A

(q)
i , B

(q)
j ∈ A2 if i, j = 1 mod 2, and A(q) ∈ A1

for all q ∈ {1, . . . , p}. View T1,n ∈ B(Lk,n+1) as in the previous discussion. By applying the

Gram-Schmidt Orthogonalization Process, we can then write T1,n as the map

T1,n(η1 ⊗ · · · ⊗ ηn+1) =

p∑
i=1

p∑
j=1

〈η1 ⊗ · · · ⊗ ηn, ζj〉(ωi ⊗ Ai,jηn+1)

where {Ai,j}pi,j=1 ⊆ span({A(q) | q ∈ {1, . . . , p}}) ⊆ A1 and

ζj, ωi ∈ Ni1 ⊗Ni2 ⊗ · · · ⊗ Nin
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(where for i ∈ {1, 2} Ni = Aiξi, ij = k if j is odd, and ij = ` if j is even (and automatically

in = 2)) are such that {ζj}pj=1 and {ωi}pi=1 are orthonormal sets.

To examine the norm of T1,n in this form, suppose ζ ∈ Lk,n+1 is such that ‖ζ‖ ≤ 1. Then

we can write ζ =
∑p

j=1 ζj ⊗ ηj +
∑

γ∈Γ ζγ ⊗ ηγ where {ζγ}γ∈Γ ⊆ Lk,n extends {ζj}pj=1 to an

orthonormal basis of Lk,n and ηj, ηγ ∈ H1. Thus
∑p

j=1 ‖ηj‖
2 ≤ ‖ζ‖2 ≤ 1 and

‖T1,nζ‖Lk,n+1
=

∥∥∥∑p
j=1

∑p
i=1 ‖ζj‖

2 ωi ⊗ Ai,jηj
∥∥∥
Lk,n+1

=
∥∥∥∑p

i=1 ωi ⊗
(∑p

j=1 Ai,jηj

)∥∥∥
Lk,n+1

=

(∑p
i=1

∥∥∥∑p
j=1Ai,jηj

∥∥∥2

H1

) 1
2

(∗).

This final expression is directly related to the norm of [Ai,j] ∈ Mp(A1). Indeed recall that

A1 is acting on H1 = H1,0 ⊕H1,1 via (π1,0 ◦ q)⊕ π1,1 and define σp :Mp(A1)→ B
(
H⊕p1

)
by

σp([A
′
i,j])(h1 ⊕ · · · ⊕ h`) =

p⊕
i=1

(
p∑
j=1

A′i,jhj

)

for all [A′i,j] ∈Mp(A1). Clearly σp is a faithful representation ofMp(A1) since (π1,0◦q)⊕π1,1

is a faithful representation of A1. Notice σp([A
′
i,j]) is zero on H⊕p1,0 ⊆ H

⊕p
1 if and only if each

A′i,j is zero on H1,0 if and only if [A′i,j] ∈ Mp(J). Since Mp(J) is an ideal of Mp(A1), H⊕p1,0

is a reducing subspace for σp(Mp(A1)), and Mp(J) = ker
(
σp|H⊕p1,0

)
, we obtain that σp|H⊕p1,0

is a faithful representation of Mp(A1)/Mp(J) 'Mp(A1/J).

Using the fact that Pk,n+1TPk,n+1 − Pk,n+1RPk,n+1 is zero on

Hi1,0 ⊗Hi2,0 ⊗ · · · ⊗ Hin,0 ⊗Hin+1,0

where ij = k if j is odd and ij = ` if j is even (so in+1 = 1 automatically) (as T ∈ E(ker(π′))

and R ∈ span
(⋃

m<n J(m)

)
), we obtain that

∥∥∥Pn+1T1,nPn+1|Hi1,0⊗Hi2,0⊗···⊗Hin,0⊗Hin+1,0

∥∥∥ < 3ε.
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As ωi, ζj ∈ Hi1,0 ⊗Hi2,0 ⊗ · · · ⊗ Hin,0 for all i, j ∈ {1, . . . , p}, using (∗) we see that

 p∑
i=1

∥∥∥∥∥
p∑
j=1

Ai,jηj

∥∥∥∥∥
2

H1,0

 1
2

< 3ε

for all η1, . . . , ηp ∈ H1,0 with
∑p

j=1 ‖ηj‖
2 ≤ 1. Hence

∥∥∥σp([Ai,j])|H⊕p1,0

∥∥∥ < 3ε. Since σp|H⊕p1,0
is

a faithful representation ofMp(A1)/Mp(J) 'Mp(A1/J), there exists a [Ji,j] ∈Mp(J) such

that ‖[Ai,j]− [Ji,j]‖Mp(A1) < 3ε. Thus

 p∑
i=1

∥∥∥∥∥
p∑
j=1

(Ai,j − Ji,j)ηj

∥∥∥∥∥
2

H1

 1
2

< 3ε

for all η1, . . . , η` ∈ H1 with
∑p

j=1 ‖ηj‖
2 ≤ 1.

Define R′ ∈ B(Lk,n+1) by

R′(η1 ⊗ · · · ⊗ ηn+1) =

p∑
i=1

p∑
j=1

〈η1 ⊗ · · · ⊗ ηn, ζj〉(ωi ⊗ Ji,jηn+1)

and extend by linearity and density. Note (∗) implies that R′ is a bounded linear map and

‖R′ − Pk,n+1T1,nPk,n+1‖B(Lk,n+1) < 3ε.

As

ζj, ωi ∈ Ni1 ⊗Ni2 ⊗ · · · ⊗ Nin ,

the above discussion implies that there exists a R0 ∈ J(n) such that

‖R′ − Pk,n+1R0Pk,n+1‖B(Lk,n+1) < ε.

Hence

‖Pk,n+1R0Pk,n+1 − Pk,n+1T1,nPk,n+1‖ < 4ε.
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Since R0 ∈ J(n) and T1,n ∈ A1,(n), we obtain that

‖Qn+1R0Qn+1 −Qn+1T1,nQn+1‖ < 4ε.

By combining all of our approximations

‖Qn+1TQn+1 −Qn+1(R +R0)Qn+1‖ < 10ε

and, as R +R0 ∈ span
(⋃

m<n+1 J(m)

)
, the result follows.

The above result shows we can approximate elements of E(ker(π′)) uniformly on QnK by

elements of span
(⋃

m<n J(m)

)
. The following result shows that this is enough to prove the

assumptions of Lemma 2.2.7.

Lemma 2.2.10. Let T ∈ E(C∗(A1⊕A2, S)) and let ε > 0. There exists an n ∈ 2N such that

∥∥Pj,mTPj,m − Pj,nTPj,n ⊗ ILj,m−n∥∥B(Lj,m)
< ε

for all m ≥ n and j ∈ {1, 2} (where Lj,m ' Lj,n ⊗ Lj,m−n canonically).

Proof. This result follows from the fact that

span

(⋃
n≥1

(A1,(n) ∪ A2,(n))

)

is dense in

E(C∗(A1 ⊕ A2, S))

and the result hold for this algebraic span.

Proof of Theorem 2.2.2. Recall E (〈J〉A1⊕A2) ⊆ E(ker(π′)) by the above discussions. Let
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T ∈ E(ker(π′)) and let ε > 0. By Lemma 2.2.10 there exists an n ∈ 2N so that

∥∥Pj,mTPj,m − Pj,nTPj,n ⊗ ILj,m−n∥∥B(Lj,m)
< ε

for all m ≥ n and j ∈ {1, 2}. By Lemma 2.2.9 there exists an R ∈ span
(⋃

m<n J(m)

)
such

that ‖Qn(T −R)Qn‖ < ε. As T,R ∈ E(C∗(A1 ⊕ A2, S))

‖T −R‖ = sup
m≥1

max
j∈{1,2}

‖Pj,m(T −R)Pj,m‖

by Lemma 2.2.4 and the above inequality implies ‖Pj,m(T −R)Pj,m‖Lj,m < ε for all m ≤ n

and j ∈ {1, 2}. Thus ‖Pj,nTPj,n − Pj,nRPj,n‖ < ε for all j ∈ {1, 2}. However, since R ∈

span
(⋃

m<n J(m)

)
, Pj,mRPj,m = Pj,nRPj,n ⊗ ILj,m−n for all m ≥ n and j ∈ {1, 2} (as n is

even) and thus

‖Pj,mTPj,m − Pj,mRPj,m‖ ≤ 2ε

for all m ≥ n and j ∈ {1, 2}. Whence ‖T −R‖ ≤ 2ε. As R ∈ 〈J〉A1⊕A2 , we obtain

that T ∈ E (〈J〉A1⊕A2). Hence E(ker(π′)) = E (〈J〉A1⊕A2) so ker(π′) = 〈J〉A1⊕A2 by Lemma

2.2.7.

2.3 Every C∗-Algebra is Freely Exact

In this section we will complete the proof of Theorem 2.1.2. By Theorem 2.2.2 we know

certain short sequences of C∗-algebras are exact and we will use the proof of [14, Theorem

4.8.2] to construct a commutative diagram of short sequences. The proof of [14, Theorem

4.8.2] is concrete and allows us to demonstrate that the compression of 〈J〉A1⊕A2 corresponds

with the description of 〈J〉A1∗A2 developed in Discussion 2.3.1. The remainder of the proof

is then trivial.

Remarks 2.3.1. Using the notation of Construction 2.1.1, we desire to determine the struc-

57



ture of 〈J〉A1∗A2 inside (A1, π1, ξ1) ∗ (A2, π2, ξ2). For i ∈ {1, 2} let

A0
i := {A ∈ Ai | 〈Aξi, ξi〉Hi = 0}

so Ai = CIAi + A0
i . Thus, by the algebraic properties of ideals, it is clear that the span of

all operators of the form

A1B1 · · ·AnBnJB
′
mA
′
m · · ·B′1A′1

where n,m ≥ 0, Ai, A
′
j ∈ A0

1 ∪ {IA1}, Bi, B
′
j ∈ A0

2 ∪ {IA2}, and J ∈ J is dense in 〈J〉A1∗A2 .

Notice J ⊆ A0
1. Using the fact that the identity elements of A1 and A2 are the identity

element of (A1, π1, ξ1) ∗ (A2, π2, ξ2) when viewed as elements of (A1, π1, ξ1) ∗ (A2, π2, ξ2), we

can further assume that Ai, A
′
j ∈ A0

1 whenever i, j ≥ 2 and Bi, B
′
j ∈ A0

2 as whenever an IA1

or IA2 occurs we can reduce the length of the product, multiply two elements of the alternate

Ai, write this element in the form CIAi + A0
i , write the new operator as the sum of two

operators, and continue the reduction process.

We desire to describe the action of each operator in the above span on (H1, ξ1)∗ (H2, ξ2).

If

T = A1B1 · · ·AnBnJB
′
mA
′
m · · ·B′1A′1

where n,m ≥ 0, {Ai}ni=1, {A′j}mj=1 ⊆ A0
1, {Bi}ni=1, {B′j}mj=1 ⊆ A0

2, and J ∈ J, it is easy to

verify that T is non-zero only on the direct summand( ⊕
k≥m+1

(H0
1 ⊗H0

2)⊗k

)
⊕

(⊕
k≥m

(H0
1 ⊗H0

2)⊗k ⊗H0
1

)
⊆ (H1, ξ1) ∗ (H2, ξ2),

if ω1 ∈ (H0
1 ⊗H0

2)⊗m ⊗H0
1 and

ω2 ∈
⋃
k≥1

(
(H0

2 ⊗H0
1)⊗k ∪ (H0

2 ⊗H0
1)⊗k ⊗H0

2

)
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then T (ω1 ⊗ ω2) = T (ω1)⊗ ω2. Moreover, a proof of the above facts reveals that if

η := η1 ⊗ ζ1 ⊗ · · · ⊗ ηm ⊗ ζm ⊗ ηm+1 ∈ (H0
1 ⊗H0

2)⊗m ⊗H0
1

then

T (η) = 〈η1 ⊗ ζ1 ⊗ · · · ⊗ ηm ⊗ ζm, ω1〉(H0
1⊗H0

2)⊗m(ω2 ⊗ Jηm+1)

where

ω1 := (A′1)∗ξ1 ⊗ (B′1)∗ξ2 ⊗ · · · ⊗ (A′m)∗ξ1 ⊗ (B′m)∗ξ2

and

ω2 := (A1ξ1)⊗ (B1ξ2)⊗ · · · ⊗ (Anξ1)⊗ (Bnξ2).

The cases where A1 = IA1 and/or A′1 = IA1 are similar.

To embed the sequences under consideration in Theorem 2.1.2 into an exact sequence

from Theorem 2.2.2, we will use the following notation and maps.

Notation 2.3.2. Let Ai,1 := Ai for i = 1, 2, let A1,0 := A1/J, let A2,0 := A2, and let S1 := S.

Using the notation of Construction 2.2.1, for j = 0, 1 let

Pj := I − S2
j (S

∗
j )

2 ∈ C∗(A1,j ⊕ A2,j, Sj)

and let

Uj := Pj(Sj + S∗j )Pj ∈ C∗(A1,j ⊕ A2,j, Sj).

For j ∈ {0, 1} and i ∈ {1, 2} define the unital, completely positive maps

ψi,j : Ai,j → PjC
∗(A1,j ⊕ A2,j, Sj)Pj

by

ψi,j(A) = PjAPj + UjAUj

for all A ∈ Ai,j.
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Lemma 2.3.3. There exists a unital, completely positive map

Ψ : (A1, π1, ξ1) ∗ (A2, π2, ξ2)→ P1C
∗(A1 ⊕ A2, S)P1

such that

Ψ(A1 · · ·An) = ψi1,1(A1) · · ·ψin,1(An)

whenever Ak ∈ A0
ik

, {ik}nk=1 ⊆ {1, 2}, and ik 6= ik+1 for all k ∈ {1, . . . , n − 1}. Moreover

there exists a ∗-homomorphism

σ : C∗(Ψ((A1, π1, ξ1) ∗ (A2, π2, ξ2)))→ (A1, π1, ξ1) ∗ (A2, π2, ξ2)

such that σ ◦ Ψ = Id(A1,π1,ξ1)∗(A2,π2,ξ2). In fact σ is the compression map of B(K) to B(K1,1)

where K1,1 ⊆ K is a Hilbert space isomorphic to (H1, ξ1) ∗ (H2, ξ2).

Similarly there exists a unital, completely positive map

Ψ0 : (A1,0, π1,0, ξ1) ∗ (A2,0, π2,0, ξ2)→ P0C
∗(A1,0 ⊕ A2,0, S0)P0

such that

Ψ0(A1 · · ·An) = ψi1,0(A1) · · ·ψin,0(An)

whenever Ak ∈ Aik,0 are such that 〈Akξik , ξik〉Hik,0 = 0, {ik}nk=1 ⊆ {1, 2}, and ik 6= ik+1 for

all k ∈ {1, . . . , n− 1}.

Proof. The proof of the above result is contained in [14, Theorem 4.8.2]. Note that the proof

in [14] is done under the assumptions that π1, π2, and π1,0 are the faithful representations

corresponding to a GNS construction. However these assumptions are not used in the proof.

For the purpose of Lemma 2.3.5, we remark that the Hilbert subspace K1,1 of K is the

subspace

H1 ⊕

(⊕
n≥0

H1 ⊗ (H0
2 ⊗H0

1)⊗n ⊗H0
2 ⊗H1

)
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and is isomorphic to (H1, ξ1) ∗ (H2, ξ2) via the standard identifications Cξ1 ⊗H0
2 ' H0

2 and

H0
2 ⊗ Cξ1 ' H0

2.

Lemma 2.3.4. With Ψ and Ψ0 as in Lemma 2.3.3, the diagram

(A1, π1, ξ1) ∗ (A2, π2, ξ2)
π→ (A1/J, π1,0, ξ1) ∗ (A2, π2, ξ2)

↓ Ψ ↓ Ψ0

C∗(A1 ⊕ A2, S)
π′→ C∗((A1/J)⊕ A2, S0)

commutes.

Proof. Recall that the span of I(A1,π1,ξ1)∗(A2,π2,ξ2) and

{A1 · · ·An | Ak ∈ A0
ik
, {ik}nk=1 ⊆ {1, 2}, ik 6= ik+1 for all k ∈ {1, . . . , n− 1}}

is dense in (A1, π1, ξ1) ∗ (A2, π2, ξ2) and thus it suffices to verify the diagram commutes on

these operators. Using the properties of Ψ and Ψ0 from Lemma 2.3.3 and the fact that

ψi,0(π(A)) = P0π(A)P0 + U0π(A)U0 = π′(P1AP1 + U1AU1) = π′(ψi,1(A))

for all i ∈ {1, 2} and A ∈ Ai, the result follows.

The final technical challenge of the proof of Theorem 2.1.2 is the following.

Lemma 2.3.5. Let σ : B(K)→ B((H1, ξ1) ∗ (H2, ξ2)) be the compression map from Lemma

2.3.3. If T ∈ 〈J〉A1⊕A2 then σ(T ) ∈ 〈J〉A1∗A2.

Proof. By the above discussions and the notation in 2.3.2, it is easy to see that the span of

(AnS) · · · (A1S)J(S∗B1) · · · (S∗Bm)

where n,m ≥ 0, Ai, Bj ∈ A0
1 ∪ {IA1} if i, j are even, Ai, Bj ∈ A0

2 ∪ {IA2}, and J ∈ J is dense

in 〈J〉A1⊕A2 and thus it suffices to show that the compression of each of these operators to
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K corresponds to an operator in 〈J〉A1∗A2 as described in Discussion 2.3.1. It is not difficult

to show that the compression of one of these operators is zero unless n and m are even,

Ai, Bj ∈ A0
2 if i, j are odd, and Ai, Bj ⊆ A0

1 if i, j are even with i < n and j < m. Moreover,

when the compression is non-zero, the above operator corresponds to the operator in 〈J〉A1∗A2

described by removing the S’s and S∗’s in the above expression.

Proof of Theorem 2.1.2. Suppose T ∈ ((A1, π1, ξ1) ∗ (A2, π2, ξ2)) ∩ ker(π). Therefore

π′(Ψ(T )) = Ψ0(π(T )) = 0

by Lemma 2.3.4. By Theorem 2.2.2 Ψ(T ) ∈ 〈J〉A1⊕A2 . Therefore σ(Ψ(T )) ∈ 〈J〉A1∗A2 by

Lemma 2.3.5. However T = σ(Ψ(T )) by Lemma 2.3.3 so T ∈ 〈J〉A1∗A2 as desired.

2.4 Strong Convergence is Preserved by Free Products

With the modification to the second equivalence of Theorem 1.6.1 complete, we turn our

attention to developing the analog of the fourth equivalence of Theorem 1.6.1 in the context

of reduced free products. We begin with a definition.

Definition 2.4.1. Let
{
X

(k)
i

}n
i=1

and {Xi}ni=1 be generators for the non-commutative prob-

ability spaces (Ak, τk) and (A, τ) respectively. We say that
{
X

(k)
i

}n
i=1

converge strongly to

{Xi}ni=1 if

1. lim supk→∞

∥∥∥p(X(k)
1 , . . . , X

(k)
n

)∥∥∥
Ak

= ‖p(X1, . . . , Xn)‖A, and

2. limk→∞ τk

(
p
((
X

(k)
1 , . . . , X

(k)
n

)))
= τ(p(X1, . . . , Xn))

for all p ∈ C〈t1, . . . , tn〉.

The following is the adaptation of the fourth equivalence of Theorem 1.6.1 to reduced free

products and is a generalization of the appendix of [47] due to Shlyakhtenko (where, if Ai are

C∗-algebras with states ϕi that have faithful GNS representations, (A1, ϕ1) ∗ (A2, ϕ2) is the
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reduced free product, ϕ1 ∗ ϕ2 is the vector state on (A1, ϕ1) ∗ (A2, ϕ2) corresponding to the

distinguished vector, C〈t1, . . . , tn〉 denotes set of all complex polynomials in n non-commuting

variables and their complex conjugates, and a pair (A, τ) is said to be a non-commutative

probability space if A is a unital C∗-algebra and τ is a state on A with a faithful GNS

representation):

Theorem 2.4.2. Let
{
X

(k)
i

}n
i=1

,
{
Y

(k)
i

}m
i=1

, {Xi}ni=1, and {Yi}mi=1 be generators for the

non-commutative probability spaces (Ak, τk), (Bk, ϕk), (A, τ), and (B, ϕ) respectively. If{
X

(k)
i

}n
i=1

converge strongly to {Xi}ni=1 and
{
Y

(k)
i

}n
i=1

converge strongly to {Yi}ni=1, then{
X

(k)
i

}n
i=1
∪
{
Y

(k)
i

}n
i=1

converge strongly to {Xi}ni=1 ∪ {Yi}ni=1 (where the later operators are

in (Ak, τk) ∗ (Bk, ϕk) and (A, τ) ∗ (B, ϕ)).

By examining the fourth equivalence of Theorem 1.6.1, it can easily be seen that the above

result is connected with the notion of an exact C∗-algebra by replacing tensor products with

reduced free products. To begin the proof of Theorem 2.4.2, we note one inequality is trivially

implied by verifying that the assumptions imply convergence in L2-norms.

Lemma 2.4.3. With the assumptions and notation of Theorem 2.4.2,

lim
k→∞

(τk ∗ ϕk)
(
p
(
X

(k)
1 , . . . , X(k)

n , Y
(k)

1 , . . . , Y (k)
m

))
= (τ ∗ ϕ)(p(X1, . . . , Xn, Y1, . . . , Ym))

and

lim inf
k→∞

∥∥∥p(X(k)
1 , . . . , X(k)

n , Y
(k)

1 , . . . , Y (k)
m

)∥∥∥ ≥ ‖p(X1, . . . , Xn, Y1, . . . , Ym)‖

for all p ∈ C〈t1, . . . , tn+m〉.

Proof. First we claim if p ∈ C〈t1, . . . , tn+m〉 is arbitrary then

lim
k→∞

(τk ∗ ϕk)
(
p
(
X

(k)
1 , . . . , X(k)

n , Y
(k)

1 , . . . , Y (k)
m

))
= (τ ∗ ϕ)(p(X1, . . . , Xn, Y1, . . . , Ym)).

To see this notice by the same arguments as used in Discussion 2.3.1 that p(t1, . . . , tn+m)
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can be written as

p(t1, . . . , tn+m) =
N∑
`=1

z∏̀
w=1

p`,w(t1, . . . , tn)q`,w(tn+1, . . . , tn+m)

where τ(p`,w(X1, . . . , Xn)) = 0 and ϕ(q`,w(Y1, . . . , Ym)) = 0 for all w ∈ {1, . . . , z`} and

` ∈ {1, . . . , N} except possible for possible p`,1 and q`,z` which can be constant functions.

Thus (τ ∗ ϕ)(p(X1, . . . , Xn, Y1, . . . , Ym)) is

N∑
`=1

z∏̀
w=1

τ(p`,w(X1, . . . , Xn))ϕ(q`,w(Y1, . . . , Ym))

by freeness and (τk ∗ ϕk)
(
p
(
X

(k)
1 , . . . , X

(k)
n , Y

(k)
1 , . . . , Y

(k)
m

))
is

N∑
`=1

(τk ∗ ϕk)

(
z∏̀
w=1

p`,w

(
X

(k)
1 , . . . , X(k)

n

)
q`,w

(
Y

(k)
1 , . . . , Y (k)

m

))

by linearity. In the case that τ(p`,w(X1, . . . , Xn)) = 0 and ϕ(q`,w(Y1, . . . , Ym)) = 0 for all

w ∈ {1, . . . , z`}, notice the product from 1 to z` of

(
p`,w

(
X

(k)
1 , . . . , X(k)

n

)
− τk

(
p`,w

(
X

(k)
1 , . . . , X(k)

n

))
IAk

)
q`,w

(
Y

(k)
1 , . . . , Y (k)

m

)
can be written as (

z∏̀
w=1

p`,w

(
X

(k)
1 , . . . , X(k)

n

)
q`,w

(
Y

(k)
1 , . . . , Y (k)

m

))
+ Tk

where Tk is the sum of products of elements in

{
p`,w

(
X

(k)
1 , . . . , X(k)

n

)
, τk

(
p`,w

(
X

(k)
1 , . . . , X(k)

n

))
, q`,w

(
Y

(k)
1 , . . . , Y (k)

m

)}z`
w=1

where each product contains at least one τk

(
p`,w

(
X

(k)
1 , . . . , X

(k)
n

))
and Tk′ can be obtained
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from Tk by exchanging the index k with k′. It is straightforward to show that

(τk ∗ ϕk)

(
z∏̀
w=1

p`,w

(
X

(k)
1 , . . . , X(k)

n

)
q`,w

(
Y

(k)
1 , . . . , Y (k)

m

))
+ (τk ∗ ϕk)(Tk) = 0.

Since τ(p`,w(X1, . . . , Xn)) = 0 and ϕ(q`,w(Y1, . . . , Ym)) = 0 for all w ∈ {1, . . . , z`}, the

assumptions of the lemma imply

lim
k→∞

(τk ∗ ϕ)(Tk) = 0

as every term in used in Tk is bounded by the first and second assumptions of Theorem 2.4.2

and

lim
k→∞

τk

(
p`,w

(
X

(k)
1 , . . . , X(k)

n

))
= τ(p`,w(X1, . . . , Xn)) = 0

for all w ∈ {1, . . . , z`} by the third assumption of Theorem 2.4.2 . As similar computations

hold when p`,1 and/or q`,z` are constants (by possibly using the Y (k) instead of the X(k) and

the fourth assumption of Theorem 2.4.2), the claim has been proven.

For each k ∈ N let ‖T‖2,τk∗ϕk = (τk ∗ ϕ)(T ∗T )
1
2 for all T ∈ (Ak, τk) ∗ (Bk, ϕk) and

let ‖T‖2,τ∗ϕ = (τ ∗ ϕ)(T ∗T )
1
2 for all T ∈ (A, τ) ∗ (B, ϕ). By considering the construc-

tion of the reduced free product, for a fixed polynomial p ∈ C〈t1, . . . , tn+m〉 the norm

‖p(X1, . . . , Xn, Y1, . . . , Ym)‖ agrees with

sup {|(τ ∗ ϕ)((p · p1 · p2)(X1, . . . , Xn, Y1, . . . , Ym))|}

where the supremum is taken over all pi ∈ C〈t1, . . . , tn+m〉 with

‖pi(X1, . . . , Xn, Y1, . . . , Ym)‖2,τ∗ϕ < 1.

As a similar expression holds for
∥∥∥p(X(k)

1 , . . . , X
(k)
n , Y

(k)
1 , . . . , Y

(k)
m

)∥∥∥, the result follows.
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Remarks 2.4.4. Using the notation in Theorem 2.4.2, let

D :=

∏
k≥1 ((Ak, τk) ∗ (Bk, ϕk))⊕
k≥1 ((Ak, τk) ∗ (Bk, ϕk))

and let q :
∏

k≥1 ((Ak, τk) ∗ (Bk, ϕk)) → D be the canonical quotient map. Consider the

C∗-subalgebra C of D generated by

{
q

((
X

(k)
j

)
k≥1

)
| j ∈ {1, . . . , n}

}⋃{
q

((
Y

(k)
j

)
k≥1

)
| j ∈ {1, . . . ,m}

}
.

Lemma 2.4.3 tells us that there exists a surjective ∗-homomorphism Ψ : C→ (A, τ) ∗ (B, ϕ)

defined by

Ψ

(
q

((
X

(k)
j

)
k≥1

))
= Xj and Ψ

(
q

((
Y

(k)
j

)
k≥1

))
= Yj.

Moreover Ψ is an isomorphism if and only if

lim sup
k→∞

∥∥∥p(X(k)
1 , . . . , X(k)

n , Y
(k)

1 , . . . , Y (k)
m

)∥∥∥ ≤ ‖p(X1, . . . , Xn, Y1, . . . , Ym)‖

for all polynomials p ∈ C〈t1, . . . , tn+m〉. Thus Theorem 2.4.2 is true if and only if Ψ is

an isomorphism. The question of whether Ψ is an isomorphism can be considered as a

modification of the third equivalence of Theorem 1.6.1.

Our next goal is to prove Theorem 2.4.2 provided that Y
(k)
j = Yj for all k ∈ N and

j ∈ {1, . . . ,m}, ϕk = ϕ for all k ∈ N, and B is an exact C∗-algebra. To do this we reprove

the following known results from the appendix of [47] that prove Theorem 2.4.2 when the Yj

are free creation operators on a Fock space.

Lemma 2.4.5. Let A be a unital C∗-algebra with a state τ with a faithful GNS representation

and let B be the universal C∗-algebra generated by A and elements L1, . . . , Ln satisfying

L∗iALj = δi,jτ(A) for all A ∈ A (where δi,j is the Kronecker delta function). Let ψ be the
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linear functional on ∗-alg(A, {Lj}nj=1) defined by ψ|A = τ and

ψ(A0Li1A1 · · ·Ak−1LikAkA
′
0L
∗
j1
A′1 · · ·A′`−1L

∗
j`
A′`) = 0

whenever A1, . . . , Ak, A
′
1, . . . , A

′
` ∈ A and at least one of k and ` is non-zero. Then ψ extends

to a state on B having a faithful GNS representation. Moreover, if (A, τ)∗(E , φ) where (E , φ)

is the C∗-algebra generated by n free creation operators `1, . . . , `n on the full Fock space F(Cn)

and φ is the vacuum expectation, there exists an isomorphism Φ : (B, ψ) → (A, τ) ∗ (E , φ)

such that Φ(A) = A for all A ∈ A and Φ(Lj) = `j for all j ∈ {1, . . . ,m}.

Proof. Let
(
B̂, ψ̂

)
be the reduced free product (A, τ)∗ (E , φ). By [71, Corollary 2.5] `iA`

∗
j =

δi,jτ(A) for all A ∈ A and

ψ̂(A0`i1A1 · · ·Ak−1`ikAkA
′
0`
∗
j1
A′1 · · ·A′`−1`

∗
j`
A′`) = 0

whenever A1, . . . , Ak, A
′
1, . . . , A

′
` ∈ A and at least one of k and ` is non-zero. Hence, by the

universal property of B, there exists a ∗-homomorphism Φ : B→ B̂ such that ψ = ψ̂ ◦ Φ.

To complete the lemma it suffices to prove Φ is injective. However, by [52] (and by

applying the same ‘Fourier series’-like argument as in Section 2.2), it suffices to check that

the linear span of {AL∗iBLjC | i, j ∈ {1, . . . , n}, A,B,C ∈ A} is dense in A and that there

exists a homomorphism α : {z ∈ C | |z| = 1} → Hom
(
B̂
)

such that αz(A) = A for

all A ∈ A and αz(`j) = z`j for all j ∈ {1, . . . , n}. However the first claim is trivial by

taking i = j, B = IA = C. Since it is trivial to verify that there exists a homomorphism

α : {z ∈ C | |z| = 1} → Hom
(
B̂
)

such that αz(`j) = z`j for all j ∈ {1, . . . , n}, taking the

free product with the identity map on A will complete the lemma.

Lemma 2.4.6. Theorem 2.4.2 is true with the additional assumptions that Y
(k)
j = Yj for

all k ∈ N and j ∈ {1, . . . ,m}, ϕk = ϕ for all k ∈ N, B is the C∗-algebra generated by m

creation operators `1, . . . , `m on a Fock space, and ϕ is the vector state of the vacuum vector.
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Proof. Consider the C∗-algebra

D :=

∏
k≥1 ((Ak, τk) ∗ (C∗(`1, . . . , `m), ϕ))⊕
k≥1 ((Ak, τk) ∗ (C∗(`1, . . . , `n), ϕ))

.

Let q :
∏

k≥1 ((Ak, τk) ∗ (C∗(`1, . . . , `m), ϕ))→ D be the canonical quotient map and let

X ′j := q

((
X

(k)
j

)
k≥1

)
and Li := q

(
(`i)k≥1

)
for all j ∈ {1, . . . , n} and i ∈ {1, . . . ,m}. Notice, by the first assumption of Theorem 2.4.2,

A is isomorphic to the C∗-subalgebra of D generated by {X ′j}nj=1. Let C be the C∗-subalgebra

of D generated by A and {Lj}mj=1. By Remarks 2.4.4 there exists a ∗-homomorphism Ψ :

C→ (A, τ) ∗ (C∗(`1, . . . , `m), ϕ) such that Ψ(X ′j) = Xj for all j ∈ {1, . . . , n} and Ψ(Lj) = `j

for all j ∈ {1, . . . ,m}.

We claim that Ψ is an isomorphism. To see this, we note by the third assumption of

Theorem 2.4.2 that

L∗i p(X
′
1, . . . , X

′
n)Lj = δi,jτ(p(X ′1, . . . , X

′
n))IA

for all polynomials p ∈ C〈t1, . . . , tn〉. Hence, by Lemma 2.4.5 and by universality, there

exists a ∗-homomorphism Φ : (A, τ) ∗ (C∗(`1, . . . , `m), ϕ) → C such that Φ(Xj) = X ′j for all

j ∈ {1, . . . , n} and Φ(`j) = Lj for all j ∈ {1, . . . ,m}. Hence Ψ is invertible with inverse Φ.

Thus the result follows from Remarks 2.4.4.

To prove Theorem 2.4.2 provided that Y
(k)
j = Yj for all k ∈ N and j ∈ {1, . . . ,m},

ϕk = ϕ for all k ∈ N, and B is an exact C∗-algebra we will make use of the following result

that provides an embedding of the reduced free product of two C∗-algebras A and B into a

reduced free product involving A⊗min B.

Lemma 2.4.7. Let (A, ϕ) and (B, ψ) be non-commutative probability spaces, let `1 be the

unilateral forward shift on `2(N), let {en}n≥1 be the standard orthonormal basis for `2(N),
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and let φ : C∗(`1) → C be defined by φ(T ) = 〈Te1, e1〉 for all T ∈ C∗(`1). There exists a

unitary U ∈ C∗(`1) (independent of A and B) and an injective ∗-homomorphism

Ψ : (A, ϕ) ∗ (B, ψ)→ (A⊗min B, ϕ⊗ ψ) ∗ (C∗(`1), φ)

such that Ψ(A) = A⊗ IB and Ψ(B) = U∗(IA ⊗B)U for all A ∈ A and B ∈ B.

Proof. See [22, Proposition 4.2].

Lemma 2.4.8. Theorem 2.4.2 is true under the additional assumptions that Y
(k)
j = Yj for

all k ∈ N and j ∈ {1, . . . ,m}, ϕk = ϕ for all k ∈ N, and B is an exact C∗-algebra.

Proof. Since B is exact, by the fourth equivalence of Theorem 1.6.1 and by the first assump-

tion of Theorem 2.4.2, we obtain that

lim sup
k→∞

∥∥∥p(X(k)
1 ⊗ I, . . . , X(k)

n ⊗ I, I ⊗ Y1, . . . , I ⊗ Ym
)∥∥∥

Ak⊗minB

is

‖p(X1 ⊗ I, . . . , Xn ⊗ I, I ⊗ Y1, . . . , I ⊗ Ym)‖A⊗B

for all p ∈ C〈t1, . . . , tn+m〉. By the structure of the states on the tensor products and by the

third assumption of Theorem 2.4.2,

lim
k→∞

(τk ⊗ ϕ)
(
p
(
X

(k)
1 ⊗ I, . . . , X(k)

n ⊗ I, I ⊗ Y1, . . . , I ⊗ Ym
))

is

(τ ⊗ ϕ)(p(X1 ⊗ I, . . . , Xn ⊗ I, I ⊗ Y1, . . . , I ⊗ Ym))

for all p ∈ C〈t1, . . . , tn+m〉. Therefore Lemma 2.4.6 implies the limit of

∥∥∥p(X(k)
1 ⊗ I, . . . , X(k)

n ⊗ I, I ⊗ Y1, . . . , I ⊗ Ym, T
)∥∥∥

(Ak⊗minB,τk⊗ϕ)∗(C∗(`1),e1)
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as k →∞ is

‖p(X1 ⊗ I, . . . , Xn ⊗ I, I ⊗ Y1, . . . , I ⊗ Ym, T )‖(A⊗minB,τ⊗ϕ)∗(C∗(`1),e1)

for all p ∈ C〈t1, . . . , tn+m+1〉 and for all T ∈ C∗(`1). By using T = U where U is a unitary

as in Lemma 2.4.7 and by viewing (Ak, τk) ∗ (B, ϕ) and (A, τ) ∗ (B, ϕ) as C∗-subalgebras of

(Ak ⊗min B, τk ⊗ϕ) ∗ (C∗(`1), e1) and (A⊗min B, τ ⊗ϕ) ∗ (C∗(`1), e1) respectively, the result

follows.

Just as Lemma 2.4.8 upgraded Lemma 2.4.6 to exact C∗-algebras by use of Lemma 2.4.7

and tensor products, we will use Lemma 2.4.8 along with the following lemma involving

direct sums to prove Theorem 2.4.2.

Lemma 2.4.9. For i ∈ {1, 2} let (Ai, τi) be non-commutative probability spaces. Let τ :

A1 ⊕ A2 → C be the state given by

τ(A1 ⊕ A2) =
1

2
(τ1(A1) + τ2(A2))

for all A1 ∈ A1 and A2 ∈ A2.

Let O2 be the Cuntz algebra, let F2 be the canonical CAR C∗-subalgebra of O2, let τ ′ :

F2 → C be the unique normalized trace on F2, let E : O2 → F2 be the canonical conditional

expectation of O2 onto F2, and let σ := τ ′ ◦ E : O2 → C. Note σ is a faithful state.

Let C be any C∗-algebra with a state ρ such that there exists a unitary U ∈ C such that

ρ|C∗(U) is faithful, ρ(U) = 0, and the GNS representation of C with respect to ρ is faithful.

Then there exists an injective ∗-homomorphism

π : (A1, τ1) ∗ (A2, τ2)→ ((A1 ⊕ A2)⊗O2, τ ⊗ σ) ∗ (C, ρ)

and elements X, Y, Z,W ∈ C∗(I⊗O2,C) ⊆ ((A1⊕A2)⊗O2, τ⊗σ)∗(C, ρ) independent of the

choice of A1 and A2 such that π(A1) = X(A1⊕0)Y for all A1 ∈ A1 and π(A2) = Z(0⊕A2)W
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for all A2 ∈ A2.

Proof. See [13, Lemma 5.6].

Proof of Theorem 2.4.2. For each k ∈ N define the state ψk : Ak ⊕Bk → C by

ψk(A⊕B) =
1

2
(τk(A) + ϕk(B))

for all A ∈ Ak and B ∈ Bk and define the state ψ : A⊕B→ C by

ψ(A⊕B) =
1

2
(τ(A) + ϕ(B))

for all A ∈ A and B ∈ B. By the first and second assumptions of Theorem 2.4.2, it is clear

that

lim sup
k→∞

∥∥∥p(X(k)
1 ⊕ 0, . . . , X(k)

n ⊕ 0, 0⊕ Y (k)
1 , . . . , 0⊕ Y (k)

m

)∥∥∥
Ak⊕Bk

is

‖p(X1 ⊕ 0, . . . , Xn ⊕ 0, 0⊕ Y1, . . . , 0⊕ Ym)‖A⊕B

for all p ∈ C〈t1, . . . , tn+m〉 and by the third and fourth assumptions of Theorem 2.4.2

lim
k→∞

ψk

(
p
(
X

(k)
1 ⊕ 0, . . . , X(k)

n ⊕ 0, 0⊕ Y (k)
1 , . . . , 0⊕ Y (k)

m

))
is

ψ(p(X1 ⊕ 0, . . . , Xn ⊕ 0, 0⊕ Y1, . . . , 0⊕ Ym))

for all p ∈ C〈t1, . . . , tn+m〉,

Let S1 and S2 be two isometries that generated the Cuntz algebra. Since O2 is exact, by

viewing Ak⊕Bk ∈ (Ak⊕Bk)⊗minO2 and A⊕B ∈ (A⊕B)⊗minO2 canonically, the fourth

equivalence of Theorem 1.6.1 implies that

lim sup
k→∞

∥∥∥p(X(k)
1 ⊕ 0, . . . , X(k)

n ⊕ 0, 0⊕ Y (k)
1 , . . . , 0⊕ Y (k)

m , S1, S2

)∥∥∥
(Ak⊕Bk)⊗minO2

71



is

‖p (X1 ⊕ 0, . . . , Xn ⊕ 0, 0⊕ Y1, . . . , 0⊕ Ym, S1, S2)‖(A⊕B)⊗minO2

for all p ∈ C〈t1, . . . , tn+m+2〉.

Let σ be the faithful state from Lemma 2.4.9. Therefore

lim
k→∞

(ψk ⊗ σ)
(
p
(
X

(k)
1 ⊕ 0, . . . , X(k)

n ⊕ 0, 0⊕ Y (k)
1 , . . . , 0⊕ Y (k)

m , S1, S2

))
is

(ψ ⊗ σ) (p (X1 ⊕ 0, . . . , Xn ⊕ 0, 0⊕ Y1, . . . , 0⊕ Ym, S1, S2))

for all p ∈ C〈t1, . . . , tn+m+2〉 by the structure of the tensor products of states.

Let C =M2(C), let ρ be the faithful normalized trace on C, and let

U :=

 0 1

1 0

 .
Since C can be generated by a single operator free from ρ, Lemma 2.4.8 implies if T ∈M2(C)

and p ∈ C〈t1, . . . , tn+m+3〉 then the norms of

p
(
X

(k)
1 ⊕ 0, . . . , X(k)

n ⊕ 0, 0⊕ Y (k)
1 , . . . , 0⊕ Y (k)

m , S1, S2, T
)

in ((Ak ⊕Bk)⊗min O2, ψk ⊗ σ) ∗ (M2(C), ρ) converges to the norm of

p (X1 ⊕ 0, . . . , Xn ⊕ 0, 0⊕ Y1, . . . , 0⊕ Ym, S1, S2, T )

in ((A⊕B)⊗minO2, ψ⊗σ)∗(M2(C), ρ). Therefore the result clearly follows by the embedding

properties given by Lemma 2.4.9.

Combining Theorem 2.1.2, Theorem 2.4.2, and Remarks 2.4.4, we have the following

analog of Lemma 1.6.2 for reduced free products.
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Corollary 2.4.10. Suppose that
{
X

(k)
i

}n
i=1

, {Xi}ni=1, and {Yi}mi=1 are generators for the

non-commutative probability spaces (Ak, τk), (A, τ), and (B, ϕ) respectively and that

1. lim supk→∞

∥∥∥q (X(k)
1 , . . . , X

(k)
n

)∥∥∥
Ak

= ‖q(X1, . . . , Xn)‖A and

2. limk→∞ τk

(
q
((
X

(k)
1 , . . . , X

(k)
n

)))
= τ(q(X1, . . . , Xn))

for all q ∈ C〈t1, . . . , tn〉. Let D be the unital C∗-subalgebra of
∏

k≥1 Ak generated by

{(
X

(k)
i

)
k≥1

}n
i=1

and let J := D ∩
(⊕

k≥1 Ak

)
. Then J is an ideal of D such that D/J ' A.

Let σ : B → B(K) be the GNS representation of ϕ with unit cyclic vector η, let π0 :

A → B(H0) be the GNS representation of τ with unit cyclic vector ξ, let π1 : D → B(H1)

be a faithful, unital representation, let q : D → A be the canonical quotient map, and let

π := (π0 ◦ q) ⊕ π1 : D → B(H0 ⊕H1) which is a faithful, unital representation. Then there

exists an injective ∗-homomorphism

Φ :
(D, π, ξ) ∗ (B, σ, η)

〈J〉D∗B
→
∏

k≥1((Ak, τk) ∗ (B, ϕ))⊕
k≥1((Ak, τk) ∗ (B, ϕ))

such that

Φ

((
X

(k)
i

)
k≥1

+ 〈J〉D∗B
)

=
(
X

(k)
i

)
k≥1

+
⊕
k≥1

((Ak, τk) ∗ (B, ϕ))

for all i ∈ {1, . . . , n} and

Φ(B + 〈J〉D∗B) = (B)k≥1 +
⊕
k≥1

((Ak, τk) ∗ (B, ϕ))

for all B ∈ B.

Recently in [55], Pisier has developed a direct proof of Theorem 2.4.2 using the non-

commutative Khintchine inequalities developed in [59]. Our original proof of Theorem 2.4.2
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did not allow the Y -variables to vary and it was observed that the above proof works in this

setting after [55].
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CHAPTER 3

Freely Independent Random Variables with

Non-Atomic Distributions

In this chapter, which is based on the author’s joint paper with his advisor [72], we examine

the distributions of non-commutative polynomials of non-atomic, freely independent random

variables. In particular, we obtain an analogue of the Strong Atiyah Conjecture for free

groups thus proving that the measure of each atom of any n × n matricial polynomial of

non-atomic, freely independent random variables is an integer multiple of n−1. In addition,

we show that the Cauchy transform of the distribution of any matricial polynomial of freely

independent semicircular variables is algebraic and thus the polynomial has a distribution

that is real-analytic except at a finite number of points.

3.1 Summary of Main Results on Distributions of Non-Atomic

Random Variables

One of the essential themes in the study of free probability [82] and its applications to

random matrix theory is to determine specific properties of the spectral distribution of a

fixed (matricial) polynomial in freely independent random variables. For example, some of

the earliest work in free probability theory concerns free convolution, which is the study of the

distribution of the polynomial P (X, Y ) = X+Y in two freely independent random variables.

In particular, the recent paper [10] of Belinschi, Mai, and Speicher uses an analytic theory for

operator-valued additive free convolution and Anderson’s self-adjoint linearization trick to

provide an algorithm for determining distributions of arbitrary polynomials. Combining the
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previously known results from [54], [25], [1], and [66] along with the results contained in this

dissertation, we obtain the following summary of the known properties of distributions of

matrices whose entries are polynomials in several free variables (or, equivalently, polynomials

in free variables having matricial coefficients).

Theorem 3.1.1. Let X1, . . . , Xn be normal, freely independent random variables and let

[pi,j] be an ` × ` matrix whose entries are non-commuting polynomials in n variables and

their adjoints such that [pi,j(X1, . . . , Xn)] is normal. Then

1. if there exists {dj}nj=1 ⊆ N such that the measure of each atom in the probability

distribution of Xj is an integer multiple of 1
dj

, then the measure of each atom in the

probability distribution of [pi,j(X1, . . . , Xn)] is an integer multiple of 1
d`

where d :=∏n
j=1 dj.

In particular,

2. if the probability distribution of each Xj is non-atomic, then the measure of each atom

in the probability distribution of [pi,j(X1, . . . , Xn)] is an integer multiple of 1
`
.

If, in addition, X1, . . . , Xn are freely independent semicircular variables or freely independent

Haar unitaries and [pi,j(X1, . . . , Xn)] is self-adjoint, then

3. the spectrum of [pi,j(X1, . . . , Xn)] is a union of at most ` disjoint sets each of which is

either a closed interval or a point, and

4. the measure of each connected subset of the spectrum of [pi,j(X1, . . . , Xn)] is a multiple

of 1
`
.

Furthermore, if µ is the spectral distribution of [pi,j(X1, . . . , Xn)], if K is the support of µ,

and if Gµ is the Cauchy transform of µ, then

5. Gµ is an algebraic formal power series and thus
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6. there exists a finite subset A of R such that if I is a connected component of R \A and

µ|I is the restriction of µ to I, then µ|I = 0 whenever I \K 6= ∅ and if I ⊆ K, then

µ|I has probability density function Im(g)|I where g is an analytic function defined on

W := {z ∈ C | |Im(z)| < δ} \
⋃
a∈A

{a− it | t ∈ [0,∞)}

for some δ > 0 such that g agrees with Gµ on {z ∈ C | 0 < Im(z) < δ} and for each

a ∈ A there exists an N ∈ N and an ε > 0 such that (z− a)Ng(z) admits an expansion

on W ∩ {z ∈ C | |z − a| < ε} as a convergent power series in rN(z − a) where rN(z)

is the analytic N th-root of z defined with branch C \ {−it | t ∈ [0,∞)}.

Finally, if the support of µ is contained in [0,∞), then

7. limε→0

∫ 1

ε
ln(t) dµ(t) > −∞.

In this theorem, by a polynomial in X1, . . . , Xn we mean a fixed element of the ∗-algebra

generated by X1, . . . , Xn.

Parts (3) and (4) of Theorem 3.1.1 follow directly from [54, Corollary 3.2] which computes

the K-groups of C∗red(Fn), the reduced group C∗-algebras of the free groups. The charac-

terization of the K0-group immediately implies that the normalized trace of any projection

in M`(C
∗
red(Fn)) is an integer multiple of `−1. Notice that part (4) of Theorem 3.1.1 does

not imply part (2) of Theorem 3.1.1 in the setting of part (4) as atoms may occur inside

a closed interval of the spectrum. Alternatively, these results were obtained using random

matrix techniques in [25].

Notice that part (2) of Theorem 3.1.1 applies when X1, . . . , Xn are freely independent

semicircular variables. Since freely independent semicircular variables describe the non-

commutative law of certain independent large random matrices (see [82]) we obtain the

following application to random matrix theory.

For each N ∈ N let X1(N), . . . , Xn(N) be self-adjoint Gaussian random matrices (or,

more generally, matrices with independent, identically distributed entries satisfying cer-
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tain moment conditions; see [82] or [34] for details) and let p be an arbitrary non-constant

non-commutative polynomial in n variables which is self-adjoint in the sense that Y (N) =

p(X1(N), . . . , Xn(N)) is always a self-adjoint matrix. Let µN be the empirical spectral mea-

sure of Y (N) (that is, µN [a, b] is the average proportion of eigenvalues of Y (N) which lie in

[a, b]).

Corollary 3.1.2. With the notation as above, the measures µN converge to a non-atomic

limiting measure µ.

Indeed, by a result of Voiculescu (see [82] or [34]), it is known that µN converges weakly

to a measure µ that is the law of p(X1, . . . , Xn) where X1, . . . , Xn are freely independent

semicircular variables. Thus part (2) of Theorem 3.1.1 implies that µ has no atoms provided

p is non-constant.

The motivation for the proof of Theorem 3.1.1 part (2) stems from the knowledge that the

statement of the theorem holds by the Strong Atiyah Conjecture for the free groups in the

case when X1, . . . , Xn are freely independent Haar unitaries. The Strong Atiyah Conjecture

(motivated by the work in [8] and proved for a class of groups that includes free groups by

Linnell in [43]; also see [44] and references therein) states that the kernel projection of an

arbitrary matrix with entries taken from the group ring CFn of a free group on n generators

must have integer von Neumann trace. To prove our theorem, we consider the analogue of

the Strong Atiyah Conjecture for ∗-subalgebras of a tracial von Neumann algebra. We call

this notion the Strong Atiyah Property (since it is known that the Strong Atiyah Conjecture

does not hold even for arbitrary group algebras; see [24] or [44] for example). It is not hard

to see that the Strong Atiyah Property holds for ∗-algebras generated by a single normal

element with non-atomic spectral measure. Our main result states that the Strong Atiyah

Property for ∗-algebras is stable under taking free products (in the sense of free probability

theory [82]) with the group algebra of a free group. Our proof closely follows [67] with the

main difference of being adapted for free products of algebras and not groups. Using this

result, we are able to conclude that the Strong Atiyah Property holds for any ∗-algebra

generated by X1, . . . , Xn provided that Xj are free and each has a non-atomic distribution.
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The proof that part (5) of Theorem 3.1.1 is true in the case X1, . . . , Xn are freely inde-

pendent Haar unitaries is contained in the proof of [66, Theorem 3.6]. In Section 3.5 we will

adapt the proof of [66, Theorem 3.6] to the semicircular case (see Theorem 3.5.3). The main

idea of the proof is to use the fact that if a certain tracial map on formal power series in a

single variable with coefficients in a tracial ∗-algebra A maps rational formal power series

to algebraic formal power series, then the Cauchy transform of a measure associated to a

self-adjoint element of A is algebraic (see Lemma 3.5.6). The proof that the tracial map is as

desired in the case A is generated by semicircular variables follows from demonstrating that

a specific formal power series in non-commuting variables is algebraic via a specific property

of the semicircular variables (see Lemma 3.5.11).

It is an interesting question whether the Cauchy transform of any polynomial in freely

independent random variable X1, . . . , Xn is algebraic provided the Cauchy transform of each

Xj is algebraic.

The question of whether the Cauchy transform of a measure is an algebraic power series as

in part (5) of Theorem 3.1.1 has previously been studied in particular cases. For example [56,

Example 3.8] demonstrates that the Cauchy transform of the quarter-circular distribution is

not algebraic. Furthermore [56, Corollary 9.5] demonstrates that if µ and ν are compactly

supported probability measures on R which have algebraic Cauchy transforms and are the

weak limits of the empirical spectral measures of N × N random matrices, then the free

additive convolution µ� ν (see [78]) is algebraic. Moreover, [56, Corollary 9.6] demonstrates

that if, in addition, µ and ν have support contained in the positive real axis, then the free

multiplicative convolution µ� ν (see [79]) is algebraic. This question was also considered in

[1] for limit laws of certain random matrices. In fact a result much like ours was hinted at in

that paper. Using [1, Theorem 2.9] we see that part (6) of Theorem 3.1.1 is implied by part

(5) of Theorem 3.1.1. In particular, part (6) of Theorem 3.1.1 directly provides information

about the probability density function of µ by the Stietjes inversion formula.

Finally, in Section 3.5, we will prove part (7) of Theorem 3.1.1 by following the proof of

[66, Theorem 3.6] which demonstrates that if the Cauchy transform of a measure is algebraic,
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then the Novikov-Shubin invariants of the measure are non-zero. Our interest in part (7)

of Theorem 3.1.1 comes from the following question: if p is an arbitrary, non-constant, self-

adjoint polynomial in n free semicircular variables, must it be the case that the free entropy

(as defined in [80]) of p is finite? Indeed elementary arguments may be used to show that if

S is a semicircular variable and p is a non-constant polynomial such that p(S) is self-adjoint,

then the spectral measure of p(S) has finite free entropy. Further evidence that this must be

true comes from a strengthened version of part (2) of Theorem 3.1.1 for matrices of the form

[pi,j] where each pi,j ∈ alg(S1, . . . , Sn)⊗alg(S1, . . . , Sn), which we prove below. In particular,

it follows that the vector of non-commutative difference quotients JP := [∂1P, . . . , ∂nP ] (see

[81]) has maximal rank whenever P is a non-constant, non-commutative polynomial in n

free semicircular variables.

Given the success of [10] in providing an algorithm for determining the distributions of

(matricial) polynomials in semicircular variables, it would also be of interest if an alternate

proof of Theorem 3.1.1 could be constructed using the ideas and techniques from [10].

3.2 The Atiyah Property for Tracial ∗-Algebras

In this section we will introduce the notion of the Atiyah Property for tracial ∗-algebra. In

addition, several examples of tracial ∗-algebras that satisfy the Atiyah Property, which will

be of use in Section 3.3, will be provided.

If ` ∈ N and τ is a linear functional on an algebra A, then τ` will denote the linear

functional on M`(A) given by

τ`([Ai,j]) =
∑̀
i=1

τ(Ai,i)

for all [Ai,j] ∈M`(A). Notice that if τ is tracial (that is, τ(AB) = τ(BA) for all A,B ∈ A),

then τ` is tracial.

Definition 3.2.1. Let A be a ∗-subalgebra of B(H), let τ be a vector state that is tracial on

A, and let Γ be an additive subgroup of R containing Z. We say that (A, τ) has the Atiyah
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Property with group Γ if for any n,m ∈ N and A ∈ Mm,n(A) the kernel of the induced

operator LA : H⊕n → H⊕m given by LA(ξ) = Aξ satisfies τm(ker(LA)) ∈ Γ. We say that

(A, τ) has the Strong Atiyah Property if (A, τ) has the Atiyah Property with group Z.

Of course the case that Γ = R is of no interest in the above definition. By the fact that

ker(LA) = ker(LA∗A), it suffices to consider n = m in the above definition. In this case it

is easy to see that ker(LA) = Im(LA∗) so we may replace kernels with images in the above

definition. Furthermore, if A is equipped with a C∗-norm and τ is faithful on the C∗-algebra

generated by A, the tracial representation of A ⊆ B(H) clearly does not matter.

It is clear that if G is a group that satisfies the Strong Atiyah Conjecture (e.g. any free

group) and τG is the canonical tracial state on L(G) (the group von Neumann algebra),

then (CG, τG) has the Strong Atiyah Property. The following provides examples of a tracial

∗-algebras that have the Atiyah Property. In particular, the following result implies that the

tracial ∗-algebra generated by a single semicircular variable has the Strong Atiyah Property

with respect to the canonical tracial state (see [82] or [34]).

Lemma 3.2.2. Let µ be a compactly supported probability measure on C. Let Γ be the

topological closure of the additive subgroup of R generated by 1 and the measures of the

atoms of µ and let (A, τ) be the tracial ∗-subalgebra of L∞(µ) ⊆ B(L2(µ)) generated by

multiplication by polynomials with trace

τ(Mp) =

∫
C
p dµ.

Then (A, τ) has the Atiyah Property with group Γ.

Proof. Let δt denote the point-mass measure at t ∈ C. Then we can write

µ = ν +
∑
t

αtδt

where ν is a non-atomic, compactly supported measure on C and αt ∈ Γ for all t. Therefore

ν(C) ∈ Γ by the construction of Γ.
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To see that (A, τ) has the Atiyah Property with group Γ, fix ` ∈ N and let [Ai,j] ∈M`(A).

Viewing each Ai,j as a polynomial, we can view [Ai,j] as a measureable function from C to

M`(C). Moreover, if P is the projection onto the image of [Ai,j] (which is in the von

Neumann algebra generated by M`(A) and thus is in L∞(µ)⊗M`(C)) and Pt ∈ M`(C) is

the projection onto the image of [Ai,j(t)], it is elementary to see that P (t) = Pt µ-almost

everywhere. Hence

τ`(P ) =

∫
C

tr(P (t)) dµ(t) =

∫
C

rank([Ai,j(t)]) dµ(t).

Recall the rank of a matrix M ∈ M`(C) may be obtained by computing the maximum

size of a submatrix with non-zero determinant. However, the pointwise determinant of

submatrices of [Ai,j(t)] is a polynomial in t and thus is either zero everywhere or non-zero

except at a finite number of points. Hence we obtain that t 7→ rank([Ai,j(t)]) is an integer-

valued function that is constant except at a finite number of points which may or may not be

atoms of µ. It is then easy to deduce that τ`(P ) is an integer-valued combination of elements

of Γ and thus lies in Γ.

Extending these integration techniques, we obtain the following result for the product of

measures on C. Notice that the tracial ∗-algebra constructed is the tensor product of tracial

∗-algebras from Lemma 3.2.2.

Lemma 3.2.3. Let n ∈ N and let {µj}nj=1 be non-atomic, compactly supported probability

measures on C. Let µ be the product measure of {µj}nj=1 and let (A, τ) be the tracial ∗-algebra

generated by multiplication by the coordinate functions {xj}nj=1 with trace

τ(Mf ) =

∫
Cn
f dµ.

Then (A, τ) has the Strong Atiyah Property .

Proof. We claim that if p(x1, . . . , xn) is a polynomial and V is the zero set of p(x1, . . . , xn),

then µ(V ) ∈ {0, 1} and µ(V ) = 1 only occurs when p(x1, . . . , xn) is the zero polynomial. To
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prove this claim, we proceed by induction on n with the case n = 1 following from Lemma

3.2.2. Suppose the claim holds for n − 1. Let p(x1, . . . , xn) be any polynomial and let ν

be the product measure of {µj}n−1
j=1 . Clearly the claim is trivial if p(x1, . . . , xn) is the zero

polynomial so suppose p(x1, . . . , xn) is not the zero polynomial. For each t ∈ C let

Vt := {(x1, . . . , xn−1) ∈ Cn | p(x1, . . . , xn−1, t) = 0}.

Therefore the zero set of p(x1, . . . , xn) is
⋃
t∈C Vt and ν(Vt) ∈ {0, 1} for each t ∈ C by the

induction hypothesis. If ν(Vt) = 1, then p(x1, . . . , xn−1, t) must be the zero polynomial which

implies xn − t divides p(x1, . . . , xn) since we can write

p(x1, . . . , xn) =
n−1∑
k=1

∑
ik≥0

pi1,...,in−1(xn)xi11 · · ·x
in−1

n−1

where pi1,...,in−1 are polynomials and if pi1,...,in−1(t) 6= 0 for at least one i1, . . . , in−1, then

clearly p(x1, . . . , xn−1, t) would not be the zero polynomial. By degree arguments there are

at most a finite number of t ∈ C such that xn−t divides p(x1, . . . , xn) so ν(Vt) = 0 except for

a finite number of t ∈ C. Since µn contains no atoms, by integrating using Fubini’s Theorem

we easily obtain that the zero set of p(x1, . . . , xn) has zero µ-measure as desired.

To see that (A, τ) has the Strong Atiyah Property, fix ` ∈ N and let [Ai,j] ∈ M`(A).

Thus each Ai,j is a multivariable polynomial. If P is the projection onto the image of [Ai,j],

then, as in the proof of Lemma 3.2.2, we obtain that

τ`(P ) =

∫
Cn

rank([Ai,j(t1, . . . , tn)]) dµ(t1, . . . , tn).

Since the rank of a matrix can be determined by computing the largest non-zero deter-

minant of a submatrix and since the determinant of any submatrix of [Ai,j(x1, . . . , xn)] is

a polynomial in x1, . . . , xn whose zero set either has zero or full µ-measure, the result is

complete.
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Next we endeavour to extend the above result to include compactly supported probability

measures on R that have atoms. We will only focus on measures with atoms that lie in certain

subgroups of Q since the main result of Section 3.3 will also only apply to these groups.

To discuss such measures, for an additive subgroup Γ of Q and a d ∈ N we define

1

d
Γ :=

{
1

d
g | g ∈ Γ

}
,

which is clearly an additive subgroup of Q that contains Z if Γ contains Z. As such, the

following result is trivial.

Lemma 3.2.4. Let (A, τ) be a tracial ∗-algebra that has the Atiyah Property with group Γ

and let ` ∈ N. Then (M`(A), 1
`
τ`) has the Atiyah Property with group 1

`
Γ.

Theorem 3.2.5. Let n ∈ N and let {µj}nj=1 be compactly supported probability measures on

C. Let µ be the product measure of {µj}nj=1 and let (A, τ) be the tracial ∗-algebra generated

by multiplication by the coordinate functions {xj}nj=1 with trace

τ(Mf ) =

∫
Cn
f dµ.

Suppose for each j ∈ {1, . . . , n} there exists a dj ∈ N such that the atoms of µj have measures

contained in 1
dj
Z. If d :=

∏n
j=1 dj, then (A, τ) has the Atiyah Property with group 1

d
Z.

Proof. By assumptions, for each j ∈ {1, . . . , n} we can write

µj = µ′′j +
∑
k

αk
dj
δtk

where δt represents the point-mass probability measure at t, the sum is finite, αk ∈ N,

tk1 6= tk2 if k1 6= k2, and µ′′j is an non-atomic measure. Notice µ′′j (C) ∈ 1
dj
Z. Let µ′j := 1

µ′′(C)
µ′′j

if µ′′j 6= 0 and let µ′j be the Lebesgue measure on [0, 1] if µ′′j = 0. Therefore the tracial ∗-

algebra generated by polynomials acting on L2(µj) can represented a tracial ∗-algebra of

diagonal matrices inMdj(B(L2(µ′j)) (with respect to the canonical normalized matrix trace)
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where the polynomial x maps to the matrix with x appearing on the diagonal djµ
′′
j (C) times

and each tk appearing on the diagonal αk times.

Let µ′ be the product measure of {µ′j}nj=1 and let (Aµ′ , τµ′) be the tracial ∗-algebra gener-

ated by multiplication by the coordinate functions {xj}nj=1 with trace τµ(Mf ) =
∫
Cn f dµ

′. By

taking tensor products of the tracial ∗-algebras generated by polynomials acting on L2(µj),

it is easily seen using the above representations that (A, τ) can be represented in the tracial

∗-algebra (Md(Aµ′), 1
d
(τµ′)d). Since Lemma 3.2.3 implies (Aµ′ , τµ′) has the Strong Atiyah

Property, Lemma 3.2.4 implies (Md(Aµ′), 1
d
(τµ′)d) has the Atiyah Property with group 1

d
Z

completing the proof.

3.3 Atiyah Property for Freely Independent Random Variables

The goal of this section is to use the Atiyah Property for tracial ∗-algebras to gain information

about the distributions of matricial polynomials of freely independent random variables. In

particular, Theorem 3.3.1 will enable the extensions of the results from Section 3.2 to the

non-commutative setting as seen in Theorem 3.3.4 thus completing the proof of part (1) of

Theorem 3.1.1. The proof of Theorem 3.3.1, which is based on the proof of [67, Proposition

3] (or the updated version [68, Proposition 6.1]), will be postponed until the next section in

order to focus on the applications of Theorem 3.3.1.

Recall that given unital ∗-algebras Ai ⊆ B(Hi) with vector states τi that are tracial on

Ai, we can consider the ∗-subalgebra A1 ∗ A2 inside the reduced free product C∗-algebra

(B(H1), τ1)∗ (B(H2), τ2) generated by A1 and A2. The canonical vector state τ1 ∗τ2 is then a

tracial state on A1 ∗A2 (see [82] or [34]). Similarly we can consider the ∗-subalgebra A1�A2

inside the C∗-algebra B(H1 ⊗ H2) generated by T ⊗ IH2 and IH1 ⊗ S for all T ∈ A1 and

S ∈ A2. With this notation, it is easy to state the following technical result.

Theorem 3.3.1. Let n ∈ N, let Fn be the free group on n generators, let CFn be the group ∗-

algebra equipped with the C∗-norm defined by the left regular representation, and let τFn be the

canonical trace on L(Fn). Let A and B be ∗-subalgebras of the tracial von Neumann algebras
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with separable preduals (M, τM) and (N, τN) respectively. Suppose that (A� B, τM⊗τN) has

the Atiyah Property with group 1
d
Z for some d ∈ N. Then ((A ∗ CFn) � B, (τM ∗ τFn)⊗τN)

has the Atiyah Property with group 1
d
Z.

Clearly Theorem 3.3.1 implies the following two results.

Corollary 3.3.2. If A and B are as in Theorem 3.3.1 and n,m ∈ N, then ((A∗CFn)� (B∗

CFm), (τM ∗ τFn)⊗(τN ∗ τFm)) has the Atiyah Property with group 1
d
Z.

Proof. This is a simple application of Theorem 3.3.1 twice using A = B and B = A ∗ CFn

the second time.

Corollary 3.3.3. Let A be a ∗-subalgebra of a tracial von Neumann algebra with separable

predual (M, τM). Suppose (A, τM) has the Atiyah Property with group 1
d
Z for some d ∈ N.

Then (A ∗ CFn, τM ∗ τFn) has the Atiyah Property with group 1
d
Z.

Proof. Take B = C in Theorem 3.3.1.

Using Theorem 3.3.1 along with the examples of Section 3.2, we obtain the following

result which provides important information about the spectral distributions of matricial

polynomials of normal, freely independent random variables.

Theorem 3.3.4. Let n ∈ N and let X1, . . . , Xn be normal, freely independent random vari-

ables with probability measures µj as distribution respectively. Suppose for each j ∈ {1, . . . , n}

there exists a dj ∈ N such that the atoms of µj have measures contained in 1
dj
Z. If A is the

unital ∗-algebra generated by X1, . . . , Xn (obtained by taking a reduced free product of tracial

∗-algebras), τ is the canonical trace on A, and d :=
∏n

j=1 dj, then (A, τ) has the Atiyah

Property with group 1
d
Z.

Furthermore, if [pi,j] is an ` × ` matrix whose entries are non-commutative polynomials

in n variables and their adjoints such that [pi,j(X1, . . . , Xn)] is normal, then the measure of

any atom of the spectral distribution of [pi,j(X1, . . . , Xn)] with respect to the normalized trace

1
`
τ` is in 1

d`
Z.
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Proof. Let µ be the product measure of {µj}nj=1 and let (A0, τ0) be the tracial ∗-algebra gen-

erated by multiplication by the coordinate functions {xj}nj=1 on L2(µ) with trace τ0(Mf ) =∫
Cn f dµ. Clearly each Xj has a representation in A0 as multiplication by the coordinate

function xj so we will view Xj ∈ A0 for all j ∈ {1, . . . , n}. Let U := λ(1) be the canonical

generating unitary operator for L(Z). Then it is easy to see that X1, UX2U
∗, . . ., UnXn(Un)∗

are freely independent in A0 ∗ CZ with respect to the trace τ0 ∗ τZ. However, since (A0, τ0)

has the Atiyah Property with group 1
d
Z by Theorem 3.2.5, (A0 ∗CZ, τ0 ∗ τZ) has the Atiyah

Property with group 1
d
Z by Theorem 3.3.1. Hence (A, τ) has the Atiyah Property with group

1
d
Z by taking the canonical isomorphism of tracial ∗-algebras.

Next suppose that [pi,j] is an `×` matrix whose entries are non-commutative polynomials

in n variables and their adjoints such that [pi,j(X1, . . . , Xn)] is normal and the spectral

distribution of [pi,j(X1, . . . , Xn)] has an atom. By translation we may assume that this atom

occurs at zero and thus corresponds to the kernel projection of [pi,j(X1, . . . , Xn)]. Since

(A, τ) has the Atiyah Property with group 1
d
Z we obtain that the measure of the atom is in

1
d`
Z.

As an application of the above result, we recall that Voiculescu developed in [78] the

notion of the additive free product of measures in which if {Xj}nj=1 are self-adjoint, freely

independent random variables with probability measures µj as distribution respectively, then

the additive free product measure µ := µ1 � · · · � µn is the distribution of X1 + · · · + Xn

in the reduced free product C∗-algebra. Hence Theorem 3.3.4 implies the following specific

case of [11, Theorem 7.4].

Corollary 3.3.5 (see [11, Theorem 7.4]). If n ∈ N and {µj}nj=1 are non-atomic, compactly

supported probability measures on R, then µ1 � · · ·� µn has no atoms.

Proof. Since each µj contains no atoms, we can apply Theorem 3.3.4 to conclude that µ :=

µ1 � · · ·� µn may only have atoms in Z. Since µ is a probability measure, if µ has an atom,

then µ must be a point-mass measure which would imply that X1 + · · ·+Xn = αI for some

α ∈ R contradicting the fact that X1, . . ., Xn are freely independent.
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To complete this section, we can extend Theorem 3.3.4 to tensor products of tracial

∗-algebras generated by self-adjoint, freely independent random variables.

Corollary 3.3.6. Let n,m ∈ N and let X1, . . . , Xn and Y1, . . . , Ym be collections of nor-

mal, freely independent random variables with probability measures µj and νk as distribution

respectively. Let (A, τA) and (B, τB) be the tracial ∗-algebras generated by the reduced free

products of {X1, . . . , Xn} and {Y1, . . . , Ym} respectively. Suppose for each j ∈ {1, . . . , n} and

k ∈ {1, . . . ,m} there exists a dj, d
′
k ∈ N such that the atoms of µj and νk have measures

contained in 1
dj
Z and 1

d′k
Z respectively. If

d :=
n∏
j=1

dj ·
m∏
k=1

d′k,

then (A⊗ B, τA⊗τB) has the Atiyah Property with group 1
d
Z.

Proof. Let µ be the product measure of {µj}nj=1 and let ν be the product measure of {νk}mk=1.

Let (A0, τA,0) be the tracial ∗-algebra generated by multiplication by the coordinate func-

tions {xj}nj=1 on L2(µ) with trace τA,0(Mf ) =
∫
Cn f dµ and let (B0, τB,0) be the tracial

∗-algebra generated by multiplication by the coordinate functions {yk}mk=1 on L2(ν) with

trace τB,0(Mf ) =
∫
Cm f dν. Therefore (A0 � B0, τA,0⊗τB,0) has the Atiyah Property with

group 1
d
Z by Theorem 3.2.5. The remainder of the proof follows the proof of Theorem 3.3.4

by an application of Corollary 3.3.2.

Notice that Corollary 3.3.6 has the following interesting application. For any n,m ∈

N let P1, . . . , Pm ∈ A := alg(S1, . . . , Sn) be polynomials in n free semicircular variables

S1, . . . , Sn and let ∂j be the non-commutative difference quotient derivations (see [81]). Let

JP := [∂iPj]ij which is an n × m matrix with entries in A ⊗ A. The matrix JP is the

non-commutative Jacobian of P := (P1, . . . , Pm). We define the rank of JP to be the (non-

normalized) trace of its image projection in Mn(W ∗(A⊗A)).

Corollary 3.3.7. With the above notation, rank(JP ) ∈ {0, 1, . . . ,min(m,n)}. In particular,

if {Pj}mj=1 are not all constant, then rank(JP ) ≥ 1.
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3.4 Proof of Theorem 3.3.1

This section is devoted to the proof of Theorem 3.3.1, which underlies all results of Section

3.3. Our proof is essentially the same as the argument of Schick in [67] adapted for the case

of algebras. This proof has themes similar to those used in [58, Lemma 10.43], which makes

use of the notion of a Fredholm module to show that the free groups satisfy the Strong

Atiyah Conjecture. The idea of applying Fredholm modules has its roots in a proof of the

Kadison Conjecture for free groups on two generators from [15].

Proof of Theorem 3.3.1. Let H := L2(M, τM). Thus M has left and right actions on H.

Similarly, let K := L2(N, τN). For a right-(M⊗N)⊕` invariant subspace L of (H⊗K)⊕`, we

define

dimM⊗N(L) := trM⊗N(Q) = (τM⊗τN)`(Q)

where Q is the orthogonal projection onto L (which is an element of M`(M⊗N) acting on

the left).

For later convenience we desire to construct a certain isomorphism of Hilbert spaces that

commonly appears in the proof that Fn satisfies the Strong Atiyah Conjecture. We desire a

bijection

ψ : {δh | h ∈ Fn \ {e}} → {δh ⊗ ei | h ∈ Fn, i ∈ {1, . . . , n}}.

(where {ei}ni=1 are the canonical orthonormal basis for Cn) as this will clearly produce a

unitary operator

Ψ : `2(Fn)	 (Cδe)→ `2(Fn)⊗ Cn.

Let {ui}ni=1 be generators for Fn. Consider the Cayley graph of Fn with edges {g, gui}. For

each h ∈ Fn \ {e} let e(h) be the first edge of the geodesic from h to e. Thus we may write

e(h) = {ψ0(h), ψ0(h)ur(h)} for some r(h) ∈ {1, . . . , n}. Thus if we define

ψ(δh) := δψ0(h) ⊗ er(h),
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we clearly obtain a bijection.

Let λ denote the left regular representation of Fn on `2(Fn). We claim that Ψ has the

property that for each T ∈ CFn the set of {δh}h∈Fn\{e} such that Ψ(λ(T )δh) does not make

sense (i.e. 〈λ(T )δh, δe〉 6= 0) or

Ψ(λ(T )δh) 6= (λ(T )⊗ ICn)Ψ(δh)

is finite. To see this notice for fixed g, h ∈ Fn the only way that λ(g)(δh) /∈ `2(Fn)	 (Cδe) is

if gh = e and the only way that Ψ(λ(g)δh) 6= (λ(g)⊗ICn)Ψ(δh) can occur is if when reducing

gh a term from g cancels the second-last letter in h (which occurs for a finite number of h

for a given g). Thus the claim follows by the linearity of Ψ.

Let {ζj}j∈Z be any orthonormal basis for K with ζ0 a trace vector. We claim we may

assume that there exists an orthonormal basis {ξj}j∈Z of H such that ξ0 is a trace vector

and

{k ∈ Z | 〈Tξj, ξk〉H 6= 0}

is finite for each j ∈ Z and T ∈ A. To see this, we first may assume that A is finitely

generated by self-adjoint operators {Ak}mk=1 since we need only check the Atiyah Property

for one matrix with entries in (A∗CFn)�B at a time and a finite number of elements of A

will appear. If {ξ′j}j∈Z is any orthonormal basis of H with ξ′0 = ξ0 a trace vector, then the

desired basis will be produced by applying the Gram-Schmidt Orthogonalization Process to

{Ai1 · · ·Aimξ′j | j ∈ Z,m ∈ N ∪ {0}, {ik}mk=1 ⊆ {1, . . . , n}}

starting with ξ′0.

Recall (A ∗ CFn)� B acts on ((H, ξ0) ∗ (`2(Fn), δe))⊗K and

(H, ξ0) ∗ (`2(Fn), δe) = Cξ0 ⊕
(⊕

C (ξj1 ⊗ δg1 ⊗ · · · )
)
⊕
(⊕

C (δg1 ⊗ ξj1 ⊗ · · · )
)
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(where ξ0 = δe) where all the tensors in the direct sums have finite length (ending at any

point), alternate between basis elements of H and `2(Fn), jk ∈ N, ik ∈ Z\{0}, and gk ∈ Fn \

{e}. Notice that the union of the vectors used in the above definition of (H, ξ0) ∗ (`2(Fn), δe)

is an orthonormal basis for (H, ξ0)∗(`2(Fn), δe). For convenience of notation, ξ0⊗δg1⊗· · · :=

δg1 ⊗ · · · , · · · ⊗ δgm ⊗ ξ0 := · · · ⊗ δgm , and · · · ⊗ ξjm ⊗ δe = · · · ⊗ ξjm .

Define the Hilbert spaces

L+ := ((H, ξ0) ∗ (`2(Fn), δe))⊗K and L− := (L+ ⊗ Cn ⊗H)⊕ (H⊗K).

Notice that (A ∗ CFn) � B has a canonical left action on L+ and thus induces a canonical

left action on L− by letting an operator T ∈ (A∗CFn)�B act via (T ⊗ ICn ⊗ IH)⊕ 0. Thus

we may view L+ and L− as left (A ∗ CFn) � B-modules. Similarly, M⊗N has a canonical

right action on H⊗K and thus on L+ by

(· · · ⊗ δgm ⊗ ξjm ⊗ ζ)T = · · · ⊗ δgm ⊗ ((ξjm ⊗ ζ)T ))

for all ζ ∈ K. Hence L+ is also a right M⊗N-module. It is clear that the right action of

M⊗N and the left action of (A ∗ CFn)� B on L+ commute.

We desire to construct a bijection φ between the canonical basis elements of L+ and L−

which will induce a unitary operator Φ : L+ → L−. It is clear that if Λ := Λ0 ∪ Λ′ where

Λ0 = {ξj ⊗ ζj′}j,j′∈Z and

Λ′ :=

(ξj0 ⊗ δg1 ⊗ · · · ⊗ δgm ⊗ ξjm)⊗ ζj′

∣∣∣∣∣∣ m ≥ 1, {gk}mk=1 ∈ Fn \ {e},

j0, jm, j
′ ∈ Z, {jk}m−1

k=1 ⊆ Z \ {0}

 ,

then Λ is an orthonormal basis of L+. Furthermore

Θ := {0⊕ (ξj ⊗ ζj′)}j,j′∈Z ∪ {(η ⊗ ei ⊗ ξj)⊕ 0 | η ∈ Λ, j ∈ Z, i ∈ {1, . . . , n}}
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is an orthonormal basis of L−. Define φ : Λ→ Θ by defining φ|Λ0 via

φ(ξj ⊗ ζj′) = 0⊕ (ξj ⊗ ζj′)

for all j, j′ ∈ Z and by defining φ|Λ′ via the following rule: for

η = (ξj0 ⊗ δg1 ⊗ · · · ⊗ δgm ⊗ ξjm)⊗ ζj′ ∈ Λ

define

φ(η) = (((ξj0 ⊗ δg1 ⊗ · · · ⊗ δgm−1 ⊗ ξjm−1 ⊗ δψ0(gm))⊗ ζj′)⊗ er(gm) ⊗ ξjm)⊕ 0

(where if ψ0(gm) = e, we reduce the length of the first tensor by removing δe). Since Ψ is a

bijection on the given basis elements, it is elementary to verify that φ is a bijection and thus

induces a Hilbert space isomorphism Φ : L+ → L−.

Define a right M⊗N-module structure on L− by defining ηT := Φ((Φ−1(η))T ) for all

T ∈M⊗N and η ∈ L−. It is easy to see that

((η ⊗ ei ⊗ ξk)⊕ (ξj ⊗ ζj′))(T ⊗ S) = (η(IH ⊗ S)⊗ ei ⊗ ξkT )⊕ (ξjT ⊗ ζj′S)

for all T ∈ M and S ∈ N. Hence 0 ⊕ (H ⊗ K) and (L+ ⊗ Cn ⊗H) ⊕ 0 are a right M⊗N-

invariant subspace of L−. It is clear that the right action of M⊗N on L− commutes with

the left action of (A ∗ CFn)� B on L−.

Define Ξ to be the union of {ξ0 ⊗ ζ0} with

(ξj0 ⊗ δg1 ⊗ · · · ⊗ ξjm−1 ⊗ δgm)⊗ ζ0

∣∣∣∣∣∣ m ≥ 1, {gk}mk=1 ∈ Fn \ {e},

j0 ∈ Z, {jk}m−1
k=1 ⊆ Z \ {0}

 .

It is clear that Ξ is a set of orthonormal vectors in L+ each of which generates a one-M⊗N-

dimensional right M⊗N-submodule of L+ that are pairwise orthogonal and whose union is
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dense in L+ (as ξ0 and ζ0 are cyclic vectors for the right actions). By the definition of Φ it is

clear that Φ(Ξ) is a set of orthonormal vectors in L− each of which generates a one-M⊗N-

dimensional right M⊗N-submodule of L− that are pairwise orthogonal and whose union is

dense in L−.

We claim if T ∈ (A ∗ CFn)� B, then

{ξ ∈ Ξ | 〈Tξ, ξj ⊗ ζj′〉L+ 6= 0 for some j, j′ ∈ Z or Φ(T (ξ)) 6= T (Φ(ξ))}

is a finite subset (containing ξ0). By linearity it suffices to prove the claim when T is a

product of elements from A∪B∪{λ(h)}h∈Fn . First we will prove the claim when T ∈ A∪B.

However, it clearly follows that 〈Tξ, ξj ⊗ ζj′〉L+ 6= 0 for some j, j′ ∈ Z or Φ(T (ξ)) 6= TΦ(ξ)

only if ξ = ξ0 ⊗ ζ0.

Next we will prove the claim for T ∈ {λ(h)}h∈Fn\{e}. Fix h ∈ Fn, fix T = λ(h), and fix

ξ = ξj0 ⊗ δg1 ⊗ · · · ξjm−1 ⊗ δgm ⊗ ζ0 ∈ Ξ \ {ξ0 ⊗ ζ0}.

If m > 1 or j0 6= 0, then 〈Tξ, ξj ⊗ ζj′〉 = 0 for all j, j′ ∈ Z and Φ(T (ξ)) = T (Φ(ξ)) are clear.

Otherwise ξ = δg1 ⊗ ζ0 and it clear that 〈Tξ, ξj ⊗ ζj′〉 6= 0 for some j, j′ ∈ Z only if hg1 = e

and Φ(T (ξ)) = T (Φ(ξ)) unless Ψ(Tδg1) 6= (T ⊗ ICn)Ψ(δg1). Since the number of such g1 is

finite, the claim holds in this case.

Next notice for any element ξ ∈ Ξ and any element T of A ∪ {λ(h)}h∈Fn that Tξ is a

finite linear combination of elements of Ξ ∪ {ξj ⊗ ζ0}j∈Z by the choice of the orthonormal

basis {ξj}j∈Z. Furthermore, for any element ξ ∈ Ξ ∪ {ξj ⊗ ζ0}j∈Z and any element T of

A ∪ {λ(h)}h∈Fn there are only a finite number of elements η of Ξ such that 〈Tη, ξ〉L+ 6= 0.

Therefore if T1, . . . , Tn ∈ A∪ {λ(h)}h∈Fn , then the set of all ξ ∈ Ξ such that 〈T1 · · ·Tnξ, ξj ⊗

ζj′〉L+ 6= 0 for some j, j′ ∈ Z, 〈T2 · · ·Tnξ, ξj⊗ ζj′〉L+ 6= 0 for some j, j′ ∈ Z, or Φ(T1 · · ·Tnξ) 6=

T1Φ(T2 · · ·Tnξ) is finite. Thus the claim then follows by recursion and the fact that the

B-operator commute with elements of A ∗ CFn and with Φ.
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The above construction show that we have two representations of (A ∗ CFn) � B that

differ by a A � B-finite rank operator. In order to complete the proof, we need a way to

analyze the trace of such operators. Fix ` ∈ N and fix

A := [Ai,j] ∈M`((A ∗ CFn)� B).

The left actions of (A ∗ CFn)� B on L± allows A to act on L⊕`± . Let A± be the left action

of A on L⊕`± and let P± ∈ B(L⊕`± ) be the projection onto the image of A±. Thus we desire

to show that ((τM ∗ τFn)⊗τN)`(P+) ∈ 1
d
Z. Since the right action of M⊗N on L± commutes

with the left action of (A∗CFn)�B, we easily obtain that all operators under consideration

commute with the diagonal right action of M⊗N on these spaces.

Notice that there are only finitely many elements of (A∗CFn)�B that appear in A. For

each of these elements T , we recall that

{ξ ∈ Ξ | 〈Tξ, ξj ⊗ ζj′〉L+ 6= 0 for some j, j′ ∈ Z or Φ(T (ξ)) 6= T (Φ(ξ))}

is finite. Let L+,0 be the finite M⊗N-dimensional right M⊗N-submodule of L+ spanned by

the vectors that appear in the above set for at least one T ∈ (A ∗CFn)�B appearing in A.

Thus L+,c := L+ 	 L+,0 is a right M⊗N-submodule of L+.

Let L−,c := Φ(L+,c), which is a right M⊗N-submodule of L−. Therefore, since L+,0

contained all ξ ∈ Ξ where Φ(T (ξ)) 6= T (Φ(ξ)) for some T ∈ (A ∗ CFn) � B appearing in A

and since the right M⊗N-actions commutes with the left action of T and with Φ, we clearly

obtain that

A+|L+,c = Φ−1 ◦ A− ◦ Φ|L+,c .

By progressively adding the right M⊗N-submodule of L+ generated by a single element

of Ξ we can choose an increasing sequence

L+,0 ⊂ L+,1 ⊂ L+,2 ⊂ · · · ⊂ L+
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of finite M⊗N-dimensional right M⊗N-submodules of L+ such that

L+ =
⋃
j≥0

L+,j.

Let L−,j := Φ(L+,j) for all j ∈ N ∪ {0}. Hence each L−,j is a right M⊗N-submodule of L−

generated by a finite number of elements of Φ(Ξ). Notice that Λ0 ⊆ L+,0 so 0⊕ (H⊗K) ⊆

L−,0. By construction, it is clear that

A±(L⊕`± ) =
⋃
j≥0

A±(L⊕`±,j).

For each j ∈ N ∪ {0} let P±,j be the orthogonal projections onto A±(L⊕`±,j).

Since only finitely many elements of (A ∗ CFn) � B appear in A, by our selection right

M⊗N-modules generated by elements of Ξ we see that A+ has finite propagation; that is, for

every j ∈ N there exists an nj ∈ N such that A+(L⊕`+,j) ⊆ L⊕`+,nj . Indeed an element of B does

not modify the submodule, {λ(h)}h∈Fn permutes the elements of Ξ, and an element of A

maps an element of Ξ to at most a finite-M⊗N-dimensional M⊗N-module by the choice of

the basis {ξj}j∈Z. Similarly, as the left action of (A∗CFn)�B on L− has the same form and

the right M⊗N-modules L−,j are generated by elements of Φ(Ξ), A− also has propagation

so we may assume that A−(L⊕`−,j) ⊆ L⊕`−,nj by choosing nj sufficiently large.

The above allows us to view A±(L⊕`±,j) as images of rectangular matrices with entries in

A�B acting on the left from (H⊗K)⊕qj to (H⊗K)⊕pj for some appropriate choice of qj and

pj. Indeed an element from CFn acting on an element of Ξ or Φ(Ξ) acts as a scalar matrix

since {λ(h)}h∈Fn sends the right M⊗N-basis vectors Ξ and Φ(Ξ) to scalar multiples of other

elements of Ξ and Φ(Ξ) respectively. Furthermore, each element T ∈ A acts by the usual left

action of A onH ⊆ L+ (which corresponds to the action of A⊗IK on the right M⊗N-module

generated by ξ0 ⊗ ζ0 ∈ Ξ) and otherwise act by sending the other elements of Ξ and every

element of Φ(Ξ) to a finite linear combination of elements of Ξ and Φ(Ξ) respectively and

thus can be viewed as scalar matrices on these right M-modules. Furthermore, it is clear that
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an element of B acts via IH⊗B on each of the one-M⊗N-dimensional right M⊗N-modules

spanned by an element of Ξ or Φ(Ξ). Thus the claim follows. Therefore, since A � B has

the Atiyah Property with group 1
d
Z, we obtain that

trM⊗N(P±,j) = dimM(A±(L⊕`±,j)) ∈
1

d
Z.

Notice that

A±(L⊕`±,0), A±(L⊕`±,c), and each A±((L±,j ∩ L+,c)⊕`)

are all closed right M⊗N-modules (note L±,j ∩ L±,c = L±,j 	 L±,0). We claim that

dimM⊗N

(
A±(L⊕`±,0) ∩ A±(L⊕`±,c)

)
= limj→∞ dimM⊗N

(
A±(L⊕`±,0) ∩ A±((L±,j ∩ L±,c)⊕`)

)
.

To see this, it suffices by the continuity of von Neumann dimension (see [44, proof of Theorem

1.12]) to show that

A±(L⊕`±,0) ∩ A±(L⊕`±,c) =
⋃
j≥0

A±(L⊕`±,0) ∩ A±((L±,j ∩ L±,c)⊕`).

To see this, notice one inclusion is trivial. For the other inclusion, recall that A± has finite

propagation so there exists an n0 ∈ N such that A±(L⊕`±,0) ⊆ L⊕`±,n0
so

A±(L⊕`±,0) ∩ A±(L⊕`±,c) = A±(L⊕`±,0) ∩ L⊕`±,n0
∩ A±(L⊕`±,c)

= A±(L⊕`±,0) ∩ L⊕`±,n0
∩
(⋃

j≥1A±((L±,j ∩ L±,c)⊕`)
)
.

We claim that

L⊕`±,n0
∩

(⋃
j≥1

A±((L±,j ∩ L±,c)⊕`)

)
= L⊕`±,n0

∩ A±((L±,m ∩ L±,c)⊕`)

for some sufficiently large m ∈ N. Specifically, to choose m, we notice, by the same arguments
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that Φ almost commutes with the left actions, that there exists an m ∈ N such that if

η ∈ L±,m+k 	 L±,m for any k ≥ 1, then every entry of A applied to η is orthogonal to L±,n0

(that is, there are a finite number of elements η of Ξ for which there is an entry T in A such

that Tη has non-zero inner product with an element of L±,n0 ∩Ξ). To see the above equality

for this m ∈ N, we notice that one inclusion is trivial. For the other inclusion, fix

ξ ∈ L⊕`±,n0
∩

(⋃
j≥1

A±((L±,j ∩ L±,c)⊕`)

)
.

Thus there exists ηj ∈ (L±,c ∩ L±,j)⊕` such that ξ = limj→∞A±ηj. Therefore, if P is the

projection of L⊕`±,c onto (L±,m ∩ L±,c)⊕`, then

Aηj = A(Pηj) + ωj

where ωj ∈ (L⊕`±,n0
)⊥. Therefore, since

lim
j→∞

A±ηj = ξ ∈ L⊕`±,n0
,

we obtain that limj→∞ ωj = 0 and ξ = limj→∞A(Pζj) where Pζj ∈ (L±,m ∩ L±,c)⊕` as

desired. Hence the claim is complete. Thus

A±(L⊕`±,0) ∩ A±(L⊕`±,c) = A±(L⊕`±,0) ∩ L⊕`±,n0
∩ A±((L±,m ∩ L±,c)⊕`)

= A±(L⊕`±,0) ∩ A±((L±,m ∩ L±,c)⊕`)

⊆
⋃
j≥0A±(L⊕`±,0) ∩ A±((L±,j ∩ L±,c)⊕`)

which completes the claim.

Let P±,c to be the orthogonal projections onto A±(L⊕`±,c) and for each j ∈ N ∪ {0} let

P±,j,c be the orthogonal projection onto A±(L±,j ∩ L±,c)⊕`. Notice that P±,c and each P±,j,c

need not be in the von Neumann algebra generated byM`((A∗CFn)�B) but do commute
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with the right M⊗N-action on their respective spaces. Since

A+|L+,c = Φ−1 ◦ A− ◦ Φ|L+,c ,

we obtain that P+,j,c = Φ−1 ◦ P−,j,c ◦Φ for all j ∈ N ∪ {0} and P+,c = Φ−1 ◦ P−,c ◦Φ. Hence

〈P+,cη, η〉L⊕`+
= 〈P−,cΦ(η),Φ(η)〉L⊕`− and 〈P+,j,cη, η〉L⊕`+

= 〈P−,j,cΦ(η),Φ(η)〉L⊕`−

for all j ∈ N ∪ {0} and η ∈ L⊕`+ .

Let Q± := P± − P±,c and for each j ∈ N∪ {0} define Q±,j := P±,j − P±,j,c. Clearly these

are projections onto the complements of smaller projections in larger projections. We claim

that

trM⊗N(Q±) = lim
j→∞

trM⊗N(Q±,j).

To begin, let A0 denote the restriction of A± to L⊕`±,0. We claim for each fixed j ∈ N that

0 −→ ker(Q±,jA0) −→ L⊕`±,0
Q±,jA0−→ Im(Q±,j) −→ 0

is a weakly exact sequence (that is, the images are dense in the kernels). To see this, it

suffices to check weak exactness at Im(Q±,j). It is clear that Q±,j(A±(L⊕`±,j)) is dense in

Im(Q±,j). However

A±(L⊕`±,j) = A±(L⊕`±,0) + A±((L±,j ∩ L±,c)⊕`)

and it is clear that Q±,j(A((L±,j ∩ L±,c)⊕`)) = 0. Thus Q±,j(A±(L⊕`±,0)) = Q±,j(A±(L⊕`±,j)) is

dense in Im(Q±,j). Since each term in the weak exact sequence is a right M⊗N-module and

weak exact sequence preserve M⊗N-dimension (see [44, proof of Theorem 1.12]), we obtain

that

dimM⊗N(L⊕`±,0) = dimM⊗N(Im(Q±,j)) + dimM⊗N(ker(Q±,jA0))
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(which are all finite as dimM⊗N(L⊕`±,0) is finite by construction). Furthermore, it is clear that

ker(Q±,jA0) = {η ∈ L⊕`±,0 | Q±,jA0η = 0}.

Hence the sequence

0 −→ ker(A0) −→ ker(Q±,jA0)
A0−→ A±(L⊕`±,0) ∩ ker(Q±,j) −→ 0

is weakly exact. This implies the sequence

0 −→ ker(A0) −→ ker(Q±,jA0)
A0−→ A±(L⊕`±,0) ∩ A±((L±,j ∩ L±,c)⊕`) −→ 0

is a weakly exact sequence since it is elementary to verify that

A±(L⊕`±,0) ∩ ker(Q±,j) = A±(L⊕`±,0) ∩ A±((L±,j ∩ L±,c)⊕`).

Hence we obtain that

dimM⊗N(ker(Q±,jA0))

= dimM⊗N(ker(A0)) + dimM⊗N

(
A±(L⊕`±,0) ∩ A±((L±,j ∩ L±,c)⊕`)

)
.

By combining the two above dimension equations we obtain that

dimM⊗N(Im(Q±,j)) = dimM⊗N(L⊕`±,0)− dimM⊗N(ker(A0))

−dimM⊗N

(
A±(L⊕`±,0) ∩ A±((L±,j ∩ L±,c)⊕`)

)
for each j ∈ N. Similarly, by repeating the same arguments we obtain that

dimM⊗N(Im(Q±)) = dimM⊗N(L⊕`±,0)− dimM⊗N(ker(A0))

−dimM⊗N

(
A±(L⊕`±,0) ∩ A±((L±,c)⊕`)

)
.

Therefore, as all the terms in the above dimension equations are finite (in fact bounded by
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dimM⊗N(L⊕`±,0)),

trM⊗N(Q±) = dimM⊗N(Im(Q±))

= limj→∞ dimM⊗N(Im(Q±,j)) = limj→∞ trM⊗N(Q±,j).

We will now use Ξ and Φ(Ξ) to compute traces. For each η ∈ Ξ and i ∈ {1, . . . , `} let

ηi = (0, 0, . . . , 0, η, 0, . . . , 0) ∈ L⊕`+

where η is in the ith spot and similarly let

φ(ηi) = (0, . . . , 0, φ(η), 0, . . . , 0) ∈ L⊕`− .

Since Ξ and Φ(Ξ) are orthonormal M⊗N-bases for L+ and L− respectively, we easily obtain

that

trM⊗N(Q+) =
∑
η∈Ξ

∑̀
i=1

〈Q+ηi, ηi〉L⊕`+

and

trM⊗N(Q−) =
∑
η∈Ξ

∑̀
i=1

〈Q−φ(ηi), φ(ηi)〉L⊕`− .

Furthermore, we notice if η = ξ0 ⊗ ζ0 ∈ Ξ, then

∑̀
i=1

〈P+ηi, ηi〉L⊕`+
= ((τM ∗ τFn)⊗τN)`(P+)

whereas ∑̀
i=1

〈P−φ(ηi), φ(ηi)〉L⊕`− =
∑̀
i=1

0 = 0

by the definition of A− and P−. Finally, we claim that

∑̀
i=1

〈P+ηi, ηi〉L⊕`+
− 〈P−φ(ηi), φ(ηi)〉L⊕`− = 0
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for all η ∈ Ξ \ {ξ0 ⊗ ζ0}. To see this, suppose

η = (ξj0 ⊗ δg1 ⊗ · · · ⊗ δgm)⊗ ζ0 ∈ Ξ \ {ξ0 ⊗ ζ0}.

Then, by considering the above expression of φ(η) and the right action of L(Fn) on (H, ξ0) ∗

(`2(Fn), δe), there exists a unitary operator Uη ∈ L(Fn) such that Uη commutes with the

left actions of M, L(Fn), and N on L+ ⊗ Cn ⊗H such that Uηφ(η) = η ⊗ ei0 ⊗ ξ0 for some

i0 ∈ {1, . . . , n}. Since every element T ∈ (A∗CFn)�B acts on L− via (T ⊗ICn⊗IH)⊕0H⊗K,

P− is (P+ ⊗ ICn ⊗ IH)⊕ 0(H⊗K)⊕` so

∑`
i=1〈P−φ(ηi), φ(ηi)〉L⊕`− =

∑`
i=1〈P−U∗η (η ⊗ ei0 ⊗ ξ0), U∗η (η ⊗ ei0 ⊗ ξ0)〉L⊕`−

=
∑`

i=1〈P−(η ⊗ ei0 ⊗ ξ0), η ⊗ ei0 ⊗ ξ0〉L⊕`−
=

∑`
i=1〈P+ηi, ηi〉L⊕`+

as claimed. Hence

∑
η∈Ξ

∑̀
i=1

(
〈P+ηi, ηi〉L⊕`+

− 〈P−φ(ηi), φ(ηi)〉L⊕`−
)

= (τ ∗ τFn)`(P+).

Thus the proof will be complete if the left-hand side of the above equation is in 1
d
Z.

To begin we notice for all η ∈ Ξ and i ∈ {1, . . . , `} that

〈P+ηi, ηi〉L⊕`+
− 〈P−φ(ηi), φ(ηi)〉L⊕`−

= 〈P+,cηi, ηi〉L⊕`+
− 〈P−,cφ(ηi), φ(ηi)〉L⊕`−

+〈Q+ηi, ηi〉L⊕`+
− 〈Q−φ(ηi), φ(ηi)〉L⊕`−

= 0 + 〈Q+ηi, ηi〉L⊕`+
− 〈Q−φ(ηi), φ(ηi)〉L⊕`− .
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Similarly, we obtain for all η ∈ Ξ, i ∈ {1, . . . , `}, and j ∈ N that

〈P+,jηi, ηi〉L⊕`+
− 〈P−,jφ(ηi), φ(ηi)〉L⊕`−

= 〈P+,c,jηi, ηi〉L⊕`+
− 〈P−,c,jφ(ηi), φ(ηi)〉L⊕`−

+〈Q+,jηi, ηi〉L⊕`+
− 〈Q−,jφ(ηi), φ(ηi)〉L⊕`−

= 0 + 〈Q+,jηi, ηi〉L⊕`+
− 〈Q−,jφ(ηi), φ(ηi)〉L⊕`−

Since trM⊗N(P±,j) = dimM⊗N(A±(L⊕`±,j)) ∈ 1
d
Z for all j ∈ N, and since Q±,j have finite

M⊗N-rank (bounded by dimM⊗N(L⊕`+,0)), the following computation is valid:

trM⊗N(Q+,j)− trM⊗N(Q−,j)

=
∑

η∈Ξ

∑`
i=1〈Q+,jηi, ηi〉L⊕`+

− 〈Q−,jφ(ηi), φ(ηi)〉L⊕`−
=
∑

η∈Ξ

∑`
i=1〈P+,jηi, ηi〉L⊕`+

− 〈P−,jφ(ηi), φ(ηi)〉L⊕`−
= trM⊗N(P+,j)− trM⊗N(P−,j) ∈ 1

d
Z.

Therefore, since Q+ and Q− have finite M⊗N-rank (bounded above by dimM⊗N(L⊕`+,0)), we

obtain that

trM⊗N(Q+)− trM⊗N(Q−) = lim
j→∞

trM⊗N(Q+,j)− trM⊗N(Q−,j) ∈
1

d
Z.

Hence

((τM ∗ τFn)⊗τN)`(P+) =
∑

η∈Ξ

∑`
i=1

(
〈P+ηi, ηi〉L⊕`+

− 〈P−φ(ηi), φ(ηi)〉L⊕`−
)

=
∑

η∈Ξ

∑`
i=1

(
〈Q+ηi, ηi〉L⊕`+

− 〈Q−φ(ηi), φ(ηi)〉L⊕`−
)

= trM⊗N(Q+)− trM⊗N(Q−) ∈ 1
d
Z

which completes the proof.
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3.5 Algebraic Cauchy Transforms of Polynomials in Semicircular

Variables

In this section we will demonstrate that the Cauchy transform of any self-adjoint matricial

polynomial of semicircular variables is algebraic (see Theorem 3.5.3). Knowing that the

Cauchy transform of a measure is algebraic provides information about the spectral distri-

bution of operators as seen in Theorem 3.1.1. To begin, we recall the notion of a formal

power series in commuting variables.

Definition 3.5.1. Let n ∈ N and let X = {z1, . . . , zn}. For a ring R, a formal power series

in commuting variables X with coefficients in R is a map P : (N∪ {0})n → R which we will

write as

P =
n∑
j=0

∑
kj≥0

P (k1, . . . , kn)zk11 · · · zknn .

A formal power series P is called a polynomial if P (k1, . . . , kn) = 0 except for a finite

number of n-tuples (k1, . . . , kn). The set of all formal power series with coefficients in R will

be denoted R[[X]] and the set of all polynomials with coefficients in R will be denoted R[X].

The set of formal power series over a ring R can be given a ring structure. Indeed, if

addition on R[[X]] is defined coordinate-wise and the product of P,Q ∈ R[[X]] is defined

via the rule

(P +Q)(k1, . . . , kn) =
n∑
j=0

kj∑
`j=0

P (`1, . . . , `n)Q(k1 − `1, . . . , kn − `n),

it is elementary to verify that R[[X]] is a ring. Clearly R[X] is a subring of R[[X]] which

enables us to construct the quotient field of R[X]. The quotient field of R[X] will be denoted

R(X).

With the above definitions, we have the following definition essential to this section.

Definition 3.5.2. Let n ∈ N, let X = {z1, . . . , zn}, and let R be an integral domain. A

formal power P ∈ R[[X]] is said to be algebraic if there exists an m ∈ N and {qj}mj=0 ⊆ R(X)
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not all zero such that
m∑
j=0

qjP
j = 0.

Equivalently, by clearing denominators, we can require {qj}mj=0 ⊆ R[X]. The set of all

algebraic elements of R[[X]] is denoted Ralg[[X]].

Our main interest lies in demonstrating that certain formal power series relating to mea-

sures are algebraic. In particular, given a compactly supported probability measure µ, we

saw in Remarks 1.1.10 implies Gµ has a Laurent expansion that defines a formal power series

in C[[{1
z
}]]. Thus it makes sense to ask whether Gµ is algebraic.

In order to state the main result of this section, we will need some additional notation.

Let M be a finite von Neumann algebra with a faithful normal tracial state τ . Let A ∈

M be a fixed self-adjoint operator. Since A is a self-adjoint element in a von Neumann

algebra, for each t ∈ R let EA(t) ∈ M be the spectral projection of A onto (−∞, t]. The

cumulative density function of A, denoted FA, is the function on [−‖A‖ , ‖A‖] defined by

FA(t) = τ(EA(t)). Clearly FA is a right continuous function that is bounded above by 1. In

turn, FA defines the spectral measure of A, denoted µA, by the equation

µA((t1, t2]) = FA(t2)− FA(t1).

Notice that µA is a Borel probability measure supported on [−‖A‖ , ‖A‖]. Recall the spectral

measure has the unique property that if f is a continuous function on the spectrum of A,

then

τ(f(A)) =

∫ ‖A‖
0

f(t) dµA(t).

With the above notation, we have the following important result which provides infor-

mation about spectral distributions as indicated in Section 3.1.

Theorem 3.5.3. Let n, ` ∈ N, let S1, . . . , Sn be freely independent semicircular variables,

let A be the ∗-algebra generated by S1, . . . , Sn, and let A ∈ M`(A) be a fixed self-adjoint

operator. The Cauchy transform of the spectral measure of A is algebraic.
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In order to prove Theorem 3.5.3 we will mimic the proof of [66, Theorem 3.6] which

proves said result when S1, . . . , Sn are replaced with freely independent Haar unitaries. In

order to mimic the proof in [66], we recall another type of formal power series in commuting

variables.

Definition 3.5.4. Let S be a ring and let R be a subring of S. It is said that R is rationally

closed in S if for every matrix with entries in R which is invertible when viewed as a matrix

with entries in S, the entries of the inverse lies in R.

The rational closure of R in S, denoted R(R ⊆ S), is the smallest subring of S containing

R that is rationally closed.

For an arbitrary ring R and finite set X, the rational closure R(R[X] ⊆ R[[X]]) is called

the ring of rational power series over R and is denoted Rrat[[X]].

It turns out that the key to showing the Cauchy transform GµA is algebraic for all positive

matrices A with entries in a tracial ∗-algebra is intrinsically related to the following map.

Definition 3.5.5. Let M be a finite von Neumann algebra with faithful, normal, tracial

state τ . The tracial map on formal power series in one variable is the map TrM : M[[{z}]]→

C[[{z}]] defined by

TrM

(∑
n≥0

Tnz
n

)
=
∑
n≥0

τ(Tn)zn.

In particular, the beginning of the proof of [66, Theorem 3.6] demonstrates the following.

Lemma 3.5.6. Let M be a finite von Neumann algebra with faithful, normal, tracial state

τ and let A be a subalgebra of M. If

TrM(Arat[[{z}]]) ⊆ Calg[[{z}]],

then the Cauchy transform GµA is algebraic for every positive matrix A ∈ M`(A) and any

` ∈ N.
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Proof. As in the proof of [66, Theorem 3.6], for an arbitrary ` ∈ N and positive ma-

trix A ∈ M`(A), the entries of z(IM`(A) − Az)−1 (which can be viewed as an element of

M`(A)[[{z}]] by expanding the result when ‖A‖ |z| < 1) lie in the rational closure Arat[[{z}]].

By assumption, the formal power series

q(z) := TrM`(M)

(
z(IMn(A) − Az)−1

)
=
∑̀
j=1

TrM((z(IM`(A) − Az)−1)jj)

is an element of Calg[[{z}]]. Thus q(z−1) is an element of Calg[[{1
z
}]]. If τM`(M) is the canonical

trace on M`(M), it is well-known that

GµA(z) = τM`(M)((zIMn(A) − A)−1) = q(z−1)

in the domain {z ∈ C | Im(z) > 0, |z| > ‖A‖}. Hence GµA ∈ Calg[[{1
z
}]] as desired.

Thus the proof of Theorem 3.5.3 will be complete provided the assumptions of Lemma

3.5.6 can be verified. Following [66], it is necessary to examine formal power series in non-

commuting variables.

Definition 3.5.7. Let X be a finite set (which will be called an alphabet) and let W (X)

denote the set of all words with letters in X. The empty word will be denoted by e. For

a ring R, a formal power series with non-commuting variables X with coefficients in R is a

map P : W (X)→ R which we will write as

P =
∑

w∈W (X)

P (w)w.

A formal power series P is called a polynomial P (w) = 0 except for a finite number of words

w ∈ W (X). The set of all formal power series with coefficients in R will be denoted R〈〈X〉〉

and the set of all polynomials with coefficients in R will be denoted R〈X〉.

The set of formal power series over a ring R can be given a ring structure. Indeed, if
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addition on R〈〈X〉〉 is defined coordinate-wise, and multiplication is defined via the rule

 ∑
w∈W (X)

P (w)w

 ·
 ∑
w∈W (X)

Q(w)w

 =
∑

w∈W (X)

 ∑
u,v∈W (X),uv=w

P (u)Q(v)

w

(notice that for each w ∈ W (X) there are a finite number of pairs u, v ∈ W (X) such that

w = uv), it is elementary to verify that R〈〈X〉〉 is a ring. Thus it makes sense to consider

the rational closure of R〈X〉 inside R〈〈X〉〉 which will be denoted Rrat〈〈X〉〉.

As with formal power series in commuting variables, there is a notion of an algebraic

formal power series in non-commuting variables. The definition of such a formal power series

is more technical than in the commutative case and is based on the following definition.

Definition 3.5.8 (Schützenberger). Let X := {x1, . . . , xn} be an alphabet and let Z :=

{z1, . . . , zm} be an alphabet disjoint from X. A proper algebraic system over a ring R

is a set of equations zi = pi(x1, . . . , xn, z1, . . . , zm) for i ∈ {1, . . . ,m} where each pi is an

element of R〈X ∪ Z〉 that has no constant term nor term of the form αzj where α ∈ R and

j ∈ {1, . . . , n}.

A solution to a proper algebraic system is an m-tuple (P1, . . . , Pm) ∈ R〈〈X〉〉m such that

Pj(e) = 0 and pj(x1, . . . , xn, P1, . . . , Pm) = Pj for all j ∈ {1, . . . ,m}.

Definition 3.5.9. A formal power series P ∈ R〈〈X〉〉 is said to be algebraic if P − P (e)e is

a component of the solution of a proper algebraic system. The set all algebraic formal power

series in R〈〈X〉〉 will be denoted by Ralg〈〈X〉〉.

In order to prove the assumptions of Lemma 3.5.6 hold in the context of Theorem 3.5.3,

the proof of [66, Theorem 2.19(ii)] will be mimicked. To do so, it is necessary to show that a

certain formal power series in non-commuting variables is algebraic. The following formula

involving traces of words of semicircular variables plays a crucial role.

Lemma 3.5.10 (See [81, Section 3]). Let n ∈ N, let S1, . . . , Sn be freely independent semi-

circular variables (with second moments 1), let A be the ∗-algebra generated by S1, . . . , Sn,
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let τ be the canonical trace on A, and let X := {x1, . . . , xn} be an alphabet. For each

j ∈ {1, . . . , n} and w ∈ W (X),

τ(Sjw(S1, . . . , Sn)) =
∑

u,v∈W (X),w=uxjv

τ(u(S1, . . . , Sn))τ(v(S1, . . . , Sn))

where, for a word w0 ∈ W (X), w0(S1, . . . , Sn) is the element of A obtained by substituting

Si for xi.

Lemma 3.5.11. With the notation as in Lemma 3.5.10, the formal power series Psemi ∈

C〈〈X〉〉 defined by

Psemi :=
∑

w∈W (X)

τ(w(S1, . . . , Sn))w

is algebraic.

Proof. By Lemma 3.5.10 we easily obtain that

Psemi − e

=
∑n

j=1

∑
w∈W (X) τ(Sjw(S1, . . . , Sn))xjw

=
∑n

j=1

∑
w,u,v∈W (X),w=uxjv

τ(u(S1, . . . , Sn))τ(v(S1, . . . , Sn))xjuxjv

=
∑n

j=1

∑
u,v∈W (X) τ(u(S1, . . . , Sn))τ(v(S1, . . . , Sn))xjuxjv

=
∑n

j=1 xjPsemixjPsemi.

Hence it is elementary to verify that Psemi − e is a solution to the proper algebraic system

z =
n∑
j=1

xjzxjz + x2
jz + xjzxj + x2

j .

Thus Psemi is algebraic by definition.

Using Lemma 3.5.11 it is easy to verify the proof of [66, Theorem 2.19(ii)] generalizes

enough to complete the proof of Theorem 3.5.3. We will only sketch the changes to the proof

of [66, Theorem 2.19(ii)] as it nearly follows verbatim.
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Proof of Theorem 3.5.3. Let M be the von Neumann algebra generated by S1, . . . , Sn. By

Lemma 3.5.6 it suffices to show that the tracial map on formal power series TrM : M[[{z}]]→

C[[{z}]] has the property that

TrM(Arat[[{z}]]) ⊆ Calg[[{z}]].

Let S := {x1, . . . , xn} be an alphabet. As in the proof of [66, Theorem 2.19(ii)], there is a

canonical way to view

(C〈S〉)rat[[{z}]] ⊆ (C(z))rat〈〈S〉〉.

Consider the injective homomorphisms π : W (S) → A uniquely defined by π(xj) = Sj

for all j ∈ {1, . . . , n}. Clearly π extends to a homomorphism π : C〈S〉 → A and thus also

extends to a homomorphism π : (C〈S〉)[[{z}]]→ A[[{z}]] by applying π coordinate-wise.

Let P ∈ Arat[[{z}]] be arbitrary. Using algebraic properties, the proof of [66, Theorem

2.19(ii)] implies that

P ∈ π ((C〈S〉)rat[[{z}]]) .

Choose P ∈ (C〈S〉)rat[[{z}]] ⊆ (C(z))rat〈〈S〉〉 such that π(P ) = P . Recall that

Psemi :=
∑

w∈W (S)

τ(w(S1, . . . , Sn))w ∈ Calg〈〈S〉〉 ⊆ (C(z))alg〈〈S〉〉

by Lemma 3.5.11. Hence the Haadamard Product

P � Psemi :=
∑

w∈W (S)

P (w)Psemi(w)w =
∑

w∈W (S)

τ(w(S1, . . . , Sn))P (w)w

is an element of (C(z))alg〈〈S〉〉 by a theorem of Schützenberger from [69].

Since P �Psemi ∈ (C(z))alg〈〈S〉〉, if we substitute 1 ∈ C for every element of S we obtain
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a well-defined power series in C[[{z}]]. Indeed if

P =
∑
m≥0

pm(S1, . . . , Sn)zm

for some non-commutative polynomials pm in n variables, then

P =
∑
m≥0

(pm(x1, . . . , xn) + qm(x1, . . . , xn))zm

for some non-commutative polynomials qm in n variables such that qm(S1, . . . , Sn) = 0.

Hence

P � Psemi =
∑

w∈W (S)

τ(w(S1, . . . , Sn))

(∑
m≥0

(coef(pm, w) + coef(qm, w))zm

)
w

where coef(p, w) is the element of C that is the coefficient of w in p. Therefore, by replacing

each w with the scalar 1, we obtain

∑
w∈W (S) τ(w(S1, . . . , Sn))

(∑
m≥0(coef(pm, w) + coef(qm, w))zm

)
=

∑
m≥0 τ

(∑
w∈W (S)(coef(pm, w) + coef(qm, w))w(S1, . . . , Sn)

)
zm

=
∑

m≥0 τ (pm(S1, . . . , Sn) + qm(S1, . . . , Sn)) zm

=
∑

m≥0 τ(pm(S1, . . . , Sn))zm = TrM(P )

as desired. Thus the proof of [66, Theorem 2.19(ii)] implies that TrM(P ) is an element of

Calg[[{z}]] as desired.

With the proof of Theorem 3.5.3 complete, we turn our attention to further information

that Sauer’s results from [66] imply. The main purpose of [66] was to show the rationality

and positivity of the Novikov-Shubin invariant for matrices with entries in the group algebra

of a virtually free group. In particular, the Novikov-Shubin invariants are well-defined for

any finite, tracial von Neumann algebra.

Definition 3.5.12. Let M be a finite von Neumann algebra with faithful, normal, tracial
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state τ . For a positive operator A ∈ M with cumulative spectral distribution FA, the

Novikov-Shubin invariant α(A) ∈ [0,∞] ∪ {∞+} of A is defined as

α(A) :=

 lim inft→0+
ln(FA(t)−FA(0))

ln(t)
if FA(t) > FA(0) for all t > 0

∞+ otherwise
.

For a positive operator A in a finite von Neumann algebra M, it is easy to see that

α(A) =∞+ implies that zero is isolated in the spectrum of A. Furthermore, if α(A) = λ ∈

[0,∞), then FA(t)− FA(0) behaves like tλ as t tends to zero.

The Novikov-Shubin invariants are of interest in the context of Theorem 3.5.3 due to the

following result which is directly implied by the proof of [66, Theorem 3.6].

Lemma 3.5.13 (See [66, Theorem 3.6] for a proof). Let M be a finite von Neumann algebra

with faithful, normal, tracial state τ . Let A ∈ M be a positive operator and let µA be the

spectral measure of A. If the Cauchy transform GµA is algebraic, then the Novikov-Shubin

invariant α(A) is a non-zero rational number or ∞+.

The Novikov-Shubin invariants are of interest in terms of determining the decay of the

spectral density function at zero due to the following result.

Lemma 3.5.14 (See [44, Theorem 3.14(4)]). Let M be a finite von Neumann algebra with

faithful, normal, tracial state τ . If A ∈ M is a positive operator and FA is the spectral

density function of A, then

lim
ε→0

∫ ‖A‖
ε

1

t
(FA(t)− FA(0)) dt <∞

provided α(A) 6= 0.

Proof. If α(A) = ∞+, then FA(t) − FA(0) is a right continuous function bounded that is

zero on a neighbourhood of zero. Hence the result follows. If α(A) ∈ (0,∞], then it is trivial

to verify from Definition 3.5.12 that there exists a δ > 0 and an λ ∈ (0, α(A)) such that
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F (t)− F (0) ≤ tλ for all 0 ≤ t ≤ δ. Hence

0 ≤
∫ δ

0

1

t
(FA(t)− FA(0)) dt ≤

∫ δ

0

tλ−1 dt <∞.

Thus the result follows as FA(t)− FA(0) is a right continuous function bounded.

Furthermore, the following result provides information on how to extract information

from the conclusion of Lemma 3.5.14 to obtain information about integrating logarithms

against the spectral measure.

Lemma 3.5.15 (See [44, Lemma 3.15(1)]). Let M be a finite von Neumann algebra with

faithful, normal, tracial state τ . If A ∈ M is a positive operator, FA is the spectral density

function of A, and µA is the spectral measure of A, then

lim
ε→0

∫ ‖A‖
ε

1

t
(FA(t)− FA(0)) dt <∞

if and only if

lim
ε→0

∫ ‖A‖
ε

ln(t) dµA(t) > −∞.

Combining the above results, we obtain the following.

Theorem 3.5.16. Let n, ` ∈ N, let X1, . . . , Xn be freely independent semicircular variables

or freely independent Haar unitaries, and let A be the ∗-algebra generated by X1, . . . , Xn.

Then

lim
ε→0

∫ ‖A‖
ε

ln(t) dµA(t) > −∞

for all positive A ∈ M`(A) \ {0}. Furthermore, if µA does not have an atom at zero (e.g.

when ` = 1 by Theorem 3.3.4), then

∫ ‖A‖
0

ln(t) dµA(t) > −∞.

112



CHAPTER 4

Normal Limits of Nilpotent Operators in C∗-Algebras

As the question of when an operator is a norm limit of nilpotent operators from B(H) has

been solved, it is natural to ask whether this question can be phrased in the context of an

arbitrary C∗-algebra. In particular, the above work raises an interesting question: “Given a

C∗-algebra A, what is the closure of the nilpotent and quasinilpotent operators of A?”

Due to the existence and elegance of multiple proofs of Theorem 1.8.3, it is natural

rephrase the above question in the context of C∗-algebras; that is, “Given an arbitrary

C∗-algebra A and a normal operator N ∈ A, can simple conditions be given to determine

whether N is a norm limit of nilpotent or quasinilpotent operators from A?” Although the

GNS construction implies A can be embedded faithfully into the bounded linear operators on

a Hilbert space, Theorem 1.8.3 does not provided the answer to this question as the image of

A need not contain the necessary nilpotent or quasinilpotent operators. However, a solution

to this question can be easily obtained in several particular cases. For example, this question

is easily solved for abelian C∗-algebras and has a solution in the case of the Calkin algebra

as demonstrated in Theorem 1.8.5.

In this chapter, which is based on the author’s work from [74] and [75], we will investigate

the intersection of the normal operators with the norm closure of the nilpotent operators in

various C∗-algebras. Since von Neumann algebras behave in a similar manner to B(H), our

first goal is to study this question for von Neumann algebras. Section 4.1 will completely

answer this question for type I von Neumann algebras. For a type I∞ von Neumann algebra

as above, the answer is as expected; a normal operator is a limit of nilpotent operators if

and only if it is pointwise the limit of nilpotent operators (see Theorem 4.1.5). Section 4.2

113



will then generalize the above results to the type III von Neumann algebra setting. The

conclusions of Theorem 1.8.3 are shown to hold for every type III factor (see Proposition

4.2.1) and, by using the fact that every type III von Neumann algebra is a direct integral of

type III factors, it is obtain that a normal operator in a type III von Neumann algebra is a

limit of nilpotent operators if and only if it is pointwise the limit of nilpotent operators (see

Theorem 4.2.2).

A solution to the above question in a type II von Neumann algebra appears to be a

difficult task. Section 4.3 will provide restrictions for when a normal operator can be a limit

of nilpotent operators in a C∗-algebra with a faithful tracial state. In particular, for a type II1

von Neumann algebra Corollary 4.3.8 implies that no non-zero self-adjoint operator is a limit

of nilpotent operators and Theorem 4.3.13 implies a large class of normal operators cannot

by limits of nilpotent operators. However Section 4.4 shows that normal operators in type II1

factors with spectrum equal to the closed unit disk whose spetral distributions are absolutely

continuous and rotationally invariant are limits of nilpotent operators (see Theorem 4.4.6).

Section 4.5 will be devoted to the discussion of type II∞ factors where approximations appear

to be simpler and will pose a possible method for obtaining a solution.

There are many other questions related to the nilpotent operators in B(H). For example,

in [29, Corollary 6] Herrero showed that every normal operator in B(H) was the norm limit

of operators that are sums of two nilpotent operators. More recently [48] gives an excellent

overview of the results pertaining to the span of nilpotent operators with nilpotency index

two. In particular [48, Theorem 5.2] shows that if M ⊆ B(H) is a weakly closed, unital

C∗-algebra with infinite multiplicity (i.e. M ' M⊗B(H)) then every element of M is the

sum of eight nilpotent operators with nilpotency index at most two.

Section 4.6 will examine when a normal operator is in the closure of the span of the

nilpotent operators in a von Neumann algebra. In particular [29, Corollary 6] will be shown

to generalize to type I and type III von Neumann algebras as well as type II∞ factors. This

later result is evidence that the question of when normal operators can be limits of nilpotent

operators in type II∞ factors may be the same as in the type I and type III setting.
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In [29] Herrero also examined the distance from an arbitrary fixed projection P ∈ B(H)

to the nilpotent and quasinilpotent operators. In particular [29, Corollary 9] shows that

these distances were equal and either 0, 1, or 1
2
. Additional work has been done to obtain

bounds for the distance from a rank one projection in the n × n matrices to the nilpotent

n× n matrices (see [45] and [46]). Section 4.7 will be devoted to extending [29, Corollary 9]

to von Neumann algebras. In particular, [29, Corollary 9] generalizes to type I and type III

von Neumann algebras as well as type II∞ von Neumann algebras.

With the study of these problems for von Neumann algebras taken as far as possible,

Section 4.8 will examine these questions in the context of unital, simple, purely infinite C∗-

algebras. As unital, simple, purely infinite C∗-algebras have a plethora of projections with

particular structure similar to that of von Neumann algebras, a complete solution to our

problem will be obtained for said algebras (see Theorem 4.8.6). In particular, as the Calkin

algebra is a unital, simple, purely infinite C∗-algebra, Section 4.8 will generalize Theorem

1.8.5. Section 4.8 will also examine auxiliary questions such as the closure of the span of

nilpotent opertors and the distance from a projection to the nilpotent operators in any unital,

simple, purely infinite C∗-algebra.

Section 4.9 will examine this question in the context of AFD C∗-algebras. AFD C∗-

algebras are one generalization of finite dimensional C∗-algebras and thus it is surprising

that the closure of nilpotent operators in said algebras is incredible complex. In particular,

Section 4.9 relates the norm closure of the nilpotent operators in AFD C∗-algebras to the

asymptotic behaviour of nilpotent matrices as the dimension of the matrices are allowed

to increase and will demonstrate the existence of AFD C∗-algebras with non-zero normal

operators in the closure of the nilpotent operators.

Section 4.10 will generalize a construction from [57] to demonstrate that there exists a

separable, nuclear, quasidiagonal C∗-algebra where every operator is a norm limit of nilpotent

operators. The cone of this C∗-algebra is then AF-embeddable and it will be demonstrated

this cone has also has the property that every operator is a norm limit of nilpotent operators.
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4.1 Type I von Neumann Algebras

In this section we will determine when a normal operator in a type I von Neumann algebra

with separable predual is a norm limit of nilpotent operators. We will begin with finite type

I von Neumann algebras where the results trivially follow from the known results on matrix

algebras.

Proposition 4.1.1. Let M be a finite type I von Neumann algebra. Then

Nor(M) ∩QuasiNil(M) = {0}.

Proof. Since M is a finite type I von Neumann algebra there exist compact Hausdorff spaces

Xn such that M ⊆
∏

n≥1Mn(C(Xn)). Therefore, since an element of
∏

n≥1Mn(C(Xn)) is

quasinilpotent only if each direct summand is quasinilpotent, the proof will be complete by

showing

Nor(Mn(C(Xn))) ∩QuasiNil(Mn(C(Xn))) = {0}

for each n ∈ N. However this result follows from the fact that every normal (quasinilpotent)

element ofMn(C(Xn)) must be normal (quasinilpotent) at each element of Xn and the only

normal matrix that is a limit of quasinilpotent matrices is the zero matrix.

To deal with type I∞ von Neumann algebras with separable predual, we recall that every

such algebra has the form L∞(X,B(H)) for some Radon measure space (X,µ). For a normal

operator N ∈ L∞(X,B(H)) to be a limit of nilpotent operators, it is clear that N must be

the pointwise limit of nilpotent operators almost everywhere. The difficultly in the converse

lies in the fact that the integral of nilpotent operators need not be nilpotent if the degrees of

nilpotency are unbounded. This issue will be resolved by Lemma 4.1.4 which was motivated

by [26]. We will begin with the following useful observation that is implied by [26].

Lemma 4.1.2. Let D ∈ Nor(B(H)) be such that σ(D) = {λ0, λ1, . . . , λk} where λ0 = 0 and
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λi 6= λj if i 6= j. If the essential spectrum of D agrees with the spectrum of D then

dist(D,Nil(B(H))) ≤ 1

2
min
T∈T

max
e∈E(T )

length(e)

where T is the set of all trees with vertices {λ0, λ1, . . . , λk} and straight lines for edges, E(T )

is the set of edges of a tree T ∈ T , and length(e) is the Euclidean length of a straight line e

connecting λi to λj.

Proof. If D = 0, the result is trivial. Otherwise let

δ := min
T∈T

max
e∈E(T )

length(e) > 0

and fix a T0 ∈ T that obtains this minimum. Note that there exists an N ∈ Nor(B(H)) with

spectrum equal to T0. Since T0 is connected and contains zero, N ∈ Nil(B(H)) by Theorem

1.8.3. By the Spectral Theorem for Normal Operators there exists a unitary U ∈ B(H) such

that ‖D − UNU∗‖ ≤ 1
2
δ. Hence, as N ∈ Nil(B(H)), the result follows.

Note the following interesting result (which is in the spirit of [32, Example 1.5]) implies

the inequality in Lemma 4.1.2 is an equality when D is positive.

Lemma 4.1.3. Let A be a C∗-algebra and let A ∈ A+. Suppose

σ(A) = {0 = λ0 < λ1 < · · · < λk}.

Then

dist(A,QuasiNil(A)) ≥ 1

2
max
1≤i≤k

|λi − λi−1|.

Proof. Choose x0, y0 ∈ σ(A) such that x0 < y0 and

|x0 − y0| = max
1≤i≤k

|λi − λi−1|.
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Let σ0 := {z ∈ σ(A) | z ≤ x0} and let σ1 := {z ∈ σ(A) | z ≥ y0}. Thus σ0 and σ1 are

non-empty, disjoint, compact subsets of σ(A) such that σ(A) = σ0 ∪ σ1. Let

Ω :=

{
z ∈ C | |z − λk| < λk − y0 +

1

2
|x0 − y0|

}
.

It is clear that 0 /∈ Ω, σ1 ⊆ Ω, σ0 ∩ Ω = ∅, and

inf{|λj − z| | z ∈ ∂Ω, j ∈ {0, 1, . . . , k}} =
1

2
|x0 − y0|.

By [32, Theorem 1.1] (which is an application of the Analytic Functional Calculus for Banach

Algebras) if M ∈ A is such that

‖A−M‖ < inf
{∥∥(λI − A)−1

∥∥−1 | λ ∈ ∂Ω
}

then σ(M) ∩ Ω 6= ∅. Since A is self-adjoint

inf
{∥∥(λI − A)−1

∥∥−1 | λ ∈ ∂Ω
}

= inf{|λj − z| | z ∈ ∂Ω, j ∈ {0, 1, . . . , k}}.

Hence, if M ∈ A is such that ‖A−M‖ < 1
2
|x0 − y0| then σ(M) ∩ Ω 6= ∅. As 0 /∈ Ω and the

spectrum of any quasinilpotent operator is {0}, the result follows.

Using Lemma 4.1.2 and an idea motivated by [26], we obtain the following result that

will enable us to bypass the problem of unbounded nilpotency degrees.

Lemma 4.1.4. Let {Tn}n≥1 ⊆ Nor(B(H)) be a bounded set such that σ(Tn) is connected

and contains zero for all n ∈ N. Then for every ε > 0 there exists a q ∈ N and {Mn}n≥1 ⊆

Nil(B(H)) such that ‖Tn −Mn‖ ≤ ε and M q
n = 0 for all n ∈ N.

Proof. Without loss of generality ‖Tn‖ ≤ 1 for all n ∈ N and ε = 1
2m

for some m ∈ N. Since
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‖Tn‖ ≤ 1, σ(Tn) ⊆ D for all n ∈ N. Define

Ck,` :=

[
2k − 1

2m+1
,
2k + 1

2m+1

)
+ i

[
2`− 1

2m+1
,
2`+ 1

2m+1

)
⊆ C

for all k, ` ∈ {−2m,−2m + 1, . . . , 2m} (note
⋃2m

k,`=−2m Ck,` contains the closed unit square)

and for each

Y ⊆ {−2m,−2m + 1, . . . , 2m} × {−2m,−2m + 1, . . . , 2m}

define

XY := {Tn | χCk,`(Tn) 6= 0 if and only if (k, `) ∈ Y }

where χZ(Tn) is the spectral projection of Tn onto the subset Z. Note that
⋃
Y XY = {Tn}n≥1

and XY = ∅ if (0, 0) /∈ Y or
⋃

(k,`)∈Y Ck,` is disconnected.

Since the number of possible sets Y is finite, it suffices to show that for each Y there

exists a q ∈ N such that for every Tn ∈ XY there exists an Mn ∈ Nil(B(H)) such that

‖Tn −Mn‖ ≤ 3ε and M q
n = 0. Fix Y such that (0, 0) ∈ Y and

⋃
(k,`)∈Y Ck,` is connected. For

each (k, `) ∈ Y let zk,` ∈ Ck,` to be the centre of Ck,` (so z0,0 = 0). Let DY be a diagonal

operator whose spectrum and essential spectrum is {zk,` | (k, `) ∈ Y }. By the Spectral

Theorem for Normal Operators, for each Tn ∈ XY there exists a unitary Un ∈ B(H) such

that ‖Tn − UnDYU
∗
n‖ ≤ 2ε. Since DY is within ε of an element of Nil(B(H)) by Lemma

4.1.2, the result follows.

Theorem 4.1.5. Let M := L∞(X,B(H)) where (X,µ) is a Radon measure space. If f ∈

Nor(M) then the following are equivalent:

1. f ∈ Nil(M).

2. f ∈ QuasiNil(M).

3. f(x) ∈ Nil(B(H)) µ-almost everywhere.

4. f(x) ∈ QuasiNil(B(H)) µ-almost everywhere.
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5. σ(f(x)) is connected and contains zero µ-almost everywhere.

Proof. The equivalence of (3), (4), and (5) is clear from Theorem 1.8.3. Clearly (1) implies

(2). To see that (2) implies (5), suppose that f ∈ QuasiNil(M). If M ∈ QuasiNil(M) then

M(x) ∈ QuasiNil(B(H)) for almost every x ∈ X by the spectral radius formula. Therefore

f is almost everywhere the pointwise limit of elements of QuasiNil(B(H)) and thus σ(f(x))

is connected and contains zero for almost every x ∈ X by Lemma 1.8.4.

To see that (5) implies (1), suppose σ(f(x)) is connected and contains zero for almost

every x ∈ X. Let ε > 0. Note we may assume without loss of generality that f(x) is normal

for every x ∈ X, supx∈X ‖f(x)‖ <∞, and σ(f(x)) is connected and contains zero for every

x ∈ X. Since f is measurable, the range of f is separable and x 7→ ‖f(x)‖ is a measurable

function. Thus there exist {Tn}n≥1 ⊆ f(X) and disjoint measurable subsets {En}n≥1 ⊆ X

such that if

h :=
∑
n≥1

TnχEn ∈M

then ‖h− f‖ ≤ ε. Since Tn ∈ f(X) for all n ∈ N, {Tn}n≥1 is a bounded set of normal

operators such that σ(Tn) is connected and contains zero for all n ∈ N. By Lemma 4.1.4

there exist {Mn}n≥1 ⊆ Nil(B(H)) and a q ∈ N such that ‖Tn −Mn‖ ≤ ε and M q
n = 0 for all

n ∈ N. Let

g :=
∑
n≥1

MnχEn .

Then g ∈M, ‖f − g‖ ≤ 2ε, and gq = 0 so g ∈ Nil(M). Hence f ∈ Nil(M).

Thus we have completely characterized when a normal operator is a limit of nilpotent

operators in a type I von Neumann algebra with separable predual:

Corollary 4.1.6. Suppose

M = L∞(X,B(H))⊕

(∏
n≥1

Mn(C)⊗L∞(Xn)

)
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where (X,µ) and (Xn, µn) are Radon measure spaces. Let P ∈M be the (central) projection

onto L∞(X,B(H)) and let N ∈ Nor(M). Then the following are equivalent:

1. N ∈ Nil(M).

2. N ∈ QuasiNil(M).

3. PN = N and σ(N(x)) is connected and contains zero for almost every x ∈ X.

4.2 Type III von Neumann Algebras

In this section we will determine when a normal operator in a type III von Neumann algebra

with separable predual is a norm limit of nilpotent operators. Our first result is the following

generalization of Theorem 1.8.3 to type III factors.

Proposition 4.2.1. Let M be a type III factor with separable predual and let N ∈ Nor(M).

Then the following are equivalent:

1. N ∈ Nil(M).

2. N ∈ QuasiNil(M).

3. σ(N) is connected and contains zero.

Proof. Clearly (1) implies (2) and (2) implies (3) is trivial by Lemma 1.8.4. Suppose N ∈

Nor(M) is such that σ(N) is connected and contains zero. Since M is a type III factor with

separable predual, there exists a unital copy of B(H) inside M. Choose a normal operator

N0 inside this copy of B(H) such that σ(N0) = σ(N). Therefore N0 ∈ Nil(B(H)) ⊆ Nil(M)

by Theorem 1.8.3.

Since σ(N) = σ(N0) and since M is a type III factor, N and N0 are approximately

unitarily equivalent in M (see [70]). Thus N ∈ Nil(M) since N0 ∈ Nil(M).

To determine when a normal operator in a type III von Neumann algebra is a limit of

nilpotent operators, we will use the fact that every type III von Neumann algebra is a direct
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integral of type III factors (for a reminder on direct integrals of von Neumann algebras, we

refer the reader to [35]). This causes greater difficulty than seen in the proof of Theorem

4.1.5 as the type III factors are allowed to vary over the direct integral. The idea of the

proof is similar to the proof of Proposition 4.2.1 except that the copy of B(H) inside our von

Neumann algebra must be done ‘in a measurable way’.

Theorem 4.2.2. Let M be a type III von Neumann algebra with separable predual. Choose a

locally compact, complete, separable, metrizable measure space (X,µ) and a collection of type

III factors (Mx)x∈X with separable predual such that M is a direct integral of (Mx)x∈X . If

N ∈ Nor(M) we may write N =
∫ ⊕
X
Nx dµ(x) where Nx ∈Mx is a normal operator µ-almost

everywhere. Then the following are equivalent:

1. N ∈ Nil(M).

2. N ∈ QuasiNil(M).

3. Nx ∈ Nil(Mx) µ-almost everywhere.

4. Nx ∈ QuasiNil(Mx) µ-almost everywhere.

5. σ(Nx) is connected and contains zero µ-almost everywhere.

Proof. Clearly (3), (4), and (5) are equivalent by Proposition 4.2.1 and clearly (1) implies

(2). To see that (2) implies (5), suppose that N ∈ QuasiNil(M). If M ∈ QuasiNil(M)

then Mx ∈ QuasiNil(Mx) for almost every x ∈ X by the spectral radius formula. Therefore

Nx is almost everywhere the pointwise limit of elements of QuasiNil(Mx) and thus σ(Nx) is

connected and contains zero for almost every x ∈ X by Lemma 1.8.4.

To see that (5) implies (1), suppose N ∈ Nor(M) is such that σ(Nx) is connected and

contains zero µ-almost everywhere. Thus we can assume that Nx is normal, ‖Nx‖ ≤ ‖N‖,

0 ∈ σ(Nx), and σ(Nx) is connected for all x ∈ X.

Unfortunately greater difficult arises in the following proof than in the proof of Theorem

4.1.5 as we need to deal with direct integrals and the fact that the type III factors {Mx | x ∈
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X} may differ. Our hope is to show for any ε > 0 there exists a q ∈ N and Mx ∈ Nil(Mx) for

all x ∈ X such that ‖Nx −Mx‖ ≤ 2ε for all x ∈ X and M q
x = 0 for all x ∈ X. If (x 7→ Mx)

is measurable then
∫ ⊕
X
Mx dµ(x) will be a nilpotent element of M within 2ε of N .

To get (x 7→Mx) to be measurable we need to modify the proof of Lemma 4.1.4. Without

loss of generality we may assume ‖Nx‖ ≤ 1 for all x ∈ X and ε = 1
2m

for some m ∈ N. Let

Ck,` be as in Lemma 4.1.4 and, for each subset Y ⊆ {−2m,−2m + 1, . . . , 2m}×{−2m,−2m +

1, . . . , 2m} define

XY := {x ∈ X | χCk,`(Nx) 6= 0 if and only if (k, `) ∈ Y } ⊆ X

where χZ(Nx) is the spectral projection of Nx onto the subset Z.

Since f(N) =
∫ ⊕
X
f(Nx) dµ(x) for all bounded Borel functions f on the spectrum of N ,

each XY is a measurable subset of X. Therefore, since the number of possible sets Y is

finite and the sets XY are disjoint, it suffices to show that for each Y there exists a nilpotent

operator MY in M such that the support of MY is XY and N is within 2ε of MY when

restricted to XY . Fix a potential Y . Note that
⋃
Y XY = X and XY = ∅ if (0, 0) /∈ Y or⋃

(k,`)∈Y Ck,` is disconnected. Thus we may assume that
⋃

(k,`)∈Y Ck,` is connected, (0, 0) ∈ Y ,

and X = XY when performing our approximations.

For each x ∈ X and (k, `) ∈ Y let Px,k,` := χCk,`(Nx). Note the maps (x 7→ Px,k,`) =

χCk,`(N) are elements of M for all (k, `) ∈ Y . We claim that {(x 7→ Px,k,`)}(k,`)∈Y are

equivalent in M. To see this, we notice by construction that {Px,k,`}(k,`)∈Y are orthogonal

equivalent projections in Mx almost everywhere. However, in a type III von Neumann

algebra, two projections are equivalent if and only if they have the same central support. By

[35, Lemma 14.1.20.v], the central support in M is the direct integral of the central supports

in Mx and thus the claim is complete.

Recall (0, 0) ∈ Y . Since M is a type III von Neumann algebra, every non-zero projection

of M is properly infinite. Thus, as (x 7→ Px,0,0) is non-zero almost everywhere, (x 7→ Px,0,0) is

a properly infinite projection. Thus there exist equivalent, pairwise orthogonal, measurable
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projections

{(x 7→ Px,0,0,w)}w≥1

such that

(x 7→ Px,0,0) =
∑
w≥1

(x 7→ Px,0,0,w).

Since {(x 7→ Px,k,`)}(k,`)∈Y are equivalent in M, by using {(x 7→ Px,0,0,w)}w≥1 there exist

equivalent, pairwise orthogonal, measurable projections

{{(x 7→ Px,k,`,w)}(k,`)∈Y }w≥1

such that

(x 7→ Px,k,`) =
∑
w≥1

(x 7→ Px,k,`,w)

for all (k, `) ∈ Y .

For each (k, `) ∈ Y let zk,` ∈ Ck,` be the centre of Ck,` (so z0,0 = 0). Let

T :=

x 7→ ∑
(k,`)∈Y

∑
w≥1

zk,`Px,k,`,w


which is a measurable and decomposable operator in M. Clearly ‖T −N‖ < ε by construc-

tion.

To construct our nilpotent operator, let D be the diagonal operator on a separable Hilbert

spaceH with orthonormal basis {{ek,`,w}(k,`)∈Y }w≥1 such that D(ek,`,w) = zk,`ek,`,w for all w ∈

N and (k, `) ∈ Y . By Lemma 4.1.2 there exists an M ′ ∈ Nil(B(H)) such that ‖D −M ′‖ ≤ ε.

For each w1, w2 ∈ N and (k1, `1), (k2, `2) ∈ Y let

a(k1,`1,w1),(k2,`2,w2) := 〈M ′ek2,`2,w2 , ek1,`1,w1〉 ∈ C
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and let
(
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

)
∈M be the partial isometry such that

(
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

) (
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

)∗
= (x 7→ Px,k1,`1,w1)

and (
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

)∗ (
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

)
= (x 7→ Px,k2,`2,w2).

Finally let

M :=

x 7→ ∑
w1,w2≥1

∑
(k1,`1),(k2,`2)∈Y

a(k1,`1,w1),(k2,`2,w2)Vx,(k1,`1,w1),(k2,`2,w2)


which is a measurable and decomposable operator in M. Moreover M is also a nilpotent

operator as, for each x ∈ X, Mx is a copy of M ′. Since ‖D −M ′‖ ≤ ε, ‖(T )x − (M)x‖ ≤ ε

for all x ∈ X. Whence ‖T −M‖ ≤ ε so ‖N −M‖ ≤ 2ε thus completing the proof.

4.3 Restrictions by Tracial States

This section will demonstrate how tracial states on C∗-algebras provide restrictions to the

spectra of normal operators which may be in the closure of the quasinilpotent operators.

In particular, these restrictions directly apply to type II1 von Neumann algebras and thus

prevent an elegant classification of which normal operators are norm limits of nilpotent or

quasinilpotent operators. Note that the following result that enables us to create additional

elements of QuasiNil(A).

Lemma 4.3.1. Let A be a C∗-algebra and let T ∈ QuasiNil(A). Then

alg(T ), alg(T ∗) ⊆ QuasiNil(A).

Similarly if T ∈ Nil(A) then alg(T ), alg(T ∗) ⊆ Nil(A).

Proof. It is clear that the adjoint of an element of QuasiNil(A) (respectively Nil(A)) is an
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element of QuasiNil(A) (respectively Nil(A)). Moreover, if p is a polynomial such that

p(0) = 0 then if M ∈ QuasiNil(A) (respectively M ∈ Nil(A)) then p(M) ∈ QuasiNil(A)

(respectively p(M) ∈ Nil(A)).

Now we shall introduce the main tool for the results of this section.

Definition 4.3.2. Let A be a C∗-algebra. A tracial state τ on A is a positive linear functional

of norm one such that τ(AB) = τ(BA) for all A,B ∈ A.

There are several examples of C∗-algebras with tracial states. For example, finite di-

mensional C∗-algebras, the reduced group C∗-algebra of a countable discrete group, abelian

C∗-algebras, type II1 von Neumann algebras, and uniformly hyperfinite C∗-algebras all have

tracial states. The reason for examining C∗-algebras with tracial states is the following.

Lemma 4.3.3. Let A be a C∗-algebra and let τ be a tracial state on A. Then τ(M) = 0

whenever M ∈ QuasiNil(A).

Proof. By the continuity of τ we may assume that M ∈ QuasiNil(A). If A is not unital, the

linear map τ̃ : Ã→ C on the unitization Ã of A defined by

τ̃(λIÃ + A) = λ+ τ(A)

for all A ∈ A and λ ∈ C is easily seen to be a tracial state on Ã that extends τ . Hence we

may assume that A is unital.

By Rota’s Theorem (see [63] and note the proof holds in a general C∗-algebra; alter-

natively see [49, Proposition 4] or [51, Exercise 9.15] for another proof) and the fact that

σ(M) = {0}, for all ε > 0 there exists a Bε ∈ A−1 such that ‖B−1
ε MBε‖ < ε. Therefore

|τ(M)| = |τ(B−1
ε MBε)| ≤

∥∥B−1
ε MBε

∥∥ < ε.

Thus, as this holds for all ε > 0, τ(M) = 0.
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Corollary 4.3.4. Let A be a C∗-algebra and let τ be a tracial state on A. Then

dist(T,QuasiNil(A)) ≥ |τ(T )|

for all T ∈ A.

As Lemma 4.3.3 proves that the closure of the quasinilpotent operators in a C∗-algebra

are in the kernel of every trace on the C∗-algebra, it is useful to examine C∗-algebras with

several tracial states.

Definition 4.3.5. Let A be a C∗-algebra. A tracial state τ on A is said to be faithful if

τ(A) > 0 for all A ∈ A+ \ {0}.

A C∗-algebra A is said to have a separating family of tracial states if for every A ∈ A+\{0}

there exists a tracial state on A such that τ(A) > 0.

For example, finite dimensional C∗-algebras, the reduced group C∗-algebra of a countable

discrete group, abelian C∗-algebras, type II1 factors, and uniformly hyperfinite C∗-algebras

all have faithful tracial states. Every type II1 von Neumann algebra has a separating family

of tracial states.

Using Lemma 4.3.3 we easily obtain the following restriction.

Proposition 4.3.6. Let A be a C∗-algebra with a separating family of tracial states and

let N ∈ Nor(A) be such that there exists a polynomial p with p(0) = 0, p(N) 6= 0, and

p(σ(N)) ⊆ [0,∞). Then N /∈ QuasiNil(A). Thus Asa ∩QuasiNil(A) = {0}.

Proof. Suppose there exists an N ∈ Nor(A) ∩ QuasiNil(A) and a polynomial p such that

p(0) = 0, p(N) 6= 0, and p(σ(N)) ⊆ [0,∞). Then p(N) ∈ A+∩QuasiNil(A) by Lemma 4.3.1.

Since p(N) 6= 0, the assumptions on A imply that there exists a tracial state τ on A such

that τ(p(N)) > 0 which contradicts Lemma 4.3.3.

Proposition 4.3.6 easily extends using the following well-known result.
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Theorem 4.3.7 (Mergelyan’s Theorem; see [64, Theorem 20.5]). Let K be a compact set in

the complex plane such that C \K is connected. If f is a continuous function on K which is

holomorphic on the interior of K then f can be uniformly approximated by polynomials on

K.

Corollary 4.3.8. Let A be a C∗-algebra and let N ∈ Nor(A)\{0} be such that int(σ(N)) = ∅

and C \ σ(N) is connected. Then the following are true:

1. If A+ ∩QuasiNil(A) = {0} then N /∈ QuasiNil(A).

2. If A+ ∩ Nil(A) = {0} then N /∈ Nil(A).

Consequently, if A is a C∗-algebra with a separating family of tracial states then N /∈

QuasiNil(A).

Proof. Suppose A+ ∩QuasiNil(A) = {0} and N ∈ QuasiNil(A). Then 0 ∈ σ(N) by Lemma

1.8.4. Define f ∈ C(σ(N)) by f(z) = |z| for all z ∈ σ(N). Since f(0) = 0, Mergelyan’s

Theorem implies f is the uniform limit on σ(N) of polynomials that vanish at zero and thus

f(N) ∈ QuasiNil(A) by Lemma 4.3.1. Since f(N) ∈ A+, f(N) = 0 so N = 0 as claimed.

The proof of the second claim is nearly identical to the first and the final claim follows

from Proposition 4.3.6.

Corollary 4.3.8 is the strongest restriction that has been obtained on the spectrum of

a normal operator in the closure of the quasinilpotent operators of a C∗-algebra with a

separating family of tracial states. To obtain stronger restrictions, we turn our attention to

C∗-algebras with faithful tracial states.

Remarks 4.3.9. Let A be a unital C∗-algebra, let τ be a tracial state on A, and let N ∈

Nor(A). Consider the C∗-algebra C := C∗(1, N,N∗) and τ |C. Then τ |C is an element of

the dual space of C and thus can be associated with a complex, regular, Borel measure µ

on σ(N). Thus we view τ |C(f(N)) =
∫
σ(N)

f dµ for f ∈ C(σ(N)). Moreover, since τ is
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positive and unital, µ is a probability measure on σ(N). If τ is faithful then µ(U) > 0 for

all non-empty relatively open sets U in σ(N).

If N ∈ QuasiNil(A) then τ(p(N)) = τ(p(N∗)) = 0 for all polynomials p that vanish at

zero by Lemma 4.3.1 and Lemma 4.3.3. Therefore, since N ' z and N∗ ' z,
∫
σ(N)

zn dµ = 0

and
∫
σ(N)

zn dµ = 0 for all n ∈ N.

It is therefore of interest to our main problem to determine the supports of all probability

measures µ with compact support such that
∫
zn dµ = 0 and

∫
zn dµ = 0 for all n ∈ N.

Unfortunately we have not been able to classify the supports of such measures. However,

some progress has been made that enables us to improve Corollary 4.3.8 in the case our

C∗-algebra has a faithful tracial state.

To begin our discussion of normal limits of quasinilpotent operators in C∗-algebras with

faithful tracial states, we make the following definition.

Definition 4.3.10. A subset X ⊆ C is said to be a non-quasinilpotent spectrum if for every

C∗-algebra A with a faithful tracial state, N /∈ QuasiNil(A) whenever N ∈ Nor(A) \ {0} is

such that σ(N) ⊆ X.

It is clear if X ⊆ C \ {0} then X is a non-quasinilpotent spectrum by Lemma 1.8.4.

Moreover a subset of a non-quasinilpotent spectrum is a non-quasinilpotent spectrum and

Corollary 4.3.8 provides some examples of non-quasinilpotent spectra. In addition, we have

the following.

Lemma 4.3.11. If X is a non-quasinilpotent spectrum then for every r, θ ∈ R the set

reiθX is a non-quasinilpotent spectrum. Furthermore every closed half-plane with zero on

the boundary is a non-quasinilpotent spectrum.

Proof. The first claim is trivial and thus it suffices to prove that the closed upper half-plane

is a non-quasinilpotent spectrum.

Let A be a C∗-algebra with a faithful tracial state τ and let N ∈ Nor(A) ∩ QuasiNil(A)

be such that σ(N) is contained in the closed upper half-plane. Let µ be the measure on
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σ(N) from Remarks 4.3.9. Then

∫
σ(N)

Im(z) dµ =
1

2i

∫
σ(N)

z − z dµ = 0.

However, since relatively open subsets of σ(N) have positive µ-measure and Im(z) > 0 above

the x-axis, the above integral implies σ(N) must lie on the x-axis. This implies that

N ∈ Asa ∩QuasiNil(A).

Thus Proposition 4.3.6 implies N = 0.

Lemma 4.3.12. For each α ∈ [0, 2π) let

Xα := {λ ∈ C | λ = reiθ, r ≥ 0, θ ∈ [0, 2π) \ {α}}.

Then each Xα is a non-quasinilpotent spectrum.

Proof. It suffices to prove the result for α = π by Lemma 4.3.11. Let A be a C∗-algebra with

a faithful tracial state τ and let N ∈ Nor(A) ∩QuasiNil(A) be such that σ(N) ⊆ Xπ. Thus

0 ∈ σ(N) by Lemma 1.8.4.

Recall σ(N) is compact and bounded. Let K ′ be the union of σ(N) with the bounded

components of the complement of σ(N). Then K ′ is a compact set such that 0 /∈ int(K ′),

C \K ′ is connected, and K ′ ⊆ Xπ.

Consider the function f(z) = z
1
2 on Xπ (where the principal branch has been selected).

Then f is a continuous function on Xπ and holomorphic on the interior of K ′. Consequently,

as f(0) = 0, f is the uniform limit on K ′ of polynomials that vanish at zero by Mergelyan’s

Theorem. Therefore, since N ∈ QuasiNil(A), Lemma 4.3.1 implies

f(N) ∈ Nor(A) ∩QuasiNil(A).

However σ(f(N)) = f(σ(N)) is contained in the closed right half plane through the origin.
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Hence f(N) = 0 by Lemma 4.3.11. Thus N = f(N)2 = 0 as desired.

Theorem 4.3.13. Suppose that X ⊆ C is such that 0 ∈ X and C \X is connected. Suppose

further that there exists an element y ∈ C \ X such that the line segment f(t) = ty for

t ∈ (0, 1] is contained in C \X. Then X is a non-quasinilpotent spectrum.

Proof. By Lemma 4.3.11 we can assume that y = 1. Let A be a C∗-algebra with a faithful

tracial state τ and let N ∈ Nor(A) ∩ QuasiNil(A) be such that σ(N) ⊆ X. Thus 0 ∈ σ(N)

by Lemma 1.8.4.

Consider the function g(z) = 1
z−1

+ 1 on X. Then, since 1 ∈ C \X ⊆ C \ σ(N) (which

is open), g is analytic on a neighbourhood of σ(N). Since g(0) = 0, Mergelyan’s Theorem

implies g is the uniform limit on σ(N) of polynomials that vanish at zero. Hence

g(N) ∈ Nor(A) ∩QuasiNil(A).

However, since (0, 1] /∈ X, g((0, 1]) = (−∞, 0), and g is injective, (−∞, 0) /∈ σ(g(N)). Thus

g(N) = 0 by Lemma 4.3.12. Since g is a fractional linear transformation, g is invertible and

thus N = g−1(g(N)) = g−1(0) = 0.

It would be pleasant if the assumptions of Theorem 4.3.13 could be reduced to supposing

zero is in the boundary of the unbounded connected component of C \X.

Theorem 4.4.6 will demonstrate that we cannot expect Nor(A) ∩ Nil(A) = {0} for an

arbitrary C∗-algebra A with a faithful tracial state.

4.4 Type II1 Factors

In this section we will examine when a normal operator in a type II1 von Neumann algebra

is the limit of nilpotent operators. We begin by applying the results of Section 4.3 to type

II1 von Neumann algebras and type II1 factors.
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Remarks 4.4.1. If M is a type II1 von Neumann algebra then M has a separating family

of tracial states. Therefore Corollary 4.3.8 applies. Moreover Theorem 4.3.13 applies in the

case M is a type II1 factor. Thus, as every type II1 von Neumann algebra is the direct

integral of type II1 factors, if N =
∫ ⊕
X
Nx dµ is a normal operator in a type II1 von Neumann

algebra that is a norm limit of nilpotent operators then σ(Nx) cannot satisfy the assumptions

of Theorem 4.3.13 on a set of positive µ-measure.

Remarks 4.4.2. Let M be a type II1 factor and let τ be the faithful, normal, tracial state

on M. Remarks 4.3.9 imply that for each N ∈ Nor(M) there exists a probability measure

µN with support σ(N) defined by τ . We will call µN the spectral distribution of N . Note

two normal operators N1, N2 ∈ M are approximately unitarily equivalent in M if and only

if µN1 = µN2 (see [70]). Since the question of when a normal operator is in Nil(M) is clearly

invariant under approximate unitary equivalence, the elements N of Nor(M) ∩ Nil(M) can

be completely classified based on µN .

Our next goal is to demonstrate several measures µN as described in Remarks 4.4.2 such

that N ∈ Nor(M) ∩ Nil(M). The main tool in this construction is Lemma 4.4.4 which is

based on [32, Section 2.3.3]. For completeness we include the statement of the following

well-known result.

Theorem 4.4.3 (Berg’s Technique, see [21, Theorem VI.4.1] for a proof). Let {ej}nj=0 ∪

{fj}nj=0 be an orthonormal set in H. Suppose T ∈ B(H) has the property that

Tej = ej+1 and Tfj = fj+1

for all j ∈ {0, . . . , n− 1}. Then there exists an S ∈ B(H) such that

1. Sξ = Tξ for all ξ ∈
(
{ej}n−1

j=0 ∪ {fj}n−1
j=0

)⊥
,

2. S(span{ej, fj}) = span{ej+1, fj+1} for all j ∈ {0, . . . , n− 1},

3. S is an isometry on span{ej, fj} for all j ∈ {0, . . . , n− 1},
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4. Sne0 = fn,

5. Snf0 = en, and

6. ‖S − T‖ < π
n

.

Lemma 4.4.4 (see [32, Section 2.3.3]). Let n,m ∈ N with m ≥ 2 and choose

0 = a0 < a1 < a2 < . . . < am = 1.

Then there exists

M ∈ Nil(M(2m+1)n+1(C)) and N ∈ Nor(M(2m+1)n+1(C))

such that

‖M −N‖ ≤ π

n
+ max

0≤k≤m−1
|ak+1 − ak|

and

σ(N) =
{
ake

πi
n
j | j ∈ {1, . . . , 2n}, k ∈ {0, . . . ,m}

}
where the multiplicity of each non-zero eigenvalue is one.

Proof. Let {ek}(2m+1)n
k=0 be the standard orthonormal basis of C(2m+1)n+1 and define M ∈

Nil(M(2m+1)n+1(C)) by Me(2m+1)n = 0,

M(ekn+j) = ak+1ekn+j+1

for all k ∈ {0, 1, . . . ,m− 1} and j ∈ {0, 1, . . . , n− 1},

M(emn+j) = amemn+j+1

for all j ∈ {0, 1, . . . , n− 1},

M(ekn+j) = a2m+1−kekn+j+1
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for all k ∈ {m+1,m+2, . . . , 2m} and j ∈ {0, 1, . . . , n−1}, and by extending M by linearity.

Thus M is a nilpotent weighted forward shift on C(2m+1)n+1 with weights

a1, a2, . . . , am−1, am, am, am, am−1, . . . , a2, a1

for consecutive blocks of length n. It is clear that ‖M‖ = 1.

For an arbitrary Hilbert space K with orthonormal basis {fj}2n
j=1 let U2n : K → K be

defined by U2n(fj) = fj+1 for all j ∈ {1, 2 . . . , 2n − 1}, U2n(f2n) = f1, and by extending U

by linearity. It is clear that U2n is a unitary operator with

σ(U2n) =
{
e
πi
n
j | j ∈ {1, . . . , 2n}

}
with the multiplicity of each eigenvalue being one.

Our goal is to use Berg’s Technique to approximate M with a direct sum of multiples of

U2n. For each k ∈ {0, 1, . . . , 2m− 1} let

Hk := span{enk+j | j ∈ {0, 1, . . . , n− 1}}.

Let Km−1,m+1 := Hm−1 ⊕Hm ⊕Hm+1. By Berg’s Technique on

{enm−n, enm−n+1, . . . , enm} and {enm+n, enm+n+1, . . . , enm+2n},

there exists an S1 ∈ M(2m+1)n+1(C) such that ‖S1 −M‖ < π
n
, S1(f) = M(f) for all f ∈

(Hm−1 ⊕Hm+1)⊥,

S1(span{enm−n+j, enm+n+j}) ⊆ span{enm−n+j+1, enm+n+j+1}

for all j ∈ {0, 1, . . . , n− 1}, S1 is an isometry on

span{enm−n, enm−n+1, . . . , enm−1, enm+n, enm+n+1, . . . , enm+2n−1},
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Sn1 (enm−n) = enm+2n, and Sn1 (enm+n) = enm. Therefore

K′m−1,m+1 := span{enm+n, S1(enm+n), S2
1(enm+n), . . . , Sn−1

1 (enm+n)} ⊕Hm

is an S1-reducing subspace and S1 is unitarily equivalent to U2n when restricted to K′m−1,m+1.

Let

K′′m−1,m+1 := Km−1,m+1 	K′m−1,m+1.

By construction, enm−n ∈ K′′m−1,m+1, S1 is a forward shift with weights one on

span{enm−n, S1(enm−n), S2
1(enm−n), . . . , Sn−1

1 (enm−n)} = K′′m−1,m+1,

and S1(enm+2n) = M(enm+2n) = am−1enm+2n+1. Let M1 be the operator obtained from

S1 by reducing the weights on K′′m−1,m+1 from 1 = am to am−1 (so M1(Sn−1
1 (enm−n)) =

am−1S1(Sn−1
1 (enm−n)) = am−1enm+2n). Hence

‖M −M1‖ ≤
π

n
+ |am − am−1|.

Moreover, by construction, K′m−1,m+1 is a reducing subspace for M1 such that M1|K′m−1,m+1
=

U2n and M1|(K′m−1,m+1)⊥ is an ((2m− 1)n+ 1) by ((2m− 1)n+ 1) matrix that is a nilpotent,

weighted forward shift with weights

a1, a2, . . . , am−2, am−1, am−1, am−1, am−2, . . . , a2, a1

for consecutive blocks of length n.

For our next approximation, we will apply Berg’s Technique on M1 in ‘an orthogonal

way’ in order not to disturb the above approximation. Let

Km−2,m+2 := Hm−2 ⊕K′′m−1,m+1 ⊕Hm+2.
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By Berg’s Technique on

{enm−2n, enm−2n+1, . . . , enm−n} and {enm+2n, enm+2n+1, . . . , enm+3n},

there exists an S2 ∈ M(2m+1)n+1(C) such that ‖S2 −M1‖ < π
n
, S2(f) = M1(f) for all

f ∈ (Hm−2 ⊕Hm+2)⊥,

S2(span{enm−2n+j, enm+2n+j}) ⊆ span{enm−2n+j+1, enm+2n+j+1}

for all j ∈ {0, 1, . . . , n− 1}, S2 is am−1 times an isometry on

span{enm−2n, enm−2n+1, . . . , enm−n−1, enm+2n, enm+2n+1, . . . , enm+3n−1},

Sn2 (enm−2n) = anm−1enm+3n, and Sn2 (enm+2n) = anm−1enm−n. Therefore the above implies that

K′m−2,m+2 := K′′m−1,m+1 ⊕ span{enm+2n, S2(enm+2n), . . . , Sn−1
2 (enm+2n)}

is a reducing subspace of S2 such that the restriction of S2 to this subspace is unitarily

equivalent to am−1U2n and on

K′′m−2,m+2 := Km−2,m+2 	K′m−2,m+2 ⊆ Hm−2 ⊕Hm+2

S2 is a forward shift with weights am−1. By dropping these weights to am−2, we obtain a

matrix M2 such that

‖M2 −M1‖ ≤
π

n
+ |am−1 − am−2|,

K′m−1,m+1 and K′m−2,m+2 are a reducing subspace for M2 such that

M2|K′m−1,m+1
= amU2n, M2|K′m−2,m+2

= am−1U2n,

and M2|(K′m−1,m+1⊕K′m−2,m+2)⊥ is a ((2m−3)n+1) by ((2m−3)n+1) matrix that is a nilpotent,
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weighted forward shift with weights

a1, a2, . . . , am−3, am−2, am−2, am−2, am−3, . . . , a2, a1

for consecutive blocks of length n (except in the case that (2m − 3)n + 1 = n + 1 in which

case we have the (n+ 1)× (n+ 1) zero matrix). Moreover

‖M −M2‖ ≤ max {‖M −M1‖ , ‖M1 −M2‖}

≤ max
{
π
n

+ |am − am−1|, πn + |am−1 − am−2|
}

since M and M1 only differ on Km−1,m+1 and M1 and M2 differ only on Hm−2⊕Hm+2 which

are orthogonal spaces.

By continuing this process ad nauseum, we eventually obtain that M is within

π

n
+ max

0≤k≤m−1
|ak+1 − ak|

of an operator unitarily equivalent to
(⊕

1≤k≤m akU2n

)
⊕0n+1 where 0n+1 is the (n+1)×(n+1)

zero matrix. Since N0 :=
(⊕

1≤k≤m akU2n

)
⊕ 0n+1 is a normal operator with the desired

spectrum, the result trivially follows.

Lemma 4.4.5. Let M be a II1 factor, let τ be the faithful, normal, tracial state on M, and let

N ∈ Nor(M) be such that σ(N) = D. Suppose there exists an increasing, unbounded sequence

of natural numbers (nk)k≥1 and real numbers 0 = a0,k < a1,k < a2,k < · · · < ank+1,k = 1 such

that

lim
k→∞

max
0≤p≤nk

|ap+1,k − ap,k| = 0

and if Ek,p,q is the spectral projection of N onto

{
z ∈ D | z = reiθ, ap,k < r ≤ ap+1,k,

qπ

nk
< θ ≤ π

(q + 1)π

nk

}

for all q ∈ {1, . . . , 2nk} and p ∈ {1, . . . , nk} and Ek,0 is the spectral projection onto the closed

137



disk of radius a1,k centred at zero then

τ(Ek,0) =
nk + 1

2n2
k + nk + 1

and τ (Ek,p,q) =
1

2n2
k + nk + 1

for all q ∈ {1, . . . , 2nk} and for all p ∈ {1, . . . , nk}. Then N is a norm limit of nilpotent

operators from M.

Proof. Suppose N has the above conditions. For each k ∈ N let

Nk := 0Ek,0 +

2nk∑
q=1

nk∑
p=1

ap,ke
πi
nk
q
Ek,p,q.

Then Nk ∈ Nor(M) is such that the norm of Nk −N is at most the maximum of a1,k and

max
1≤p≤nk

diameter

(
wedge of radii ap,k and ap+1,k with an angle of

π

nk

)

by the Spectral Theorem for Normal Operators. Since limk→∞ nk =∞ and

lim
k→∞

max
0≤p≤nk

|ap+1,k − ap,k| = 0,

N = limk→∞Nk. Thus it suffices to show limk→∞ dist(Nk,Nil(M)) = 0.

Since

τ(Ek,0) =
nk + 1

2n2
k + nk + 1

,

by the theory of II1 factors there exists a collection {Ek,0,p | p ∈ {0, . . . , nk}} of mutually

orthogonal, equivalent projections of trace 1
2n2
k+nk+1

that sum to Ek,0. Hence, for each k ∈ N,

the tracial conditions given in the hypotheses and the properties of II1 factors imply that

{Ek,0,p | p ∈ {0, . . . , nk}} ∪ {Ek,p,q | q ∈ {1, . . . , 2nk}, p ∈ {1, . . . , nk}}

are mutually orthogonal, equivalent projections that sum to IM. Thus, using the partial

isometries between these equivalent projections as matrix units, we can construct a copy of
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M2n2
k+nk+1(C) such that Nk can be viewed as a normal operator of M2n2

k+nk+1(C) with

σ(Nk) =
{
ap,ke

πi
nk
q | q ∈ {1, . . . , 2nk}, p ∈ {0, 1, . . . , nk}

}
where the multiplicity of each non-zero eigenvalue is one. Thus Lemma 4.4.4 implies Nk

is within max0≤p≤nk−1 |ap+1,k − ap,k| of an element of Nil(M). By the assumption that

limk→∞max0≤p≤nk |ap+1,k − ap,k| = 0, the result follows.

Theorem 4.4.6. Let M be a II1 factor, let τ be the faithful, normal, tracial state on M,

and let N ∈ Nor(M) be such that σ(N) = D. Let µN be the spectral distribution of N .

Suppose µN is absolutely continuous with respect to the two-dimensional Lebesgue measure

and invariant under rotations of the disk. Then N ∈ Nil(M).

Proof. By the assumptions on µN there exists a function f such that rf(r) ∈ L1([0, 1]),

f > 0 almost everywhere with respect to the Lebesgue measure, and

µN(X) =

∫
X

f(r)(rdrdθ)

for all X ⊆ D where rdrdθ is the two-dimensional Lebesgue measure. The construction of

the 0 = a0,n < a1,n < · · · < an+1,n = 1 necessary to apply Lemma 4.4.5 at the nth step is

done by choosing aj+1,n such that

n+ 1

2n2 + n+ 1
+

2jn

2n2 + n+ 1
= 2π

∫ aj+1,n

0

rf(r)dr.

Since F (x) = 2π
∫ x

0
rf(r)dr is an absolutely continuous, strictly increasing bijection from

[0, 1] to [0, 1] by assumption, F−1 exists and is a strictly increasing continuous bijection from

[0, 1] to [0, 1] such that

aj+1,n = F−1

(
n+ 1

2n2 + n+ 1
+

2jn

2n2 + n+ 1

)
.

Thus limn→∞max1≤j≤n−1 |aj+1,n − aj,n| = 0 as required.
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Next we will demonstrate how complex analysis may be used to construct additional

non-zero normal operators in the closure of the nilpotent operators in type II1 factors. We

begin with the following observation that is trivial by Mergelyan’s Theorem and Lemma

4.3.1.

Lemma 4.4.7. Let A be a C∗-algebra and let N ∈ Nor(A) ∩Nil(A) be such that σ(N) = D.

If f : D → C is continuous on D, holomorphic on D, and f(0) = 0, then f(N) ∈ Nor(A) ∩

Nil(A) and σ(f(N)) = f(D).

The same holds with Nil(A) replaced with QuasiNil(A).

Theorem 4.4.8. Let Ω be a non-empty, open, connected and simply connected subset of C

containing zero such that ∂Ω contains at least two points and is a Jordan curve. Let A be

a C∗-algebra and let N ∈ Nor(A) ∩ Nil(A) be such that σ(N) = D. Then there exists an

operator N0 ∈ Nor(A) ∩ Nil(A) with σ(N0) = Ω.

The same holds with Nil(A) replaced with QuasiNil(A).

Proof. Let f : D → Ω be the biholomorphism given by the Riemann Mapping Theorem.

By Carathéodory’s Theorem f extends to a function g : D → Ω such that g is continuous

on D, g is holomorphic on D, and g is a bijection. Since 0 ∈ Ω, 0 /∈ ∂Ω and thus there

exists an a ∈ D such that g(a) = 0. Let h(z) = z+a
az+1

. Then h is a homeomorphism

of the closed unit disk and is a biholomorphism of the open unit disk as |a| < 1. Let

F : D → Ω be defined by F (z) = g(h(z)). Then F is well-defined, F is continuous on D,

F is holomorphic on D, F is surjective, and F (0) = g(h(0)) = g(a) = 0. Hence, by Lemma

4.4.7, N0 = F (N) ∈ Nor(A) ∩ Nil(A) is such that σ(N0) = F (D) = Ω.

Unfortunately the solution to the question of when a normal operator in a type II1 factor

is a norm limit of nilpotent operators remains open. In particular, the results of Section 4.3

raise the following the following question.

Question 4.4.9. If M is a type II1 factor and N ∈M is a normal operator with connected
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spectrum containing zero such that the spectral distribution, µN , of N has the property that

∫
σ(N)

p(z) dµN(z) = 0

for every polynomial p that vanishes at zero, is N ∈ Nil(M)?

Theorem 4.4.8 can be used to modify the spectral distributions in Theorem 4.4.6 to obtain

more elements of Nor(M)∩Nil(M) for a type II1 factor M. However, an answer to Question

4.4.9 seems to be directly related to the following finite dimensional question.

Question 4.4.10. Given N ∈ Nor(Mn(C)), can dist(N,Nil(Mn(C)) be computed using

only knowledge of the spectrum (including multiplicity) of N?

Very little is known in regards to the above question. Lemma 4.4.4 does provide some

information and was used to derive the positive results of this section. In addition, [2, Section

A1.2] provides a good summary of what is known. We will see at the end of Section 4.5 that

this question reappears in the discussion of Nor(M) ∩ Nil(M) for a type II∞ factor M in a

slightly simpler form.

On the other side of things, Theorem 4.3.13 provides examples of normal operators in

a type II1 factor that are not limits of nilpotent (or even quasinilpotent) operators. In

particular, unlike the results of Section 4.1 and Section 4.2, it is unclear if Nor(M)∩Nil(M)

and Nor(M)∩QuasiNil(M) agree for a type II1 factor M. This raises the following question.

Question 4.4.11. Is Nil(M) = QuasiNil(M) for an arbitrary von Neumann algebra M?

It is not difficult to see that Question 4.4.11 has a positive answer in the case of a type

I∞ von Neumann algebra.

Theorem 4.4.12. Let M := L∞(X,B(H)) where (X,µ) is a Radon measure space. Then

Nil(M) = QuasiNil(M).
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Proof. It is clear that Nil(M) ⊆ QuasiNil(M). To complete the proof it suffices to show that

QuasiNil(M) ⊆ Nil(M). Let f ∈ QuasiNil(M) \ {0} and let ε > 0. Since

{
x ∈ X |

∥∥f(x)k
∥∥ > ∥∥fk∥∥}

has measure zero for each k ∈ N, we may assume without loss of generality that
∥∥f(x)k

∥∥ ≤∥∥fk∥∥ for each x ∈ X and k ∈ N.

Since f is measurable, the range of f is separable and x 7→ ‖f(x)‖ is a measurable

function. Thus there exist {Tn}n≥1 ⊆ f(X) and disjoint measurable subsets {En}n≥1 ⊆ X

such that if

h :=
∑
n≥1

TnχEn ∈M

then ‖h− f‖ ≤ ε.

By [6, Theorem 2.2] (or [32, Theorem 5.18]) for every α, β > 0 and k ∈ N there exist

{Mk,n}n≥1 ⊆ Nil(B(H)) such that M2k
k,n = 0 for all n ∈ N and

‖Tn −Mk,n‖ ≤ 2

(
α ‖Tn‖+ β +

∥∥T kn∥∥
αβk−1

)
≤ 2

(
α ‖f‖+ β +

∥∥fk∥∥
αβk−1

)

for all n ∈ N. By choosing α = δ−k and β = δ
∥∥fk∥∥ 1

k for some fixed δ > 1, for each k ∈ N

and δ > 1 there exist {Mk,n}n≥1 ⊆ Nil(B(H)) such that M2k
k,n = 0 for all n ∈ N and

‖Tn −Mk,n‖ ≤ 2
(
δ−k ‖f‖+ 2δ

∥∥fk∥∥ 1
k

)
for all n ∈ N. Since f is quasinilpotent, limk→∞

∥∥fk∥∥ 1
k = 0 so there exists a k0 ∈ N and a

δ0 > 1 such that

2
(
δ−k0 ‖f‖+ 2δ0

∥∥fk0∥∥ 1
k0

)
< ε.
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Hence there exist {Mn}n≥1 ⊆ Nil(B(H)) such that M2k0
n = 0 for all n ∈ N and

‖Tn −Mn‖ ≤ ε

for all n ∈ N.

Let

g :=
∑
n≥1

MnχEn .

Then g ∈M, ‖f − g‖ ≤ 2ε, and g2k0 = 0 so g ∈ Nil(M). Hence f ∈ Nil(M).

Unfortunately the results of [6] do little to solve Question 4.4.11 for a general von Neu-

mann algebra. For example, if

(Mn)n≥1 ∈
∏
n≥1

Mn(C) :=

{
(Tn)n≥1 | Tn ∈Mn(C), sup

n≥1
‖Tn‖ <∞

}

is quasinilpotent then limk→∞ supn≥1

∥∥Mk
n

∥∥ 1
k = 0. Clearly this implies each Mn is a nilpotent

matrix. However, an element (Tn)n≥1 ∈
∏

n≥1Mn(C) is nilpotent if and only if there exists

a k ∈ N such that T kn = 0 for all n ∈ N and it is unclear that (Mn)n≥1 can be approximated

by elements of this form. The answer to Question 4.4.11 appears even more elusive for von

Neumann algebras of other type since, unlike with normal operators, it is not apparent that

quasinilpotent operators in factors of other types may be approximated with elements from

Mn(C) or B(H).

4.5 Type II∞ Factors

In this section we will study when normal operators are norm limits of nilpotent and

quasinilpotent operators in type II∞ factors with separable predual. Although the tracial

restrictions of Section 4.3 do not apply, the finite projections do pose another restriction.

This additional restriction is similar to a restriction that appears in Theorem 1.8.2 but not
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in Theorem 1.8.3.

Remarks 4.5.1. Let M be a type II∞ factor with separable predual. Then there exists a

type II1 factor N such that M = N⊗B(H). Let M0 := N ⊗min K where K ⊆ B(H) is the

C∗-algebra of all compact operators. Then M0 can be viewed as an ideal of M (that is not

weak∗-closed). Let q : M → M/M0 be the canonical quotient map. For each T ∈ M let

σe(T ) := σ(q(T )). We will call σe(T ) the essential spectrum of T ∈ M. Alternatively M0

can be shown to be the ideal generated by operators supported on finite projections and thus

the essential spectrum does not depend on the decomposition of M chosen.

If T ∈ QuasiNil(M) then q(T ) ∈ QuasiNil(M/M0). Hence σe(T ) must be connected

and contain zero by Lemma 1.8.4. This additional condition is unnecessary for B(H) as the

spectrum and essential spectrum of an N ∈ Nor(B(H)) agree when σ(N) is connected.

Let τ be an unbounded tracial state on M such that τ(T ⊗ P ) = τ ′(T ) for all T ∈ N

where τ ′ is the faithful, normal, tracial state on N and P ∈ B(H) is a rank one projection.

As in Remarks 4.4.2, for each N ∈ M, τ gives rise to a positive measure µN with support

σ(N) and N1, N2 ∈M are approximately unitarily equivalent in M if and only if µN1 = µN2

(see [70]). Thus the elements N of Nor(M) ∩ Nil(M) can be completely classified based on

µN . Moreover, note λ ∈ σe(N) if and only if

µN({z ∈ C | |z − λ| < ε}) =∞

for all ε > 0. Thus the measure µN captures the information about σe(N).

Since every type II∞ factor has infinite projections, we easily obtain (as in Section 4.1 and

Section 4.2) that there are several normal operators in the closure of the nilpotent operators.

Theorem 4.5.2. Let M be a von Neumann algebra and let N ∈ Nor(M) be such that

σ(N) is connected and contains zero. Suppose further that for every ε > 0 there exist a

finite number of disjoint Borel sets {Ek,ε}nεk=1 such that σ(N) =
⋃nε
k=1 Ek,ε, diam(Ek,ε) < ε,

and if Pk,ε := χEk,ε(N) then {Pk,ε}nεk=1 are equivalent, properly infinite projections. Then

N ∈ Nil(M).
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Proof. Let N be as described above and fix ε > 0. Fix ak ∈ Ek,ε such that ak = 0 for the

unique k ∈ {1, . . . , nε} where 0 ∈ Ek,ε and let Tε :=
∑nε

k=1 akPk,ε. Then ‖Tε −N‖ ≤ ε and

Tε ∈ Nor(M).

Since P1,ε is properly infinite, there exist mutually orthogonal, equivalent projections

{P1,ε,`}`≥1 such that

P1,ε =
∑
`≥1

P1,ε,`.

Since {Pk,ε}nεk=1 are equivalent, mutually orthogonal projections, there exist mutually orthog-

onal, equivalent projections {{Pk,ε,`}`≥1}nεk=1 such that

Pk,ε =
∑
`≥1

Pk,ε,`

for all k ∈ {1, . . . , nε}.

Let B(H) ⊆ M be a copy of the bounded linear operators on a separable Hilbert space

generated by the partial isometries implementing the equivalences of {{Pk,ε,`}`≥1}nεk=1 in-

side of M. Thus Tε can be viewed as normal element of B(H) ⊆ M with spectrum and

essential spectrum equal to {ak}nεk=1. Since σ(N) is connected and diam(Ek,ε) < ε for all

k ∈ {1, . . . , nε}, Lemma 4.1.2 implies Tε is within 3ε of an element of Nil(B(H)) ⊆ Nil(M).

Hence dist(N,Nil(M)) ≤ 4ε.

Corollary 4.5.3. Let M be a type II∞ factor with separable predual and let N ∈ Nor(M)

be such that σ(N) is connected and contains zero. If σe(N) = σ(N) then N ∈ Nil(M).

Proof. Since σe(N) = σ(N), every non-zero spectral projection of N is an infinite projection

in M. Since M is a type II∞ factor, every infinite projection is properly infinite and any two

infinite projections are equivalent. Thus the result follows from Theorem 4.5.2.

Combining our results from Section 4.4, the following provides examples of normal oper-

ators N in type II∞ factors that are limits of nilpotent operators yet σ(N) 6= σe(N).
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Proposition 4.5.4. Let M be a II∞ factor with separable predual and write M ' N⊗B(H)

where N is a II1 factor. Let τ be an unbounded tracial state on M such that τ(T⊗P ) = τ ′(T )

for all T ∈ N where τ ′ is the faithful, normal, tracial state on N and P ∈ B(H) is a rank

one projection.

Let N ∈ Nor(M) be such that σ(N) and σe(N) are both connected and contain zero.

Suppose further there exists an N0 ∈ Nor(N)∩Nil(N) and a k ∈ N such that σ(N0) = σ(N)

and kτ ′(χX(N0)) = τ(χX(N)) whenever X ⊆ σ(N) \ σe(N) is Borel. Then N ∈ Nil(M).

Proof. Choose N1 ∈ Nor(N) such that σ(N1) = σe(N). Let Q ∈ B(H) be a rank k projection

and consider T := N0 ⊗ Q + N1 ⊗ (IH − Q). Then T ∈ Nor(M) has the same spectral

distribution as N so T and N are approximately unitarily equivalent in M.

Note N⊗(IH −Q)B(H)(IH −Q) is a type II∞ factor and

N1 ⊗ (IH −Q) ∈ Nor(N⊗(IH −Q)B(H)(IH −Q))

satisfies the hypotheses of Corollary 4.5.3. Therefore

N1 ⊗ (IH −Q) ∈ Nil(N⊗(IH −Q)B(H)(IH −Q)).

Since N0 ∈ Nil(N) by assumption and the direct sum of two nilpotent operators is a nilpotent

operator, T ∈ Nil(M). Hence N ∈ Nil(M).

Unfortunately Proposition 4.5.4 requires the normal operator N0 to be a limit of nilpotent

operators from N. Since type II1 factors have no self-adjoint operators in the closure of the

nilpotent operators, Proposition 4.5.4 does not enable us to classify Msa ∩Nil(M) for a type

II∞ factor. For example, using the notation of Proposition 4.5.4, let N0 ∈ Nsa have the

Lebesgue measure on [0, 1] as its spectral distribution. Then N0 /∈ Nil(N) yet, if P ∈ B(H)

is a rank one projection, it might be possible that N0 ⊗ P ∈ Nil(M).

One way to view this problem for this particular N0 is as follows. From Corollary 4.3.4
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we know

lim inf
n→∞

dist

(
diag

(
1

2n
,

2

2n
, . . . ,

2n − 1

2n
, 1

)
,Nil(Mn(C))

)
≥ 1

2

so it is not possible to use spectral projections in N to approximate N0 with nilpotent

matrices of this form. However, in M, the spectral projection of N0 ⊗ P corresponding to

{0} is infinite. This allows us to add an infinite number of zero eigenvalues to any matrix in

a matrix approximation of N0 ⊗ P inside M. In particular, if

lim inf
n→∞

lim inf
k→∞

dist

(
diag

(
1

2n
,

2

2n
, . . . ,

2n − 1

2n
, 1

)
⊕ 0k,Nil(Mn+k(C))

)
= 0

where 0k is the k × k zero matrix, it would be easy to conclude that N0 ⊗ P ∈ Nil(M).

In fact, this limiting question is intrinsically related to the distance from a normal oper-

ator in B(H) with finite spectrum to Nil(B(H)).

Proposition 4.5.5. Let n ∈ N and let a1, . . . , an ∈ C. Let {en}n≥1 be an orthonormal basis

for H and define D ∈ Nor(B(H)) by Dej = ajej if j ∈ {1, . . . , n} and Dej = 0 otherwise.

Then

lim
k→∞

dist (diag (a1, . . . , an)⊕ 0k,Nil(Mn+k(C))) = dist(D,B(H)).

Proof. It is clear that dist (diag (a1, . . . , an)⊕ 0k,Nil(Mn+k(C))) decreases as k increases so

the limit exists. Moreover

lim
k→∞

dist (diag (a1, . . . , an)⊕ 0k,Nil(Mn+k(C))) ≥ dist(D,B(H))

by considering the direct sum of nilpotent matrices with a zero operator.

Let M ∈ Nil(B(H)) be arbitrary. Let m ∈ N be such that Mm = 0, let L := span{ej |

j ∈ {1, . . . , n}}, and let

K := span{L,M(L), . . . ,Mm−1(L)}.

Clearly K is a finite dimensional Hilbert space containing L that is invariant under M .
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Choose k ∈ N ∪ {0} such that dim(K) = k + n = k + dim(L). With respect to the

decomposition K ⊕K⊥ of H, write

D =

 T 0

0 0

 and M =

 M1 M2

0 M3

 .
By construction T can be viewed as an (k + n)× (k + n) matrix that is unitarily equivalent

to diag (a1, . . . , an)⊕0k. Moreover M1 can be viewed as an (k+n)× (k+n) nilpotent matrix

as M is nilpotent. Therefore

dist (diag (a1, . . . , an)⊕ 0k,Nil(Mn+k(C))) ≤ ‖T −M1‖ ≤ ‖D −M‖

so the result follows.

Some work towards evaluating the distance between a normal operator N of B(H) with

finite spectrum and Nil(B(H)) has been performed. One example of this is Lemma 4.1.2

which investigates the above distance when the spectrum and essential spectrum of N agree.

Another example is [65, Theorem 2.3a] which gives a bound for dist(N,Nil(B(H))) based

on the spectrum and essential spectrum of N . Unfortunately the bound from [65] does not

appear to be tight in this setting.

Alternatively, looking at the limiting property, [32, Theorem 2.12] (originally in [30,

Section 7]) shows

lim
n→∞

dist(Pn,Nil(Mn(C))) =
1

2

where Pn ∈ Mn(C) is an arbitrary rank one projection. Moreover, in [45] and [46], a tight

upper bound for dist(Pn,Nil(Mn(C))) has been obtained and examples have been given that

obtain this bound for small n.

Note the only two obvious lower bounds for dist(A,Nil(Mn(C))) for a positive matrix

A ∈Mn(C) of norm one are Lemma 4.1.3 and Corollary 4.3.4. This provides some support

to the following conjecture.
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Conjecture 4.5.6. There exists a continuous function f : [0, 1]2 → [0, 1] such that f(0, 0) =

0 and, if A ∈Mk+1(C) is a positive matrix of norm one with σ(A) = {0 = λ0 < λ1 < · · · <

λk = 1}, then

dist(A,Nil(Mk+1(C))) ≤ f

(
τk+1(A), max

1≤i≤k
|λi − λi−1|

)
where τk+1 is the tracial state on Mk+1(C).

If the above conjecture holds, it would be a simple argument to show that if M is a

type II∞ factor and if A ∈ Msa is such that σe(A) = {0} and σ(A) = [0, 1] with the

spectral distribution being a multiple of the Lebesgue measure, then A ∈ Nil(M). It would

then be possible to use some elementary mapping arguments and approximations by normal

operators with finite spectrum to show that if M is a type II∞ factor and if N ∈ Nor(M),

then N ∈ Nil(M) if and only if σ(N) and σe(N) are connected and contain zero.

4.6 Normal Limits of Sums of Nilpotent Operators in Von Neu-

mann Algebras

In this section we will investigate Nor(M) ∩ span(Nil(M)) for an arbitrary von Neumann

algebra M. In [29, Corollary 5] Herrero showed that the unit of B(H) is a limit of sums of

two nilpotent operators. Since certain von Neumann algebras contain unital copies of B(H),

the following result is trivial.

Proposition 4.6.1. Let M be a type I∞, II∞, or type III von Neumann algebra. Then there

exist sequences of nilpotent operators (Mi,n)n≥1 in M such that IM = limn→∞M1,n +M2,n.

Our next goal is to generalize [29, Corollary 6] to type I and type III von Neumann

algebras with separable predual. The arguments used in these two results are a modification

of the arguments in [29] using the theory developed in Sections 4.1 and 4.2.

Theorem 4.6.2. Let M := L∞(X,B(H)) where (X,µ) a Radon measure space and let

f ∈ Nor(M). Then there exists two sequences (Mn)n≥1 and (M ′
n)n≥1 of nilpotent operators
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in M such that

lim
n→∞

‖f − (Mn +M ′
n)‖ = 0.

Furthermore these sequences can be chosen such that max{‖Mn‖ , ‖M ′
n‖} ≤ 3

2
‖f‖.

Proof. Fix ε > 0 and choose a representation of f such that supx∈X ‖f(x)‖ <∞ and f(x) is

normal for every x ∈ X. Since f is measurable, the range of f is separable and x 7→ ‖f(x)‖ is

a measurable function. As such there exist {Tn}n≥1 ⊆ f(X) and disjoint measurable subsets

{En}n≥1 ⊆ X such that if h :=
∑

n≥1 TnχEn (so h ∈M) then ‖h− f‖ ≤ ε. Since Tn ∈ f(X)

for all n ∈ N, Tn is normal and ‖Tn‖ ≤ ‖f‖ for all n ∈ N.

For each n ∈ N choose λn in the essential spectrum of Tn and fix Rn ∈ Nor(B(H)) such

that the spectrum and essential spectrum of Rn is the closed ball of radius ‖Tn‖ around zero.

For each n ∈ N let

Sn :=
λn
2
IH +Rn ∈ B(H) and S ′n :=

λn
2
IH −Rn ∈ B(H).

Thus for each n ∈ N the spectrum and essential spectrum of Sn and S ′n are the closed unit

ball of radius ‖Tn‖ centred at λn
2

.

Recall that M2(B(H)) ' B(H). For each n ∈ N let

Ln :=

(
1

2
Tn

)
⊕ Sn ∈M2(B(H)) and L′n :=

(
1

2
Tn

)
⊕ S ′n ∈M2(B(H)).

Therefore, for each n ∈ N, Ln, L
′
n ∈ Nor(M2(B(H))), σ(Ln) and σ(L′n) are connected and

contain zero, and {Ln, L′n}n≥1 is bounded in norm by 3
2
‖f‖. Thus Lemma 4.1.4 implies

there exists a q ∈ N and {Qn, Q
′
n}n≥1 ⊆ Nil(M2(B(H))) such that ‖Qn‖ , ‖Q′n‖ ≤ 3

2
‖f‖,

‖Ln −Qn‖ , ‖L′n −Q′n‖ ≤ ε, and Qq
n = 0 = (Q′n)q for all n ∈ N.

Notice

Ln + L′n = Tn ⊕ (Sn + S ′n) = Tn ⊕ (λnIH).

Since λn was chosen to be in the essential spectrum of Tn, it is clear that Tn and Ln+L′n are
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approximately unitarily equivalent (viewing M2(B(H)) ' B(H)). Thus the above implies

there exist {Mn,M
′
n}n≥1 ⊆ Nil(B(H)) such that ‖Mn‖ , ‖M ′

n‖ ≤ 3
2
‖f‖, M q

n = 0 = (M ′
n)q,

and ‖Tn − (Mn +M ′
n)‖ ≤ 3ε for all n ∈ N. Therefore, if we define

g1 :=
∑
n≥1

MnχEn and g2 :=
∑
n≥1

M ′
nχEn ,

then g1, g2 ∈ Nil(M) are such that ‖g1‖ , ‖g2‖ ≤ 3
2
‖f‖ and

‖h− (g1 + g2)‖ ≤ sup
n≥1
‖Tn − (Mn +M ′

n)‖ ≤ 3ε.

Thus ‖f − (g1 + g2)‖ ≤ 4ε completing the proof.

Theorem 4.6.3. Let M be a type III von Neumann algebra with separable predual and let

N ∈ Nor(M). Then there exists two sequences (Mn)n≥1 and (M ′
n)n≥1 of nilpotent operators

in M such that

lim
n→∞

‖N − (Mn +M ′
n)‖ = 0.

Furthermore these sequences can be chosen such that max{‖Qn‖ , ‖Q′n‖} ≤ 3
2
‖N‖ for all

n ∈ N.

Proof. Most of the arguments of this result are similar to those used in Theorem 4.2.2 and

thus will be omitted. Since M is a type III von Neumann algebra with separable predual,

there exists a locally compact, complete, separable, metrizable, measure space (X,µ) and a

collection of type III factors (Mx)x∈X with separable predual such that M is a direct integral

of (Mx)x∈X . Thus we can write N =
∫ ⊕
X
Nx dµ(x) where Nx ∈Mx is a normal operator and

‖Nx‖ ≤ ‖N‖ for all x ∈ X. Without loss of generality, ‖N‖ = 1.

Let ε := 1
2m

for some fixed m ∈ N and let Ck,` and XY be as in Theorem 4.2.2. Since

the number of possible sets Y is finite and the sets XY are disjoint, it suffices to show that

for each Y there exists two nilpotent operators MY and M ′
Y in M such that the supports of

MY and M ′
Y are XY and N is within 3ε of MY +M ′

Y when restricted to XY .
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Fix a potential Y and for each (k, `) ∈ Y let zk,` ∈ Ck,` be any element within the

closed unit ball. As in Theorem 4.2.2 there exist equivalent, pairwise orthogonal, measurable

projections {{(x 7→ Px,k,`,w)}(k,`)∈Y }w≥1 such that

TY :=

x 7→ ∑
(k,`)∈Y

∑
w≥1

zk,`Px,k,`,w


is a measurable and decomposable operator in M that has XY as support and is within 2ε

of the restriction of N to XY .

To construct our nilpotent operators, let DY be the diagonal operator on a separa-

ble Hilbert space H with orthonormal basis {{ek,`,w}(k,`)∈Y }w≥1 such that DY (ek,`,w) =

zk,`ek,`,w for all w ∈ N and (k, `) ∈ Y . By [29, Corollary 6] (or by Theorem 4.6.2) there

exist Q
(1)
Y , Q

(2)
Y ∈ Nil(B(H)) such that

∥∥∥Q(j)
Y

∥∥∥ ≤ 3
2
‖DY ‖ ≤ 3

2
‖N‖ for j ∈ {1, 2} and∥∥∥DY −

(
Q

(1)
Y +Q

(2)
Y

)∥∥∥ ≤ ε. For each w1, w2 ∈ N, j ∈ {1, 2}, and (k1, `1), (k2, `2) ∈ Y

let

a
(j)
(k1,`1,w1),(k2,`2,w2) :=

〈
Q

(j)
Y ek2,`2,w2 , ek1,`1,w1

〉
∈ C

and let
(
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

)
∈M be the partial isometry such that

(
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

) (
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

)∗
= (x 7→ Px,k1,`1,w1)

and (
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

)∗ (
x 7→ Vx,(k1,`1,w1),(k2,`2,w2)

)
= (x 7→ Px,k2,`2,w2).

Finally for j ∈ {1, 2} let M
(j)
Y be the operator

x 7→ ∑
w1,w2≥1

∑
(k1,`1),(k2,`2)∈Y

a
(j)
(k1,`1,w1),(k2,`2,w2)Vx,(k1,`1,w1),(k2,`2,w2)


which are measurable, decomposable, nilpotent operators in M whose sum is within ε of TY .

Thus the result follows.

152



In the case of a C∗-algebra A with a tracial state (in particular, finite von Neumann

algebras), the following corollary of Lemma 4.3.3 demonstrates that IA /∈ span(QuasiNil(A)).

Proposition 4.6.4. Let A be a unital C∗-algebra with a tracial state τ . Then

span(QuasiNil(A)) ⊆ ker(τ).

Thus IA /∈ span(QuasiNil(A)).

We end this section by generalizing [29, Corollary 6] to type II∞ factors with separable

predual.

Theorem 4.6.5. Let M be a type II∞ factor with separable predual and let N ∈ Nor(M).

Then there exists two sequences (Mn)n≥1 and (M ′
n)n≥1 of nilpotent operators in M such that

lim
n→∞

‖N − (Mn +M ′
n)‖ = 0.

Furthermore these sequences can be chosen such that

‖Mn‖ , ‖M ′
n‖ ≤

1

2
‖N‖+ dist(0, σe(N))

for all n ∈ N (where σe(N) was defined in Remarks 4.5.1).

Proof. Let λ ∈ σe(N) be any point such that |λ| = dist(0, σe(N)) and let R := 1
2
(‖N‖+ |λ|).

Let M0 be a normal operator in M such that σ(M0) and σe(M0) are both the closed ball

of radius R around 0. Let M1 := λ
2
IM + M0 and M2 := λ

2
IM −M0. Thus σ(M1), σe(M1),

σ(M2), and σe(M2) are all the closed ball of radius R around λ
2
.

Since M is a II∞ factor, there exists a unital embedding of M2(M) into M such that

N ⊕ (λIM) and N are approximately unitarily equivalent (as λ ∈ σe(N)). Let L1 := 1
2
N ⊕

M1 ∈ M2(M) and L2 := 1
2
N ⊕M2 ∈ M2(M). By construction it is clear that L1 + L2 =

N ⊕ (λIM),

‖L1‖ = ‖L2‖ = R +
|λ|
2

=
1

2
‖N‖+ dist(0, σe(N)),
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and σ(L1) = σe(L1) and σ(L2) = σe(L2) are both connected sets containing zero. Since

M2(M) is also a II∞ factor, Corollary 4.5.3 implies that L1 and L2 are norm limits of

nilpotent operators from M2(M). Hence there exists two sequences (Mn)n≥1 and (M ′
n)n≥1

of nilpotent operators in M2(M) ⊆M such that

lim
n→∞

‖N ⊕ (λI)− (Mn +M ′
n)‖ = 0

and ‖Qn‖ , ‖Q′n‖ ≤ 1
2
‖N‖ + dist(0, σe(N)) for all n ∈ N. Hence N ⊕ λI is a norm limit of

sums of nilpotent operators from M2(M) ⊆ M with the desired properties. Since N ⊕ λI

and N are approximately unitarily equivalent in M (see [70]), the result follows.

4.7 Distance from Projections to Nilpotent Operators in Von Neu-

mann Algebras

In this section we will investigate the distance from an arbitrary fixed projection to the nilpo-

tent and quasinilpotent operators in von Neumann algebras. We begin with the following

simple result.

Lemma 4.7.1. Let A be a unital C∗-algebra. Then

dist(IA,Nil(A)) = dist(IA,QuasiNil(A)) = 1.

Furthermore if P ∈ A is a non-trivial projection then

1

2
≤ dist(P,QuasNil(A)) ≤ dist(P,Nil(A)) ≤ 1.

Proof. The first claim follows since nilpotent and quasinilpotent operators are not invertible

and the open unit ball around IA contains invertible operators. The second result follows

trivially from Lemma 4.1.3.
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Our first goal is to generalize [29, Corollary 9] to type I and type III von Neumann algebras

with separable predual. These arguments are simple generalizations of [29, Corollary 9] based

on the techniques used in Sections 4.1 and 4.2.

Theorem 4.7.2. Let (X,µ) a Radon measure space and let M := L∞(X,B(H)). If P ∈M

is a projection then

1. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 0 if P = 0,

2. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 1 if P (x) has finite dimensional kernel on a

set of positive µ-measure, and

3. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 1
2

otherwise.

Proof. Clearly (1) holds. To see that (2) holds, note if M ∈ Nil(M) then M(x) ∈ Nil(B(H))

for almost every x ∈ X and if M ∈ QuasiNil(M) then M(x) ∈ QuasiNil(B(H)) for almost

every x ∈ X. If P ∈ M is a projection where P (x) is a projection with finite dimensional

kernel on a set of positive µ-measure then since every projection in B(H) with finite dimen-

sional kernel is distance one from the nilpotent and quasinilpotent operators (by [29, Corol-

lary 9]) the above description of the nilpotent and quasinilpotent operators of M implies

dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 1.

To see that (3) holds, it suffices to show dist(P,Nil(M)) ≤ 1
2

by Lemma 4.7.1. Fix

ε > 0. Note we can choose a representation of P such that P (x) is a projection with infinite

dimensional kernel for every x ∈ X. Since P is measurable, the range of P is separable

and x 7→ ‖P (x)‖ is a measurable function. Thus there exist {Pn}n≥1 ⊆ P (X) and disjoint

measurable subsets {En}n≥1 ⊆ X such that if

Q :=
∑
n≥1

PnχEn

(so Q ∈M) then ‖Q− P‖ ≤ ε.
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Since Pn ∈ f(X) for all n ∈ N, each Pn is rather the zero projection, a projection with

infinite range and kernel, or a projection with finite range. Since each projection with finite

range can be viewed as the direct sum of rank one projections, [29, Corollary 9] implies there

exists a q ∈ N and {Mn}n≥1 ⊆ Nil(B(H)) such that ‖Pn −Mn‖ ≤ 1
2

+ ε and M q
n = 0 for all

n ∈ N.

Let

M :=
∑
n≥1

MnχEn .

Then M ∈ M, ‖P −M‖ ≤ 1
2

+ 2ε, and M q = 0 so M ∈ Nil(M). Hence dist(P,Nil(M)) ≤
1
2
.

Theorem 4.7.3. Let M be a type III von Neumann algebra with separable predual. Choose

a locally compact, complete, separable, metrizable measure space (X,µ) and a collection of

type III factors (Mx)x∈X with separable predual such that M is a direct integral of (Mx)x∈X .

If P ∈M is a projection, we may write P =
∫ ⊕
X
Px dµ(x) where Px ∈Mx is a projection for

all x ∈ X. Then

1. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 0 if P = 0,

2. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 1 if P (x) = IMx on a set of positive µ-

measure, and

3. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 1
2

otherwise.

Proof. Clearly (1) holds and (2) follows in a similar fashion as in Theorem 4.7.2. To see

that (3) holds, it suffices to show dist(P,Nil(M)) ≤ 1
2

by Lemma 4.7.1. Since M is a type

III von Neumann algebra, every non-zero projection of M is properly infinite. Thus, as

P = (x 7→ Px) is non-zero, (x 7→ Px) is a properly infinite projection. Thus there exist

equivalent, pairwise orthogonal, measurable projections {(x 7→ Px,w,1)}w≥1 such that

(x 7→ Px) =
∑
w≥1

(x 7→ Px,w,1).
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Let Z ∈ M be the central support of P and let Q := (IM − P )Z. Thus P and Q have

the same central support Z as IMx − Px 6= 0 for all x in the support of Z. Hence P and Q

are equivalent projections in M. Therefore, using the projections {(x 7→ Px,w,1)}w≥1 and the

fact that QP = 0, there exist measurable projections {(x 7→ Px,w,2)}w≥1 such that

(x 7→ Qx) =
∑
w≥1

(x 7→ Px,w,2)

and

{{(x 7→ Px,w,j)}w≥1}j=1,2

is a collection of equivalent, pairwise orthogonal projections.

Let ε > 0. To construct our nilpotent operator, let D be the diagonal operator on an

infinite dimensional, separable Hilbert spaceH with orthonormal basis {{ew,j}w≥1}j,=1,2 such

that D(ew,1) = ew,1 and D(ew,2) = 0. By [29, Corollary 9] there exists an M ′ ∈ Nil(B(H))

such that ‖D −M ′‖ ≤ 1
2

+ ε. For each w1, w2 ∈ N and j1, j2 ∈ {1, 2} let

a(w1,j1),(w2,j2) := 〈M ′ew2,j2 , ew1,j1〉 ∈ C

and let
(
x 7→ Vx,(w1,j1),(w2,j2)

)
∈M be the partial isometry such that

(
x 7→ Vx,(w1,j1),(w2,j2)

) (
x 7→ Vx,(w1,j1),(w2,j2)

)∗
= (x 7→ Px,w1,j1)

and (
x 7→ Vx,(w1,j1),(w2,j2)

)∗ (
x 7→ Vx,(w1,j1),(w2,j2)

)
= (x 7→ Px,w2,j2).

Finally let

M :=

x 7→ ∑
w1,w2≥1

∑
j1,j2∈{1,2}

a(w1,j1),(w2,j2)Vx,(w1,j1),(w2,j2)


which is a measurable and decomposable operator in M. Moreover M is also nilpotent as, for

each x ∈ X, Mx is a copy ofM ′. Since ‖D −M ′‖ ≤ 1
2
+ε, it is clear that ‖P −M‖ ≤ 1

2
+ε.
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In the case of a C∗-algebra A with a tracial state τ , Corollary 4.3.4 clearly provides an

additional restriction. Thus it is unlikely to for us to generalize the above results to finite

von Neumann algebras. However [29, Corollary 9] generalizes to type II∞ factors.

Theorem 4.7.4. Let M be a type II∞ von Neumann algebra with separable predual. Choose

a locally compact, complete, separable, metrizable, measure space (X,µ) and a collection of

type II∞ factors (Mx)x∈X with separable predual such that M is a direct integral of (Mx)x∈X .

If P ∈M is a projection, we may write P =
∫ ⊕
X
Px dµ(x) where Px ∈Mx is a projection for

all x ∈ X.

1. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 0 if P = 0,

2. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 1 if IMx − P (x) is finite on a set of positive

µ-measure, and

3. dist(P,Nil(M)) = dist(P,QuasiNil(M)) = 1
2

otherwise.

Proof. Clearly (1) holds. To see that (2) holds, first suppose M is a factor (that is µ is a

point-mass measure) let M0 be the ideal of M given in Remarks 4.5.1 and let q : M→M/M0

be the canonical quotient map. If IM − P is finite then q(P ) = IM/M0 . Thus

1 = dist(q(P ),Nil(M/M0)) ≤ dist(P,Nil(M)) ≤ 1

and

1 = dist(q(P ),QuasiNil(M/M0)) ≤ dist(P,QuasiNil(M)) ≤ 1.

Therefore (2) follows for general M as in Theorem 4.7.3.

To see that (3) holds, it suffices to show dist(P,Nil(M)) ≤ 1
2

by Lemma 4.7.1. By

assumption IM−P is an properly infinite projection so there exists a collection of projections

{Qj}j≥1 such that {P} ∪ {Qj}j≥1 is a set of mutually equivalent, orthogonal projections

that sum to the identity. Using the partial isometries implementing the equivalence of

these projections, a copy of B(H) can be constructed inside M such that P can be viewed
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as a rank one projection inside B(H). Thus [29, Corollary 9] implies dist(P,Nil(M)) ≤

dist(P,Nil(B(H))) ≤ 1
2

as desired.

4.8 Purely Infinite C∗-Algebras

In this section we will prove Theorem 4.8.6, which completely classifies when a normal

operator in a unital, simple, purely infinite C∗-algebra is a norm limit of nilpotent and

quasinilpotent operators. The main tools of the proof are the existence and equivalence

of projections in unital, simple, purely infinite C∗-algebras and Lemma 4.8.1 which gives

positive matrices of norm one that are asymptotically approximated by nilpotent matrices

as we allow the size of the matrices to increase. In fact, in the case that A−1
0 = A−1, the

conditions of Theorem 4.8.6 are identical to the conditions of Theorem 1.8.3. This is not

a surprise as the proof of Theorem 4.8.6 relies only on Lemma 4.8.1 and the structure of

the projections in a unital, simple, purely infinite C∗-algebra. In fact, the proof of Theorem

4.8.6 can be adapted to prove Theorem 1.8.3. When the proof of Theorem 4.8.6 has been

completed, we will apply similar techniques to obtain information about the closed span of

nilpotent operators and the distance from a fixed projection to the nilpotent operators in

unital, simple, purely infinite C∗-algebras.

For completeness we include an outline of the following previously known result.

Lemma 4.8.1 (See [2, A1.14]). For each n ∈ N there exists a positive matrix An ∈Mn(C)

with norm one such that limn→∞ dist(An,Nil(Mn(C))) = 0.

Proof. Let

Q′n :=
n−1∑
j=1

1

j
qjn ∈Mn(C)

where qn ∈ Mn(C) is the nilpotent Jordan block of order n. It was shown in [36] that

‖Re(Q′n)‖ ≤ π
2
. If Qn := i

ln(n)
Q′n ∈ Mn(C) and Hn := Re(Qn) ∈ Mn(C), then, by [36],
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−In ≤ Hn ≤ In, Qn ∈ Nil(Mn(C)),

| ‖Hn‖ − 1| ≤ ln(2)

2 ln(n)
, and ‖Hn −Qn‖ ≤

π

2 ln(n)
.

By normalizing each Hn, we obtain self-adjoint matrices Bn ∈ Mn(C) with norm one

such that

lim
n→∞

dist(Bn,Nil(Mn(C))) = 0.

For each n ∈ N let An := B2
n. Hence An ∈Mn(C) is a positive matrix with norm one. Since

the square of any nilpotent matrix is a nilpotent matrix, it is easy to obtain

lim
n→∞

dist(An,Nil(Mn(C))) = 0

as desired.

Although, in general, little can be said about the spectrum of the matrices An in Lemma

4.8.1, the following does provide some information.

Corollary 4.8.2. Let {An}n≥1 be the positive matrices of norm one from Lemma 4.8.1. For

every m ∈ N there exists an Nm ∈ N such that

σ(An) ∩
[
k

m
,
k + 1

m

)
6= ∅

for all k ∈ {0, 1, . . . ,m − 1} and for all n ≥ Nm. That is, the spectrum of the matrices An

are asymptotically dense in [0, 1].

Proof. Since limn→∞ dist(An,Nil(Mn(C))) = 0 by Lemma 4.8.1, limn→∞ dist(σ(An), 0) = 0

and the distance between adjacent eigenvalues (when arranged in increasing order) of each

An tends to zero as n tends to infinity by Lemma 4.1.3. Hence the result easily follows.

We will require the use of the following trivial result in the proof of Theorem 4.8.6.
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Lemma 4.8.3. Let A be a C∗-algebra, let N ∈ Nor(A), let (Nn)n≥1 be a sequence of normal

operators of A such that N = limn→∞Nn, and let U be an open subset of C such that

U ∩ σ(N) 6= ∅. Then there exists an k ∈ N such that σ(Nn) ∩ U 6= ∅ for all n ≥ k.

Proof. Fix λ ∈ U ∩ σ(N). By Urysohn’s Lemma there exists a continuous function f on

C such that f |Uc = 0 yet f(λ) = 1. Note f(N) = limn→∞ f(Nn) by standard functional

calculus results. If σ(Nn) ∩ U = ∅ for infinitely many n, then f(Nn) = 0 for infinitely many

n yet f(N) 6= 0 by construction. This is clearly a contradiction.

Now we will prove Theorem 4.8.6 for positive operators. Although Proposition 4.8.4 is

not required in the proof of Theorem 4.8.6, the proof of Proposition 4.8.4 contains all the

conceptual difficulties and technical approximations thus easing in the comprehension of

Theorem 4.8.6.

Proposition 4.8.4. Let A be a unital, simple, purely infinite C∗-algebra and let A ∈ A+.

Then the following are equivalent:

1. A ∈ Nil(A).

2. A ∈ QuasiNil(A).

3. The spectrum of A is connected and contains zero.

Proof. Clearly (1) implies (2) and (2) implies (3) is trivial by Lemma 1.8.4. We shall demon-

strate that (3) implies (1).

Suppose the spectrum of A is connected and contains zero and let ε > 0. Since A is

a unital, simple, purely infinite C∗-algebra, A has real rank zero (see [84] or [21, Theorem

V.7.4]). Thus there exists scalars 0 = an < an−1 < . . . < a1 = ‖A‖ and non-zero pairwise

orthogonal projections P
(1)
1 , . . . , P

(1)
n ∈ A such that ‖A− A1‖ ≤ ε where

A1 :=
n∑
k=1

akP
(1)
k .
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Moreover, since the spectrum of A is connected, we may also assume that

max
1≤k≤n−1

|ak+1 − ak| ≤ ε

by Lemma 4.8.3. The idea behind the remainder of the proof is to systematically remove

the largest eigenvalue of A1 by approximating with a nilpotent operator.

By Lemma 4.8.1 there exists an ` ∈ N, a positive matrix T1 ∈ M`(C) with ‖T1‖ = a1,

and a nilpotent matrix M1 ∈ M`(C) such that ‖T1 −M1‖ ≤ ε. In addition, by a small

perturbation, we may assume that the geometric multiplicity of the eigenvalue a1 of T1 is

one. For each k ∈ {2, . . . , n} let

{
λ1,k, λ2,k, . . . , λm(1)

k ,k

}
be the spectrum of σ(T1) contained in [ak, ak−1) counting multiplicity (where zero intersection

is possible). Since A is a unital, simple, purely infinite C∗-algebra, for each k ∈ {2, . . . , n}

there exists pairwise orthogonal projections

Q
(1)
1,k, Q

(1)
2,k, . . . , Q

(1)

m
(1)
k ,k

such that P
(1)
1 is equivalent Q

(1)
j,k for each j ∈

{
1, . . . ,m

(1)
k

}
and

∑mk
j=1Q

(1)
j,k < P

(1)
k .

For k ∈ {2, . . . , n} let

P
(2)
k := P

(1)
k −

m
(1)
k∑

j=1

Q
(1)
j,k > 0

(where the empty sum is the zero projection). Therefore, if

A′1 := a1P
(1)
1 +

n∑
k=2

ak

m
(1)
k∑

j=1

Q
(1)
j,k

 and A2 :=
n∑
k=2

akP
(2)
k

then A′1 and A2 are self-adjoint operators such that A1 = A′1+A2. Notice if P (2) :=
∑n

k=2 P
(2)
k

162



then P (2) is a non-trivial projection such that

A2 ∈ P (2)AP (2) and A′1 ∈
(
IA − P (2)

)
A
(
IA − P (2)

)
.

Thus the proof will be complete if we can demonstrate that A′1 is within 2ε of a nilpotent

operator from
(
IA − P (2)

)
A
(
IA − P (2)

)
and A2 is within 2ε of a nilpotent operator from

P (2)AP (2).

Recall P (2)AP (2) and
(
IA − P (2)

)
A
(
IA − P (2)

)
are unital, simple, purely infinite C∗-

algebras. Moreover, if

A′′1 := a1P
(1)
1 +

n∑
k=2

m
(1)
k∑

j=1

λj,kQ
(1)
j,k ∈

(
IA − P (2)

)
A
(
IA − P (2)

)
then ‖A′′1 − A′1‖ ≤ ε by the assumption that max1≤k≤n−1 |ak+1 − ak| ≤ ε. Since

{
P

(1)
1

}
∪

{{
Q

(1)
j,k

}m(1)
k

j=1

}n

k=2

are pairwise orthogonal, equivalent projections in
(
IA − P (2)

)
A
(
IA − P (2)

)
, we can use the

partial isometries implementing the equivalence to construct a matrix algebra with these

projections as the orthogonal minimal projections. Moreover, by construction, inside this

matrix algebra A′′1 has the same spectrum as T1 (including multiplicity) so A′′1 can be ap-

proximated with the analog of M1 inside
(
IA − P (2)

)
A
(
IA − P (2)

)
. Hence A′1 is within 2ε of

a nilpotent operator from
(
IA − P (2)

)
A
(
IA − P (2)

)
.

To approximate A2 with a nilpotent operator from P (2)AP (2), we repeat the same argu-

ment with a positive matrix T2 of norm a2. Due to the nature of the above approximations,

the above process gives a non-trivial projection P (3) < P (2) and a positive operator A3 of

P (3)AP (3) with spectrum {a3, a4, . . . , an} such that A2 − A3 ∈
(
P (2) − P (3)

)
A
(
P (2) − P (3)

)
can be approximated within 2ε of a nilpotent operator from

(
P (2) − P (3)

)
A
(
P (2) − P (3)

)
.

By repeating this process a finite number of times (eventually ending with a zero operator),
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we can write A1 as a finite direct sum of positive matrices each within 2ε of a nilpotent

matrix from the respective matrix algebra. Hence A1 is within 2ε of a nilpotent operator

from A and thus A is within 3ε of a nilpotent operator from A.

In order to adapt the proof of Proposition 4.8.4 to normal operators, it is necessary to be

able to approximate said operators with normal operators with finite spectra. This difficult

work has already been completed by Lin in Theorem 1.3.19. It turns out that the condition

‘λIA −N ∈ A−1
0 for all λ ∈ C \ σ(N)’ is a necessary condition for an operator to be a limit

of nilpotent operators.

Lemma 4.8.5. Let A be a unital C∗-algebra and let T ∈ QuasiNil(A). Then λIA− T ∈ A−1
0

for all λ ∈ C \ σ(T ).

Proof. If M ∈ QuasiNil(A) then λIA − tM is invertible for all λ ∈ C \ {0} and for all t ∈ C.

Therefore λIA −M ∈ A−1
0 for all λ ∈ C \ {0}.

If T ∈ QuasiNil(A) then 0 ∈ σ(T ) by Lemma 1.8.4. As A−1
0 is closed in the relative

topology on A−1, λIA − T ∈ A−1
0 for all λ ∈ C \ σ(T ).

With Lemma 4.8.5 giving another necessary condition for a normal operator to be a limit

of nilpotent operators, we can now address our main theorem.

Theorem 4.8.6. Let A be a unital, simple, purely infinite C∗-algebra and let N ∈ Nor(A).

Then the following are equivalent:

1. N ∈ Nil(A).

2. N ∈ QuasiNil(A).

3. 0 ∈ σ(N), σ(N) is connected, and λIA −N ∈ A−1
0 for all λ ∈ C \ σ(N).

Proof. Clearly (1) implies (2) and (2) implies (3) is trivial by Lemma 1.8.4 and Lemma 4.8.5.

We shall demonstrate that (3) implies (1). As the approximations contained in the proof
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are identical to those used in Proposition 4.8.4, we will only outline the main technique and

omit the approximations.

Suppose 0 ∈ σ(N), σ(N) is connected, and λIA − N ∈ A−1
0 for all λ ∈ C \ σ(N). Fix

ε > 0 and for each (n,m) ∈ Z2 let

Bn,m :=
(
εn− ε

2
, εn+

ε

2

]
+ i
(
εm− ε

2
, εm+

ε

2

]
⊆ C.

By Theorem 1.3.19 there exists a normal operator Nε with finite spectrum such that

‖N −Nε‖ ≤ ε. For each (n,m) ∈ Z2 we label the box Bn,m relevant if σ(Nε) ∩ Bn,m 6= ∅

and we label the box Bn,m irrelevant if σ(Nε) ∩Bn,m = ∅. Since σ(N) is connected, we may

assume (via Lemma 4.8.3) that the union of all relevant Bn,m is a connected set and B0,0 is

relevant. By a perturbation of at most ε, we can assume that σ(Nε) is precisely the centres

of all relevant boxes and ‖N −Nε‖ ≤ 2ε.

The remainder of the proof is similar in nature to the proof of Proposition 4.8.4 in that

we will use a recursive algorithm to write Nε as a finite direct sum of matrices inside of A

each of which is within 5ε of the set of nilpotent matrices. If the only relevant box is B0,0,

the algorithm may stop as Nε is the zero operator and thus nilpotent. Otherwise we label a

relevant box bad if its removal disconnects the union of the relevant boxes or it is B0,0 and

we label a relevant box good if it is not bad. Elementary graph theory implies that at least

one box is good.

Let Bn0,m0 be a good, relevant box. Since the union of the relevant boxes is connected,

there exists a continuous path γ : [0, 1] → C that connects 0 to εn0 + iεm0 whose image

lies in the union of the relevant boxes. By Lemma 4.8.1 and since γ can be approximated

uniformly by a polynomial that vanishes at zero, there exists an ` ∈ N, a normal operator

N` ∈M`(C), and a nilpotent M` ∈M`(C) such that the spectrum of N` is contained within

an ε-neighbourhood of the union of relevant boxes and ‖N` −M`‖ ≤ ε. By perturbing the

eigenvalues of N` by at most 4ε, we can assume that the spectrum of N` is precisely a

subset of the centres of relevant boxes, the multiplicity of εn0 + iεm0 is precisely one, and
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‖M` −N`‖ ≤ 5ε.

For each (n,m) ∈ Z2 let Pn,m be the spectral projection of Nε for the box Bn,m. Using

Pn0,m0 as a main projection, for each other (n,m) ∈ Z2 such that εn+iεm is in the spectrum

of N` we can find the algebraic multiplicity of the eigenvalue εn+iεm of N` many orthogonal

subprojections of Pn,m whose sum is strictly less then Pn,m and each of which is equivalent to

Pn0,m0 . Thus, as in the proof of Proposition 4.8.4, we can find a projection P1 ∈ A such that

P1 commutes with Nε, P1NεP1 can be approximated by a nilpotent operator from P1AP1

within 5ε, and (I − P1)Nε(I − P1) has the same spectrum as Nε minus εn0 + iεm0.

By our selection of (n0,m0) and choice of projection P1, the number of relevant Bn,m for

(I − P1)Nε(I − P1) is one less than the number of relevant Bn,m for Nε and the union of the

relevant Bn,m for (I −P1)Nε(I −P1) is connected and contains B0,0. Thus, by repeating the

above process a finite number of times, we obtain a nilpotent operator M ∈ A such that

‖N −M‖ ≤ 7ε. Hence the result follows.

In the case of our C∗-algebra is not a purely infinite C∗-algebra, we note that the following

can easily be proved using the techniques illustrated above.

Lemma 4.8.7. Let A be a unital, simple C∗-algebra and let N ∈ Nor(A) be such that σ(N)

is connected and contains zero. If N = limn→∞
∑mn

k=1 ak,nPk,n where ak,n ∈ C and Pk,n are

infinite projections with
∑mn

k=1 Pk,n = IA then N ∈ Nil(A).

Proof. The conditions that A is simple and the projections are infinite imply that the pro-

jections are properly infinite (see [21, Theorem V.5.1]) and every projection is equivalent to

a subprojection of any infinite projection (see [21, Lemma V.5.4]). Thus the process used

above works (where we note the small technical detail that, when removing one projection

from the sum, we can still take the differences containing the other projections to be infinite

by showing that they containing a strict subprojection equivalent to the original Pk,n by

[21, Theorem V.5.1]).

With the proof of Theorem 4.8.6 complete, we turn our attention to other interesting
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questions pertaining to limits of nilpotent operators in unital, simple, purely infinite C∗-

algebras. To begin, we recall that [29, Corollary 6] shows that the closure of Nil(B(H)) +

Nil(B(H)) contained every normal operator. We now demonstrate a similar result for unital,

simple, purely infinite C∗-algebras.

Theorem 4.8.8. Let A be a unital, simple, purely infinite C∗-algebra. Then

Asa ⊆ {M1 +M2 | M1,M2 ∈ Nil(A)}

and

A ⊆ {M1 +M2 +M3 +M4 | M1,M2,M3,M4 ∈ Nil(A)}.

Proof. Clearly the second result follows from the first by considering real and imaginary

parts. To prove the first result, we will first demonstrate that

IA ∈ {M1 +M2 | M1,M2 ∈ Nil(A)}.

Note that there exists a positive operator A ∈ A such that σ(A) = [0, 1]. Thus A and IA−A

are limits of nilpotent operators by Theorem 4.8.6 (or Proposition 4.8.4) which completes

the claim.

Let A ∈ Asa be arbitrary and fix ε > 0. Since A has real rank zero (see [21, Theo-

rem V.7.4]), there exists non-zero pairwise orthogonal projections {Pk}nk=1 ⊆ A and scalars

{ak}nk=1 such that ‖
∑n

k=1 akPk − A‖ < ε. Since each PkAPk is a unital, simple, purely infinite

C∗-algebra with unit Pk, Pk is a limit of the sum of two nilpotent operators from PkAPk.

Since the finite direct sum of nilpotent operators is a nilpotent operator,
∑n

k=1 akPk is a

limit of sums of two nilpotent operators from A and thus the result follows.

Corollary 4.8.9. Let A be a unital, simple, purely infinite C∗-algebra and let N ∈ Nor(A)

be such that λIA −N ∈ A−1
0 for all λ ∈ C \ σ(N). Then

N ∈ {M1 +M2 | M1,M2 ∈ Nil(A)}
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Proof. The result follows from the same argument in Theorem 4.8.8 where N can be approx-

imated by normal operators with finite spectrum by Theorem 1.3.19.

We note that if A := On is the Cuntz algebra generated by n isometries then A−1
0 = A−1

by [16]. Thus Nor(On) ⊆ {M1 +M2 | M1,M2 ∈ Nil(On)} for all n ∈ N.

In [29, Corollary 9], Herrero determined the distance from a fixed projection in B(H)

to the nilpotent and quasinilpotent operators was either 0, 1, or 1
2

and gave necessary and

sufficient conditions for each distance. Using the structure of projections in unital, simple,

purely infinite C∗-algebras, it is possible to imitate Herrero’s work.

Theorem 4.8.10. Let A be a unital, simple, purely infinite C∗-algebra and let P ∈ A be a

projection. Then

1. dist(P,Nil(A)) = dist(P,QuasiNil(A)) = 0 if P = 0,

2. dist(P,Nil(A)) = dist(P,QuasiNil(A)) = 1 if P = IA, and

3. dist(P,Nil(A)) = dist(P,QuasiNil(A)) = 1
2

otherwise.

Proof. Clearly (1) and (2) hold by Lemma 4.7.1. To see that (3) holds, it suffices to show

dist(P,Nil(A)) ≤ 1

2

by Lemma 4.7.1. Since IA − P is a properly infinite projection, for each k ∈ N there exists

pairwise orthogonal projections Q1,k, Q2,k, . . . , Qk,k such that P is equivalent to Qj,k for each

j ∈ {1, . . . , k} and
∑k

j=1Qj,k < IA − P .

Let

Qk := P +
k∑
j=1

Qj,k.

Then P ∈ QkAQk for all k ∈ N. Thus it suffices to show that

inf
k≥1

dist(P,Nil(QkAQk)) ≤
1

2
.
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Since

{P} ∪ {Qj,k}kj=1

is a set of equivalent, pairwise orthogonal projections in A, we can use the partial isometries

implementing the equivalence to construct a copy ofMk+1(C) with these projections as the

orthogonal minimal projections. Moreover, by construction, inside this matrix algebra P is

a rank one projection. Thus, by [32, Theorem 2.12], P is within 1
2

+ sin
(

π
mk+1

)
(where mk

is the integer part of k
2
) of a nilpotent matrix. Thus

dist(P,Nil(QkAQk)) ≤
1

2
+ sin

(
π

mk + 1

)

so the result follows.

4.9 AFD C∗-Algebras

In this section we will investigate when a normal operator in a AFD C∗-algebra is a norm limit

of nilpotent operators. The study of such operators is intrinsically related to how normal ma-

trices can be asymptotically approximated by nilpotent matrices as we allow the dimension

of our matrices to increase. Proposition 4.9.7 will provide conditions on an AFD C∗-algebra

that guarantee the intersection of the normal operators and the quasinilpotent operators is

trivial whereas Theorem 4.9.5 exhibits an AFD C∗-algebra A where Asa ∩ Nil(A) 6= {0}.

Moreover, in Theorem 4.9.8 which is the main result of this section, we will demonstrate

that every UHF C∗-algebra has a normal operator with spectrum equal to the closed unit

disk that is a norm limit of nilpotent operators. All of this together (along with Proposi-

tion 4.10.10) implies that the study of Nor(A)∩Nil(A) for AFD C∗-algebras A is incredibly

complex.

We begin with the following important result.

Proposition 4.9.1. Let A be an AFD C∗-algebra and write A =
⋃
k≥1 Ak where each Ak is

a finite dimensional C∗-algebra. For each T ∈ A following are equivalent:
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1. T ∈ QuasiNil(A).

2. T ∈ Nil(A).

3. T ∈
⋃
k≥1 Nil(Ak).

Proof. Clearly (3) implies (2) and (2) implies (1). Suppose T ∈ QuasiNil(A). Let ε > 0

and choose M ∈ QuasiNil(A) such that ‖T −M‖ < ε. Since M ∈
⋃
k≥1 Ak and by the

semicontinuity of the spectrum, there exist an k ∈ N and an operator M0 ∈ Ak such that

‖M0 −M‖ < ε and

σ(M0) ⊆ {z ∈ C | dist(z, σ(M)) < ε} = {z ∈ C | |z| < ε} .

Since Ak is a finite dimensional C∗-algebra, Ak is a direct sum of matrix algebras. Thus M0

is unitarily equivalent to a direct sum of upper triangular matrices. Each of these upper

triangular matrices is the sum of a nilpotent matrix and a diagonal matrix whose diagonal

entries are in σ(M0). Since the equivalence is via a unitary, by subtracting the diagonal part

we obtain an M ′ ∈ Nil(Ak) such that

‖M0 −M ′‖ ≤ sup {|z| | z ∈ σ(M0)} < ε.

Therefore ‖T −M ′‖ < 3ε completing the proof.

Remarks 4.9.2. The study of which normal operators of an AFD C∗-algebra are in the

closure of the nilpotent operators is intrinsically connected to the distribution of eigenvalues

of normal matrices that are asymptotically approximated by nilpotent matrices as we allow

the dimension of the matrices to increase.

Indeed if A is an AFD C∗-algebra with A =
⋃
k≥1 Ak where A1

α1→ A2
α2→ A3

α3→ · · · is a

direct limit of finite dimensional C∗-algebras with αk injective for all k ∈ N, then it is easy to

see by Proposition 4.9.1 and by [38] that N ∈ Nor(A) ∩Nil(A) if and only if for each k ∈ N

there exists an Nk ∈ Nor(Ak) such that N = limk→∞Nk and limk→∞ dist(Nk,Nil(Ak)) = 0.
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Moreover, since N = limk→∞Nk, limk→∞ ‖αk(Nk)−Nk+1‖ = 0. This is possible only if

for each k ∈ N the eigenvalues of αk(Nk) and Nk+1 (including multiplicities) can be paired

together in a manner such that the maximum of the absolute values of the differences tends

to zero as k tends to infinity.

Similarly, if Nk ∈ Nor(Ak) can be chosen such that for each k ∈ N the eigenvalues of

αk(Nk) and Nk+1 (including multiplicities) can be paired together inside the appropriate

direct summand of Ak+1 in a manner such that the maximum of the absolute values of the

differences tends to zero as k tends to infinity and limk→∞ dist(Nk,Nil(Ak)) = 0, then, by

taking unitary conjugates of the matrices Nk, it is possible to construct a Cauchy sequence

in A that converges to a normal operator N in the closure of the nilpotent operators.

Example 4.9.3. For each n ∈ N let An ∈ M2n(C) be a diagonal matrix with spectrum{
1

2n
, 2

2n
, . . . , 1

}
. Then

lim inf
n→∞

dist(An,Nil(M2n(C))) > 0.

To see this, we note that the sequence (An)n≥1 can be used to construct a Cauchy se-

quence in the 2∞-UHF C∗-algebra A that converges to a non-zero positive operator A. If

lim infn→∞ dist(An,Nil(M2n(C))) = 0 then A would be the limit of elements of Nil(A) which

would contradict Proposition 4.3.6 as A has a faithful tracial state.

Alternatively

lim inf
n→∞

dist(An,Nil(M2n(C))) ≥ 1

2

since the normalized trace on M2n(C) has norm one, the normalized traces of An tend to 1
2

as n tends to infinity, and the trace of any nilpotent matrix is zero.

Note, in the above example, we can view each An as a positive operator whose spec-

trum is the first 2n entries of the sequence {1, 1
2
, 3

4
, 1

4
, 7

8
, . . .}. Thus, by Remarks 4.9.2,

we are interested in the following question: “Given a sequence (an)n≥1 ∈ `∞(N) does

lim infn→∞ dist(diag(a1, . . . , an),Nil(Mn(C))) = 0?” An application of Lemma 4.1.3 implies

{an}n≥1 must be a connected set containing zero in order for an affirmative answer to this

question. Thus the following is of particular interest.
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Proposition 4.9.4. There exists a sequence (an)n≥1 ∈ `∞(C)+ with {an}n≥1 = [0, 1] such

that

lim inf
n→∞

dist(diag(a1, . . . , an),Nil(Mn(C))) = 0.

Proof. By Lemma 4.8.1 for each n ∈ N there exists a positive matrix An ∈ Mn(C) of norm

one such that limn→∞ dist(An,Nil(Mn(C))) = 0. Choose n1 ∈ N such that

dist(An1 ,Nil(Mn1(C))) ≤ 1.

Let the first n1 of the scalars aj be the eigenvalues of An1 (including multiplicity).

Let R1 := An1 . By Corollary 4.8.2 σ(An) progressively gets dense in [0, 1] as n increases.

Therefore there exists an n2 ∈ N such that

σ(An2) ∩
[
k

22
,
k + 1

22

)
6= ∅

for all k ∈ {0, 1, 2, 3} and

dist(An2 ,Nil(Mn2(C))) ≤ 1

22
.

By comparing the eigenvalues of R1 and An2 there exists an m1 ∈ N and an injective map

f1 from the eigenvalues of R1 (including multiplicity) to the eigenvalues of A⊕m1
n2

(including

multiplicity) such that |λ − f1(λ)| ≤ 1
4

for all eigenvalues λ of R1 (including multiplicity).

Therefore, if A⊕m1
n2
	 R1 denotes the (m1n2 − n1) × (m1n2 − n1) diagonal matrix whose

diagonal entries are the eigenvalues of A⊕m1
n2

(including multiplicities) excluding f1(λ) for all

eigenvalues λ of R1 (including multiplicity), then

R2 := R1 ⊕ (A⊕m1
n2
	R1)
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is within 1
4

of a unitary conjugate of A⊕m1
n2

and thus

dist(R2,Nil(Mn2m1(C)) ≤ 1
4

+ dist(A⊕m1
n2

,Nil(Mn2m1(C))

≤ 1
4

+ dist(An2 ,Nil(Mn2(C)) ≤ 1
2
.

Thus define the next m1n2−n1 of the scalars aj to be the eigenvalues of A⊕m1
n2
	R1 (including

multiplicity).

By continuing this process ad infinitum, the desired sequence (an)n≥1 is obtained.

Of course the existence of the above sequence does not imply that there exists an AFD

C∗-algebra with a non-zero positive operator in the closure of the nilpotent operators as the

structure required for such an operator is more complex (see Remarks 4.9.2). However, an

example of such a AFD C∗-algebra is an easy application of the theory developed in Section

4.8.

Theorem 4.9.5. There exists an AFD C∗-algebra A such that A+ ∩ Nil(A) 6= {0}.

Proof. Let O2 be the Cuntz algebra generated by two isometries. Since O2 is a separable,

nuclear C∗-algebra, the cone of O2, C := C0((0, 1],O2), is AF-embeddable (see [50, Proposi-

tion 2] or [14, Theorem 8.3.5]). Hence there exists an AFD C∗-algebra A such that C ⊆ A.

Thus it suffices to show C+ ∩ Nil(C) 6= {0}.

Let A ∈ (O2)+ \{0} be such that σ(A) = [0, 1] and let A′ ∈ C+ be defined by A′(x) = Ax

for all x ∈ (0, 1]. Since A 6= 0, A′ 6= 0. Since A ∈ Nil(O2) by Theorem 4.8.6 (or simply

Proposition 4.8.4), it is trivial to verify that A′ ∈ Nil(C) as desired.

Using Theorem 4.9.5 and Proposition 4.9.1, it is easy to obtain the following that enables

us to improve Lemma 4.8.1 by bounding the nilpotency degrees of the approximating nilpo-

tent matrices. Theorem 4.9.5, Proposition 4.9.1, and Remarks 4.9.2 together also imply that

Lemma 4.8.1 holds with the additional property that the distribution of eigenvalues of the

sequence An is ‘not too poorly behaved’.
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Corollary 4.9.6. There exists an increasing sequence of natural numbers (kn)n≥1 and a

sequence of positive matrices An ∈ Mkn(C) of norm one such that for every ε > 0 there

exists an index m ∈ N and a ` ∈ N such that

dist(An,Nil`(Mkn(C))) < ε

for all n ≥ m (where Nil`(Mkn(C)) is the set of nilpotent kn × kn-matrices of nilpotency

index at most `).

Next we have the following trivial observation that demonstrates several AFD C∗-algebras

where no non-zero normal operators are limits of quasinilpotent operators.

Proposition 4.9.7. Suppose A =
⋃
k≥1 Ak where A1

α1→ A2
α2→ A3

α3→ · · · is a direct limit of

finite dimensional C∗-algebras with αk injective for all k ∈ N. If Ak = ⊕mkj=1Mnj,k(C) and

{nj,k}j,k≥1 is a bounded set, then Nor(A) ∩QuasiNil(A) = {0}.

Proof. Suppose N ∈ Nor(A)∩QuasiNil(A) and let ` := supj,k≥1 nj,k <∞. Therefore M ` = 0

for all M ∈
⋃
k≥1 Nil(Ak) so N ` = 0 by Proposition 4.9.1. Hence N = 0.

The main result of this section is Theorem 4.9.8 which gives examples of normal operators

in each UHF C∗-algebra that are limits of nilpotent operators. This result is slightly sur-

prising since every UHF C∗-algebra has a faithful tracial state yet Section 4.3 demonstrated

that faithful tracial states impose restrictions on when normal operators can be limits of

nilpotent operators. In particular, Proposition 4.3.6 shows that Asa ∩QuasiNil(A) = {0} for

every UHF C∗-algebra A (also see Corollary 4.3.8, Lemma 4.3.12, and Theorem 4.3.13).

The main tool in this construction is Lemma 4.4.4 which is based on Section 2.3.3 of [32].

The following result was known to Marcoux and was communicated to the author.

Theorem 4.9.8 (Marcoux). Let A be a nonelementary UHF C∗-algebra. There exists an

N ∈ Nor(A) ∩ Nil(A) such that σ(N) is the closed unit disk.
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Proof. Write A =
⋃
k≥1M`k(C) where M`1(C)

α1→ M`2(C)
α2→ M`3(C)

α3→ · · · is a direct

limit of full matrix algebras with αk injective for all k ∈ N. Moreover we can assume that

`k+1

`k
is composite for all k ∈ N and `1 ≥ 11.

For each k ∈ N we will construct nk,mk ∈ N and qk ∈ N ∪ {0} such that m1, n1 ≥ 2,

(2mk + 1)nk + 1 + qk = `k for all k ∈ N, 2mk ≤ mk+1 for all k ∈ N, 2nk ≤ nk+1 for all k ∈ N,

and, if Nk ∈ Nor(M(2mk+1)nk+1+qk(C)) is a specific unitary conjugate of the normal matrix

obtain by taking the direct sum of the qk × qk zero matrix with the normal matrix from

Lemma 4.4.4 with n = nk, m = mk, and aj = j
mk

for all j ∈ {0, 1, . . . ,mk} then (Nk)k≥1 is a

Cauchy sequence in A.

If such a sequence exists then, since limk→∞mk = ∞ and limk→∞ nk = ∞ and since

adding a zero direct summand at most decreases the distance to the nilpotent operators,

Lemma 4.4.4 implies

lim
k→∞

dist(Nk,Nil(M`k(C))) = 0.

Thus, if N = limk→∞Nk then N ∈ Nor(A) ∩ Nil(A) by construction. Since ‖Nk‖ ≤ 1,

‖N‖ ≤ 1. Since limk→∞mk =∞ and limk→∞ nk =∞, Lemma 4.4.4 implies the intersection

of σ(Nk) with any open subset of the closed unit ball is non-empty for sufficiently large k.

This implies σ(N) is the closed unit disk by the semicontinuity of the spectrum.

To show that the claim is true, let m1 = 2 and select n1 ∈ N with n1 ≥ 2 and q1 ∈

{0, 1, 2, 3, 4} such that `1 = (2m1 + 1)n1 + 1 + q1. Let N1 be as described above.

Suppose we have performed the construction for some fixed k ∈ N. Since `k+1

`k
is com-

posite, we may write `k+1

`k
= pz where p, z ≥ 2. Then, when we view Nk as an element

of M`k+1
(C), each eigenvalue of Nk has pz times the multiplicity it did in M`k(C). Let

nk+1 := pnk ≥ 2nk and mk+1 := zmk ≥ 2mk. Then

(2mk+1 + 1)nk+1 + 1 = `k+1 − ((z − 1)pnk + pz + pzqk − 1).
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Thus let qk+1 := ((z − 1)pnk + pz + pzqk − 1) ≥ 0 so

(2mk+1 + 1)nk+1 + 1 + qk+1 = `k+1.

If N ′k+1 is the normal matrix obtain by taking the direct sum of the qk × qk zero matrix

with the normal matrix from Lemma 4.4.4 with n = nk+1, m = mk+1, and aj = j
mk+1

for

all j ∈ {0, 1, . . . ,mk+1}, then, by construction, we can pair the eigenvalues of Nk (including

multiplicity) when viewed an element ofM`k+1
(C) with the eigenvalues of N ′k+1 in a bijective

way such that the difference of any pair is at most π
nk

+ 1
mk

by our knowledge of the eigenvalues

from Lemma 4.4.4. Thus there exists a unitary conjugate Nk+1 of N ′k+1 that is within π
nk

+ 1
mk

of the image of Nk in M`k+1
(C). Since 2mk ≤ mk+1 for all k ∈ N and 2nk ≤ nk+1 for all

k ∈ N, this implies (Nk)k≥1 is a Cauchy sequence in A as desired.

Note that Theorem 4.4.8 can now be applied to every UHF C∗-algebra by Theorem 4.9.8.

To conclude this section, we will demonstrate that [29, Corollary 6] cannot be generalized

to AFD C∗-algebras (it was demonstrated in Section 4.7 that [29, Corollary 9] cannot be

generalized to C∗-algebras with faithful tracial states). It is the existence of faithful tracial

states on finite dimensional C∗-algebras that prevent the generalization of Herrero’s result.

Lemma 4.9.9. Let A be a unital AFD C∗-algebra and let T ∈ A. Then each of the following

sets is either the empty set or a singleton:

1.
{
λ ∈ C | λIA + T ∈ Nil(A)

}
.

2.
{
λ ∈ C | λIA + T ∈ span(Nil(A))

}
.

Proof. We shall only prove the first claim since the proof of the second claim is exactly the

same. Suppose

λ0 ∈
{
λ ∈ C | λIA + T ∈ Nil(A)

}
and let R := λ0IA + T . Thus to show that λIA + T /∈ Nil(A) for all λ ∈ C \ {λ0} it suffices

to show that µIA +R /∈ Nil(A) for all µ ∈ C \ {0}.
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Since A is a unital AFD C∗-algebra, A =
⋃
k≥1 Ak where A1

α1→ A2
α2→ A3

α3→ · · · is a

direct limit of finite dimensional C∗-algebras with αk unital and injective for all k ∈ N.

Therefore there exists Rk ∈ Ak such that R = limk→∞Rk. However, since R ∈ Nil(A),

Proposition 4.9.1 implies that R = limk→∞Mk where Mk ∈ Nil(Ak) for all k ∈ N. Hence

limk→∞ ‖Rk −Mk‖ = 0. Thus limk→∞ trAk(Rk) = 0 (where trAk is any faithful tracial state

on Ak) as every nilpotent matrix has zero trace.

Fix µ ∈ C \ {0}. Then µIA + R = limk→∞ µIAk + Rk. If µIA + R ∈ Nil(A) then the

above argument implies that limk→∞ trAk(µIAk + Rk) = 0 which is impossible as µ 6= 0 and

limk→∞ trAk(Rk) = 0.

Corollary 4.9.10. Let A be a unital AFD C∗-algebra. Then

IA /∈ span(Nil(A)).

Proof. Note 0 ∈ span(Nil(A)) and apply Lemma 4.9.9.

4.10 C∗-Algebras with Dense Subalgebras of Nilpotent Operators

In [57], Read gave an example of a separable C∗-algebra that contains a dense subalgebra

consisting entirely of nilpotent operators. In this section we will use Lemma 4.8.1 and

the construction in [57] to construct an approximately homogeneous (and thus separable,

nuclear, and quasidiagonal) C∗-algebra that contains dense subalgebra consisting entirely of

nilpotent operators. It will also be demonstrated that there exists an AFD C∗-algebra with

a C∗-subalgebra D where D = Nil(D). Thus the study of the closure of nilpotent operators

in AFD C∗-algebras is incredibly complex.

Construction 4.10.1. Note by Lemma 4.8.1 there exists finite dimensional Hilbert spaces

{Hn}n≥1, positive matrices An ∈ B(Hn) of norm one, and nilpotent matrices Mn ∈ B(Hn)

such that
∑

n≥1 ‖An −Mn‖ < ∞. Since each An is a positive matrix with norm one, there

exists unit vectors ξn ∈ Hn such that Anξn = ξn for all n ∈ N.
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We will use {Hn}n≥1 and {ξn}n≥1 to generalize Read’s construction. Consider the se-

quence of pointed Hilbert spaces (Hn, ξn). For each n < m define φn,m : ⊗nk=1Hk → ⊗mk=1Hk

such that

φn,m(η1 ⊗ η2 ⊗ · · · ⊗ ηn) = η1 ⊗ η2 ⊗ · · · ⊗ ηn ⊗ ξn+1 ⊗ ξn+2 ⊗ · · · ⊗ ξm.

Let K := ⊗∞k=1Hk be the completion of the direct limit of the nested sequence of Hilbert

spaces ⊗nk=1Hk with the connecting maps φn,m. Since each Hk is separable, each ⊗nk=1Hk is

separable and thus K is separable. Let φn : ⊗nk=1Hk → K be the natural inclusion.

We will maintain the above notation throughout the rest of this section.

The following are new versions of [57, Lemma 0.3] and [57, Corollary 0.4] respectively

that will serve our purposes. We omit the proofs as they follow as in [57].

Lemma 4.10.2. Let (Sn)n≥1 be a sequence of operators with Sn ∈ B(Hn) such that

C :=
∏
n≥1

max{‖Sn‖ , 1} <∞ and
∑
n≥1

‖Snξn − ξn‖ <∞.

Then there exists a unique operator S ′ ∈ B(K) such that S ′(φnζ) = S ′nζ for each ζ ∈ ⊗nk=1Hk

where S ′n := limm→∞ S
′
n,m where, for each m > n, S ′n,m : ⊗nk=1Hk → K is defined by

S ′n,m = φm ◦ (⊗mi=1Si) ◦ φn,m.

We will use ⊗∞n=1Sn to denote S ′.

Corollary 4.10.3. Let S ′ = ⊗∞n=1Sn and R′ = ⊗∞n=1Rn be elements of B(K) as constructed

in Lemma 4.10.2. Then

‖S ′ −R′‖ ≤ CSCR
∑
n≥1

‖Sn −Rn‖

where

CS :=
∏
n≥1

max{1, ‖Sn‖} and CR :=
∏
n≥1

max{1, ‖Rn‖}.
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Construction 4.10.4. Let B be the C∗-subalgebra of B(K) generated by all operators of

the form ⊗∞n=1Sn given by Lemma 4.10.2. Let EA be subset of B containing all operators of

the form ⊗∞n=1Sn from Lemma 4.10.2 such that there exist a k ∈ N such that Sn = An for

each n ≥ k. Since
∑

n≥1 ‖Anξn − ξn‖ = 0 and ‖An‖ = 1 for all n ∈ N, EA is non-empty. Let

C be the C∗-algebra generated by EA. Note that EA is a self-adjoint set so C is the closure of

the algebra generated by EA.

Lemma 4.10.5. The C∗-algebra C from Construction 4.10.4 is nuclear, quasidiagonal, ap-

proximately homogeneous, and separable.

Proof. For each k ∈ N let Ck be the C∗-subalgebra of C generated by all operators of the

form ⊗∞n=1Sn from Lemma 4.10.2 such that Sn = An for all n > k. Then Ck is isomorphic

to B(H1)⊗min · · · ⊗min B(Hk)⊗min Ak+1 where Ak+1 is the abelian C∗-algebra generated by

the infinite tensor ⊗∞n=k+1Sn where Sn = An for all n > k. Since C is the inductive limit of

the C∗-algebras Ck, the result follows.

Theorem 4.10.6. The C∗-algebra C from Construction 4.10.4 has a dense subalgebra N

such that every operator of N is nilpotent.

Proof. This proof is nearly identical to that of [57, Theorem 1.2] where the only changes are

our simple modifications. Let EN be the subset of B consisting of all operators of the form

⊗∞n=1Sn from Lemma 4.10.2 such that there exist a k ∈ N such that Sn = Mn for all n ≥ k.

Let N be the (not necessarily closed nor self-adjoint) subalgebra of B generated by EN . It

suffices to show three things: (1) N ⊆ C; (2) N is dense in C; (3) every operator of N is

nilpotent.

Proof of (1): It suffices to show that EN ⊆ C. To begin we will show that N is not

empty. Suppose that (Sn)n≥1 is a sequence of operators where Sn ∈ B(Hn) for all n ∈ N

and Sn = Mn for all n ≥ k for some fixed k ∈ N. Since ‖An‖ = 1 for all n ∈ N and∑
n≥1 ‖Mn − An‖ < ∞,

∑
n≥1 | ‖Sn‖ − 1| < ∞ and so

∏
n≥1 max{1, ‖Sn‖} < ∞. Moreover,
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since
∑

n≥1 ‖Anξn − ξn‖ = 0,

∑
n≥k

‖Snξn − ξn‖ ≤
∑
n≥k

‖Mn − An‖+
∑
n≥k

‖Anξn − ξn‖ <∞.

Hence Lemma 4.10.2 implies that the operator ⊗∞n=1Sn exists. Hence N is not empty.

Fix a sequence (Sn)n≥1 of operators where Sn ∈ B(Hn) for all n ∈ N and Sn = Mn for

all n ≥ k. For each m ≥ k define Rm := (⊗mn=1Sn)⊗
(
⊗∞n=m+1An

)
. Then {Rm}m≥k ⊆ EA by

construction and, by Corollary 4.10.3,

‖⊗∞n=1Sn −Rm‖ ≤

(∏
n≥1

max{‖Sn‖ , 1}

)2 ∑
n≥m+1

‖An −Mn‖ .

Therefore, since limm→∞
∑

n≥m+1 ‖An −Mn‖ = 0, ⊗∞n=1Sn is in the closure of {Rm}m≥k and

thus ⊗∞n=1Sn ∈ C. Hence N ⊆ C as desired.

Proof of (2): It suffices to show that EA is in the closure of N since C is the closure of the

algebra (and not ∗-algebra) generated by EA. Fix an operator T :=
(
⊗kn=1Sn

)
⊗
(
⊗∞n=k+1An

)
∈

EA. For each m ≥ k let Rm := (⊗mn=1Sn) ⊗
(
⊗∞n=m+1Mn

)
. Then {Rm}m≥k ⊆ N and, by

Corollary 4.10.3, ‖T −Rm‖ is at most

(
k∏

n=1

max{‖Sn‖ , 1}

)2(∏
n≥1

max{‖Mn‖ , 1}

) ∑
n≥m+1

‖An −Mn‖ .

Therefore, since limm→∞
∑

n≥m+1 ‖An −Mn‖ = 0, T ∈ N. Hence EA is in the closure of N

so N is dense in C.

Proof of (3): Notice that every operator N of N can be written in the form

N =
∑̀
k=1

Sk ⊗
(
⊗∞i=n+1M

k
i

)
for some n, ` ∈ N and S1, . . . , S` ∈ B (⊗nk=1Hk). Therefore, since there exists an mn+1 ∈ N

such that M
mn+1

n+1 = 0, Nmn+1 = 0 (by the trivial computation that (⊗∞n=1Rn) (⊗∞n=1R
′
n) =

180



⊗∞n=1RnR
′
n). Hence N is nilpotent so every operator of N is nilpotent.

One interesting consequence is the following which is quite surprising since every other

C∗-algebra A with Nor(A) ∩ Nil(A) 6= {0} studied in this dissertation has had a plethora of

projections.

Corollary 4.10.7. Let C be the C∗-algebra from Construction 4.10.4. Then σ(T ) is con-

nected and contains zero for all T ∈ C. Thus C is projectionless.

Proof. The result is trivial by Theorem 4.10.6 and Lemma 1.8.4.

To conclude this section we will demonstrate that there exists an AFD C∗-algebra that

contains a C∗-subalgebra D such that D = Nil(D). This demonstrates that the study of the

closure of the nilpotent operators in an AFD C∗-algebra is incredibly complex. To begin we

note the following trivial observation from the proof of Theorem 4.10.6.

Lemma 4.10.8. Let C be the C∗-algebra from Construction 4.10.4, let N be the subalgebra

of C from Theorem 4.10.6, and N1, . . . , Nm ∈ N. Then there exists an ` ∈ N (depending on

N1, . . . , Nm) such that Nn1Nn2 · · ·Nn` = 0 for any selection of nj ∈ {1, . . . ,m}.

Proof. This result is trivial by the structure of elements of N from the third part of the proof

of Theorem 4.10.6.

Lemma 4.10.9. Let C be the C∗-algebra from Construction 4.10.4 and let N be the subalgebra

of C from Theorem 4.10.6. The subalgebra

C0(0, 1]�N :=

{
m∑
j=1

fj ⊗Nj | m ∈ N, Nj ∈ N, fj ∈ C0(0, 1]

}

of C0(0, 1]⊗min C is dense and consists entirely of nilpotent operators.

Proof. Clearly C0(0, 1]�N is a dense subalgebra of C0(0, 1]⊗minC as N is a dense subalgebra

of C. Let
∑m

j=1 fj ⊗Nj ∈ C0(0, 1]�N be arbitrary. By Lemma 4.10.8 there exists an ` ∈ N
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such that Nn1Nn2 · · ·Nn` = 0 for any nj ∈ {1, . . . ,m}. Thus
(∑m

j=1 fj ⊗Nj

)`
= 0 so every

element of C0(0, 1]�N is nilpotent.

Proposition 4.10.10. There exists an AFD C∗-algebra A and a C∗-subalgebra D of A such

that D has a dense subalgebra consisting entirely of nilpotent operators.

Proof. Let C be the C∗-algebra from Construction 4.10.4 and let

D := C0(0, 1]⊗min C.

Then D is AF-embeddable by Lemma 4.10.5 and by [50, Proposition 2]. Thus the result

follows from Lemma 4.10.9.
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CHAPTER 5

Closed Unitary and Similarity Orbits in Purely Infinite

C∗-Algebras

In this chapter, which is based on the author’s work in [76], we will investigate the norm

closure of the unitary and similarity orbits of normal operators in unital, simple, purely

infinite C∗-algebras. In Section 5.2 we shall use previously known techniques based on [40,

Theorem 4.4] to provide a simple proof of the classification of when two normal operators are

approximately unitarily equivalent in a unital, simple, purely infinite C∗-algebra with trivial

K1-group. Although this proof is less powerful than [17, Theorem 1.7], the techniques used

enables the study of additional operator theoretic problems on these C∗-algebras. Section

5.2 will also develop the necessary technical results and techniques needed in later sections.

One particularly interesting problem is the study of the distance between unitary orbits

of operators. Significant progress has been made in determining the distance between two

unitary orbits of bounded operators on a complex, infinite dimensional Hilbert space (see [19]

and [20]). In terms of determining the distance between unitary orbits of normal operators

inside other C∗-algebras, [18] makes significant progress for the Calkin algebra (which is a

unital, simple, purely infinite C∗-algebra) and [33] makes significant progress for semifinite

factors.

In Section 5.3 we will make use of the approach of Section 5.2 to compute some bounds

on the distance between unitary orbits of normal operators in unital, simple, purely infinite

C∗-algebras with trivial K1-group. Using [17, Theorem 1.7] along with some additional K-

theory arguments, we will extend these results to unital, simple, purely infinite C∗-algebras

without any constraints on the K1-groups.
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Before [5, Theorem 1] a classification of when one normal operator on a complex, infinite

dimensional, separable Hilbert space was in the closed similarity orbit of another operator

with minor additional constraints was given in [9, Theorem 1]. Thus it appears natural when

tackling the problem of computing the norm closure of the similarity orbit of an operator in

a unital C∗-algebra to first consider the normal operators. Using the results from Section 5.3

along with Theorem 4.9.8 and ideas from [32], a classification of when one normal operator

is in the closed unitary orbit of another normal operator in unital, simple, purely infinite

C∗-algebras and type III factors with separable predual will be given in Section 5.4.

5.1 Dadarlat’s Result

Given a normal operator N in a unital C∗-algebra A, the Continuous Functional Calculus

for Normal Operators provides a unital, injective ∗-homomorphism from the continuous

functions on the spectrum of N into A sending the identity function to N . It is easy to

see that two normal operators are approximately unitarily equivalent in A if and only if

the corresponding unital, injective ∗-homomorphism are approximately unitarily equivalent.

Thus it is of interest to determine when two unital, injective ∗-homomorphisms from an

abelian C∗-algebra to a fixed unital C∗-algebra are approximately unitarily equivalent. In

particular, when A is a unital, simple, purely infinite C∗-algebra, several preliminary results

were developed in [39], [23], [40], and [41] (to name a few) and a complete classification was

given in [17].

Theorem 5.1.1 ([17, Theorem 1.7]). Let X be a compact metric space, let A be a unital,

simple, purely infinite C∗-algebra, and let ϕ, ψ : C(X) → A be two unital, injective ∗-

homomorphisms. Then ϕ and ψ are approximately unitarily equivalent if and only if [[ϕ]] =

[[ψ]] in KL(C(X),A) (see [60] for the definition of KL).

As a specific case of [17, Theorem 1.7], if X ⊆ C is compact it is a corollary of the

Universal Coefficient Theorem for C∗-algebras (see [62]), the definition of KL(C(X),A),
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and the fact that K∗(C(X)) is a free abelian group that

KL(C(X),A) = KK(C(X),A) = Hom(K∗(C(X)), K∗(A))

where Hom(K∗(C(X)), K∗(A)) is the set of all homomorphisms from K∗(C(X)) to K∗(A).

Thus [17, Theorem 1.7] implies that for a unital, simple, purely infinite C∗-algebra A and

a compact subset X of C, two unital, injective ∗-homomorphisms ϕ, ψ : C(X) → A are

approximately unitarily equivalent if and only if ϕ∗ = ψ∗ where ϕ∗ and ψ∗ are the group

homomorphisms from K∗(C(X)) to K∗(A) induced by ϕ and ψ respectively. Thus a complete

classification of when two normal operator with the same spectrum in a unital, simple, purely

infinite C∗-algebra is obtained.

The proof of Dadarlat’s result greatly varies from the traditional proof of when two normal

operators on a complex, infinite dimensional, separable Hilbert space are approximately

unitarily equivalent. Thus, in Section 5.2, we will develop an alternate proof.

5.2 Closed Unitary Orbits of Normal Operators

In this section we will use [40, Theorem 4.4] and previously known techniques of manipulating

projections in unital, simple, purely infinite C∗-algebras (which are present in [39], [17], [40],

and [23] to name but a few) to provide a simple proof of when two normal operators in a

unital, simple, purely infinite C∗-algebra with trivial K1-group are approximately unitarily

equivalent (see Corollary 5.2.14). Along the way we shall develop the notation and several

technical results that will necessary in later sections and develop analogous results for other

C∗-algebras.

It is useful for discussions in this dissertation to recall the generalized index function

introduced in [40].

Definition 5.2.1. Let A be a unital C∗-algebra and let N ∈ A be a normal operator. By

the Continuous Functional Calculus for Normal Operators, there exists a canonical unital,
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injective ∗-homomorphism ϕN : C(σ(N)) → A such that ϕN(z) = N . As ϕN is unital and

injective, this induces a group homomorphism Γ(N) : K1(C(σ(N))) → K1(A). The group

homomorphism Γ(N) is called the index function of N . To simplify notation, we will write

Γ(N)(λ) to denote [λIA −N ]1 in A.

In the case that A is a unital, simple, purely infinite C∗-algebra, K1(A) is canonically

isomorphic to A−1/A−1
0 by [16, Theorem 1.9]. Thus if N ∈ A is a normal operator such that

Γ(N) is trivial then λIA − N ∈ A−1
0 for all λ /∈ σ(N). Furthermore if N ∈ A is a normal

operator and λ /∈ σ(N) then Γ(N)(λ) describes the connected component of λIA−N in A−1.

The reason for examining the index function in the context of approximately unitarily

equivalent normal operators is seen by the following necessary condition.

Lemma 5.2.2. Let A be a unital and let N1, N2 ∈ A be normal operators such that N1 ∈

S(N2). Then

1. if λIA −N2 ∈ A−1
0 for some λ /∈ σ(N1) then λIA −N1 ∈ A−1

0 , and

2. if A is a unital, simple, purely infinite C∗-algebra then Γ(N1)(λ) = Γ(N2)(λ) for all

λ /∈ σ(N1).

Proof. Suppose N1 ∈ S(N2) and λ /∈ σ(N1). Then σ(N2) ⊆ σ(N1) and there exists a

sequence of invertible elements Vn ∈ A such that

lim
n→∞

∥∥N1 − VnN2V
−1
n

∥∥ = 0.

Thus it is clear that

lim
n→∞

∥∥(λIA −N1)− Vn(λIA −N2)V −1
n

∥∥ = 0.

Therefore, if λIA−N2 ∈ A−1
0 then Vn(λIA−N2)V −1

n ∈ A−1
0 for all n ∈ N and thus first result

trivially follows.
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In the case A is a unital, simple, purely infinite C∗-algebra, the above implies that λIA−N1

and Vn(λIA −N2)V −1
n are in the same connected component of A−1 for sufficiently large n.

Therefore

[λIA −N1]1 = [Vn(λIA −N2)V −1
n ]1

= [Vn]1[λIA −N2]1[V −1
n ]1

= [λIA −N2]1.

Hence Γ(N1)(λ) = Γ(N2)(λ).

The main tools for our alternate proof of [17, Theorem 1.7] are the K-theory of unital,

simple, purely infinite C∗-algebras along with Theorem 1.3.19 due to Lin (see [40, Theorem

4.4]). Using Lin’s result and Lemma 4.8.3, we can easily provide a simple proof of [17,

Theorem 1.7] for unital, simple, purely infinite C∗-algebras with trivial K0-group and normal

operators with trivial index function.

Proposition 5.2.3. Let A be a unital, simple, purely infinite C∗-algebra such that K0(A)

is trivial. Let N1, N2 ∈ A be normal operators such that Γ(N1) and Γ(N2) are trivial. Then

N1 ∼au N2 if and only if σ(N1) = σ(N2).

Proof. By previous discussions it is clear that σ(N1) = σ(N2) if N1 ∼au N2. Suppose σ(N1) =

σ(N2). Since K0(A) = {0}, all non-trivial projections are Murray-von Neumann equivalent

by [16, Theorem 1.4]. Thus any two normal operators with the same finite spectrum are

unitarily equivalent.

By the assumption that Γ(N1) and Γ(N2) are trivial, N1 and N2 can be approximated by

normal operators with finite spectrum by [40, Theorem 4.4]. By small perturbations using

Lemma 4.8.3 and the semicontinuity of the spectrum, we can assume that N1 and N2 can

be approximated arbitrarily well by normal operators with the same finite spectrum. Thus

the result follows.

Note the condition ‘Γ(N1) and Γ(N2) are trivial’ holds when A−1
0 = A−1 or equivalently

when K1(A) is trivial (see [16, Theorem 1.9]).
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If O2 is the Cuntz algebra generated by two isometries, K0(O2) and K1(O2) are trivial

by [16, Theorem 3.7] and [16, Theorem 3.8] respectively. Thus Proposition 5.2.3 completely

classifies when two normal operators in O2 are approximately unitarily equivalent.

Corollary 5.2.4. Let N,M ∈ O2 be normal operators. Then N ∼au M if and only if

σ(N) = σ(M).

Note that the proof of Proposition 5.2.3 is easily modified to a more general setting.

Corollary 5.2.5. Let A be a unital C∗-algebra such that A has property weak (FN) and any

two non-zero projections in A are Murray-von Neumann equivalent. If N1, N2 ∈ A are two

normal operators such that λIA−Nq ∈ A−1
0 for all λ /∈ σ(Nq) and q ∈ {1, 2} then N1 ∼au N2

if and only if σ(N1) = σ(N2).

Corollary 5.2.6. Let A be a unital C∗-algebra such that A has property (FN) and any

two non-zero projections in A are Murray-von Neumann equivalent. If N1, N2 ∈ A are two

normal operators then N1 ∼au N2 if and only if σ(N1) = σ(N2).

Corollary 5.2.7. Let M be a type III factor with separable predual and let N1, N2 ∈M be

normal operators. Then N1 ∼au N2 if and only if σ(N1) = σ(N2).

Our next task is to provide a simple proof of [17, Theorem 1.7] when K0(A) is non-

trivial yet K1(A) is trivial. The Cuntz algebras, On, generated by n ∈ N ∪ {∞} isometries

(where K0(On) = Zn−1 and K1(On) is trivial by [16, Theorem 3.7] and [16, Theorem 3.8]

respectively) are excellent examples of such algebras. We begin with the case that our two

normal operators have the same connected spectrum. The following lemma is motivated by

the proof of Theorem 4.8.6 and contains the essential ideas used in main result of this section

(Theorem 5.2.13) and in Section 5.3.

Lemma 5.2.8. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ A be

normal operators. Suppose that Γ(N1) and Γ(N2) are trivial, σ(N1) = σ(N2), and σ(N1) is

connected. Then N1 ∼au N2.
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Proof. We shall begin with the case that σ(N1) = σ(N2) = [0, 1] and then modify the proof

for the general case.

Suppose σ(N1) = [0, 1] = σ(N2). Let ε > 0 and choose n ∈ N such that 1
n
< ε. By

[40, Theorem 4.4] (or the fact that unital, simple, purely infinite C∗-algebras have real rank

zero (see [21, Theorem V.7.4])), by Lemma 4.8.3, by the semicontinuity of the spectrum,

and by perturbing eigenvalues, there exists two collections of non-zero, pairwise orthogonal

projections {
P

(1)
j

}n
j=0

and
{
P

(2)
j

}n
j=0

in A such that
n∑
j=0

P
(q)
j = IA and

∥∥∥∥∥Nq −
n∑
j=0

j

n
P

(q)
j

∥∥∥∥∥ < 2ε

for all q ∈ {1, 2}. The idea of the proof is to apply a ‘back and forth’ argument to produce

a unitary that intertwines the approximations of N1 and N2.

Since A is a unital, simple, purely infinite C∗-algebra, P
(1)
0 is Murray-von Neumann

equivalent to a proper subprojection of P
(2)
0 (see [21, Lemma V.5.4]). Thus we can write

P
(2)
0 = Q

(2)
0 +R

(2)
0 where Q

(2)
0 and R

(2)
0 are non-zero orthogonal projections in A such that Q

(2)
0

and P
(1)
0 are Murray-von Neumann equivalent. Furthermore R

(2)
0 is Murray-von Neumann

equivalent to a proper subprojection of P
(1)
1 . Thus we can write P

(1)
1 = Q

(1)
1 +R

(1)
1 where Q

(1)
1

and R
(1)
1 are non-zero orthogonal projections in A such that Q

(1)
1 and R

(2)
0 are Murray-von

Neumann equivalent.

For notional purposes, let Q
(1)
0 := 0, R

(1)
0 := P

(1)
0 , Q

(2)
n := P

(2)
n , and R

(2)
n := 0. By

repeating this procedure (using R
(1)
1 in place of P

(1)
0 ), we obtain sets of non-zero, pairwise

orthogonal projections {
Q

(1)
j , R

(1)
j

}n
j=1

and
{
Q

(2)
j , R

(2)
j

}n−1

j=0

such that P
(q)
j = Q

(q)
j +R

(q)
j for all j ∈ {0, . . . , n} and q ∈ {1, 2}, R(2)

j is Murray-von Neumann

equivalent to Q
(1)
j+1 for all j ∈ {0, . . . , n− 1}, and R

(1)
j is Murray-von Neumann equivalent to
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Q
(2)
j for all j ∈ {0, . . . , n− 1}. Since

IA =
n∑
j=0

Q
(1)
j +R

(1)
j =

n∑
j=0

Q
(2)
j +R

(2)
j , (∗)

we note that [
R

(1)
n

]
0

= [IA]0 −
∑n

j=1

[
Q

(1)
j

]
0
−
∑n−1

j=0

[
R

(1)
j

]
0

= [IA]0 −
∑n

j=1

[
R

(2)
j−1

]
0
−
∑n−1

j=0

[
Q

(2)
j

]
0

=
[
Q

(2)
n

]
0
.

Hence R
(1)
n and Q

(2)
n are Murray-von Neumann equivalent by [16, Theorem 1.4].

Let {Vj}nj=0∪{Wj}n−1
j=0 be partial isometries in A such that V ∗j Vj = R

(1)
j and VjV

∗
j = Q

(2)
j

for all j ∈ {0, . . . , n}, and W ∗
jWj = Q

(1)
j+1 and WjW

∗
j = R

(2)
j for all j ∈ {0, . . . , n− 1}. Hence

(∗) implies that

U :=
n∑
j=0

Vj +
n−1∑
j=0

Wj

is a unitary operator in A. Moreover

U∗
(∑n

j=0
j
n
P

(2)
j

)
U = U∗

(∑n
j=0

j
n
Q

(2)
j +

∑n
j=0

j
n
R

(2)
j

)
U

=
∑n

j=0
j
n
R

(1)
j +

∑n−1
j=0

j
n
Q

(1)
j+1.

Hence, since
n∑
j=0

j

n
P

(1)
j =

n∑
j=0

j

n
Q

(1)
j +

n∑
j=0

j

n
R

(1)
j ,

we obtain that

‖N1 − U∗N2U‖ ≤ 5ε.

Since ε > 0 was arbitrary, N1 ∼au N2.

To complete the general case, we will use a technique similar to that used in the proof

of Theorem 4.8.6. To begin, let N1 and N2 be as in the statement of the lemma. Fix ε > 0
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and for each (n,m) ∈ Z2 let

Bn,m :=
(
εn− ε

2
, εn+

ε

2

]
+ i
(
εm− ε

2
, εm+

ε

2

]
⊆ C.

Thus the sets Bn,m partition the complex plane into a grid with side-lengths ε.

For each (n,m) ∈ Z2 we label the box Bn,m relevant if σ(N1)∩Bn,m 6= ∅ and we will say

two boxes are adjacent if their union is connected. Since σ(N1) is connected, the union of

the relevant boxes is connected.

By [40, Theorem 4.4] we can approximate N1 and N2 within ε by normal operators M1

and M2 in A with finite spectrum. By Lemma 4.8.3, by the semicontinuity of the spectrum,

and by perturbing eigenvalues, we can assume that σ(Mq) is precisely the centres of the

relevant boxes and ‖Nq −Mq‖ ≤ 2ε for all q ∈ {1, 2}.

We claim that there exists a unitary U ∈ A such that ‖M1 − U∗M2U‖ ≤
√

2ε. Consider

a tree T in C whose vertices are the centres of the relevant boxes and whose edges are

straight lines that connect vertices in adjacent relevant boxes. Consider a leaf of T . We can

identify this leaf with the spectral projections of M1 and M2 corresponding to the eigenvalue

defined by the vertex. We can then apply the ‘back and forth’ technique illustrated above

to embed the spectral projection of M1 under the corresponding spectral projection of M2

and the remaining spectral projection of M2 under a spectral projection of M1 corresponding

to the adjacent vertex of the leaf (which is within
√

2ε). By considering T with the above

leaf removed, we then have a smaller tree. By continually repeating this ‘back and forth’-

crossing technique, we are eventually left with the trivial tree. As before, K-theory implies

the remaining projections are Murray-von Neumann equivalent. It is then possible to use

the partial isometries from the ‘back and forth’ construction to create a unitary with the

desired properties.

Our next goal is to remove the condition ‘σ(N1) is connected’ from Lemma 5.2.8. Un-

fortunately, two normal operators having equal spectrum is not enough to guarantee that

the normal operators are approximately unitarily equivalent (even in the case that K1(A)
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is trivial). The technicality is the same as why two projections in B(H) are not always

approximately unitarily equivalent. To see this, we note the following lemmas.

Lemma 5.2.9. Let A be a unital C∗-algebra and let P,Q ∈ A be projections. If there exists

an element V ∈ A−1 such that ∥∥Q− V PV −1
∥∥ < 1

2

then P and Q are Murray-von Neumann equivalent.

Proof. Let P0 := V PV −1 ∈ A and let Z := P0Q + (IA − P0)(IA − Q) ∈ A. Hence P0 is an

idempotent and it is clear that

‖Z − IA‖ = ‖(P0Q+ (IA − P0)(IA −Q))− (Q+ (IA −Q))‖

≤ ‖(P0 − IA)Q‖+ ‖((IA − P0)− IA)(IA −Q)‖

= ‖(P0 −Q)Q‖+ ‖((IA − P0)− (IA −Q))(IA −Q)‖

≤ ‖P0 −Q‖+ ‖Q− P0‖ < 1.

Hence Z ∈ A−1. Therefore, if U is the partial isometry in the polar decomposition of Z,

Z = U |Z| and U is a unitary element of A.

We claim that UQU∗ = P0. To see this, we notice that U = Z|Z|−1, ZQ = P0Q = P0Z,

and

Z∗Z = QP0Q+ (IA −Q)(IA − P0)(IA −Q).

Thus QZ∗Z = QP0Q = Z∗ZQ so Q commutes with Z∗Z. Hence Q commutes with C∗(Z∗Z)

and thus Q commutes with |Z|−1. Thus

UQU∗ = Z|Z|−1Q|Z|−1Z∗

= ZQ|Z|−2Z∗

= P0Z|Z|−2Z∗ = P0

as claimed.

Therefore Q = (U∗V )P (U∗V )−1 where U∗V ∈ A−1. It is standard to verify that if
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W is the partial isometry in the polar decomposition of U∗V then W is a unitary such

that Q = WPW ∗ (see [61, Proposition 2.2.5]). Therefore P ∼u Q and thus P and Q are

Murray-von Neumann equivalent.

Lemma 5.2.10. Let A be a unital, simple, purely infinite C∗-algebra and let P and Q be

projections in A. Then P ∼u Q if and only if P ∼au Q if and only if Q ∈ S(P ) only if P

and Q are Murray-von Neumann equivalent. If P 6= IA and Q 6= IA, then P ∼u Q whenever

P and Q are Murray-von Neumann equivalent.

Proof. The result follows from Lemma 5.2.9 and standard K-theory arguments.

The above shows that if A is a unital, simple, purely infinite C∗-algebra with K0(A)

being non-trivial, there exists two projections P,Q ∈ A with σ(P ) = σ(Q) = {0, 1} that are

not approximately unitarily equivalent. Thus knowledge of the spectrum is not enough to

complete our classification.

To avoid the above technicality, we will describe an additional condition for two normal

operators to be approximately unitarily equivalent in a unital C∗-algebra. The construction

of this conditions makes use of the analytical functional calculus.

Lemma 5.2.11. Let A be a unital C∗-algebra, let A,B ∈ A, and let f : C → C be a

function that is analytic on an open neighbourhood U of σ(A) ∪ σ(B). If A ∈ S(B) then

f(A) ∈ S(f(B)). Similarly if A ∼au B then f(A) ∼au f(B).

Proof. Let (Vn)n≥1 be a sequence of invertible elements in A such that

lim
n→∞

∥∥A− VnBV −1
n

∥∥ = 0.

Let γ be any compact, rectifiable curve inside U such that (σ(A)∪ σ(B))∩ γ = ∅, Indγ(z) ∈

{0, 1} for all z ∈ C\γ, Indγ(z) = 1 for all z ∈ σ(A)∪σ(B), and {z ∈ C | Indγ(z) 6= 0} ⊆ U .
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Then

f(A)− Vnf(B)V −1
n

= 1
2πi

∫
γ
f(z) ((zIA − A)−1 − Vn(zIA −B)−1V −1

n ) dz

= 1
2πi

∫
γ
f(z) ((zIA − A)−1 − (zIA − VnBV −1

n )−1) dz

= 1
2πi

∫
γ
f(z)(zIA − A)−1(A− VnBV −1

n )(zIA − VnBV −1
n )−1dz.

Hence ‖f(A)− Vnf(B)V −1
n ‖ is at most

length(γ) ‖A− VnBV −1
n ‖

2π
sup
z∈γ
|f(z)|

∥∥(zIA − A)−1
∥∥∥∥(zIA − VnBV −1

n )−1
∥∥ .

Provided ‖A− VnBV −1
n ‖ ‖(zIA − A)−1‖ < 1 for all z ∈ γ, the second resolvent equation can

be used to show that

∥∥(zIA − VnBV −1
n )−1

∥∥ ≤ ‖(zIA − A)−1‖
1− ‖A− VnBV −1

n ‖ ‖(zIA − A)−1‖

for all z ∈ γ. Since limn→∞ ‖A− VnBV −1
n ‖ = 0, γ is compact, and the resolvent function of

an operator is continuous on the resolvent, ‖f(A)− Vnf(B)V −1
n ‖ is at most

length(γ) ‖A− VnBV −1
n ‖

2π
sup
z∈γ
|f(z)| ‖(zIA − A)−1‖2

1− ‖A− VnBV −1
n ‖ ‖(zIA − A)−1‖

for sufficiently large n. Since the resolvent function is a continuous function on the resolvent

of an operator and γ is compact, the above supremum is finite and tends to

sup
z∈γ
|f(z)|

∥∥(zIA − A)−1
∥∥2

as n→∞. Thus, as

lim
n→∞

∥∥A− VnBV −1
n

∥∥ = 0

and length(γ) is finite, f(A) ∈ S(f(B)).

The proof that A ∼au B implies f(A) ∼au f(B) follows directly by replacing the invertible

elements Vn with unitary operators.
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If A in Lemma 5.2.11 were a unital, simple, purely infinite C∗-algebra, if A and B were

normal operators, and if f took values in {0, 1} with f(A) and f(B) being non-trivial, then

Lemma 5.2.10 would imply that the projections f(A) and f(B) are Murray-von Neumann

equivalent in A. Thus, to simplify notation, we make the following definition.

Definition 5.2.12. Let A be a unital C∗-algebra and let N1, N2 ∈ A be normal operators.

We say that N1 and N2 have equivalent common spectral projections if for every function

f : C→ C that is analytic on an open neighbourhood U of σ(N1)∪σ(N2) with f(U) ⊆ {0, 1},

the projections f(N1) and f(N2) are Murray-von Neumann equivalent.

If A is a unital, simple, purely infinite C∗-algebra and σ(N1) = σ(N2), it is elementary

to show that using [16, Theorem 1.4] that N1 and N2 have equivalent spectral projections if

and only if they induce the same group homomorphisms from K0(σ(N1)) to K0(A) via the

Continuous Functional Calculus of Normal Operators.

Finally, with the above and the arguments used in Lemma 5.2.8, we a simple proof of

[17, Theorem 1.7] based on [40, Theorem 4.4] for planar compact sets in the case that K1(A)

is trivial.

Theorem 5.2.13. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ A

be normal operators. Suppose

1. σ(N1) = σ(N2),

2. Γ(N1) and Γ(N2) are trivial, and

3. N1 and N2 have equivalent common spectral projections.

Then N1 ∼au N2.

Proof. Fix ε > 0 and consider the ε-grid used in Lemma 5.2.8. We label the box Bn,m relevant

if Bn,m∩σ(N1) 6= ∅. Let K be the union of the relevant boxes. Since σ(N1) is compact, K has

finitely many connected components. Let L1, . . . , Lk be the connected components of K. By
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construction dist(Li, Lj) ≥ ε for all i 6= j. Therefore, if fi is the characteristic function of Li,

the third assumptions of the theorem implies fi(N1) and fi(N2) are Murray-von Neumann

equivalent for each i ∈ {1, . . . , k}.

Note the second assumption of the theorem implies that there exists normal operators

M1 and M2 in A with finite spectrum such that ‖Nq −Mq‖ < ε for all q ∈ {1, 2}. By an

application of Lemma 4.8.3, by the semicontinuity of the spectrum, and by small pertur-

bations, we can assume that Mq has spectrum contained in K and σ(Mq) ∩ Bn,m 6= ∅ for

all relevant boxes Bn,m and q ∈ {1, 2}. Furthermore, since each fi extends to a continuous

function on an open neighbourhood of K, we can assume that ‖fi(Nq)− fi(Mq)‖ < 1
2

for all

i ∈ {1, . . . , k} and q ∈ {1, 2} by properties of the continuous functional calculus. Therefore,

for each i ∈ {1, . . . , k} and q ∈ {1, 2}, fi(Nq) and fi(Mq) can be assumed to be Murray-von

Neumann equivalent by Lemma 5.2.9. Since fi(N1) and fi(N2) are Murray-von Neumann

equivalent for each i ∈ {1, . . . , k}, fi(M1) and fi(M2) are Murray-von Neumann equivalent

for each i ∈ {1, . . . , k}. By perturbing the spectrum of M1 and M2 inside each Li, we can

assume that σ(Mq) is precisely the centres of the relevant boxes for all q ∈ {1, 2}, fi(M1) and

fi(M2) are Murray-von Neumann equivalent for each i ∈ {1, . . . , k}, and ‖Nq −Mq‖ < 2ε

for all q ∈ {1, 2}.

Next we apply the ‘back and forth’ argument of Lemma 5.2.8 to the spectrum of M1 and

M2 in each Li separately. This process can be applied to each Li separately as in Lemma 5.2.8

due to the fact that fi(M1) and fi(M2) are Murray-von Neumann equivalent so the final step

of the construction (that is, R
(1)
n and Q

(2)
n are Murray-von Neumann equivalent) can be com-

pleted. Thus, for each i ∈ {1, . . . , k}, the ‘back and forth’ process produces a partial isometry

Vi ∈ A such that V ∗i Vi = fi(M1), ViV
∗
i = fi(M2), and ‖M1fi(M1)− V ∗i M2fi(M2)Vi‖ ≤

√
2ε.

Therefore, if U :=
∑k

i=1 Vi then U ∈ A is a unitary as

k∑
i=1

fi(M1) = IA =
k∑
i=1

fi(M2)
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are sums of orthogonal projections. Moreover, a trivial computation shows

‖M1 − U∗M2U‖ ≤
√

2ε

so

‖N1 − U∗N2U‖ ≤ (4 +
√

2)ε

completing the proof.

Corollary 5.2.14. Let A be a unital, simple, purely infinite C∗-algebra such that K1(A) is

trivial and let N1, N2 ∈ A be normal operators. Then N1 ∼au N2 if and only if

1. σ(N1) = σ(N2) and

2. N1 and N2 have equivalent common spectral projections.

Proof. One direction is follows from Theorem 5.2.13 and the fact that K1(A) is trivial implies

A−1 = A−1
0 by [16, Theorem 1.9]. The other direction follows from Lemma 5.2.11 and Lemma

5.2.10.

5.3 Distance Between Unitary Orbits of Normal Operators

In this section we will make use of the techniques of Section 5.2 to provide some bounds

for the distance between the unitary orbits of two normal operator in unital, simple, purely

infinite C∗-algebras. In particular, Corollary 5.3.7 can be used to deduce Theorem 5.2.13.

These results along with [17, Theorem 1.7] will provide information about the distance

between unitary orbits of normal operators with non-trivial index function.

We begin with the following definition that is common in the discussion of the distance

between unitary orbits.

Definition 5.3.1. Let X and Y be subsets of C. The Hausdorff distance between X and
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Y , denoted dH(X, Y ), is

dH(X, Y ) := max

{
sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y,X)

}
.

In [18], Davidson developed the following notation for the Calkin algebra that will be of

particular use to us.

Definition 5.3.2. Let A be a unital, simple, purely infinite C∗-algebra. For normal operators

N1, N2 ∈ A let ρ(N1, N2) denote the maximum of dH(σ(N1), σ(N2)) and

sup{dist(λ, σ(N1)) + dist(λ, σ(N2)) | λ /∈ σ(N1) ∪ σ(N2),Γ(N1)(λ) 6= Γ(N2)(λ)}.

We begin by noting the following adaptation of [18, Proposition 1.2].

Proposition 5.3.3. Let A be a unital C∗-algebra and let N1, N2 ∈ A be normal operators.

Then

dist(U(N1),U(N2)) ≥ dH(σ(N1), σ(N2)).

If A is a unital, simple, purely infinite C∗-algebra then

dist(U(N1),U(N2)) ≥ ρ(N1, N2).

Proof. The proof of the first statement follows from [19, Proposition 2.1] and the proof of

the second statement follows from the proof of [18, Proposition 1.2] where the index function

Γ is substituted for the traditional index function.

For our discussions of the distance between unitary orbits of normal operators in unital,

simple, purely infinite C∗-algebras, we shall begin with the case our normal operators have

trivial index function so that ρ(N1, N2) = dH(σ(N1), σ(N2)) and we may apply the techniques

from Section 5.2.

We first turn our attention to the Cuntz algebra O2. As K0(O2) and K1(O2) are trivial,
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we are led to the following generalization of [33, Theorem 1.5] whose proof is identical to the

one given below.

Proposition 5.3.4 (see [33, Theorem 1.5]). Let A be a unital C∗-algebra such that A has

property weak (FN), any two non-zero projections in A are Murray-von Neumann equivalent,

and every non-zero projection in A is properly infinite. Let N1, N2 ∈ A be normal operators

such that Γ(N1) and Γ(N2) are trivial. Then

dist(U(N1),U(N2)) = dH(σ(N1), σ(N2)).

Proof. One inequality follows from Proposition 5.3.3. Let ε > 0. Since A has weak (FN),

the conditions on N1 and N2 imply that there exists two normal operators M1,M2 ∈ A

with finite spectrum such that ‖Nq −Mq‖ < ε for all q ∈ {1, 2}. By Lemma 4.8.3, by the

semicontinuity of the spectrum, and by applying small perturbations, we may assume that

σ(Mq) ⊆ σ(Nq) and σ(Mq) is an ε-net for σ(Nq) for all q ∈ {1, 2}.

Let X be the set of all ordered pairs (λ, µ) ∈ σ(M1)× σ(M2) such that either

|λ− µ| = dist(λ, σ(M2)) or |λ− µ| = dist(µ, σ(M1)).

For each λ ∈ σ(M1) and µ ∈ σ(M2), let nλ := |{(λ, ζ) ∈ X}| and mµ := |{(ζ, µ) ∈ X}|.

Clearly nλ ≥ 1 for all λ ∈ σ(M1), mµ ≥ 1 for all µ ∈ σ(M2), and
∑

λ∈σ(M1) nλ =
∑

µ∈σ(M2) mµ.

Since every projection in A is properly infinite, we can write

M1 =
∑

λ∈σ(M1)

nλ∑
k=1

λPλ,k and M2 =
∑

µ∈σ(M2)

mµ∑
k=1

µQµ,k

where {{Pλ,k}nλk=1}λ∈σ(M1) and
{
{Qµ,k}mµk=1

}
µ∈σ(M2)

are sets of non-zero orthogonal projections

in A each of which sums to the identity. Since all projections in A are Murray-von Neumann

equivalent, using X we can pair off the projections in these finite sums to obtain a unitary
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U ∈ A (that is a sum of partial isometries) such that

‖M1 − UM2U
∗‖ ≤ sup{|λ− µ| | (λ, µ) ∈ X} = dH(σ(M1), σ(M2)).

Hence

dist(U(N1),U(N2)) ≤ 2ε+ dH(σ(M1), σ(M2)).

Since σ(M1) is an ε-net for σ(N1), and σ(M2) is an ε-net for σ(N2),

dH(σ(M1), σ(M2)) ≤ dH(σ(N1), σ(N2)) + ε

completing the proof.

Unfortunately Proposition 5.3.4 does not completely generalize to unital, simple, purely

infinite C∗-algebras with non-trivial K0-group. The following uses the ideas of Section 5.2

to obtain a preliminary result.

Lemma 5.3.5. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ A be

normal operators such that Γ(N1) and Γ(N2) are trivial. If σ(N1) is connected then

dist(U(N1),U(N2)) = dH(σ(N1), σ(N2)).

Proof. One inequality follows from Proposition 5.3.3. The proof of the other inequality is

a more complicated ‘back and forth’ argument. Fix ε > 0 and let Bn,m be as in Lemma

5.2.8. For each q ∈ {1, 2}, we will say that Bn,m is Nq-relevant if Bn,m ∩ σ(Nq) 6= ∅. By

[40, Theorem 4.4] there exists normal operators M1,M2 ∈ A with finite spectrum such that

‖Nq −Mq‖ < ε for all q = {1, 2}. By Lemma 4.8.3, by the semicontinuity of the spectrum,

and by a small perturbation, we can assume that σ(Mq) is precisely the centres of the Nq-

relevant boxes and ‖Nq −Mq‖ ≤ 2ε. For each q ∈ {1, 2} and λ ∈ σ(Mq) let P
(q)
λ be the

non-zero spectral projection of Mq corresponding to λ.

To begin our ‘back and forth’ argument, we will construct a bipartite graph, G, using
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σ(M1) and σ(M2) as vertices (where we have two vertices for λ if λ ∈ σ(M1)∩ σ(M2)). The

process for constructing the edges in G is as follows: for each i, j ∈ {1, 2} with i 6= j and

each λ ∈ σ(Mi), for every µ ∈ σ(Mj) such that

|λ− µ| ≤ 2
√

2ε+ dH(σ(N1), σ(N2))

(note that at least one such µ exists) add edges to G from µ to λ and the centre of any

Ni-relevant box adjacent (including diagonally adjacent) to the Ni-relevant box λ describes.

Clearly G is a bipartite graph and, by construction, if λ ∈ σ(M1) and µ ∈ σ(M2) are

connected by an edge of G then |λ − µ| ≤ 2
√

2ε + dH(σ(N1), σ(N2)). We claim that G is

connected. To see this, we note that since G is bipartite and every vertex is the endpoint of

at least one edge, it suffices to show that for each pair λ, µ ∈ σ(M1) there exists a path from

λ to µ. Fix a pair λ, µ ∈ σ(M1). Since σ(N1) is connected, the union of the N1-relevant

boxes is connected so there exists a finite sequence λ = λ0, λ1, . . . , λk = µ where λ`−1 and

λ` are centres of adjacent N1-relevant boxes for all ` ∈ {1, . . . , k}. However λ`−1 and λ` are

connected in G (via an element of σ(M2)) by construction. Hence the claim follows.

Now that G is constructed, we will progressively remove vertices and edges from G and

modify the non-zero projections

{{
P

(q)
λ

}
λ∈σ(Mj)

}
q∈{1,2}

in a specific manner to construct

partial isometries in A that will enable us to create a unitary U ∈ A such that

‖M1 − U∗M2U‖ ≤ 2
√

2ε+ dH(σ(N1), σ(N2)).

Since G is a connected graph, there exists a j ∈ {1, 2} and a vertex λ ∈ σ(Mj) in G whose

removal (along with all edges with λ as an endpoint) does not disconnect G. Choose any

vertex µ in G connected to λ by an edge. By the construction of G |λ − µ| ≤ 2
√

2ε +

dH(σ(N1), σ(N2)) and µ ∈ σ(Mi) where i ∈ {1, 2} \ {j}. Since A is a unital, simple, purely

infinite C∗-algebra and P
(i)
µ is non-zero, there exists non-zero projections Q

(i)
µ and R

(i)
µ in

A such that P
(j)
λ and Q

(i)
µ are Murray-von Neumann equivalent and P

(i)
µ = Q

(i)
µ + R

(i)
µ by

[21, Lemma V.5.4]. To complete our recursive step, remove λ from G (so G will still be a
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connected, bipartite graph), remove P
(j)
λ from our list of projections, and replace P

(i)
µ with

R
(i)
µ in our list of projections.

Continue the recursive process in the above paragraph until two vertices are left in G

that must be connected by an edge. Since G is bipartite, one of these two remaining vertices

is a non-zero subprojection of a spectral projection of M1 and the other is a non-zero sub-

projection of a spectral projection of M2. These two projections are Murray-von Neumann

equivalent by the same K-theory argument used in Lemma 5.2.8.

By the same arguments as Lemma 5.2.8, the Murray-von Neumann equivalence of the

projections created in the above process allows us to create partial isometries and thus, by

taking a sum, a unitary U ∈ A with the claimed property. Hence

‖N1 − U∗N2U‖ ≤ (4 + 2
√

2)ε+ dH(σ(N1), σ(N2)).

As ε > 0 was arbitrary, the result follows.

The above proof can be modified to show the following results.

Corollary 5.3.6. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ A

be normal operators such that Γ(N1) and Γ(N2) are trivial. Suppose for each q ∈ {1, 2}

that σ(Nq) =
⋃n
i=1K

(q)
i is a disjoint union of compact sets with K

(1)
i connected for all i ∈

{1, . . . , n}. Let χ
(q)
i be the characteristic function of K

(q)
i for all q ∈ {1, 2} and i ∈ {1, . . . , n}.

If χ
(1)
i (N1) and χ

(2)
i (N2) are Murray-von Neumann equivalent for all i ∈ {1, . . . , n} then

dist(U(N1),U(N2)) ≤ max
i∈{1,...,n}

dH

(
K

(1)
i , K

(2)
i

)
.

Proof. Fix ε > 0. The condition that ‘χ
(1)
i (N1) and χ

(2)
i (N2) are Murray-von Neumann

equivalent’ allows the arguments of Lemma 5.3.5 to be applied on each pair
(
K

(1)
i , K

(2)
i

)
to

produce a partial isometry Vi ∈ A such that V ∗i Vi = χ
(1)
i (N1), ViV

∗
i = χ

(2)
i (N2), and

∥∥∥N1χ
(1)
i (N1)− V ∗i N2χ

(2)
i (N2)Vi

∥∥∥ < ε+ dH

(
K

(1)
i , K

(2)
i

)
.

202



If U :=
∑k

i=1 Vi ∈ A then U is a unitary operator such that

‖N1 − U∗N2U‖ < ε+ max
i∈{1,...,n}

dH

(
K

(1)
i , K

(2)
i

)
.

Hence the result follows.

Corollary 5.3.7. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ A

be normal operators such that Γ(N1) and Γ(N2) are trivial. If N1 and N2 have equivalent

common spectral projections then

dist(U(N1),U(N2)) = dH (σ(N1), σ(N2)) .

Proof. Let ε > 0 and let M1 and M2 be the normal operators as constructed in Lemma 5.3.5.

Notice we can apply the same technique as in Theorem 5.2.13 to assume for each q ∈ {1, 2}

that χK(Nq) and χK(Mq) are Murray-von Neumann equivalent whenever K is a connected

component of the union of the Nq-relevant boxes.

Construct the bipartite graph G as in the proof of Lemma 5.3.5. The only caveat remain-

ing in the proof of Lemma 5.3.5 is that we required G to be connected. Let G0 be a connected

component of G. If K is the union of the N1- and N2-relevant boxes with vertices in G0 then

the distance from K to any other Nq-relevant box is at least ε. Hence the characteristic func-

tion χK of K is a continuous function on σ(N1) and σ(N2). Since N1 and N2 have equivalent

common spectral projections, χK(N1) and χK(N2) are Murray-von Neumann equivalent and

thus, by our additional assumptions on M1 and M2, χK(M1) and χK(M2) are Murray-von

Neumann equivalent. Hence we can apply the proof of Lemma 5.3.5 to each of the finite

number of connected component of G separately and combine the resulting partial isometries

as in Corollary 5.3.6 to obtain a unitary U such that

‖N1 − UN2U
∗‖ ≤ (4 + 2

√
2)ε+ dH (σ(N1), σ(N2)) .

Hence the result follows.
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We have made use of the equivalence of certain spectral projections in the creation of all

of the above bounds. To illustrate the necessity of these assumptions, we note the following

example.

Example 5.3.8. Let P and Q be non-trivial projections in O3 with [P ]0 6= [Q]0. Then

σ(P ) = σ(Q) yet dist(U(P ),U(Q)) ≥ 1 or else P and Q would be Murray-von Neumann

equivalent (see [61, Proposition 2.2.4] and [61, Proposition 2.2.7]).

In particular we have the following quantitative version of the above example.

Proposition 5.3.9. Let A be a unital C∗-algebra, let N1, N2 ∈ A be normal operators, and let

f : C→ C be a function that is analytic on an open neighbourhood U of σ(N1)∪ σ(N2) with

f(U) ⊆ {0, 1}. Let γ be a compact, rectifiable curve inside U with (σ(N1) ∪ σ(N2)) ∩ γ = ∅,

Indγ(z) ∈ {0, 1} for all z ∈ C \ γ, Indγ(z) = 1 for all z ∈ σ(N1) ∪ σ(N2), and {z ∈ C |

Indγ(z) 6= 0} ⊆ U . If f(N1) and f(N2) are not Murray-von Neumann equivalent then

dist(U(N1),U(N2)) ≥ 2π

l0(γ) supz∈γ ‖(zIA −N1)−1‖ ‖(zIA −N2)−1‖

where l0(γ) is the length of γ in the regions where f(z) = 1.

Proof. By the proof of Lemma 5.2.11, we know that ‖f(N1)− Uf(N2)U∗‖ is at most

l0(γ) ‖N1 − UN2U
∗‖

2π
sup
z∈γ

∥∥(zIA −N1)−1
∥∥∥∥(zIA −N2)−1

∥∥
for all unitaries U in A. Since f(N1) and f(N2) are not Murray-von Neumann equivalent,

f(N1) and Uf(N2)U∗ are not Murray-von Neumann equivalent so

1 ≤ ‖f(N1)− Uf(N2)U∗‖

by [61, Proposition 2.2.5] and [61, Proposition 2.2.7]. Hence the result follows.

Next we desire to examine the distance between unitary orbits of normal operators with

non-trivial index function. Unfortunately, as this problem is not complete even for the Calkin
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algebra and due to the technical restraints illustrated above, a complete description of the

distance between unitary orbits will not be given. In particular our goal is to generalize

Corollary 5.3.7 to a sufficient degree to be used in Section 5.4. We shall proceed with this

goal by attempting to adapt the proof of [18, Theorem 1.4] via an application of [17, Theorem

1.7].

As in the proof of [18, Theorem 1.4], we will need a notion of direct sums inside unital,

simple, purely infinite C∗-algebras. This leads us to the following construction.

Lemma 5.3.10. Let A be a unital, simple, purely infinite C∗-algebra, let V ∈ A be a non-

unitary isometry, and let P := V V ∗. Then there exists a unital embedding of the 2∞-UHF

C∗-algebra B :=
⋃
`≥1M2`(C) into (IA − P )A(IA − P ) such that [Q]0 = 0 in A for every

projection Q ∈ B.

Proof. Let P0 := IA−P . Since A is a unital, simple, purely infinite C∗-algebra, there exists a

projection P1 ∈ A such that P0 and P1 are Murray-von Neumann equivalent and 0 < P1 < P0

(see [21, Lemma V.5.4]). Let P2 := P0−P1 which is a non-trivial projection. Note [P0]0 = 0

in A by [16, Theorem 1.4]. Hence

[P1]0 = [P0]0 = 0 = [P1 + P2]0 = [P1]0 + [P2]0 = [P2]0.

Thus P1 and P2 are Murray-von Neumann equivalent in A by [16, Theorem 1.4]. Thus, since

P1, P2 ≤ P0, P1 and P2 are Murray-von Neumann equivalent in P0AP0.

For q ∈ {1, 2} let Vq ∈ P0AP0 be an isometry such that VqV
∗
q = Pq. Then it is not difficult

to see for each ` ∈ N that

B` := ∗-alg
(
{Vi1Vi2 · · ·Vi`V ∗j` · · ·V

∗
j2
V ∗j1 | i1, i2, . . . , i`, j1, j2 . . . , j` ∈ {1, 2}}

)
is a C∗-subalgebra of P0AP0 containing P0 that is isomorphic to M2`(C). Moreover, it is
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clear that B` ⊆ B`+1 for all ` ∈ N and

{Vi1Vi2 · · ·Vi`V ∗j` · · ·V
∗
j2
V ∗j1 | i1, i2, . . . , i`, j1, j2 . . . , j` ∈ {1, 2}}

are matrix units for B` in such a way that B :=
⋃
`≥1 B` is the 2∞-UHF C∗-algebra. Notice

every rank one projection in B` is Murray-von Neumann equivalent in B` (and thus in

P0AP0) to the rank one matrix unit (V1)`(V ∗1 )` which is Murray-von Neumann equivalent

in A to P0. Therefore [Q]0 = [P0]0 = 0 in A for every rank one projection Q ∈ B`. Hence

[Q]0 = 0 in A for every non-zero projection Q ∈ B`. However, if Q ∈ B is a non-zero

projection, it is easy to see that there exists an ` ∈ N and a non-zero projection Q0 ∈ B`

such that ‖Q−Q0‖ < 1
2
. Hence Q and Q0 are Murray-von Neumann equivalent in A by

Lemma 5.2.9. Thus [Q]0 = [Q0]0 = 0 as desired.

We will need the following two well-known results to adapt the proof of [18, Theorem

1.4] to our desired context.

Lemma 5.3.11. Let B :=
⋃
`≥1M2`(C) be the 2∞-UHF C∗-algebra. If X ⊆ C is compact,

there exists a normal operator N ∈ B such that σ(N) = X.

Lemma 5.3.12 (see [16, Lemma 1.2]). Let A be a unital, simple, purely infinite C∗-algebra,

let V ∈ A be an isometry, and let U ∈ A be a unitary. Then [U ]1 = [V UV ∗ + (IA − V V ∗)]1.

Using the above lemmas we obtain the following extension of Corollary 5.3.7 to a nor-

mal operators with non-trivial index functions provided certain assumptions apply. The

techniques used in this lemma will be essential for the remainder of the chapter.

Lemma 5.3.13. Let A be a unital, simple, purely infinite C∗-algebra and let N,M ∈ A be

normal operators such that

1. σ(M) ⊆ σ(N),

2. Γ(M)(λ) = Γ(N)(λ) for all λ /∈ σ(N), and
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3. N and M have equivalent common spectral projections.

Then

dist(U(N),U(M)) = dH(σ(N), σ(M)).

Proof. One inequality follows from Proposition 5.3.3. Since A is a unital, simple, purely

infinite C∗-algebra, there exists a non-unitary isometry V ∈ A. Let P := V V ∗, let C :=

(IA − P )A(IA − P ), and let B be the unital copy of the 2∞-UHF C∗-algebra in C given

by Lemma 5.3.10. By Lemma 5.3.11 there exists normal operators N0,M0 ∈ B such that

σ(N0) = σ(N) and σ(M0) = σ(M).

Let N ′ := VMV ∗ + N0 and let M ′ := VMV ∗ + M0 which are clearly normal operators

as V is an isometry. We will demonstrate that N ′ ∈ U(N) and M ′ ∈ U(M) by appealing

to [17, Theorem 1.7]. Notice that σ(N ′) = σ(M) ∪ σ(N0) = σ(N) as V is an isometry.

Furthermore if f : C → C is a function that is analytic on an open neighbourhood U of

σ(N) with f(U) ⊆ {0, 1} then

f(N ′) = f(VMV ∗) + f(N0) = V f(M)V ∗ + f(N0).

If f(M) = 0 then f(N) = 0 as f(M) and f(N) are Murray-von Neumann equivalent. This

implies f is zero on σ(N) and thus f(N ′) = f(N0) = 0 = f(N). If f(M) 6= 0 then f(N ′) 6= 0

and

[f(N ′)]0 = [V f(M)V ∗]0 + [f(N0)]0 = [f(M)]0 = [f(N)]0

as f(N0) ∈ B and as every projection in B is trivial in the K0-group of A by Lemma

5.3.10. In any case f(N ′) and f(N) are Murray-von Neumann equivalent. Furthermore,

since B−1
0 = B−1 as B is a UHF C∗-algebra, we notice for any λ /∈ σ(N) that λIA−N ′ is in

the same component of A−1 as

V (λIA −M)V ∗ + (λIA − P )

which is in the same connected component of A−1 as λIA−M by Lemma 5.3.12. Therefore,
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since Γ(M)(λ) = Γ(N)(λ) for all λ /∈ σ(N) by assumption, we obtain that Γ(N ′) = Γ(N).

Therefore N and N ′ are approximately unitarily equivalent in A by [17, Theorem 1.7].

Similarly M and M ′ are approximately unitarily equivalent in A by [17, Theorem 1.7].

Hence it is easy to see for any unitary U ∈ C that

dist(U(N),U(M)) ≤ ‖(P + U)N ′(P + U)∗ −M ′‖ = ‖UN0U
∗ −M0‖ .

However, since C is a unital, simple, purely infinite C∗-algebra and N0,M0 ∈ C are in the

unital inclusion of the UHF C∗-algebra B in C, it is easy to see that Γ(N0) and Γ(M0) are

trivial (when viewed as elements of C). Since any two non-zero projections in B ⊆ C are

Murray-von Neumann equivalent, the hypotheses of Corollary 5.3.7 are satisfied for N0 and

M0 in C. Hence for any ε > 0 there exists a unitary U ∈ C such that

‖UN0U
∗ −M0‖ ≤ ε+ dH(σ(N0), σ(M0)) = ε+ dH(σ(N), σ(M)).

Hence

dist(U(N),U(M)) ≤ dH(σ(N), σ(M))

as desired.

Lemma 5.3.13 is enough to proceed with the results of Section 5.4. However it is possible

to remove a hypothesis from Lemma 5.3.13. The following lemma is a specific case of

[42, Theorem 10.6] that we prove using elementary techniques developed in this dissertation.

Lemma 5.3.14. Let A be a unital, simple, purely infinite C∗-algebra and let X ⊆ C be

a compact subset. Suppose X is a union of finitely many compact, connected components

{Ki}ni=1 and C \ X is the union of finitely many connected components {Ωj}mj=0 where Ω0

is the unbounded component. Let {gi}ni=1 ⊆ K0(A) be such that
∑n

i=1 gi = [IA]0 and let

{hj}mj=1 ⊆ K1(A). Then there exists a normal operator N ∈ A such that σ(N) = X,

[χKi(N)]0 = gi for all i ∈ {1, . . . , n} (where χKi is the characteristic function of Ki),

and [λIA − N ]1 = hj whenever λ ∈ Uj for all j ∈ {1, . . . ,m}. That is, for any element
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γ ∈ Hom(K∗(C(X)), K∗(A)) ' KK(C(X),A) there exists a normal operator in A whose

continuous functional calculus realizes γ.

Proof. We may assume without loss of generality that if 1 ≤ j1 < j2 ≤ m then Ωj1 is

contained in the unbounded component of C\Ωj2 . Since A is a unital, simple, purely infinite

C∗-algebra, K1(A) is canonically isomorphic to A−1/A−1
0 by [16, Theorem 1.9]. Choose a

unitary U1 ∈ A such that [U1]1 = h1. By the Continuous Functional Calculus for Normal

Operators there exists a normal operator T1 ∈ A such that σ(T1) is a simple closed curve

contained in X such that [λIA − T1]1 = h1 for all λ ∈ Ω1. If Ω2 is contained the unbounded

component of C \ σ(T1), we can repeat the above procedure to obtain a normal operator

T2 ∈ A such that σ(T2) is a simple closed curve contained in X and in the unbounded

component of C \ σ(T1) such that [λIA − T2]1 = h2 for all λ ∈ Ω2. If Ω2 is contained the

bounded component of C \ σ(T1), we can repeat the above procedure to obtain a normal

operator T2 ∈ A such that σ(T2) is a simple closed curve contained in X and in the bounded

component of C \ σ(T1) such that [λIA − T2]1 = h2 − h1 for all λ ∈ Ω2. Due to the ordering

of {Ωj}mj=1, we can find normal operators {Tj}mj=1 such that each σ(Tj) is a simple closed

curve contained in X with the property that if Jj ⊆ {1, . . . ,m} is the set of all indices

` ∈ {1, . . . ,m} such that Ωj is contained in the bounded component of C \ σ(T`) then∑
`∈Jj [λIA − Tj]1 = hj for all λ ∈ Ωj and j ∈ {1, . . . ,m}. Hence

m∑
j=1

[λIA − Tj]1 = hj

for all λ ∈ Ω` and all ` ∈ {1, . . . ,m}.

Since A is a unital, simple, purely infinite C∗-algebra, [21, Theorem V.5.1] implies there

exists m isometries {Vj}mj=1 such that Q :=
∑m

j=1 VjV
∗
j < IA. Furthermore [21, Lemma

V.5.4] and [16, Theorem 1.4] imply that there exists orthogonal projections {Qi}n−1
i=1 such

that
∑n−1

i=1 Qi < IA−Q and [Qi]0 +
∑m

j=1[χKi(Tj)]0 = gi for all i ∈ {1, . . . , n− 1} (where χKi
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is the characteristic function of Ki). Let

Qn := IA −Q−
n−1∑
i=1

Qi.

For each i ∈ {1, . . . , n} choose µi ∈ Ki and let

M :=
m∑
j=1

VjTjV
∗
j +

n∑
i=1

µiQi.

Clearly M is a normal operator with σ(M) ⊆ X. Suppose λ ∈ Ωj0 for some j0 ∈ {1, . . . ,m}.

Then

λIA −M =
m∑
j=1

Vj(λIA − Tj)V ∗j +
n∑
i=1

(λ− µi)Qi.

Since clearly [Q +
∑n

i=1(λ− µi)Qi]1 = 0, by writing λIA −M as a product of unitaries and

by applying Lemma 5.3.12 we clearly obtain that

[λIA −M ]1 =
m∑
j=1

[λIA − Tj]1 = hj.

Furthermore

χKi0 (M) =
m∑
j=1

VjχKi0 (Tj)V
∗
j +

n∑
i=1

χKi0 (µi)Qi

for all i0 ∈ {1, . . . , n}. Hence

[χKi0 (M)]0 =
m∑
j=1

[χKi0 (Tj)]0 + [Qi0 ]0 = gi0

for all i0 ∈ {1, . . . , n− 1}. Since
∑n

i=1[χKi(M)]0 = [IA]0, by our assumption that
∑n

i=1 gi =

[IA]0 we clearly obtain [χKn(M)]0 = gn. Thus M satisfies the conclusions of the lemma

except for the fact that σ(M) may be strictly contained in X.

Since A is a unital, simple, purely infinite C∗-algebra, there exists a non-unitary isometry

V ∈ A. Let P := V V ∗, let C := (IA − P )A(IA − P ), and let B be the unital copy of the
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2∞-UHF C∗-algebra in C given by Lemma 5.3.10. By Lemma 5.3.11 there exists normal

operator N0 ∈ B such that σ(N0) = X. Let N := VMV ∗+N0 ∈ A. Then it is clear that N

is a normal operator with σ(N) = X. Furthermore the proof of Lemma 5.3.13 implies that

N has the desired properties.

Before generalizing Lemma 5.3.13, we note we may use Lemma 5.3.13 and Lemma 5.3.14

to prove the following corollary that is a specific case of [42, Theorem 10.6].

Corollary 5.3.15. Let A be a unital, simple, purely infinite C∗-algebra and let X ⊆ C be

compact. For each bounded, connected component Ω of C \X let hΩ ∈ K1(A). Let I be the

set of closed subsets K of X such that the characteristic function χK of K is a continuous

function on X. Suppose there exists {gK}K∈I ⊆ K0(A) such that gX = [IA] and gK1 + gK2 =

gK1∪K2 whenever K1, K2 ∈ I are disjoint. Then there exists a normal operator N ∈ A such

that [χK(N)]0 = gK for all K ∈ I and [λIA −N ]1 = hΩ whenever λ ∈ Ω and Ω is a bounded

component of C\X. That is, for any element γ ∈ Hom(K∗(C(X)), K∗(A)) ' KK(C(X),A)

there exists a normal operator in A whose continuous functional calculus realizes γ.

Proof. For each n ∈ N let

Xn :=

{
z ∈ C | dist(z,X) ≤ 1

2n

}
.

Note Xn satisfies the conditions of the compact subset in Lemma 5.3.14 and if K is a

connected component of Xn then K ∩ X ∈ I. Thus Lemma 5.3.14 implies there exists

normal elements {Mn}n≥1 ⊆ A such that σ(Mn) = Xn, if K is a connected component of

Xn then [χK(Mn)]0 = gK , and if λ ∈ (C \Xn)∩Ω where Ω ⊆ C \X is a bounded, connected

component then [λIA −M ]1 = hΩ.

Let N1 := M1. Since σ(M2) ⊆ σ(N1), since M2 and N1 have equivalent common projec-

tions by the assumptions on the set {gK}K∈I , and since Γ(M2)(λ) = Γ(N1)(λ) whenever λ /∈

σ(N1), Lemma 5.3.13 implies there exists a unitary U2 ∈ A such that ‖N1 − U2M2U
∗
2‖ ≤ 1

2
.

Let N2 := U2M2U
∗
2 . By repeating this process there exists a sequence (Nn)n≥1 ⊆ A such that
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each Nn is a normal operator with the same conditions as Mn listed in the above paragraph

and such that ‖Nn −Nn+1‖ ≤ 1
2n

. Hence (Nn)n≥1 is a Cauchy sequence and thus converges

to a normal operator N ∈ A. Clearly σ(N) = X by the semicontinuity of the spectrum and

by Lemma 4.8.3. Furthermore N has the desired properties by Lemma 5.2.9 and since the

connected components of A−1 are open and completely determine the K1-group element.

With the above complete, we remove an assumption from 5.3.13.

Theorem 5.3.16. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ A

be normal operators such that

1. Γ(N1)(λ) = Γ(N2)(λ) for all λ /∈ σ(N1) ∪ σ(N2), and

2. N1 and N2 have equivalent common spectral projections.

Then

dist(U(N1),U(N2)) = dH(σ(N1), σ(N2)).

Proof. Let ε > 0. For each q ∈ {1, 2} Lemma 5.3.14 implies there exists a normal operator

Mq such that

σ(Mq) = {z ∈ C | dist(z, σ(Nq)) ≤ ε},

Γ(Mq)(λ) = Γ(Nq)(λ) for all λ /∈ σ(Mq), and Mq and Nq have equivalent common spectral

projections. Hence Lemma 5.3.13 implies that dist(U(Nq),U(Mq)) ≤ ε for all q ∈ {1, 2}.

We claim there exists a normal operator M ∈ A such that σ(M) = σ(M1)∩σ(M2), M and

Mq have equivalent common spectral projections for all q ∈ {1, 2}, and Γ(M)(λ) = Γ(Mq)(λ)

for all λ /∈ σ(Mq) and q ∈ {1, 2}. The claim will follow from Lemma 5.3.14 provided σ(M1)∩

σ(M2) is non-empty, we can choose the correct K1-elements for the bounded, connected

components of C \ σ(M), and we can construct the correct K0-elements for the connected

components of σ(M). Since N1 and N2 have equivalent common spectral projections, it is

clear that σ(M1) ∩ σ(M2) is non-empty.
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If Ω is a bounded, connected component of the complement of C \ σ(M) then either Ω

intersects both or exactly one of C \ σ(M1) and C \ σ(M2). If Ω intersects both C \ σ(M1)

and C\σ(M2), the condition that Γ(N1)(λ) = Γ(N2)(λ) for all λ /∈ σ(N1)∪σ(N2) implies we

can select a single element of K1(A) for Γ(M)(λ) to take for all λ ∈ Ω such that Γ(M)(λ) =

Γ(Mq)(λ) for all λ ∈ Ω \ σ(Mq) for q ∈ {1, 2}. If Ω intersects C \ σ(Mq) but not the other

complement, we define Γ(M)(λ) = Γ(Mq)(λ) for all λ ∈ Ω ⊆ C \ σ(Mq).

To construct M such that M and Mq have equivalent common spectral projections for

all q ∈ {1, 2}, we need to define the K0-elements that should be taken by the spectral

projections of the finite number of connected components of σ(M) in such a way that if

K is a connected component of σ(Mq), the sum of K0-element of the spectral projections

of σ(M) corresponding to components contained in K is the same as the K0-element of

the spectral projection of Mq corresponding to K. Since, by construction, M1 and M2

have equivalent common spectral projections and σ(M1) ∪ σ(M2) has a finite number of

connected components, we may assume for the purposes of this argument that σ(M1) ∪

σ(M2) is connected. Construct a connected, bipartite graph G whose vertices correspond to

the connected components of σ(M1) and σ(M2) and where we connect two vertices with n

edges provided the intersection of the corresponding connected components has n connected

components. Thus we can view the edges of G as the connected components of σ(M1)∩σ(M2).

Thinking of each vertex being labelled with the K0-element of the spectral projection of the

corresponding connected component, it suffices to label the edges of G with K0-elements in

such a way that the K0-element at any vertex is the sum of the K0-elements of the adjacent

edges. This can be done by selecting a subgraph T of G that is a tree, selecting a root

for T , labelling all edges not in T to have the trivial K0-element, starting at the vertices

farthest from the root (which must be leaves) and labelling the one adjacent edge to each

vertex to be the correct K0-element, and by recursively labelling the remaining edges of the

vertices farthest from the root that have a unlabelled edges to be such that the K0-element

of the vertex is the sum of the K0-elements of the adjacent vertices. This process is well-

defined (that is, we will always have an edge remaining to label so we can have the correct
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K0-element at each vertex we consider), will terminate, and give such a labelling since M1

and M2 have equivalent common spectral projections so the same K-theory using in Lemma

5.2.8 will imply the last step (which is labelling a single edge between the root and another

vertex) is correct. Hence the claim is complete.

Since A is a unital, simple, purely infinite C∗-algebra, there exists a non-unitary isometry

V ∈ A. Let P := V V ∗, let C := (IA − P )A(IA − P ), and let B be the unital copy of the

2∞-UHF C∗-algebra in C given by Lemma 5.3.10. By Lemma 5.3.11 there exists normal

operators Mq,0 ∈ B such that σ(Mq,0) = σ(Mq) for all q ∈ {1, 2}. For each q ∈ {1, 2} let

M ′
q := VMV ∗ + Mq,0. The proof of Lemma 5.3.13 then demonstrates that M ′

q ∈ U(Mq) for

all q ∈ {1, 2},

dist(U(M1),U(M2)) ≤ inf
U∈U(C)

‖UM1,0U
∗ −M2,0‖ ,

and thus

dist(U(M1),U(M2)) = dH(σ(M1), σ(M2)) ≤ 2ε+ dH(σ(N1), σ(N2))

by Corollary 5.3.7. Hence dist(U(Nq),U(Mq)) ≤ ε for q ∈ {1, 2} implies that

dist(U(N1),U(N2)) ≤ dH(σ(N1), σ(N2)) + 4ε.

As ε > 0, the result follows.

To complete this section we note that the proof of Theorem 5.3.16 can be adapted to

obtain additional results provided there is a method for matching spectral projections. In

particular [18, Theorem 1.4] clearly generalizes to the following results.

Proposition 5.3.17. Let A be a unital, simple, purely infinite C∗-algebra with trivial K0-

group. If N1, N2 ∈ A are normal operators then

dist(U(N1),U(N2)) ≤ 2ρ(N1, N2)
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where ρ(N1, N2) is as defined in Definition 5.3.2.

Proof. Since A is a unital, simple, purely infinite C∗-algebra, there exists a non-unitary

isometry V ∈ A. Let P := V V ∗, let C := (IA − P )A(IA − P ), and let B be the unital copy

of the 2∞-UHF C∗-algebra in C given by Lemma 5.3.10.

Let

X := σ(N1) ∪ σ(N2) ∪ {λ ∈ C | λ /∈ σ(N1) ∪ σ(N2),Γ(N1)(λ) 6= Γ(N2)(λ)}.

By Lemma 5.3.11 there exists a normal operator N ′ ∈ B such that σ(N ′) = X. Therefore,

if

M := V N1V
∗ +N ′

then M is a normal operator in A such that σ(M) = X and Γ(M)(λ) = Γ(N1)(λ) = Γ(N2)(λ)

for all λ /∈ X (alternatively we could have used Lemma 5.3.14 to construct M). Therefore

it suffices to show for any q ∈ {1, 2} that

dist(U(Nq),U(M)) ≤ ρ(N1, N2).

By the definition of ρ we see that

ρ(Nq,M) = dH(σ(Nq), σ(M)) ≤ ρ(N1, N2).

Furthermore, by applying Lemma 5.3.11, there exists normal operators N0,M0 ∈ B such

that σ(N0) = σ(Nq) and σ(M0) = σ(M). As in the proof of Lemma 5.3.13, we see that

V NqV
∗+N0 ∈ U(Nq) and V NqV

∗+M0 ∈ U(M). Hence it is easy to see that for any unitary

U ∈ C that

dist(U(Nq),U(M)) ≤ ‖(P + U)(V NqV
∗ +N0)(P + U)∗ − (V NqV

∗ +M0)‖

= ‖UN0U
∗ −M0‖ .
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Thus, as in the proof of Lemma 5.3.13, for any ε > 0 there exists a U ∈ C such that

‖UN0U
∗ −M0‖ ≤ ε+ dH(σ(N1), σ(M)) ≤ ε+ ρ(N1, N2).

Hence the result follows.

Proposition 5.3.18. Let A be a unital, simple, purely infinite C∗-algebra. If N1, N2 ∈ A

are normal operators with equivalent common spectral projections then

dist(U(N1),U(N2)) ≤ 2ρ(N1, N2).

Proof. The proof of this result follows the proof of Proposition 5.3.17 where we note N1

and N2 having common spectral projections implies that N1 and M have common spectral

projections and N2 and M have common spectral projections. This facilitates the proof that

V NqV
∗ +N0 ∈ U(Nq) and V NqV

∗ +M0 ∈ U(M) and thus the rest of the proof follows.

5.4 Closed Similarity Orbits of Normal Operators

As the Calkin algebra is a unital, simple, purely infinite C∗-algebra, in this section we en-

deavour to use the results of Section 5.3 and Theorem 4.9.8 to generalize Theorem 1.8.15. In

addition, we will obtain a generalization of Theorem 1.8.15 to type III factors with separable

predual. The two main results of this section are similar in proof but pose slight technical

differences and thus are listed separately.

Theorem 5.4.1. Let A be a unital, simple, purely infinite C∗-algebra and let N,M ∈ A be

normal operators. Then N ∈ S(M) if and only if

1. σ(M) ⊆ σ(N),

2. each component of σ(N) intersects σ(M),

3. Γ(N)(λ) = Γ(M)(λ) for all λ /∈ σ(N),
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4. if λ ∈ σ(N) is not isolated in σ(N), the component of λ in σ(N) contains some non-

isolated point of σ(M), and

5. N and M have equivalent common spectral projections.

Theorem 5.4.2. Let A be a unital C∗-algebra with the following properties:

1. A has property weak (FN),

2. every non-zero projection in A is properly infinite, and

3. any two non-zero projections in A are Murray-von Neumann equivalent.

(For example, O2 and every type III factor with separable predual.)

Let N,M ∈ A be normal operators such that λIA −M ∈ A−1
0 for all λ /∈ σ(M). Then

N ∈ S(M) if and only if

1. σ(M) ⊆ σ(N),

2. each component of σ(N) intersects σ(M),

3. λIA −N ∈ A−1
0 for all λ /∈ σ(N), and

4. if λ ∈ σ(N) is not isolated in σ(N), the component of λ in σ(N) contains some non-

isolated point of σ(M).

Note if N ∈ S(M) then the first two conditions must hold by discussions from the begin-

ning of Section 5.2 and the third condition follows from Lemma 5.2.2. The fifth condition of

Theorem 5.4.1 is necessary by Lemma 5.2.11 and Lemma 5.2.9.

To see that the fourth conclusion is necessary, let Kλ be the connected component of σ(N)

containing λ. We note that if Kλ is not isolated in σ(N) (that is, every open neighbourhood

of Kλ intersects a different connected component of σ(N)) then the first two conditions

imply that σ(M) ∩ Kλ contains a cluster point of σ(M). Otherwise if Kλ is isolated in

σ(N), the characteristic function χKλ of Kλ can be extended to an analytic function on a
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neighbourhood of σ(N). Thus Lemma 5.2.11 implies χKλ(N) ∈ S(χKλ(M)). If σ(M) ∩Kλ

does not contain a cluster point of σ(M) then χKλ(M) must have finite spectrum. Hence

there exists a non-zero polynomial p such that p(χKλ(M)) = 0. Clearly this implies p(T ) = 0

for all T ∈ S(χKλ(M)) so p(χKλ(N)) = 0. Since Kλ is a connected, compact subset of σ(N)

that is not a singleton, this is impossible. Hence the fourth condition is necessary. An

alternative proof of the necessity of the fourth condition may be obtained by considering the

separable C∗-algebra generated by N , M , and a countable number of invertible elements, by

taking an infinite direct sum of a faithful representation of this C∗-algebra on a separable

Hilbert space, and by appealing to property (e) of [9, Theorem 1].

By applying Theorem 5.4.1 in conjunction with [17, Theorem 1.7], the following result is

easily obtained.

Corollary 5.4.3. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ A be

normal operators. If N1 ∈ S(N2) and N2 ∈ S(N1) then N1 ∼au N2.

To begin the proofs of Theorem 5.4.1 and Theorem 5.4.2 we note the following trivial

result about similarity of operators in C∗-algebras.

Lemma 5.4.4. Let A be a unital C∗-algebra, let P ∈ A be a non-trivial projection, let

Z ∈ (IA−P )A(IA−P ), and let X ∈ A be such that PX(IA−P ) = X. If λ /∈ σ(IA−P )A(IA−P )(Z)

then

λP +X + Z ∼ λP + Z.

Proof. Note that if Y := X(λ(IA − P )− Z)−1 then

T := IA + Y

is invertible with

T−1 = IA − Y.
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A trivial computation shows

T (λP +X + Z)T−1 = λP + Z.

Corollary 5.4.5. Let A be a unital C∗-algebra, let n ∈ N, let λ1, . . . , λn be distinct complex

scalars, let {Pj}nj=1 ⊆ A be a set of non-trivial orthogonal projections with
∑n

j=1 Pj = IA,

and let {Ai,j}ni,j=1 ⊆ A be such that Ai,j = 0 if i ≥ j and PiAi,jPj = Ai,j for all i < j. Then

n∑
j=1

λjPj +
n∑

i,j=1

Ai,j ∼
n∑
j=1

λjPj.

Proof. By applying Lemma 5.4.4 with P := P1, Z :=
∑n

j=1 λjPj+
∑n

i,j=2Ai,j (it is elementary

to show that σ(IA−P )A(IA−P )(Z) = {λ2, . . . , λn} so λ1 /∈ σ(Z) by assumption), and X :=∑n
j=1 A1,j, we obtain that

n∑
j=1

λjPj +
n∑

i,j=1

Ai,j ∼
n∑
j=1

λjPj +
n∑

i,j=2

Ai,j.

The result then proceeds by recursion by considering the unital C∗-algebra (IA − P )A(IA −

P ).

To begin the proof of Theorem 5.4.1 we first show that a ‘direct sum’ of a normal operator

and a nilpotent operator is in the similarity orbit of the normal operator. The idea of this

result is based on [32, Lemma 5.3].

Lemma 5.4.6. Let A be a unital, simple, purely infinite C∗-algebra, let M ∈ A be a normal

operator, let V ∈ A be a non-unitary isometry, let P := V V ∗, and let B :=
⋃
`≥1M2`(C)

be the unital copy of the 2∞-UHF C∗-algebra in C given by Lemma 5.3.10. Suppose µ is a

cluster point of σ(M) and Q ∈ M2`(C) ⊆ B is a nilpotent matrix for some ` ∈ N. Then

VMV ∗ + µ(IA − P ) +Q ∈ S(M).
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Proof. Since Q ∈ M2`(C) ⊆ B is a nilpotent matrix, Q is unitarily equivalent to a strictly

upper triangular matrix. Thus we can assume Q is strictly upper triangular. By our as-

sumptions on µ there exists a sequence (µj)j≥1 of distinct scalars contained in σ(M) that

converges to µ. For each q ∈ N let

Tq := diag(µq, µq+1, . . . µq+2`−1) ∈M2`(C) ⊆ B

be the diagonal matrix with µq, . . ., µq+2`−1 along the diagonal.

Let Mq := VMV ∗ + Tq ∈ A. As in the proof of Lemma 5.3.13, it is easy to see by

[17, Theorem 1.7] that Mq is approximately unitarily equivalent to M for each q ∈ N. Hence

M ∼au Mq ∼ VMV ∗ + (Tq +Q)

by Lemma 5.4.5. Since limq→∞ Tq +Q = µ(IA − P ) +Q, the result follows.

Subsequently we have our next stepping-stone which based on [32, Corollary 5.5].

Lemma 5.4.7. Let A be a unital, simple, purely infinite C∗-algebra. Let N,M ∈ A be

normal operators and write σ(N) = K1∪K2 where K1 and K2 are disjoint compact sets with

K1 connected. Suppose

1. σ(M) = K ′1 ∪K2 where K ′1 ⊆ K1,

2. Γ(N)(λ) = Γ(M)(λ) for all λ /∈ σ(N), and

3. N and M have equivalent common spectral projections.

If K ′1 contains a cluster point of σ(M) then N ∈ S(M).

Proof. If K1 is a singleton, K ′1 = K1 as K ′1 is non-empty. Thus σ(M) = σ(N) so Theorem

5.2.13 implies N and M are approximately unitarily equivalent.

Otherwise K ′1 is not a singleton. Fix a non-unitary isometry V ∈ A and ε > 0. Let

P := V V ∗ and let B :=
⋃
`≥1M2`(C) be the unital copy of the 2∞-UHF C∗-algebra in
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(IA−P )A(IA−P ) given by Lemma 5.3.10. By Theorem 4.9.8 there exists a normal operator

T ∈ B with

σ(T ) = {z ∈ C | |z| ≤ ε}

such that T is a norm limit of nilpotent matrices from
⋃
`≥1M2`(C) ⊆ B ⊆ A. Let µ ∈ K ′1

be any cluster point of σ(M). Lemma 5.4.6 implies that

VMV ∗ + µ(IA − P ) +Q ∈ S(M)

for every nilpotent matrix Q ∈
⋃
`≥1M2`(C) ⊆ B. Since T is a norm limit of nilpotent

matrices from
⋃
`≥1M2`(C), we obtain that

VMV ∗ + µ(IA − P ) + T ∈ S(M).

Let M1 := VMV ∗+µ(IA−P )+T . As in the proof of Lemma 5.3.13, it is easy to see that

M1 is a normal operator such that Γ(M1)(λ) = Γ(M)(λ) = Γ(N)(λ) for all λ /∈ σ(M1)∪σ(N)

and M1 and N have equivalent common spectral projections.

Since K1 is connected and σ(M1) contains an open neighbourhood around µ ∈ K1, we can

repeat the above argument a finite number of times to obtain a normal operator M0 ∈ S(M)

such that σ(M0) = K ′′1 ∪K2 where K ′′1 is connected, K1 ⊆ K ′′1 ,

K ′′1 ⊆ {z ∈ C | dist(z,K1) ≤ ε},

Γ(M0)(λ) = Γ(N)(λ) for all λ /∈ σ(M1) ∪ σ(N), and M0 and N have equivalent common

spectral projections. Therefore Lemma 5.3.13 implies

dist(U(N),U(M0)) = dH(σ(N), σ(M0)) ≤ ε

so dist(N,S(M)) ≤ ε. Thus, as ε > 0 was arbitrary, the result follows.
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We can now complete the proof of Theorem 5.4.1 using the above result.

Proof of Theorem 5.4.1. Let N and M satisfy the five conditions of Theorem 5.4.1. By

applying Lemma 5.4.7 recursively a finite number of times, we can find a normal operator M ′

such that M ′ ∈ S(M), σ(M ′) is σ(M) unioned with a finite number of connected components

of σ(N), and N and M ′ satisfy the five conditions of Theorem 5.4.1.

Fix ε > 0. Since σ(N) is compact, σ(N) has a finite ε-net. Thus the normal operatorM ′ in

the above paragraph can be selected with the additional requirement that dist(λ, σ(M ′)) ≤ ε

for all λ ∈ σ(N). By Lemma 5.3.13 dist(U(N),U(M ′)) ≤ ε so dist(N,S(M)) ≤ ε as

desired.

Note that by using Corollary 5.2.14 instead of [17, Theorem 1.7] and Corollary 5.3.7

instead of Lemma 5.3.13, a proof of Theorem 5.4.1 that is independent of [17, Theorem 1.7]

may be obtained for any unital, simple, purely infinite C∗-algebra with trivial K1-group.

Similarly, using [12, Theorem 11.1] and [18, Theorem 1.4], the proof of Theorem 5.4.1 is

greatly simplified for the Calkin algebra and provides an alternate proof of Theorem 1.8.15.

With the proof of Theorem 5.4.1 complete, we endeavour to prove Theorem 5.4.2. As the

proof of Theorem 5.4.1 relies on an embedding of the scalar matrices inside the C∗-algebra

under consideration, we make the following definition.

Definition 5.4.8. Let A be a unital C∗-algebra. An operator A ∈ A is said to be a

scalar matrix in A if there exists a finite dimensional C∗-algebra B and a unital, injective

∗-homomorphism π : B→ A such that A ∈ π(B).

The point of considering scalar matrices in the context of Theorem 5.4.2 is the following.

Proposition 5.4.9. Let A be a unital C∗-algebra with the three properties listed in Theorem

5.4.2. If N ∈ A is a normal operator with the closed unit disk as spectrum then N is a norm

limit of nilpotent scalar matrices from A.

Proof. It is easy to see the second and third assumptions in Theorem 5.4.2 imply that the

2∞-UHF C∗-algebra has a unital, faithful embedding into A. Therefore, by Theorem 4.9.8,
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A has a normal operator N0 with the closed unit disk as spectrum that is a norm limit of

nilpotent scalar matrices from A. Since every two normal operators with spectrum equal

to the closed unit disk are approximately unitarily equivalent by Corollary 5.2.5 the result

follows.

Using the ideas contained in the proof of Lemma 5.4.6, it is possible to prove the following.

Lemma 5.4.10. Let A be a unital C∗-algebra such that

1. there exits a unital, injective ∗-homomorphism π : A⊕ A→ A, and

2. if N1, N2 ∈ A are normal operators with λIA − Nq ∈ A−1
0 for all λ /∈ σ(Nq) and

q ∈ {1, 2}, N1 ∼au N2 if and only if σ(N1) = σ(N2).

Let M ∈ A be a normal operator with λIA −M ∈ A−1
0 for all λ /∈ σ(M), let µ ∈ σ(M) be a

cluster point of σ(M), and let Q ∈ A be a nilpotent scalar matrix. Then π(M ⊕ (µI +Q)) ∈

S(M).

By using similar ideas to the proof of Theorem 5.4.1 and by using the following lemma,

the proof of Theorem 5.4.2 is also complete.

Lemma 5.4.11. Let A be a unital C∗-algebra with the three properties listed in Theorem

5.4.2. Let N,M ∈ A be normal operators with λIA − N ∈ A−1
0 for all λ /∈ σ(N) and

λIA−M ∈ A−1
0 for all λ /∈ σ(M). Let {Kλ}Λ be the connected components of σ(N). Suppose

σ(M) =

 ⋃
λ∈Λ\{λ0}

Kλ

 ∪K0

where K0 ⊆ Kλ0. If K0 contains a cluster point of σ(M) then N ∈ S(M).

Proof. The proof of this lemma follows the proof of Lemma 5.4.7 by using direct sums instead

of non-unitary isometries and an application of Proposition 5.3.4 provided that Lemma 5.4.10

applies. Note that the second and third assumptions of Theorem 5.4.2 imply that the first
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assumption of Lemma 5.4.10 holds and Corollary 5.2.5 implies that the second assumption

of Lemma 5.4.10 holds.

With the proofs of Theorem 5.4.1 and Theorem 5.4.2 complete, we will use said theorems

to classify when a normal operator is a limit of nilpotents in these C∗-algebras. Thus Corol-

lary 5.4.12 provides another proof (although a more complicated proof) of Theorem 4.8.6.

Moreover Corollary 5.4.13 has slightly weaker conditions to any result of Chapter 4 (that is,

there should exists C∗-algebras satisfying the assumptions of the following theorem that are

not studied in Chapter 4 although the author is not aware of them). However, we note the

proof of Theorem 4.8.6 can be adapted to this setting. These proofs are based on the proof

of [32, Proposition 5.6].

Corollary 5.4.12. Let A be a unital, simple, purely infinite C∗-algebra. A normal operator

N ∈ A is a norm limits of nilpotent operators from A if and only if 0 ∈ σ(N), σ(N) is

connected, and Γ(N) is trivial.

Proof. The requirements that σ(N) is connected and contains zero follows by Lemma 1.8.4.

The condition that Γ(N) is trivial follows from Lemma 4.8.5.

Suppose N ∈ A is a normal operator such that 0 ∈ σ(N), σ(N) is connected, and

Γ(N) is trivial. Let ε > 0 and fix a non-unitary isometry V ∈ A. Let P := V V ∗ and let

B :=
⋃
`≥1M2`(C) be the unital copy of the 2∞-UHF C∗-algebra in (IA−P )A(IA−P ) given

by Lemma 5.3.10. By Theorem 4.9.8 there exists a normal operator T ∈ B with

σ(T ) = {z ∈ C | |z| ≤ ε}

such that T is a norm limit of nilpotent matrices from
⋃
`≥1M2`(C) ⊆ B ⊆ A.

Let M := V NV ∗+T ∈ A. Clearly M is a normal operator such that σ(M) = σ(N)∪σ(T ),

M and N have equivalent common spectral projections, and Γ(M) is trivial as in the proof
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of Lemma 5.3.13. Therefore Corollary 5.3.7 implies that

dist(U(N),U(M)) ≤ ε.

However, we note that Γ(T ) is trivial when we view T as a normal element in A. Moreover, as

σ(N) is connected and contains zero, σ(M) is connected and contains σ(T ). Thus Theorem

5.4.1 (where conditions (4) and (5) are easily satisfied) implies that M ∈ S(T ) so

dist(N,S(T )) ≤ ε.

However, as T is a norm limit of nilpotent operators from B ⊆ A, the above inequality

implies N is within 2ε of a nilpotent operator from A. Thus the proof is complete.

Corollary 5.4.13. Let A be a unital, separable C∗-algebra with the three properties listed in

Theorem 5.4.2. A normal operator N ∈ A is a norm limits of nilpotent operators from A if

and only if 0 ∈ σ(N), σ(N) is connected, and λIA −N ∈ A−1
0 for all λ /∈ σ(N).

Proof. The proof of this result follows the proof of Corollary 5.4.12 by using direct sums

instead of non-unitary isometries (as in Lemma 5.4.10), Proposition 5.3.4 instead of Corollary

5.3.7, Theorem 5.4.2 instead of Theorem 5.4.1, and Proposition 5.4.9.

To conclude this dissertation, we will briefly discuss closed similarity orbits of normal

operators in von Neumann algebras. We recall that [70] completely classifies when two normal

operators are approximately unitarily equivalent in von Neumann algebras. Furthermore

Theorem 5.4.2 completely determines when one normal operator is in the closed similarity

orbit of another normal operator in type III factors with separable predual. Thus it is natural

to ask whether a generalization of Theorem 5.4.2 to type II factors may be obtained.

Unfortunately the existence of a faithful, normal, tracial state on type II1 factors inhibits

when a normal operator can be in the closed similarity orbit of another normal operator.

Indeed suppose M is a type II1 factor and let τ be the faithful, normal, tracial state on M.

If N,M ∈M are such that N ∈ S(M), it is trivial to verify that τ(p(N)) = τ(p(M)) for all
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polynomials p in one variable. In particular if N,M ∈ M are self-adjoint and N ∈ S(M)

we obtain that τ(f(N)) = τ(f(M)) for all continuous functions on σ(N) ∪ σ(N) and, as τ

is faithful and normal, this implies that N and M must have the same spectral distribution.

Therefore, if N,M ∈ M are self-adjoint operators, σ(M) = [0, 1
2
], and σ(N) = [0, 1], then,

unlike in B(H), N /∈ S(M). Combining the above arguments and [70, Theorem 1.3] we have

the following result.

Proposition 5.4.14. Let M be a type II1 factor. If N,M ∈ M are self-adjoint operators

and N ∈ S(M), then N ∼au M .
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[3] C. Apostol, C. Foiaş, and C. Pearcy, That Quasinilpotent Operators are Norm-Limits of Nilpotent

Operators Revisited, Proc. Amer. Math. Soc. 73 (1979), no. 1, 61-64.
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