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ABSTRACT OF THE DISSERTATION

Approximations in Operator Theory

and Free Probability
by

Paul Daniel Skoufranis
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2014
Professor Dimitri Y. Shlyakhtenko, Chair

We will investigate several related problems in Operator Theory and Free Probability. The
notion of an exact C*-algebra is modified to reduced free products where it is shown, by
examining another exact sequence of Toeplitz-Pimsner Algebras, that every C*-algebra is
freely exact. This enables a discussion of strongly convergent random variables where we
show that strong convergence is preserved under reduced free products. We will also an-
alyze the distributions of freely independent random variables where it is shown that the
distribution of a non-trivial polynomial in freely independent semicircular variables is atom-
less and has an algebraic Cauchy transform. These results are obtained by considering an
analogue of the Strong Atiyah Conjecture for discrete groups and by considering algebraic
formal power series in non-commuting variables respectively. More information about the
distributions of operators will be obtained by examining when normal operators are limits
of nilpotent operators in various C*-algebras including von Neumann algebras and unital,
simple, purely infinite C*-algebras. The main techniques used to examine when a normal
operator is a limit of nilpotent operators come from known matrix algebra results along with
the projection structures of said algebras. Finally, using specific information about norm
convergence of nilpotent operators, we will examine the closed unitary and similarity orbits

of normal operators in von Neumann algebras and unital, simple, purely infinite C*-algebras.
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CHAPTER 1

Introduction and Background

In this introduction, a brief outline of background material essential to the comprehension
of the mathematics contained in this dissertation will be provided. This introduction is not
meant to be fully comprehensive so we advise the interested reader to consult alternative

material as necessary.

1.1 Classical Probability

The main focus of classical probability theory is the study and manipulation of random

variables.

Definition 1.1.1. A measure space is a pair (X,(2) where X is a set, {2 is a o-algebra of
subsets of X’ (that is, £ consists of subsets of X including the empty set () and X’ such that

Q2 is closed under countable unions and complementation).

Definition 1.1.2. A probability space is a triple (X, €, u) where (X, ) is a measure space

and p : Q — [0, 1] is a probability measure on €.

Definition 1.1.3. Given a probability space (X, ) and a measure space (X', ), a
random-variable X on (X, Q,u) to (X7,€) is a measurable function X : X — X’ (that
is, if S € O/, then X71(S):={te X | X(t) € S} € Q).

Given a real-valued random variable X, we can define a new probability measure px on

QY such that
px(S) = p({t € X | X(t) € S})



for all S € Q).

Definition 1.1.4. Let X be a real-valued random variable. The measure px described above

is called the measure associated to the random variable X or the probability distribution of

X.

Definition 1.1.5. In this setting, for a subset S of €)', we define the probability that X is
in S by
Prob(X € S) := ux(9).

In particular, for an subset S C €V,

Prob(X € §) / Ldpx (1),

Definition 1.1.6. Given a measureable function f on (X’,;€), we defined the expected

value of f(X) to be the quantity

E(F(X)) = | f(®)dnx(t)

The map E taking a measurable function f on (X’,€)) to its expected value is called the

expectation map.

For the most part, we will restrict our attention to random variables X such that X =
X' =R and 2 and Q' are the Borel subset of R. We will further assume that px is compactly
supported (that is, there exists a,b € R such that px((—oc0,a)) = 0 and px((b,o0)) = 0).
This restriction implies the polynomial functions are ux-integrable and thus allow us to

make the following definition.

Definition 1.1.7. Let X be a real-valued random variable on R with associated measure

px. For n € NU{0}, the n'® moment of X, denoted mX, is defined by

mX ::/t"d,ux(t).
R



Notice, by definitions, that m§ = 1 and E(X) = ms* (which is also called the expectation

of X). Another important quantity in classical probability theory is the following.

Definition 1.1.8. The variance of X, denoted Var(X), is defined to be
Var(X) :=my — (mf{)Q

The main reason we restricted our attention to random variables X with compact support

X

is that the moment sequence (mn )n>1

completely characterizes X. Indeed, since pux is
compactly supported, the polynomial functions are dense in the space of continuous functions

on the support of pux and completely characterize px as a measure on R (that is, if YV is

X

n)n21 "

another random variable such that (m .

= (m )n21 then py = py). Thus, instead of

considering the measure associated with a random variable, we can consider the sequence of

X

real numbers (mn )nZI'

One important way of viewing the moments is via the following definition.

Definition 1.1.9. Let pu be a compactly supported probability measure on R. The Cauchy
transform of y, denoted G, is the function defined on {z € C | Im(z) > 0} by

Go(z) = /R L due).

z—1

Remarks 1.1.10. Given a real-valued random variable X, notice that

Gux(2) = Jg ﬁ dpx(t)
= fR %é dux (t)
= fR ZnZO zfl% d'uX<t>

X
- 1 U
- z + anl zn"rl *

Note that the above computation only makes sense analytically if we have E‘ < 1 for all

t in the support of px. Alternatively we can define G, as a formal power series via the



expression

In particular, we see that

1 1 .
> G (‘> =1+ myz

n>1
in which case G, completely encapsulates all of the moments and thus the random variable

X.

The main focus of classical probability theory is the study of groups of random variables

with a specific property.

Definition 1.1.11. Let X := (X;,...,X,) : R — R? be a random variable defined by
X(t) = (Xa(t),..., Xa(t))

for all t € R where X7,..., X, : R — R are random variables (in this setting, px is called

the joint distribution of X7, ..., X,). We say that Xi,..., X, are independent if
d
Prob(X € [ay, bi] X [ag, ba] X -+ X [ag, ba]) = [ [ Prob(X; € [a;,b;))
j=1
for every [ay, bi], [ag,bo], .. ., [aq, ba] C R.

Remarks 1.1.12. It is elementary to see that if X,..., X; are independent random vari-

ables, then the joint distribution satisfies

Hx = Hxy X Xy X oo X flxy

that is, pux must be the product measure of ux,,..., ux,).
H Xy X4

As polynomials in one variable determined the probability distribution of a single random
variable, polynomials in multiple variables determine the probability distribution of a random

variable X : R — R¢



Definition 1.1.13. Let X := (X;,..., Xy) : R — R be a random variable defined by
X(t) = (Xa(t), .-, Xa(t))

forall t € R where X;,..., X;: R — R are random variables. For a polynomial in d-variables

p(z1,...,x4), we defined the expected value of p(X7,..., Xy) to be
E(p(Xy,...,X,)) = /de(tl, coota)dux (ty, . ta).
For (1, ...,0y € NU{0}, the (¢1,0s,...,¢;5)-moment of X, ..., X, is defined to be
mp et = B(XP X X,

.....

Remarks 1.1.14. In the case that X, ..., X, are independent, we see that

mptttt = [ttt dux (ty, . ta)
= Jaati' ot dux, () dpa(ta) -+ - dpa(ta)
d X,
= Hj:lmzjj'

Thus, in the case of independent random variables, the moments of the joint probability

distribution are easily obtained from the moments of the individual distributions.

One distribution that plays an essential role in classical probability theory and indepen-

dent random variables is the following.

Definition 1.1.15. The normalized Gaussian distribution is the measure pga.s on R defined
by
1 [b 2
UGaus([@, b]) = 2—/ e 7 dx

™

for all [a,b] C R.

The following theorem is one of the central theorems in classical probability theory.



Theorem 1.1.16 (Central Limit Theorem). Let X, Xo, ... be independent, identically dis-
tributed random wvariables (that is, X; are all independent and have the same probability

distributions) with E(X;) = 0 and Var(X;) =1 for all j € N. Then, for all [a,b] C R,

Jim Prob (% jzlxj e la, b]) — ([, ).

One idea related to the above theory is the question, “If X; and X, are independent
random variables, what is the distribution of X; + X3,7” Examining the above, we see for

each n € N that

E((X) + X,)") = / / (b1 + )" dyu, (t2)dp, (1) = / " d(pix, * pix,)

where gy, * f1x, is the convolution measure of iy, and px, (which may be uniquely defined

via the above formula).

1.2 C*-Algebras

The notion of a C*-algebra is an essential concept in the study of Operator Theory and
Operator Algebras. For a complete introduction to C*-algebras, we refer the reader to [21].

Before discussing C*-algebras, we begin with some basic definitions.

Definition 1.2.1. Let V be a vector space over the complex numbers. A norm on V is a

function || - || : V' — [0, 00) such that
1. |lv|| = 0 if and only if v = 0,
2. [[Av]] = |A]||v|| whenever v € V and A € C,
3. Jv 4+ w|| < ||lv|| + ||w] for all v,w € V.

A normed linear space is a pair (V, || - ||) where V' is a vector space over the complex numbers

and || - || is @ norm on V.



Remarks 1.2.2. Even though a normed linear space is a pair (V.|| - ||), we will often say
that V is a normed linear space meaning that V' comes equipped with a fixed canonical

norm.

Definition 1.2.3. A normed linear space X is said to be complete if whenever (z,),>1 is a
sequence of elements in X with the property that for every ¢ > 0 there exists an N € N such
that

|xn — zm|| < €
for all n,m > N (such a sequence is said to be Cauchy), then there exists an z € X such
that for every € > 0 there exists an N € N such that

|lx — x| <e€

for all n > N (in which case we write * = lim, o x,). That is, a norm linear space is
complete if every Cauchy sequence converges. A complete normed linear space is called a

Banach space.

Definition 1.2.4. A Banach algebra is a Banach space 2l equipped with an algebra structure

over the complex numbers such that

IAB| < [[All | B]]

for all A, B € 2. That is, a Banach algebra is a normed algebra over the complex numbers

that is complete and whose norm is submultiplicative.

There is significant theory dedicated to Banach algebras that applies to C*-algebras.
For the purposes of this dissertation, we will focus only on said theory in the context of

C*-algebras. In order to define a C*-algebra, we will need the following.

Definition 1.2.5. Let A be an algebra over the complex numbers. An involution on A is a

function * : A — A such that



1. (A*)* = Afor all A€ A (i.e. *is idempotent),
2. (A+B)*= A"+ B*forall A,B € A (i.e. *is additive),

3. (M) = A* for all A€ Aand A € C (i.e. combining with (2),  is conjugate linear),

and
4. (AB)* = B*A* for all A, B € A (i.e. * is antimultiplicative).

Definition 1.2.6. A C*-algebra is a Banach algebra 2l together with an involution * : 2 — 2
such that
1A A = || A

for all A € 2. The above equation is called the C*-equation or the C*-identity.
Remarks 1.2.7. Given a *-algebra, there is at most one C*-norm on said algebra.

Example 1.2.8. The complex numbers C is a C*-algebra when equipped with its usual

algebra structure, the absolute value as its norm, and complex conjugation as its involution.

Example 1.2.9. Let X be a compact Hausdorff space. The continuous functions on X,
denoted C'(X), is a C*-algebra when equipped with the algebra structure given by pointwise

addition and multiplication, with

[/l = sup{lf(2)| [ = € X}

as its norm, and pointwise complex conjugation as its involution.

Example 1.2.10. Let M,,(C) denote the set of n by n matrices with entries in the complex
numbers. Then M, (C) is a C*-algebra when equipped with matrix addition and matrix
multiplication, with the operator norm (see Remarks 1.2.16) as its norm, and the conjugate

transpose as its involution.

To fully understand the above example and construct more examples, we consider the

following.



Definition 1.2.11. Let V be a vector space over the complex numbers. An inner product

on V is a function (-,-)y : V x V — C such that
1. (v,v)y >0foralveV,
2. forv eV, (v,v)y =0 implies v = 0,
3. (W +w,x)yy = Mv,z)y + (w,x)y for all v,w,z € V and A € C, and
4. {x, W+ w)y = Ma,v)y + (z,w)y for all v,w,z € V and \ € C.
An inner product space is a pair (V,(-,-)y) where V is a vector space over the complex

numbers and (-, - )y is an inner product on V.

Remarks 1.2.12. Even though an inner product space is a pair (V, (-, -)y), we will often
say that V' is an inner product space meaning that V' comes equipped with a fixed canonical

inner product.

Remarks 1.2.13. If V is an inner product space, it is easy to see that the function || - || :

V — [0, 00) defined by
[o]] = v/ {v,v)
is a norm on V.

Definition 1.2.14. A Hilbert space H is an inner product space that is complete with

respect to the norm defined in Remarks 1.2.13.

Definition 1.2.15. Let H be a Hilbert space. A linear map T : H — H is said to be
bounded if
sup{||T¢[| | € € H, [|€]| < 1} < oo.

We will denote the set of bounded linear maps on a Hilbert space H by B(H).

Remarks 1.2.16. Given a Hilbert space H, there is a canonical norm on B(H), known as

the operator norm, defined by

17|} := sup{[|T¢[| | € € H, [I€]] < 1}



for all T € B(#H). It is possible to show that B(H) is complete with respect to the operator
norm and thus a Banach space. Moreover, it is not difficult to show that if 7S € B(H)
then

ITs| < Il Is]

and thus B(#) is a Banach algebra.

Given an element T' € B(H), it is possible to find a (unique) element T € B(H), called
the adjoint of T', such that

<T*€7 77)7—[ = <€7 T77>’H

for all £,m € H. The map that takes an operator 7" to the adjoint of 7" is an involution on
B(H). In fact, B(H) is then a C*-algebra when equipped with its Banach algebra structure

and the adjoint as its involution.

Remarks 1.2.17. It is not difficult to see that if 2 is a norm closed *-subalgebra of B(H),
then 2( is a C*-algebra. In fact, every C*-algebra can be represented this way (see Theorem

1.2.34).

Example 1.2.18. Let H be a Hilbert space and let R denote the set of compact operators
on H (that is, K is the closure of the finite rank operators on H). The Calkin algebra,
denoted Q(H), is the quotient algebra B(H)/R. The Calkin algebra can be shown to be a

C*-algebra.

There has been significant study of elements of a C*-algebra. To discuss some of this

theory, we consider the following definitions.

Definition 1.2.19. Let 2 be a unital C*-algebra (that is, there exists an element Iy € 2
known as the identity of 2 such that Aly = A = IyA for all A € 2). An element A € 2 is

said to be invertible if there exists an element B € 2 such that AB = BA = Iy.

Remarks 1.2.20. Given a unital C*-algebra 2(, we will denote the set of invertible elements

by 271 It is not difficult to see that A~! contains Iy and is a group under multiplication.

10



Moreover, it is possible to show that 2! is an open subset of 2. This implies the connected

component of the identity of 27!, denoted 25", is an open subgroup of A~! containing Iy.

Remarks 1.2.21. Given a non-unital C*-algebra 2, there is a canonical way to construct a

C*-algebra évl, called the unitization of 2, such that 2 is a maximal ideal in 2.

Definition 1.2.22. Let 2 be a unital C*-algebra and let A € 2. The spectrum of A, denoted
o(A), is the set
o(A):={ e C | My—A¢ A}

For a non-unital C*-algebra 2 and an element A € 2, we define the spectrum of A, denoted

o(A), to be the spectrum of A when we view A as an element of the unitization A of 2.

Remarks 1.2.23. For an element A of a C*-algebra 2, o(A) is always a compact subset of
C. Moreover, given two C*-algebras 2l and B with A C B, if A € 2l C B then the spectrum

of A viewed as an element of 2 is the same as the spectrum of A viewed as an element of B.

Remarks 1.2.24. Let ¢ : B(H) — Q(#) be the canonical quotient map from B(H) onto

the Calkin algebra. For an operator T € B(#), the essential spectrum of T', denoted o.(T),
is 0o(T) := o(q(T)).

With the above definitions in hand, we can now discuss various types of operators of

C*-algebras.

Definition 1.2.25. Let 2 be a C*-algebra. An element T" € 2 is said to be:

1. normal if T*T =TT*.

2. self-adjoint if T* =T.

3. positive if T" is normal and o(7") C [0, c0).
4. a projection if T? =T* =T.

5. a unitary if 2 is unital and 77T = TT"* = Iy.

11



The set of normal elements of 2 will be denoted Nor(2(), the set of self-adjoint elements of
20 will be denote 2As,, the set of positive elements of 2 will be denoted 2(,, and the set of

unitary elements of 2 will be denoted U(2(). We will write A > 0 whenever A € 2.

Remarks 1.2.26. It is not difficulty to show that 2, C A, C Nor(2(), that every projection
in A is positive, and U (2A) C Nor(2).

It turns out the structure theory of normal operators inside a C*-algebra is very nice. To

understand such structure, consider the following.

Definition 1.2.27. Let 2 and B be C*-algebras. An algebra homomorphism 7 : 2 — B is
said to be a *~homomorphism if 7(A*) = w(A)* for all A € 2. In the case that B = B(H),

a *~homomorphism is also called a representation.

Remarks 1.2.28. It is possible to show that any *-homomorphism between C*-algebras is

a contractive map.

Definition 1.2.29. Two C*-algebras 21 and 8 are said to be isomorphic if there exists a

bijective *-homomorphism 7 : 2l — B.

The structure theory of normal operators in C*-algebras is now apparent.

Theorem 1.2.30 (The Continuous Functional Calculus for Normal Operators). Let 2 be a
C*-algebra and let N € 2 be a normal operator. Let C*(N) denote the (abelian) C*-subalgebra
of A generated by N and N*. Then C*(N) is isomorphic to C(a(N)).

Remarks 1.2.31. Note that Theorem 1.2.30 implies that if N is a normal operator on a

C*-algebra 2 and f is a continuous function on o(N), then it makes sense to consider f(N).

In order to comprehend and study C*-algebras, it is essential to understand the theory of

the representations of a C*-algebra. The following definitions and theorems allow just that.

Definition 1.2.32. Let 2 be a C*-algebra. A state on 2l is a linear functional ¢ : A — C
such that ||¢|| = 1 and ¢(A) > 0 whenever A € 2.

12



Remarks 1.2.33. If 2 is a unital C*-algebra and ¢ is a state on 2, then ¢(Iy) = 1.

Theorem 1.2.34 (GNS Construction). Let A be a (unital) C*-algebra. For every state ¢
on A there exists a (unital) representation 7, : A — B(H,) for some Hilbert space H, and

a unit vector §, € H, such that

p(A) = (mo(A)ep, S,

for all A € A. The triple (Hy, 7y, &) is called the GNS representation of . In particular,
given any C*-algebra 2 there exists a Hilbert space H and an injective (also called faithful)
representation w: A — B(H) for 2.

In particular, Theorem 1.2.34 allows us to view any C*-algebra as a C*-subalgebra of

B(H) for some Hilbert space H. This allows us various constructions of new C*-algebras.

Definition 1.2.35. Let H; and H, be Hilbert spaces. The tensor product of H; and Hs,
denoted H; ® Hs is the Hilbert space completion of the algebraic tensor product of H; and

Hs, denoted Hy @ Ha, under the inner product (-, )y, en, such that

(&1 @1, & @ Ma)roms = (15 €2) 2, (M1, M2) 1

for all fl (029 7]1,52 & 72 S 7‘[1 © H2~

Remarks 1.2.36. It is possible to show that if 7" € B(#H;) and S € B(Hs) then there exists
a unique element T'® S € B(H; ® Hz) such that

(T®S)(E@n) =TE® Sy

for all £ € H; and n € Hy. Furthermore, it is possible to show that

1T @S| < TS|

13



and

(TS =T"® 5"

Definition 1.2.37. Let 2; and A, be C*-algebras and, for each j € {1,2}, let m; : A; —
B(H;) be a faithful representation of 2;. The minimal (or spacial) tensor product of 2, and
Ay, denoted Ay @pmin Ao (or Ay ®, As) is the C*-completion of the image of 2; ® Ay under
the map

A O/ = B(H1 @ Ho)

defined by
T(A1 ® Ag) = (A1) ® Ta(A2)

for all A; € 2, and As € 2.

Remarks 1.2.38. A priori it appears that the minimal tensor product of two C*-algebras
depends on the representations of those C*-algebras on Hilbert spaces. It is a technically

difficult proof to show that this is not the case.

Another way to construct other C*-algebras is the following which leads to an important

concept in the theory of C*-algebras.

Remarks 1.2.39. Given a Hilbert space H, the set of n by n matrices with entries from
B(#H), denoted M,,(B(#)), has a canonical *-algebra structure. However, it is possible to
show that M,,(B(H)) is isomorphic to B(H®™) as *-algebras (where, given two Hilbert spaces
Hq and Ha, Hq @ Ho is the Hilbert space given by the vector space direct sum of H; and Hs

with the inner product

((&m), (Casm))rmens = (€1, &)my + (M1 M2) 21,

for all &1,& € Hy and 11,12 € Ho, and the direct sum of more that two Hilbert spaces is
defined recursively (where a completion must be taken in the case there are infinitely many

Hilbert spaces)). Hence M, (B(H)) is a C*-algebra. Furthermore, given a C*-algebra 2
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we can view 2 as a C*-subalgebra of B(H) and thus we can view M, () as a *-algebra of
M, (B(H)). It is possible to show that M,,(2() is complete with respect to the norm induced
by M,,(B(H)) and thus a C*-algebra.

Definition 1.2.40. Let 2l and 8 be C*-algebras. A linear map ¢ :  — B is said to be a

completely positive map if for each n € N the map ¢, : M, () = M,,(B) defined by

en([Ais]) = [o(Ai ;)]
for all [A; ;] € M, () is such that
en([Aig]) 20
whenever [4; ;] € M, (2) is such that [4, ;] > 0.

Example 1.2.41. It is not difficult to show that every *~homomorphism between C*-algebras

is completely positive as is every state on a C*-algebra.

For more on completely positive maps, see [51].

1.3 Purely Infinite C*-Algebras
One important concept in C*-algebra theory is the study of the projections of a C*-algebra.
The main tool for comparing projections is the following.

Definition 1.3.1. Let 2 be a C*-algebra and let P;, P, € 2 be projections. We write P, < Py
if PP, = P,P, = P,. We say that P, and P, are Murray-von Neumann equivalent if there

exists an element V' € 2L (called a partial isometry) such that P, = V*V and P, = VV™*.

Example 1.3.2. Two projections P, P, € M,,(C) are Murray-von Neumann equivalent if
and only if rank(P;) = rank(P,).

Example 1.3.3. Two projections Py, P, € B(H) are Murray-von Neumann equivalent if and

only if rank(P;) = rank(P,).
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Remarks 1.3.4. It is not difficult to see that Murray-von Neumann equivalence of projec-

tions is an equivalence relation.

Some important classes of projections are as follows.

Definition 1.3.5. Let 2 be a C*-algebra. A projection P € 2 is said to be infinite if
there exists a projection P; € %A such that P, < P, P, # P, and P and P, are Murray-von

Neumann equivalent. A projection P € 2 is said to be finite if P is not infinite.

Definition 1.3.6. Let 2 be a C*-algebra. A projection P € 2 is said to be properly infinite
if there exists projections Py, P, € 2 such that P, + P, < P and P, P,, and P are all

Murray-von Neumann equivalent.

Example 1.3.7. A projection P € B(H) is infinite if and only if P is properly infinite if
and only if rank(P) is infinite.

Remarks 1.3.8. If 2 is a unital C*-algebra with an infinite projection, then the identity of
2l is infinite. To see this, we notice that if P is an infinite projection in 2, then there exists
a projection P; € 2 such that PP, = PP = P;, P, # P, and P and P, are Murray-von
Neumann equivalent. It is easy to see that P, + (Iy — P) is a projection in A that does not

equal Iy yet is Murray-von Neumann equivalent to Iy. Hence Iy is an infinite projection.

One important class of C*-algebras can be described as follows.

Definition 1.3.9. Let 2 be a C*-algebra. A C*-subalgebra 8 of 2 is said to be hereditary

if whenever A € 2 and B € B are positive operators such that 0 < A < B, then A € L.

Definition 1.3.10. A C*-algebra 2 is said to be simple if the only closed ideals of 2 are
{0} and L.

Definition 1.3.11. Let 2 be a unital, simple C*-algebra. We say that 2l is purely infinite

if every non-zero hereditary C*-subalgebra of 2l has an infinite projection.

Example 1.3.12. For an infinite dimensional Hilbert space H, the Calkin algebra Q(H)

can be shown to be a unital, simple, purely infinite C*-algebra.
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Example 1.3.13. The universal C*-algebra generated by two operator Vi and V5 such that
ViVi =1 =V;Vy and VIV + VLV = [ is called the Cuntz algebra and is denoted Q. It is

possible to show that Oy is a unital, simple, purely infinite C*-algebra.

Remarks 1.3.14. Notice that if 2( is a unital, simple, purely infinite C*-algebra and P € 2
is a non-zero projection, then PP is a hereditary C*-subalgebra of 2l and thus contains an
infinite projection. Since P is the identity element of PIP, Remarks 1.3.8 implies that P is
an infinite projection in PRAP and thus is an infinite projection in 2. Hence every non-zero

projection in a unital, simple, purely infinite C*-algebra is infinite.

In fact, the projection structure of unital, simple, purely infinite C*-algebras is even
more elaborate than the above remarks describes. For proofs of the following theorems, see

21, Chapter V].

Theorem 1.3.15. If 2 is a simple C*-algebra and P is an infinite projection in A, then for
every n € N there exists projections Py, ..., P, € 2 such that P,..., P,, P are all Murray-
von Neumann equivalent and Z;.lzl P; < P. Hence every infinite projection in A is properly

infinite.

Theorem 1.3.16. Let A be a simple C*-algebra and let P, P, € A be projections. If Py is

infinite then Py is Murray-von Neumann equivalent to a subprojection of P;.

Theorem 1.3.17. FEvery unital, simple, purely infinite C*-algebra A has real rank zero. That
18, the set of self-adjoint elements of A with a finite number of points in their spectrum are

dense in Ag,.

Theorem 1.3.17 is nice as it allows self-adjoint operators in a unital, simple, purely infinite
C*-algebra to be approximated by self-adjoint elements with a finite number of points in their
spectrum (which is nice as the Continuous Functional Calculus implies some interesting

results). The same concept can be discussed for normal operators.

Definition 1.3.18. Let 2 be a unital C*-algebra. We say that 2l has the finite normal

property (property (FN)) if every normal operator in 2{ is the limit of normal operators from
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2 with finite spectrum. We say that 2 has the weak finite normal property (property weak
(FN)) if every normal operator N € 2 such that Ay — N € 2" for all A ¢ o(N) is the limit

of normal operators from 2 with finite spectrum.

Theorem 1.3.19 ([40, Theorem 4.4]). Every unital, simple, purely infinite C*-algebra has
property weak (FN).

Remarks 1.3.20. Given a unital C*-algebra 2, there are two abelian groups Ky(2A) and
K;(20) that encapsulate information about the projection structure and unitary operator
structure of 2 respectively. For a unital, simple, purely infinite C*-algebra 2, Ky(2l) and

K;(2() are very nice. For more information, see [16].

1.4 Von Neumann Algebras
The class of von Neumann algebras plays an important role in the theory of C*-algebras due
to the additional properties held by said algebras. We begin the definitions of said algebras.

Definition 1.4.1. Let H be a Hilbert space. The weak operator topology on B(H), ab-
breviated WOT, is the topology on B(H) where a net (T))aea converges in the WOT to an
operator 1" € B(H) if and only if

Em(ThE ma = (T, n)u

for all £&,m € H.

Definition 1.4.2. A C*-subalgebra 9t of B(H) is said to be a von Neumann algebra if I
is closed in the weak operator topology; that is, if (£)), is a net of operators from 90 that

converge in the weak operator topology to an operator T € B(#), then T' € 9.
Example 1.4.3. It is clear that B(#) is a von Neumann algebra for every Hilbert space H.

Example 1.4.4. Let (X, ) be a measure space. It is possible to show that L..(X, u), the

essentially bounded functions on (X, i), is a von Neumann subalgebra of B(Lo(X, 1)) via
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the representation

(Myg)(x) = f(z)g()
for all f € Loo(X, ) and g € Lo(X, p).

Example 1.4.5. Let G be a group (which we view as equipped with the discrete topology)
and let (5(G) denote the Hilbert space with {0,4}sec as an orthonormal basis. For each

h € G, define A(h) € B(#H) to be the operator defined by

A(h)3g = Ong

for all ¢ € G. The C*-algebra generated by {\(h) | h € G} is called the reduced group
C*-algebra of G and is denoted CY  (G). The weak operator topology closure of C¥ ,(G) is

then a von Neumann algebra called the group von Neumann algebra of GG and is denoted

L(G).

Example 1.4.6. Let 9t C B(#H) and 91 C B(K) be von Neumann algebras. The tensor
product of Mt and N, denoted MRMN, is the von Neumann subalgebra of B(H ® K) obtained
by taking the weak operator topology closure of 9 @i, N.

One important class of von Neumann algebras are described below.
Definition 1.4.7. Let 9t be a von Neumann subalgebra of B(#). The commutant of 9t in
B(H), denoted M’ is the set
M :={T € B(H) | TA= AT for all A € M}.
Definition 1.4.8. A von Neumann subalgebra 9t of B(#) is said to be a factor if MNM’ =
Cly.

Remarks 1.4.9. Factors are an important class of von Neumann algebras as every von
Neumann algebra can be written as a direct integral of factors. For a more detailed exposition

on this, see [35].
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It turns out that von Neumann algebras have a plethora of projection operators and the
structure of said projections aids in classifying von Neumann algebras. In particular, there
are three main types of von Neumann algebras cleverly called type I, type II, and type III
von Neumann algebras. Type I von Neumann algebras can be further subdivided type I,
von Neumann algebras (where n is a cardinal number) with a type I,, von Neumann algebra
being called finite if n is a natural number. Type II von Neumann algebras can be further
subdivided into type II; von Neumann algebras (also called finite type II von Neumann

algebras) and type Il,, von Neumann algebras.

It is possible to show that every von Neumann algebra is the direct sum of type I,,, type
ITy, type Il, and type III von Neumann algebras. Furthermore, each von Neumann algebra

of a fixed type is the direct integral of factors of the same type.

Finite von Neumann algebras (which correspond to the von Neumann algebras described
above where the identity projection is finite) are particular interesting because of the follow-

ing objects.

Definition 1.4.10. Let 2 be a C*-algebra. A state 7 on 2l is said to be tracial if

T(AB) = 1(BA)

for all A, B € 2.

Example 1.4.11. Let G be a discrete group. Using the notation of Example 1.4.5, we define
7¢ : L(G) — C by
7a(T) = (Tde, 0e) 1)

for all T € L(G). It is not difficult to verify that 74 is a tracial state on L(G) (in fact, 7¢ is
faithful).

Remarks 1.4.12. It is possible to show that every finite von Neumann algebra (that is,
one that is a sum of finite type I and finite type II von Neumann algebras) has a faithful

tracial state 7 (that is, the GNS representation of 7 is injective). Finite type I von Neumann
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algebras look like matrices of continuous functions whereas type II; von Neumann algebras
are more mysterious. In particular, type II; factors behave like continuous analogues of
matrix algebras and many experts believe type II; factors are the correct setting to study

linear algebra.

Remarks 1.4.13. The projection structure of factors is very nice. Every type I, factor is
isomorphic to M,,(C) where we understand the projection structure. Every type I, factor
is isomorphic to B(H) where we also understand the projection structure. If 9t is a type
IIT factor, then every non-zero projection in 9 is properly infinite and any two non-zero
projections are Murray-von Neumann equivalent. If 91 is a type II; factor, then there is
a unique faithful tracial state 7 on 91 and two projections P, P, € 9t are Murray-von
Neumann equivalent if and only if 7(P;) = 7(P). If M is a type 11, factor, there is a type
IT; factor 91 such that 9 = NRB(H) for some infinite dimensional Hilbert space H and the

projection structure of 9t can be induced from this isomorphism.

1.5 Free Probability

In [77], Voiculescu introduce the notion of free probability with the goal of solving the

following open question.

Question 1.5.1. For eachn € N, letF,, be the free group onn generators. Forn,m € N\{1}
does L(F,) ~ L(F,,) imply n = m?

In doing so, Voiculescu created a non-commutative probability theory now known as free
probability. The following serves as motivation for how to take classical probability theory

and derive a non-commutative probability theory.

Remarks 1.5.2. Let Xi,..., Xy be independent real-valued random variables on R with
compact support. Then for each j € {1,...,d} it is then possible to view each X, as an

element of B(Ly(px,)) by the formula



forallt € R and f € Lo(pux;). If § € Lo(px;) is the constant function one (that is ;(t) = 1

for all t € R), we easily see that
(X765, 12w = [ £ dis(t) = ECX)
for all n € N. Therefore, if we consider the unit vector
fo=86®  ®& € La(px,) ® - @ La(px,)

and the operators

Ty, .o, Ty € B(La(px,)) @+ @ B(La(pix,))

defined by
T = Tip(uxy) @ @ gy, ) @ XG O Ip(uy, ) @ @ ILy(uy,)

(where X appears as the j™ element in the tensor) for all j € {1,...,d}, then it is easy to
see for each ¢q,...,0; € NU{0} that

TZ1”_de> , > :le ----- Xd‘
(1 Ti) 0.6 ey~

Thus the operators T, ..., Ty completely describe the joint distribution of X,..., Xy

Note that our operators are in

B(La(pix,)) @ - - @ B(La(px,)) € B(La(px,) @ - - © Lo(px,)) = B(La(p))

where @ = px, x---Xpx,. Thus, saying that X, ..., X, are independent random variables is
equivalent to saying that when we view X7,..., X as operators on a Hilbert space with the
correct joint distribution, the Hilbert space decomposes as a tensor product of smaller Hilbert

spaces where X1,..., Xy act on different tensor products corresponding to their individual
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moments.

Notice that the operators 11, ..., Ty in the above remarks commute (that is, 7,7}, = 13,1}
for all j,k € {1,...,d}). Thus the notion of independence in classical probability theory can
be viewed as a commutativity property. As, in algebra, tensor products correspond to com-
mutativity and free products correspond to non-commutativity, we desire a way to represent

our operators as free products of operators. This leads us to the following definitions.

Definition 1.5.3. For j € {1,...,d}, let H; be a Hilbert space, let ; € H; be a unit vector,
and let H? = H; © C¢;. The free product of Hy,...,Hy with respect to the unit vectors
&1, ..., &g is the Hilbert space

*?:1(Hj’§j) =C& @ @ H?l ® H;)z Q- ® H?n
n>1,{j}r_, C{1,....d},
jk:?éjk—‘rl fOl"kZG{l,...,n—]_}

(the unit vector & is called the distinguished unit vector). In the case d = 2, we will write

(H1, &) * (Ha, &) instead of +3_, (H;,§;).

Remarks 1.5.4. For *?:1(7-[3-, &;), the distinguished vector & can be viewed as an amalga-

mation of all of the {;’s at once.

Next we desire to determine how operators should act on *?:1(7-[]', &).

Construction 1.5.5. For j € {1,...,d} let A; be a unital algebra, let 7; : A; — B(H;)
be a faithful, unital representation, and let &; € H; be a unit vector (often one can take
A; C B(H;) and when A; are *-algebras, we take m; to be *-representations). There is a
canonical action of each A; on *9_,(H;,&;). To define this action let #(j) be the smallest
Hilbert subspace of *?:l(Hj,fj) containing the distinguished vector along with all direct

summands 7—[?1 Q- ® H?n of arbitrary length with j; = j. Then there exists a canonical
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isomorphism Uj : H; @ H(j) — *}_,(H;,&;) defined by

[ cg @6 C&
U H) @ C& = HY
CHOM) QH), ®--- @MY, H) @H), Q- @HY
HIQH) OH), @ @HY HIQH) OH), @ @HY,

where U; is the canonical isomorphism in each of the four parts listed. We define the action

of Aj on #_,(H;,&;) by AC := U(m;(A) @ Id)U*¢ for all A € A; and for all ¢ € *_, (H;,&;).

Definition 1.5.6. With the above notation and construction, the algebra generated by
Ay, ..., Agon B (% ( S (Hy, SJ)) is called the reduced free product of A, ..., A; with respect
to m,...,mq and is denoted *d: (A;,m;,€). In the case Ay,..., Ay are C*-algebras, we
will also use *7_; (A;, m;,&;) to denote the C*-subalgebra of B (x’_,(H;,&;)) generated by
Aq, . Ay

Remarks 1.5.7. Given real-valued random variables Xi,..., Xy on R, if for each j €
{1,...,d} we view X; € B(La(px;)), let A; be the subalgebra of B(Ly(ux,)) generated
by X;, and consider *%_,(A;,7;,&;) where 7; is the inclusion representation of &; is the
constant function one in Ly(ux;) (see Remarks 1.5.2), it is possible to see that elements of

#5_1 (Aj, 5, &;) satisfy an interesting relation with respect to the state

gp(T) <T€O7 50) 1(L2(px;).85)

Indeed this leads us to the following definitions.

Definition 1.5.8. A non-commutative probability spaces is a pair (A, ¢) where A is a unital

algebra and ¢ : A — C is a linear functional such that ¢(14) = 1.

Remarks 1.5.9. In free probability, the linear function ¢ plays the role of the expectation

map E does in classical probability.
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Definition 1.5.10. Let (A, ¢) be a non-commutative probability space. Unital subalgebras

Ai, ..., Ay of A are said to be free with respect to ¢ if

whenever n € N, j1,...,7, € {1,...,d} are such that jy # jry1 for all k € {1,...,n — 1},
and A, € A, for all k € {1,...,n} are such that ¢(A;) = 0.

Similarly, operators Ay, ..., Aq € A are said to be free with respect to ¢ if the algebras

generated by each individual Ay are free with respect to .

Example 1.5.11. Let X,..., X, be real-valued random variables on R. Consider the non-
commutative probability space (*?:l(Aj, 7, &), gp) as in Remarks 1.5.7. Then Xi,..., X,

are free with respect to ¢.

Remarks 1.5.12. The advantage of considering a non-commutative probability space (A, ¢)
instead of a probability space (X, €, u) is the fact that elements of A need not commute
which leads to a more interesting structure. Indeed, due to the non-commutativity of (A, ¢),

the correct analogue for the moments is more complicated.

Definition 1.5.13. Let Aq,..., A; be elements of a non-commutative probability space
(A, ). For each n € N and ji,...,j, € {1,...,d}, the (ji,...,j,)-moment of A, ... Ayis
Ay, A
m(]llyyjnd) = (p(AJI P A]n)
Remarks 1.5.14. In general, due to the non-commutative structures, given freely indepen-
dent elements A;,..., Ay € (A, ) the (ji,...,jn)-moment of Aj,..., Ay does not simply
depend on how many ji’s are equal to ¢ for each ¢ € {1,...,d} as does for independent
random variables (see Remarks 1.1.14). Indeed, if X; and X, are freely independent with
respect to ¢, it need not be the case that ¢(X;X2X;Xs) and ¢(X;X;X2X5) agree. For
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example, suppose p(X;) =0 = p(X3) and p(X?) =1 = p(X3). Then
QO(XlXQXlXQ) = 0

by the freeness of X; and X5. However, again by the freeness of X; and X5,

0 = (X7 —9(X7)) (XZ -9 (X7)))
= P(X1X1XX5) = 20(X7)(X3) + p(XP)p(X3)
50 (X1 X1 X0 X0) = p(X7)p(X3) = 1 # p(X1Xo X1 Xs).

Remarks 1.5.15. Given random variables Xi,..., X, that are freely independent with
respect to ¢, the trick of considering X7 — ¢(X7') along with a recursive argument may be
used to show that the joint moments of X,..., Xy depend only on the individual moments

of each Xj.

As the Gaussian distribution distribution (see Definition 1.1.15) plays a central role in

classical probability theory, the following distribution lies at the centre of free probability.

Definition 1.5.16. The normalized semicircular distribution centred at zero is the measure

semi ON [—2, 2] defined by
1 b
Msemi([a;b]) - 2_/ \/4—I2d27
T a

for all [a,b] C [-2,2].

Remarks 1.5.17. It is a simple computation to show that the n'*-moment of jisem; is zero

if n is odd and otherwise, if n = 2k, the 2k'""-moment of piem; is the & Catalan number
e = g (%)

The following theorem is then the free analogue of Theorem 1.1.16.
Theorem 1.5.18 (Free Central Limit Theorem). Let X, Xs,... be freely independent,

identically distributed random variables in a non-commutative probability space (A, ) with
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©(X;) =0 and ¢(X]2) =1 for all j € N. Then, for all m € N,

nll_{rologo ((%ZX]> ) - /2tmd/~Lsemi(t)'

Remarks 1.5.19. As in classical probability theory, it is possible to determine the distribu-
tion of X7 + X5 when X; and X, are freely independent random variables. Indeed this was

first done in [78] where the answer is the free additive convolution of px, and py,, denoted

Hx, H Hxs-

1.6 Exact C*-Algebras

The notion of an exact C*-algebra has played a fundamental role in the theory of C*-algebras
and has been well-studied by Kirchberg, Wassermann, and others (see [37] and [83]). Exact
C*-algebras are generally well-behaved and many of the common and interesting examples
of C*-algebras are exact. In addition, the property that a C*-algebra is exact is preserved
under many common operations such as taking subalgebras, taking direct sums, taking
minimal tensor products, and taking reduced free products (for example, see [14] and the
references therein). Over the years many equivalent definitions of an exact C*-algebra have

been developed and the most common are listed in the following theorem.

Theorem 1.6.1 (Due to Kirchberg, Wassermann, and others; see [14] for the proof of the

first three equivalences). Let B be a C*-algebra. Then the following are equivalent:

1. For every Hilbert space H and faithful representation o : B — B(H) there exist nets
(or B = M, (C))a and (¢ : My, (C) — B(H))a of contractive, completely positive

maps such that

lim [lo(B) = ¥a(pa(B))[ = 0

for all B € ‘B.
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2. For every exact sequence of C*-algebras 0 — J NY, /IR (A/F) — 0 the sequence
0= 3 Omin B 2% A Dpin B ZF (A/J) Qi B — 0

18 exact.

3. For any sequence (2,,)n>1 of unital C*-algebras the *-homomorphism

HnZl an o % = (Hn21 an) ®min B
@nZl an (GanZl an) ®min %

defined by

n>1 n>1

15 continuous with respect to the minimal tensor norm on (%) ®B.

4. If A, and A are unital C*-algebras, k € N, {A;}F_; C A, and {A;,}F, C 2, are such

that ||p(As, ..., A)lly = limsup,, o [P(A1ns - - s Aen)lly, for every polynomial p in k

non-commuting variables and their complex conjugates, then for all By, ..., By € 8
k k
i=1 Q[®min% e i=1 mn®min‘B

If one of the above conditions holds then B is said to be an exact C*-algebra.

The proof of the equivalence of the third and fourth conditions is non-standard yet simple

and thus is presented below.

Lemma 1.6.2. For any C*-algebra B and any sequence of unital C*-algebras (2,,),>1 there

exists an injective *-homomorphism

. (HnZ]. 91”) ®min % N HnZl(mn ®min %)
' (Ganzl An) Omin B Dzt (A @min B)

o
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defined by

d ((An)n21 ® B+ (@ Q(n> Qmin ‘B> = (4, ® B)p>1 + @ n @min B

n>1 n>1

for all (Ap)n>1 € Hn21 A,, and B € ‘8.

Proof. Consider the map g : (an1 an) OB — anl(ﬂn ®min B) defined by
7T0(<An)n21 ® B) = (An ® B)nzl'

It is easy to verify that my is well-defined, continuous, and isometric with respect to the

minimal tensor products and thus induces a injective *-homomorphism
T <H Q[n> Omin B — H(an ®min B).
n>1 n>1
Clearly

((@%) =) -

Therefore the *-homomorphism

(Hn21 Q’ln) Omin ‘B = HnZl(mn X min %)

D
(GanZl Qln) ®min B @n21(91n @min *B)

as described in the statement of the lemma exists.

To see ® is injective, suppose 1" € (Hn21 an) Omin B and

) € PRy @i B

n>1
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Let (Ba)a be a C*-bounded approximate identity for 8. For each n € N and A\ € A let

En,)\ = ([QllaIlea"' 7[an70707"'>®B/\ € (@ﬁn> ®min B.

n>1

Define a partial ordering on N x A by (n,\) < (m,\') if and only if n <m and A < X. It is
easy to verify that (£, x)nxa is a C*-bounded approximate identity for (@@1 an) Omin ‘B
and (7(E,x))nxa is a C*-bounded approximate identity for €, 5, (%, @min B). Whence

liny [[7(TF, 5 = T)| = lim | (T)m(E,p) = 7(T)| = 0.

Since 7 is isometric, limyya [|[TE,\» — T'|| = 0 so

T = lim TE,\ € (@ an) Dmin B.

n>1
Thus ker(m) = (@n21 2A,) Rmin B so P is injective. O
Proof that the third and fourth statements of Theorem 1.6.1 are equivalent. Let
r S aene (M) g
= i Sl N o
i=1 @nzl A
be arbitrary. For all ¢ € {1,...,k} there exists A;,, € 2, such that
Ip(A1, ..., Ap)lly = limsup ||p(Aip, - - - 7Ak7n)H91n

n—oo

for every polynomials p in k& non-commutating variables and their complex conjugates (that
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is, choose a lifting of each A;). If B satisfies the fourth statement of Theorem 1.6.1 then

ITI = tmsup, o || S5, Ain © B

= “Zf:l (Ai7n)n21 ® BZ + (®n21 an) Qmin %H

where the last equality follows from Lemma 1.6.2. Thus the fourth statement of Theorem

1.6.1 implies the third statement.

For the other direction, suppose 28 satisfies the third statement in Theorem 1.6.1. Let
2, and 2A be unital C*-algebras, let k € N, let A;,..., Ay € A, and let {A;,,}F, C 2A, be
such that

Ip(Av, ... Ap)lly = limsup ||p(Ar, - -, Akn)

n—o0

Q[’IL

for every non-commutative polynomials p in k-variables and their complex conjugates. We

may assume that 2 = *-alg(Ay, ..., Ax) by properties of the minimal tensor product.

Fix By,..., By € 8. The third equivalence in Theorem 1.6.1 implies that the canonical

inclusion

HnZl an o % _ (HnZI an) ®min %
@nZl an (@nzl an) ®min B

is continuous with respect to the minimal tensor product and extends to an injective inclusion
on the minimal tensor product. By the assumptions on 21, 20 C ([[,5, %)/ (€D, 5 An) via
the identification of A; with (A;,)n>1 + @n21 2,,. Thus

HZ?:l Ai @ B

[S5 (A + (B M) @ B,
= S Aoz © Bt (B2 2e) @i B
| Zhs(Ainnz1 @ Bi + By (2 @i B
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(where the last equality follows from Lemma 1.6.2) so

k

Z Ain ® B;

i=1

= lim sup

n—oo
m@min%

k
Z A; ® B;
i=1

an@min%

as desired. m

1.7 Strong Atiyah Conjecture for Groups

The Strong Atiyah Conjecture for Groups was introduced via a question in [8] where Atiyah
asked whether the analytic Lo-Betti numbers of certain Riemannian G-manifolds were always
rational. We will briefly outline the material pertaining to the Strong Atiyah Conjecture

related to this dissertation (for a more comprehensive treatment, see [44]).

Definition 1.7.1. Let G be a discrete group and let H be a separable Hilbert space with
an orthonormal basis {e, },>1. For a positive operator T' € B({3(G) ® H), we define the von

Neumann trace of 7' to be the element of [0, oo] defined by

tI"L(G)(T) = Z(T(&e & en), 53 X €n>52(g)®7{.

n>1

Definition 1.7.2. Let GG be a discrete group, let H be a finite dimensional Hilbert space,
let Py be a projection in L(G)®@B(H), and let M C l5(G) ® H denote the range of Pp.

We define the von Neumann dimension of M to be
dimL(G)(M) = tl"L(G)(PM) € [0, OO)

Example 1.7.3. If G = {1}, then L(G) = C and try () is the standard trace on £5(G) @H ~
‘H for any Hilbert space H. Thus the von Neumann dimension of a closed subspace is the

complex dimension of the subspace.

Example 1.7.4. Let G = Z. Then we can view L(G) as L (T) acting on Ls(T) as in

Remarks 1.5.2. Therefore, if X C T is a measureable subset, the characteristic function of
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X, denoted xx, is a projection in L. (T) and thus its image defines a closed subspace of

Lo(T). In this case

) () = (xxdes 62) = / xx (@)dm(z) = m(X)

where m(X) is the Lebesgue measure of X. Thus it possible to obtain a closed subspace

with von Neumann dimension to be any number in [0, 1].

With the notion of von Neumann dimension complete, we can begin to examine the

Strong Atiyah Conjecture.

Definition 1.7.5. Let G be a discrete group and let FZN(G) denote the set of all finite
subgroups of G. We denote by WZ the (additive) subgroup of Q generated by the set

of rational numbers + where n = |H| for some element H € FIN(G).

Conjecture 1.7.6 (Strong Atiyah Conjecture). A discrete group G satisfies the strong

Atiyah Conjecture if
1

dimL(G) (ker()\n (A)>> = m

Z

for any matriz A € M, (CG).

Since the only finite subgroup of a free group is the trivial group, the Strong Atiyah

Conjecture for the free groups reduces to the following.

Theorem 1.7.7 (Strong Atiyah Conjecture for Free Groups). If I, is the free group gen-

erated by m € NU {oo} elements, then
dimL(]Fm)(kel"()\n(A))) €7

for any matrix A € M,,(CF,,).

Unfortunately, it is known that Conjecture 1.7.6 is false.
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Example 1.7.8. The lamplighter group L is the group

L= (%%) x 7,

where the semidirect product is taken with respect to the shift automorphism on €, ., Z
sending (gn)n>1 t0 (gn—1)n>1- Let eg € @,,c;, Z2 be the elements whose entries are all zero
except for the entry at zero (which then must be 1) and let S denote the generator of Z in

L. Tt is then easy to see that {eg, S} generates L as a group.

Let M : 05(G) — €5(G) be the operator defined by left multiplication by 1(eS + S +
(egS)~' + S71). Then it is possible to show that the von Neumann dimension of the kernel
of M with respect to the group L is 1 yet every finite subgroup of L has cardinality of the

form 2" so 3 ¢ T < 7y £ For references, see [44, Theorem 10.23].

However, Theorem 1.7.7 is true. For a simple proof, see [44]. Alternatively, Theorem

3.3.1 provides a more general result and thus a complicated proof that Theorem 1.7.7 is true.

1.8 Single Operator Theory on Hilbert Spaces

Single Operator Theory on Hilbert spaces is a large area of functional analysis dedicated to
determining properties and approximations of operators on Hilbert spaces. We will briefly

outline some results in Single Operator Theory.

Definition 1.8.1. Let 2 be a C*-algebra. An element 7' € 2 is said to be nilpotent if
there exists an n € N such that 7" = 0. An element 7" € 2 is said to be quasinilpotent
if o(T) = {0}. We will denote the set of nilpotent elements of 2 by Nil() and the set of

quasinilpotent elements of 2 by QuasiNil(2().

It is not difficult to see that Nil(M,,(C)) = QuasiNil(M,,(C)) and both of these sets
are closed in the operator topology. However, if H is an infinite dimensional Hilbert space,

Nil(B(#H)) # QuasiNil(B(#)) and neither set is closed in the operator topology. In [27,
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Problem 7] Halmos posed the question, “Is every quasinilpotent operator in B(#H) the norm
limit of nilpotent operators?” An affirmative answer to this question was first given in [7], a

subsequent proof was given in [6], and a simpler proof was given in [3].

However Halmos realized that his question was ‘wrong’ in the sense that there are non-
quasinilpotent operators in B(#) that are in the closure of the nilpotent operators (see [28]).
This led to the question, “What is the closure of the set of nilpotent operators in B(H)?”

The answer to this question was first given in [4]:

Theorem 1.8.2 ([4], see [32, Theorem 5.1] for a proof). Let T' € B(H). Then T is a norm
limit of nilpotent operators from B(H) if and only if the following conditions are satisfied:

1. The spectrum of T' is connected and contains zero.
2. The essential spectrum of T' is connected and contains zero.

3. The Fredholm index of NI3;—T is zero for all A € C such that Ay —T s semi-Fredholm.

A significant amount of work on this problem was done by Herrero (see [29], [30], and
[31]). In particular, before [4], Herrero proved the following interesting result that is a specific

case of Theorem 1.8.2.

Theorem 1.8.3 ([29, Theorem 7], also see [32, Proposition 5.6]). Let N € B(H) be a normal

operator. Then the following are equivalent:

1. N is a norm limit of nilpotent operators from B(H).
2. N is a norm limit of quasinilpotent operators from B(H).

3. The spectrum of N is connected and contains zero.

Another interesting proof of Theorem 1.8.3 was given in [26]. In fact, the techniques for one

direction of the proof of Theorem 1.8.3 implies the following.

Lemma 1.8.4. Let A be a C*-algebra and let T € A be a limit of quasinilpotent operators

from A. Then the spectrum of T is connected and contains zero.
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Proof. If T € 2 is a limit of quasinilpotent operators from 2l then zero must be in the spec-
trum of 7" since quasinilpotent operators are not invertible and the set of invertible elements
of 2 is an open set. Furthermore, if the spectrum of 7" is not connected, the spectrum of
T would be contained in the union of two disjoint open sets. By the semicontinuity of the
spectrum, this would imply that any sequence of elements from 2 converging to 7" must
eventually have spectrum contained in both open sets. As the spectrum of a quasinilpotent

operator is a singleton, a contradiction is reached. O

While studying this problem in B(H), a solution to the same question for the Calkin

algebra was developed.

Theorem 1.8.5 ([32, Theorem 5.34]). Let B(H) be the bounded linear operators on a com-
plex, separable Hilbert space H, let 2 be the Calkin algebra, let q : B(H) — 2 be the canonical
quotient map, and let T € B(H). Then q(T) is a norm limit of nilpotent operators from A
if and only if the essential spectrum of T is connected and contains zero and the Fredholm

index of Ny — T is zero for all A such that Az — T is semi-Fredholm.

For an excellent summary of the above work, see [32] and [2].

Definition 1.8.6. Let 2 be a unital C*-algebra and let A € 21. The unitary orbit of A,
denoted U(A), is the set

UA) ={UAU €A | UecUA)}.
The similarity orbit of A, denoted S(A), is the set
S(A) = {VAV e | Veu}).

Remarks 1.8.7. Notice if B € A then B € U(A) if and only if A € U(B) and B € S(A) if
and only if A € S(B). We will denote B € U(A) by A ~, B and we will denote B € S(A)

by A ~ B. Clearly ~, and ~ are equivalence relations.
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Example 1.8.8. Given two normal matrices Ny, Ny € M,,(C), Ny ~,, Ny if and only if N,

and N, have the same eigenvalues (counting multiplicities).

Example 1.8.9. Given two matrices A, B € M,,(C), A ~ B if and only if A and B have

the same Jordan Normal Form.

Example 1.8.10. If Ny, Ny € B(H) are normal operators and H is infinite dimensional, it
is possible that o(Ny) = o(Ny) yet Ny and N, are not unitarily equivalent. The main issue
comes from the fact that it is possible that /N; has eigenvalues whereas Ny has no eigenvalues
and thus N; and N, cannot be unitarily equivalent. Thus, for an arbitrary C*-algebra, we

should consider slightly different objects.

Remarks 1.8.11. We will use 2(A) and S(A) to denote the norm closures in 2 of the
unitary and similarity orbits of A respectively. Note if B € ZTA) then A € m and
B e m If B € ZM we will say that A and B are approximately unitarily equivalent
in 2 and will write A ~,, B. Clearly ~, is an equivalence relation. Furthermore if A is

a normal operator and A ~,, B then B is a normal operator. If B € S(A) then it is not

necessary that A € S(B) and B need not be normal if A is normal. However if B € S(A)

and C' € §(B) then C € S(A).

For B(H) and Q(H), the answer to the question of when two normal operators are

approximately unitarily equivalent is well known (and amazing mathematics).

Theorem 1.8.12 (Weyl-von Neumann-Berg Theorem). Let Ny, Ny € B(H) be normal op-
erators. Then Ny ~gu, No if and only if

1. 0(Ny) = o(N3), and
2. if X € 0(Ny) is an isolated point, dim(ker(Ay — Ny)) = dim(ker(Alz — Ny)).

Theorem 1.8.13 (Brown-Douglas-Fillmore Theorem; see [12]). Let Ny, Ny € Q(H) be nor-

mal operators. Then Ny ~q, Ny if and only if
1. 0.(Ny) = 0.(N3), and
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2. if X & o(Ny) then \XI — Ny and X — Ny are in the same connect component of A1,

Closed similarity orbits are more complicated than closed unitary orbits.

Remarks 1.8.14. It is an easy application of the semicontinuity of the spectrum to show
that if A, B € 2 are such that B € S(A) then 0(A) C o(B) and o(A) intersects every
connected component of ¢(B). Thus 0(A) = o(B) whenever A, B € 2 are approximately

unitarily equivalent.

An almost complete classification (which excludes certain pathelogical examples) of the
closed similarity orbit of an arbitrary bounded linear operator on a complex, infinite dimen-
sional Hilbert space was announced in [5, Theorem 1] and a proof was given in [2, Theorem
9.2]. An easy modification of the proof of [5, Theorem 1] led to an almost complete classifica-
tion of the closed similarity orbit of an arbitrary operator in the Calkin algebra (announced
in [5, Theorem 2] and proved in [2, Theorem 9.3]). The following is a reduction of these

results to normal operators in the Calkin algebra.

Theorem 1.8.15 ([5, Theorem 2], see [2, Theorem 9.3] for a proof). Let N and M be normal
operators in the Calkin algebra. Then N € S(M) if and only if

1. 0.(M) C o.(N),
2. each component of o.(N) intersects o.(M),
3. the Fredholm index of \I — M and NI — N agree for all X ¢ o.(N), and

4. if X € 0.(N) is not isolated in o.(N), the component of X\ in c.(N) contains some

non-isolated point of oo.(M).
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CHAPTER 2

Free Exactness and Strong Convergence

In this chapter, which is based on the author’s work in [73], we will analyze how the second
and fourth equivalences in Theorem 1.6.1 can be adapted to the context of reduced free
products. In Section 2.1 we will modify the second equivalence in Theorem 1.6.1 by replacing
the minimal tensor product with the reduced free product. First we will demonstrate a way
to take the reduced free product of a short exact sequence of C*-algebras against a fixed
C*-algebra. Our main result is that every C*-algebra is ‘freely exact’; that is, taking the
reduced free product of a short exact sequence of C*-algebras against a fixed C*-algebra
preserves exactness. This will be accomplished by embedding these short sequences into
short exact sequences involving Toeplitz-Pimsner algebras (Section 2.2) and restricting back

to our original sequences (Section 2.3).

In Section 2.4 we will analyze how the fourth equivalence of Theorem 1.6.1 can be adapted
to the context of reduced free products. It will be demonstrated that the conclusion of fourth
equivalence of Theorem 1.6.1 holds when the minimal tensor product is replaced with the
reduced free product for any C*-algebra. This will be accomplished by first proving the
result for the C*-algebra generated by a finite number of free creation operators (previously
proven in the appendix of [47] due to Shlyakhtenko), then for exact C*-algebras, and finally

for arbitrary C*-algebras.
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2.1 Construction of Sequence of Free Product C*-Algebras

The purpose of this section is to replace the tensor products with reduced free products in
the second equivalence in Theorem 1.6.1 and examine the result. We begin by describing a
reduced free product analog of taking the tensor product of an exact sequence with a fixed
C*-algebra. Most typical results for the reduced free product of C*-algebras requires the
states used in the construction to have faithful GNS representations and thus hinders the
consideration of quotient maps. The solutions is to go straight to the construction of the

reduced free product of two C*-algebras.

Construction 2.1.1. Let 2; and 2, be unital C*-algebras, let J be an ideal of 2, let
mo /T = B(Hip), m1 : Ay — B(Hiq), and my @ Ay — B(H2) be unital representations
such that m o and 7y are faithful and, if H; = Hio & Hi1 and ¢ : Ay — 2,/J is the
canonical quotient map, m = (m9o0q) G w1 : Ay — B(Hy) is faithful, and let & € Hip
and & € Ho be unit vectors. Consider the reduced free products (201 /3, 71,0, &1) * (™Aa, T2, £2)
and (A1, 71, &) * (™Aa, m2,&). Let (F)a,«a, denote the closed ideal of (g, w1, &) * (Uz, m2, &)
generated by J.

By the construction of the free product of Hilbert spaces, (Hio,&1) * (He,&) can be
viewed canonically as a Hilbert subspace of (H1,&1) * (Ha, &2). Since (U1, 1, &) * (A, 7o, &)
acts on (H1,&1) * (Ha, &2) and (Ay/J, m10,&1) * (Ao, 2, &) acts on (Hi, &) * (Ha, &), by
considering the action of (y, 71, &) * (Ao, M2, &2) on (Hi,&1) * (Ha, &2) C (Ha, &) * (Ha, &2)
it is easily seen that (H1,&1)*(Hz, &) is an invariant subspace of (21, 7y, 1) * (s, 72, £2) and
(201 /3, 71,0, &1) * (Aa, ma, &) is the compression of (Ay, m, &) * (U, 72, &2) to this subspace.

Thus there is a well-defined surjective *-homomorphism

™ (Qllﬂﬁ,fl) * (912,7@,52) — (911/3,7%0751) * (9[2,7%52)

defined by

T(T) = Popyo,60)x(Ho&2) Tl (H1.0.61)#(Has62)
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where P, .¢1)«(Ha,2) 15 the orthogonal projection onto (Hi,&1) * (Ha, &2).

If J € J then it is easily seen that J|p, o¢)x(#ae.) = 0. Therefore the algebraic ideal
generated by J in (1,71, &) * (™Us, o, &) is in the kernel of m and thus (J)e, w2, € ker(m).

Hence we can consider the sequence of C*-algebras

0— <3>Q{1*2{2 —Z> (9(1771751) * (912,7T2,§2) 5 (911/37771,0,§1> * (Ql2,7T2a§2) —0

where ¢ is the inclusion map. Clearly 7 is injective, 7 is surjective, and (J)o .2, C ker(m).
Hence the sequence is exact if and only if ker(r) C (J)a,«a,; that is there is no element
of (Ay,m1,&1) * (Ao, ma, &) \ (F)aysa, that is zero on the copy of (Hig,&1) * (He, &) inside
(1, &) * (M2, &2).

The requirements on 7y o, 71, and 7, are necessary to ensure we are considering objects
related directly to 2;/J, 21, and 2y. The conditions on 7, 7, m2, &, and & are also
designed so the vectors & and & give rise to vector states on our C*-algebras. Moreover
71,0, T, and mp are assumed to be unital so the C*-algebras under consideration are truly
reduced free products of C*-algebras. Finally the consideration of (R, 7,&;) * (2a, 7o, &)

was necessary to ensure the *~homomorphism 7 existed.

Our main goal is to prove the following result.

Theorem 2.1.2. Let A, and Ay be unital C*-algebras, let J be an ideal of Ay, let m o :
20, /3 = B(Hipo), m1 A1 = B(Hia), and 7 : Ay — B(Hz) be unital representations such
that o and my are faithful and, if Hi == Hio ® Hia and q = Ay — A, /T is the canonical
quotient map, m = (mpoq) ®m Ay — B(Hq) is faithful, and let & € Hip and & € Ho

be unit vectors. Under these assumptions, the sequence of C*-algebras

0— <3>9{1*m2 —Z> (9(1,771751) * (Ql2,7T2,f2) 5 (Qh/ﬁﬂﬁ,o,gl) * (Ql277r27€2) — 0

18 exact.

The proof of Theorem 2.1.2 will be completed at the end of Section 2.3.
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2.2 An Exact Sequence of Toeplitz-Pimsner Algebras

In this section we will examine a short exact sequence of C*-algebras involving Toeplitz-

Pimsner algebras.

Construction 2.2.1. Extending the notation of Construction 2.1.1, let Hy := H, and let
T =M : Ao — B(Hayp). For all i € {1,2} and n € N let

Lin i =Hi @ @ H;,

where {ix}7_, € {1,2}, iy =i, and i) # i1 for k € {1,...,n—1}. Let K := K; & Ky where

ICZ' = @ ﬁi,n-

neN

Let S € B(K) be the isometry defined by
S @n,) =M@y € Ljni

forallm @ ---®@mn, € L;, where i # j and 7,5 € {1,2}. Notice that ; & 2, has a faithful

representation on IC given by
(A1 A)(m ® - ®@n,) = (Mi(A)m) @ ® - @,

for all ;; ® -+ ®@n, € Lin, A; € A, and ¢ € {1,2}. Let C*(A; & Ay, 5) denote the
C*-subalgebra of B(K) generated by 20; @ 2, and S. The C*-algebra C*(2(; @ 2y, .S) is
called a Toeplitz-Pimsner C*-algebra (usually it is required that m and 7 are faithful GNS

representations).
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Similarly, by considering the Hilbert space Ky := K19 @ Ky where

Kio = @ Hio® - @Hio0
n>1, L), C{1,2),i) =i

ik # gy for k€e{1,...,n—1}

for i € {1,2} and an isometry Sy € B(Ky) in the same manner as S € B(K), we can
construct a second Toeplitz-Pimsner algebra C*((24;/J) ® s, Sp). Notice Ky may be viewed
canonically as a Hilbert subspace of K since H; 9 € H; and Ha o = Ho. By considering the
actions of 2y, 2y, S, and S*, it is easy to see that Ky is a reducing subspace of C* (24, &2y, S).
By restricting the compression map of K onto Ky to C*(; & 2y, .S) we obtain a surjective
*-homomorphism

7 C*(Qll D 2[2, S) — C*((Qll/s) D Q[Q, So)

Let (J)a e, be the ideal of C*(A; & Az, S) generated by J C ;. Since mo(J) = 0 for

all J € J, it is clear that (J)a,aea, C ker(n’).

The main result of this section is the following.

Theorem 2.2.2. With the notation as in Construction 2.2.1, the sequence
0— <3>Q[1@Q[2 — C*<Q[1 D Q[Q,S) 1) C*((Q[l/:]) D Q[Q,SO) — 0

15 exact.

The proof of Theorem 2.2.2 will be completed through a sequence of easily verifiable

lemmas.

Lemma 2.2.3. For alli,j € {1,2} with i # j and A, B € 2,

S*AS = (A&, &)y, P,y ASB=0, AS"B=0, Pg,SA=SA, and AS*Py, = AS”
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where Py, is the orthogonal projection of KC onto KCj. Thus the span of all operators of the
form

(A1S) - (AnS) An i1 (5" Ans2) - - (S Angmia)

where n,m > 0, {ip )7 27 C {1,2}), ig # igsa fork € {1,...,n+m}, and A), € 2;, is dense

m C*(Qll D 2[2, S)

Proof. Fix i € {1,2}, let 7 € {1,2} \ {i}, and let A € ;. If ¢ € K; then S¢ € Ky so
S*AS¢ = 0. However, if 1 ® --- @, € L,, then

S*ASMM @ - Qnp) = STALOM® - Q)
= SN(AL)@m @ - ®1n,)

Whence, by linearity and density, S*AS = (A&, &), Px;-

Fix i € {1,2}, j € {1,2}\ {i}, and A, B € ;. To see ASB = 0 notice A(L;,) = {0}
and B(L;,) = {0} for all n. However S(B(L;,)) C Ljn41 and thus ASB = 0. Similarly
AS*B = 0. To see Px;SA = SA notice SA(L;,,) = {0} and SA(L;n) € Ljn1 € K;. Hence
Px,SA = SA. Similarly AS*Pg, = AS*.

Using the fact that alg(;,2(s, S, S*) is dense in C*(2; & Ay, 5), Ay & Ay is unital, the
fact that Pc, € 2; for all j € {1,2}, and the above results, we obtain that the desired span
is dense in C* (24, & Ay, 5). O

The next step in the proof is to define a action of the unit circle T on B(K). For each
6 € [0,2m) define Uy € B(K) by

U @ @n,) =e "V Ip @,

forall ; ® ---®@mn, € L;,. It is clear that Uy is a unitary operator with Uy = U_y and

UpUs = Uy (where we view 6 + 5 mod 27). Notice each Uy defines a *~homomorphism
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ag : B(K) — B(K) by
ag(T) = UgTUg

for all T' € B(K).

Lemma 2.2.4. [f T € C*(A; & Ao, S) and ap(T) =T for all § € [0,27) then
T (ﬁz,n> g ﬁi,n

for alli € {1,2} and for all n € N.

Proof. First it is clear that

(&) 2.0
n=1 mod 2 n=2 mod 2

(&.)(2.5)
n=1 mod 2 n=2 mod 2

are reducing subspaces of C*(20; & sy, 5) since each is invariant under 2, Ay, S, and S*.

and

Suppose otherwise that there exists an ¢ € {1,2}, an m € N, and an h € L;,, so that

T(h) ¢ L; . Without loss of generality suppose

Ei,mg< b £17n>@< D LM).

n=1 mod 2 n=2 mod 2

Thus T(h‘) € (®n:1 mod 2 'Cl,n) EB (@n:Q mod 2 ‘CQ,n)- Write

T(h) = P h;

Jj=21

where h; € £y, if j is odd and h; € Lo; when j is even. Since T'(h) ¢ L, ,, there exists a

45



k € N\ {m} such that h; # 0. However

@jzl hj=T(h) = ap(T)h
= U_¢gTUyh
= U_gTe ™V=1h
= e mVTIU, (@]21 hj) = @jg(eimij)eﬁ)hj

for all 6 € [0,27). Therefore hy, = e~ "ROV=Th, for all § € [0,27). As k # m and hy, # 0,

this is an impossibility. O

Lemma 2.2.5. For all € [0,27) and all A € A, ® Az, ap(S) = ?V=1S and ag(A) = A.
Therefore 0 — ay(T) is a continuous map for all T € C*(A; & Ay, S). Hence the map
EC* A DAy S) — CF (A, & Ay, S) given by

E(T) = /0% 0o (T) do

T or

is a well-defined, contractive linear map with the property that ag(E(T)) = E(T) for all
T e C*(Qll P Ao, S) and 6 € [0,27T).

Proof. The fact that ay(A) = A for all § € [0,27) and A € A; &2, comes from the fact that
each £;,, is an invariant subspace of A; @ s and thus Uy € (A; & 2As)’ (the commutant of
2, @ Ay). Notice for each i € {1,2} and each y; ® --- ® n,, € L;,, that

(S m e @n) = U8 (e @ @mn,)

_ €(n+1)9\/flefn0\/51§j QM- ®n,

g 66\/_715(771@..@7]”)

where j € {1,2} \ {i}. Whence ay(S) = e?V~1S by linearity and density.

To see 6 — ay(T) is a continuous map for all T € C*(2; @ Ay, S), notice the result

holds for all T' € alg(; & s, S, S*) by the above results. Since each «y is a contraction and
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alg(A; & A, S, 5%) is dense in C*(A; B Ay, 5), the result follows.

The fact that £ is a well-defined, contractive linear map is then trivial and the fact that
ag(E(T)) = E(T) for all T € C*(A; & AUy, S) follows from the fact that ay o ag = apip
(as UpUz = Ugyp) and the fact that the Lebesgue measure on the unit circle is translation

invariant. OJ

If T e C*(2A &2y, 5) is of the form

= (A15) -+ (A4pS) Ant1 (8™ Apya) - -+ (™ Apgm)

where n,m > 0, {ip )7 27 C {1,2}, iy # ipyq for k € {1,...,n+m}, and A, € 2,

(8]

then
E(T) = 0 whenever n # m and £(T') = T whenever n = m.

Lemma 2.2.6. For all T € C*(; & AUy, S) and n € N define

Sa(T) = (1 - + 1) (S*)E(ST) + Z (1 - %H) E(T(5%)7)87.
Then lim,, o || T — £,(T)|| = 0.

Proof. Notice for all T € C*(24; & sy, S) that

SaT) = o o (S0 (1= 55) (S Vae($T) + S5y (1= 17) a(T(S7)7)s7 ) do
= (S (1) @) au(@)as

= [T oy (0)ag(T)d0

where 0,(6) = > <1 — oL )eﬂ’r is Fejér's kernel. Recall {%crn(ﬁ)d@}n21 define

j=—n n+1

probability measures on T that converge weak* (from C(T)) to the point mass at 0. Thus

ST < 5 [ oul®) lan(T)l1d0 = 7]

for all n € N. Since £ and thus X, is linear for all n € N and each X, is a contraction, it
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suffices to prove the result on a set whose span is dense; namely
{AlSAQS s AnSBS*Cls* s S*Bm | n,m Z 0, Ai, B, Cj € Qll @D 9[2}

by Lemma 2.2.3.

To complete the proof, notice if T'= A;SAS --- A, SBS*C,S*---S*B,, where n,m > 0
and A;, B,Cj e Ay & Ay then

ST ifk+n=m
E(SFT) =

0 otherwise

and

E(T(5)) = T(S*) ifn=m+k

0 otherwise

Whence ¥ (T) = (1 — %) T for all kK > |n — m| which clearly converges to T" as k —

00. O

To prove Theorem 2.2.2 it suffices to prove ker(7') C (J)a,a0,- It is trivial to prove that
€(<3>911699l2) C <3>9l169212? g(ker(ﬂ/)) - ker(’ﬁ/)v and g(<3>911€99l2) - g(ker(ﬂl))' Using these

facts and Lemma 2.2.6 gives the following reduction of our problem.

Lemma 2.2.7. If £ ((J)ayeu,) = E(ker(n')) then ker(n') = (J)ayou,-

Proof. By Construction 2.2.1 it suffices to show that ker(7") C (J)c+@,em,s). Let T €
ker(r’). Recall T' = lim,,_,, 3, (T") by Lemma 2.2.6. Moreover S*T" € ker(n’) and T(S*)* €
ker(n’) for all £ > 0 as T € ker(n’). Whence

E(S™T),E(T(57)") € E(ker(r)) = € (F)er@menns) € (Fer@menns)

for all £ > 0. This implies that £,(T) € (J)c @, e,s) for all n and thus T € (F) o=@, 02,5)-
O
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To begin the process of showing £ ((J)ayaa,) = £(ker(n’)) we will examine the structure
of (J)ayea,- Notice if J € J then JS = 0 as J& = 0. Whence S*J = 0 for all J € J
Therefore, using the property that the algebraic ideal generated by J in alg(2y, 2y, S, S*) is
dense in (J)a,au, and the results and ideas from Lemma 2.2.3, the span of all operators of
the form

(Ans) T (Als)J(S*Bl) T (S*Bm)

where n,m >0, J € J, A;, B; € Ay if 4,7 =0 mod 2, and A;, B; € %y if 4,5 =1 mod 2 is
dense in (J)a(, a1, -

For each n > 0 and k € {1,2}, let 2y, (,,) be the span of all operators of the form
(A,S) -+ (A18)A(S*By) -+ - (S*By)

where A € A, A;, B; € Ay if 4,5 # k mod 2, and A;, B; € %, if 4,57 = k mod 2. Let J,

denote the subset of 2, (,,) consisting of all operators of the above form with A € J.

Lemma 2.2.8. The span of U,so (U1,) URa,m)) is dense in E(C*(Ay & Ao, S)) and the

span of Un>0\5 (n) 15 dense in € ((F)a, a2, )-

Proof. We will only prove the first claim as the second follows verbatim with the aid of

Lemma 2.2.3. It is clear J,5gJm) € & () e (@oms.9))-

Let T € € ((J)c-@am,s)) and let € > 0. As T € (J)c-(a0,,5) there exists an

n,m>0,J €3y,
R € span ¢ (A,S) -+ (A1S)J(S*By) -+ (S"Bm) | Aj, B; €24 ifi,j =0 mod 2,
Ai,Bj€Uyift,5 =1 mod 2

such that |7 — R[] < e. Then &(T) =T since T € € ((J)c+@em,s)) and thus

1T = ER)|| = IE(T = R)|| < IT = R <«

49



Clearly

n,m>0,J €J,
E | span § (A,S) - (A1S)J(S*By) - (S*Bp) | A;, B; €y if 4,5 =0 mod 2,
A, Bj€Uyifi,5 =1 mod 2
n>0,Jegy,
=span { (A4,5) - (A18)J(S*By1) - (S*Bn) | A;,B; €2, ifi,j =0 mod 2,
AuBj€Ayifi,j=1 mod ?2

=span U‘T(")> .

Thus £(R) € span (UnZO J(ny) which completes the claim. O

Now we will examine how 20y (,), 22 (), and J(,) act on K. We will only discuss 24y ()
and J(,) as the analysis of 245 (,y will be similar.
Since E(T) =T for all T € Uy (ny (T € Jn)), T(Lim) C Lim for alli € {1,2} and m € N
by Lemma 2.2.4. Fix
T = (A,5) - (A1S)A(S"By) -+ (5" By)

where A;, B; € 2, if i, =0 mod 2, A;,B; € A, ifi,j =1 mod 2, and A € A, (A € J).
If £ € {1,2} and k¥ = n mod 2 then T(Ly,,) = {0} for all m € N. Fix k € {1,2}
with £ # n mod 2 and let ¢ € {1,2} \ {k}. Then it is possible to show that for all

N=m®& - @Npt1 € Lint1

where

C:: B:;fk‘ ®B:171€£® e ®B;€1 ®BT£2

and

w:=A5 A, 1§ R Al ® Ao,
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Moreover T acts as the zero operator on elements of Ly, for all m < n since the mth S*
will act on an element of £1 1 @ L. Finally if m > n + 1 notice Ly = Lini1 @ Lkm—n-1
if n+ 1is even and Ly = Lens1 ® Lom-n—1 if n+1is odd. Therefore, if R =T, ., it
is easy to see that T" acts on Ly, as R® I, ., whenn+1isevenand m >n+1and T
acts on Ly, as R® Ie, . oy when n+11is odd and m > n + 1.

For i € {1,2} let N; = 2;&; which is a Hilbert subspace of H,; o C H; containing &;. Thus,
for a fixed k € {1,2} with £ # n mod 2 and with ¢ € {1,2} \ {k}, by restricting to Ly,
and taking limits of elements of 24 ) (J(n)) over Ay,..., Ay, By, ..., B, where A;, B; € 2,
if i,j =0 mod 2 and A;, B; € Ay if i, j =1 mod 2, every operator in B(Ly,,) of the form

T]1®"'®7]n+1'_><771®"'®77n7C1®"‘®<n>llk,n(<i®"'®C7/1®A77"+1)

where (;, (G € Ny if i, =1 mod 2, ;,¢; € Nyifi,j =0 mod 2, and A € A; (A € J) may
be obtained.

Lastly, by describing the action of 25 (,) on K, it is possible to show that if T' € 2L, (,),
R e A, k0 € {1,2}, k=n mod 2, and £ # n mod 2 then the actions of 7" and R are
completely determined by their actions on £y ;11 ® Lo 11 with T'(Ly) = {0} for all m € N,
R(Ly.m) = {0} for all m € N, and

T+ R|| = maX{HTyQ,nH

I

R|ﬁk,n+1H}'

The above structure will be important as we will consider the restriction of € ((J)a(, @1, )
and &(ker(n’)) to the subspaces £y, @ L, of K. For m,n € Nand i € {1,2} let P, ,, be the
orthogonal projection of KC onto L; ,,, let P, be the orthogonal projection onto Ly ,, ® Lo,
and let @, := »_7_, P; which is the orthogonal projection of K onto j_,(Lix ® Lak)-
Therefore, using the above discussion, ; () Py, = {0} for all m < n and if m > n + 1 then
each element T € R4y (,,) U5 () acts on L, by (Pjp41T Pjpni1) ®1 where I is the appropriate

identity. Using the P,’s and the above information about the actions of 2 (,,), 2s (5,), and
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Jmy on Ly, @ Ly, we obtain the following.

Lemma 2.2.9. The set Q, (span (Um<n 3(m))) Q. is dense in Q& (ker(n'))Q,, for alln € N.

Proof. Clearly @, (Span (Um<n E(m))) Qn C Q& (ker(n)Q,, for all n € N. Thus it suffices
to show that each element of £(ker(n’)) can be approximated uniformly on @,,K by an

element of span (Um nJ (m)). We proceed by induction on n.

Let T € E(ker(n')) and let € > 0. As T € E(C*(2A; &2y, S)) Lemma 2.2.8 implies that
there exists an m € N, Ty ; € 2, ), and T ; € 2, ;) such that HT -7, > o Tij

Therefore

|PTP — P'TygPy — Py Pi|| = <€

2 m
P <T - ZT]> Py
i=1 j=0

Note Tl’(] S 9[17(0) = 2; and Tg}o S 912,(0) = 2A,. However PlTpl(rHl,(]) = {0} and
P1T2?0P1<H1’0) = {0} Whence

”TI,OhH = leTplh — P1T170P1h — P1T270P1h|’ S € Hh”

for all h € Hy . Since 2, acts on Hy o via mgoq, ||m10(¢(T0))|| < €. Thus ”C](T[])Hml/s < €50
there exists a J € J such that |71 — J|| < e. Similarly P/ TP,(Hs) = {0} and T3 9(H2) =
{0}. Hence ||T5p|| < €. Thus J € J) and

|PA TP, — P JP || < ||PATP, — P\T\ 0Py — PiToo Py + || To0l| + | 710 — J|| < 3¢

as desired.

Suppose the result is true for some n > 1. By the inductive hypothesis there exists an

R € span (Um<n 3(m)) such that ||Q,7Q, — @, RQ,| < € and thus

2 n—1
QnRQn - Qn (Z Ti,j) Qn




By the above discussions and by considering direct sums,

|Qn1TQni1 — Qui1 RQny1 — Qui1T10Qni1 — Qni1 TonQnia|| < 3e.

Thus it suffices to approximate T, + T3, € 2 ) + ™Az ) uniformly on @, 1K with an
element of J,). Since elements of 2, ), 2y (n) and J(,) are zero when restricted to @, /C,
it suffices to perform the approximation on £ ,,4+1 ® L2,4+1. Moreover, as T, and T5,, act
on orthogonal spaces and map into orthogonal spaces, it suffices to consider each operator

separately.

As in the base case T, T} ,, and R vanish on the domain of 75, giving the estimate
| 75| < 3e. To approximate T4, with an element of J, fix k € {1,2} with & # n mod 2

and let ¢ € {1,2} \ {k}. Hence T}, is completely determined by its action on Ly ,,+1 and
HPk,n+1TPk,n+1 - Pk,n+1RPk,n+1 - Pk,n+1T1,nPk,n+1H < 3e
by the above inequality and the fact that Py ;,4+17% ,, Prn+1 = 0 by the above discussion. Write

Tin=Y (ADS)- - (qu)5> 4@ (S*B@) . (S*BW) .

q=1

where AEQ),BJ(-q) e Ay if 4,7 = 0 mod 2, AEQ),B](.q) €Uy ifi,j =1 mod 2, and A € A,
for all g € {1,...,p}. View T, € B(Lkn+1) as in the previous discussion. By applying the

Gram-Schmidt Orthogonalization Process, we can then write 7} ,, as the map

PP
Tin(m @+ @ Nntr) = Z Z<771 ® - @ N, GY (Wi @ A jnt1)

i=1 j=1
where {A4;;}._; Cspan({A? | ¢ € {1,...,p}}) C A and

ij=1

CGowi ENGy QN @ -+ QN
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(where for i € {1,2} N = 0§, i; = k if j is odd, and i; = £ if j is even (and automatically

in = 2)) are such that {¢;}/_; and {w;};_, are orthonormal sets.

To examine the norm of 77 ,, in this form, suppose ¢ € Ly, 41 is such that ||(]] < 1. Then

we can write ¢ = >0, (G ®n; + Y. cp ¢ @1y where {( }her C Ly, extends {(;},_, to an
orthonormal basis of Ly, and 7;,7, € H;. Thus > 7%, In;117 < IC)* < 1 and

ITnClley,y = ([0 S G w1 @ A
= HZL wi ® <Z§:1 Ai,jm) c
1 k,n+1
» » 2 2
- (znfsanl,) @
Hi

This final expression is directly related to the norm of [4; ;] € M,(2;). Indeed recall that
2(; is acting on Hy = Hi0 @ Hi1 via (mp0q) © w1 and define o, : M,(A1) — B ('H?p) by

k,n+1

(AN &+ & he) = €D (Z Az,jhj>

i=1

for all [A] ;] € M,(2L;). Clearly o, is a faithful representation of M, (2l;) since (71 90q) B 71,
is a faithful representation of 2l;. Notice o,,([4];]) is zero on Hi’f{; C H{P if and only if each
A is zero on Hiy if and only if [A] ;] € M,(J). Since M,(J) is an ideal of M, (1), H{j
is a reducing subspace for o,(M,(2;)), and M, (J) = ker (0p|H%>, we obtain that Up|H?g
is a faithful representation of M, (2)/ M, (J) =~ M,(2A:/3).

Using the fact that Py 17T Py 41 — Pepy1 R Py ny1 i zero on
Hivo Q@ Hizo®@ - @Hi0® Hin_,'_LO

where i; = k if j is odd and i; = £ if j is even (so i,11 = 1 automatically) (as T € &(ker(n’))

and R € span (U,,-,, Jom))), We obtain that

< 3e.

Pn—‘rlTl,nP’n-‘rl |Hi1,O®Hi2,0®"'®ﬂin,0®7‘lin+1,O
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As wi, (G € Hiyo @ Hiyo®@ -+ @ Hy, o forall i, j € {1,...,p}, using (*) we see that

1
P 2

2

=1

p

Z Ain;
1

j=

< 3e

2
Hi,0

for all my,...,mp € Hip with 370 Im;]1> < 1. Hence ’

ap([Ais]) e
a faithful representation of M, (2;)/M,(J) =~ M, (2, /J), there exists a [J; ;] € M,(J) such
that ||[A7,7]] — [Jivj]HMp(Qll) < 3e. Thus

< 3e. Since 0p|H% is

T 2\ 2z
S (A = Jign < 3¢
i=1 || j=1 "
for all 1, ..., me € Hy with 37, n;|I> < 1.
Define R' € B(Lyn+1) by
p p
R(m @ @npy1) = Z Z<Th &+ ® Ny G) (Wi ® JijTnt1)
i=1 j=1

and extend by linearity and density. Note (%) implies that R’ is a bounded linear map and
||R/ - Pk,n-i—lTl,nPk,n—I—l||3(£k’n+1) < 3e.

As
G €N BN, © - DN,

the above discussion implies that there exists a Ry € J(,) such that

IR — Pk7n+1Ropk,n+1HB(Ek,n-o-l) <€

Hence

| Prnt1 RoPrnt1 — Prn1ThnPentr || < 4de.
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Since Ry € J(n) and 17, € Ay (), we obtain that

|Qns1RoQns1 — Qui1 11 nQnia|| < 4e.

By combining all of our approximations

||Qn+1TQn+1 - Qn-‘rl(R + RO)QH-HH < 10e

and, as R + Ry € span (Um<n+1 S(m)), the result follows. O

The above result shows we can approximate elements of £ (ker(n’)) uniformly on @,/ by
elements of span (Um “n J(m)). The following result shows that this is enough to prove the

assumptions of Lemma 2.2.7.

Lemma 2.2.10. Let T € E(C*(A, ® Ay, S)) and let € > 0. There exists ann € 2N such that

HE)J»mTP],m - ‘Pj7nTPj,n ® ]LZ <€

jm—n B(cj,m)
for allm >n and j € {1,2} (where L, ~ L, & Ljm—n canonically).

Proof. This result follows from the fact that

span (U (s, ny U mQ,(ﬂ)))

n>1

is dense in

E(C™ (A & A, 5))

and the result hold for this algebraic span. O

Proof of Theorem 2.2.2. Recall &€ ((J)a,e2,) C E(ker(n’)) by the above discussions. Let
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T € E(ker(n')) and let € > 0. By Lemma 2.2.10 there exists an n € 2N so that
HPJ%mTPJEm = PinTPjn® Iy, ., HB(cj,m) <€

for all m > n and j € {1,2}. By Lemma 2.2.9 there exists an R € span (|,,.,, J(m)) such
that [|Qn(T — R)Qu|| <€ AsT,R € E(C*(A; & Ay, 5))

T—R| = P, (T — R)P;,,
| | iuzgjgig}ﬂ iom( )P

by Lemma 2.2.4 and the above inequality implies || P;,,(T — R)PJ}WHij <eforallm<n
and j € {1,2}. Thus |P;,TP;, — Pj,RP;,| < € for all j € {1,2}. However, since R €

even) and thus

for all m > n and j € {1,2} (as n is

J,m—n

125 mT Py = Pjm RPj | < 2¢

for all m > n and j € {1,2}. Whence ||T— R| < 2. As R € (J)a,on,, We obtain
that T € € ((J)a,e0,). Hence E(ker(n)) = € ((J)ayon,) so ker(n') = (J)a, a2, by Lemma
2.2.7. L]

2.3 Every C*-Algebra is Freely Exact

In this section we will complete the proof of Theorem 2.1.2. By Theorem 2.2.2 we know
certain short sequences of C*-algebras are exact and we will use the proof of [14, Theorem
4.8.2] to construct a commutative diagram of short sequences. The proof of [14, Theorem
4.8.2] is concrete and allows us to demonstrate that the compression of (J)g(, @2, corresponds
with the description of (J)a, ., developed in Discussion 2.3.1. The remainder of the proof

is then trivial.

Remarks 2.3.1. Using the notation of Construction 2.1.1, we desire to determine the struc-
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ture of <3>Q[1*Q[2 inside (9(1,71'1,51) * (912, 9, 52) For ¢ € {1, 2} let
A} = {A e | (A &)n, =0}

so 2; = Cly, + AY. Thus, by the algebraic properties of ideals, it is clear that the span of
all operators of the form

A\By -+ AB,JB. A - B/ A,

where n,m >0, A, A} € A0 U {ly, }, B;, Bj € AU {Iy,}, and J € J is dense in (J)a,a1,-
Notice J C 29. Using the fact that the identity elements of 2(; and %A, are the identity
element of (A, 7, &) * (Aa, me, &) when viewed as elements of (A, 71,&7) * (A, 7o, &o), we
can further assume that A;, A} € 27 whenever 4, j > 2 and B;, Bj € 23 as whenever an Iy,
or Iy, occurs we can reduce the length of the product, multiply two elements of the alternate
2l;, write this element in the form Cly, + 219, write the new operator as the sum of two

operators, and continue the reduction process.

We desire to describe the action of each operator in the above span on (Hi, &) * (Ha, &2).
If
T=AB,-A,B,JB, Al - BlA]

where n,m > 0,{A;}7_, {A;}7, € A0, {Bi}i,, {Bj}2, € A3, and J € J, it is easy to

verify that T" is non-zero only on the direct summand

( GB (Hy ® /Hg)@)k) 82 (@(H? ® Hy)* @ H?) C (H1, &) * (H2, &),

k>m—+1 k>m

if w € (HY @ HI)®™ @ HY and

wa € [ (M @ HY)®F U (HS @ HY)®F @ HY)

k>1
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then T(w; ® wq) = T(wq) ® wy. Moreover, a proof of the above facts reveals that if

N=mRG R @M @ Cn @ N1 € (H) @H)™ @ HY

then
Tn)=MmeG & Nm @ (m,w1) 0eng)em (Wa ® JNmi1)
where
wy = (A)6 ® (B) &0 (A),) 6 ®(B,) &
and

wy = (A1§1) @ (B1&2) @ - -+ @ (An&1) ® (Bn&z)-
The cases where A; = Iy, and/or A} = Iy, are similar.

To embed the sequences under consideration in Theorem 2.1.2 into an exact sequence

from Theorem 2.2.2, we will use the following notation and maps.

Notation 2.3.2. Let Qli’l = Q{z for¢ = 1, 2, let QII,O = 911/3, let 2[2,0 = 2[2, and let Sl =S.

Using the notation of Construction 2.2.1, for j = 0,1 let
P;:=1— SJZ(S;-“)2 e C*"(y; ®Us 5, 5;)

and let
Uj == Py(S; + S;)P; € C*(A1; & As 3, S).

For j € {0,1} and ¢ € {1,2} define the unital, completely positive maps

Vij Uiy — PO (A1 ; © Ag 5, 55) P

Vij(A) = PjAP; + U; AU,
for all A €, ;.
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Lemma 2.3.3. There exists a unital, completely positive map
W (A, 1, &) * (RAn, T, &) — PLCT (™A © ™Az, S) Py

such that
WA - Ap) = Vi 1 (Ar) i, 1 (An)

whenever Ay € A, {ir}i—y € {1,2}, and iy # iga for all k € {1,...,n — 1}. Moreover

there exists a *-homomorphism

o O (U((Ar, 7, &) * (g, m2,82))) — (Ar, 71, &1) * (A, 72, &2)

such that o o W = Id, = ¢ )e(@a,m ). 1N fact o is the compression map of B(K) to B(K1,1)
where K11 C K is a Hilbert space isomorphic to (H1,&1) * (Ha, &2).

Similarly there exists a unital, completely positive map
Wo i (10,10, 1) * (R0, 72,0, §2) — PoC™ (A0 © KAz 0, 50) o

such that
Uo(Ay - Ap) =i 0(A1) - i, 0(An)

whenever Ay € U;, o are such that (A&, &), 0 = 0, {intizr € {12}, and iy # iy for
allke{l,...,n—1}.

Proof. The proof of the above result is contained in [14, Theorem 4.8.2]. Note that the proof
in [14] is done under the assumptions that m, 7, and 7 o are the faithful representations

corresponding to a GNS construction. However these assumptions are not used in the proof.

For the purpose of Lemma 2.3.5, we remark that the Hilbert subspace Ky ; of K is the

subspace

Hy & (@ Hi @ (M@ HO)®" @ HY @ H1>

n>0
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and is isomorphic to (Hy,&1) * (Ha, &) via the standard identifications C&; @ HY ~ HY and

Lemma 2.3.4. With ¥ and ¥, as in Lemma 2.3.3, the diagram

(52[1,W1,51)*(9(2,7T27§2) 5 (Qh/ﬁﬂﬁ,o,&)*(91277@;52)
v 1 o
C*(2A; @ Ay, S) T C(()3) © s, So)

commautes.

Proof. Recall that the span of Iig r; ¢,)x(@s,m0,60) and

{A; - A, | A e ) i}, C{1,2} i, # gy forall k € {1,...,n —1}}

(%

is dense in (A, m1,&1) * (™Az, m2,&2) and thus it suffices to verify the diagram commutes on

these operators. Using the properties of ¥ and ¥, from Lemma 2.3.3 and the fact that
1%"0(71'(14)) = Poﬂ'(A)Po + U()ﬂ'(A)UO = 7T/(P1AP1 + UlAUl) = W/(l/Ji’l(A))

for all i € {1,2} and A € 2;, the result follows. O

The final technical challenge of the proof of Theorem 2.1.2 is the following.

Lemma 2.3.5. Let 0 : B(K) = B((H1,&1) * (Ha,&2)) be the compression map from Lemma
2.3.3. If T e <3>Q{1@Q[2 then O'(T) S <3>Q{1*Q[2.

Proof. By the above discussions and the notation in 2.3.2, it is easy to see that the span of
(ApS) - (A18)J(S*By) -+ (S*By)

where n,m >0, A;, B; € AV U {Iy, } if 4,7 are even, A;, B; € A3 U {Iy,}, and J € J is dense

in (J)a, e, and thus it suffices to show that the compression of each of these operators to
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IC corresponds to an operator in (J)g, ., as described in Discussion 2.3.1. It is not difficult
to show that the compression of one of these operators is zero unless n and m are even,
A;, Bj € A if 4, j are odd, and A;, B; C A} if i, j are even with i < n and j < m. Moreover,
when the compression is non-zero, the above operator corresponds to the operator in (J)u, s,

described by removing the S’s and S*’s in the above expression. O]

Proof of Theorem 2.1.2. Suppose T € (A1, m1,&1) * (A, w2, &) N ker(w). Therefore
T (U(T)) = Wo(n(T)) =0

by Lemma 2.3.4. By Theorem 2.2.2 U(T) € (J)a,an,. Therefore o(V(T)) € (J)aysa, by
Lemma 2.3.5. However T'= o(W(T')) by Lemma 2.3.3 so T' € (J)a(,+2, as desired. O

2.4 Strong Convergence is Preserved by Free Products

With the modification to the second equivalence of Theorem 1.6.1 complete, we turn our
attention to developing the analog of the fourth equivalence of Theorem 1.6.1 in the context

of reduced free products. We begin with a definition.

Definition 2.4.1. Let {Xi(k)} and { X}, be generators for the non-commutative prob-
i=1 "

ability spaces (g, 1) and (2, 7) respectively. We say that {Xi(k)} converge strongly to
i=1
{Xiti, if

1. limsup,_, . Hp <X1(k), e ,Xr(Lk)> ’

= |Ip(X1,..., X5)|ly, and
Ak

9. limy_seq 7 (p <<X1(k), o ,Xﬁf’))) — (X1, ..., X))

for all p € C(ty,...,tn).

The following is the adaptation of the fourth equivalence of Theorem 1.6.1 to reduced free
products and is a generalization of the appendix of [47] due to Shlyakhtenko (where, if 2; are
C*-algebras with states ¢; that have faithful GNS representations, (2, 1) * (2, 2) is the
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reduced free product, ¢; * @y is the vector state on (U, ¢1) * (s, o) corresponding to the
distinguished vector, C(t1, ..., t,) denotes set of all complex polynomials in n non-commuting
variables and their complex conjugates, and a pair (2(,7) is said to be a non-commutative
probability space if 2 is a unital C*-algebra and 7 is a state on 2 with a faithful GNS
representation):

Theorem 2.4.2. Let {Xsz)}n 7 {y(k)}’.”

i=1 o Ji=

non-commutative probability spaces (Uy, %), (Br, vr), A, 7), and (B, p) respectively. If

{xop

LA "

{XZ.(k)} U {Yi(k)} converge strongly to {X;}1_, U{Yi}, (where the later operators are
i=1 i=1

in (g, ) * (B, or) and (A, 7) * (B, p)).

, AXiH,, and {Y;}™, be generators for the
1

converge strongly to {X;}1, and {Yz-(k)} converge strongly to {Y;},, then
i=1

By examining the fourth equivalence of Theorem 1.6.1, it can easily be seen that the above
result is connected with the notion of an exact C*-algebra by replacing tensor products with
reduced free products. To begin the proof of Theorem 2.4.2, we note one inequality is trivially

implied by verifying that the assumptions imply convergence in Lo-norms.

Lemma 2.4.3. With the assumptions and notation of Theorem 2.4.2,

lim (75, * ) (p (X{’“), LX) oy ,ym’f>>) — (rx Q) P(X1s o X, Vi, Vi)

k—o0
and
h;nianp (Xf“,...,X,g@,yf’“),...,yngk))H > p(X1s s Xy Yis o, Vo)
—00

forallp € C{ty,... thim).

Proof. First we claim if p € C(t1,...,t,+m) is arbitrary then

lim (75, * ) (p (Xl(k), LX) oy e ,Yn(f)>> — (r Q) P(X1s o Xy Yaser o, Yi)).

k—o0

To see this notice by the same arguments as used in Discussion 2.3.1 that p(ti,...,tnim)
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can be written as

N z
Pt tgm) = > [ Pt t) e (tusss - tosm)
(=1 w=1

where T(prw(Xi1,...,Xn)) = 0 and @(qow(Yr,...,Yn)) = 0 for all w € {1,...,2} and
¢ e {1,...,N} except possible for possible p,; and g, ., which can be constant functions.

Thus (7% ¢)(p(X1,..., X0, Y1,...,Y,)) is

ST 7w (X X))@ (Vs -, V)

(=1 w=1
by freeness and (7 * @) (p <X{k), N ¢ Yl(k), e ,Yn(q,k)>) is
N K7}
Z(Tk * <Pk) (H pZ,w <X1(k)7 s 7X7(1k)> q@,w (Yl(k)7 s 7Ymk)>>
/= w=1

1

by linearity. In the case that 7(prw,(Xi,..., X)) = 0 and ¢(qe.w(Y1,...,Yn)) = 0 for all

w € {1,..., 2}, notice the product from 1 to z, of

<pf,w (ka)> s 7X7(1k)> — Tk (p@,w (ka)a s aXT(Lk)>> [Qlk> Qw <1/1(k)7 s 7Yn(1k))

can be written as

where T}, is the sum of products of elements in

7

{pf,w (ka)a SR ’quk)> y Tk (pz,’w (ka)a o 7X7(Lk)>> y Qew <}/1(k)7 s 7Yn(q,k)>}

w=1

where each product contains at least one 7 (pg,w (X {k), e ,XT(Lk)>) and T can be obtained
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from T}, by exchanging the index k with k’. It is straightforward to show that

zy
(Tk * (pk) (H pﬂ,w (ka), . ,X}Lk)) q€,w <}/1(k), R ,Yr)gk)>> + (Tk * Sok)(Tk) =0.

w=1

Since T(prw(Xi,...,Xn)) = 0 and o(qrw(Yi,...,Y)) = 0 for all w € {1,...,2}, the

assumptions of the lemma imply
lim (73, * ¢)(Tx) = 0
k—o0

as every term in used in 7}, is bounded by the first and second assumptions of Theorem 2.4.2

and

lim 7, (p&w <X1(k), . ,X,gk))) = (Prw( X1, X)) = 0

k—00
for all w € {1,..., 2.} by the third assumption of Theorem 2.4.2 . As similar computations
hold when p,; and/or g ., are constants (by possibly using the Y ®) instead of the X*) and
the fourth assumption of Theorem 2.4.2), the claim has been proven.

For each k € N let [T, ., = (7 * Q) (T*T)2 for all T € (g, 7x) * (B, r) and
let |Tl,,,, = (7 * Q) (T*T)z for all T € (A, 7) % (B, ). By considering the construc-
tion of the reduced free product, for a fixed polynomial p € C(ty,...,t,1s) the norm

Ip(Xy, ..., X0, Y1,..., Y| agrees with
sup {[(7x o) ((p - p1 - p2) (X1, ..o, X, Yoo Vo)) [}
where the supremum is taken over all p; € C(ty,. .., t,1,,) with

||pi(Xl7"'7Xn7}/17--~7Ym> <1

||2,‘r*ap

As a similar expression holds for ‘p (X{k), e ,X,Sk), Yl(k), s ,Yn(f)> , the result follows. [
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Remarks 2.4.4. Using the notation in Theorem 2.4.2, let

Loy (e, 7)) % (B, 1))

T B (o) * (Brogn)

and let g @ [[;>1 ((x, 7) * (Br, ¢r)) — D be the canonical quotient map. Consider the
C*-subalgebra € of © generated by

{q((X](k)>k21) |je{1,...,n}}U{q((Yj’f’)k21) |j€{1,...,m}}.

Lemma 2.4.3 tells us that there exists a surjective *~homomorphism ¥ : € — (A, 7) * (B, ¢)

v (q ((X}’“)@)) — X, and U (q ((Yj’”)@)) _

Moreover ¥ is an isomorphism if and only if

hmsup Hp <X£k)7 cee 7X(k)7}/1(k)7 s 7Yn(1k)> H < Hp(Xla s 7Xn7YvM s 7Ym)”

n
k—o00

for all polynomials p € C(ty,...,t,1m). Thus Theorem 2.4.2 is true if and only if ¥ is
an isomorphism. The question of whether ¥ is an isomorphism can be considered as a

modification of the third equivalence of Theorem 1.6.1.

Our next goal is to prove Theorem 2.4.2 provided that Yj(k) =Y, for all £k € N and
je{l,...,m}, op = ¢ for all k € N, and B is an exact C*-algebra. To do this we reprove
the following known results from the appendix of [47] that prove Theorem 2.4.2 when the Y;

are free creation operators on a Fock space.

Lemma 2.4.5. Let 2 be a unital C*-algebra with a state T with a faithful GNS representation
and let B be the universal C*-algebra generated by A and elements Lq, ..., L, satisfying
LYAL; = 6;,;7(A) for all A € 2 (where 0, ; is the Kronecker delta function). Let 1 be the
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linear functional on *-alg(A, {L;}}_,) defined by |o = 7 and
w(AOL’hAI e AkflekAkAgL;All ce AzilL;Aé) — 0

whenever Ay, ..., A, A, ..., A, € A and at least one of k and ¢ is non-zero. Then ) extends
to a state on B having a faithful GNS representation. Moreover, if (A, 7)x(E, ¢) where (€, @)
is the C*-algebra generated by n free creation operators {y, . .., ¢, on the full Fock space F(C™)
and ¢ is the vacuum expectation, there exists an isomorphism ® : (B,¢¥) — (A, 7) * (€, ¢)

such that ®(A) = A for all A € A and ®(L;) =¢; for all j € {1,...,m}.

Proof. Let (%, @E) be the reduced free product (A, 7)* (€, ¢). By [71, Corollary 2.5] £; Al; =
9;;7(A) for all A € 2 and

-~

P(Aoliy Ay - - A1 by A Al A - Ay 10, A)) = 0

whenever Ay, ..., Ag, A),..., A, € A and at least one of k£ and ¢ is non-zero. Hence, by the

universal property of B, there exists a *~homomorphism ¢ : 8 — B such that P = 12 o®.

To complete the lemma it suffices to prove ® is injective. However, by [52] (and by
applying the same ‘Fourier series’-like argument as in Section 2.2), it suffices to check that
the linear span of {ALfBL;C | i,j € {1,...,n}, A, B,C € 2} is dense in 2 and that there
exists a homomorphism « : {z € C | |z|] = 1} — Hom (%) such that a,(A) = A for
all A € A and a,(¢;) = z{; for all j € {1,...,n}. However the first claim is trivial by
taking 1 = j, B = Iy = (. Since it is trivial to verify that there exists a homomorphism
a:{ze€C | |z] =1} - Hom <%) such that o, (¢;) = z{; for all j € {1,...,n}, taking the

free product with the identity map on 2 will complete the lemma. O

Lemma 2.4.6. Theorem 2.4.2 is true with the additional assumptions that Y;(k) =Y, for
all k € Nandj € {l,...,m}, op = ¢ for all k € N, B is the C*-algebra generated by m

creation operators ly, ...,y on a Fock space, and ¢ is the vector state of the vacuum vector.
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Proof. Consider the C*-algebra

D .— Hk21 (g, ) * (C*(lry .. ), )
C Dot (Ak,7i) % (C* by, ln), )

Let q @ [Tpsy (R, 70) % (C*(f1, ..., €m), ) — D be the canonical quotient map and let

X! =g ((XJU«))M) and L; == ¢ ((6)5,)

for all j € {1,...,n} and ¢ € {1,...,m}. Notice, by the first assumption of Theorem 2.4.2,
2l is isomorphic to the C*-subalgebra of © generated by {Xj’ 1. Let € be the C*-subalgebra
of ® generated by 2 and {L;}72,. By Remarks 2.4.4 there exists a *-homomorphism W :
€ — (A7) * (C*(€y, ..., L), p) such that W(X}) = X for all j € {1,...,n} and ¥(L;) = ¢;
forall j € {1,...,m}.

We claim that ¥ is an isomorphism. To see this, we note by the third assumption of

Theorem 2.4.2 that

for all polynomials p € C(ty,...,t,). Hence, by Lemma 2.4.5 and by universality, there
exists a *-homomorphism ® : (A, 7) * (C*(¢y,...,ly), ) — € such that ®(X;) = X for all
je{l,...,n} and ®(¢;) = L; for all j € {1,...,m}. Hence ¥ is invertible with inverse ®.
Thus the result follows from Remarks 2.4.4. [

To prove Theorem 2.4.2 provided that Y;-(k) =Y forall k € Nand j € {1,...,m},
or = ¢ for all k € N, and B is an exact C*-algebra we will make use of the following result
that provides an embedding of the reduced free product of two C*-algebras 2 and B into a

reduced free product involving A ® i, B.

Lemma 2.4.7. Let (A, ) and (B, ) be non-commutative probability spaces, let {1 be the

unilateral forward shift on l5(N), let {e,}n>1 be the standard orthonormal basis for (2(N),
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and let ¢ : C*(y) — C be defined by ¢(T) = (Tey,er) for all T € C*(¢y). There exists a
unitary U € C*({y) (independent of A and B) and an injective *-homomorphism

U (2,0) % (B,¢) = (A Omin B, 0 @) * (C*({1), 9)

such that V(A) = A® Iy and ¥(B) = U*(Iy ® B)U for all A € A and B € *B.

Proof. See [22, Proposition 4.2]. O

Lemma 2.4.8. Theorem 2.4.2 is true under the additional assumptions that Y}(k) =Y, for
allk eNandje{l,...,m}, pp = ¢ for all k € N, and B is an exact C*-algebra.

Proof. Since ‘B is exact, by the fourth equivalence of Theorem 1.6.1 and by the first assump-

tion of Theorem 2.4.2, we obtain that

hmsupHp(Xf’“)@1,...,X,gk>@I,J@iﬁ,...,]@ymﬂ

k—o00

A OminB

18

(X1 @1, Xy @ LIDY1. 1 ® Vi) g

for all p € C(ty,...,tm). By the structure of the states on the tensor products and by the

third assumption of Theorem 2.4.2

lim (7, ® ) <p(X1(k)®I,...,X7§L’f)®],I®Y1,...,I®Ym>>

k—o0

is

rTRe)pXi®1,.... X, @[ I®Y:,...,1®Y,))

for all p € C(ty,...,tntm). Therefore Lemma 2.4.6 implies the limit of

Hp (Xl(k) @I, x® ®I,I®Y1,...,I®Ym,T>H
(mk®min%’7—k®30)*(0*(Zl)yel)
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as k — oo is

Hp(Xl ® I, o e 7Xn ® [,[ ® }/17 o .. 7[ ® Ym’T)H(m@mln%ﬂ'@QD)*(C*(zl),el)

for all p € C(ty,...,thims1) and for all T € C*(¢;). By using 7' = U where U is a unitary
as in Lemma 2.4.7 and by viewing (g, 7) * (B, ¢) and (A, 7) x (B, ¢) as C*-subalgebras of
(g Omin B, 7 @ @) * (C*(¢1),e1) and (A Quin B, 7 ® @) * (C*(£1), e1) respectively, the result
follows. 0

Just as Lemma 2.4.8 upgraded Lemma 2.4.6 to exact C*-algebras by use of Lemma 2.4.7
and tensor products, we will use Lemma 2.4.8 along with the following lemma involving

direct sums to prove Theorem 2.4.2.

Lemma 2.4.9. For i € {1,2} let (A;, ;) be non-commutative probability spaces. Let T :
A, B Ay — C be the state given by

(A1 © Ag) = 5(n () + 7a(4s)

fO?" all A1 € 911 and AQ € ﬂg.

Let Oy be the Cuntz algebra, let Fo be the canonical CAR C*-subalgebra of Os, let 7' :
Fo — C be the unique normalized trace on Fa, let £ : Oy — F5 be the canonical conditional

expectation of Oy onto Fo, and let 0 := 17" 0 & : Oy — C. Note o is a faithful state.

Let € be any C*-algebra with a state p such that there exists a unitary U € € such that

ple=wy is faithful, p(U) = 0, and the GNS representation of € with respect to p is faithful.

Then there exists an injective *-homomorphism

T (A, ) *x (™A, ) = (A DA) @ Or, TR 0) * (€, p)

and elements X, Y, Z,W € C* (IR0, €) C (A1 DU2) ® O, T®0)*(C, p) independent of the
choice of Ay and Ay such that m(Ay) = X (A1 B0)Y for all Ay € Ay and w(Ay) = Z(0d Ag)W
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for all Ay € As.
Proof. See [13, Lemma 5.6]. O

Proof of Theorem 2.4.2. For each k € N define the state ¢y : A & B, — C by
1
Vk(A® B) = §(Tk(f4) + ¢r(B))
for all A € A, and B € B, and define the state ¢ : A B — C by
1
Y(A® B) = 5(r(4) + ¢(B))

for all A € 2l and B € B. By the first and second assumptions of Theorem 2.4.2, it is clear
that
lim sup Hp (Xl(k) @0,..., X% 30,00v®,...0 @Yﬁ))‘

k—o0

A OBy,
is

[p(X180,....X,80,08Y1,...,08 Y, lyen

for all p € C(ty,...,tnrm) and by the third and fourth assumptions of Theorem 2.4.2

lim oy (p (XY 00, . XP@0,00v ", 00Y0))

k—o0
is
Y(p(X:190,...,X,00,00Y),...,00Y,))
for all p € C{t1, ..., thim),

Let S7 and S; be two isometries that generated the Cuntz algebra. Since O is exact, by
viewing A @ By € (A B Bi) Qmin O2 and A DB € (A D B) Qpin O2 canonically, the fourth

equivalence of Theorem 1.6.1 implies that

lim sup Hp (Xf’“’ 20,..., X% 30,00Y®,. .. 00 Y,g“,sl,sz)

k—o00

‘ (Qlk ®%k)®min02
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18

Hp (Xl @ 07 PR ,Xn @ 0,0 @ }/i, PR 70 @ Ym’ 817 S2>H(Ql®%)®nnn02

for all p € C(ty,..., thaimao)-

Let o be the faithful state from Lemma 2.4.9. Therefore
lim (i@ 0) (p (XP 00, XFP 20,007, 00Y,0,5,5))
—00

18

(w®0)(p<X1®07>Xn@070@}/1770@ym751752))

for all p € C(ty, ..., tnimyo) by the structure of the tensor products of states.

Let € = My(C), let p be the faithful normalized trace on €, and let

Since € can be generated by a single operator free from p, Lemma 2.4.8 implies if " € My (C)

and p € C(t1,...,tntm+s) then the norms of
p(Xf’”@o,...,X,g’f)@O,O@YJ"),...,O@Y;f),Sl,SZ,T)
in ((Ar & Bi) @umin O2, Y @ o) * (M3(C), p) converges to the norm of
p(X1®0,...,X,,®0,00Y1,...,00Y,,S51,5,7T)

in ((ADB) Ruin O2, Y R0 )% (My(C), p). Therefore the result clearly follows by the embedding
properties given by Lemma 2.4.9. [

Combining Theorem 2.1.2, Theorem 2.4.2, and Remarks 2.4.4, we have the following

analog of Lemma 1.6.2 for reduced free products.
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Corollary 2.4.10. Suppose that {Xi(k)} ,AXG ., and {Y;}™, are generators for the

1=

non-commutative probability spaces (Q[k,Tk), (A, 7), and (B, p) respectively and that

1. hmsupk—mo HQ< 1 7"-7 >H ”q Xl;an)HQ[ and
2. limg_oo T (q ((Xl(k), . ,Xﬁbk)))> =7(q(Xy,..., X,))

forall g € C{ty, ... t,). Let D be the unital C*-subalgebra of [];~, A generated by

{0,

and let J =D N (@1@1 QIk) Then J is an ideal of © such that ©/J ~ 2.

Let 0 : B — B(K) be the GNS representation of ¢ with unit cyclic vector n, let my :
A — B(Ho) be the GNS representation of T with unit cyclic vector &, let m : © — B(H;)
be a faithful, unital representation, let q : ® — A be the canonical quotient map, and let
mi=(mpoq)®m : D — B(Ho® Hi) which is a faithful, unital representation. Then there

exists an injective *-homomorphism

. (9777-75) * <%7 g, 77) N HkZI((Q(kJ Tk) * (%7 90))
(J) 0w D (RAr, ) * (B, 0))

such that

v (<Xi(k)>k21 * <3>®*%> N < : )k>1 * @ (Bl 72) * (B, 0))

k>1

forallie{l,...,n} and

P(B + (I)osn) = (Bliz1 + @ (A, 7) * (B, )

k>1

for all B € 5.

Recently in [55], Pisier has developed a direct proof of Theorem 2.4.2 using the non-

commutative Khintchine inequalities developed in [59]. Our original proof of Theorem 2.4.2
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did not allow the Y-variables to vary and it was observed that the above proof works in this

setting after [55].
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CHAPTER 3

Freely Independent Random Variables with

Non-Atomic Distributions

In this chapter, which is based on the author’s joint paper with his advisor [72], we examine
the distributions of non-commutative polynomials of non-atomic, freely independent random
variables. In particular, we obtain an analogue of the Strong Atiyah Conjecture for free
groups thus proving that the measure of each atom of any n x n matricial polynomial of
non-atomic, freely independent random variables is an integer multiple of n=!. In addition,
we show that the Cauchy transform of the distribution of any matricial polynomial of freely
independent semicircular variables is algebraic and thus the polynomial has a distribution

that is real-analytic except at a finite number of points.

3.1 Summary of Main Results on Distributions of Non-Atomic

Random Variables

One of the essential themes in the study of free probability [82] and its applications to
random matrix theory is to determine specific properties of the spectral distribution of a
fixed (matricial) polynomial in freely independent random variables. For example, some of
the earliest work in free probability theory concerns free convolution, which is the study of the
distribution of the polynomial P(X,Y) = X +Y in two freely independent random variables.
In particular, the recent paper [10] of Belinschi, Mai, and Speicher uses an analytic theory for
operator-valued additive free convolution and Anderson’s self-adjoint linearization trick to

provide an algorithm for determining distributions of arbitrary polynomials. Combining the
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previously known results from [54], [25], [1], and [66] along with the results contained in this
dissertation, we obtain the following summary of the known properties of distributions of
matrices whose entries are polynomials in several free variables (or, equivalently, polynomials

in free variables having matricial coefficients).

Theorem 3.1.1. Let Xq,...,X, be normal, freely independent random variables and let

[pij] be an € x € matriz whose entries are non-commuting polynomials in n variables and

their adjoints such that [p; j(X1,...,X,)] is normal. Then

1. if there ewists {d;}}_, C N such that the measure of each atom in the probability
distribution of X; is an integer multiple of %, then the measure of each atom in the

J
probability distribution of [p;;(X1,...,X,)| is an integer multiple of é where d =

H?:1 dj'
In particular,

2. if the probability distribution of each X, is non-atomic, then the measure of each atom

in the probability distribution of [p; ;(Xu,...,Xy)] is an integer multiple of %.

If, in addition, X1, ..., X, are freely independent semicircular variables or freely independent

Haar unitaries and [p; ;( X1, ..., X,)] is self-adjoint, then

3. the spectrum of [p; ;(X1,...,X,)] is a union of at most ¢ disjoint sets each of which is

either a closed interval or a point, and

4. the measure of each connected subset of the spectrum of [p; ;(X1, ..., X,)| is a multiple

of%.

Furthermore, if p is the spectral distribution of [p; ;(Xu,...,Xy,)], if K is the support of p,
and if G, 1s the Cauchy transform of u, then

5. G, is an algebraic formal power series and thus
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6. there exists a finite subset A of R such that if I is a connected component of R\ A and
|y is the restriction of p to I, then p|; = 0 whenever I\ K # 0 and if I C K, then

w|r has probability density function Im(g)|; where g is an analytic function defined on

W:={z€C | |Im(z)] <6}\ [ J{a—it | t €[0,00)}
acA
for some 6 > 0 such that g agrees with G,, on {z € C | 0 < Im(z) < 6} and for each
a € A there exists an N € N and an € > 0 such that (z —a)N g(2) admits an expansion
on WN{ze€C | |z—a|l <e} as a convergent power series in rn(z — a) where ry(2)

is the analytic N™-root of z defined with branch C\ {—it | t € [0,00)}.
Finally, if the support of p is contained in [0,00), then
7. limeo [ In(t) dp(t) > —oo.

In this theorem, by a polynomial in X7, ..., X,, we mean a fixed element of the x-algebra

generated by Xq,...,X,.

Parts (3) and (4) of Theorem 3.1.1 follow directly from [54, Corollary 3.2] which computes
the K-groups of C%,(F,), the reduced group C*-algebras of the free groups. The charac-
terization of the Ky-group immediately implies that the normalized trace of any projection
in M,(C*4(F,,)) is an integer multiple of ¢~!. Notice that part (4) of Theorem 3.1.1 does
not imply part (2) of Theorem 3.1.1 in the setting of part (4) as atoms may occur inside

a closed interval of the spectrum. Alternatively, these results were obtained using random

matrix techniques in [25].

Notice that part (2) of Theorem 3.1.1 applies when Xj,..., X, are freely independent
semicircular variables. Since freely independent semicircular variables describe the non-
commutative law of certain independent large random matrices (see [82]) we obtain the

following application to random matrix theory.

For each N € N let X;(N),..., X, (N) be self-adjoint Gaussian random matrices (or,

more generally, matrices with independent, identically distributed entries satisfying cer-
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tain moment conditions; see [82] or [34] for details) and let p be an arbitrary non-constant
non-commutative polynomial in n variables which is self-adjoint in the sense that Y (V) =
p(X1(N), ..., X,(NN)) is always a self-adjoint matrix. Let py be the empirical spectral mea-

sure of Y (V) (that is, uyla, b] is the average proportion of eigenvalues of Y (N) which lie in
[a, b]).

Corollary 3.1.2. With the notation as above, the measures py converge to a non-atomic

limiting measure .

Indeed, by a result of Voiculescu (see [82] or [34]), it is known that py converges weakly
to a measure p that is the law of p(Xy,..., X,) where X;,..., X, are freely independent
semicircular variables. Thus part (2) of Theorem 3.1.1 implies that x4 has no atoms provided

p is non-constant.

The motivation for the proof of Theorem 3.1.1 part (2) stems from the knowledge that the
statement of the theorem holds by the Strong Atiyah Conjecture for the free groups in the
case when X1, ..., X, are freely independent Haar unitaries. The Strong Atiyah Conjecture
(motivated by the work in [8] and proved for a class of groups that includes free groups by
Linnell in [43]; also see [44] and references therein) states that the kernel projection of an
arbitrary matrix with entries taken from the group ring CIF,, of a free group on n generators
must have integer von Neumann trace. To prove our theorem, we consider the analogue of
the Strong Atiyah Conjecture for x-subalgebras of a tracial von Neumann algebra. We call
this notion the Strong Atiyah Property (since it is known that the Strong Atiyah Conjecture
does not hold even for arbitrary group algebras; see [24] or [44] for example). It is not hard
to see that the Strong Atiyah Property holds for x-algebras generated by a single normal
element with non-atomic spectral measure. Our main result states that the Strong Atiyah
Property for x-algebras is stable under taking free products (in the sense of free probability
theory [82]) with the group algebra of a free group. Our proof closely follows [67] with the
main difference of being adapted for free products of algebras and not groups. Using this
result, we are able to conclude that the Strong Atiyah Property holds for any x-algebra

generated by Xi,..., X, provided that X; are free and each has a non-atomic distribution.
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The proof that part (5) of Theorem 3.1.1 is true in the case X, ..., X,, are freely inde-
pendent Haar unitaries is contained in the proof of [66, Theorem 3.6]. In Section 3.5 we will
adapt the proof of [66, Theorem 3.6] to the semicircular case (see Theorem 3.5.3). The main
idea of the proof is to use the fact that if a certain tracial map on formal power series in a
single variable with coefficients in a tracial x-algebra A maps rational formal power series
to algebraic formal power series, then the Cauchy transform of a measure associated to a
self-adjoint element of A is algebraic (see Lemma 3.5.6). The proof that the tracial map is as
desired in the case A is generated by semicircular variables follows from demonstrating that
a specific formal power series in non-commuting variables is algebraic via a specific property

of the semicircular variables (see Lemma 3.5.11).

It is an interesting question whether the Cauchy transform of any polynomial in freely
independent random variable X7, ..., X,, is algebraic provided the Cauchy transform of each
X is algebraic.

The question of whether the Cauchy transform of a measure is an algebraic power series as
in part (5) of Theorem 3.1.1 has previously been studied in particular cases. For example [56,
Example 3.8] demonstrates that the Cauchy transform of the quarter-circular distribution is
not algebraic. Furthermore [56, Corollary 9.5] demonstrates that if p and v are compactly
supported probability measures on R which have algebraic Cauchy transforms and are the
weak limits of the empirical spectral measures of N x N random matrices, then the free
additive convolution pH v (see [78]) is algebraic. Moreover, [56, Corollary 9.6] demonstrates
that if, in addition, p and v have support contained in the positive real axis, then the free
multiplicative convolution u X v (see [79]) is algebraic. This question was also considered in
[1] for limit laws of certain random matrices. In fact a result much like ours was hinted at in
that paper. Using [1, Theorem 2.9] we see that part (6) of Theorem 3.1.1 is implied by part
(5) of Theorem 3.1.1. In particular, part (6) of Theorem 3.1.1 directly provides information

about the probability density function of 1 by the Stietjes inversion formula.

Finally, in Section 3.5, we will prove part (7) of Theorem 3.1.1 by following the proof of

[66, Theorem 3.6] which demonstrates that if the Cauchy transform of a measure is algebraic,
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then the Novikov-Shubin invariants of the measure are non-zero. Our interest in part (7)
of Theorem 3.1.1 comes from the following question: if p is an arbitrary, non-constant, self-
adjoint polynomial in n free semicircular variables, must it be the case that the free entropy
(as defined in [80]) of p is finite? Indeed elementary arguments may be used to show that if
S is a semicircular variable and p is a non-constant polynomial such that p(S) is self-adjoint,
then the spectral measure of p(S) has finite free entropy. Further evidence that this must be
true comes from a strengthened version of part (2) of Theorem 3.1.1 for matrices of the form
[pi ;] where each p; ; € alg(S,...,S,)®alg(5h,...,S,), which we prove below. In particular,
it follows that the vector of non-commutative difference quotients JP := [0, P,...,0,P] (see
[81]) has maximal rank whenever P is a non-constant, non-commutative polynomial in n

free semicircular variables.

Given the success of [10] in providing an algorithm for determining the distributions of
(matricial) polynomials in semicircular variables, it would also be of interest if an alternate

proof of Theorem 3.1.1 could be constructed using the ideas and techniques from [10].

3.2 The Atiyah Property for Tracial x-Algebras

In this section we will introduce the notion of the Atiyah Property for tracial x-algebra. In
addition, several examples of tracial x-algebras that satisfy the Atiyah Property, which will

be of use in Section 3.3, will be provided.

If / € N and 7 is a linear functional on an algebra A, then 7, will denote the linear

functional on M,(.A) given by

for all [A; ;] € My(A). Notice that if 7 is tracial (that is, 7(AB) = 7(BA) for all A, B € A),

then 7 is tracial.

Definition 3.2.1. Let A be a x-subalgebra of B(H), let 7 be a vector state that is tracial on

A, and let T" be an additive subgroup of R containing Z. We say that (A, 7) has the Atiyah
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Property with group I' if for any n,m € N and A € M,,,(A) the kernel of the induced
operator Ly : HP — H®™ given by La(£) = A€ satisfies 7,,(ker(L4)) € T. We say that
(A, 7) has the Strong Atiyah Property if (A, 7) has the Atiyah Property with group Z.

Of course the case that I' = R is of no interest in the above definition. By the fact that
ker(Ls) = ker(La-4), it suffices to consider n = m in the above definition. In this case it
is easy to see that ker(L,) = m so we may replace kernels with images in the above
definition. Furthermore, if A is equipped with a C*-norm and 7 is faithful on the C*-algebra

generated by A, the tracial representation of A C B(H) clearly does not matter.

It is clear that if G is a group that satisfies the Strong Atiyah Conjecture (e.g. any free
group) and 7¢ is the canonical tracial state on L(G) (the group von Neumann algebra),
then (CG, 7¢) has the Strong Atiyah Property. The following provides examples of a tracial
x-algebras that have the Atiyah Property. In particular, the following result implies that the
tracial x-algebra generated by a single semicircular variable has the Strong Atiyah Property

with respect to the canonical tracial state (see [82] or [34]).

Lemma 3.2.2. Let u be a compactly supported probability measure on C. Let I' be the
topological closure of the additive subgroup of R generated by 1 and the measures of the
atoms of u and let (A, T) be the tracial x-subalgebra of Loo(p) C B(La(p)) generated by

multiplication by polynomials with trace

r(,) = [ pan
C
Then (A, 1) has the Atiyah Property with group T

Proof. Let 0, denote the point-mass measure at ¢ € C. Then we can write

u:y—i-Zatét
t

where v is a non-atomic, compactly supported measure on C and «; € T" for all £. Therefore

v(C) € I by the construction of I
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To see that (A, 7) has the Atiyah Property with group I', fix £ € N and let [A; ;] € M,(A).
Viewing each A, ; as a polynomial, we can view [A4; ;] as a measureable function from C to
M,(C). Moreover, if P is the projection onto the image of [A;;] (which is in the von
Neumann algebra generated by M,(A) and thus is in L. (1)@ M,(C)) and P, € M,(C) is
the projection onto the image of [4;;(t)], it is elementary to see that P(t) = P, p-almost

everywhere. Hence
mmzémmmwwzﬁmﬂmwmww

Recall the rank of a matrix M € M,;(C) may be obtained by computing the maximum
size of a submatrix with non-zero determinant. However, the pointwise determinant of
submatrices of [4; ;(¢)] is a polynomial in ¢ and thus is either zero everywhere or non-zero
except at a finite number of points. Hence we obtain that ¢ — rank([4;;(¢)]) is an integer-
valued function that is constant except at a finite number of points which may or may not be
atoms of . It is then easy to deduce that 7,(P) is an integer-valued combination of elements

of I and thus lies in T". O

Extending these integration techniques, we obtain the following result for the product of
measures on C. Notice that the tracial x-algebra constructed is the tensor product of tracial

x-algebras from Lemma 3.2.2.

Lemma 3.2.3. Let n € N and let {uj}?zl be non-atomic, compactly supported probability
measures on C. Let p be the product measure of {;}5_, and let (A, 7) be the tracial x-algebra

generated by multiplication by the coordinate functions {x;}"_, with trace

T(My) = . fdp.

Then (A, 1) has the Strong Atiyah Property .

Proof. We claim that if p(z1,...,x,) is a polynomial and V' is the zero set of p(zy,...,z,),

then p(V) € {0,1} and (V') = 1 only occurs when p(z1, ..., z,) is the zero polynomial. To
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prove this claim, we proceed by induction on n with the case n = 1 following from Lemma
3.2.2. Suppose the claim holds for n — 1. Let p(x1,...,z,) be any polynomial and let v
be the product measure of {s; ?;11 Clearly the claim is trivial if p(z1,...,x,) is the zero

polynomial so suppose p(z1, ..., x,) is not the zero polynomial. For each t € C let
Vi={(x1,...,20-1) € C" | p(x1,...,20-1,t) = 0}.

Therefore the zero set of p(x1,...,2y) is U,ec Vi and v(V;) € {0,1} for each ¢ € C by the

induction hypothesis. If v(V;) = 1, then p(xy, ..., x,_1,t) must be the zero polynomial which

implies z,, — t divides p(xy, ..., x,) since we can write
n—1 '
p($1’ e ’x") - Z Zpi17-~-7in—1(xn)xlll o x;n—_ll
k=1 i, >0
where p;, ;. , are polynomials and if p;, ; ,(t) # 0 for at least one 4y,...,7,_1, then
clearly p(x1,...,x,_1,t) would not be the zero polynomial. By degree arguments there are

at most a finite number of ¢t € C such that z,, —t divides p(zy, ..., x,) so v(V;) = 0 except for
a finite number of t € C. Since u,, contains no atoms, by integrating using Fubini’s Theorem

we easily obtain that the zero set of p(xy,...,z,) has zero py-measure as desired.

To see that (A, 7) has the Strong Atiyah Property, fix £ € N and let [A4; ;] € M,(A).
Thus each A; ; is a multivariable polynomial. If P is the projection onto the image of [4, ],

then, as in the proof of Lemma 3.2.2, we obtain that

7(P) = /n rank([A; ;(t1, ..., tn)]) du(te, ... t,).

Since the rank of a matrix can be determined by computing the largest non-zero deter-

minant of a submatrix and since the determinant of any submatrix of [A; ;(z1,...,2,)] is
a polynomial in xy,...,x, whose zero set either has zero or full y-measure, the result is
complete. O
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Next we endeavour to extend the above result to include compactly supported probability
measures on R that have atoms. We will only focus on measures with atoms that lie in certain

subgroups of Q since the main result of Section 3.3 will also only apply to these groups.

To discuss such measures, for an additive subgroup I' of Q and a d € N we define

1 1
—I'i=4q= r

which is clearly an additive subgroup of Q that contains Z if I" contains Z. As such, the

following result is trivial.

Lemma 3.2.4. Let (A, 7) be a tracial x-algebra that has the Atiyah Property with group T’
and let ¢ € N. Then (My(A), $7¢) has the Atiyah Property with group 1.

Theorem 3.2.5. Let n € N and let {y; i1 be compactly supported probability measures on
C. Let pu be the product measure of {u;}5_, and let (A, 7) be the tracial x-algebra generated

by multiplication by the coordinate functions {xj};-‘zl with trace

T(My) = . fdu.

Suppose for each j € {1,...,n} there exists a d; € N such that the atoms of j1; have measures

contained in dijZ. Ifd .= H?Zl d;, then (A, T) has the Atiyah Property with group c—liZ.

Proof. By assumptions, for each j € {1,...,n} we can write

Qg
=Y b,
k J

where d; represents the point-mass probability measure at ¢, the sum is finite, ap € N,
tey 7 t, if ki # ko, and g is an non-atomic measure. Notice u(C) € dijZ. Let iy := u,,;(c)u;’
if 4 # 0 and let p be the Lebesgue measure on [0, 1] if 4} = 0. Therefore the tracial -
algebra generated by polynomials acting on Lo(p;) can represented a tracial *-algebra of

diagonal matrices in M, (B(Lz(4;)) (with respect to the canonical normalized matrix trace)
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where the polynomial # maps to the matrix with = appearing on the diagonal d;17/(C) times
and each t; appearing on the diagonal a4 times.

n

Let p' be the product measure of {p;}%_,

and let (A, 7,) be the tracial -algebra gener-
ated by multiplication by the coordinate functions {z;}7_, with trace 7,(My) = [.. fdy'. By
taking tensor products of the tracial x-algebras generated by polynomials acting on La(f;),
it is easily seen using the above representations that (A4, 7) can be represented in the tracial
s-algebra (Mg(Au), 5(7)4). Since Lemma 3.2.3 implies (A, 7,/) has the Strong Atiyah
Property, Lemma 3.2.4 implies (Mgy(A,/), 3(7,v)4) has the Atiyah Property with group 37

completing the proof. n

3.3 Atiyah Property for Freely Independent Random Variables

The goal of this section is to use the Atiyah Property for tracial x-algebras to gain information
about the distributions of matricial polynomials of freely independent random variables. In
particular, Theorem 3.3.1 will enable the extensions of the results from Section 3.2 to the
non-commutative setting as seen in Theorem 3.3.4 thus completing the proof of part (1) of
Theorem 3.1.1. The proof of Theorem 3.3.1, which is based on the proof of [67, Proposition
3] (or the updated version [68, Proposition 6.1]), will be postponed until the next section in

order to focus on the applications of Theorem 3.3.1.

Recall that given unital x-algebras A; C B(H;) with vector states 7; that are tracial on
A;, we can consider the x-subalgebra A; * A, inside the reduced free product C*-algebra
(B(H1),71)* (B(Hz), 2) generated by A; and A,. The canonical vector state 7y % 75 is then a
tracial state on Aj; x Ay (see [82] or [34]). Similarly we can consider the x-subalgebra A; ® A,
inside the C*-algebra B(H; ® Hs) generated by T'® I3, and Iy, ® S for all T € A; and

S € A;. With this notation, it is easy to state the following technical result.

Theorem 3.3.1. Letn € N, let F,, be the free group on n generators, let CF,, be the group *-
algebra equipped with the C*-norm defined by the left reqular representation, and let Ty, be the

canonical trace on L(F,). Let A and B be x-subalgebras of the tracial von Neumann algebras
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with separable preduals (MM, 7on) and (N, T) respectively. Suppose that (A © B, t;m®@Ty) has
the Atiyah Property with group 7 for some d € N. Then ((A* CF,) © B, (Ton * 75, )®@Tn)
has the Atiyah Property with group éZ.

Clearly Theorem 3.3.1 implies the following two results.

Corollary 3.3.2. If A and B are as in Theorem 3.3.1 and n,m € N, then ((A*xCF,) ® (B *

CF.,), (Ton * 7w, )@ (7o * 75,,)) has the Atiyah Property with group 7.

Proof. This is a simple application of Theorem 3.3.1 twice using A = B and B = A * CF,,

the second time. O

Corollary 3.3.3. Let A be a x-subalgebra of a tracial von Neumann algebra with separable
predual (M, Tor). Suppose (A, mom) has the Atiyah Property with group éZ for some d € N.
Then (A % CF,,, 7on * r,) has the Atiyah Property with group éZ.

Proof. Take B = C in Theorem 3.3.1. O

Using Theorem 3.3.1 along with the examples of Section 3.2, we obtain the following
result which provides important information about the spectral distributions of matricial

polynomials of normal, freely independent random variables.

Theorem 3.3.4. Let n € N and let X4,..., X, be normal, freely independent random vari-
ables with probability measures p; as distribution respectively. Suppose for eachj € {1,...,n}
there exists a d; € N such that the atoms of p1; have measures contained in dijZ. If A is the
unital x-algebra generated by X1, ..., X, (obtained by taking a reduced free product of tracial
x-algebras), T is the canonical trace on A, and d = H?’Zl d;, then (A,T) has the Atiyah
Property with group éZ.

Furthermore, if [p; ;| is an € x £ matriz whose entries are non-commutative polynomials

in n variables and their adjoints such that [p; j(X1,...,X,)] is normal, then the measure of

any atom of the spectral distribution of [p; ;(Xu, ..., X, )] with respect to the normalized trace

1

;Te 1S N deZ'
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Proof. Let ju be the product measure of {y1;}7_; and let (Ag, 70) be the tracial *-algebra gen-
erated by multiplication by the coordinate functions {z;}7_; on La(u) with trace 7o(M) =
an fdp. Clearly each X; has a representation in .4, as multiplication by the coordinate
function z; so we will view X; € Ay for all j € {1,...,n}. Let U := A(1) be the canonical
generating unitary operator for L(Z). Then it is easy to see that X7, UX,U*, ..., U" X, (U")*
are freely independent in A * CZ with respect to the trace 7y * 72. However, since (Ao, 1)
has the Atiyah Property with group éZ by Theorem 3.2.5, (Ag * CZ, 79 % 77) has the Atiyah
Property with group 37 by Theorem 3.3.1. Hence (A, 7) has the Atiyah Property with group

éZ by taking the canonical isomorphism of tracial *-algebras.

Next suppose that [p; ;| is an £ x £ matrix whose entries are non-commutative polynomials
in n variables and their adjoints such that [p; j(Xi,...,X,)] is normal and the spectral
distribution of [p; ;(X1, ..., X,,)] has an atom. By translation we may assume that this atom
occurs at zero and thus corresponds to the kernel projection of [p; j(Xy,...,X,)]. Since
(A, 7) has the Atiyah Property with group %IZ we obtain that the measure of the atom is in
iZ. O

As an application of the above result, we recall that Voiculescu developed in [78] the
notion of the additive free product of measures in which if {X;}"_, are self-adjoint, freely
independent random variables with probability measures p; as distribution respectively, then
the additive free product measure p := puy B --- H p, is the distribution of X; 4+ --- 4+ X,
in the reduced free product C*-algebra. Hence Theorem 3.3.4 implies the following specific
case of [11, Theorem 7.4].

Corollary 3.3.5 (see [11, Theorem 7.4]). If n € N and {u1;}7_, are non-atomic, compactly

supported probability measures on R, then py B -- -8B u, has no atoms.

Proof. Since each p; contains no atoms, we can apply Theorem 3.3.4 to conclude that p :=
w1 B - - - B p, may only have atoms in Z. Since p is a probability measure, if 4 has an atom,
then p must be a point-mass measure which would imply that X; +--- 4+ X,, = ol for some

a € R contradicting the fact that X, ..., X,, are freely independent. O
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To complete this section, we can extend Theorem 3.3.4 to tensor products of tracial

x-algebras generated by self-adjoint, freely independent random variables.

Corollary 3.3.6. Let n,m € N and let Xy,...,X, and Yy,...,Y,, be collections of nor-
mal, freely independent random variables with probability measures p; and vy, as distribution
respectively. Let (A, 74) and (B,7g) be the tracial *-algebras generated by the reduced free
products of { X1, ..., X,} and {Y1,...,Y,,} respectively. Suppose for each j € {1,...,n} and
ke {1,...,m} there exists a d;,dj, € N such that the atoms of p; and vy have measures

contained in dijZ and iz respectively. If

d=]d ]
k=1

j=1
then (A ® B, 7487g) has the Atiyah Property with group 7.

Proof. Let p be the product measure of {y;}7_; and let v be the product measure of {vy };L,.
Let (Ao, 740) be the tracial *-algebra generated by multiplication by the coordinate func-
tions {x;}}_, on Ly(u) with trace 740(My) = [o. fdp and let (By,750) be the tracial
x-algebra generated by multiplication by the coordinate functions {yx}pr, on Lo(v) with
trace 1p0(My) = me fdv. Therefore (Ag ® By, T40@780) has the Atiyah Property with
group éZ by Theorem 3.2.5. The remainder of the proof follows the proof of Theorem 3.3.4
by an application of Corollary 3.3.2. O

Notice that Corollary 3.3.6 has the following interesting application. For any n,m €
Nlet P,...,P, € A = alg(Si,...,S,) be polynomials in n free semicircular variables
S1,...,S, and let 9; be the non-commutative difference quotient derivations (see [81]). Let
JP := [0;P}];; which is an n X m matrix with entries in A ® A. The matrix JP is the
non-commutative Jacobian of P := (P,..., P,;). We define the rank of JP to be the (non-

normalized) trace of its image projection in M,,(W*(A® A)).

Corollary 3.3.7. With the above notation, rank(JP) € {0,1,...,min(m,n)}. In particular,
if {P;}jL, are not all constant, then rank(JP) > 1.
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3.4 Proof of Theorem 3.3.1

This section is devoted to the proof of Theorem 3.3.1, which underlies all results of Section
3.3. Our proof is essentially the same as the argument of Schick in [67] adapted for the case
of algebras. This proof has themes similar to those used in [58, Lemma 10.43], which makes
use of the notion of a Fredholm module to show that the free groups satisfy the Strong
Atiyah Conjecture. The idea of applying Fredholm modules has its roots in a proof of the

Kadison Conjecture for free groups on two generators from [15].

Proof of Theorem 3.3.1. Let H := Lo(9M, 79n). Thus 9 has left and right actions on H.
Similarly, let K := Ly(9, 7y). For a right-(OM®IT)?* invariant subspace £ of (H @ K)¥, we
define

dimgrgn (L) = troggm(Q) = (Tm®@70)e(Q)

where @ is the orthogonal projection onto £ (which is an element of M,(9MM@N) acting on
the left).

For later convenience we desire to construct a certain isomorphism of Hilbert spaces that
commonly appears in the proof that F,, satisfies the Strong Atiyah Conjecture. We desire a
bijection

b {6 | heF\{e}} = (G @e | heF,ic{l,....n}}

(where {e;}?_, are the canonical orthonormal basis for C") as this will clearly produce a

unitary operator

v gQ(Fn) © ((C(Se) — gz(Fn) ® C".

Let {u;}"; be generators for F,. Consider the Cayley graph of F,, with edges {g, gu;}. For
each h € F,, \ {e} let e(h) be the first edge of the geodesic from h to e. Thus we may write
e(h) = {vo(h), Yo(h)uymn} for some r(h) € {1,...,n}. Thus if we define

Y(On) = dyo(n) @ €r(ny,
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we clearly obtain a bijection.
Let A denote the left regular representation of F,, on ¢5(F,). We claim that ¥ has the

property that for each 7' € CF,, the set of {05 }rer,\ (e} such that W(A(T)d) does not make
sense (i.e. (A(T)0p,d.) # 0) or

U(A(T)on) # (MT) @ Icn)¥(0n)

is finite. To see this notice for fixed g, h € F,, the only way that A(g)(dn) ¢ ¢2(F,,) © (Cé.) is
if gh = e and the only way that W(A(g)dn) # (A(g) ® Icn)¥(d) can occur is if when reducing
gh a term from g cancels the second-last letter in A (which occurs for a finite number of h

for a given g). Thus the claim follows by the linearity of W.

Let {(;},ez be any orthonormal basis for K with ¢, a trace vector. We claim we may
assume that there exists an orthonormal basis {¢;};ez of H such that & is a trace vector

and

{k€Z | (T¢,&)n # 0}

is finite for each j € Z and T" € A. To see this, we first may assume that A is finitely
generated by self-adjoint operators { A}, since we need only check the Atiyah Property
for one matrix with entries in (A CF,) ® B at a time and a finite number of elements of A
will appear. If {¢};cz is any orthonormal basis of H with {; = & a trace vector, then the

desired basis will be produced by applying the Gram-Schmidt Orthogonalization Process to
{Ai1 tee AZm&; | ] S Z,m eNuU {O}, {Zk}znzl g {1, c. ,n}}

starting with &.

Recall (A x CF,,) ® B acts on ((H,&) * ((2(F,),0.)) ® K and

(. 60) * (62(Fa),0.) = Co @ (D @3, @) @ (PCEu 06 @)
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(where £ = d.) where all the tensors in the direct sums have finite length (ending at any
point), alternate between basis elements of H and (»(F,,), jr € N, i, € Z\ {0}, and gi, € F,,\
{e}. Notice that the union of the vectors used in the above definition of (H,&y) * (¢2(Fy,), de)
is an orthonormal basis for (H, &) * ((2(F,), d.). For convenience of notation, {®dy, ®- - - :=

Sp @y @0y, Q& =+ ®0,,,and -+ ®E, R =+ Q.

Define the Hilbert spaces

L= ((H,&) * (6(F,),6.)) ©K and L_:= (L. @C"@H)® (HK).

Notice that (A x CF,) ® B has a canonical left action on £ and thus induces a canonical
left action on £_ by letting an operator 7' € (A CF,) ® B act via (T'® Icn ® I3) ©0. Thus
we may view £, and L£_ as left (A * CF,) ® B-modules. Similarly, &M has a canonical
right action on H ® K and thus on £ by

(- @0y, ©&, @OT = -+ @0, @ ((§,, @ )T))

for all ¢ € K. Hence L, is also a right M&@M-module. It is clear that the right action of
M@ and the left action of (A * CF,) ® B on £, commute.

We desire to construct a bijection ¢ between the canonical basis elements of £, and £_

which will induce a unitary operator ® : £, — L£_. It is clear that if A := Ay U A" where
Ao ={§ ® (j}jjrez and

m > 1, {ge}7e, € Fn \ {e},

Ni=q(®0,®  ®0, ®&,)0¢G | } o
Jos Jms J' € Ly {jr}eey € Z\ {0}

then A is an orthonormal basis of £, . Furthermore

O ={00 (@)} jezU{n®e®)®0 | neljeZic{l,...,n}}
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is an orthonormal basis of £_. Define ¢ : A — O by defining ¢|5, via

P& ®¢r) =08 (§® ()
for all 7, 7" € Z and by defining ¢|5s via the following rule: for

define

¢(n) = (((gjo ® 691 ® e ® 5977171 ® gjmfl ® 5w0(gm)> ® CJ’) ® er(gm) ® é.]m) EB 0

(where if ¥g(g,,) = e, we reduce the length of the first tensor by removing d.). Since ¥ is a
bijection on the given basis elements, it is elementary to verify that ¢ is a bijection and thus

induces a Hilbert space isomorphism ® : £, — £_.

Define a right 9M®@N-module structure on £_ by defining nT := ®((®~1(n))T) for all
T € MM and n € L_. Tt is easy to see that

(M@ei@&)®(§RGNNT ®S)=nIy®S)®@e®&§T) ® (§T @ (;S)

forall T € M and S € N. Hence 0 (H® K) and (L, @ C*" @ H) @ 0 are a right MIN-
invariant subspace of £_. It is clear that the right action of 9®9 on L£_ commutes with

the left action of (A CF,) ®© Bon L_.

Define = to be the union of {{y ® (o} with

m > 1, {ge}ils € Fu \ {e},

(gjo ® 591 &R gjm—l ® 59777,) ® CO » vt
jo € Z, {jr}rsy € Z\ {0}

It is clear that = is a set of orthonormal vectors in £, each of which generates a one-9M®MN-

dimensional right 9T®@M-submodule of £, that are pairwise orthogonal and whose union is
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dense in L (as & and (, are cyclic vectors for the right actions). By the definition of ® it is
clear that ®(Z) is a set of orthonormal vectors in £_ each of which generates a one-9M®@MN-
dimensional right MM®@MN-submodule of £_ that are pairwise orthogonal and whose union is

dense in L£_.

We claim if 7" € (A * CF,,) ® B, then

{§ €21 (T€,& @ Gyhe, # 0 for some j, i € Z or D(T'(€)) # T(2(S))}

is a finite subset (containing &;). By linearity it suffices to prove the claim when T is a
product of elements from AUBU{A(h)}rer, . First we will prove the claim when 7" € AUB.
However, it clearly follows that (T'€,&; ® (jr)z, # 0 for some j, 5" € Z or ®(T'(&)) # TP(§)
only if £ = & ® (p.

Next we will prove the claim for T € {A(h) }rer,\(e}- Fix h € Fy,, fix T'= A(h), and fix

§=Ej,®05 @&, ®dg,, ®G €2\ {® (o}

If m>1orjy#0, then (T€,§; ® (;) =0 for all j,5' € Z and ®(T'(§)) = T(P(&)) are clear.
Otherwise £ = 0,4, ® (o and it clear that (T¢,&; ® ;) # 0 for some j, 5’ € Z only if hg; = e
and O(7'(§)) = T(P(&)) unless ¥(T6,,) # (T ® Icn)W¥(dy, ). Since the number of such gy is

finite, the claim holds in this case.

Next notice for any element ¢ € = and any element 7" of AU {A(h)}ner, that T¢ is a
finite linear combination of elements of = U {{; ® (o}jez by the choice of the orthonormal
basis {{;}jez. Furthermore, for any element { € Z U {{; ® (o};ez and any element T of
AU {A(h)}her, there are only a finite number of elements n of = such that (T'n, )., # 0.
Therefore if T3, ..., T, € AU{A(h) }rer,, then the set of all £ € = such that (T3 ---T,, & ®
Cir)e, # 0 for some j,j' € Z, (Tn - - - 1,6, & @) o, # 0 for some j, j' € Z, or &(T4 - - - T,£) #
TiO(Ty -+ - T,€) is finite. Thus the claim then follows by recursion and the fact that the

B-operator commute with elements of A x CF,, and with &.
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The above construction show that we have two representations of (A x CF, ) ® B that
differ by a A ® B-finite rank operator. In order to complete the proof, we need a way to

analyze the trace of such operators. Fix ¢ € N and fix
A :=1[4;,] € M((AxCF,)® B).

The left actions of (A * CF,) ® B on L. allows A to act on £Z*. Let AL be the left action
of Aon £ and let Py € B(LE") be the projection onto the image of A.. Thus we desire
to show that ((7on * 7r, )®7m)e(P4) € 1Z. Since the right action of MM on L. commutes
with the left action of (A*CF,,) ® B, we easily obtain that all operators under consideration

commute with the diagonal right action of 9t®9% on these spaces.

Notice that there are only finitely many elements of (A * CF,,) ® B that appear in A. For

each of these elements 7', we recall that

[ €2 | (T€6,&® (e, #0 for some j,j' € Z or B(T(E)) £ T(D(E)}

is finite. Let £y be the finite MRIN-dimensional right M@N-submodule of L, spanned by
the vectors that appear in the above set for at least one T' € (A x CF,,) ® B appearing in A.
Thus L . := L4 & L4 is a right M@N-submodule of L.

Let £_. := ®(L; ), which is a right M@N-submodule of £_. Therefore, since L4
contained all £ € = where ®(T'(§)) # T(P(€)) for some T € (A x CF,) ® B appearing in A
and since the right 9t®@MN-actions commutes with the left action of 7" and with ®, we clearly
obtain that

Agle, =0 oA o, .

By progressively adding the right 9T®@91-submodule of £, generated by a single element

of = we can choose an increasing sequence

LioCLi1CLpC--CLy
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of finite MRN-dimensional right M@N-submodules of L, such that

Lo=JcLy,
Jj=0
Let £_ ;= ®(L, ;) for all j € NU{0}. Hence each £_ is a right M@N-submodule of £_
generated by a finite number of elements of ®(=Z). Notice that Ay C L, 980 0B (H® K) C

L_ . By construction, it is clear that

A (L8 = An(LE).

>0

For each j € NU {0} let P, ; be the orthogonal projections onto A, (Lffj).

Since only finitely many elements of (A * CF,) ® B appear in A, by our selection right
M9-modules generated by elements of = we see that A, has finite propagation; that is, for
every j € N there exists an n; € N such that A+(£f£j) C ﬁi‘ffnj. Indeed an element of B does
not modify the submodule, {\(h)}ner, permutes the elements of Z, and an element of A
maps an element of = to at most a finite-9RN-dimensional MRD-module by the choice of
the basis {{;}jez. Similarly, as the left action of (A*CF,) ® B on £_ has the same form and
the right MM®@NM-modules L£_ ; are generated by elements of (=), A_ also has propagation

so we may assume that A_(£%) C Ee_afnj by choosing n; sufficiently large.

The above allows us to view Ai(ﬁifj) as images of rectangular matrices with entries in
A® B acting on the left from (H®K)®% to (H® K)#Ps for some appropriate choice of ¢; and
p;. Indeed an element from CF,, acting on an element of = or ®(Z) acts as a scalar matrix
since {\(h)}ner, sends the right M@N-basis vectors = and P(Z) to scalar multiples of other
elements of = and ®(Z) respectively. Furthermore, each element 7" € A acts by the usual left
action of Aon H C L, (which corresponds to the action of A® Ic on the right M®@N-module
generated by {, ® (y € Z) and otherwise act by sending the other elements of = and every
element of ®(Z) to a finite linear combination of elements of = and ®(Z) respectively and

thus can be viewed as scalar matrices on these right 2-modules. Furthermore, it is clear that
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an element of B acts via I3; ® B on each of the one-9M®@NM-dimensional right M@I-modules
spanned by an element of = or ®(Z). Thus the claim follows. Therefore, since A ® B has

the Atiyah Property with group éZ, we obtain that
: or 1
trm@m(PiJ) = dlmgm(Ai(EiJ» € ZZZ

Notice that

Ai([,i’eo), Aﬂ:(£$,éc)7 and each A:I:(('C:I:,j N £+7C>EB€)

are all closed right M®@N-modules (note Ly ;N Ly, =Ly ;6 L1). We claim that

dimgypzn (Aiwi%) N Ai(£$i)>

= 1im; e itz (A+(£E0) N A((Laj N L20)®)) -

To see this, it suffices by the continuity of von Neumann dimension (see [44, proof of Theorem

1.12]) to show that

AL N AL(LEY) = | AL NAL((Ley N Li o))

7>0

To see this, notice one inclusion is trivial. For the other inclusion, recall that A4 has finite

propagation so there exists an ng € N such that Ai(ﬁﬁeo) c Ly o

As(LE0) NAL(LE,) = AL(LE0) N LT, NAL(LE)

(£20) N £, 0 Uy As((Ley 0 L))

Ax
Ax

We claim that

L3 (U AL((Le;N ﬁi,d“)) L2 N AL(Lim N L )®)

Jj=1

for some sufficiently large m € N. Specifically, to choose m, we notice, by the same arguments
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that ® almost commutes with the left actions, that there exists an m € N such that if
N € Lymir© Ly, for any k> 1, then every entry of A applied to 7 is orthogonal to L4 ,,
(that is, there are a finite number of elements 7 of = for which there is an entry 7" in A such

that T'n has non-zero inner product with an element of L4 ,,, NZ). To see the above equality

for this m € N, we notice that one inclusion is trivial. For the other inclusion, fix

¢eLt n <U As((LyyN .ci,c)@f)> .

j=1
Thus there exists n; € (L4, N L4 ;)P such that & = lim;_,o, Ayn;. Therefore, if P is the

projection of £, onto (L4, N Ly .)®, then

An; = A(Pn;) + wy

4

L .
'no) - Therefore, since

where w; € (LS

lim Ayn, =€ e £
j—>00 i/r]] 5 :I:,'n,O?

we obtain that lim; . w; = 0 and & = lim; ,o A(P¢;) where P(; € (Liy N Lo )% as

desired. Hence the claim is complete. Thus

AL (LY N AL(LY) = ALY N L, NAL((Lam N Ly )
= AL (LYY NAL(Lom N L))
C U0 A+ (LE%) N AL((Lry N L o))

which completes the claim.

Let Py . to be the orthogonal projections onto Ay (£$) and for each j € NU {0} let

Py ;. be the orthogonal projection onto Ay (L4 ; N Ly ). Notice that Py . and each Py ;.

need not be in the von Neumann algebra generated by M,((A % CF,,) ® B) but do commute
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with the right 9dT®@-action on their respective spaces. Since
A+’£+,c =d oA o ®|L+,c7

we obtain that P, j,=® 1o P_;.0® forall j e NU{0} and P, ,=® o P_.o®. Hence

(Pyen,m) poe = (P c®(), ®(n)) coe and (Py jen,m) poe = (P c®(n), D)) por

for all j € NU {0} and n € £Z".

Let Q4 := Py — Py . and for each j € NU {0} define Q. ; := Py ; — Py ;.. Clearly these
are projections onto the complements of smaller projections in larger projections. We claim

that

tronan(Q+) = jﬁ_glo tropzn (Q+5)-

To begin, let Ay denote the restriction of Ay to Eigg. We claim for each fixed j € N that

Ay ——
0 — ker(Qx;Ag) — L4 P25 Tn(Qx,) — 0

is a weakly exact sequence (that is, the images are dense in the kernels). To see this, it
suffices to check weak exactness at Im(Qy ;). It is clear that QiJ(Ai(Eifj)) is dense in

Im(Qx+, ;). However

A (LY)) = Ac(LL0) + AL((Liy N L))

and it is clear that Q4 ;(A((L+; N L+ .)®%)) = 0. Thus Qij(Ai(EffO)) = Qij(Ai(ﬁffj)) is
dense in Im(Q)4 ;). Since each term in the weak exact sequence is a right M®@M-module and
weak exact sequence preserve M@IN-dimension (see [44, proof of Theorem 1.12]), we obtain

that

dimyygn(L£25) = dimgpgn (Im(Qx ;) + dimgpgn (ker(Q+ jAo))
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(which are all finite as dimgygn(£3) is finite by construction). Furthermore, it is clear that

ker(QjAo) = {n € LLY | Qx40 =0}

Hence the sequence

0 —> ker(Ag) — ker(Q+;jAg) =% AL (L35 Nker(Qx ;) — 0

is weakly exact. This implies the sequence

0 — ker(Ag) — ker(Qu;4g) 2% A4 (LEY) N AL((Lry N Ly )?) — 0

is a weakly exact sequence since it is elementary to verify that

AL (LE5) Nker(Qx ) = A (L35) NAL((Le; N Ly o)),

Hence we obtain that

dimgygn (ker(Q+ ;4o))
= dlmm@m(ker(Ao)) + dlmmgm (Ai(ﬁiﬁ]) N Aj:((L:I:,j N Li,c)@z)) .

By combining the two above dimension equations we obtain that

dimm@m(lm(Qi,j)) = dimsm@n(ﬁiéo) — dimgygy (ker(Ao))
—dimaygm (A£(£20) N Ax(Lay N L))

for each j € N. Similarly, by repeating the same arguments we obtain that

dimgygn(Im(Q4)) = dimm@m(ﬁiﬁ)) — dimgygn (ker(Ap))

~dimp (A=(£20) N AL((L20)™))

Therefore, as all the terms in the above dimension equations are finite (in fact bounded by
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dimsm@ﬂ (ﬁieo)) )

trgam(Q+) = dimggn(In(Q+))

= lim;_, o dimgpgn(Im(Qx ;) = Hm o0 trogm(@+,;)-
We will now use = and ®(Z) to compute traces. For each n € = and i € {1,...,(} let
n = (0,0,...,0,7,0,...,0) € LY
where 7 is in the i*® spot and similarly let

o(n;) = (0,...,0,6(n),0,...,0) € L.

Since Z and ®(Z) are orthonormal M®N-bases for L, and L_ respectively, we easily obtain

that ,
tropan(Q+) = Z Z(Qﬂh‘; 7h‘>cﬂj‘

nes i=1

and
¢

tronsm(Q-) = Z Z(Q-qﬁ(m), O(1:)) poe-

nez i=1

Furthermore, we notice if n = £ ® (y € =, then

J4
> Py, mi) coe = ((Tan * 7, ) @T0) (P4 )

i=1

whereas
¢ ‘

Z<Pf¢(77i)» ¢(ni)) por = ZO =0

i=1 =1
by the definition of A_ and P_. Finally, we claim that
¢

D (Prn) gor = (P-g(mi), $(mi)) pee = 0

=1
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for all n € 2\ {& ® (o} To see this, suppose

77:(’fjo®5g1®"'®5gm)®§0GE\{&@CO}-

Then, by considering the above expression of ¢(n) and the right action of L(F,,) on (H, &) *
(¢2(F,), d), there exists a unitary operator U, € L(F,) such that U, commutes with the
left actions of M, L(F,), and N on L, ® C" ® H such that U,p(n) =n ® e;, ® & for some
ip € {1,...,n}. Since every element 7" € (AxCF,)®B acts on L_ via (T'® Icn @ I3) ®0yei,
P_is (Py ® Icn ® Iy) © Opygryer SO

i (Pg(m), d(m)) o = Yo
= Zf:1<P—(77 ® €ig & gO)v n ® €ip X €O>£€Ef
S

; 1<P+77i7 77i>1:f“

1 (P-Ur (0 ® €5, ® &), Uy (n ® €5, @ &) peor

as claimed. Hence

Z Z <<P+77i777i>c§3@ — (P-¢(m), ¢(7h‘)>@z) = (1775, )e(Py).

nez i=1

Thus the proof will be complete if the left-hand side of the above equation is in %Z.

To begin we notice for all n € Z and i € {1,...,¢} that

Pinis i) gor — (P (i), ¢(1:)) poe
P enis i) gae — (P-ch(1hi)
H(Q 470, mi) poe — (Q-(1s)), ®

= 0+ (Qunimi) por — (Q-0(i), (1)) poe-

{
{
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Similarly, we obtain for allnp € Z, i € {1,...,¢}, and j € N that

<P+7j77i777i>59je - <P—J¢( )7¢( )>

= (Prejmi; Ui)gejf — (P cj0(m), o(n )>
+<Q+,j77z’,77i>g€jf —(Q-;0(n:); (i) L9t
= 0+ <Q-i—,j77i>77i>ﬁf‘Z - <Q j¢(771)>¢( )> Lot

Since tropgm(Pyj) = dimm@m(Ai(ﬁifj)) € 1Z for all j € N, and since Q4 ; have finite

M@N-rank (bounded by dimgzyn(LL])), the following computation is valid:

tryrgon(@+5) — tagm(Q-;)
= Yz Sict Qi i) poe — (Q 50 (1), $(10)) gt
=D nez Zf:1<P+,j77ia77@>£@f — (P J(b(nl) G(1i)) coe

= trongm(Pr.j) — traggm(P-;) €

Therefore, since )4 and ()_ have finite T@-rank (bounded above by dimm@n(ﬁfﬁ))), we
obtain that

1

trman(Q+) — traea(@-) = jh_{go troman(Qr.j) — troem(@— ;) € dZ'

Hence
((ron # 7o) B Pr) = Ypem Sy ((Peis i o — (P-o(me), &) o )
= Tyes i (@) eor — (@ 00m), 00m) o )
= tronam(Q+) — trawam(Q@-) € 3Z
which completes the proof. O
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3.5 Algebraic Cauchy Transforms of Polynomials in Semicircular

Variables

In this section we will demonstrate that the Cauchy transform of any self-adjoint matricial
polynomial of semicircular variables is algebraic (see Theorem 3.5.3). Knowing that the
Cauchy transform of a measure is algebraic provides information about the spectral distri-
bution of operators as seen in Theorem 3.1.1. To begin, we recall the notion of a formal

power series in commuting variables.

Definition 3.5.1. Let n € N and let X = {z,...,2,}. For a ring R, a formal power series

in commuting variables X with coefficients in R is a map P : (NU{0})" — R which we will

write as .
P=>"> P(ky,... . kn)2" - 2.
=0 k;>0
A formal power series P is called a polynomial if P(ki,...,k,) = 0 except for a finite
number of n-tuples (ki,...,k,). The set of all formal power series with coefficients in R will

be denoted R[[X]] and the set of all polynomials with coefficients in R will be denoted R[X].

The set of formal power series over a ring R can be given a ring structure. Indeed, if
addition on R[[X]] is defined coordinate-wise and the product of P,Q € R[[X]] is defined

via the rule
(P+Q)(kr, . k) =D Py, 0)Qky — by, ke — L),

it is elementary to verify that R[[X]] is a ring. Clearly R[X] is a subring of R[[X]] which
enables us to construct the quotient field of R[X]. The quotient field of R[X] will be denoted
R(X).

With the above definitions, we have the following definition essential to this section.
Definition 3.5.2. Let n € N, let X = {z1,...,2,}, and let R be an integral domain. A

formal power P € R[[X]] is said to be algebraic if there exists an m € N and {¢;}7, € R(X)
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not all zero such that
> P =o0.
j=0

Equivalently, by clearing denominators, we can require {g;}7>, € R[X]. The set of all

algebraic elements of R[[X]] is denoted Ra4[[X]].

Our main interest lies in demonstrating that certain formal power series relating to mea-
sures are algebraic. In particular, given a compactly supported probability measure u, we
saw in Remarks 1.1.10 implies G/, has a Laurent expansion that defines a formal power series

in C[[{2}]]. Thus it makes sense to ask whether G, is algebraic.

In order to state the main result of this section, we will need some additional notation.
Let 9 be a finite von Neumann algebra with a faithful normal tracial state 7. Let A €
M be a fixed self-adjoint operator. Since A is a self-adjoint element in a von Neumann
algebra, for each t € R let E4(t) € 9 be the spectral projection of A onto (—oo,t]. The
cumulative density function of A, denoted Fly, is the function on [— ||A||, [|A||]] defined by
Fa(t) = 7(Ea(t)). Clearly Fy is a right continuous function that is bounded above by 1. In

turn, F4 defines the spectral measure of A, denoted p4, by the equation

pa((tr; t2]) = Fa(tz) — Fa(ty).

Notice that p 4 is a Borel probability measure supported on [— || A]| , || A]|]. Recall the spectral
measure has the unique property that if f is a continuous function on the spectrum of A,

then
Al

T(f(A)) = f() dpa(t).
0
With the above notation, we have the following important result which provides infor-

mation about spectral distributions as indicated in Section 3.1.

Theorem 3.5.3. Let n,/ € N, let S1,...,5, be freely independent semicircular variables,
let A be the x-algebra generated by Si,...,S,, and let A € My(A) be a fized self-adjoint

operator. The Cauchy transform of the spectral measure of A is algebraic.
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In order to prove Theorem 3.5.3 we will mimic the proof of [66, Theorem 3.6] which
proves said result when Si,...,.S, are replaced with freely independent Haar unitaries. In
order to mimic the proof in [66], we recall another type of formal power series in commuting

variables.

Definition 3.5.4. Let S be a ring and let R be a subring of S. It is said that R is rationally
closed in S if for every matrix with entries in R which is invertible when viewed as a matrix

with entries in S, the entries of the inverse lies in R.

The rational closure of R in S, denoted R(R C 5), is the smallest subring of S containing

R that is rationally closed.

For an arbitrary ring R and finite set X, the rational closure R(R[X] C R[[X]]) is called

the ring of rational power series over R and is denoted Ry, [[X]].

It turns out that the key to showing the Cauchy transform G, is algebraic for all positive

matrices A with entries in a tracial x-algebra is intrinsically related to the following map.

Definition 3.5.5. Let O be a finite von Neumann algebra with faithful, normal, tracial

state 7. The tracial map on formal power series in one variable is the map T'ron : M|[[{z}]] —

C[[{z}]] defined by

Tron (Z Tnz”) = Z 7(T,)=".

n>0 n>0

In particular, the beginning of the proof of [66, Theorem 3.6] demonstrates the following.

Lemma 3.5.6. Let O be a finite von Neumann algebra with faithful, normal, tracial state

T and let A be a subalgebra of M. If

Tron(Arar[[{z}]]) € Ca[[{2}]],

then the Cauchy transform G, is algebraic for every positive matriz A € My(A) and any
¢ e N.
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Proof. As in the proof of [66, Theorem 3.6], for an arbitrary ¢ € N and positive ma-
trix A € My(A), the entries of z(Ia,4) — Az)~' (which can be viewed as an element of
M,(A)[[{z}]] by expanding the result when || A|| |z| < 1) lie in the rational closure A,.[[{z}]].

By assumption, the formal power series
¢
4(2) 1= Tragem (2l = 42)7) = 3 Tran((2 (L — 42)7 i)
j=1

is an element of Cyye[[{2}]]. Thus ¢(z7") is an element of Cag[[{2}]]. If Tax, (o) is the canonical

trace on M,(9M), it is well-known that

Grua(2) = Tayon (2l = A)71) = (=7
in the domain {z € C | Im(z) > 0, |z| > ||A||}. Hence G, € Cug[[{2}]] as desired. O

Thus the proof of Theorem 3.5.3 will be complete provided the assumptions of Lemma
3.5.6 can be verified. Following [66], it is necessary to examine formal power series in non-

commuting variables.

Definition 3.5.7. Let X be a finite set (which will be called an alphabet) and let W (X)
denote the set of all words with letters in X. The empty word will be denoted by e. For
a ring R, a formal power series with non-commuting variables X with coefficients in R is a

map P : W(X) — R which we will write as

P= > Pwmw.

weW (X)

A formal power series P is called a polynomial P(w) = 0 except for a finite number of words
w € W(X). The set of all formal power series with coeflicients in R will be denoted R((X))

and the set of all polynomials with coefficients in R will be denoted R(X).

The set of formal power series over a ring R can be given a ring structure. Indeed, if
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addition on R((X)) is defined coordinate-wise, and multiplication is defined via the rule

Yo Pww |- Y Quw|= 3 > P@Q)|w
weW (X) weW (X) weW(X) \uwveW(X),uv=w
(notice that for each w € W(X) there are a finite number of pairs u,v € W(X) such that

w = uw), it is elementary to verify that R((X)) is a ring. Thus it makes sense to consider

the rational closure of R(X) inside R((X)) which will be denoted R..:((X)).

As with formal power series in commuting variables, there is a notion of an algebraic
formal power series in non-commuting variables. The definition of such a formal power series

is more technical than in the commutative case and is based on the following definition.

Definition 3.5.8 (Schiitzenberger). Let X := {zy,...,x,} be an alphabet and let Z :=
{z1,...,2m} be an alphabet disjoint from X. A proper algebraic system over a ring R
is a set of equations z; = p;(x1,...,Tp, 21,...,2m) for i € {1,...,m} where each p; is an
element of R(X U Z) that has no constant term nor term of the form az; where o € R and
je{l,...,n}.

A solution to a proper algebraic system is an m-tuple (Py,..., P,) € R{({X))™ such that
Pi(e) =0 and pj(x1,...,zn, P1,..., Py) = P forall j € {1,...,m}.

Definition 3.5.9. A formal power series P € R({X)) is said to be algebraic if P — P(e)e is
a component of the solution of a proper algebraic system. The set all algebraic formal power

series in R((X)) will be denoted by R ((X)).

In order to prove the assumptions of Lemma 3.5.6 hold in the context of Theorem 3.5.3,
the proof of [66, Theorem 2.19(ii)] will be mimicked. To do so, it is necessary to show that a
certain formal power series in non-commuting variables is algebraic. The following formula

involving traces of words of semicircular variables plays a crucial role.

Lemma 3.5.10 (See [81, Section 3]). Let n € N, let Sy,...,S, be freely independent semi-

circular variables (with second moments 1), let A be the x-algebra generated by Sy, ..., Sy,
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let T be the canonical trace on A, and let X := {z1,...,x,} be an alphabet. For each

je{l,...,n} and w € W(X),

7(S;w(Sh, ..., Sn)) = > T(u(Sy, ..., S )T(W(SL, ..., Sn))
uweW (X),w=uxjv

where, for a word wy € W(X), wo(Si,...,Sy) is the element of A obtained by substituting

S; for x;.

Lemma 3.5.11. With the notation as in Lemma 3.5.10, the formal power series Pyepn; €
C((X)) defined by
Pioni 1= Z T(w(Sy,...,S))w

weW (X)

1s algebraic.

Proof. By Lemma 3.5.10 we easily obtain that

Paeri — €
= D i1 Dwewx) T(Sw(S1, - -, Sp))zjw
= 21 e (X TS o S ))T(0(S, -, S))zjua v
= D i1 2uwew(x) TSt Su))T(0(Sh, - -+, Sn))TjuT;v

n
= Zj:l xjpsemixjpsemi-

Hence it is elementary to verify that Pi.,,; — e is a solution to the proper algebraic system

z = Z Tj2TiZ + szz + xjzr; + x?
j=1
Thus Pk, is algebraic by definition. O
Using Lemma 3.5.11 it is easy to verify the proof of [66, Theorem 2.19(ii)] generalizes

enough to complete the proof of Theorem 3.5.3. We will only sketch the changes to the proof

of [66, Theorem 2.19(ii)] as it nearly follows verbatim.
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Proof of Theorem 3.5.3. Let 91 be the von Neumann algebra generated by Si,...,S,. By
Lemma 3.5.6 it suffices to show that the tracial map on formal power series T'ron : M[[{z}]] —

C[[{z}]] has the property that

Tron(Arar[[{z}]]) € Ca[[{2}]]-

Let S := {x1,...,2,} be an alphabet. As in the proof of [66, Theorem 2.19(ii)], there is a

canonical way to view

(C{SNrat[[{2}] S (C(2))rat ((S)).

Consider the injective homomorphisms 7 : W(S) — A uniquely defined by m(x;) = S
for all j € {1,...,n}. Clearly 7 extends to a homomorphism 7 : C(S) — A and thus also

extends to a homomorphism 7 : (C(S))[[{z}]] = A[[{z}]] by applying 7 coordinate-wise.

Let P € Ayt[[{z}]] be arbitrary. Using algebraic properties, the proof of [66, Theorem
2.19(ii)] implies that

Per((CS)mll{z}]) -

Choose P € (C{S))rat[[{2z}]] € (C(2))ras({S)) such that 7(P) = P. Recall that

Pemi =Y 7(w(S1,...,5n))w € Cag((S)) € (C(2))u((S))

weW (S)

by Lemma 3.5.11. Hence the Haadamard Product

PO Pumii= Y Pw)Pemi(w)w =Y 7(w(S,...,5))Pww
weW(S) weW(S)

is an element of (C(2))a((S)) by a theorem of Schiitzenberger from [69].

Since P ® Piemi € (C(2))aig((S)), if we substitute 1 € C for every element of S we obtain
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a well-defined power series in C[[{z}]]. Indeed if

P = me(Sl, R ,Sn)Zm

m>0

for some non-commutative polynomials p,, in n variables, then

P= Z(pm(xl, cey Tp) g1, x)) 2™

m>0

for some non-commutative polynomials ¢, in n variables such that ¢,,(Si,...,S,) = 0.

Hence

PO Pimi= Y 7(w(S,...,5)) (Z(coef(pm,w) + coef(qm,w))zm> w
weW (S) m=>0
where coe f(p,w) is the element of C that is the coefficient of w in p. Therefore, by replacing

each w with the scalar 1, we obtain

> wew(s) T(@(S1, - +80)) (32,50 (coef (pm; w) + coe f (g, w))z™)
= D om>0T <Zwew(s)(coef(pm, w) + coef(qm,w))w(Sy, . .. ,Sn)> 2™
= ZmZOT(pm(Sl,...,Sn)—|—qm(51,...,5n)) 2™
= Yoz TPm(S1, ..., 80))2™ = Tron(P)

as desired. Thus the proof of [66, Theorem 2.19(ii)] implies that Troy(P) is an element of
Caigl[{2}]] as desired. O

With the proof of Theorem 3.5.3 complete, we turn our attention to further information
that Sauer’s results from [66] imply. The main purpose of [66] was to show the rationality
and positivity of the Novikov-Shubin invariant for matrices with entries in the group algebra
of a virtually free group. In particular, the Novikov-Shubin invariants are well-defined for

any finite, tracial von Neumann algebra.

Definition 3.5.12. Let 2 be a finite von Neumann algebra with faithful, normal, tracial
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state 7. For a positive operator A € 9 with cumulative spectral distribution F)4, the
Novikov-Shubin invariant a(A) € [0,00] U {oo™} of A is defined as

lim inf, o 2EADLAOLif 7y () > F,(0) for all £ > 0
a(A) = n .

oo™ otherwise

For a positive operator A in a finite von Neumann algebra 91, it is easy to see that
a(A) = oo™ implies that zero is isolated in the spectrum of A. Furthermore, if a(A) = X €

0,00), then F4(t) — F4(0) behaves like t* as t tends to zero.
[0, 00)

The Novikov-Shubin invariants are of interest in the context of Theorem 3.5.3 due to the

following result which is directly implied by the proof of [66, Theorem 3.6].

Lemma 3.5.13 (See [66, Theorem 3.6] for a proof). Let I be a finite von Neumann algebra
with faithful, normal, tracial state 7. Let A € 9 be a positive operator and let py be the
spectral measure of A. If the Cauchy transform G, , is algebraic, then the Novikov-Shubin

invariant a(A) is a non-zero rational number or oo™ .

The Novikov-Shubin invariants are of interest in terms of determining the decay of the

spectral density function at zero due to the following result.

Lemma 3.5.14 (See [44, Theorem 3.14(4)]). Let M be a finite von Neumann algebra with
faithful, normal, tracial state 7. If A € 9M is a positive operator and Fy is the spectral

density function of A, then

Al
lim -
0 |, t

(Fa(t) — Fa(0)) dt < oo

provided a(A) # 0.

Proof. If a(A) = oo™, then Fa(t) — Fa(0) is a right continuous function bounded that is
zero on a neighbourhood of zero. Hence the result follows. If a(A) € (0, o], then it is trivial

to verify from Definition 3.5.12 that there exists a 6 > 0 and an A € (0,a(A)) such that
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F(t) — F(0) < t* for all 0 < ¢ < 4. Hence

5 5
1
Og/;@m%JMMﬁg/ﬁlﬁ<m
0 0
Thus the result follows as F4(t) — F4(0) is a right continuous function bounded. O

Furthermore, the following result provides information on how to extract information
from the conclusion of Lemma 3.5.14 to obtain information about integrating logarithms

against the spectral measure.

Lemma 3.5.15 (See [44, Lemma 3.15(1)]). Let M be a finite von Neumann algebra with
faithful, normal, tracial state 7. If A € M is a positive operator, Fa is the spectral density

function of A, and p4 is the spectral measure of A, then

Al
11_{% e z(FA(t)—FA(O))dt< 00
if and only if
Al
lim In(t) dua(t) > —oc.
e—0 ¢

Combining the above results, we obtain the following.

Theorem 3.5.16. Let n, ¢ € N, let X4,..., X, be freely independent semicircular variables
or freely independent Haar unitaries, and let A be the x-algebra generated by Xi,...,X,.
Then

1Al
lim In(t) dpa(t) > —oo

e—0 ¢

for all positive A € M,(A) \ {0}. Furthermore, if pa does not have an atom at zero (e.g.
when £ =1 by Theorem 3.3.4), then

/IA” In(t) dua(t) > —oc.
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CHAPTER 4

Normal Limits of Nilpotent Operators in C*-Algebras

As the question of when an operator is a norm limit of nilpotent operators from B(?) has
been solved, it is natural to ask whether this question can be phrased in the context of an
arbitrary C*-algebra. In particular, the above work raises an interesting question: “Given a

C*-algebra 2, what is the closure of the nilpotent and quasinilpotent operators of A?”

Due to the existence and elegance of multiple proofs of Theorem 1.8.3, it is natural
rephrase the above question in the context of C*-algebras; that is, “Given an arbitrary
C*-algebra 21 and a normal operator N € 2, can simple conditions be given to determine
whether N is a norm limit of nilpotent or quasinilpotent operators from 2A?” Although the
GNS construction implies 2 can be embedded faithfully into the bounded linear operators on
a Hilbert space, Theorem 1.8.3 does not provided the answer to this question as the image of
2l need not contain the necessary nilpotent or quasinilpotent operators. However, a solution
to this question can be easily obtained in several particular cases. For example, this question
is easily solved for abelian C*-algebras and has a solution in the case of the Calkin algebra

as demonstrated in Theorem 1.8.5.

In this chapter, which is based on the author’s work from [74] and [75], we will investigate
the intersection of the normal operators with the norm closure of the nilpotent operators in
various C*-algebras. Since von Neumann algebras behave in a similar manner to B(#), our
first goal is to study this question for von Neumann algebras. Section 4.1 will completely
answer this question for type I von Neumann algebras. For a type I, von Neumann algebra
as above, the answer is as expected; a normal operator is a limit of nilpotent operators if

and only if it is pointwise the limit of nilpotent operators (see Theorem 4.1.5). Section 4.2
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will then generalize the above results to the type III von Neumann algebra setting. The
conclusions of Theorem 1.8.3 are shown to hold for every type III factor (see Proposition
4.2.1) and, by using the fact that every type III von Neumann algebra is a direct integral of
type III factors, it is obtain that a normal operator in a type III von Neumann algebra is a
limit of nilpotent operators if and only if it is pointwise the limit of nilpotent operators (see

Theorem 4.2.2).

A solution to the above question in a type II von Neumann algebra appears to be a
difficult task. Section 4.3 will provide restrictions for when a normal operator can be a limit
of nilpotent operators in a C*-algebra with a faithful tracial state. In particular, for a type II;
von Neumann algebra Corollary 4.3.8 implies that no non-zero self-adjoint operator is a limit
of nilpotent operators and Theorem 4.3.13 implies a large class of normal operators cannot
by limits of nilpotent operators. However Section 4.4 shows that normal operators in type II;
factors with spectrum equal to the closed unit disk whose spetral distributions are absolutely
continuous and rotationally invariant are limits of nilpotent operators (see Theorem 4.4.6).
Section 4.5 will be devoted to the discussion of type 11, factors where approximations appear

to be simpler and will pose a possible method for obtaining a solution.

There are many other questions related to the nilpotent operators in B(#). For example,
in [29, Corollary 6] Herrero showed that every normal operator in B(#) was the norm limit
of operators that are sums of two nilpotent operators. More recently [48] gives an excellent
overview of the results pertaining to the span of nilpotent operators with nilpotency index
two. In particular [48, Theorem 5.2] shows that if 9T C B(#H) is a weakly closed, unital
C*-algebra with infinite multiplicity (i.e. 9t ~ 9MM@B(H)) then every element of M is the

sum of eight nilpotent operators with nilpotency index at most two.

Section 4.6 will examine when a normal operator is in the closure of the span of the
nilpotent operators in a von Neumann algebra. In particular [29, Corollary 6] will be shown
to generalize to type I and type III von Neumann algebras as well as type Il factors. This
later result is evidence that the question of when normal operators can be limits of nilpotent

operators in type Il factors may be the same as in the type I and type III setting.

114



In [29] Herrero also examined the distance from an arbitrary fixed projection P € B(H)
to the nilpotent and quasinilpotent operators. In particular [29, Corollary 9] shows that
these distances were equal and either 0, 1, or % Additional work has been done to obtain
bounds for the distance from a rank one projection in the n X n matrices to the nilpotent
n X n matrices (see [45] and [46]). Section 4.7 will be devoted to extending [29, Corollary 9]
to von Neumann algebras. In particular, [29, Corollary 9] generalizes to type I and type 111

von Neumann algebras as well as type II, von Neumann algebras.

With the study of these problems for von Neumann algebras taken as far as possible,
Section 4.8 will examine these questions in the context of unital, simple, purely infinite C*-
algebras. As unital, simple, purely infinite C*-algebras have a plethora of projections with
particular structure similar to that of von Neumann algebras, a complete solution to our
problem will be obtained for said algebras (see Theorem 4.8.6). In particular, as the Calkin
algebra is a unital, simple, purely infinite C*-algebra, Section 4.8 will generalize Theorem
1.8.5. Section 4.8 will also examine auxiliary questions such as the closure of the span of
nilpotent opertors and the distance from a projection to the nilpotent operators in any unital,

simple, purely infinite C*-algebra.

Section 4.9 will examine this question in the context of AFD C*-algebras. AFD C*-
algebras are one generalization of finite dimensional C*-algebras and thus it is surprising
that the closure of nilpotent operators in said algebras is incredible complex. In particular,
Section 4.9 relates the norm closure of the nilpotent operators in AFD C*-algebras to the
asymptotic behaviour of nilpotent matrices as the dimension of the matrices are allowed
to increase and will demonstrate the existence of AFD C*-algebras with non-zero normal

operators in the closure of the nilpotent operators.

Section 4.10 will generalize a construction from [57] to demonstrate that there exists a
separable, nuclear, quasidiagonal C*-algebra where every operator is a norm limit of nilpotent
operators. The cone of this C*-algebra is then AF-embeddable and it will be demonstrated

this cone has also has the property that every operator is a norm limit of nilpotent operators.
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4.1 Type I von Neumann Algebras

In this section we will determine when a normal operator in a type I von Neumann algebra
with separable predual is a norm limit of nilpotent operators. We will begin with finite type
I von Neumann algebras where the results trivially follow from the known results on matrix

algebras.

Proposition 4.1.1. Let 9 be a finite type I von Neumann algebra. Then
Nor(99%) N QuasiNil(9n) = {0}.

Proof. Since 9 is a finite type I von Neumann algebra there exist compact Hausdorff spaces
X,, such that M C [],., M, (C(X,)). Therefore, since an element of [], ., M,(C(X,)) is
quasinilpotent only if each direct summand is quasinilpotent, the proof will be complete by

showing

Not (M, (C(X,0))) N QuasiNi(M, (C (X)) = {0}

for each n € N. However this result follows from the fact that every normal (quasinilpotent)
element of M,,(C(X,,)) must be normal (quasinilpotent) at each element of X,, and the only

normal matrix that is a limit of quasinilpotent matrices is the zero matrix. O

To deal with type I, von Neumann algebras with separable predual, we recall that every
such algebra has the form L., (X, B(H)) for some Radon measure space (X, it). For a normal
operator N € L. (X, B(H)) to be a limit of nilpotent operators, it is clear that N must be
the pointwise limit of nilpotent operators almost everywhere. The difficultly in the converse
lies in the fact that the integral of nilpotent operators need not be nilpotent if the degrees of
nilpotency are unbounded. This issue will be resolved by Lemma 4.1.4 which was motivated

by [26]. We will begin with the following useful observation that is implied by [26].

Lemma 4.1.2. Let D € Nor(B(H)) be such that (D) = { Ao, A1, ..., \x} where A\g =0 and
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Ni # Njif © # 3. If the essential spectrum of D agrees with the spectrum of D then

1
dist(D, Nil(B(H))) < 3 glelg Jnax length(e)

where T is the set of all trees with vertices {\o, A1, ..., A} and straight lines for edges, E(T)
is the set of edges of a tree T € T, and length(e) is the Euclidean length of a straight line e

connecting \; to \;.

Proof. 1f D = 0, the result is trivial. Otherwise let

d := min max length(e) > 0
TeT ec&(T)

and fix a Ty € T that obtains this minimum. Note that there exists an N € Nor(B(H)) with
spectrum equal to Tp. Since T is connected and contains zero, N € Nil(B(#)) by Theorem

1.8.3. By the Spectral Theorem for Normal Operators there exists a unitary U € B(#) such
that ||[D — UNU*|| < 30. Hence, as N € Nil(B(H)), the result follows. O

Note the following interesting result (which is in the spirit of [32, Example 1.5]) implies

the inequality in Lemma 4.1.2 is an equality when D is positive.

Lemma 4.1.3. Let A be a C*-algebra and let A € .. Suppose
og(A)={0=Xg <\ < -+ < N}

Then
1
dlSt(A, QuaSINll(Q{)) > 5 max ’)\z — )\ifll.

1<i<k

Proof. Choose xg,yo € o(A) such that o < yo and

\350 - yo’ = 112%)2\& - )\i—l\-
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Let 09 := {2z € 0(A) | 2z <z} and let 0y := {2z € 0(A) | z > yo}. Thus oy and o, are

non-empty, disjoint, compact subsets of (A) such that o(A) = o9 U oy. Let
1
Q= {ZE(C ’ ’Z—)\k| <)\k—y0+§|l‘0—y0’}
It is clear that 0 ¢ Q, o7 €, 6o N Q = (), and
. , 1
inf{|\; —z| | z€09Q,j €{0,1,...,k}} = §|a:0 — Yol

By [32, Theorem 1.1] (which is an application of the Analytic Functional Calculus for Banach
Algebras) if M € 2 is such that

|A — M]|| < inf {||(/\] —A7 T ae ag}
then o(M) N Q # (. Since A is self-adjoint
inf{H()\[ AT A e aQ} —inf{|\, — 2| | z€09Q,j€{0,1,....k}}.

Hence, if M € A is such that ||A — M| < 1|0 — yo| then o(M)NQ # 0. As 0 ¢ Q and the

spectrum of any quasinilpotent operator is {0}, the result follows. O

Using Lemma 4.1.2 and an idea motivated by [26], we obtain the following result that

will enable us to bypass the problem of unbounded nilpotency degrees.

Lemma 4.1.4. Let {T,,},>1 C Nor(B(#)) be a bounded set such that o(T,,) is connected
and contains zero for all n € N. Then for every € > 0 there exists a ¢ € N and {M,},>1 C
Nil(B(H)) such that ||T,, — M,|| < € and M? =0 for all n € N.

Proof. Without loss of generality ||7,| <1 for all n € N and € = 5 for some m € N. Since
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Tl <1, 0(T;,) €D for all n € N. Define

2k —1 2k +1 120—1 20+ 1
Ch.t ::|:2m+1 ’ 2m+1) [W’W)gc

for all k, 0 € {—-2™, —2™ +1,...,2™} (note Ui;zfzm Cl¢ contains the closed unit square)

and for each

Y C{=27 2" 41,27 x {=27, —2" +1,..., 2™}

define
Xy = {1, | xc,,(T,) # 0 if and only if (k,£) € Y}

where xz(7},) is the spectral projection of T, onto the subset Z. Note that |, Xy = {1, }n>1
and Xy =0 if (0,0) ¢ Y or ¢y O, is disconnected.

Since the number of possible sets Y is finite, it suffices to show that for each Y there
exists a ¢ € N such that for every T,, € Xy there exists an M,, € Nil(B(H)) such that
|75 — M,|| < 3¢ and M = 0. Fix Y such that (0,0) € Y and [, ycy Ch,¢ is connected. For
each (k,0) € Y let z,4, € Ciy to be the centre of Ciy (so zo0 = 0). Let Dy be a diagonal
operator whose spectrum and essential spectrum is {zz, | (k,¢) € Y}. By the Spectral
Theorem for Normal Operators, for each T,, € Xy there exists a unitary U, € B(H) such
that ||T,, — U,DyU}|| < 2e. Since Dy is within € of an element of Nil(B(H)) by Lemma
4.1.2, the result follows. [

Theorem 4.1.5. Let M := Lo(X,B(H)) where (X, 1) is a Radon measure space. If f €

Nor(9) then the following are equivalent:

1. f e Nil(m).
2. f € QuasiNil(9M).

3. f(x) € Nil(B(H)) p-almost everywhere.

4. f(x) € QuasiNil(B(H)) p-almost everywhere.
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5. o(f(x)) is connected and contains zero p-almost everywhere.

Proof. The equivalence of (3), (4), and (5) is clear from Theorem 1.8.3. Clearly (1) implies
(2). To see that (2) implies (5), suppose that f € QuasiNil(9%). If M € QuasiNil(9N) then
M (z) € QuasiNil(B(#)) for almost every x € X by the spectral radius formula. Therefore
f is almost everywhere the pointwise limit of elements of QuasiNil(B(#)) and thus o(f(z))

is connected and contains zero for almost every x € X by Lemma 1.8.4.

To see that (5) implies (1), suppose o(f(z)) is connected and contains zero for almost
every z € X. Let € > 0. Note we may assume without loss of generality that f(z) is normal
for every z € X, sup,cx || f(x)]| < oo, and o(f(x)) is connected and contains zero for every
x € X. Since f is measurable, the range of f is separable and = — || f(x)]|| is a measurable
function. Thus there exist {T),}n,>1 € f(X) and disjoint measurable subsets {E, },>1 € X

such that if
h:= Z TnXEn e M

n>1
then ||h — f|| < e. Since T,, € f(X) for all n € N, {T,,},>1 is a bounded set of normal
operators such that o(7,) is connected and contains zero for all n € N. By Lemma 4.1.4

there exist {M,},>1 C Nil(B(#H)) and a ¢ € N such that ||T;, — M,|| < e and MZ = 0 for all

n € N. Let
g = ZMnXEn'
n>1
Then g € M, || f — gl < 2¢, and g7 = 0 so g € Nil(9M). Hence f € Nil(IM). O

Thus we have completely characterized when a normal operator is a limit of nilpotent

operators in a type I von Neumann algebra with separable predual:

Corollary 4.1.6. Suppose

M = Loo(X, B(H)) & (H Mn((C)®Loo(Xn))

n>1
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where (X, p) and (X, ,) are Radon measure spaces. Let P € 9N be the (central) projection
onto Loo(X,B(H)) and let N € Nor(9). Then the following are equivalent:

1. N € Nil(9n).
2. N € QuasiNil(9).

3. PN = N and o(N(x)) is connected and contains zero for almost every x € X .

4.2 Type III von Neumann Algebras

In this section we will determine when a normal operator in a type III von Neumann algebra
with separable predual is a norm limit of nilpotent operators. Our first result is the following

generalization of Theorem 1.8.3 to type III factors.

Proposition 4.2.1. Let M be a type III factor with separable predual and let N € Nor(9N).
Then the following are equivalent:

1. N e Nil(om).
2. N € QuasiNil(9).
3. o(N) is connected and contains zero.

Proof. Clearly (1) implies (2) and (2) implies (3) is trivial by Lemma 1.8.4. Suppose N €
Nor(90) is such that o (V) is connected and contains zero. Since 9 is a type III factor with
separable predual, there exists a unital copy of B(H) inside 9t. Choose a normal operator
Ny inside this copy of B(H) such that o(Ny) = o(N). Therefore Ny € Nil(B(H)) € Nil(9)
by Theorem 1.8.3.

Since o(N) = o(Np) and since 9 is a type III factor, N and N, are approximately

unitarily equivalent in 9t (see [70]). Thus N € Nil(9) since Ny € Nil(9). O

To determine when a normal operator in a type III von Neumann algebra is a limit of

nilpotent operators, we will use the fact that every type III von Neumann algebra is a direct
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integral of type III factors (for a reminder on direct integrals of von Neumann algebras, we
refer the reader to [35]). This causes greater difficulty than seen in the proof of Theorem
4.1.5 as the type III factors are allowed to vary over the direct integral. The idea of the
proof is similar to the proof of Proposition 4.2.1 except that the copy of B(#) inside our von

Neumann algebra must be done ‘in a measurable way’.

Theorem 4.2.2. Let N be a type III von Neumann algebra with separable predual. Choose a
locally compact, complete, separable, metrizable measure space (X, i) and a collection of type
III factors (M) .ex with separable predual such that M is a direct integral of (M, )pex. If
N € Nor(IM) we may write N = f;? N, du(z) where N, € M, is a normal operator pi-almost

everywhere. Then the following are equivalent:

1. N e Nil(9).

2. N € QuasiNil(90).

3. N, € Nil(,) p-almost everywhere.
4. N, € QuasiNil(IM,) p-almost everywhere.

5. 0(N,) is connected and contains zero p-almost everywhere.

Proof. Clearly (3), (4), and (5) are equivalent by Proposition 4.2.1 and clearly (1) implies
(2). To see that (2) implies (5), suppose that N € QuasiNil(9%). If M € QuasiNil(9)
then M, € QuasiNil(91,) for almost every € X by the spectral radius formula. Therefore
N, is almost everywhere the pointwise limit of elements of QuasiNil(9,) and thus o(N,) is

connected and contains zero for almost every x € X by Lemma 1.8.4.

To see that (5) implies (1), suppose N € Nor(9) is such that o(N,) is connected and
contains zero p-almost everywhere. Thus we can assume that N, is normal, ||N,|| < ||N]],

0 € 0(N,), and o(NN,) is connected for all z € X.

Unfortunately greater difficult arises in the following proof than in the proof of Theorem

4.1.5 as we need to deal with direct integrals and the fact that the type III factors {9, | = €
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X} may differ. Our hope is to show for any ¢ > 0 there exists a ¢ € N and M, € Nil(9,) for
all z € X such that |N, — M,|| < 2e¢for all z € X and M? =0 for all x € X. If (z — M,)

is measurable then | ;B M, du(x) will be a nilpotent element of 9t within 2¢ of N.

To get (z — M,) to be measurable we need to modify the proof of Lemma 4.1.4. Without
loss of generality we may assume ||N,|| < 1 for all z € X and € = 5 for some m € N. Let
Cl.e be as in Lemma 4.1.4 and, for each subset Y C {—2™, —2™m 4 1,...,2™} x {—2™ —2™ +
1,...,2™} define

Xy ={r € X | x¢,,(N,) # 0 if and only if (k,£) € Y} C X

where xz(N,) is the spectral projection of N, onto the subset Z.

Since f(N) = ff f(N,) du(x) for all bounded Borel functions f on the spectrum of N,
each Xy is a measurable subset of X. Therefore, since the number of possible sets Y is
finite and the sets Xy are disjoint, it suffices to show that for each Y there exists a nilpotent
operator My in 9 such that the support of My is Xy and N is within 2¢ of My when
restricted to Xy. Fix a potential Y. Note that J,, Xy = X and Xy = 0 if (0,0) ¢ YV or
Uk.epey Ck.e is disconnected. Thus we may assume that [, cy Cr,e is connected, (0,0) € Y,

and X = Xy when performing our approximations.

For each z € X and (k,() € Y let Pprs = Xx¢,,(Nz). Note the maps (v — Ppry) =
Xcy (N) are elements of M for all (k,f) € Y. We claim that {(z + Ppre)}keey are
equivalent in 9. To see this, we notice by construction that {P, .} ueecy are orthogonal
equivalent projections in 20, almost everywhere. However, in a type III von Neumann
algebra, two projections are equivalent if and only if they have the same central support. By
[35, Lemma 14.1.20.v], the central support in 90t is the direct integral of the central supports

in M, and thus the claim is complete.

Recall (0,0) € Y. Since M is a type I1I von Neumann algebra, every non-zero projection
of M is properly infinite. Thus, as (x +— P, ) is non-zero almost everywhere, (x +— P, ) is

a properly infinite projection. Thus there exist equivalent, pairwise orthogonal, measurable
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projections

{(l’ — Px,o,o,w)}wzl

such that
(€ Prgo) = > (2 = Pogouw)-

w>1
Since {(z = Pyre)}koey are equivalent in 9, by using {(x — P, o0w)}w>1 there exist

equivalent, pairwise orthogonal, measurable projections

H@ = Prrow)roey fus1

such that
(I’ = Px,k,f) = Z((E — Px,k,ﬁ,w)

w>1

for all (k,0) € Y.

For each (k,0) € Y let z 4 € Ci e be the centre of Cyy (s0 290 = 0). Let

T =z~ Z Z 20 Py ko0 w
(

k)€Y w>1
which is a measurable and decomposable operator in 9t. Clearly ||T'— N|| < € by construc-
tion.

To construct our nilpotent operator, let D be the diagonal operator on a separable Hilbert
space H with orthonormal basis {{ex ¢w}(k,0cy fw>1 such that D(eg ) = 2k eep 0 for allw €
N and (k,¢) € Y. By Lemma 4.1.2 there exists an M’ € Nil(B(H)) such that [|D — M'|| < e.
For each wy,ws € N and (ky, 01), (ko, l2) € Y let

L /
Ak ,01,w01),(k2,02,w2) *= <M ek27€2,w27ek17@1,w1> eC
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and let (:1:' — %,(k1751’w1)’(k2’[2’w2)) € I be the partial isometry such that

(HU — Vx,(kl,zl,wl),(kz,zg,m)) (96’ — Vm,(kl,zl,wl),(kg,eg,wg))* = (33 — Px,kl,zl,wl)

and

*
(2 = Vi by 1 00), (kastoiws)) (T Vi (kg 00), (kostown)) = (T Py g 0s)-

Finally let

M:= |z~ Z Z Ak 1 1), (a2 w2) Vi, (k1 01 w01 ) (k2,2 ,w2)
wi,w2>1 (k1,1),(k2,l2)EY
which is a measurable and decomposable operator in 9. Moreover M is also a nilpotent
operator as, for each © € X, M, is a copy of M’. Since ||D — M'|| <€, |[(T)s — (M),| < e
for all x € X. Whence ||T'— M|| < eso ||N — M| < 2e thus completing the proof. O

4.3 Restrictions by Tracial States

This section will demonstrate how tracial states on C*-algebras provide restrictions to the
spectra of normal operators which may be in the closure of the quasinilpotent operators.
In particular, these restrictions directly apply to type II; von Neumann algebras and thus
prevent an elegant classification of which normal operators are norm limits of nilpotent or
quasinilpotent operators. Note that the following result that enables us to create additional

elements of QuasiNil(2l).

Lemma 4.3.1. Let 2 be a C*-algebra and let T' € QuasiNil(A). Then

alg(T),alg(T*) C QuasiNil(2).

Similarly if T € Nil(2() then alg(T),alg(T*) C Nil(2).

Proof. 1t is clear that the adjoint of an element of QuasiNil(2() (respectively Nil(2()) is an
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element of QuasiNil(2A) (respectively Nil(2()). Moreover, if p is a polynomial such that
p(0) = 0 then if M € QuasiNil(2) (respectively M € Nil(2()) then p(M) € QuasiNil(2)
(respectively p(M) € Nil(2)). O

Now we shall introduce the main tool for the results of this section.

Definition 4.3.2. Let 2 be a C*-algebra. A tracial state 7 on 2l is a positive linear functional

of norm one such that 7(AB) = 7(BA) for all A, B € 2.

There are several examples of C*-algebras with tracial states. For example, finite di-
mensional C*-algebras, the reduced group C*-algebra of a countable discrete group, abelian
C*-algebras, type II; von Neumann algebras, and uniformly hyperfinite C*-algebras all have

tracial states. The reason for examining C*-algebras with tracial states is the following.

Lemma 4.3.3. Let A be a C*-algebra and let T be a tracial state on A. Then T7(M) = 0
whenever M € QuasiNil(2().

Proof. By the continuity of 7 we may assume that M € QuasiNil(2(). If 2 is not unital, the

linear map 7 : 2 — C on the unitization A of A defined by
T+ A) =2+ 71(A)

for all A € 2 and A € C is easily seen to be a tracial state on 2l that extends 7. Hence we

may assume that 2l is unital.

By Rota’s Theorem (see [63] and note the proof holds in a general C*-algebra; alter-
natively see [49, Proposition 4] or [51, Exercise 9.15] for another proof) and the fact that
o(M) = {0}, for all € > 0 there exists a B, € 21! such that | B.'M B.|| < €. Therefore

[(M)| = |7(B-'MB.)| < || B-' M B,

< €.

Thus, as this holds for all e > 0, 7(M) = 0. O
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Corollary 4.3.4. Let A be a C*-algebra and let T be a tracial state on A. Then
dist (7', QuasiNil()) > |7(T)|

for all T € 2.

As Lemma 4.3.3 proves that the closure of the quasinilpotent operators in a C*-algebra
are in the kernel of every trace on the C*-algebra, it is useful to examine C*-algebras with

several tracial states.

Definition 4.3.5. Let 21 be a C*-algebra. A tracial state 7 on 2 is said to be faithful if
7(A) > 0 for all A €2, \ {0}.

A C*-algebra 2 is said to have a separating family of tracial states if for every A € 2, \{0}

there exists a tracial state on 2 such that 7(A) > 0.

For example, finite dimensional C*-algebras, the reduced group C*-algebra of a countable
discrete group, abelian C*-algebras, type II; factors, and uniformly hyperfinite C*-algebras
all have faithful tracial states. Every type II; von Neumann algebra has a separating family

of tracial states.

Using Lemma 4.3.3 we easily obtain the following restriction.

Proposition 4.3.6. Let A be a C*-algebra with a separating family of tracial states and
let N € Nor() be such that there exists a polynomial p with p(0) = 0, p(N) # 0, and
p(o(N)) € [0,00). Then N ¢ QuasiNil(2(). Thus 2, N QuasiNil(2A) = {0}.

Proof. Suppose there exists an N € Nor(2() N QuTNil(Q[) and a polynomial p such that
p(0) =0, p(N) # 0, and p(a(N)) C [0, 00). Then p(N) € A, NQuasiNil(A) by Lemma 4.3.1.
Since p(N) # 0, the assumptions on 2 imply that there exists a tracial state 7 on 2 such
that 7(p(N)) > 0 which contradicts Lemma 4.3.3. O

Proposition 4.3.6 easily extends using the following well-known result.
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Theorem 4.3.7 (Mergelyan’s Theorem; see [64, Theorem 20.5]). Let K be a compact set in
the complex plane such that C\ K is connected. If f is a continuous function on K which is
holomorphic on the interior of K then f can be uniformly approximated by polynomials on

K.

Corollary 4.3.8. Let 2 be a C*-algebra and let N € Nor(2A)\{0} be such that int(c(N)) =0

and C\ o(N) is connected. Then the following are true:

1. If A, N QuasiNil(A) = {0} then N ¢ QuasiNil(2).

2. If A, NNil(A) = {0} then N ¢ Nil().
Consequently, if A is a C*-algebra with a separating family of tracial states then N ¢
QuasiNil(2().

Proof. Suppose 2, N QuasiNil(A) = {0} and N € QuasiNil(). Then 0 € ¢(/N) by Lemma
1.8.4. Define f € C(o(N)) by f(z) = |z| for all z € ¢(N). Since f(0) = 0, Mergelyan’s
Theorem implies f is the uniform limit on o(/NV) of polynomials that vanish at zero and thus

f(N) € QuasiNil(2) by Lemma 4.3.1. Since f(N) € A, f(IV) =0so N =0 as claimed.

The proof of the second claim is nearly identical to the first and the final claim follows

from Proposition 4.3.6. O]

Corollary 4.3.8 is the strongest restriction that has been obtained on the spectrum of
a normal operator in the closure of the quasinilpotent operators of a C*-algebra with a
separating family of tracial states. To obtain stronger restrictions, we turn our attention to

C*-algebras with faithful tracial states.

Remarks 4.3.9. Let 2 be a unital C*-algebra, let 7 be a tracial state on 2, and let N €
Nor(2(). Consider the C*-algebra € := C*(1, N, N*) and 7|¢. Then 7|¢ is an element of
the dual space of € and thus can be associated with a complex, regular, Borel measure p

on o(N). Thus we view 7|c(f(N)) = fU(N) fdp for f € C(o(N)). Moreover, since 7 is
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positive and unital, p is a probability measure on o(N). If 7 is faithful then p(U) > 0 for

all non-empty relatively open sets U in o (V).

If N € QuasiNil() then 7(p(N)) = 7(p(N*)) = 0 for all polynomials p that vanish at
zero by Lemma 4.3.1 and Lemma 4.3.3. Therefore, since N ~ z and N* ~ Z, fJ(N) 2"dp =0
and fU(N) Z"dp = 0 for all n € N.

It is therefore of interest to our main problem to determine the supports of all probability
measures £ with compact support such that [2"dy = 0 and [Z"dp = 0 for all n € N.
Unfortunately we have not been able to classify the supports of such measures. However,
some progress has been made that enables us to improve Corollary 4.3.8 in the case our

C*-algebra has a faithful tracial state.

To begin our discussion of normal limits of quasinilpotent operators in C*-algebras with

faithful tracial states, we make the following definition.

Definition 4.3.10. A subset X C C is said to be a non-quasinilpotent spectrum if for every
C*-algebra 2 with a faithful tracial state, N ¢ QuasiNil(2() whenever N € Nor(2) \ {0} is
such that o(N) C X.

It is clear if X C C\ {0} then X is a non-quasinilpotent spectrum by Lemma 1.8.4.
Moreover a subset of a non-quasinilpotent spectrum is a non-quasinilpotent spectrum and
Corollary 4.3.8 provides some examples of non-quasinilpotent spectra. In addition, we have

the following.

Lemma 4.3.11. If X is a non-quasinilpotent spectrum then for every r,0 € R the set
re’X is a non-quasinilpotent spectrum. Furthermore every closed half-plane with zero on

the boundary is a non-quasinilpotent spectrum.

Proof. The first claim is trivial and thus it suffices to prove that the closed upper half-plane

is a non-quasinilpotent spectrum.

Let 2 be a C*-algebra with a faithful tracial state 7 and let N € Nor(2) N QuasiNil(2)

be such that o(N) is contained in the closed upper half-plane. Let p be the measure on
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o(N) from Remarks 4.3.9. Then

1
/ Im(z)dp = — z—zdu=0.
o(N) 2 Jo(

However, since relatively open subsets of o(/N) have positive p-measure and Im(z) > 0 above

the z-axis, the above integral implies o(/N) must lie on the z-axis. This implies that
N € 2, N QuasiNil(2A).

Thus Proposition 4.3.6 implies N = 0. O]

Lemma 4.3.12. For each o € [0,2m) let
X, ={\eC | X=r? r>0,0c(0,2n)\ {a}}.

Then each X, is a non-quasinilpotent spectrum.

Proof. It suffices to prove the result for « = 7 by Lemma 4.3.11. Let 2 be a C*-algebra with
a faithful tracial state 7 and let N € Nor(2) N QuasiNil(A) be such that o(N) C X,. Thus
0 € o(N) by Lemma 1.8.4.

Recall o(N) is compact and bounded. Let K’ be the union of ¢(N) with the bounded
components of the complement of ¢(N). Then K’ is a compact set such that 0 ¢ int(K'),
C\ K’ is connected, and K" C X.

Consider the function f(z) = z2 on X, (where the principal branch has been selected).
Then f is a continuous function on X, and holomorphic on the interior of K’. Consequently,
as f(0) =0, f is the uniform limit on K’ of polynomials that vanish at zero by Mergelyan’s
Theorem. Therefore, since N € Quasi—Nil(Ql), Lemma 4.3.1 implies

f(N) € Nor(2() N QuasiNil(2().

However o(f(N)) = f(c(N)) is contained in the closed right half plane through the origin.
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Hence f(N) =0 by Lemma 4.3.11. Thus N = f(N)? = 0 as desired. O

Theorem 4.3.13. Suppose that X C C is such that 0 € X and C\ X is connected. Suppose
further that there exists an element y € C\ X such that the line segment f(t) = ty for

t € (0,1] is contained in C\ X. Then X is a non-quasinilpotent spectrum.

Proof. By Lemma 4.3.11 we can assume that y = 1. Let 21 be a C*-algebra with a faithful
tracial state 7 and let N € Nor(2) N QuasiNil(2) be such that o(N) C X. Thus 0 € o(N)
by Lemma 1.8.4.

Consider the function g(z) = &5 +1 on X. Then, since 1 € C\ X C C\ o(N) (which
is open), g is analytic on a neighbourhood of ¢(N). Since g(0) = 0, Mergelyan’s Theorem

implies ¢ is the uniform limit on o(N) of polynomials that vanish at zero. Hence
g(N) € Nor(2) N QuasiNil(A).

However, since (0,1] ¢ X, ¢((0,1]) = (—00,0), and g is injective, (—o0,0) & o(g(N)). Thus
g(N) = 0 by Lemma 4.3.12. Since g is a fractional linear transformation, ¢ is invertible and

thus N = g~ *(g(N)) = g~ (0) = 0. O

It would be pleasant if the assumptions of Theorem 4.3.13 could be reduced to supposing

zero is in the boundary of the unbounded connected component of C\ X.

Theorem 4.4.6 will demonstrate that we cannot expect Nor(2() N Nil(2) = {0} for an

arbitrary C*-algebra 2l with a faithful tracial state.

4.4 Type II; Factors

In this section we will examine when a normal operator in a type II; von Neumann algebra
is the limit of nilpotent operators. We begin by applying the results of Section 4.3 to type

IT; von Neumann algebras and type II; factors.
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Remarks 4.4.1. If 91 is a type II; von Neumann algebra then 9 has a separating family
of tracial states. Therefore Corollary 4.3.8 applies. Moreover Theorem 4.3.13 applies in the
case M is a type II; factor. Thus, as every type II; von Neumann algebra is the direct
integral of type II; factors, if N = [ )? N, du is a normal operator in a type II; von Neumann
algebra that is a norm limit of nilpotent operators then o(V,) cannot satisfy the assumptions

of Theorem 4.3.13 on a set of positive u-measure.

Remarks 4.4.2. Let 91 be a type II; factor and let 7 be the faithful, normal, tracial state
on M. Remarks 4.3.9 imply that for each N € Nor(9) there exists a probability measure
pn with support o(N) defined by 7. We will call py the spectral distribution of N. Note
two normal operators Ny, Ny € 91 are approximately unitarily equivalent in 9t if and only
if 1y, = pin, (see [70]). Since the question of when a normal operator is in Nil(901) is clearly

invariant under approximate unitary equivalence, the elements N of Nor(9t) N Nil(9) can

be completely classified based on puy.

Our next goal is to demonstrate several measures py as described in Remarks 4.4.2 such

that N € Nor(9%) N Nil(91). The main tool in this construction is Lemma 4.4.4 which is
based on [32, Section 2.3.3]. For completeness we include the statement of the following

well-known result.

Theorem 4.4.3 (Berg’s Technique, see [21, Theorem VI.4.1] for a proof). Let {e;}7_, U

{fi}i=o be an orthonormal set in H. Suppose T € B(H) has the property that
T@j = €541 and Tf] = fj+1
for all j €{0,...,n—1}. Then there exists an S € B(H) such that

1. S€ =T¢ for all € € ({e;}i=d U {f;}1=0)
2. S(span{e;, f;}) = span{e;i1, fi+1} for all j € {0,...,n — 1},

3. S is an isometry on span{e;, f;} for all j € {0,...,n — 1},
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4. S”eo = fn;
5. S"fo=e,, and
6. |S—-T| <.

Lemma 4.4.4 (see [32, Section 2.3.3]). Let n,m € N with m > 2 and choose
O=ar<ay <as<...<a,=1
Then there exists
M € Nil(M@2mi1)n+1(C)) and N € Nor(Mam+1)n+1(C))

such that

|M — N|| < T+ max a1 — Gy
n - 0<k<m-1

and

o(N) = {ake’%f ljell,....2n} ke {o,...,m}}

where the multiplicity of each non-zero eigenvalue is one.

Proof. Let {ek}l(zz]ﬂ)n be the standard orthonormal basis of C?™+1)"+1 and define M €

Nil(M@mi1)nt1(C)) by Me@myiyn =0,
M (ernyj) = Ahs1€hnyjin
forall k€ {0,1,...,m —1}and j € {0,1,...,n — 1},
M(emntj) = Omemntjr1

for all j € {0,1,...,n — 1},

M(ekn+j) = A2m4+1—kCkn+j+1
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forall k € {m+1,m+2,...,2m} and j € {0,1,...,n—1}, and by extending M by linearity.
Thus M is a nilpotent weighted forward shift on C™+)n+1 with weights

A1,G2, ..., Gm—1, Am, Am, Am, Am—1, - - -, A2, A1

for consecutive blocks of length n. It is clear that ||M | = 1.

For an arbitrary Hilbert space I with orthonormal basis { f; ?Zl let Uy, : K = K be
defined by Us,(f;) = fj41 for all j € {1,2...,2n — 1}, Us,(fon) = f1, and by extending U

by linearity. It is clear that Us, is a unitary operator with

(Usp) = {e%j | je {1,...,2n}}

with the multiplicity of each eigenvalue being one.

Our goal is to use Berg’s Technique to approximate M with a direct sum of multiples of

Us,. For each k € {0,1,...,2m — 1} let
My :=span{en,s; | 5 €{0,1,...,n—1}}.
Let Kp—1m+1 = Hm-1 ® Hp @ Hpmy1. By Berg’s Technique on

{enmfna Enm—n+1y-- -, enm} and {enerna Cnm+n+ls -, enm+2n}>

there exists an S; € Mam41)nt1(C) such that [|[S; — M|| < T, Si(f) = M(f) for all f €
(Hm—l ® Hm—l—l)La

Sl(spa‘n{enm—n—i-ja 6nm+n+j}) - Span{enm—n+j+1a enm+n+j+1}

for all j € {0,1,...,n — 1}, Sy is an isometry on
Span{enm—m Cnm—n+1s- -5 Enm—1, Cnm4n, Enm4nt1, - - - 7enm+2n—1}7
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ST (€nm-n) = €nma2n, and ST (€nmin) = €nm. Therefore
K:n—l,mﬂ = span{enm yn; S1(€nmin), St (€nmin)s - > ST (€nmin) } © Him

is an Sj-reducing subspace and S} is unitarily equivalent to U, when restricted to K7, .,
Let

1" L /
m—1m+1 " ’Cm—l,m—l—l S ICm—l,m+1‘

By construction, €pm—n € Ky, 1,11, S1 is a forward shift with weights one on

Span{enm—na Sl (enm—n)a S%(enm—n)7 R S{L_l(enm—n)} - IC;,n—l,m-q-la

and S1(enmion) = M(€nmion) = Gm—1€nma2nt1- Let M; be the operator obtained from
Sy by reducing the weights on K, ., from 1 = an, t0 apm-1 (s0 Mi(ST  (€nm—n)) =

am_lsl(Sf_l(enm_n)) = Uym—1€nma2n). Hence

s
||M_ Ml” < E + |am _am—1|‘

!/

Moreover, by construction, K}, ;.

Ugn and M1|(Kfm,7

| is a reducing subspace for M, such that M| | I

yLis an ((2m —1)n+1) by ((2m — 1)n + 1) matrix that is a nilpotent,

1,m+1

weighted forward shift with weights

a1,0a2,...,Am—-2,Am—1, Am—-1, Am—1, Am—2, - .., A2, 41

for consecutive blocks of length n.

For our next approximation, we will apply Berg’s Technique on M; in ‘an orthogonal

way’ in order not to disturb the above approximation. Let

1
’Cm72,m+2 =Hm o ® lcm717m+1 D Hm+2-
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By Berg’s Technique on

{enmf2n7 Cnm—2n+1;s-- -, enmfn} and {enm+2n7 Enm+2n+1, - -+ 6nm+3n}7

there exists an Sy € M@mi1n41(C) such that ||Sy — M| < T, Sy(f) = Myi(f) for all
f € (Hm—Q S Hm+2)La

SQ(Span{enm—2n+ja 6nm+2n+j}) g Span{enm—Zn—i—j—l—l: 6nm+2n+j+1}

for all j € {0,1,...,n— 1}, S5 iS a,,_1 times an isometry on

Span{enm—Qm €nm—2n+1; - - - Cnm—n—1; Cnm+2ns Enm+2n+1s - - enm+3n—1}’

SP(€nm—on) = A 1€nm+3n, and SY(€nmion) = @ _1€pm—n. Therefore the above implies that

IC:an,erQ = IC;/’Lfl,m+1 EB Span{enm+2n> S2(enm+2n)7 ey Sgil(enerZn)}

is a reducing subspace of S; such that the restriction of S5 to this subspace is unitarily

equivalent to a,,_1Us, and on
" L /
m—2,m+2 " Km_27m+2 S/ ICm—Q,m-{—Q CHno® %m+2

Sy is a forward shift with weights a,,_1. By dropping these weights to a,, o, we obtain a
matrix M, such that

T
|| My — M| < - + |am—1 — Qm—2],

]C/

m—1mi1 and K , are a reducing subspace for M, such that

m—2,m+

M2‘an - amUZna MQ’IC;n = amflUQna

—1,m+1 —2,m+2

and M| xr o)t 188 ((2m=3)n+1) by ((2m —3)n+1) matrix that is a nilpotent,

/
—1,m+1@’€m—2,

136



weighted forward shift with weights

a1,0a2,...,Am—-3,Am—2, Am—-2, Apy—2, A;m—3, ..., A2, 041

for consecutive blocks of length n (except in the case that (2m — 3)n +1 =n + 1 in which

case we have the (n+ 1) x (n + 1) zero matrix). Moreover

M — M| < max{[[M — M, |[My — Mal|}

< max{% +am — ame|, T+ |@m—1 — am_2|}

since M and M, only differ on K),—1 41 and M; and M, differ only on H,,,—2 @ Hyyto which

are orthogonal spaces.

By continuing this process ad nauseum, we eventually obtain that M is within

T
—+ max |apy1 — agl
n o 0<k<m-—1

of an operator unitarily equivalent to (@1Sk§m akUQH) @0,,+1 where 0,11 is the (n+1) x (n+1)
zero matrix. Since Ny = (@1§k§m akUgn) @ 0,41 is a normal operator with the desired

spectrum, the result trivially follows. O

Lemma 4.4.5. Let 9N be a 11, factor, let T be the faithful, normal, tracial state on M, and let
N € Nor(9M) be such that o(N) = D. Suppose there exists an increasing, unbounded sequence

of natural numbers (ng)g>1 and real numbers 0 = agp < arp < g < -+ < Apy 41, = 1 such

that

lim max |a,r 16— apr| =0
Jim max api1k — apil

and if By p 4 is the spectral projection of N onto

_ . T
{ZG]D | z:reze,ap,k<r§ap+1,k,7qz—<9§7r
k

M}

n

forallge{1,...,2n.} andp € {1,...,nx} and Ey is the spectral projection onto the closed
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disk of radius ay, centred at zero then

nk—i—l 1

E.))= ——~ d E =——
7( k,O) 2nz+nk+1 an 7 ( k,p,q) 2ni+nk+1

for all g € {1,...,2n4} and for allp € {1,...,n,}. Then N is a norm limit of nilpotent

operators from IN.

Proof. Suppose N has the above conditions. For each k£ € N let

an nk

Ny = OEk70 + Z Z CLp,lcesiliqu:,p,q-

g=1 p=1

Then Nj € Nor(91) is such that the norm of N, — N is at most the maximum of a; ; and

. .. . m
max diameter | wedge of radii a, and a,,1; with an angle of —
Ds p+1,

1<p<ny N

by the Spectral Theorem for Normal Operators. Since limy_ o ni = oo and

lim max |a,r 16— apr| =0
k~>oo()§p§nk‘ p+1, P | Y

N = limy_, Ni. Thus it suffices to show limy_, dist(Ng, Nil(91)) = 0.

Since
ng + 1

T(Epp) = —oi =
(Eio) 202 + ng + 1
by the theory of II; factors there exists a collection {Fxo, | p € {0,...,n,}} of mutually

orthogonal, equivalent projections of trace that sum to Ej . Hence, for each k € N,

1

the tracial conditions given in the hypotheses and the properties of 1I; factors imply that

{Ek,O,p ‘ P € {0,,nk}}U {E]@p,q | q c {1,,2nk},p < {1,,nk}}

are mutually orthogonal, equivalent projections that sum to Iyy. Thus, using the partial

isometries between these equivalent projections as matrix units, we can construct a copy of
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Mz 1, 41(C) such that Ny can be viewed as a normal operator of My,z ., 41(C) with

o(Ng) = {ame%q | ¢ge{1,...,2n,},p €40, 1,... ,nk}}

where the multiplicity of each non-zero eigenvalue is one. Thus Lemma 4.4.4 implies Ny
is within maxo<p<n,—1|@pr16 — api| of an element of Nil(9t). By the assumption that

limy,_ oo MaXg<p<n, |@pt146 — api| = 0, the result follows. O

Theorem 4.4.6. Let M be a I, factor, let T be the faithful, normal, tracial state on N,
and let N € Nor(O) be such that o(N) = D. Let uy be the spectral distribution of N.

Suppose puy is absolutely continuous with respect to the two-dimensional Lebesque measure

and invariant under rotations of the disk. Then N € Nil(90).

Proof. By the assumptions on py there exists a function f such that rf(r) € Ly([0,1]),

f > 0 almost everywhere with respect to the Lebesgue measure, and

i (X) = /X £(r)(rdrde)

for all X C D where rdrdf is the two-dimensional Lebesgue measure. The construction of
the 0 = app, < a1, < -+ < Apy1,, = 1 necessary to apply Lemma 4.4.5 at the nth step is
done by choosing a;, 1, such that

n+1 2jn 4j+1n
=2 dr.
2n2+n—|—1+2n2+n+1 7r/0 rf(rydr

Since F(x) = 2 [ rf(r)dr is an absolutely continuous, strictly increasing bijection from
0,1] to [0, 1] by assumption, F~! exists and is a strictly increasing continuous bijection from
[0, 1] to [0, 1] such that

o _ n+1 i 2in
g+1m n2+n+1 2n24n+1)°

Thus lim,,_,o maxi<j<n—1|@j41,n — ;| = 0 as required. O
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Next we will demonstrate how complex analysis may be used to construct additional
non-zero normal operators in the closure of the nilpotent operators in type II; factors. We
begin with the following observation that is trivial by Mergelyan’s Theorem and Lemma

4.3.1.

Lemma 4.4.7. Let 2 be a C*-algebra and let N € Nor(21) N Nil() be such that o(N) = D.
If f : D — C is continuous on D, holomorphic on D, and f(0) = 0, then f(N) € Nor(2) N

Nil(2) and o(f(N)) = f(D).

The same holds with Nil() replaced with QuasiNil(2l).

Theorem 4.4.8. Let §) be a non-empty, open, connected and simply connected subset of C

containing zero such that 0S) contains at least two points and is a Jordan curve. Let 2 be

a C*-algebra and let N € Nor(2) N Nil(2l) be such that o(N) = D. Then there exists an

operator Ny € Nor(2() N Nil(A) with o(Ny) = 2.

The same holds with Nil(2) replaced with QuasiNil(2l).

Proof. Let f : D — € be the biholomorphism given by the Riemann Mapping Theorem.
By Carathéodory’s Theorem f extends to a function g : D — € such that g is continuous
on D, g is holomorphic on D, and ¢ is a bijection. Since 0 € Q, 0 ¢ 99 and thus there
exists an a € D such that g(a) = 0. Let h(z) = Z£%. Then h is a homeomorphism
of the closed unit disk and is a biholomorphism of the open unit disk as |a|] < 1. Let
F : D — Q be defined by F(z) = g(h(z)). Then F is well-defined, F is continuous on D,
F' is holomorphic on D, F' is surjective, and F'(0) = ¢g(h(0)) = g(a) = 0. Hence, by Lemma
4.4.7, Ny = F(N) € Nor(0) N Nil(2l) is such that o(Ny) = F(D) = Q. O

Unfortunately the solution to the question of when a normal operator in a type II; factor

is a norm limit of nilpotent operators remains open. In particular, the results of Section 4.3

raise the following the following question.

Question 4.4.9. If M is a type I, factor and N € M is a normal operator with connected
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spectrum containing zero such that the spectral distribution, puy, of N has the property that
| ple)dun(z) =0
o(N)

for every polynomial p that vanishes at zero, is N € Nil(9)?

Theorem 4.4.8 can be used to modify the spectral distributions in Theorem 4.4.6 to obtain

more elements of Nor(9%) NNil(9) for a type II; factor M. However, an answer to Question

4.4.9 seems to be directly related to the following finite dimensional question.

Question 4.4.10. Given N € Nor(M,(C)), can dist(N,Nil(M,,(C)) be computed using

only knowledge of the spectrum (including multiplicity) of N ?

Very little is known in regards to the above question. Lemma 4.4.4 does provide some
information and was used to derive the positive results of this section. In addition, [2, Section

A1.2] provides a good summary of what is known. We will see at the end of Section 4.5 that

this question reappears in the discussion of Nor(9t) N Nil(9) for a type Il factor 91 in a

slightly simpler form.

On the other side of things, Theorem 4.3.13 provides examples of normal operators in
a type II; factor that are not limits of nilpotent (or even quasinilpotent) operators. In

particular, unlike the results of Section 4.1 and Section 4.2, it is unclear if Nor(9%) N Nil(9t)

and Nor(9t) N QuasiNil(9) agree for a type II; factor 9. This raises the following question.

Question 4.4.11. Is Nil(9) = QuasiNil(9N) for an arbitrary von Neumann algebra O ?

It is not difficult to see that Question 4.4.11 has a positive answer in the case of a type

I von Neumann algebra.

Theorem 4.4.12. Let M = Loo(X,B(H)) where (X, p) is a Radon measure space. Then
Nil(9t) = QuasiNil(9n).
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Proof. 1t is clear that Nil(91) C QuasiNil(9t). To complete the proof it suffices to show that
QuasiNil(91) C Nil(9). Let f € QuasiNil(9) \ {0} and let € > 0. Since

{e e X {lF@" > 7]}

has measure zero for each k£ € N, we may assume without loss of generality that H f (x)kH <

kaH for each x € X and k € N.
Since f is measurable, the range of f is separable and = — | f(z)| is a measurable

function. Thus there exist {T),}n>1 € f(X) and disjoint measurable subsets {E, },>1 € X

such that if
h:= Z TnXEn e M

n>1

then [|[h — f]| <e.

By [6, Theorem 2.2] (or [32, Theorem 5.18]) for every o, 3 > 0 and k € N there exist
{Mj.n}n>1 C Nil(B(H)) such that MZ% =0 for all n € N and

k k
T — Micpll <2 (allT I+ 5+ HBZH1> <a||f|| +6+ Hg H )

for all n € N. By choosing &« = 6" and B =6 Hf’“H% for some fixed § > 1, for each k € N
and 6 > 1 there exist {Mp}n>1 C Nil(B(H)) such that M2 =0 for all n € N and

1T = Miall <2 (875 711+ 20 | £]F)

1
for all n € N. Since f is quasinilpotent, limy_, . kaH * =0 so there exists a kg € N and a

0o > 1 such that
2 (05 1711+ 20 | £ 0) < e
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Hence there exist {M,},>1 C Nil(B(H)) such that M2 = 0 for all n € N and

[T — M| < e
for all n € N.
Let
g = ZMnXEn~
n>1
Then g € M, || f — gl < 26, and g?* = 0 so g € Nil(91). Hence f € Nil(9M). O

Unfortunately the results of [6] do little to solve Question 4.4.11 for a general von Neu-

mann algebra. For example, if

()51 € TTMAC) = {(Ts | T, € M, (s 1] < o0}

n>1

is quasinilpotent then limy o sup,,>4 Hij ||% = 0. Clearly this implies each M,, is a nilpotent
matrix. However, an element (7},),>1 € [[,5; M»(C) is nilpotent if and only if there exists
a k € N such that T = 0 for all n € N and it is unclear that (M, ),>; can be approximated
by elements of this form. The answer to Question 4.4.11 appears even more elusive for von
Neumann algebras of other type since, unlike with normal operators, it is not apparent that

quasinilpotent operators in factors of other types may be approximated with elements from

M, (C) or B(H).

4.5 Type 11, Factors

In this section we will study when normal operators are norm limits of nilpotent and
quasinilpotent operators in type Il factors with separable predual. Although the tracial
restrictions of Section 4.3 do not apply, the finite projections do pose another restriction.

This additional restriction is similar to a restriction that appears in Theorem 1.8.2 but not
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in Theorem 1.8.3.

Remarks 4.5.1. Let 9t be a type I, factor with separable predual. Then there exists a
type II; factor 91 such that 9 = NRXB(H). Let My := N in K where & C B(H) is the
C*-algebra of all compact operators. Then 9, can be viewed as an ideal of 91 (that is not
weak*-closed). Let ¢ : MM — M/M, be the canonical quotient map. For each T € M let
oe(T) := o(q(T)). We will call 0.(T) the essential spectrum of 7" € 9. Alternatively 1,
can be shown to be the ideal generated by operators supported on finite projections and thus

the essential spectrum does not depend on the decomposition of 9t chosen.

If T € QuasiNil(9) then ¢(7) € QuasiNil(9M/M,). Hence o.(T) must be connected
and contain zero by Lemma 1.8.4. This additional condition is unnecessary for B(#) as the

spectrum and essential spectrum of an N € Nor(B(#)) agree when o(N) is connected.

Let 7 be an unbounded tracial state on 9t such that 7(7'® P) = 7/(T) for all T € N
where 7/ is the faithful, normal, tracial state on 9t and P € B(H) is a rank one projection.
As in Remarks 4.4.2, for each N € 9%, 7 gives rise to a positive measure py with support
o(N) and Ny, Ny € 9 are approximately unitarily equivalent in 9 if and only if py, = pn,

(see [70]). Thus the elements N of Nor(9t) N Nil(9) can be completely classified based on

un. Moreover, note A € o.(N) if and only if
pn({zeC | [z=A[<e}) =00

for all € > 0. Thus the measure uy captures the information about o, (V).

Since every type I, factor has infinite projections, we easily obtain (as in Section 4.1 and

Section 4.2) that there are several normal operators in the closure of the nilpotent operators.

Theorem 4.5.2. Let M be a von Neumann algebra and let N € Nor(9M) be such that
o(N) is connected and contains zero. Suppose further that for every e > 0 there exist a
finite number of disjoint Borel sets {Ey}rey such that o(N) = U, Bk, diam(Ey,) < e,
and if Pye = Xg, . (N) then { Py}, are equivalent, properly infinite projections. Then
N e Nil(9).
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Proof. Let N be as described above and fix € > 0. Fix a, € Ej, such that a; = 0 for the
unique k € {1,...,n} where 0 € Ey, and let T, := > aPy.. Then |T. — N|| < ¢ and
T. € Nor(9).

Since P, . is properly infinite, there exist mutually orthogonal, equivalent projections

{Pycs}te>1 such that

Pl,e - Z Pl,e,f'

>1
Since { Py }r<, are equivalent, mutually orthogonal projections, there exist mutually orthog-

onal, equivalent projections {{ Py cs}e>1}re, such that

Py= Z Prco

0>1

for all k € {1,...,n.}.

Let B(H) C 9t be a copy of the bounded linear operators on a separable Hilbert space
generated by the partial isometries implementing the equivalences of {{Py¢}e>1}pe, in-
side of M. Thus 7, can be viewed as normal element of B(H) C 9t with spectrum and
essential spectrum equal to {ay};<,. Since o(N) is connected and diam(Ej.) < e for all
ke{l,...,n}, Lemma 4.1.2 implies 7T, is within 3¢ of an element of Nil(B(#)) C Nil(90).
Hence dist(N, Nil(901)) < 4e. O

Corollary 4.5.3. Let I be a type I factor with separable predual and let N € Nor(9)
be such that o(N) is connected and contains zero. If 0.(N) = o(N) then N € Nil(I).

Proof. Since 0.(N) = o(N), every non-zero spectral projection of N is an infinite projection
in 901. Since 9 is a type II, factor, every infinite projection is properly infinite and any two

infinite projections are equivalent. Thus the result follows from Theorem 4.5.2. O]

Combining our results from Section 4.4, the following provides examples of normal oper-

ators N in type Il factors that are limits of nilpotent operators yet o(N) # o.(NV).
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Proposition 4.5.4. Let 9 be a 11, factor with separable predual and write M ~ NRQB(H)
where N is a I, factor. Let T be an unbounded tracial state on M such that (T @ P) = 7'(T)
for all T € N where 7' is the faithful, normal, tracial state on N and P € B(H) is a rank

one projection.

Let N € Nor(m) be such that o(N) and o.(N) are both connected and contain zero.

Suppose further there exists an Ny € Nor(OM) NNil(N) and a k € N such that o(Ny) = o(N)

and k7'(xx(No)) = T(xx (N)) whenever X C o(N)\ 0.(N) is Borel. Then N € Nil(9).

Proof. Choose Ny € Nor(M) such that o(Ny) = 0.(N). Let Q € B(H) be a rank k projection
and consider T := Ny ® @ + N7 ® (I3 — Q). Then T € Nor(9) has the same spectral

distribution as N so T and N are approximately unitarily equivalent in 9.

Note MR (I — Q)B(H) (I — Q) is a type 11, factor and

Ny ® (I — Q) € Nor(M(Iy — Q)B(H)(In — Q))

satisfies the hypotheses of Corollary 4.5.3. Therefore

N1 @ (I — Q) € Nil(M (I — Q)B(H) (I — Q).

Since Ny € Nil(9t) by assumption and the direct sum of two nilpotent operators is a nilpotent

operator, 7" € Nil(9t). Hence N € Nil(9). O

Unfortunately Proposition 4.5.4 requires the normal operator Ny to be a limit of nilpotent
operators from . Since type II; factors have no self-adjoint operators in the closure of the
nilpotent operators, Proposition 4.5.4 does not enable us to classify I, HW for a type
IT, factor. For example, using the notation of Proposition 4.5.4, let Ny € I, have the
Lebesgue measure on [0, 1] as its spectral distribution. Then N, ¢ Nil(N) yet, if P € B(H)

is a rank one projection, it might be possible that Ny ® P € Nil(90).

One way to view this problem for this particular Ny is as follows. From Corollary 4.3.4
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we know

lim inf dist (diag < L2 ce 2 - 1, 1> ,Nil(./\/ln((C))) > %

n—v00 on’ o0’ on
so it is not possible to use spectral projections in 91 to approximate N, with nilpotent
matrices of this form. However, in 91, the spectral projection of Ny ® P corresponding to
{0} is infinite. This allows us to add an infinite number of zero eigenvalues to any matrix in

a matrix approximation of Ny ® P inside 9. In particular, if

1 2 2" —1
lim inf lim inf dist (diag ( e ) 1) @ O, Nil(./\/anrk((C))) =0

n—oo  k—oo on’ on’ n

where 0y, is the k x k zero matrix, it would be easy to conclude that Ny ® P € Nil(91).
In fact, this limiting question is intrinsically related to the distance from a normal oper-

ator in B(H) with finite spectrum to Nil(B(H)).

Proposition 4.5.5. Let n € N and let ay,...,a, € C. Let {e,}n>1 be an orthonormal basis
for H and define D € Nor(B(H)) by De; = aje; if j € {1,...,n} and De; = 0 otherwise.
Then

lim dist (diag (a4, ..., a,) ® Ok, Nil(M,,,+(C))) = dist(D, B(H)).

k—o0

Proof. 1t is clear that dist (diag (a1, ..., a,) & O, Nil(M,,4£(C))) decreases as k increases so

the limit exists. Moreover
klim dist (diag (aq, . . ., an) @ Ok, Nil(M,,41(C))) > dist(D, B(H))
—00

by considering the direct sum of nilpotent matrices with a zero operator.

Let M e Nil(B(#)) be arbitrary. Let m € N be such that M™ = 0, let £ := span{e; |
je{l,...,n}}, and let

K :=span{L, M(L),...,M™ (L)}

Clearly IC is a finite dimensional Hilbert space containing £ that is invariant under M.
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Choose k € N U {0} such that dim(K) = k+n = k + dim(£). With respect to the

decomposition K @ K+ of H, write

T 0 M, M,
D= and M =
0 0 0 M,

By construction T" can be viewed as an (k4 n) x (k 4+ n) matrix that is unitarily equivalent
to diag (ai, . .., a,) ®0,. Moreover M; can be viewed as an (k+n) x (k+n) nilpotent matrix

as M is nilpotent. Therefore
dist (diag (a1, . . ., an) ® Ok, Nil(M,,14(C))) < ||T — M|| < ||D — M]|

so the result follows. O

Some work towards evaluating the distance between a normal operator N of B(H) with
finite spectrum and Nil(B(H)) has been performed. One example of this is Lemma 4.1.2
which investigates the above distance when the spectrum and essential spectrum of N agree.
Another example is [65, Theorem 2.3a] which gives a bound for dist(N, Nil(B(#))) based
on the spectrum and essential spectrum of N. Unfortunately the bound from [65] does not

appear to be tight in this setting.

Alternatively, looking at the limiting property, [32, Theorem 2.12] (originally in [30,
Section 7]) shows

lim dist(P,, Nil(M,,(C))) = =

n—o0 2

where P, € M,,(C) is an arbitrary rank one projection. Moreover, in [45] and [46], a tight
upper bound for dist(P,, Nil(M,,(C))) has been obtained and examples have been given that

obtain this bound for small n.

Note the only two obvious lower bounds for dist(A, Nil(M,,(C))) for a positive matrix
A € M, (C) of norm one are Lemma 4.1.3 and Corollary 4.3.4. This provides some support

to the following conjecture.
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Conjecture 4.5.6. There exists a continuous function f : [0,1]*> — [0,1] such that f(0,0) =
0 and, if A € My1(C) is a positive matriz of norm one with o(A) = {0 =X < Ay <--- <
A, = 1}, then

dist(A, Nil(Mj. (C))) < f (TkH(A), max | s — )\“|>

1<i<k

where Tiy1 is the tracial state on My, 1(C).

If the above conjecture holds, it would be a simple argument to show that if 9 is a
type Il factor and if A € Mg, is such that o.(A) = {0} and o(A) = [0,1] with the
spectral distribution being a multiple of the Lebesgue measure, then A € Nil(91). It would

then be possible to use some elementary mapping arguments and approximations by normal

operators with finite spectrum to show that if 91 is a type Il factor and if N € Nor(9),

then NV € Nil(90) if and only if o(N) and o.(NN) are connected and contain zero.

4.6 Normal Limits of Sums of Nilpotent Operators in Von Neu-

mann Algebras

In this section we will investigate Nor(2t) N span(Nil(91)) for an arbitrary von Neumann
algebra M. In [29, Corollary 5] Herrero showed that the unit of B(H) is a limit of sums of
two nilpotent operators. Since certain von Neumann algebras contain unital copies of B(H),

the following result is trivial.

Proposition 4.6.1. Let 9N be a type I, I, or type III von Neumann algebra. Then there

exist sequences of nilpotent operators (M;,)n>1 i M such that Iy = lim,,_o M, + Mo ,.

Our next goal is to generalize [29, Corollary 6] to type I and type III von Neumann
algebras with separable predual. The arguments used in these two results are a modification

of the arguments in [29] using the theory developed in Sections 4.1 and 4.2.

Theorem 4.6.2. Let M = Lo(X,B(H)) where (X,u) a Radon measure space and let

f € Nor(9). Then there exists two sequences (My,)n>1 and (M]),>1 of nilpotent operators
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i M such that
lim ||f — (M, + M,’L)H = 0.

n—oo

Furthermore these sequences can be chosen such that max{||M,||, || M|} < 2| f]|.

Proof. Fix € > 0 and choose a representation of f such that sup,.x || f(x)| < co and f(x) is
normal for every x € X. Since f is measurable, the range of f is separable and x — || f(x)]| is
a measurable function. As such there exist {7}, },>1 C f(X) and disjoint measurable subsets
{En}nz1 C€ X such that if h:= 3" - Txg, (so h € M) then ||h — f|| < e Since T, € f(X)

for all n € N, T}, is normal and ||7,,|| < || f]| for all n € N.

For each n € N choose )\, in the essential spectrum of 7,, and fix R,, € Nor(B(#)) such
that the spectrum and essential spectrum of R, is the closed ball of radius ||7,,|| around zero.

For each n € N let

Sy 1= %IH +R,€B(H) and S, := %IH — R, € B(H).

Thus for each n € N the spectrum and essential spectrum of \S,, and S/, are the closed unit

ball of radius ||T5,|| centred at 2z.

Recall that My(B(H)) ~ B(H). For each n € N let
1 1
L,:= (§Tn) &S, € My(B(H)) and L, := (§Tn) ® S, € Mo(B(H)).

Therefore, for each n € N, L,,, L!, € Nor(My(B(H))), o(L,) and o(L!) are connected and
contain zero, and {L,, L}, },>1 is bounded in norm by 2|/ f||. Thus Lemma 4.1.4 implies
there exists a ¢ € N and {Qn, Q) }uz1 C Nil(M2(B(#H))) such that [|Qu[l, |Q7l < 31,
[Ln = @ull I1L7, — @yl < €, and QF = 0 = (Q;,)? for all n € N.

Notice

Lo+ L, =T, ® (Sp+S.) =Th & (Anls).

Since \,, was chosen to be in the essential spectrum of 7),, it is clear that 7,, and L, + L/, are
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approximately unitarily equivalent (viewing My(B(H)) ~ B(#)). Thus the above implies
there exist {M,, M} },>1 C Nil(B(H)) such that ||, ||, M| < 3| f|l, M2 =0 = (M,)",
and [|T,, — (M, + M) )|| < 3¢ for all n € N. Therefore, if we define

g1 = Z M,xg, and go:= Z M, xE,,

n>1 n>1

then gy, go € Nil(9) are such that [|g1]| ,[|g2]| < 2|/ and
1A = (g1 + g2)ll < sup [T — (My + M,)[| < 3e.
n>1

Thus ||f — (91 + ¢2)|| < 4e completing the proof. O

Theorem 4.6.3. Let N be a type III von Neumann algebra with separable predual and let
N € Nor(I). Then there exists two sequences (My)n>1 and (M) ),>1 of nilpotent operators
mn M such that

lim [|[N — (M, + M,))|| = 0.

n—o0

Furthermore these sequences can be chosen such that max{||Q,l|, |Q,|} < 2|N| for all

n € N.

Proof. Most of the arguments of this result are similar to those used in Theorem 4.2.2 and
thus will be omitted. Since M is a type III von Neumann algebra with separable predual,
there exists a locally compact, complete, separable, metrizable, measure space (X, ) and a
collection of type III factors (901, ),.cx with separable predual such that 9 is a direct integral
of (M,)rex. Thus we can write N = ff? N, dp(x) where N, € 9, is a normal operator and
| N2|| < ||N|| for all x € X. Without loss of generality, | N|| = 1.

Let € := 2Lm for some fixed m € N and let Cy, and Xy be as in Theorem 4.2.2. Since
the number of possible sets Y is finite and the sets Xy are disjoint, it suffices to show that
for each Y there exists two nilpotent operators My and Mj, in 9 such that the supports of
My and My, are Xy and N is within 3e of My + M, when restricted to Xy-.
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Fix a potential Y and for each (k,¢) € Y let 2z, € Ciy be any element within the
closed unit ball. As in Theorem 4.2.2 there exist equivalent, pairwise orthogonal, measurable

projections {{(z — Py, rew)}k0ecy fw>1 such that

Ty = |z Z E 2 0 Py e 0.0

(k,0)eY w>1

is a measurable and decomposable operator in 2 that has Xy as support and is within 2e

of the restriction of N to Xy.

To construct our nilpotent operators, let Dy be the diagonal operator on a separa-
ble Hilbert space H with orthonormal basis {{ex¢w} @ eey Jw>1 such that Dy (egrw) =
Zgeerew for all w € N and (k,¢) € Y. By [29, Corollary 6] (or by Theorem 4.6.2) there
exist Q@”,QQ) € Nil(B(H)) such that HQ@ < 2|Dy| < 2|N| for j € {1,2} and
Dy—( 9—1—@9)” < e. For each wy,wy € N, j € {1,2}, and (kq,01), (ka,l2) € Y

let

(J) _ ()
(k:l,fl wi),(ka,l2, wg) = <QY €k2’£2:w27 ek1,€17w1> € C

and let (2 Vi (k0000 (kataws)) € I be the partial isometry such that

(ZB = V J(k1,01,w1), (kz,fz,wz)) (ZL‘ — V ,(k1,01,w1), (kz,fz,u&)) = (QT = Px7k1,€17w1)
and
(x = V J(k1,01,w1), (k2752,w2)) ($ = V J(k1,01,w1), (k’2752,w2)) = (ZL’ = Px,k27€2,w2)‘
Finally for j € {1,2} let M,(,j) be the operator
(4)
= Z Z a’(?ﬁ,€1,’wl),(kQ,fQ,’LUQ)‘/xv(khelvwl)’(k%e%w?)
wi,w2>1 (kq,01),(k2,42)€Y

which are measurable, decomposable, nilpotent operators in 9t whose sum is within € of Ty.

Thus the result follows. O
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In the case of a C*-algebra 2 with a tracial state (in particular, finite von Neumann

algebras), the following corollary of Lemma 4.3.3 demonstrates that Iy ¢ span(QuasiNil(2)).

Proposition 4.6.4. Let A be a unital C*-algebra with a tracial state 7. Then

span(QuasiNil()) C ker(7).

Thus Iy ¢ span(QuasiNil(2()).

We end this section by generalizing [29, Corollary 6] to type Il factors with separable

predual.

Theorem 4.6.5. Let I be a type 11, factor with separable predual and let N € Nor(9).
Then there exists two sequences (My,)n>1 and (M]),>1 of nilpotent operators in M such that

lim || N — (M, + M.)|| = 0.

n—oo

Furthermore these sequences can be chosen such that
1 .
1Ml (1M1 < 5 [N+ dist (0, o (V)

for alln € N (where o.(N) was defined in Remarks 4.5.1).

Proof. Let X € 0.(N) be any point such that [A| = dist(0, 0.(N)) and let R := (|| N||+[A]).
Let My be a normal operator in 9t such that o(My) and o.(My) are both the closed ball
of radius R around 0. Let M := 31y + My and M, := 31w — My. Thus o(M), oo(M),
o(My), and o.(M,) are all the closed ball of radius R around 3.

Since M is a 11, factor, there exists a unital embedding of My (91) into 9 such that
N @ (Msn) and N are approximately unitarily equivalent (as A € o.(N)). Let L; := 1N &
M; € My(9M) and Ly := 3N @& M, € My(9M). By construction it is clear that L, + Ly =

N & (ALm),
Al 1 .
L4l = 2]l = R+ 150 = 2 V]| + dist(0, 0 (V)
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and o0(Ly) = 0.(L1) and o(Ly) = 0.(L2) are both connected sets containing zero. Since
My(ON) is also a Il factor, Corollary 4.5.3 implies that L; and Ly are norm limits of
nilpotent operators from My (9). Hence there exists two sequences (M,,),>1 and (M) )n>1

of nilpotent operators in My(9) C M such that
lim [|[N & (M) — (M, + M)|| =0
n—oo

and || Q| |QL] < 5 [|N|| + dist(0,0.(N)) for all n € N. Hence N & Al is a norm limit of
sums of nilpotent operators from My(9%) C 9 with the desired properties. Since N & Al

and N are approximately unitarily equivalent in 9t (see [70]), the result follows. O]
4.7 Distance from Projections to Nilpotent Operators in Von Neu-
mann Algebras

In this section we will investigate the distance from an arbitrary fixed projection to the nilpo-
tent and quasinilpotent operators in von Neumann algebras. We begin with the following

simple result.

Lemma 4.7.1. Let A be a unital C*-algebra. Then
dist (Lo, Nil(A)) = dist(Iy, QuasiNil(A)) = 1.
Furthermore if P € 2 is a non-trivial projection then

< dist(P, QuasNil(A)) < dist(P, Nil(2()) < 1.

N | —

Proof. The first claim follows since nilpotent and quasinilpotent operators are not invertible
and the open unit ball around Iy contains invertible operators. The second result follows

trivially from Lemma 4.1.3. [
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Our first goal is to generalize [29, Corollary 9] to type I and type I1I von Neumann algebras
with separable predual. These arguments are simple generalizations of [29, Corollary 9] based

on the techniques used in Sections 4.1 and 4.2.

Theorem 4.7.2. Let (X, 1) a Radon measure space and let M = Loo (X, B(H)). If P € M

s a projection then

1. dist(P, Nil(9)) = dist(P, QuasiNil(9)) =0 if P =0,

2. dist(P, Nil(9n)) = dist(P, QuasiNil(9)) = 1 if P(x) has finite dimensional kernel on a

set of positive p-measure, and

3. dist(P, Nil(9M)) = dist(P, QuasiNil(IM)) = 1 otherwise.

2

Proof. Clearly (1) holds. To see that (2) holds, note if M € Nil(91) then M (z) € Nil(B(H))
for almost every x € X and if M € QuasiNil(9) then M(z) € QuasiNil(B(H)) for almost
every x € X. If P € 9 is a projection where P(z) is a projection with finite dimensional
kernel on a set of positive y-measure then since every projection in B(H) with finite dimen-
sional kernel is distance one from the nilpotent and quasinilpotent operators (by [29, Corol-
lary 9]) the above description of the nilpotent and quasinilpotent operators of 9t implies
dist( P, Nil(91)) = dist(P, QuasiNil(9N)) = 1.

To see that (3) holds, it suffices to show dist(P,Nil(9)) < 1 by Lemma 4.7.1. Fix
e > 0. Note we can choose a representation of P such that P(z) is a projection with infinite
dimensional kernel for every x € X. Since P is measurable, the range of P is separable
and z — ||P(z)]| is a measurable function. Thus there exist {P,},>1 € P(X) and disjoint

measurable subsets {F, },>1 € X such that if

Q = ZPnXEn

n>1

(so @ € M) then |Q — P|| <e.
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Since P, € f(X) for all n € N, each P, is rather the zero projection, a projection with
infinite range and kernel, or a projection with finite range. Since each projection with finite
range can be viewed as the direct sum of rank one projections, [29, Corollary 9] implies there
exists a ¢ € N and {M, },>1 C Nil(B(H)) such that ||P, — M,| < % + ¢ and MZ = 0 for all

n € N.
Let

M = ZMTLXEn'

n>1
Then M € M, |[P — M|| < 1+ 2¢, and M? =0 so M € Nil(?). Hence dist(P, Nil(9)) <
: .

Theorem 4.7.3. Let MM be a type I1I von Neumann algebra with separable predual. Choose
a locally compact, complete, separable, metrizable measure space (X, u) and a collection of
type 11 factors (M, )zex with separable predual such that M is a direct integral of (M,)zex -
If P € M is a projection, we may write P = f;(B P, du(x) where P, € M, is a projection for
all x € X. Then

1. dist(P, Nil(9)) = dist(P, QuasiNil(I)) = 0 if P =0,

2. dist(P,Nil(9n)) = dist(P, QuasiNil(9MN)) = 1 if P(x) = Iy, on a set of positive -

measure, and

3. dist(P, Nil(9)) = dist(P, QuasiNil(M)) = L otherwise.

Proof. Clearly (1) holds and (2) follows in a similar fashion as in Theorem 4.7.2. To see
that (3) holds, it suffices to show dist(P, Nil(91)) < 3 by Lemma 4.7.1. Since 9 is a type
IIT von Neumann algebra, every non-zero projection of 91 is properly infinite. Thus, as
P = (x — P,) is non-zero, (z — P,) is a properly infinite projection. Thus there exist

equivalent, pairwise orthogonal, measurable projections {(z — Py 1) }w>1 such that

(€= P) = (x> Prua).

w>1
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Let Z € 9 be the central support of P and let Q := (Ioy — P)Z. Thus P and @ have
the same central support Z as Ipy, — P, # 0 for all x in the support of Z. Hence P and @)
are equivalent projections in 9. Therefore, using the projections {(z — Py 1) }w>1 and the

fact that QP = 0, there exist measurable projections {(z — Py 2) }w>1 such that
(@ Qa) =D (¥ Pru)
w>1
and

{(z = Prwj)bw>1ti=12

is a collection of equivalent, pairwise orthogonal projections.

Let € > 0. To construct our nilpotent operator, let D be the diagonal operator on an
infinite dimensional, separable Hilbert space H with orthonormal basis {{e; }w>1};=12 such
that D(ey1) = ew1 and D(e, o) = 0. By [29, Corollary 9] there exists an M’ € Nil(B(H))
such that [|D — M'|| < % + €. For each wy,wy € N and 7y, j2 € {1,2} let

L /
A(wr,j1),(wa,j2) *— <M €w27j276w1,j1> eC

and let (x — Vaj,(whjl)’(w&h)) € I be the partial isometry such that

(= Ve wr i wsi) (@ = Vi) ws») = (@ = Pruwy )

and

(x = %,(w1,j1),(w2,j2))* (I = %7(’11)1,]‘1),(11)2,‘7.2)) = (.I = Px7w27j2>‘
Finally let

M:= |z Z Z Oy 1), (wa.g2) Ve, (wr 1) (wz.52)

’Ll)l,'UJQZl j17j2€{172}
which is a measurable and decomposable operator in 9t. Moreover M is also nilpotent as, for

cachz € X, M, is a copy of M'. Since |D — M'|| < $+e, itis clear that [|[P — M|| < 14e. O
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In the case of a C*-algebra 21 with a tracial state 7, Corollary 4.3.4 clearly provides an
additional restriction. Thus it is unlikely to for us to generalize the above results to finite

von Neumann algebras. However [29, Corollary 9] generalizes to type I, factors.

Theorem 4.7.4. Let 9N be a type 11, von Neumann algebra with separable predual. Choose
a locally compact, complete, separable, metrizable, measure space (X, p) and a collection of
type Il factors (M, )zex with separable predual such that M is a direct integral of (M,)zex -
If P € M s a projection, we may write P = ff? P, du(zx) where P, € M, is a projection for
allz € X.

1. dist(P, Nil(907)) = dist(P, QuasiNil(9M)) = 0 if P =0,

2. dist(P, Nil(91)) = dist(P, QuasiNil(IN)) = 1 if Loy, — P(x) is finite on a set of positive

-measure, and

3. dist( P, Nil(9)) = dist(P, QuasiNil(9M)) = 1 otherwise.

2

Proof. Clearly (1) holds. To see that (2) holds, first suppose 9t is a factor (that is u is a
point-mass measure) let 91, be the ideal of 9t given in Remarks 4.5.1 and let ¢ : 9T — 9/,

be the canonical quotient map. If Iy — P is finite then ¢(P) = Ion/om,. Thus
1 = dist(q(P), Nil(90t/9)) < dist(P, Nil(9)) < 1

and

1 = dist(g(P), QuasiNil(2t/9My)) < dist(P, QuasiNil(M)) < 1.

Therefore (2) follows for general 9t as in Theorem 4.7.3.

To see that (3) holds, it suffices to show dist(P,Nil(9)) < 1 by Lemma 4.7.1. By
assumption Iyy — P is an properly infinite projection so there exists a collection of projections
{Q;}j>1 such that {P} U {Q;},;>1 is a set of mutually equivalent, orthogonal projections
that sum to the identity. Using the partial isometries implementing the equivalence of

these projections, a copy of B(H) can be constructed inside 9t such that P can be viewed
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as a rank one projection inside B(H). Thus [29, Corollary 9] implies dist(P, Nil(91)) <
dist(P,Nil(B(H))) < 3 as desired. O

4.8 Purely Infinite C*-Algebras

In this section we will prove Theorem 4.8.6, which completely classifies when a normal
operator in a unital, simple, purely infinite C*-algebra is a norm limit of nilpotent and
quasinilpotent operators. The main tools of the proof are the existence and equivalence
of projections in unital, simple, purely infinite C*-algebras and Lemma 4.8.1 which gives
positive matrices of norm one that are asymptotically approximated by nilpotent matrices
as we allow the size of the matrices to increase. In fact, in the case that ;' = 271, the
conditions of Theorem 4.8.6 are identical to the conditions of Theorem 1.8.3. This is not
a surprise as the proof of Theorem 4.8.6 relies only on Lemma 4.8.1 and the structure of
the projections in a unital, simple, purely infinite C*-algebra. In fact, the proof of Theorem
4.8.6 can be adapted to prove Theorem 1.8.3. When the proof of Theorem 4.8.6 has been
completed, we will apply similar techniques to obtain information about the closed span of
nilpotent operators and the distance from a fixed projection to the nilpotent operators in

unital, simple, purely infinite C*-algebras.

For completeness we include an outline of the following previously known result.

Lemma 4.8.1 (See [2, A1.14]). For each n € N there exists a positive matriz A, € M, (C)
with norm one such that lim,, . dist(A4,,, Nil(M,,(C))) = 0.

Proof. Let

i
L

| —

Q=Y ~q¢) € M,(C)

1

<

.
Il

where ¢, € M, (C) is the nilpotent Jordan block of order n. It was shown in [36] that
[Re(@)| < 5. If Q = @Q;ﬁ € M,(C) and H, := Re(Q,) € M,(C), then, by [36],
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-1, < H, <1I,, Q, € Nil(M,(C)),

In(2) s
Hl —1| < Cand |H, — O, < .
1# - 1] and [, Qul < 77

~ 2In(n)

By normalizing each H,,, we obtain self-adjoint matrices B,, € M, (C) with norm one
such that
lim dist(B,, Nil(M,,(C))) = 0.

n—oo

For each n € N let A, := B2. Hence A, € M,,(C) is a positive matrix with norm one. Since

the square of any nilpotent matrix is a nilpotent matrix, it is easy to obtain

lim dist(A,, Nil(M,,(C))) =0

n—oo

as desired. O

Although, in general, little can be said about the spectrum of the matrices A,, in Lemma

4.8.1, the following does provide some information.

Corollary 4.8.2. Let {A,}n>1 be the positive matrices of norm one from Lemma 4.8.1. For

every m € N there exists an N, € N such that

o) | £ D) 2

m

for all k € {0,1,...,m — 1} and for all n > N,,. That is, the spectrum of the matrices A,

are asymptotically dense in [0, 1].

Proof. Since lim,,_, dist(A,, Nil(M,,(C))) = 0 by Lemma 4.8.1, lim,,_,, dist(c(4,),0) = 0
and the distance between adjacent eigenvalues (when arranged in increasing order) of each

A, tends to zero as n tends to infinity by Lemma 4.1.3. Hence the result easily follows. [

We will require the use of the following trivial result in the proof of Theorem 4.8.6.
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Lemma 4.8.3. Let A be a C*-algebra, let N € Nor(2A), let (N,)n>1 be a sequence of normal
operators of A such that N = lim, oo N,, and let U be an open subset of C such that
UNo(N)#0. Then there exists an k € N such that o(N,,) "U # 0 for all n > k.

Proof. Fix A € U No(N). By Urysohn’s Lemma there exists a continuous function f on
C such that f|ge = 0 yet f(\) = 1. Note f(N) = lim, o f(N,) by standard functional
calculus results. If o(N,,) N U = () for infinitely many n, then f(N,,) = 0 for infinitely many

n yet f(N) # 0 by construction. This is clearly a contradiction. O]

Now we will prove Theorem 4.8.6 for positive operators. Although Proposition 4.8.4 is
not required in the proof of Theorem 4.8.6, the proof of Proposition 4.8.4 contains all the
conceptual difficulties and technical approximations thus easing in the comprehension of

Theorem 4.8.6.

Proposition 4.8.4. Let 2 be a unital, simple, purely infinite C*-algebra and let A € A, .

Then the following are equivalent:

1. A e Nil(2).
2. A € QuasiNil(2).

3. The spectrum of A is connected and contains zero.

Proof. Clearly (1) implies (2) and (2) implies (3) is trivial by Lemma 1.8.4. We shall demon-
strate that (3) implies (1).

Suppose the spectrum of A is connected and contains zero and let € > 0. Since 2 is
a unital, simple, purely infinite C*-algebra, 2 has real rank zero (see [84] or [21, Theorem
V.7.4]). Thus there exists scalars 0 = a,, < a,—1 < ... < a; = ||A|| and non-zero pairwise

orthogonal projections Pl(l)7 ..., PY € U such that |A — Ay]| < e where

Al = Zakplgl)
k=1
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Moreover, since the spectrum of A is connected, we may also assume that

B e —an] < ¢

by Lemma 4.8.3. The idea behind the remainder of the proof is to systematically remove

the largest eigenvalue of A; by approximating with a nilpotent operator.

By Lemma 4.8.1 there exists an ¢ € N, a positive matrix T3 € M,(C) with ||T3|| = a4,
and a nilpotent matrix M; € M,(C) such that |7} — M;|| < e. In addition, by a small
perturbation, we may assume that the geometric multiplicity of the eigenvalue a; of Tj is

one. For each k € {2,...,n} let

{)\Lk, )\Q’k, PN ’)\mg),k}

be the spectrum of ¢ (77) contained in [ay, ai_1) counting multiplicity (where zero intersection
is possible). Since 2l is a unital, simple, purely infinite C*-algebra, for each k € {2,...,n}

there exists pairwise orthogonal projections

such that P( ) is equivalent Q for each j € {1 Sm miY } and Z P(l)

For k € {2,...,n} let
()
M

P =P =>"Q% >0
j=1

(where the empty sum is the zero projection). Therefore, if

m(®
Al =a,P ) 4 Za Z ij and Ay = ZakPk(?)
_]—1 k=2

then A} and Aj are self-adjoint operators such that A; = A} + A,. Notice if P(*) := Y7 P,ig)
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then P® is a non-trivial projection such that
Ay € PAUAP®  and A} € (Iy— PP) A (Iy — P?).

Thus the proof will be complete if we can demonstrate that A’ is within 2¢ of a nilpotent
operator from (Iy — P®) A (Iy — P?) and A, is within 2e of a nilpotent operator from
PP

Recall P@AP®? and ([Q[ - P(2)) Ql([gl - P(Q)) are unital, simple, purely infinite C*-

algebras. Moreover, if

(1)

n My

A= a P+ 3N QW € (Tn — PO) A (Iy — PP)

k=2 j=1

then ||A] — A|| < € by the assumption that maxj<x<,_1 |agr1 — ax| < €. Since

(ropo{ eyt

are pairwise orthogonal, equivalent projections in ([g( — P(z)) 2 (IQ[ — P(2)), we can use the
partial isometries implementing the equivalence to construct a matrix algebra with these
projections as the orthogonal minimal projections. Moreover, by construction, inside this
matrix algebra A has the same spectrum as 7 (including multiplicity) so AY can be ap-
proximated with the analog of M; inside (Iﬁ — P(Z)) 2 (]Q[ — P(Q)). Hence A is within 2e of
a nilpotent operator from (Igl — P(Q)) 2A (]91 — P(Q)).

To approximate A, with a nilpotent operator from P@UAP?) | we repeat the same argu-
ment with a positive matrix 75 of norm as. Due to the nature of the above approximations,
the above process gives a non-trivial projection P® < P®) and a positive operator As of
POAPG) with spectrum {as, ay, .. .,a,} such that Ay — Az € (P(Z) — P(3)) 2A (P(2) — P(3))
can be approximated within 2e of a nilpotent operator from (P® — P®)((P® — p®)).

By repeating this process a finite number of times (eventually ending with a zero operator),
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we can write A; as a finite direct sum of positive matrices each within 2¢ of a nilpotent
matrix from the respective matrix algebra. Hence A; is within 2¢ of a nilpotent operator

from 2 and thus A is within 3¢ of a nilpotent operator from 2. n

In order to adapt the proof of Proposition 4.8.4 to normal operators, it is necessary to be
able to approximate said operators with normal operators with finite spectra. This difficult
work has already been completed by Lin in Theorem 1.3.19. It turns out that the condition
‘Mo — N € ;! for all A € C\ ¢(N)’ is a necessary condition for an operator to be a limit

of nilpotent operators.

Lemma 4.8.5. Let 2 be a unital C*-algebra and let T € QuasiNil(21). Then My —T € A;*
for all X € C\ o(T).

Proof. 1t M € QuasiNil(2() then My — tM is invertible for all A € C\ {0} and for all ¢t € C.
Therefore Ay — M € 25" for all X € C\ {0}.

If T € QuasiNil(A) then 0 € o(T) by Lemma 1.8.4. As 2d;' is closed in the relative
topology on A~ Ay — T € ;! for all A € C\ o(T). O

With Lemma 4.8.5 giving another necessary condition for a normal operator to be a limit

of nilpotent operators, we can now address our main theorem.

Theorem 4.8.6. Let 2 be a unital, simple, purely infinite C*-algebra and let N € Nor(2l).

Then the following are equivalent:

1. N e Nil(2).
2. N € QuasiNil(2).
3. 0€ o(N), o(N) is connected, and NIy — N € 5" for all \ € C\ o(N).

Proof. Clearly (1) implies (2) and (2) implies (3) is trivial by Lemma 1.8.4 and Lemma 4.8.5.

We shall demonstrate that (3) implies (1). As the approximations contained in the proof
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are identical to those used in Proposition 4.8.4, we will only outline the main technique and

omit the approximations.

Suppose 0 € o(N), o(N) is connected, and My — N € ;" for all A € C\ o(N). Fix
¢ > 0 and for each (n,m) € Z? let

B, = (en—%,en—i—%] —i—i(em—%,em—k% cC.

By Theorem 1.3.19 there exists a normal operator N, with finite spectrum such that
|N — N|| < e For each (n,m) € Z* we label the box B, ,, relevant if o(N.) N By, # 0
and we label the box B, ,, irrelevant if o(N.) N B, ., = 0. Since o(N) is connected, we may
assume (via Lemma 4.8.3) that the union of all relevant B, ,, is a connected set and By is
relevant. By a perturbation of at most €, we can assume that o(N,) is precisely the centres

of all relevant boxes and ||[N — N|| < 2e.

The remainder of the proof is similar in nature to the proof of Proposition 4.8.4 in that
we will use a recursive algorithm to write N, as a finite direct sum of matrices inside of 2
each of which is within 5e of the set of nilpotent matrices. If the only relevant box is By,
the algorithm may stop as N, is the zero operator and thus nilpotent. Otherwise we label a
relevant box bad if its removal disconnects the union of the relevant boxes or it is By and
we label a relevant box good if it is not bad. Elementary graph theory implies that at least

one box is good.

Let By, m, be a good, relevant box. Since the union of the relevant boxes is connected,
there exists a continuous path 7 : [0,1] — C that connects 0 to eng + iemy whose image
lies in the union of the relevant boxes. By Lemma 4.8.1 and since v can be approximated
uniformly by a polynomial that vanishes at zero, there exists an ¢ € N, a normal operator
Ny € My(C), and a nilpotent M, € M,(C) such that the spectrum of N, is contained within
an e-neighbourhood of the union of relevant boxes and ||N, — M,|| < e. By perturbing the
eigenvalues of N, by at most 4e, we can assume that the spectrum of N, is precisely a

subset of the centres of relevant boxes, the multiplicity of eng + iemg is precisely one, and
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HMg - Ng“ S De.

For each (n,m) € Z? let P,,, be the spectral projection of N, for the box B, . Using
Pry.mo s a main projection, for each other (n,m) € Z? such that en+iem is in the spectrum
of Ny, we can find the algebraic multiplicity of the eigenvalue en +iem of N, many orthogonal
subprojections of P, ,,, whose sum is strictly less then P, ,,, and each of which is equivalent to
P,y.m- Thus, as in the proof of Proposition 4.8.4, we can find a projection P, € 2 such that
P, commutes with N., PN P, can be approximated by a nilpotent operator from P2AP,

within 5e, and (I — P;)N.(I — Py) has the same spectrum as N, minus eng + iemy.

By our selection of (ng, mg) and choice of projection P;, the number of relevant B,, ,,, for
(I — Py)N.(I — Pp) is one less than the number of relevant B, ,, for N, and the union of the
relevant B, ,, for (I — P;)N.(I — P;) is connected and contains By . Thus, by repeating the
above process a finite number of times, we obtain a nilpotent operator M € 2l such that

|N — M|| < 7e. Hence the result follows. O

In the case of our C*-algebra is not a purely infinite C*-algebra, we note that the following

can easily be proved using the techniques illustrated above.

Lemma 4.8.7. Let A be a unital, simple C*-algebra and let N € Nor(2l) be such that o(N)
1s connected and contains zero. If N = lim,,_, ZZL:’H agnPrrn where ap, € C and Py, are
infinite projections with ;" Py, = Iy then N € W@l)

Proof. The conditions that 2 is simple and the projections are infinite imply that the pro-
jections are properly infinite (see [21, Theorem V.5.1]) and every projection is equivalent to
a subprojection of any infinite projection (see [21, Lemma V.5.4]). Thus the process used
above works (where we note the small technical detail that, when removing one projection
from the sum, we can still take the differences containing the other projections to be infinite
by showing that they containing a strict subprojection equivalent to the original Py, by

21, Theorem V.5.1]). O

With the proof of Theorem 4.8.6 complete, we turn our attention to other interesting
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questions pertaining to limits of nilpotent operators in unital, simple, purely infinite C*-
algebras. To begin, we recall that [29, Corollary 6] shows that the closure of Nil(B(H)) +
Nil(B(#)) contained every normal operator. We now demonstrate a similar result for unital,

simple, purely infinite C*-algebras.

Theorem 4.8.8. Let 2 be a unital, simple, purely infinite C*-algebra. Then

A, C {Ml + Mo | Ml,MQ € Nll(ﬂ)}

and

A C{M; + My + Mz + My | My, My, M3, My € Nil(0)}.

Proof. Clearly the second result follows from the first by considering real and imaginary

parts. To prove the first result, we will first demonstrate that

Iy € {My + My | My, My € Nil(2()}.

Note that there exists a positive operator A € 2 such that o(A) = [0,1]. Thus A and Iy — A
are limits of nilpotent operators by Theorem 4.8.6 (or Proposition 4.8.4) which completes

the claim.

Let A € g, be arbitrary and fix € > 0. Since 2 has real rank zero (see [21, Theo-
rem V.7.4]), there exists non-zero pairwise orthogonal projections {P.}}_; C 2 and scalars
{ag}p_, such that |7 _; ap Py — Al| < €. Since each PP, is a unital, simple, purely infinite
C*-algebra with unit Py, P is a limit of the sum of two nilpotent operators from P,RP;.
Since the finite direct sum of nilpotent operators is a nilpotent operator, > ¢, ay Py is a

limit of sums of two nilpotent operators from 2l and thus the result follows. m

Corollary 4.8.9. Let 2 be a unital, simple, purely infinite C*-algebra and let N € Nor(2l)
be such that Ny — N € 25" for all A € C\ o(N). Then

N € {Ml + M, ’ Ml,MQ € Nll(m)}
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Proof. The result follows from the same argument in Theorem 4.8.8 where N can be approx-

imated by normal operators with finite spectrum by Theorem 1.3.19. O]

We note that if A := O,, is the Cuntz algebra generated by n isometries then ;' = 2~}
by [16]. Thus Nor(O,,) C {M; + My | My, M, € Nil(O,,)} for all n € N.

In [29, Corollary 9], Herrero determined the distance from a fixed projection in B(H)

to the nilpotent and quasinilpotent operators was either 0, 1, or % and gave necessary and

sufficient conditions for each distance. Using the structure of projections in unital, simple,

purely infinite C*-algebras, it is possible to imitate Herrero’s work.

Theorem 4.8.10. Let 2 be a unital, simple, purely infinite C*-algebra and let P € 2 be a

projection. Then

1. dist(P, Nil(21)) = dist(P, QuasiNil()) = 0 if P = 0,
2. dist(P,Nil(21)) = dist(P, QuasiNil(2()) = 1 if P = Iy, and
3. dist(P, Nil(2)) = dist(P, QuasiNil(A)) = 1 otherwise.

Proof. Clearly (1) and (2) hold by Lemma 4.7.1. To see that (3) holds, it suffices to show

dist(P, Nil(21)) <

N | —

by Lemma 4.7.1. Since Iy — P is a properly infinite projection, for each k € N there exists

pairwise orthogonal projections Q1 x, Q2. - - - , @k such that P is equivalent to @); for each
je{l,....k}and Y5 Qi < Iy — P.
Let

k
Qk = P + ZQj’k'
j=1

Then P € Q Q) for all £ € N. Thus it suffices to show that

inf dist(P, Nil(QxQy)) <

N —
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Since

[PYULQu,

is a set of equivalent, pairwise orthogonal projections in 2, we can use the partial isometries
implementing the equivalence to construct a copy of My 1(C) with these projections as the

orthogonal minimal projections. Moreover, by construction, inside this matrix algebra P is

™
mk—i-l

a rank one projection. Thus, by [32, Theorem 2.12], P is within % + sin ( > (where my,

is the integer part of g) of a nilpotent matrix. Thus

1 s
. : < — +5i
dist(P, Nil(QxAQy)) < 5 T8I (mk + 1)

so the result follows. O]

4.9 AFD C*-Algebras

In this section we will investigate when a normal operator in a AFD C*-algebra is a norm limit
of nilpotent operators. The study of such operators is intrinsically related to how normal ma-
trices can be asymptotically approximated by nilpotent matrices as we allow the dimension
of our matrices to increase. Proposition 4.9.7 will provide conditions on an AFD C*-algebra

that guarantee the intersection of the normal operators and the quasinilpotent operators is

trivial whereas Theorem 4.9.5 exhibits an AFD C*-algebra 2 where g, N Nil(2A) # {0}.
Moreover, in Theorem 4.9.8 which is the main result of this section, we will demonstrate
that every UHF C*-algebra has a normal operator with spectrum equal to the closed unit

disk that is a norm limit of nilpotent operators. All of this together (along with Proposi-

tion 4.10.10) implies that the study of Nor(2() N Nil() for AFD C*-algebras 2 is incredibly

complex.

We begin with the following important result.

Proposition 4.9.1. Let A be an AFD C*-algebra and write A = Uk21 A, where each Ay is

a finite dimensional C*-algebra. For each T € A following are equivalent:
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1. T € QuasiNil(2).

2. T € Nil(20).
3. T € Upsy Nil(2Ay).

Proof. Clearly (3) implies (2) and (2) implies (1). Suppose T' € QuasiNil(2A). Let ¢ > 0
and choose M € QuasiNil(A) such that ||T'— M|| < e. Since M € [J;5, ™ and by the
semicontinuity of the spectrum, there exist an £ € N and an operator M, € 2 such that

| Mo — M|| < € and
o(My) C{z e C | dist(z,0(M)) <e} ={2€C | |z| <€}.

Since 2y is a finite dimensional C*-algebra, 2, is a direct sum of matrix algebras. Thus M,
is unitarily equivalent to a direct sum of upper triangular matrices. Each of these upper
triangular matrices is the sum of a nilpotent matrix and a diagonal matrix whose diagonal
entries are in o(My). Since the equivalence is via a unitary, by subtracting the diagonal part

we obtain an M’ € Nil(2(;) such that
| My — M'|| <sup{|z| | z€ a(My)} <e.

Therefore |7 — M'|| < 3¢ completing the proof. O

Remarks 4.9.2. The study of which normal operators of an AFD C*-algebra are in the
closure of the nilpotent operators is intrinsically connected to the distribution of eigenvalues
of normal matrices that are asymptotically approximated by nilpotent matrices as we allow

the dimension of the matrices to increase.

Indeed if 2 is an AFD C*-algebra with 2 = [J,5; 2 where 2 = 2, 3 A3 3 -+ is a

direct limit of finite dimensional C*-algebras with «j injective for all £ € N, then it is easy to

see by Proposition 4.9.1 and by [38] that N € Nor(2() N Nil(2() if and only if for each k € N
there exists an Ny € Nor(2ly) such that N = limy_,o, Ny and limy_,, dist( Ny, Nil(2(;)) = 0.
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Moreover, since N = limy_,o Ng, limy o0 [[ag(Ng) — Ngs1|| = 0. This is possible only if
for each k € N the eigenvalues of ay(Ny) and Ny (including multiplicities) can be paired
together in a manner such that the maximum of the absolute values of the differences tends

to zero as k tends to infinity.

Similarly, if Vi, € Nor(2;) can be chosen such that for each £ € N the eigenvalues of
ar(Ng) and Niyq (including multiplicities) can be paired together inside the appropriate
direct summand of %41 in a manner such that the maximum of the absolute values of the
differences tends to zero as k tends to infinity and limy_,.. dist(Ng, Nil(2(;)) = 0, then, by
taking unitary conjugates of the matrices Vg, it is possible to construct a Cauchy sequence

in 2 that converges to a normal operator N in the closure of the nilpotent operators.

Example 4.9.3. For each n € N let A, € M3.(C) be a diagonal matrix with spectrum
{2%,2%,...,1}. Then
lim inf dist(A,,, Nil(Man(C))) > 0.

n—00

To see this, we note that the sequence (A,),>1 can be used to construct a Cauchy se-
quence in the 2*°-UHF C*-algebra 2l that converges to a non-zero positive operator A. If
lim inf,, ., dist(A,, Nil(Ma:(C))) = 0 then A would be the limit of elements of Nil(2() which

would contradict Proposition 4.3.6 as 2 has a faithful tracial state.

Alternatively
lim inf dist(A,,, Nil(M2.(C))) >

1
n—oo 2
since the normalized trace on My.(C) has norm one, the normalized traces of A,, tend to %

as n tends to infinity, and the trace of any nilpotent matrix is zero.

Note, in the above example, we can view each A, as a positive operator whose spec-
trum is the first 2" entries of the sequence {1,3,2,1,%,...}. Thus, by Remarks 4.9.2,
we are interested in the following question: “Given a sequence (a,)n>1 € floo(N) does
liminf, . dist(diag(ay, ..., a,), Nil(M,(C))) = 077 An application of Lemma 4.1.3 implies

{an}n>1 must be a connected set containing zero in order for an affirmative answer to this

question. Thus the following is of particular interest.
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Proposition 4.9.4. There exists a sequence (an)n>1 € loo(C) with {an}n>1 = [0, 1] such
that
lim inf dist(diag(a, . . ., a,), Nil(M,,(C))) = 0.

n—oo

Proof. By Lemma 4.8.1 for each n € N there exists a positive matrix A4,, € M,,(C) of norm
one such that lim,,_,, dist(A4,, Nil(M,,(C))) = 0. Choose n; € N such that

dist(Ay,, Nil(M,, (C))) < 1.

Let the first n; of the scalars a; be the eigenvalues of A,,, (including multiplicity).

Let Ry := A,,,. By Corollary 4.8.2 0(A,,) progressively gets dense in [0, 1] as n increases.
Therefore there exists an ns € N such that

kK kE+1
o(An,) N {577) # 0

for all k£ € {0,1,2,3} and
. . 1
dist(A,,, Nil(M,,,(C))) < 5
By comparing the eigenvalues of Ry and A,, there exists an m; € N and an injective map
f1 from the eigenvalues of R; (including multiplicity) to the eigenvalues of AY™ (including
multiplicity) such that |A — fi(A)| < § for all eigenvalues A of R, (including multiplicity).
Therefore, if AP™ © R, denotes the (miny — ny) X (myng — ny) diagonal matrix whose

diagonal entries are the eigenvalues of AP (including multiplicities) excluding fi(A) for all

eigenvalues A of R; (including multiplicity), then

R2 = R1 D (Aizml &) Rl)
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is within % of a unitary conjugate of AS™" and thus

dist(Rs, Nil(Moym, (C)) < 1+ dist(AZ™ Nil(M,y,m, (C))
< 1+ dist(Ap,, Nil(M,,(C)) < 3.

Thus define the next m ny —n; of the scalars a; to be the eigenvalues of Ag”l © R, (including
multiplicity).

By continuing this process ad infinitum, the desired sequence (a;),>1 is obtained. ]

Of course the existence of the above sequence does not imply that there exists an AFD
C*-algebra with a non-zero positive operator in the closure of the nilpotent operators as the
structure required for such an operator is more complex (see Remarks 4.9.2). However, an
example of such a AFD C*-algebra is an easy application of the theory developed in Section

4.8.

Theorem 4.9.5. There exists an AFD C*-algebra 2 such that A, N Nil(A) # {0}.

Proof. Let Oy be the Cuntz algebra generated by two isometries. Since O, is a separable,
nuclear C*-algebra, the cone of Oy, € := Cy((0, 1], Os), is AF-embeddable (see [50, Proposi-
tion 2] or [14, Theorem 8.3.5]). Hence there exists an AFD C*-algebra 2 such that € C 2.

Thus it suffices to show €, N Nil(€) # {0}.

Let A € (O2)4+\ {0} be such that o(A) = [0,1] and let A" € € be defined by A'(z) = Ax
for all x € (0,1]. Since A # 0, A’ # 0. Since A € Nil(O;) by Theorem 4.8.6 (or simply

Proposition 4.8.4), it is trivial to verify that A" € Nil(€) as desired. O

Using Theorem 4.9.5 and Proposition 4.9.1, it is easy to obtain the following that enables
us to improve Lemma 4.8.1 by bounding the nilpotency degrees of the approximating nilpo-
tent matrices. Theorem 4.9.5, Proposition 4.9.1, and Remarks 4.9.2 together also imply that
Lemma 4.8.1 holds with the additional property that the distribution of eigenvalues of the

sequence A, is ‘not too poorly behaved’.
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Corollary 4.9.6. There ezists an increasing sequence of natural numbers (k,),>1 and a
sequence of positive matrices A, € My, (C) of norm one such that for every e > 0 there

exists an indezxm € N and a ¢ € N such that
diSt(An, Nﬂg(./\/lkn ((C))) <€

for all n > m (where Nily(My,, (C)) is the set of nilpotent k,, X k,-matrices of nilpotency

index at most ().

Next we have the following trivial observation that demonstrates several AFD C*-algebras

where no non-zero normal operators are limits of quasinilpotent operators.

Proposition 4.9.7. Suppose A = Uk21 Aj, where A; B Ay B A3 B ... is a direct limit of
finite dimensional C*-algebras with oy injective for all k € N. If %, = &5 M, (C) and
{n;r}ik>1 ts a bounded set, then Nor(A) N QuasiNil(A) = {0}.

Proof. Suppose N € Nor () NQuasiNil(2) and let £ := sup; ;5 1, < 0o. Therefore M* =0
for all M € (J;5, Nil(2%) so N* = 0 by Proposition 4.9.1. Hence N = 0. O

The main result of this section is Theorem 4.9.8 which gives examples of normal operators
in each UHF C*-algebra that are limits of nilpotent operators. This result is slightly sur-
prising since every UHF C*-algebra has a faithful tracial state yet Section 4.3 demonstrated
that faithful tracial states impose restrictions on when normal operators can be limits of
nilpotent operators. In particular, Proposition 4.3.6 shows that 2, ﬂQuTNﬂ(Q[) = {0} for
every UHF C*-algebra 2 (also see Corollary 4.3.8, Lemma 4.3.12, and Theorem 4.3.13).

The main tool in this construction is Lemma 4.4.4 which is based on Section 2.3.3 of [32].

The following result was known to Marcoux and was communicated to the author.

Theorem 4.9.8 (Marcoux). Let 2 be a nonelementary UHF C*-algebra. There exists an
N € Nor() NNil(A) such that o(N) is the closed unit disk.
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Proof. Write 2 = >, My, (C) where My, (C) = My, (C) = Mg, (C) = -+ is a direct
limit of full matrix algebras with a4 injective for all £ € N. Moreover we can assume that

Z’Z:l is composite for all £ € N and ¢, > 11.

For each k € N we will construct ng, m; € N and ¢, € NU {0} such that my,n; > 2,
(2my + D)ng + 1+ q = 4 for all k € N, 2my, < myy for all k € N, 2ny, < ngyq for all k € N,
and, if Ny € Nor(M am,+1)n,+1+4, (C)) is a specific unitary conjugate of the normal matrix
obtain by taking the direct sum of the ¢, x ¢ zero matrix with the normal matrix from
Lemma 4.4.4 with n = ng, m = my, and a; = mik for all j € {0,1,...,my} then (Ng)i>1 is a

Cauchy sequence in 2.

If such a sequence exists then, since limg_,oo m; = oo and limg_,, 7 = o0 and since
adding a zero direct summand at most decreases the distance to the nilpotent operators,

Lemma 4.4.4 implies

lim dist(Ng, Nil(M,, (C))) = 0.

k—o00

Thus, if N = limy_,o Ni then N € Nor(2() N Nil(2() by construction. Since ||Ni|| < 1,
|N|| < 1. Since limy,_,o my = 00 and limy_,o, 1y = 00, Lemma 4.4.4 implies the intersection
of o(Ny) with any open subset of the closed unit ball is non-empty for sufficiently large k.

This implies o(N) is the closed unit disk by the semicontinuity of the spectrum.

To show that the claim is true, let m; = 2 and select ny € N with n; > 2 and ¢ €
{0,1,2,3,4} such that ¢, = (2m; + 1)ny + 1 + ¢1. Let Ny be as described above.

Suppose we have performed the construction for some fixed £ € N. Since e’z—:l is com-
posite, we may write e’z—:l = pz where p,z > 2. Then, when we view N, as an element
of My,,,(C), each eigenvalue of N, has pz times the multiplicity it did in M, (C). Let

Nga1 = png > 2ng and My = z2my > 2my. Then

(2mk+1 + 1)nk+1 +1= €k+1 — ((Z — 1)pnk + pz + pzqr — 1).

175



Thus let gx1 := ((z — )png + pz + pzgr, — 1) > 0 so

(2mpq1 + Dnggr + 1+ @ryr =l

If N;., is the normal matrix obtain by taking the direct sum of the ¢, x g, zero matrix

with the normal matrix from Lemma 4.4.4 with n = ng41, m = my4, and a; = mZH for

all j € {0,1,...,mg41}, then, by construction, we can pair the eigenvalues of Ny (including
multiplicity) when viewed an element of My, . (C) with the eigenvalues of N, in a bijective
way such that the difference of any pair is at most nlk%—mik by our knowledge of the eigenvalues
from Lemma 4.4.4. Thus there exists a unitary conjugate Ny, of Ny, that is within nlk + mik
of the image of Nj in My, (C). Since 2m; < myy for all k¥ € N and 2n;, < ngyy for all

k € N, this implies (Ny)r>1 is a Cauchy sequence in 2 as desired. n

Note that Theorem 4.4.8 can now be applied to every UHF C*-algebra by Theorem 4.9.8.

To conclude this section, we will demonstrate that [29, Corollary 6] cannot be generalized
to AFD C*-algebras (it was demonstrated in Section 4.7 that [29, Corollary 9] cannot be
generalized to C*-algebras with faithful tracial states). It is the existence of faithful tracial

states on finite dimensional C*-algebras that prevent the generalization of Herrero’s result.

Lemma 4.9.9. Let 2 be a unital AFD C*-algebra and let T € A. Then each of the following

sets is either the empty set or a singleton:

] {)\E(C | MqueW(al)}.

2. {)\ ceC| My+Te€e span(Nil(Q[))}.

Proof. We shall only prove the first claim since the proof of the second claim is exactly the
same. Suppose

o € {)\E(C | )\Igl+TeNil(Q()}

and let R := A\gly + T. Thus to show that Ay + T ¢ Nil() for all A € C\ {\} it suffices

to show that uly + R ¢ Nil(2() for all u € C\ {0}.
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Since 2A is a unital AFD C*-algebra, 2 = m where A; S Ay B A3 B ... isa
direct limit of finite dimensional C*-algebras with «; unital and injective for all £ € N.
Therefore there exists R, € 2, such that R = limy_. R;. However, since R € W(Ql),
Proposition 4.9.1 implies that R = limy_,o, My where M, € Nil(2(;) for all & € N. Hence
limy o0 || Rk — Mg|| = 0. Thus limy_,o try, (Rx) = 0 (where trg, is any faithful tracial state

on 2l;) as every nilpotent matrix has zero trace.

Fix 4 € C\ {0}. Then puly + R = limy_,oo ptly, + Ry If ply + R € Nil(2() then the
above argument implies that limg_, tre, (1ly, + Rix) = 0 which is impossible as u # 0 and

limk_mo tl"glk (Rk) = 0. ]

Corollary 4.9.10. Let A be a unital AFD C*-algebra. Then
Iy ¢ span(Nil(20)).

Proof. Note 0 € span(Nil(2()) and apply Lemma 4.9.9. O

4.10 C*-Algebras with Dense Subalgebras of Nilpotent Operators

In [57], Read gave an example of a separable C*-algebra that contains a dense subalgebra
consisting entirely of nilpotent operators. In this section we will use Lemma 4.8.1 and
the construction in [57] to construct an approximately homogeneous (and thus separable,
nuclear, and quasidiagonal) C*-algebra that contains dense subalgebra consisting entirely of
nilpotent operators. It will also be demonstrated that there exists an AFD C*-algebra with

a C*-subalgebra ® where © = Nil(®). Thus the study of the closure of nilpotent operators

in AFD C*-algebras is incredibly complex.

Construction 4.10.1. Note by Lemma 4.8.1 there exists finite dimensional Hilbert spaces
{H, }n>1, positive matrices A,, € B(H,,) of norm one, and nilpotent matrices M,, € B(H,)
such that ) -, [[A, — M,| < oo. Since each A, is a positive matrix with norm one, there

exists unit vectors &, € H,, such that A,§, = &, for all n € N.
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We will use {#H,}n>1 and {&,}n>1 to generalize Read’s construction. Consider the se-
quence of pointed Hilbert spaces (H,,&,). For each n < m define ¢, @ @ Hi — QP H
such that

¢n,m(7]1®772®®77n):771®772®®nn®€n+l®€n+2®®£m

Let K := ®7%2,Hy be the completion of the direct limit of the nested sequence of Hilbert
spaces ®jp_;Hy, with the connecting maps ¢, ,,,. Since each Hj, is separable, each ®}_,H, is

separable and thus K is separable. Let ¢,, : ®}_;H, — K be the natural inclusion.

We will maintain the above notation throughout the rest of this section.

The following are new versions of [57, Lemma 0.3] and [57, Corollary 0.4] respectively

that will serve our purposes. We omit the proofs as they follow as in [57].

Lemma 4.10.2. Let (S,)n>1 be a sequence of operators with S,, € B(H,) such that

C’::Hmax{HSnH,l} < oo and Z||Sn§n—§n|| < 0.
n>1 n>1
Then there ezists a unique operator S" € B(K) such that S'(¢,¢) = S..¢ for each ¢ € ®@}_Hy,

where S, := limy, o0 S,, ,, where, for each m >mn, S} .+ @p_Hy — K is defined by

S;l,m = (bm © (®Zi152) o ¢n,m-

We will use @°,S,, to denote S’.

Corollary 4.10.3. Let S" = ®7°,S,, and R’ = ®2, R,, be elements of B(K) as constructed
in Lemma 4.10.2. Then
|S' = R < CsCr )y Sn = Ral

n>1
where

Cyg := Hmax{l, [Sa]|}  and Cg:= Hmax{l, [ Rnll}-

n>1 n>1
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Construction 4.10.4. Let B be the C*-subalgebra of B(K) generated by all operators of
the form ®:2° 5, given by Lemma 4.10.2. Let £4 be subset of B containing all operators of
the form ®2° S, from Lemma 4.10.2 such that there exist a k£ € N such that S,, = A,, for
each n > k. Since }_ -, [|4,& — &l = 0 and [|A,[| =1 for all n € N, £4 is non-empty. Let
¢ be the C*-algebra generated by £4. Note that £4 is a self-adjoint set so € is the closure of

the algebra generated by £4.

Lemma 4.10.5. The C*-algebra € from Construction 4.10.4 is nuclear, quasidiagonal, ap-

proximately homogeneous, and separable.

Proof. For each k € N let €, be the C*-subalgebra of € generated by all operators of the
form ®22 S, from Lemma 4.10.2 such that S,, = A,, for all n > k. Then € is isomorphic
to B(H1) @min * ** Qmin B(Hk) @min A1 where yq is the abelian C*-algebra generated by
the infinite tensor ®;2, .S, where S, = A, for all n > k. Since € is the inductive limit of

the C*-algebras €, the result follows. n

Theorem 4.10.6. The C*-algebra € from Construction 4.10.4 has a dense subalgebra N

such that every operator of M is nilpotent.

Proof. This proof is nearly identical to that of [57, Theorem 1.2] where the only changes are
our simple modifications. Let £y be the subset of B consisting of all operators of the form
®o° 1S, from Lemma 4.10.2 such that there exist a £ € N such that S,, = M, for all n > k.
Let 9 be the (not necessarily closed nor self-adjoint) subalgebra of B generated by Ex. It
suffices to show three things: (1) M C €; (2) N is dense in €; (3) every operator of N is

nilpotent.

Proof of (1): It suffices to show that &y C €. To begin we will show that 91 is not
empty. Suppose that (S,),>1 is a sequence of operators where S, € B(H,,) for all n € N
and S, = M, for all n > k for some fixed £ € N. Since ||A,|]| = 1 for all n € N and
Yot 1My = Apll <00, 3051 [[ISall = 1] < 0o and so [],,5; max{1,[[S,||} < oco. Moreover,

179



since anl ”Anén - gnH =0

D l1Snén =&l < D I1Ma = Aull + Y 1 Ans — &all < oo

n>k n>k n>k

Hence Lemma 4.10.2 implies that the operator ®:° .5, exists. Hence 91 is not empty.

Fix a sequence (S,),>1 of operators where S,, € B(H,) for all n € N and S,, = M,, for
all n > k. For each m > k define R,, := (®"_,5,) ® ( j’f:mHAn). Then {R,}m>k C Ea by

n=1

construction and, by Corollary 4.10.3,

2
1©0Z15n — Bl < <H max{|[|.Snll, 1}) D 14w = M|l

n>1 n>m+1
Therefore, since lim,,, ZanH |A, — M,|| =0, ®2,S, is in the closure of { R, }.,n>r and
thus ®;°,5, € €. Hence 9 C € as desired.

Proof of (2): It suffices to show that £4 is in the closure of M since € is the closure of the
algebra (and not *-algebra) generated by £4. Fix an operator T" := (®f;:15n) ®( ;‘IO:,CHA,L) €
Ea. For each m > k let Ry, := (®7-,5,) ® (®22,,,1M,). Then {R,}n>r C 91 and, by

n=1

Corollary 4.10.3, ||T" — R, is at most

(Hmax{usnu,l}) (Hmax{uMnu,l}) S A M.

n>1 n>m+1

Therefore, since lim,, oo anmﬂ |A, — M,|| =0, T € M. Hence &4 is in the closure of 9

so N is dense in €.

Proof of (3): Notice that every operator N of 91 can be written in the form

N = ZSk@ i= n+1 )

for some n,¢ € N and Sy,...,5, € B(®}_,Hy). Therefore, since there exists an m,, 11 € N

such that M,"' = 0, N+ = 0 (by the trivial computation that (®R,) (5, R),) =
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®> R, R!). Hence N is nilpotent so every operator of 9 is nilpotent. ]

One interesting consequence is the following which is quite surprising since every other

C*-algebra 2 with Nor(2() N Nil(2() # {0} studied in this dissertation has had a plethora of

projections.

Corollary 4.10.7. Let € be the C*-algebra from Construction 4.10.4. Then o(T) is con-

nected and contains zero for all T € €. Thus € is projectionless.
Proof. The result is trivial by Theorem 4.10.6 and Lemma 1.8.4. [

To conclude this section we will demonstrate that there exists an AFD C*-algebra that
contains a C*-subalgebra © such that ® = Nil(®). This demonstrates that the study of the
closure of the nilpotent operators in an AFD C*-algebra is incredibly complex. To begin we

note the following trivial observation from the proof of Theorem 4.10.6.

Lemma 4.10.8. Let € be the C*-algebra from Construction 4.10.4, let N be the subalgebra
of € from Theorem 4.10.6, and Ny, ..., N,, € M. Then there exists an ¢ € N (depending on
N1, ..., Ny) such that Ny, Ny, - -+ Ny, = 0 for any selection of n; € {1,...,m}.

Proof. This result is trivial by the structure of elements of 91 from the third part of the proof
of Theorem 4.10.6. O

Lemma 4.10.9. Let € be the C*-algebra from Construction 4.10.4 and let N be the subalgebra
of € from Theorem 4.10.6. The subalgebra

00(0,1]6)’)1: {ij@)N] | mGN,Nj G‘ﬁ,fj 600(0,1]}

j=1
of Cp(0,1] ®min € is dense and consists entirely of nilpotent operators.

Proof. Clearly Cy(0,1] ®9 is a dense subalgebra of Cy(0, 1] ®min € as 91 is a dense subalgebra
of €. Let Z;n:l i @ N; € Cy(0,1] ©® M be arbitrary. By Lemma 4.10.8 there exists an ¢ € N
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¢
such that N,, Ny, ---N,, =0 for any n; € {1,...,m}. Thus (Z;n:l [i® Nj) = 0 so every
element of Cy(0, 1] ® D is nilpotent. O

Proposition 4.10.10. There exists an AFD C*-algebra A and a C*-subalgebra ® of A such

that ® has a dense subalgebra consisting entirely of nilpotent operators.

Proof. Let € be the C*-algebra from Construction 4.10.4 and let

Then © is AF-embeddable by Lemma 4.10.5 and by [50, Proposition 2]. Thus the result

follows from Lemma 4.10.9. ]
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CHAPTER 5

Closed Unitary and Similarity Orbits in Purely Infinite
C*-Algebras

In this chapter, which is based on the author’s work in [76], we will investigate the norm
closure of the unitary and similarity orbits of normal operators in unital, simple, purely
infinite C*-algebras. In Section 5.2 we shall use previously known techniques based on [40,
Theorem 4.4] to provide a simple proof of the classification of when two normal operators are
approximately unitarily equivalent in a unital, simple, purely infinite C*-algebra with trivial
Kj-group. Although this proof is less powerful than [17, Theorem 1.7], the techniques used
enables the study of additional operator theoretic problems on these C*-algebras. Section

5.2 will also develop the necessary technical results and techniques needed in later sections.

One particularly interesting problem is the study of the distance between unitary orbits
of operators. Significant progress has been made in determining the distance between two
unitary orbits of bounded operators on a complex, infinite dimensional Hilbert space (see [19]
and [20]). In terms of determining the distance between unitary orbits of normal operators
inside other C*-algebras, [18] makes significant progress for the Calkin algebra (which is a
unital, simple, purely infinite C*-algebra) and [33] makes significant progress for semifinite

factors.

In Section 5.3 we will make use of the approach of Section 5.2 to compute some bounds
on the distance between unitary orbits of normal operators in unital, simple, purely infinite
C*-algebras with trivial K;-group. Using [17, Theorem 1.7] along with some additional K-
theory arguments, we will extend these results to unital, simple, purely infinite C*-algebras

without any constraints on the Ki-groups.
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Before [5, Theorem 1] a classification of when one normal operator on a complex, infinite
dimensional, separable Hilbert space was in the closed similarity orbit of another operator
with minor additional constraints was given in [9, Theorem 1]. Thus it appears natural when
tackling the problem of computing the norm closure of the similarity orbit of an operator in
a unital C*-algebra to first consider the normal operators. Using the results from Section 5.3
along with Theorem 4.9.8 and ideas from [32], a classification of when one normal operator
is in the closed unitary orbit of another normal operator in unital, simple, purely infinite

C*-algebras and type III factors with separable predual will be given in Section 5.4.

5.1 Dadarlat’s Result

Given a normal operator N in a unital C*-algebra 2, the Continuous Functional Calculus
for Normal Operators provides a unital, injective *~homomorphism from the continuous
functions on the spectrum of N into 2 sending the identity function to N. It is easy to
see that two normal operators are approximately unitarily equivalent in 2 if and only if
the corresponding unital, injective *~homomorphism are approximately unitarily equivalent.
Thus it is of interest to determine when two unital, injective *-homomorphisms from an
abelian C*-algebra to a fixed unital C*-algebra are approximately unitarily equivalent. In
particular, when 2l is a unital, simple, purely infinite C*-algebra, several preliminary results
were developed in [39], [23], [40], and [41] (to name a few) and a complete classification was

given in [17].

Theorem 5.1.1 ([17, Theorem 1.7]). Let X be a compact metric space, let A be a unital,
simple, purely infinite C*-algebra, and let v, : C(X) — 2 be two unital, injective *-
homomorphisms. Then ¢ and ¢ are approximately unitarily equivalent if and only if [[p]] =

[[¥]] in KL(C(X),A) (see [60] for the definition of K'L).

As a specific case of [17, Theorem 1.7], if X C C is compact it is a corollary of the
Universal Coefficient Theorem for C*-algebras (see [62]), the definition of KL(C(X),2),
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and the fact that K,(C(X)) is a free abelian group that

KL(C(X),2) = KK (C(X), ) = Hom(K,(C(X)), K.(2))

where Hom (K, (C(X)), K.(2)) is the set of all homomorphisms from K,(C(X)) to K.(2).
Thus [17, Theorem 1.7] implies that for a unital, simple, purely infinite C*-algebra 2 and
a compact subset X of C, two unital, injective *~homomorphisms ¢,1 : C(X) — 2 are
approximately unitarily equivalent if and only if ¢, = 1, where ¢, and ¥, are the group
homomorphisms from K, (C(X)) to K.(2) induced by ¢ and 1) respectively. Thus a complete
classification of when two normal operator with the same spectrum in a unital, simple, purely

infinite C*-algebra is obtained.

The proof of Dadarlat’s result greatly varies from the traditional proof of when two normal
operators on a complex, infinite dimensional, separable Hilbert space are approximately

unitarily equivalent. Thus, in Section 5.2, we will develop an alternate proof.

5.2 Closed Unitary Orbits of Normal Operators

In this section we will use [40, Theorem 4.4] and previously known techniques of manipulating
projections in unital, simple, purely infinite C*-algebras (which are present in [39], [17], [40],
and [23] to name but a few) to provide a simple proof of when two normal operators in a
unital, simple, purely infinite C*-algebra with trivial K;-group are approximately unitarily
equivalent (see Corollary 5.2.14). Along the way we shall develop the notation and several
technical results that will necessary in later sections and develop analogous results for other

C*-algebras.

It is useful for discussions in this dissertation to recall the generalized index function

introduced in [40].

Definition 5.2.1. Let 2 be a unital C*-algebra and let N € 2 be a normal operator. By

the Continuous Functional Calculus for Normal Operators, there exists a canonical unital,

185



injective *-homomorphism ¢y : C(0(N)) — 2 such that px(z) = N. As ey is unital and
injective, this induces a group homomorphism I'(N) : K;(C(c(N))) — K;(2). The group
homomorphism I'(N) is called the index function of N. To simplify notation, we will write

['(N)(A) to denote [Aly — N]; in 2.

In the case that 2( is a unital, simple, purely infinite C*-algebra, K;(2() is canonically
isomorphic to 27! /2y by [16, Theorem 1.9]. Thus if N € 2l is a normal operator such that
['(N) is trivial then My — N € 25" for all A ¢ o(N). Furthermore if N € 2 is a normal
operator and A ¢ o(N) then I'(V)()) describes the connected component of Ay — N in 2071

The reason for examining the index function in the context of approximately unitarily

equivalent normal operators is seen by the following necessary condition.

Lemma 5.2.2. Let A be a unital and let N1, Ny € 21 be normal operators such that N, €

S(Ny). Then

1. if My — Ny € 5" for some X ¢ o(Ny) then My — Ny € 2", and

2. if A is a unital, simple, purely infinite C*-algebra then I'(Ny)(A) = I'(N2)(A) for all
A ¢ O'(Nl).

Proof. Suppose N; € S(Ny) and A ¢ o(N7). Then o(Ny) C o(N;) and there exists a

sequence of invertible elements V,, € 2 such that

lim | Ny — V,N2V, | = 0.

n—oo

Thus it is clear that

lim ||(Ma — N1) = Vo(Aly — No)V, || = 0.

n—oo

Therefore, if My — Ny € 5" then V,, (Mg — No)V,7 ! € ;! for all n € N and thus first result

trivially follows.
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In the case 2l is a unital, simple, purely infinite C*-algebra, the above implies that X\Iy— Ny

and V,,(My — N»)V,~! are in the same connected component of 2~ for sufficiently large n.

Therefore
Ay — N1 = [Vi(My — No)V 1,
= [Vali[Ma = Noli [V, '
— [Ma— N1,
Hence T(Ny)(A) = T(N2)(A). 0

The main tools for our alternate proof of [17, Theorem 1.7] are the K-theory of unital,
simple, purely infinite C*-algebras along with Theorem 1.3.19 due to Lin (see [40, Theorem
4.4]). Using Lin’s result and Lemma 4.8.3, we can easily provide a simple proof of [17,
Theorem 1.7] for unital, simple, purely infinite C*-algebras with trivial Ky-group and normal

operators with trivial index function.

Proposition 5.2.3. Let 2 be a unital, simple, purely infinite C*-algebra such that Ky(2)
is trivial. Let Ny, Ny € 2 be normal operators such that I'(Ny) and I'(Ns) are trivial. Then
N1 ~au Ny if and only if o(Ny) = o(Na).

Proof. By previous discussions it is clear that o(N7) = o(Ng) if Ny ~g, No. Suppose o(N;) =
o(Ny). Since Ko(2A) = {0}, all non-trivial projections are Murray-von Neumann equivalent
by [16, Theorem 1.4]. Thus any two normal operators with the same finite spectrum are

unitarily equivalent.

By the assumption that T'(N;) and I'(N,) are trivial, N; and Ny can be approximated by
normal operators with finite spectrum by [40, Theorem 4.4]. By small perturbations using
Lemma 4.8.3 and the semicontinuity of the spectrum, we can assume that N; and N, can
be approximated arbitrarily well by normal operators with the same finite spectrum. Thus

the result follows. O

Note the condition ‘I'(N;) and T'(Ny) are trivial’ holds when ;' = A~ or equivalently
when K (2() is trivial (see [16, Theorem 1.9]).
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If O, is the Cuntz algebra generated by two isometries, K(Os) and K;(O2) are trivial
by [16, Theorem 3.7] and [16, Theorem 3.8| respectively. Thus Proposition 5.2.3 completely

classifies when two normal operators in O, are approximately unitarily equivalent.

Corollary 5.2.4. Let N, M € Oy be normal operators. Then N ~q, M if and only if
o(N)=o0o(M).

Note that the proof of Proposition 5.2.3 is easily modified to a more general setting.

Corollary 5.2.5. Let 2 be a unital C*-algebra such that A has property weak (FN) and any
two non-zero projections in A are Murray-von Neumann equivalent. If Ni, Ny € A are two
normal operators such that Xy — N, € 5" for all A ¢ o(N,) and q € {1,2} then Ny ~g, Ny
if and only if o(Ny) = o(N3).

Corollary 5.2.6. Let 2 be a unital C*-algebra such that 2 has property (FN) and any
two non-zero projections in A are Murray-von Neumann equivalent. If N1, Ny € A are two

normal operators then Ny ~q, Ny if and only if o(Ny) = o(Na).

Corollary 5.2.7. Let 9 be a type 111 factor with separable predual and let N1, Ny € M be
normal operators. Then Ny ~q, Ny if and only if o(Ny) = o(N3).

Our next task is to provide a simple proof of [17, Theorem 1.7] when Ky(2l) is non-
trivial yet K (2) is trivial. The Cuntz algebras, O, generated by n € NU {co} isometries
(where Ko(O,,) = Zyn—1 and K;(O,,) is trivial by [16, Theorem 3.7] and [16, Theorem 3.8]
respectively) are excellent examples of such algebras. We begin with the case that our two
normal operators have the same connected spectrum. The following lemma is motivated by
the proof of Theorem 4.8.6 and contains the essential ideas used in main result of this section

(Theorem 5.2.13) and in Section 5.3.

Lemma 5.2.8. Let A be a unital, simple, purely infinite C*-algebra and let N1, Ny € 2 be
normal operators. Suppose that I'(Ny) and I'(Nsy) are trivial, o(Ny) = 0(N2), and o(Ny) is
connected. Then Ny ~g, No.
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Proof. We shall begin with the case that o(N;) = 0(N2) = [0,1] and then modify the proof

for the general case.

Suppose o(N;) = [0,1] = o(N2). Let € > 0 and choose n € N such that £ < e. By
[40, Theorem 4.4] (or the fact that unital, simple, purely infinite C*-algebras have real rank
zero (see [21, Theorem V.7.4])), by Lemma 4.8.3, by the semicontinuity of the spectrum,
and by perturbing eigenvalues, there exists two collections of non-zero, pairwise orthogonal

projections

in 2 such that

3

P9 = Iy and

f < 2¢

q

‘N -y Lpw
—n

j=0
for all ¢ € {1,2}. The idea of the proof is to apply a ‘back and forth’ argument to produce
a unitary that intertwines the approximations of Ny and Nj.

Since 2 is a unital, simple, purely infinite C*-algebra, Po(l)

is Murray-von Neumann
equivalent to a proper subprojection of PO(Q) (see [21, Lemma V.5.4]). Thus we can write
2 = Qé2) + R((]z) where Qém and R((]2) are non-zero orthogonal projections in 2l such that Qég)

and Pél) are Murray-von Neumann equivalent. Furthermore R((]2)

is Murray-von Neumann
equivalent to a proper subprojection of Pl(l). Thus we can write Pl(l) = gl) +R§1) where le)
and Rgl) are non-zero orthogonal projections in 2 such that le) and Rém are Murray-von

Neumann equivalent.
For notional purposes, let Q[()l) = 0, R(()l) = Po(l), Q%Q) = P,Sz), and R? = 0. By
repeating this procedure (using Rgl) in place of Po(l)), we obtain sets of non-zero, pairwise

orthogonal projections

{Q;l),Rg)}:l and {Q(Q) . }nl

=0
such that Pj(Q) = Q§-q)—|—R§q) forall j € {0,...,n}and q € {1, 2}, R§2) is Murray-von Neumann

equivalent to Q§'21 for all j € {0,...,n—1}, and Ré»l) is Murray-von Neumann equivalent to
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Q% for all j € {0,...,n — 1}. Since
I = Z@ TR =3 QP RY. (0

we note that

AY] = el - X (@] - (R,
=5

Hence RS and Q,(f) are Murray-von Neumann equivalent by [16, Theorem 1.4].

Let {V;}7_o U{W;}7—) be partial isometries in 2 such that V;'V; = R(l) and V;V; = Q¥

J

for all j € {0,...,n}, and W;W; = Qj+1 and W;W; = Ré ) forall j € {0,...,n—1}. Hence
(%) implies that

n n—1
NN
j=0 j=0
is a unitary operator in 2. Moreover
* n i p(2) _ * n 2
U (i) U = U(zjon D+ LR U
n n—1 (l)
Z] D n j Z] =0 rJL J+1:
Hence, since
J .7 (1)
L R- ’
WP Z il
we obtain that

IN) — U*NyU || < 5e.

Since € > 0 was arbitrary, Ny ~g, Ns.

To complete the general case, we will use a technique similar to that used in the proof

of Theorem 4.8.6. To begin, let N; and N be as in the statement of the lemma. Fix ¢ > 0
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and for each (n,m) € Z?* let

€ € € €
Bun = (en = goen+ 5| +i(em—goem+ 3] cC
en 26n+2 +12(em 2em+2 CC

Thus the sets B, ,,, partition the complex plane into a grid with side-lengths e.

For each (n,m) € Z? we label the box B, , relevant if o(N;) N B, # 0 and we will say
two boxes are adjacent if their union is connected. Since o(Ny) is connected, the union of

the relevant boxes is connected.

By [40, Theorem 4.4] we can approximate N; and N, within € by normal operators M,
and M in 2 with finite spectrum. By Lemma 4.8.3, by the semicontinuity of the spectrum,
and by perturbing eigenvalues, we can assume that o(M,) is precisely the centres of the

relevant boxes and ||N, — M,|| < 2¢ for all ¢ € {1,2}.

We claim that there exists a unitary U € 2 such that ||M; — U*MyU|| < v/2¢. Consider
a tree T in C whose vertices are the centres of the relevant boxes and whose edges are
straight lines that connect vertices in adjacent relevant boxes. Consider a leaf of 7. We can
identify this leaf with the spectral projections of M; and M, corresponding to the eigenvalue
defined by the vertex. We can then apply the ‘back and forth’ technique illustrated above
to embed the spectral projection of M; under the corresponding spectral projection of My
and the remaining spectral projection of My under a spectral projection of M; corresponding
to the adjacent vertex of the leaf (which is within v/2¢). By considering 7~ with the above
leaf removed, we then have a smaller tree. By continually repeating this ‘back and forth’-
crossing technique, we are eventually left with the trivial tree. As before, K-theory implies
the remaining projections are Murray-von Neumann equivalent. It is then possible to use
the partial isometries from the ‘back and forth’ construction to create a unitary with the

desired properties. O

Our next goal is to remove the condition ‘c(NVy) is connected” from Lemma 5.2.8. Un-
fortunately, two normal operators having equal spectrum is not enough to guarantee that

the normal operators are approximately unitarily equivalent (even in the case that K;(2l)
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is trivial). The technicality is the same as why two projections in B(?) are not always

approximately unitarily equivalent. To see this, we note the following lemmas.

Lemma 5.2.9. Let A be a unital C*-algebra and let P, Q) € A be projections. If there exists
an element V € AL such that

1
@ —VPV < 5
then P and Q) are Murray-von Neumann equivalent.

Proof. Let Py := VPVt € A and let Z := PyQ + (Iy — Py)(Iy — Q) € . Hence B is an

idempotent and it is clear that

|1Z — Ly|| |(PoQ + (Iy — Po)(Ia — Q) — (Q + (Ia — Q))||
|(Po — 1) Q| + || (e — Fo) — Ta) (I — Q)|
= (P —Q)Q| + (({a — Po) — (Ia — Q)) (1o — Q)|

< R -Ql+Q-hl <L

IN

Hence Z € A~'. Therefore, if U is the partial isometry in the polar decomposition of Z,
Z =U|Z| and U is a unitary element of 2.

We claim that UQU* = P,. To see this, we notice that U = Z|Z|7!, ZQ = RQ = Ry Z,
and

77 = QRQ + (Iy — Q)(Iy — Fo)(Ia — Q).

Thus QZ*Z = QP,Q = Z*ZQ so () commutes with Z*Z. Hence ) commutes with C*(Z*Z)
and thus @ commutes with |Z|7'. Thus

UQUT = 27)7'Q|z| 1 7
~ 20213z
= P0Z|Z|7QZ*:P0

as claimed.

Therefore Q = (U*V)P(U*V)™! where U*V € A7, Tt is standard to verify that if
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W is the partial isometry in the polar decomposition of U*V then W is a unitary such
that @ = WPW?* (see [61, Proposition 2.2.5]). Therefore P ~, @ and thus P and @ are

Murray-von Neumann equivalent. O

Lemma 5.2.10. Let 2 be a unital, simple, purely infinite C*-algebra and let P and Q) be
projections in A. Then P ~, Q if and only if P ~q, Q if and only if Q € S(P) only if P
and @ are Murray-von Neumann equivalent. If P # Iy and Q) # Iy, then P ~, @) whenever

P and Q are Murray-von Neumann equivalent.
Proof. The result follows from Lemma 5.2.9 and standard K-theory arguments. O

The above shows that if 2 is a unital, simple, purely infinite C*-algebra with Ky(2()
being non-trivial, there exists two projections P, Q € 2 with o(P) = o(Q) = {0, 1} that are
not approximately unitarily equivalent. Thus knowledge of the spectrum is not enough to

complete our classification.

To avoid the above technicality, we will describe an additional condition for two normal
operators to be approximately unitarily equivalent in a unital C*-algebra. The construction

of this conditions makes use of the analytical functional calculus.

Lemma 5.2.11. Let A be a unital C*-algebra, let A, B € 2, and let f : C — C be a

function that is analytic on an open neighbourhood U of o(A) Uo(B). If A € S(B) then

f(A) € S(f(B)). Similarly if A ~q B then f(A) ~q f(B).

Proof. Let (V,,),>1 be a sequence of invertible elements in 2 such that

lim ||A—V,BV, || =0.

n—0o0

Let v be any compact, rectifiable curve inside U such that (¢(A)Uo(B))N~y =0, Ind,(z) €
{0,1} for all z € C\ v, Ind,(2) =1forall z € 0(A)Uo(B), and {z € C | Ind,(2) #0} CU.
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Then
f(A) = Vaf(B)V,

(B
= 2m f f(2) ((zla = A)™F = Vo (2ly — B)7'V, 1) dz
= 27r7,f f(2) ((zly — A7 = (2Iy — V, BV, 1) 1) d=
= & [ f(2)(eIa — A)HA = VBV, Y (2In — V, BV, V) dz

Hence ||f(A) — V,.f(B)V, ! is at most

length(v) ||A — V,,BV,7 Y| “
2

2| ||zl — A) 7| |[(z 1 = VBV, 7|

Provided ||A — V, BV, ! ||(z1yg — A)7!|| < 1 for all z € v, the second resolvent equation can

be used to show that

(Lo — A)~"|
1= [|A=VoBV [ (Lo = A)7Y|

|(zIa = VBV, )| <

for all z € 4. Since lim,,_, ||A — V,,BV,"!|| = 0, v is compact, and the resolvent function of

an operator is continuous on the resolvent, ||f(A) — V,.f(B)V,!| is at most

length(v) |4 — V,, BV;! 2ly — A7)
()l ”mmﬂ@| ”(“,1>” _
2m z€v 1= [|A=V.BV [ [[(zfa — A)71

for sufficiently large n. Since the resolvent function is a continuous function on the resolvent

of an operator and ~ is compact, the above supremum is finite and tends to

,1H2

as n — o0o. Thus, as

lim ||A—V,BV, || =0

and length(vy) is finite, f(A) € S(f(B)).

The proof that A ~,, B implies f(A) ~q., f(B) follows directly by replacing the invertible

elements V,, with unitary operators. O]
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If 2 in Lemma 5.2.11 were a unital, simple, purely infinite C*-algebra, if A and B were
normal operators, and if f took values in {0, 1} with f(A) and f(B) being non-trivial, then
Lemma 5.2.10 would imply that the projections f(A) and f(B) are Murray-von Neumann

equivalent in 2. Thus, to simplify notation, we make the following definition.

Definition 5.2.12. Let 2l be a unital C*-algebra and let Ni, Ny € 2 be normal operators.
We say that N; and N, have equivalent common spectral projections if for every function
[ : C — C that is analytic on an open neighbourhood U of o(N;)Ua (N,) with f(U) C {0, 1},

the projections f(N;) and f(N;) are Murray-von Neumann equivalent.

If 2 is a unital, simple, purely infinite C*-algebra and o(N;) = o(Ny), it is elementary
to show that using [16, Theorem 1.4] that N; and N have equivalent spectral projections if
and only if they induce the same group homomorphisms from Ky(o(Ny)) to Ko(2A) via the

Continuous Functional Calculus of Normal Operators.

Finally, with the above and the arguments used in Lemma 5.2.8, we a simple proof of
[17, Theorem 1.7] based on [40, Theorem 4.4] for planar compact sets in the case that K (1)

is trivial.

Theorem 5.2.13. Let 2 be a unital, simple, purely infinite C*-algebra and let N1, Ny € U

be normal operators. Suppose

1. o(Ny) = 0(Ny),

2. T'(Ny) and I'(Ns) are trivial, and

3. Ny and Ny have equivalent common spectral projections.
Then Ny ~g, Na.

Proof. Fix e > 0 and consider the e-grid used in Lemma 5.2.8. We label the box B,, ,, relevant
if B, mNo(Ny) # 0. Let K be the union of the relevant boxes. Since o(Ny) is compact, K has

finitely many connected components. Let Lq,..., Ly be the connected components of K. By
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construction dist(L;, L;) > e for all ¢ # j. Therefore, if f; is the characteristic function of L;,
the third assumptions of the theorem implies f;(N;) and f;(N2) are Murray-von Neumann

equivalent for each i € {1,... k}.

Note the second assumption of the theorem implies that there exists normal operators
M, and M, in 2 with finite spectrum such that ||N, — M,|| < € for all ¢ € {1,2}. By an
application of Lemma 4.8.3, by the semicontinuity of the spectrum, and by small pertur-
bations, we can assume that M, has spectrum contained in K and o(M,) N B, # 0 for
all relevant boxes B,,,, and g € {1,2}. Furthermore, since each f; extends to a continuous
function on an open neighbourhood of K, we can assume that || f;(N,) — f;(M,)|| < 1 for all
i€{l,...,k} and ¢q € {1,2} by properties of the continuous functional calculus. Therefore,
for each i € {1,...,k} and ¢ € {1,2}, f;(N,) and f;(M,) can be assumed to be Murray-von
Neumann equivalent by Lemma 5.2.9. Since f;(N;) and f;(N2) are Murray-von Neumann
equivalent for each i € {1,...,k}, fi(M;) and f;(Ms) are Murray-von Neumann equivalent
for each i € {1,...,k}. By perturbing the spectrum of M; and M, inside each L;, we can
assume that o(M,) is precisely the centres of the relevant boxes for all ¢ € {1,2}, f;(M;) and
fi(M;) are Murray-von Neumann equivalent for each i € {1,...,k}, and ||N, — M,|| < 2¢

for all ¢ € {1, 2}.

Next we apply the ‘back and forth’” argument of Lemma 5.2.8 to the spectrum of M; and
M, in each L; separately. This process can be applied to each L; separately as in Lemma 5.2.8
due to the fact that f;(M;) and f;(Ms) are Murray-von Neumann equivalent so the final step
of the construction (that is, RY and fo) are Murray-von Neumann equivalent) can be com-
pleted. Thus, for each i € {1,...,k}, the ‘back and forth’ process produces a partial isometry
Vi € 2 such that V;*V; = fi(M)), ViVi* = fi(Ms), and || M, fi(M;) — V¥ My fi( M) Vi|| < V/2e.

Therefore, if U := 3¢ V; then U € 2 is a unitary as

Zﬁ-(Ml) = Iy = ZMMQ)
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are sums of orthogonal projections. Moreover, a trivial computation shows
| My — U* MoU|| < V/2e
SO
Ny — U NoU || < (4 + V2)e
completing the proof. O

Corollary 5.2.14. Let A be a unital, simple, purely infinite C*-algebra such that K;(2) is

trivial and let N1, Ny € 2 be normal operators. Then Ny ~q, No if and only if

1. o(Ny) = o(N3y) and

2. N1 and Ny have equivalent common spectral projections.

Proof. One direction is follows from Theorem 5.2.13 and the fact that /(1) is trivial implies
211 = A ! by [16, Theorem 1.9]. The other direction follows from Lemma 5.2.11 and Lemma
5.2.10. [

5.3 Distance Between Unitary Orbits of Normal Operators

In this section we will make use of the techniques of Section 5.2 to provide some bounds
for the distance between the unitary orbits of two normal operator in unital, simple, purely
infinite C*-algebras. In particular, Corollary 5.3.7 can be used to deduce Theorem 5.2.13.
These results along with [17, Theorem 1.7] will provide information about the distance

between unitary orbits of normal operators with non-trivial index function.

We begin with the following definition that is common in the discussion of the distance

between unitary orbits.

Definition 5.3.1. Let X and Y be subsets of C. The Hausdorfl distance between X and
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Y, denoted dy(X,Y), is

dy(X,Y) := max {sup dist(z,Y'), sup dist(y,X)} :

reX yey

In [18], Davidson developed the following notation for the Calkin algebra that will be of

particular use to us.

Definition 5.3.2. Let 2 be a unital, simple, purely infinite C*-algebra. For normal operators

Ny, Ny € 2 let p(Ny, Ny) denote the maximum of dg(o(Ny),o(Ns)) and

sup{dist(\, o(Ny)) + dist(A, 0(N2)) | A & o(N1) Ua(N2), I'(Ny)(A) # (V) (M)}

We begin by noting the following adaptation of [18, Proposition 1.2].

Proposition 5.3.3. Let A be a unital C*-algebra and let N1, Ny € 21 be normal operators.
Then
dlSt(U(Nl),u(Ng)) Z dH(U(N1)7U(NQ)).

If A is a unital, simple, purely infinite C*-algebra then
dist(U(N1),U(N2)) = p(N1, Na).

Proof. The proof of the first statement follows from [19, Proposition 2.1] and the proof of
the second statement follows from the proof of [18, Proposition 1.2] where the index function

I' is substituted for the traditional index function. O

For our discussions of the distance between unitary orbits of normal operators in unital,
simple, purely infinite C*-algebras, we shall begin with the case our normal operators have
trivial index function so that p(Ny, No) = dy(o(N1),0(Ny)) and we may apply the techniques

from Section 5.2.

We first turn our attention to the Cuntz algebra O,. As Ky(O,) and K;(Oz) are trivial,
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we are led to the following generalization of [33, Theorem 1.5] whose proof is identical to the

one given below.

Proposition 5.3.4 (see [33, Theorem 1.5]). Let A be a unital C*-algebra such that 2 has
property weak (FN), any two non-zero projections in A are Murray-von Neumann equivalent,

and every non-zero projection in A is properly infinite. Let N1, Ny € 2 be normal operators

such that T'(Ny) and T'(Ns) are trivial. Then
dist(U(N1),U(N3)) = du(o(Ny),0(N2)).

Proof. One inequality follows from Proposition 5.3.3. Let ¢ > 0. Since 2 has weak (FN),
the conditions on N; and N, imply that there exists two normal operators My, My € A
with finite spectrum such that ||N, — M,|| < € for all ¢ € {1,2}. By Lemma 4.8.3, by the
semicontinuity of the spectrum, and by applying small perturbations, we may assume that

o(M,) C o(N,) and o(M,) is an e-net for o(N,) for all ¢ € {1,2}.

Let X be the set of all ordered pairs (A, 1) € o(M;) x o(Ms) such that either
A — p] = dist(\, 0(My)) or |A — pu| = dist(u, o(My)).

For each A € o(M;) and pu € o(Ms), let ny := [{(N,() € X}| and m, = [{(¢,n) € X}
Clearly ny > 1forall A € o(Mi), my > 1forall p € o(Ma), and 35, vy Pr = 2 co(asy) M-

Since every projection in 2l is properly infinite, we can write

nx my
M1 = Z Z/\PAJC and Mg = Z Z/ULka
A€o (M) k=1 u€o(Ma) k=1

where {{Pxx}12, Iacoan) and {{Q,x it },uEJ(Mz) are sets of non-zero orthogonal projections
in 2 each of which sums to the identity. Since all projections in 2l are Murray-von Neumann

equivalent, using X we can pair off the projections in these finite sums to obtain a unitary
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U € 2 (that is a sum of partial isometries) such that
[My = UMU*|| < sup{[A — p| | (A p) € X} = dia(o(My), 0(My)).

Hence

distU(Ny), U(Ny)) < 2 + dy (o(My), o(My)).

Since o (M) is an e-net for o(Ny), and o(Ms) is an e-net for o(Ny),
dy(o(My),o(Ms)) < dy(o(Ny1),0(Ns)) + €

completing the proof. O

Unfortunately Proposition 5.3.4 does not completely generalize to unital, simple, purely
infinite C*-algebras with non-trivial Ky-group. The following uses the ideas of Section 5.2

to obtain a preliminary result.

Lemma 5.3.5. Let A be a unital, simple, purely infinite C*-algebra and let N1, Ny € 2 be

normal operators such that T'(N1) and T'(Ny) are trivial. If o(Ny) is connected then
dist(U(N1),U(N2)) = du(o(Ny1),0(Ny)).

Proof. One inequality follows from Proposition 5.3.3. The proof of the other inequality is
a more complicated ‘back and forth’ argument. Fix € > 0 and let B, ,, be as in Lemma
5.2.8. For each ¢ € {1,2}, we will say that B, ,, is N relevant if B, ,, No(N,;) # 0. By
[40, Theorem 4.4] there exists normal operators M;, My € 2 with finite spectrum such that
| N, — M,|| < € for all ¢ = {1,2}. By Lemma 4.8.3, by the semicontinuity of the spectrum,
and by a small perturbation, we can assume that o(,) is precisely the centres of the N,-
relevant boxes and ||N, — M,|| < 2e. For each ¢ € {1,2} and A € o(M,) let Pf\q) be the

non-zero spectral projection of M, corresponding to A.

To begin our ‘back and forth’ argument, we will construct a bipartite graph, G, using
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o(M;) and o(M;) as vertices (where we have two vertices for \ if A € o(M;) No(Ms)). The
process for constructing the edges in G is as follows: for each i,j € {1,2} with i # j and

each A € o(M;), for every pu € o(M;) such that
A — 1l < 2v2¢ + dig(0(N1), o (Ne))

(note that at least one such p exists) add edges to G from p to A and the centre of any

Nj-relevant box adjacent (including diagonally adjacent) to the NV;-relevant box A describes.

Clearly G is a bipartite graph and, by construction, if A € o(M;) and p € o(M,) are
connected by an edge of G then |\ — p| < 2v/2¢ + dg(o(Ny),0(Ny)). We claim that G is
connected. To see this, we note that since G is bipartite and every vertex is the endpoint of
at least one edge, it suffices to show that for each pair A, u € o(M;) there exists a path from
A to p. Fix a pair A\, u € o(M;). Since o(Ny) is connected, the union of the Nj-relevant
boxes is connected so there exists a finite sequence A = Ao, A\y,..., \x = p where A\, and
A¢ are centres of adjacent Nj-relevant boxes for all ¢ € {1,...,k}. However \,_; and )\, are

connected in G (via an element of o(Ms)) by construction. Hence the claim follows.

Now that G is constructed, we will progressively remove vertices and edges from G and
modify the non-zero projections {{Pk(q)} ( )} in a specific manner to construct
)\EO’ M]’

qe{1,2}
partial isometries in 2 that will enable us to create a unitary U € 2 such that

| My — U* MoU|| < 2v/2€ + dpy(a(Ny), o(N,)).

Since G is a connected graph, there exists a j € {1,2} and a vertex A € o(M;) in G whose
removal (along with all edges with A as an endpoint) does not disconnect G. Choose any
vertex p in G connected to A by an edge. By the construction of G |A — p| < 2v/2¢ +
dg(o(Ny),0(Ns)) and p € o(M;) where i € {1,2}\ {j}. Since 2 is a unital, simple, purely
infinite C*-algebra and Pﬁi) is non-zero, there exists non-zero projections QS) and Rff) in
20 such that P)Ej ) and fo) are Murray-von Neumann equivalent and P,Ei) = fo) + Rff) by

[21, Lemma V.5.4]. To complete our recursive step, remove A from G (so G will still be a
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connected, bipartite graph), remove PA(J' ) from our list of projections, and replace P,Ei) with

R,(f) in our list of projections.

Continue the recursive process in the above paragraph until two vertices are left in ¢
that must be connected by an edge. Since G is bipartite, one of these two remaining vertices
is a non-zero subprojection of a spectral projection of M; and the other is a non-zero sub-
projection of a spectral projection of Ms. These two projections are Murray-von Neumann

equivalent by the same K-theory argument used in Lemma 5.2.8.

By the same arguments as Lemma 5.2.8, the Murray-von Neumann equivalence of the
projections created in the above process allows us to create partial isometries and thus, by

taking a sum, a unitary U € 2 with the claimed property. Hence
[Ny — U NoU || < (4 + 2V2)e + dp (a(N1), o(Na)).

As e > 0 was arbitrary, the result follows. m

The above proof can be modified to show the following results.

Corollary 5.3.6. Let 1 be a unital, simple, purely infinite C*-algebra and let N1, Ny € 2
be normal operators such that I'(Ny) and T'(Nsy) are trivial. Suppose for each q € {1,2}
that o(N,) = U, KZ-(q) 1 a disjoint union of compact sets with Ki(l) connected for all i €
{1,...,n}. Let Xl(q) be the characteristic function ofKi(Q) forallg € {1,2} andi € {1,...,n}.
If XEI)(Nl) and X(2)(N2) are Murray-von Neumann equivalent for alli € {1,...,n} then

%

dist@U(N,),U(N)) < max dy (KP,K@)>.

ie{l,..,n} !

Proof. Fix € > 0. The condition that ‘Xgl)(Nl) and XZ@)(NQ) are Murray-von Neumann

equivalent’ allows the arguments of Lemma 5.3.5 to be applied on each pair (K ,L-(l), K Z-(Q)> to
produce a partial isometry V; € 2 such that V*V; = xgl)(Nl), ViV = XEQ)(NQ), and

Hlel('l)(Nl) — VA Nox P (N2) Vs

<e+dy (KZ.(l)’ Ki(2)> '
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IfU .= Zle V; € A then U is a unitary operator such that

N1 —U*NU|| < e+ ?llax }dH (Ki(1)7Ki(2)> '
1€e1,...,n

Hence the result follows. 0

Corollary 5.3.7. Let 2 be a unital, simple, purely infinite C*-algebra and let Ny, Ny € U
be normal operators such that T'(Ny) and I'(Ny) are trivial. If Ny and Ny have equivalent

common spectral projections then
dist(U(N1),U(Ns)) = dp (6(Ny),0(N2)) .

Proof. Let e > 0 and let M; and M, be the normal operators as constructed in Lemma 5.3.5.
Notice we can apply the same technique as in Theorem 5.2.13 to assume for each ¢ € {1,2}
that xx(IV,) and xx(M,) are Murray-von Neumann equivalent whenever K is a connected

component of the union of the N, -relevant boxes.

Construct the bipartite graph G as in the proof of Lemma 5.3.5. The only caveat remain-
ing in the proof of Lemma 5.3.5 is that we required G to be connected. Let Gy be a connected
component of G. If K is the union of the N;- and Ns-relevant boxes with vertices in Gy then
the distance from K to any other Ny -relevant box is at least e. Hence the characteristic func-
tion xx of K is a continuous function on o(N;) and o(Nz). Since N; and N have equivalent
common spectral projections, xx (V1) and xx(Nz) are Murray-von Neumann equivalent and
thus, by our additional assumptions on M; and Ms, xx(M;) and xg (M) are Murray-von
Neumann equivalent. Hence we can apply the proof of Lemma 5.3.5 to each of the finite
number of connected component of G separately and combine the resulting partial isometries

as in Corollary 5.3.6 to obtain a unitary U such that
Ny — UNLU*|| < (44 2V2)e + dyg (o(N1), 0(N,)) .
Hence the result follows. O]
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We have made use of the equivalence of certain spectral projections in the creation of all
of the above bounds. To illustrate the necessity of these assumptions, we note the following

example.

Example 5.3.8. Let P and () be non-trivial projections in Oz with [Ply # [Q]o. Then
o(P) = o(Q) yet dist(U(P),U(Q)) > 1 or else P and @ would be Murray-von Neumann

equivalent (see [61, Proposition 2.2.4] and [61, Proposition 2.2.7]).

In particular we have the following quantitative version of the above example.

Proposition 5.3.9. Let 2 be a unital C*-algebra, let N1, Ny € 2 be normal operators, and let
f: C — C be a function that is analytic on an open neighbourhood U of o(Ny) U o(Ny) with
f(U) C{0,1}. Let vy be a compact, rectifiable curve inside U with (o(N1) Uo(Ng)) Ny =0,
Ind,(z) € {0,1} for all z € C\ v, Ind,(2) = 1 for all z € o(N;) U (N2), and {z € C |
Ind,(z) # 0} CU. If f(N1) and f(N2) are not Murray-von Neumann equivalent then

. 2T
dist(U(Ny),U(N3)) > lo(7) sup.c., |[(zIa — Ny )~ [ [[(zLo — No)~ 1]

where lo(7y) is the length of vy in the regions where f(z) = 1.
Proof. By the proof of Lemma 5.2.11, we know that || f(N7) — U f(N2)U*|| is at most

lo(7) [N1 — UNU™||
2T

sup [ (a1 = ) ot = N2

for all unitaries U in . Since f(N;) and f(N3) are not Murray-von Neumann equivalent,

f(Ny) and U f(Ny)U* are not Murray-von Neumann equivalent so
L<[[f(N1) =UF(N)U"|

by [61, Proposition 2.2.5] and [61, Proposition 2.2.7]. Hence the result follows. H

Next we desire to examine the distance between unitary orbits of normal operators with

non-trivial index function. Unfortunately, as this problem is not complete even for the Calkin
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algebra and due to the technical restraints illustrated above, a complete description of the
distance between unitary orbits will not be given. In particular our goal is to generalize
Corollary 5.3.7 to a sufficient degree to be used in Section 5.4. We shall proceed with this
goal by attempting to adapt the proof of [18, Theorem 1.4] via an application of [17, Theorem
1.7].

As in the proof of [18, Theorem 1.4], we will need a notion of direct sums inside unital,

simple, purely infinite C*-algebras. This leads us to the following construction.

Lemma 5.3.10. Let A be a unital, simple, purely infinite C*-algebra, let V € A be a non-
unitary isometry, and let P := VV*. Then there exists a unital embedding of the 2°°-UHF
C*-algebra B = J5y Moe(C) into (Iy — P)A(Iy — P) such that [Qlo = 0 in A for every

projection () € 8.

Proof. Let Py := Iy — P. Since 2 is a unital, simple, purely infinite C*-algebra, there exists a
projection P; € 2 such that Fy and P, are Murray-von Neumann equivalent and 0 < P, < F
(see [21, Lemma V.5.4]). Let P, := Py — P; which is a non-trivial projection. Note [FPylp = 0
in A by [16, Theorem 1.4]. Hence

[Pi]o = [Polo =0 =[P + Ps]o = [Pi]o + [P2]o = [Po.

Thus P, and P, are Murray-von Neumann equivalent in 2 by [16, Theorem 1.4]. Thus, since

P, P, < Py, P, and P, are Murray-von Neumann equivalent in FyRLF,.

For g € {1,2} let V;, € PP, be an isometry such that V;V,* = P,. Then it is not difficult
to see for each ¢ € N that
%f = *_a‘lg ({m1%2%gv*v*v* | i17i27"'7if7j17j2"'7j€e {172}})

Je J2 '

is a C*-subalgebra of PyP, containing P, that is isomorphic to My (C). Moreover, it is
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clear that B, C B,,; for all / € N and
{‘/;1‘/;'2 te ‘/Zg‘/;: ©e ‘/JZ‘/Jj ‘ Z‘177;27' e 7i€7j17j2- .- 7j€ € {172}}

are matrix units for 8, in such a way that 2% = m is the 2°°-UHF C*-algebra. Notice

every rank one projection in 98B, is Murray-von Neumann equivalent in 9, (and thus in

PyPy) to the rank one matrix unit (V;)*(V;*)* which is Murray-von Neumann equivalent

in 2A to 5. Therefore [Q]yp = [Fp)o = 0 in 2 for every rank one projection @) € B,. Hence

[Qlo = 0 in A for every non-zero projection @ € B,. However, if ) € 9B is a non-zero

projection, it is easy to see that there exists an ¢ € N and a non-zero projection @)y € By
1

such that [|Q — Qo < 5. Hence @ and @y are Murray-von Neumann equivalent in 2 by

Lemma 5.2.9. Thus [Q]o = [Qo)o = 0 as desired. O

We will need the following two well-known results to adapt the proof of [18, Theorem

1.4] to our desired context.

Lemma 5.3.11. Let B := [J,5; My (C) be the 2°°-UHF C*-algebra. If X C C is compact,

there exists a normal operator N € B such that o(N) = X.

Lemma 5.3.12 (see [16, Lemma 1.2]). Let 2 be a unital, simple, purely infinite C*-algebra,
let V€ A be an isometry, and let U € A be a unitary. Then [U]y = [VUV* + (Iy — VV*)];.

Using the above lemmas we obtain the following extension of Corollary 5.3.7 to a nor-
mal operators with non-trivial index functions provided certain assumptions apply. The

techniques used in this lemma will be essential for the remainder of the chapter.

Lemma 5.3.13. Let A be a unital, ssimple, purely infinite C*-algebra and let N, M € A be

normal operators such that

1. o(M) C o(N),

2. T(M)(\) =T(N)(A) for all X ¢ o(N), and
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3. N and M have equivalent common spectral projections.

Then
dist(U(N),U(M)) = dy(c(N),o(M)).

Proof. One inequality follows from Proposition 5.3.3. Since 2[ is a unital, simple, purely
infinite C*-algebra, there exists a non-unitary isometry V € 2A. Let P := VV* let € :=
(Iy — P)2A(Iy — P), and let B be the unital copy of the 2°°-UHF C*-algebra in € given
by Lemma 5.3.10. By Lemma 5.3.11 there exists normal operators Ny, My € B such that
0(No) = o(N) and (M) = o(M).

Let N':=VMV* + Ny and let M’ := VMV* 4+ M, which are clearly normal operators
as V is an isometry. We will demonstrate that N’ € U(N) and M’ € U(M) by appealing
to [17, Theorem 1.7]. Notice that o(N') = o(M) U o(Ny) = o(N) as V is an isometry.
Furthermore if f : C — C is a function that is analytic on an open neighbourhood U of

o(N) with f(U) C {0, 1} then

Ny = f(VMV™) + f(No) =V f(M)V" + f(No).

If f(M) =0 then f(N)=0as f(M) and f(/N) are Murray-von Neumann equivalent. This
implies f is zero on o(NV) and thus f(N') = f(Ny) =0 = f(N). If f(M) # 0 then f(N') #0
and

[f(N)]o = [VF M)V ]o + [f (No)lo = [f (M)]o = [F(N)]o

as f(Ng) € B and as every projection in B is trivial in the Ky-group of 2 by Lemma
5.3.10. In any case f(N’) and f(N) are Murray-von Neumann equivalent. Furthermore,
since B, ' = B! as B is a UHF C*-algebra, we notice for any A\ ¢ o(NN) that My — N’ is in

the same component of A~ as

V(My — M)V* + (My — P)

which is in the same connected component of A~! as My — M by Lemma 5.3.12. Therefore,
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since I'(M)(A) = T'(N)(A) for all A ¢ o(N) by assumption, we obtain that I'(N’) = T'(V).
Therefore N and N’ are approximately unitarily equivalent in 1 by [17, Theorem 1.7].
Similarly M and M’ are approximately unitarily equivalent in 2 by [17, Theorem 1.7].

Hence it is easy to see for any unitary U € € that
dist(U(N),U(M)) < ||(P+U)N'(P+U)" — M| = [UNU* — M.

However, since € is a unital, simple, purely infinite C*-algebra and Ny, My € € are in the
unital inclusion of the UHF C*-algebra B in €, it is easy to see that I'(Ny) and I'(Mj) are
trivial (when viewed as elements of €). Since any two non-zero projections in B C € are
Murray-von Neumann equivalent, the hypotheses of Corollary 5.3.7 are satisfied for Ny and

My in €. Hence for any € > 0 there exists a unitary U € € such that
[UNoU™ = Mo| < € + du(0(No), 0(Mo)) = € + du(o(N), o (M)).

Hence

dist(U(N),U(M)) < dy(c(N),c(M))
as desired. O

Lemma 5.3.13 is enough to proceed with the results of Section 5.4. However it is possible
to remove a hypothesis from Lemma 5.3.13. The following lemma is a specific case of

[42, Theorem 10.6] that we prove using elementary techniques developed in this dissertation.

Lemma 5.3.14. Let A be a unital, simple, purely infinite C*-algebra and let X C C be
a compact subset. Suppose X is a union of finitely many compact, connected components
{Ki}ie, and C\ X is the union of finitely many connected components {$2;}72, where Qg
is the unbounded component. Let {g;}!; C Ko(21) be such that Y1 | g; = [lalo and let
{h;}ihy © Ki(A). Then there exists a normal operator N € A such that o(N) = X,
XKk, (N)o = gi for all i € {1,...,n} (where xk, is the characteristic function of K;),
and My — N|; = h; whenever X\ € U; for all j € {1,...,m}. That is, for any element
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v € Hom(K,(C(X)), K.()) ~ KK(C(X),2) there exists a normal operator in A whose

continuous functional calculus realizes .

Proof. We may assume without loss of generality that if 1 < j; < jo < m then Q is
contained in the unbounded component of C\ €2;,. Since 2 is a unital, simple, purely infinite
C*-algebra, K(2) is canonically isomorphic to 2A7'/2;* by [16, Theorem 1.9]. Choose a
unitary U; € A such that [U;]; = h;. By the Continuous Functional Calculus for Normal
Operators there exists a normal operator 77 € 21 such that (7)) is a simple closed curve
contained in X such that [My — T1]; = hy for all A € Q. If Q is contained the unbounded
component of C\ o(7}), we can repeat the above procedure to obtain a normal operator
T, € 2 such that o(73) is a simple closed curve contained in X and in the unbounded
component of C\ o(T}) such that [Aly — Ts]; = hsy for all A € Qs. If 5 is contained the
bounded component of C \ o(7}), we can repeat the above procedure to obtain a normal
operator Ty € 2 such that o(73) is a simple closed curve contained in X and in the bounded
component of C\ o(T7) such that [y — T|; = hy — hy for all A € Qy. Due to the ordering
of {€;}7"

",, we can find normal operators {T;}7.; such that each o(T}) is a simple closed
curve contained in X with the property that if J; C {1,...,m} is the set of all indices
¢ e {1,...,m} such that €2; is contained in the bounded component of C \ o(7}) then

> teq,Ma—Tjli = hy for all A € Q; and j € {1,...,m}. Hence

Zm:)\fm— T1 = h;
7=1

for all A € Qy and all £ € {1,...,m}.

Since 2l is a unital, simple, purely infinite C*-algebra, [21, Theorem V.5.1] implies there

exists m isometries {V;}72,; such that @ := > 7", V;V" < Iy. Furthermore [21, Lemma

V.5.4] and [16, Theorem 1.4] imply that there exists orthogonal projections {Q;}?~ such
that "' Q; < Iy — Q and [Q ilo+ 2200 Xk, (Th)]o = gi for all i € {1,. — 1} (where xg,
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is the characteristic function of K;). Let
n—1
Qui=Iy—Q—> Qi
i=1
For each i € {1,...,n} choose u; € K; and let
M=) ViITVi+ ) wiQi
j=1 i=1

Clearly M is a normal operator with o(M) C X. Suppose A € €, for some jy € {1,...,m}.
Then

My — M =Y V,(Ma—T)V; + > (A — 1) Qs
i=1

j=1
Since clearly [Q + > ¢ (A — w;)Qi]1 = 0, by writing Ay — M as a product of unitaries and
by applying Lemma 5.3.12 we clearly obtain that

m

Mo — M)y =) My — Tjli = hy.

=1

Furthermore

Xrc;, (M) = Z Vix,, (T;)V} + Z XK, (1) Qi
j=1 i=1

for all 4o € {1,...,n}. Hence

m

[, (MD)o =) [xxy (Ti)]o + [Qio)o = i

Jj=1

for all iy € {1,...,n —1}. Since > . [xx,(M)]o = [la]o, by our assumption that »_ . , g; =
[Iy]o we clearly obtain [xk, (M)]o = ¢gn. Thus M satisfies the conclusions of the lemma

except for the fact that o(M) may be strictly contained in X.

Since 2L is a unital, simple, purely infinite C*-algebra, there exists a non-unitary isometry

Ve Let P:=VV* let € := (Iy — P)A(Iy — P), and let B be the unital copy of the
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2°-UHF C*-algebra in € given by Lemma 5.3.10. By Lemma 5.3.11 there exists normal
operator Ny € 9B such that o(Ng) = X. Let N := VMV*+ Ny € . Then it is clear that N
is a normal operator with o(N) = X. Furthermore the proof of Lemma 5.3.13 implies that

N has the desired properties. O

Before generalizing Lemma 5.3.13, we note we may use Lemma 5.3.13 and Lemma 5.3.14

to prove the following corollary that is a specific case of [42, Theorem 10.6].

Corollary 5.3.15. Let 2 be a unital, simple, purely infinite C*-algebra and let X C C be
compact. For each bounded, connected component 2 of C\ X let hg € K1(2A). Let T be the
set of closed subsets K of X such that the characteristic function xx of K is a continuous
function on X. Suppose there exists {gxk }ker C Ko(A) such that gx = [ly] and gk, + gx, =
Jx,uK, Whenever Ky, Ky € I are disjoint. Then there exists a normal operator N € 2 such
that [xk(N)lo = gk for all K € T and [My — N|; = hq whenever X\ € Q and Q is a bounded
component of C\ X. That is, for any element v € Hom(K,(C(X)), K.(2)) ~ KK(C(X),A)

there exists a normal operator in 2 whose continuous functional calculus realizes .

Proof. For each n € N let
i 1
X, = {z € C | dist(z,X) < 2—n} :

Note X, satisfies the conditions of the compact subset in Lemma 5.3.14 and if K is a
connected component of X, then K N X € Z. Thus Lemma 5.3.14 implies there exists
normal elements {M,},>1 C 2 such that o(M,,) = X,,, if K is a connected component of
X, then [xx(M,)]o = gk, and if A € (C\ X,,) N Q where Q@ C C\ X is a bounded, connected
component then Ay — M]; = hq.

Let Ny := M. Since o(M;y) C o(N;), since My and N; have equivalent common projec-
tions by the assumptions on the set {gx }xez, and since I'(Ms)(A) = I'(N7)(A) whenever A ¢
o(Ny), Lemma 5.3.13 implies there exists a unitary Us € 2 such that || Ny — U2 MaUs || < 2.

Let Ny := Uy MU;. By repeating this process there exists a sequence (IV,,),>1 C 2 such that
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each N, is a normal operator with the same conditions as M, listed in the above paragraph
and such that || N, — Ny < 5. Hence (N,),>1 is a Cauchy sequence and thus converges
to a normal operator N € 2. Clearly o(N) = X by the semicontinuity of the spectrum and
by Lemma 4.8.3. Furthermore N has the desired properties by Lemma 5.2.9 and since the

connected components of A~! are open and completely determine the K;-group element. [J

With the above complete, we remove an assumption from 5.3.13.

Theorem 5.3.16. Let A be a unital, simple, purely infinite C*-algebra and let N1, Ny € 2

be normal operators such that

1. T(Ny)(A) =T'(No)(N) for all X ¢ o(Ny) U (Ny), and

2. Ny and Ny have equivalent common spectral projections.

Then
dlSt(U(Nl),Z/{(NQ)) = dH(O'(Nl), O'(NQ))

Proof. Let € > 0. For each ¢ € {1,2} Lemma 5.3.14 implies there exists a normal operator
M, such that
o(M,) ={z € C | dist(z,0(N,)) < €},

I'(M,)(A\) = T'(N,)(A) for all A ¢ o(M,), and M, and N, have equivalent common spectral
projections. Hence Lemma 5.3.13 implies that dist(U(N,),U(M,)) < € for all g € {1,2}.

We claim there exists a normal operator M € 2 such that o(M) = o(M;)No (M), M and
M, have equivalent common spectral projections for all ¢ € {1,2}, and I'(M)(X) = I'(M,) ()
for all A ¢ o(M,) and ¢ € {1,2}. The claim will follow from Lemma 5.3.14 provided o(M;) N
o(Ms) is non-empty, we can choose the correct Kj-elements for the bounded, connected
components of C\ o(M), and we can construct the correct Kp-elements for the connected
components of o(M). Since Ny and N, have equivalent common spectral projections, it is

clear that o(M;) N o (M) is non-empty.
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If Q is a bounded, connected component of the complement of C \ o(M) then either
intersects both or exactly one of C\ o(M;) and C \ o(M;). If Q intersects both C\ o (M)
and C\ o(My), the condition that I'(N7)(A) = T'(NV)(A) for all A ¢ o(N;)Uo(Ns) implies we
can select a single element of K;(2A) for I'(M)(A) to take for all A € Q such that I'(M)(\) =
['(M,)(A) for all X € Q\ o(M,) for ¢ € {1,2}. If Q intersects C \ o(M,) but not the other
complement, we define I'(M)(\) = T'(M,)(A) for all A € Q C C\ o(M,).

To construct M such that M and M, have equivalent common spectral projections for
all ¢ € {1,2}, we need to define the Kj-elements that should be taken by the spectral
projections of the finite number of connected components of o(M) in such a way that if
K is a connected component of o(M,), the sum of Kj-element of the spectral projections
of o(M) corresponding to components contained in K is the same as the Ky-element of
the spectral projection of M, corresponding to K. Since, by construction, M; and M,
have equivalent common spectral projections and o(M;) U o(Ms) has a finite number of
connected components, we may assume for the purposes of this argument that o(M;) U
o(Ms) is connected. Construct a connected, bipartite graph G whose vertices correspond to
the connected components of o(M;) and o(Ms) and where we connect two vertices with n
edges provided the intersection of the corresponding connected components has n connected
components. Thus we can view the edges of G as the connected components of (M;)No (Ms).
Thinking of each vertex being labelled with the Ky-element of the spectral projection of the
corresponding connected component, it suffices to label the edges of G with Ky-elements in
such a way that the Ky-element at any vertex is the sum of the Ky-elements of the adjacent
edges. This can be done by selecting a subgraph 7 of G that is a tree, selecting a root
for T, labelling all edges not in 7 to have the trivial Ky-element, starting at the vertices
farthest from the root (which must be leaves) and labelling the one adjacent edge to each
vertex to be the correct Ky-element, and by recursively labelling the remaining edges of the
vertices farthest from the root that have a unlabelled edges to be such that the Ky-element
of the vertex is the sum of the Ky-elements of the adjacent vertices. This process is well-

defined (that is, we will always have an edge remaining to label so we can have the correct
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Ko-element at each vertex we consider), will terminate, and give such a labelling since M,
and M, have equivalent common spectral projections so the same K-theory using in Lemma
5.2.8 will imply the last step (which is labelling a single edge between the root and another

vertex) is correct. Hence the claim is complete.

Since 2 is a unital, simple, purely infinite C*-algebra, there exists a non-unitary isometry
Ve Let P:=VV* let € := (Iy — P)A(Iy — P), and let B be the unital copy of the
2>°-UHF Cr*-algebra in € given by Lemma 5.3.10. By Lemma 5.3.11 there exists normal
operators M, € B such that o(M,) = o(M,) for all ¢ € {1,2}. For each ¢ € {1,2} let

M} :=VMV* + M,o. The proof of Lemma 5.3.13 then demonstrates that M, € U(M,) for
all g € {1, 2},
dlSt(Z/{(Ml),u<M2)) S inf HUMLOU* — MQ’OH y
Ueu(e)

and thus
dist(U(M;),U(Ms)) = dy(o(M), 0(Ms)) < 2e + dy(o(Ny), o(Ns))
by Corollary 5.3.7. Hence dist(U(N,),U(M,)) < e for ¢ € {1,2} implies that
dist (U (N1),U(N2)) < dp(o(Nr), 0(Na)) + 4e.

As € > 0, the result follows. n

To complete this section we note that the proof of Theorem 5.3.16 can be adapted to
obtain additional results provided there is a method for matching spectral projections. In

particular [18, Theorem 1.4] clearly generalizes to the following results.

Proposition 5.3.17. Let A be a unital, simple, purely infinite C*-algebra with trivial Ky-

group. If N1, Ny € A are normal operators then

distU(N),U(N»)) < 2p(Ny, Ny)
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where p(N1, No) is as defined in Definition 5.3.2.

Proof. Since 2l is a unital, simple, purely infinite C*-algebra, there exists a non-unitary
isometry V € . Let P:=VV* let € := (Iy — P)A(Iy — P), and let B be the unital copy
of the 2°°-UHF C*-algebra in € given by Lemma 5.3.10.

Let
X = O'(Nl) U U(NQ) U {/\ S C | A ¢ O'(Nl) U O'(NQ),F(Nl)()\) 7£ F(NQ)(/\)}
By Lemma 5.3.11 there exists a normal operator N’ € B such that o(N’) = X. Therefore,

if
M :=VNV*+ N

then M is a normal operator in 2 such that o(M) = X and I'(M)(X\) = I'(Ny)(A) = T'(N2)(A)
for all A ¢ X (alternatively we could have used Lemma 5.3.14 to construct M). Therefore

it suffices to show for any ¢ € {1,2} that

dist(U(N,),U(M)) < p(N1, Ny).

By the definition of p we see that

p(Nyy M) = dia(0(N,), 0(M)) < p(Ny, Vo).

Furthermore, by applying Lemma 5.3.11, there exists normal operators Ny, My € B such
that o(Ny) = o(N,) and o(My) = o(M). As in the proof of Lemma 5.3.13, we see that

VN, V*+ Ny € U(N,) and VN, V*+ My € U(M). Hence it is easy to see that for any unitary
U € € that

dist(U(Ng), U(M)) < (P +U)(VNV* + No)(P +U)* = (VNV" + Mo)||
= [[UNoU* — Mo|| .
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Thus, as in the proof of Lemma 5.3.13, for any € > 0 there exists a U € € such that

[UNoU" = Mol| < € + dp(0(N1),0(M)) < €+ p(N1, Na).

Hence the result follows. O]

Proposition 5.3.18. Let A be a unital, simple, purely infinite C*-algebra. If Ny, Ny € U

are normal operators with equivalent common spectral projections then

distU(NL),U(Ns)) < 2p(N1, Ny).

Proof. The proof of this result follows the proof of Proposition 5.3.17 where we note N
and N, having common spectral projections implies that Ny and M have common spectral
projections and N, and M have common spectral projections. This facilitates the proof that

VN,V* 4+ Ny € U(N,) and VN, V* + My € U(M) and thus the rest of the proof follows. [

5.4 Closed Similarity Orbits of Normal Operators

As the Calkin algebra is a unital, simple, purely infinite C*-algebra, in this section we en-
deavour to use the results of Section 5.3 and Theorem 4.9.8 to generalize Theorem 1.8.15. In
addition, we will obtain a generalization of Theorem 1.8.15 to type III factors with separable
predual. The two main results of this section are similar in proof but pose slight technical

differences and thus are listed separately.

Theorem 5.4.1. Let 2 be a unital, simple, purely infinite C*-algebra and let N, M € A be

normal operators. Then N € S(M) if and only if

1. o(M) C o(N),
2. each component of o(N) intersects o(M),

3. T(N)(A\) =T(M)(N) for all X ¢ o(N),
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4. if X € o(N) is not isolated in o(N), the component of X in o(N) contains some non-
isolated point of (M), and

5. N and M have equivalent common spectral projections.

Theorem 5.4.2. Let 2 be a unital C*-algebra with the following properties:

1. A has property weak (FN),
2. every non-zero projection in A is properly infinite, and
3. any two non-zero projections in A are Murray-von Neumann equivalent.

(For example, Oy and every type III factor with separable predual.)

Let N,M € 2 be normal operators such that My — M € 5" for all X\ ¢ o(M). Then
N € §(M) if and only if

1. o(M) C o(N),
2. each component of o(N) intersects o(M),
3. My — N € ;" for all A ¢ o(N), and

4. if X € a(N) is not isolated in o(N), the component of A in o(N) contains some non-

isolated point of o(M).

Note if N € §(M) then the first two conditions must hold by discussions from the begin-
ning of Section 5.2 and the third condition follows from Lemma 5.2.2. The fifth condition of

Theorem 5.4.1 is necessary by Lemma 5.2.11 and Lemma 5.2.9.

To see that the fourth conclusion is necessary, let K, be the connected component of o(N)
containing A. We note that if K is not isolated in o(/N) (that is, every open neighbourhood
of K intersects a different connected component of o(N)) then the first two conditions
imply that o(M) N K contains a cluster point of o(M). Otherwise if K is isolated in

o(N), the characteristic function yg, of K, can be extended to an analytic function on a
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neighbourhood of ¢(N). Thus Lemma 5.2.11 implies xx, (N) € S(xx,(M)). If o(M) N K,
does not contain a cluster point of o(M) then x g, (M) must have finite spectrum. Hence
there exists a non-zero polynomial p such that p(xx, (M)) = 0. Clearly this implies p(T") = 0
for all T € S(xx,(M)) so p(xx,(N)) = 0. Since K is a connected, compact subset of o(V)
that is not a singleton, this is impossible. Hence the fourth condition is necessary. An
alternative proof of the necessity of the fourth condition may be obtained by considering the
separable C*-algebra generated by N, M, and a countable number of invertible elements, by
taking an infinite direct sum of a faithful representation of this C*-algebra on a separable

Hilbert space, and by appealing to property (e) of [9, Theorem 1].

By applying Theorem 5.4.1 in conjunction with [17, Theorem 1.7], the following result is

easily obtained.

Corollary 5.4.3. Let A be a unital, simple, purely infinite C*-algebra and let N1, Ny € 2 be

normal operators. If Ny € S(Ny) and Ny € S(Ny) then Ny ~g, No.

To begin the proofs of Theorem 5.4.1 and Theorem 5.4.2 we note the following trivial

result about similarity of operators in C*-algebras.

Lemma 5.4.4. Let 2 be a unital C*-algebra, let P € A be a non-trivial projection, let
Z € (Iy—P)A(Iy—P), and let X € A be such that PX (Iy—P) = X. If A\ & 0(1y—p)(iq—pr)(Z)
then

AP+ X+7Z~ AP+ 7.

Proof. Note that if Y := X(A\(Iy — P) — Z)~! then
T .= IQ[ +Y

is invertible with

T !'=1Iy—-Y.
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A trivial computation shows
TAP+X+2)T"'=\P+ 7.

]

Corollary 5.4.5. Let A be a unital C*-algebra, let n € N, let Ay, ..., N\, be distinct complex
scalars, let {P;}i_; C A be a set of mon-trivial orthogonal projections with > 77| P; = Iy,
and let {A; ;}7

i.j=1

C A be such that A;; =0 if ¢ > j and PA; jP; = A, for alli < j. Then

Z)\ P+ ZAU > NP
j=1

1,7=1

Proof. By applying Lemma 5.4.4 with P := Py, Z := Z A P; +Zw _, A; j (it is elementary
to show that o —pyug—r)(Z) = {X2,..., A} s0 A\t ¢ o(Z) by assumption), and X :=

> j—1 A1, we obtain that

ZAP+ZA” Z)\P+ZA”

1,7=1 1,]=2

The result then proceeds by recursion by considering the unital C*-algebra (Iy — P)20(Iy —
P). O

To begin the proof of Theorem 5.4.1 we first show that a ‘direct sum’ of a normal operator
and a nilpotent operator is in the similarity orbit of the normal operator. The idea of this

result is based on [32, Lemma 5.3].

Lemma 5.4.6. Let 2 be a unital, simple, purely infinite C*-algebra, let M € A be a normal
operator, let V € A be a non-unitary isometry, let P := VV™* and let B := m
be the unital copy of the 2°°-UHF C*-algebra in € given by Lemma 5.53.10. Suppose p is a
cluster point of o(M) and QQ € My (C) C B is a nilpotent matriz for some £ € N. Then
VMV* + u(ly — P)+Q € S(M).
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Proof. Since @@ € My:(C) C B is a nilpotent matrix, ) is unitarily equivalent to a strictly
upper triangular matrix. Thus we can assume () is strictly upper triangular. By our as-
sumptions on yu there exists a sequence (p;);>1 of distinct scalars contained in o(M) that

converges to u. For each ¢ € N let
Ty = diag(fig, g1 - - - Hgpor—1) € Moe(C) B

be the diagonal matrix with s, ..., pt,10¢_; along the diagonal.

Let M, := VMV* 4+ 1T, € 2. As in the proof of Lemma 5.3.13, it is easy to see by

[17, Theorem 1.7] that M, is approximately unitarily equivalent to M for each ¢ € N. Hence
M ~py My~ VMV + (T, + Q)

by Lemma 5.4.5. Since lim, o T, + @ = p(ly — P) + @, the result follows. ]

Subsequently we have our next stepping-stone which based on [32, Corollary 5.5].

Lemma 5.4.7. Let 2 be a unital, simple, purely infinite C*-algebra. Let N, M € 2 be
normal operators and write o(N) = K1 UKy where Ky and Ky are disjoint compact sets with

K connected. Suppose
1. o(M) = K} UKy where K] C Ky,
2. T(N)(A) =T(M)(N) for all X ¢ o(N), and

3. N and M have equivalent common spectral projections.

If K| contains a cluster point of o(M) then N € S(M).

Proof. 1f K is a singleton, K| = K; as K/ is non-empty. Thus o(M) = o(N) so Theorem

5.2.13 implies N and M are approximately unitarily equivalent.

Otherwise K7 is not a singleton. Fix a non-unitary isometry V' € 2 and € > 0. Let

P = VV*and let B := (J,5, M2(C) be the unital copy of the 2°°-UHF C*-algebra in
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(Iy— P)2A(Iy — P) given by Lemma 5.3.10. By Theorem 4.9.8 there exists a normal operator
T € ‘B with
o(T)={zcC||z[<¢}

such that T" is a norm limit of nilpotent matrices from (J,5, My(C) ©B C 2. Let p € K

be any cluster point of o(M). Lemma 5.4.6 implies that

VMV* 4+ pu(ly — P)+Q € S(M)

for every nilpotent matrix @ € (J;»; Ma(C) C B. Since T is a norm limit of nilpotent

matrices from | J,»; My¢(C), we obtain that

VMV* + pu(ly — P)+ T € S(M).

Let My := VMV*+u(Ily—P)+T. Asin the proof of Lemma 5.3.13, it is easy to see that
M; is a normal operator such that I'(M;)(A) = T'(M)(A) = T'(N)(A) for all A ¢ o(M;)Uo(N)

and M; and N have equivalent common spectral projections.

Since K is connected and o (M;) contains an open neighbourhood around p € K, we can

repeat the above argument a finite number of times to obtain a normal operator M, € S(M)

such that o(My) = K} U Ky where K{ is connected, K; C K7,

K{ C{zeC | dist(z, K;) < €},

L(Mp)(A) = T'(N)(A) for all A ¢ o(M;) Uo(N), and My and N have equivalent common

spectral projections. Therefore Lemma 5.3.13 implies

distU(N),U(My)) = dyg(o(N), o(Mp)) < ¢

so dist(N,S(M)) < e. Thus, as € > 0 was arbitrary, the result follows. O
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We can now complete the proof of Theorem 5.4.1 using the above result.

Proof of Theorem 5.4.1. Let N and M satisfy the five conditions of Theorem 5.4.1. By
applying Lemma 5.4.7 recursively a finite number of times, we can find a normal operator M’

such that M’ € S(M), o(M’) is o(M) unioned with a finite number of connected components
of o(N), and N and M’ satisfy the five conditions of Theorem 5.4.1.

Fix e > 0. Since o(N) is compact, o(N) has a finite e-net. Thus the normal operator M’ in
the above paragraph can be selected with the additional requirement that dist(\, o(M')) < e
for all A € o(N). By Lemma 5.3.13 dist(U(N),U(M’')) < € so dist(N,S(M)) < € as
desired. ]

Note that by using Corollary 5.2.14 instead of [17, Theorem 1.7] and Corollary 5.3.7
instead of Lemma 5.3.13, a proof of Theorem 5.4.1 that is independent of [17, Theorem 1.7]
may be obtained for any unital, simple, purely infinite C*-algebra with trivial K;-group.
Similarly, using [12, Theorem 11.1] and [18, Theorem 1.4], the proof of Theorem 5.4.1 is

greatly simplified for the Calkin algebra and provides an alternate proof of Theorem 1.8.15.

With the proof of Theorem 5.4.1 complete, we endeavour to prove Theorem 5.4.2. As the
proof of Theorem 5.4.1 relies on an embedding of the scalar matrices inside the C*-algebra

under consideration, we make the following definition.

Definition 5.4.8. Let 21 be a unital C*-algebra. An operator A € 2l is said to be a
scalar matrix in 2 if there exists a finite dimensional C*-algebra B and a unital, injective

*-homomorphism 7 : B — 2 such that A € 7(B).

The point of considering scalar matrices in the context of Theorem 5.4.2 is the following.

Proposition 5.4.9. Let 2 be a unital C*-algebra with the three properties listed in Theorem
5.4.2. If N € 2 is a normal operator with the closed unit disk as spectrum then N is a norm

limit of nilpotent scalar matrices from 2.

Proof. 1t is easy to see the second and third assumptions in Theorem 5.4.2 imply that the
2>°-UHF C*-algebra has a unital, faithful embedding into 2. Therefore, by Theorem 4.9.8,
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2l has a normal operator Ny with the closed unit disk as spectrum that is a norm limit of
nilpotent scalar matrices from 2. Since every two normal operators with spectrum equal
to the closed unit disk are approximately unitarily equivalent by Corollary 5.2.5 the result

follows. u

Using the ideas contained in the proof of Lemma 5.4.6, it is possible to prove the following.

Lemma 5.4.10. Let A be a unital C*-algebra such that

1. there exits a unital, injective *-homomorphism w: A A — A, and

2. if Ni,Ny € 2 are normal operators with ANy — N, € 5" for all X ¢ o(N,) and
q € {1,2}, Ny ~qy No if and only if o(Ny) = o(Ns).

Let M € 2 be a normal operator with Ny — M € 5" for all X & o(M), let u € o(M) be a
cluster point of o(M), and let Q € A be a nilpotent scalar matriz. Then 7(M & (ul + Q)) €
S(M).

By using similar ideas to the proof of Theorem 5.4.1 and by using the following lemma,

the proof of Theorem 5.4.2 is also complete.

Lemma 5.4.11. Let A be a unital C*-algebra with the three properties listed in Theorem
54.2. Let NM € 2 be normal operators with Xy — N € 5" for all X\ ¢ o(N) and
My — M € 25" for all A ¢ o(M). Let {K\}x be the connected components of o(N). Suppose

AeA\{ Ao}

where Ko C Ky,. If Ko contains a cluster point of o(M) then N € S(M).

Proof. The proof of this lemma follows the proof of Lemma 5.4.7 by using direct sums instead
of non-unitary isometries and an application of Proposition 5.3.4 provided that Lemma 5.4.10

applies. Note that the second and third assumptions of Theorem 5.4.2 imply that the first
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assumption of Lemma 5.4.10 holds and Corollary 5.2.5 implies that the second assumption

of Lemma 5.4.10 holds. O

With the proofs of Theorem 5.4.1 and Theorem 5.4.2 complete, we will use said theorems
to classify when a normal operator is a limit of nilpotents in these C*-algebras. Thus Corol-
lary 5.4.12 provides another proof (although a more complicated proof) of Theorem 4.8.6.
Moreover Corollary 5.4.13 has slightly weaker conditions to any result of Chapter 4 (that is,
there should exists C*-algebras satisfying the assumptions of the following theorem that are
not studied in Chapter 4 although the author is not aware of them). However, we note the
proof of Theorem 4.8.6 can be adapted to this setting. These proofs are based on the proof
of [32, Proposition 5.6].

Corollary 5.4.12. Let A be a unital, simple, purely infinite C*-algebra. A normal operator
N € 2 is a norm limits of nilpotent operators from 2L if and only if 0 € o(N), o(N) is

connected, and T'(N) is trivial.

Proof. The requirements that o(/N) is connected and contains zero follows by Lemma 1.8.4.

The condition that I'(/V) is trivial follows from Lemma 4.8.5.

Suppose N € 2 is a normal operator such that 0 € o(N), o(N) is connected, and
['(N) is trivial. Let e > 0 and fix a non-unitary isometry V € 2. Let P := VV™* and let
B = m be the unital copy of the 2°-UHF C*-algebra in (Iy — P)(Iy — P) given
by Lemma 5.3.10. By Theorem 4.9.8 there exists a normal operator 7' € ‘5 with

o(T)={z€C | |z| <€}

such that T'is a norm limit of nilpotent matrices from | J,5, My (C) B C 2.

Let M := VNV*+T € 2. Clearly M is a normal operator such that o(M) = o(N)Uo(T),

M and N have equivalent common spectral projections, and I'(M) is trivial as in the proof
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of Lemma 5.3.13. Therefore Corollary 5.3.7 implies that

distU(N),U(M)) < .

However, we note that I'(7T") is trivial when we view T as a normal element in 2. Moreover, as
o(N) is connected and contains zero, o (M) is connected and contains ¢(7"). Thus Theorem

5.4.1 (where conditions (4) and (5) are easily satisfied) implies that M € S(T') so

dist(N,S(T)) <e.

However, as T' is a norm limit of nilpotent operators from 8 C 2, the above inequality

implies N is within 2¢ of a nilpotent operator from 2{. Thus the proof is complete. O

Corollary 5.4.13. Let 2 be a unital, separable C*-algebra with the three properties listed in
Theorem 5.4.2. A normal operator N € 2 is a norm limits of nilpotent operators from 2 if

and only if 0 € o(N), o(N) is connected, and Ny — N € A5* for all A ¢ o(N).

Proof. The proof of this result follows the proof of Corollary 5.4.12 by using direct sums
instead of non-unitary isometries (as in Lemma 5.4.10), Proposition 5.3.4 instead of Corollary

5.3.7, Theorem 5.4.2 instead of Theorem 5.4.1, and Proposition 5.4.9. O

To conclude this dissertation, we will briefly discuss closed similarity orbits of normal
operators in von Neumann algebras. We recall that [70] completely classifies when two normal
operators are approximately unitarily equivalent in von Neumann algebras. Furthermore
Theorem 5.4.2 completely determines when one normal operator is in the closed similarity
orbit of another normal operator in type III factors with separable predual. Thus it is natural

to ask whether a generalization of Theorem 5.4.2 to type II factors may be obtained.

Unfortunately the existence of a faithful, normal, tracial state on type II; factors inhibits
when a normal operator can be in the closed similarity orbit of another normal operator.
Indeed suppose 901 is a type II; factor and let 7 be the faithful, normal, tracial state on 91.
If N, M € 90 are such that N € S(M), it is trivial to verify that 7(p(N)) = 7(p(M)) for all
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polynomials p in one variable. In particular if N, M € 9 are self-adjoint and N € S(M)
we obtain that 7(f(N)) = 7(f(M)) for all continuous functions on o(N) U o(NN) and, as 7
is faithful and normal, this implies that N and M must have the same spectral distribution.

Therefore, if N, M € 9 are self-adjoint operators, o(M) = [0, 3], and o(N) = [0,1], then,

unlike in B(H), N ¢ S(M). Combining the above arguments and [70, Theorem 1.3] we have

the following result.

Proposition 5.4.14. Let M be a type II; factor. If N, M € I are self-adjoint operators
and N € S(M), then N ~q, M.
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