
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Primal-Dual Path-Following Methods For Nonlinear Programming

Permalink
https://escholarship.org/uc/item/9wv1z3qw

Author
Su, Fangyao

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9wv1z3qw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Primal-Dual Path-Following Methods For Nonlinear Programming

A dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Fangyao Su

Committee in charge:

Professor Philip E. Gill, Chair
Professor Randolph E. Bank
Professor Thomas R. Bewley
Professor Hyunsun A. Kim
Professor Jiawang Nie

2019

Copyright

Fangyao Su, 2019

All rights reserved.

The Dissertation of Fangyao Su is approved, and it is acceptable in

quality and form for publication on microfilm and electronically:

Chair

University of California San Diego

2019

iii

EPIGRAPH

I care not whether I can achieve,
for the longed goal,

I shall despite wind and rain go.
—Guozhen Wang

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

List of Algorithms . ix

Acknowledgements . x

Vita . xi

Abstract of the Dissertation . xii

Chapter 1 Introduction . 1
1.1 Problem Description . 1
1.2 Contributions of This Dissertation . 3
1.3 Notation . 4
1.4 Some Useful Results . 4

Chapter 2 Background . 7
2.1 Optimality Conditions . 7

2.1.1 Optimality Conditions for (NEP) 7
2.1.2 Optimality Conditions for (NIP) 11

2.2 Newton’s Method and Line Search . 17
2.2.1 Newton’s Method . 17
2.2.2 Model-Based Line Search Methods 19

Chapter 3 A Primal-Dual Path-Following Augmented Lagrangian Method 21
3.1 Introduction . 21
3.2 Background . 22

3.2.1 The Penalty Function Method 22
3.2.2 Augmented Lagrangian Method 28

3.3 Motivation of The Proposed Algorithm 33
3.4 Description of the Proposed Algorithm 35

3.4.1 Description of The Outer Iteration 36
3.4.2 Description of the Inner Iteration 39

3.5 Convergence Analysis . 44
3.6 Acknowledgement . 50

v

Chapter 4 A Combined Trust-Region Line-Search Method 51
4.1 Background on Trust-Region Methods 52
4.2 A Combined Trust-Region Line-Search Method 55
4.3 Convergence of the Trust-Region Method 57
4.4 Computing a Trust-Region Step . 62

Chapter 5 A Primal-Dual Path-Following Shifted Penalty-Barrier Method 67
5.1 Introduction . 67
5.2 Background . 68

5.2.1 Conventional Barrier Method 68
5.2.2 Modified Primal-Dual Interior Methods 73

5.3 Description of the Proposed Algorithm 79
5.3.1 Algorithm Overview . 79
5.3.2 Description of the Outer Iteration 81
5.3.3 A Shifted Penalty-Barrier Merit Function 83
5.3.4 Description of the Inner Iteration 87

5.4 Convergence Analysis . 100
5.5 Acknowledgement . 111

Chapter 6 Numerical Implementations . 112
6.1 Numerical Results of Primal-Dual Path-Following Augmented Lagrangian

Method . 114
6.2 Numerical Results of Primal-Dual Path-Following Shifted Penalty-Barrier

Method . 117

Bibliography . 128

vi

LIST OF FIGURES

Figure 3.1 Level Curves of the Conventional Quadratic Penalty Function for Dif-
ferent Values of µ . 27

Figure 3.2 Level Curves of augmented Lagrangian Function for Different Values of µ 32
Figure 3.3 Path-Following Trajectories of The Primal-Dual Path-Following Aug-

mented Lagrangian Method with Different Starting Points 44

Figure 5.1 Feasible Region and Level Curves of Objective Function in HS22 70
Figure 5.2 Level Curves of the Conventional Logarithmic Barrier Function in the

Feasible Region for Different Values of µ 71
Figure 5.3 Feasible Region and Level Curves of the Modified Barrier Function with

the Barrier Parameter µ = 10−1 . 75
Figure 5.4 Different Path-Following Trajectories Starting From Either Feasible or

Infeasible Points . 99

vii

LIST OF TABLES

Table 6.1 Definition of the Headings in all Tables 113
Table 6.2 Default Parameters Used in PDAL . 114
Table 6.3 Numerical Results of PDAL . 115
Table 6.4 Default Parameters Used in PDPB . 117
Table 6.5 Numerical Results of PDPB – With Trust-Region Method 119
Table 6.6 Numerical Results of PDPB – With Combined Trust-Region Line-Search

Method . 122

viii

LIST OF ALGORITHMS

Algorithm 2.1 Conventional Newton’s Method . 17
Algorithm 2.2 A Model-based Line Search Method 19
Algorithm 3.1 Conventional Quadratic Penalty Function Method 26
Algorithm 3.2 Augmented Lagrangian Method for (NEP) 31
Algorithm 3.3 Primal-Dual Path-Following Augmented Lagrangian Method 38
Algorithm 4.1 Basic Trust-Region Method . 53
Algorithm 4.2 A Combined Trust-Region Line-Search Method 56
Algorithm 5.1 Primal-Dual Path-Following Shifted Penalty-Barrier Method 82

ix

ACKNOWLEDGEMENTS

First of all, I would like to express the deepest gratitude to my advisor, Professor

Philip E. Gill for his constant encouragement and guidance, for passing his rigorous attitude

as a mathematician to me, and for his knowledge, patience and support for me in all aspects

over the past 5 years. As a world-leading expert in optimization, he leads me into this branch

of mathematics that used to be totally fresh to me.

I would like to acknowledge Profs. Randolph E. Bank, Jiawang Nie for the knowledge

they taught me in graduate classes at UCSD and Profs. Thomas R. Bewley, Hyunsun A.

Kim for their time to serve as my committee member.

I am very grateful for Yuanjie Jiang for her love and encouragement, my parents for

their unconditional support to my career and life. I would also like to thank my friends

Dun Qiu, Xiudi Tang, Xuefeng Shen, Yi Luo, Zihao Li and David Lenz at UCSD for their

discussions with me on math problems and my officemates Yesheng Huang, Yingjia Fu and

Yucheng Tu for their help in all aspects.

Chapter 3, in part is currently being prepared for submission for publication of the

material. Su, Fangyao; Gill, Philip E. The dissertation author was the primary investigator

and author of this material.

Chapter 5, in part is currently being prepared for submission for publication of the

material. Su, Fangyao; Gill, Philip E. The dissertation author was the primary investigator

and author of this material.

x

VITA

2014 Bachelor of Science in Mathematics
University of Science and Technology of China

2015-2019 Teaching Assistant
University of California San Diego

2017-2018 Research Assistant
University of California San Diego

2019 Doctor of Philosophy in Mathematics
University of California San Diego

xi

ABSTRACT OF THE DISSERTATION

Primal-Dual Path-Following Methods For Nonlinear Programming

by

Fangyao Su

Doctor of Philosophy in Mathematics

University of California San Diego, 2019

Professor Philip E. Gill, Chair

The main goal of this dissertation is to study the formulation and analysis of primal-

dual path-following methods for nonlinear programming (NLP), which involves the mini-

mization or maximization of a nonlinear objective function subject to constraints on the

variables. Two important types of nonlinear program are problems with nonlinear equal-

ity constraints and problems with nonlinear inequality constraints. In this dissertation,

two new methods are proposed for nonlinear programming. The first is a new primal-dual

path-following augmented Lagrangian method (PDAL) for solving a nonlinear program with

equality constraints only. The second is a new primal-dual path-following shifted penalty-

barrier method (PDPB) for solving a nonlinear program with a mixture of equality and

inequality constraints. The method of PDPB may be regarded as an extension of PDAL to

handle nonlinear inequality constraints.

Algorithms PDAL and PDPB are iterative methods that share the same “two-level”

xii

structure involving outer and inner iterations. In the outer iteration of PDAL, the optimality

conditions are perturbed to define a “path-following trajectory” parameterized by a set of

Lagrange multiplier estimates and a penalty parameter. The iterates are constructed to

closely follow the trajectory towards a constrained local minimizer of the nonlinear program.

If an outer iterate deviates significantly from the trajectory, then an inner iteration is invoked

in which a primal-dual augmented Lagrangian merit function is minimized to force the

iterates back to a neighborhood of the trajectory.

A similar approach is used to handle the inequality constraints in PDPB. In this

case, the trajectory is followed towards a local solution of the mixed-constraint nonlinear

program. This trajectory is parameterized by a set of Lagrange multiplier estimates and

penalty and barrier parameters associated with the equality and inequality constraints. If an

iterate moves away from the trajectory, a primal-dual shifted penalty-barrier merit function is

minimized using a trust-region method. By introducing slack variables, global convergence

can be achieved from any starting point without the need for an initial strictly feasible

point. Furthermore, numerical experiments indicate that when minimizing the shifted barrier

function, the trust-region method requires fewer matrix factorizations and iterations than a

comparable line-search method.

xiii

Chapter 1

Introduction

1.1 Problem Description

In constrained optimization problems, the optimal value of objective function and its

corresponding solution set must be found subject to certain constraints being satisfied. One

of the most general formats used to express a nonlinear program is given by

minimize
x∈Rn

f(x)

subject to c` ≤ c(x) ≤ cu, x` ≤ x ≤ xu,
(1.1)

where f(x) : Rn 7→ R is the objective function and c(x) : Rn 7→ Rm are the constraints. c`

and cu are the lower and upper bounds of c(x) in Rm, x` and xu are the lower and upper

bounds of x in Rn. As maximizing f(x) is equivalent to minimizing −f(x), without loss of

generality, only minimizing an objective function will be considered.

Problem (1.1) can be written in the following simpler equivalent format in which each

constraint is expressed in terms of a single nonnegative function:

minimize
x∈Rn

f(x) subject to c(x) ≥ 0. (NIP)

Problem (NIP) is the main focus of this dissertation.

1

Given a vector s of nonnegative slack variables, problem (NIP) can be written in the

equivalent form

minimize
x∈Rn, s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0. (NIPs)

A special case of the problems (NIP) and (NIPs) occurs when all the constraints are

equalities. In this case the problem is

minimize
x∈Rn

f(x) subject to c(x) = 0. (NEP)

In general, problem (NEP) is easier to solve than problem (NIP) and has a number of

useful properties. Chapter 3 starts with a proposed primal-dual path-following augmented

Lagrangian method for problem (NEP) and then this method is extended with the barrier

term introduced to deal with the inequality constraints in Chapter 5.

Common types of optimization problem include linear programming (LP), where

both f(x) and c(x) are affine functions, and quadratic programming (QP) where f(x) is in

quadratic form and c(x) is affine. Optimization problems may also be categorized in terms of

the level of smoothness of the objective and constraint functions. This dissertation concerns

the formulation and analysis of algorithms for problems in which f(x) and c(x) are twice

continuously differentiable, nonlinear and nonconvex. In all cases it is assumed that the

gradient and Hessian are available at any given point. Knowledge of the second derivatives

allows the formulation of methods with a superlinear or quadratic rate of convergence to a

solution.

Finally, only algorithms for finding local minimizers are considered in this disserta-

tion.

2

1.2 Contributions of This Dissertation

In this dissertation, Chapter 2 serves as a general background for all the subse-

quent chapters. In Chapter 3, a primal-dual path-following augmented Lagrangian method

(PDAL) is proposed for solving problem (NEP). In this method, the optimality conditions

are perturbed to define a path-following trajectory, and all the iterates are forced to follow

it towards a local constrained minimizer of problem (NEP). Once some iterate departs from

this trajectory, an augmented Lagrangian type merit function that measures the distance

between current iterate and the trajectory will be minimized using line-search method.

Like many other primal-dual methods proposed by Gill and coauthors (see [10, 12,

18, 21]), the proposed algorithms treat both the primal and dual variables as independent

variables at each iteration. This strategy is different from that of other methods that regard

the dual variables as being dependent on the primal variables and update them each time

the primal variables are modified. This can provide certain benefits, such as the ability to

control the quality of the dual variables during the solution of each subproblem, and the

ability to impose explicit bounds on the dual variables. These strategies can improve both

the efficiency and the reliability of a method.

In Chapter 5, the method of PDAL is extended to solve problem (NIP). In this chap-

ter, a new primal-dual path-following shifted penalty-barrier method (PDPB) is proposed

with some features inherited from PDAL. In the inequality constrained case the algorithm

follows a trajectory defined by perturbing the optimality conditions of problem (NIP). If an

iterate departs from the trajectory, a modified penalty-barrier function is minimized using a

combined trust-region line-search method. As in the case of algorithm PDAL, this strategy

guarantees global convergence. Unlike PDAL where line-search techniques are used, PDPB

is a trust-region method, which implies that unlike a line-search method, it is not neces-

sary to use an inertia-controlling factorization of the Hessian of the Lagrangian function.

Furthermore, it can be shown that when minimizing the shifted-barrier function, incorpo-

rating a line-search technique into the trust-region method generally requires fewer matrix

3

factorizations and fewer iterations, which brings certain numerical benefits.

1.3 Notation

Most of notations in this dissertation are consistent with the standard optimization

literature. f(x) specifically refers to the objective function with g(x) and H(x) being its

gradient and Hessian. c(x) specifically refers to the constraint function with J(x) being its

Jacobian matrix, whose i-th row is defined by ∇ci(x)T . The subscript k means the function

takes value at iterate xk, say, gk means g(xk). I refers to identity matrix with its dimension

inferred from the context. e is a vector of all ones and ei is the i-th column of identity

matrix. For a symmetric matrix A, the inertia of A, denoted by In(A), is the 3-tuple (i+,

i−, i0) indicating the number of positive, negative and zero eigenvalues of A. The norm || · ||

refers to vector 2-norm and its induced matrix 2-norm unless otherwise stated. x · y is the

element-wise product of two column vectors such that [x · y]i = xiyi, similarly, min (x, y) is

a vector with components min (xi, yi). The vector consisting of x augmented by y is defined

by (x, y). Given δ > 0, an open ball at x∗ is denoted by B(x∗, δ) = {x : ||x− x∗|| < δ}. The

i-th eigenvalue of a matrix A is denoted by λi(A). Finally, H � 0 and H � 0 refer to matrix

H being positive semidefinite and positive definite respectively. The {Hk}k≥0 are said to be

uniformly positive definite if there exists some constant λ > 0 such that for all k ∈ N and

all p ∈ Rn, pTHkp ≥ λ||p||2. If there exists a positive constant γ such that ||αj|| ≤ γβj, then

write αj = O(βj). If there exists a sequence {γj}j≥0 → 0 such that ||αj|| ≤ γjβj, then write

αj = o(βj).

1.4 Some Useful Results

In this section, some useful results will be described that will be used frequently

without proofs throughout this dissertation.

4

Lemma 1.4.1 (Sylvester’s law of inertia). If K is symmetric, then In(XTKX) = In(K)

for any nonsingular matrix X, where In(K) denotes the inertia of K, i.e., the number of

positive, negative and zero eigenvalues of K.

Lemma 1.4.2 (Inertia of the KKT matrix I). Given an n× n symmetric matrix H and an

m × n matrix J , let r denote the rank of J and let Z ∈ Rn×m be a matrix whose columns

span the null space of J . Consider a Karush–Kuhn–Tucker (KKT) matrix of the form

K =

H JT

J 0

 .

Then the inertia of K is given by

In(K) = In(ZTHZ) + (r, r,m− r).

The matrix ZTHZ is known as the reduced Hessian and describes the curvature of objective

function on the active constraint surface.

Lemma 1.4.3 (Inertia of the KKT matrix II). Given an n×n symmetric matrix H and an

m× n matrix J of rank m, let Z ∈ Rn×m be a matrix whose columns span the null space of

J . If a KKT matrix K is given by

K =

H JT

J 0

 ,

then the inertia of K is given by

In(K) = In(ZTHZ) + (m,m, 0).

If ZTHZ is positive definite, then In(K) = (n,m, 0), in which case, the KKT matrix K is

said to have the correct inertia.

Proof. Set r = m in Lemma 1.4.2.

5

Lemma 1.4.4 (Inertia of the KKT matrix III). Given an n × n symmetric matrix H and

an m× n matrix J of rank r, let the n− r columns of Z define a basis for null(J) and define

the regularized KKT matrix as

Kµ =

H JT

J −µI

 . (1.2)

If µ > 0 is sufficiently small, then the following statements are equivalent.

• H + 1
µ
JTJ is positive definite.

• In(Kµ) = (n,m, 0).

• ZTHZ is positive definite.

Proof. Use the Schur complement and Debreu’s Lemma, which is given below.

Notice that in Lemma 1.4.4, there is no need for J to have full rank anymore, as long

as µ > 0 sufficiently small and the reduced Hessian is positive definite, Kµ will have the

correct inertia. The −µI term in (2,2) block is generally regarded as a regularization of the

KKT matrix.

Lemma 1.4.5 (Debreu’s Lemma). There exists a finite ρ̄ > 0 such that H+ρJTJ is positive

definite for all ρ ≥ ρ̄ if and only if pTHp > 0 for all nonzero p such that Jp = 0.

The matrix Kµ in (1.2) represents a “general” form of KKT matrix, where (1, 1)

block represents the Hessian of Lagrangian function or its approximation and (1, 2) block

represents the Jacobian of the constraints with (2,2) block being 0 or some diagonal matrix.

In the context of the augmented Lagrangian method or shifted barrier method, KKT matrix

is generally much more complicated but shares the same structure with Kµ. Moreover, the

techniques used to modify the inertia of matrix in the form of Kµ to solve the KKT system

will also be frequently used in this dissertation.

6

Chapter 2

Background

This chapter provides some background results for the subsequent chapters. Sec-

tion 2.1 introduces the optimality conditions and corresponding constraint qualifications for

both (NEP) and (NIP). Section 2.2 describes Newton’s method and the commonly used

line-search strategies. The background of a conventional augmented Lagrangian method

for (NEP), which is the basis of the proposed primal-dual path-following augmented La-

grangian method, is considered in Chapter 3. Similarly, the first part of Chapter 5 describes

the conventional barrier method for (NIP) that serves as a basis for the proposed primal-

dual path-following shifted penalty-barrier method. Finally, the background theory of the

combined trust-region line-search method used to minimize the primal-dual shifted penalty-

barrier function is discussed in Chapter 4.

2.1 Optimality Conditions

2.1.1 Optimality Conditions for (NEP)

In this section the constraint qualifications and optimality conditions for a constrained

local minimizer are provided for problem (NEP). First, the definition of a constrained local

minimizer is given.

7

Definition 2.1.1 (Local minimizer). Let f(x) : Rn 7→ R be the objective function and let

F = {x : c(x) = 0} denote the feasible region. A point x∗ is a constrained local minimizer of

f(x) if x∗ ∈ F and there exists an open ball B(x∗, δ) such that

f(x∗) ≤ f(x) for all x ∈ B(x∗, δ) ∩ F .

Furthermore, x∗ is a strict constrained local minimizer if

f(x∗) < f(x) for all x ∈ B(x∗, δ) ∩ F , x 6= x∗.

The point x∗ is an isolated constrained minimizer if there exists a positive δ such that x∗ is

the unique constrained local minimizer in B(x∗, δ) ∩ F .

Definition 2.1.2 (Feasible path). Assume that x is a feasible point, i.e., c(x) = 0. A feasible

path is a twice continuously differentiable curve x(α) such that

• x(0) = x, c(x(α)) = 0 for all 0 ≤ α < α̂ and some α̂ > 0; and

• the tangent vector d
dα
x(α) is nonzero at α = 0.

Definition 2.1.3 (Level set and Level curves). Given a function f(x) : D ∈ Rn 7→ R defined

on a convex set D, the level set L(γ) associated with the scalar γ, is the set

L(γ) = {x ∈ D : f(x) ≤ γ} .

The boundary of the level set L(γ), i.e., {x ∈ D : f(x) = γ} is called the level curve associated

with γ.

Definition 2.1.4 (Lagrange multipliers). Assume that x∗ is a constrained local minimizer

for (NEP), then the components of the vector y∗ such that g(x∗) = J(x∗)Ty∗ are called

Lagrange multipliers.

Sometimes the Lagrange multipliers are called the dual variables, with the terminol-

ogy initially coming from linear programming. The Lagrange multipliers are essential in

8

indicating whether the primal variable x is optimal. However, in order to use y∗ to indicate

the optimality, certain regularity conditions or constraint qualifications must be described

first.

Definition 2.1.5 (General constraint qualification). The constraint qualification for c(x) =

0 holds at x if every p 6= 0 such that J(x)p = 0 is tangential to a differentiable feasible path

starting at x.

It is now possible to state the first-order optimality conditions for (NEP).

Theorem 2.1.1 (First-order optimality condition). If the constraint qualification holds at

x∗, then x∗ is a local solution of (NEP) only if there exist Lagrange multipliers y∗, such that

the following condition holds

g(x∗) = J(x∗)Ty∗ =
m∑
i=1

y∗i∇ci(x∗),

or, equivalently, if the columns of Z(x∗) form a basis for the null-space of J(x∗), then

Z(x∗)Tg(x∗) = 0. The vector Z(x)Tg(x) is known as the reduced gradient.

A point that satisfies the first-order optimality condition is called a first-order KKT

point of (NEP). The goal is to find constrained local minimizers of the objective function,

and to distinguish between constrained saddle points, local maximizers and local minimizers.

This means that the curvature of f(x) on the constraint surface must be considered. To do

so, it is convenient to define the Lagrangian function as follows.

Definition 2.1.6 (Lagrangian function). Given Lagrange multipliers y, the Lagrangian func-

tion L : Rn+m 7→ R is defined by

L(x, y) = f(x)− yT c(x).

The second-order derivative of L(x, y) with respect to x describes the curvature of

9

objective function f(x) on the constraint surface, and is given by

H(x, y) = ∇2
xxL(x, y) = ∇2f(x)−

m∑
i=1

yi∇2ci(x).

The gradient and Hessian of Lagrangian function can be expressed as

∇L(x, y) =

g(x)− J(x)Ty

−c(x)

 ∇2L(x, y) =

H(x, y) −J(x)T

−J(x) 0

 .

Now it is possible to define the second-order optimality conditions for (NEP).

Theorem 2.1.2 (Second-order optimality condition). If the constraint qualification holds at

x∗, then x∗ is a local solution of (NEP) only if the following conditions hold.

• x∗ is feasible, i.e., c(x∗) = 0;

• there exist Lagrange multipliers y∗ such that g(x∗) = J(x∗)Ty∗; and

• for the y∗ above, pTH(x∗, y∗)p ≥ 0 for all p such that J(x∗)p = 0.

A point that satisfies the second-order optimality condition is called a second-order

KKT point for (NEP). A compact statement of the last condition in Theorem 2.1.2 can be

described by the reduced Hessian Z(x∗)TH(x∗, y∗)Z(x∗) being positive semidefinite, where

columns of Z(x∗) form a basis of null-space of J(x∗).

The second-order sufficient condition for determining a strict local minimizer or fur-

thermore, an isolated local minimizer of (NEP) can be summarized in the following two

theorems, where no assumption on constraint qualifications is needed.

Theorem 2.1.3 (Second-order sufficient condition I). A point x∗ is a strict local minimizer

of problem (NEP) if the following conditions hold.

• x∗ is feasible, i.e., c(x∗) = 0;

• there exist Lagrange multipliers y∗ such that g(x∗) = J(x∗)Ty∗; and

10

• for the y∗ above, it holds that pTH(x∗, y∗)p > 0 for all p 6= 0 such that J(x∗)p = 0, or

equivalently, the reduced Hessian Z(x∗)TH(x∗, y∗)Z(x∗) is positive definite.

Theorem 2.1.4 (Second-order sufficient condition II). A point x∗ is an isolated local mini-

mizer of (NEP) if the following conditions hold.

• x∗ is feasible, i.e., c(x∗) = 0;

• there exists Lagrange multipliers y∗ such that g(x∗) = J(x∗)Ty∗;

• for the y∗ above, it holds that pTH(x∗, y∗)p > 0 for all p 6= 0 such that J(x∗)p = 0, or,

equivalently, the reduced Hessian Z(x∗)TH(x∗, y∗)Z(x∗) is positive definite; and

• the constraint gradients are linearly independent at x∗.

Note that the third condition in both Theorem 2.1.3 and Theorem 2.1.4 requires the

reduced Hessian to be positive definite, so the curvature of objective function f(x) on the

constraint surface must be bounded away from zero.

2.1.2 Optimality Conditions for (NIP)

In this part, the constraint qualifications and optimality conditions of a constrained

local minimizer will be provided for problem (NIP). These conditions are used frequently

Chapter 5. As before, certain constraint qualifications are needed to imply that the KKT

conditions are necessary conditions for some x∗ to be a first-order solution. Commonly

used constraint qualifications include linear independence constraint qualification (LICQ),

Mangasarian-Fromovitz constraint qualification (MFCQ), and Slater constraint qualification.

Definition 2.1.7 (LICQ). Denote the active set A(x) = {i : ci(x) = 0}, LICQ holds at x∗

if the active constraint gradients, {∇ci(x∗) : i ∈ A(x∗)} are linearly independent, i.e., Ja(x
∗)

has full rank.

11

Definition 2.1.8 (MFCQ). Denote the active set A(x) = {i : ci(x) = 0}, MFCQ holds at

x∗ if there exists an “interior” vector p starting at x∗, i.e., there exists a vector p such that

∇ci(x)Tp > 0 for all i ∈ A(x∗), i.e., Ja(x
∗)p > 0.

Definition 2.1.9 (Slater CQ). The Slater constraint qualification holds if the set {−ci(x)}

is convex and there exists an “interior” feasible point, i.e., there exists x̂ such that ci(x̂) > 0

for every index i.

Generally speaking, LICQ is computationally tractable and more practical than MFCQ,

although it is a stronger condition than MFCQ. If LICQ holds at some KKT point x∗, then

the Lagrange multipliers are unique because Ja(x
∗) has full rank. On the other hand, the

Slater constraint qualification is fairly weak in the sense that it only requires that a strictly

feasible (i.e., interior) point exists.

Definition 2.1.10 (First-order KKT point). The first-order KKT conditions of (NIP) hold

at x∗ if there exist Lagrange multipliers y∗ satisfying

• c(x∗) ≥ 0 (Feasibility)

• g(x∗) = J(x∗)Ty∗ (Stationarity)

• y∗ ≥ 0 (Nonnegativity of the multipliers)

• c(x∗) · y∗ = 0 (Complementarity)

Definition 2.1.11 (CAKKT point). In solving problem (NIP) with the slack variables s

introduced in the following form

minimize
x∈Rn, s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0. (NIPs)

A point (x∗, s∗) satisfying s∗ ≥ 0 and c(x∗)− s∗ = 0 is said to satisfy the CAKKT condition

if there exists a sequence {(xk, sk, yk, wk)} with {xk} → x∗ and {sk} → s∗ such that

lim
k→∞

(
g(xk)− J(xk)

Tyk
)

= 0, lim
k→∞

(yk − wk) = 0,

lim
k→∞

(sk · wk) = 0, wk ≥ 0.

(2.1)

12

Any pair (x∗, s∗) satisfying the CAKKT condition is called a CAKKT point.

CAKKT point is useful by the following Lemma 2.1.5, which uses cone-continuity

property, the weakest constraint qualification associated with sequential optimality condi-

tions (see Andreani et al. [1]).

Lemma 2.1.5. If (x∗, s∗) is a CAKKT point that satisfies the cone-continuity property, then

(x∗, s∗) is a first-order KKT point for problem (NIPs).

As before, the KKT conditions alone cannot distinguish between local maximizers,

local minimizers and saddle points unless (NIP) is strictly convex. As before, certain second-

order optimality conditions are needed. It is more complicated that when solving (NIP),

second-order constraint qualifications are also needed.

Definition 2.1.12 (SOCQ). Define the second-order feasible directions SL(x∗) as

SL(x∗) =
{
p : p 6= 0, g(x∗)Tp = 0 and Ja(x

∗)p ≥ 0
}
.

The second-order constraint qualification (SOCQ) holds at a KKT point x∗ if every p ∈

SL(x∗) is tangential to a twice-differentiable path x(α) such that ca(x(α)) ≥ 0 for all 0 <

α ≤ α̂, with some α̂ > 0.

Note that the first and second order constraint qualifications are distinct assumptions,

with neither implying the other. Now it is possible to describe the second-order necessary

and sufficient conditions of (NIP).

Theorem 2.1.6. Suppose both the first and second order constraint qualifications hold at a

feasible point x∗. Then x∗ is a local minimizer of (NIP) only if

• x∗ is a KKT point, i.e., c(x∗) ≥ 0 and there exists a nonempty set Y(x∗) of multipliers

y∗ satisfying y∗ ≥ 0, c(x∗) · y∗ = 0 and g(x∗) = J(x∗)Ty∗; and

• for some y ∈ Y(x∗) and all nonzero p satisfying g(x∗)Tp = 0 and J(x∗)p ≥ 0, it holds

that pTH(x∗, y∗)p ≥ 0.

13

Theorem 2.1.7. The point x∗ is a strict local minimizer of (NIP) if

• x∗ is a KKT point, i.e., c(x∗) ≥ 0 and there exists a nonempty set Y(x∗) of multipliers

y∗ satisfying y∗ ≥ 0, c(x∗) · y∗ = 0 and g(x∗) = J(x∗)Ty∗; and

• for some y ∈ Y(x∗) and all nonzero p satisfying g(x∗)Tp = 0 and J(x∗)p ≥ 0, there

exists a constant ω > 0 such that pTH(x∗, y∗)p ≥ ω||p||2.

As before, there are no any requirements on the constraint qualifications in order

for the sufficient conditions to hold. Two more stronger sufficient conditions indicating the

isolated local minimizers of (NIP) using either MFCQ or LICQ can be summarized in the

following two theorems.

Theorem 2.1.8. The point x∗ is an isolated local minimizer of (NIP) if

• x∗ is a KKT point, i.e., c(x∗) ≥ 0 and there exists a nonempty set Y(x∗) of multipliers

y∗ satisfying y∗ ≥ 0, c(x∗) · y∗ = 0 and g(x∗) = J(x∗)Ty∗;

• the MFCQ holds at x∗, i.e., there exists a vector p such that Ja(x
∗)p > 0; and

• for all y ∈ Y(x∗) and all nonzero p satisfying g(x∗)Tp = 0 and J(x∗)p ≥ 0, there exists

some ω > 0 such that pTH(x∗, y∗)p ≥ ω||p||2.

Theorem 2.1.9. The point x∗ is a isolated local minimizer of (NIP) if

• x∗ is a KKT point and strict complementarity condition holds, i.e., the unique Lagrange

multipliers y∗ has the property that y∗i > 0 for all i ∈ A(x∗);

• the LICQ holds at x∗, i.e., Ja(x
∗) has full row rank; and

• for every p satisfying Ja(x
∗)p = 0, there exists some ω > 0 such that pTH(x∗, y∗)p ≥

ω||p||2.

Theorem 2.1.9 is more restrictive than Theorem 2.1.8 but is more computational

intractable, the rank of Ja(x
∗) can be obtained by using the singular value decomposition

14

on it and the strict complementarity condition on y∗a can be examined by detecting if they

are sufficiently positive. The second-order sufficient conditions motivate the definition of a

second-order KKT point defined below.

Definition 2.1.13 (Second-order KKT point). A point x∗ is a second-order KKT point if

there exist Lagrange multipliers y∗, such that

• c(x∗) ≥ 0, g(x∗) = J(x∗)Ty∗, y∗ ≥ 0, c(x∗) · y∗ = 0, and

• Z(x∗)TH(x∗, y∗)Z(x∗) is positive semidefinite,

where the columns of Z(x∗) form a basis for the null space of J(x∗).

In order to simplify the description of the proposed primal-dual path-following shifted

penalty-barrier method in Chapter 5, both the necessary and sufficient conditions for problem

(NEIP) will also be presented.

minimize
x∈Rn

f(x) subject to cE(x) = 0, cI(x) ≥ 0, (NEIP)

where E and I are nonintersecting index sets, representing the equality and inequality com-

ponents of the nonlinear constraints respectively. Similarly, denote yE and yI to be the

Lagrange multipliers associated with cE and cI . The necessary and sufficient conditions for

some point x∗ to be a solution of (NEIP) can be formally described in the following two

theorems.

Theorem 2.1.10 (First and second order necessary conditions). If x∗ is a local minimizer

of problem (NEIP) at which the MFCQ holds, then

• x∗ is a KKT point, i.e., cE(x) = 0, cI(x) ≥ 0 and there exists a nonempty set Y(x∗) of

multipliers y satisfying yI ≥ 0, cI(x
∗) · yI = 0 and g(x∗) = J(x∗)Ty; and

• every y ∈ Y(x∗) defined in the previous condition satisfies pTH(x∗, y∗)p ≥ 0 for all p

such that g(x∗)Tp = 0, JE(x
∗)p = 0 and Ja(x

∗)p ≥ 0.

15

Theorem 2.1.11 (Sufficient conditions for an isolated minimizer). A point x∗ is an isolated

local minimizer of problem (NEIP) if

• x∗ is a KKT point, i.e., cE(x) = 0, cI(x) ≥ 0 and there exists a nonempty set Y(x∗) of

multipliers y satisfying yI ≥ 0, cI(x
∗) · yI = 0 and g(x∗) = J(x∗)Ty;

• the MFCQ holds at x∗; and

• for all y ∈ Y(x∗) and all nonzero p satisfying g(x∗)Tp = 0, JE(x
∗)p = 0 and Ja(x

∗)p ≥

0, there exists some ω > 0 such that pTH(x∗, y∗)p ≥ ω||p||2.

The primal-dual path-following shifted penalty-barrier method proposed in Chapter 5

is designed to solve problems in the form of (NEIP) but with cI(x) = x. Finally, the following

definitions are used to characterize the rate of convergence of a sequence {xk}k≥0 to x∗.

Definition 2.1.14 (Q-order convergence). The sequence {xk}k≥0 is said to converge to x∗

with “Q-order at least r” (r ≥ 1) if there exists constants β ≥ 0 and K ≥ 0 such that

||xk+1 − x∗|| ≤ β||xk − x∗||r for all k ≥ K,

i.e., ||xk+1 − x∗|| = O(||xk − x∗||r). In some special case, convergence with Q-order at least

2 is called Q-quadratic convergence.

Definition 2.1.15 (Q-superorder convergence). {xk}k≥0 is said to converge to x∗ with “Q-

superorder at least r” (r ≥ 1) if there exists a sequence of positive constants {βk}k≥0 con-

verging to zero and some constant K ≥ 0 such that

||xk+1 − x∗|| ≤ βk||xk − x∗||r for all k ≥ K,

i.e., ||xk+1 − x∗|| = o(||xk − x∗||r). In special cases, for r = 1, 2, the convergence is said to

be at least Q-superlinear, Q-superquadratic respectively.

16

2.2 Newton’s Method and Line Search

The optimality conditions described in the previous section serve as a general guidance

for finding the local minimizers of both (NEP) and (NIP). In order to find points satisfying

the first-order optimality conditions, thus be the candidates of local minimizers, Newton’s

method or its variations provide a powerful tool.

2.2.1 Newton’s Method

Newton’s method is a well-known and effective zero-finding approach, and its modified

variants are used throughout this dissertation. Given a continuously differentiable function

f(x) : Rn 7→ R, its unconstrained local minimizers can be found among the solutions of

∇f(x) = 0.

Given an appropriate starting point x0, Newton’s method is an iterative method that

generates a sequence {xk}k≥0, under certain conditions, which will converge to the solutions

of ∇f(x) = 0 at a local quadratic rate. The Newton iteration is given by

∇2f(xk)(xk+1 − xk) +∇f(xk) = 0. (2.2)

A typical Newton’s method is described in Algorithm 2.1.

Algorithm 2.1 Conventional Newton’s Method

1: Choose x0; k ← 0;

2: while not converged do

3: Evaluate f(xk), ∇f(xk), ∇2f(xk);

4: Solve ∇2f(xk)pk = −∇f(xk);

5: Set xk+1 ← xk + pk;

6: k ← k + 1;

7: end while

17

In the context of optimization, Newton’s method may also be regarded as exploiting

the local quadratic model of f(x) at xk, i.e.,

qk(x) = f(xk) +∇f(xk)
T (x− xk) + 1

2
(x− xk)T∇2f(xk)(x− xk).

Any local minimizer of qk(x) must satisfy∇qk(x) = 0, i.e.,∇f(xk)+∇2f(xk)(x−xk) =

0, which is the same as the Newton equation (2.2). Newton’s method is attractive due to

its possible local quadratic convergence rate under certain conditions. Theorem 2.2.1 below

gives the local convergence property of Newton’s method whose proof could be found in

standard optimization books.

Theorem 2.2.1 (Local convergence of Newton’s method). Let f(x) : D ⊂ Rn 7→ R be twice

continuously differentiable on an open convex set D, and assume that ∇f(x∗) = 0 for some

x∗ ∈ D with ∇2f(x∗) nonsingular. Then there exists an open neighborhood B with x∗ ∈ B

such that for any x0 ∈ B, the Newton iterates {xk}k≥0 are well-defined, remain in B and

converge to x∗ with Q-superlinear convergence. If in addition, ∇2f(x) is locally Lipschitz at

x∗, i.e., if there exists an L > 0 such that ||∇2f(x)−∇2f(x∗)|| ≤ L||x− x∗||, for all x ∈ B,

then {xk}k≥0 converges to x∗ with Q-quadratic convergence.

However, besides the rapid convergence to a stationary point, Newton’s method may

also diverge or there exists some pk that is not well defined. Furthermore, Newton’s method

is intent on solving ∇f(x) = 0, not intent on minimizing f(x) since no requirements on the

Hessian is imposed. So it may converge to a local maximizer or saddle point unless f(x) is

strictly convex on domain D.

Moreover, in Newton’s method, the starting point x0 is required to be sufficiently

close to x∗, a good guess of x0 can be hard if there is nothing known about x∗. In this

case, to obtain global convergence, a merit function is used to gauges the quality of xk as

an estimate of x∗. The idea of merit function will be discussed in later chapters.

In the next part, line search methods will be described that are often combined with

Newton’s method for minimizing the merit function.

18

2.2.2 Model-Based Line Search Methods

As before, the local quadratic model of f(x) at xk can be described as

qk(x) = f(xk) +∇f(xk)
T (x− xk) + 1

2
(x− xk)TBk(x− xk),

where Bk is either ∇2f(xk) or its approximation. Line search method ensures that f(xk+1) <

f(xk), by computing a step αk > 0 such that f(xk + αkpk) < f(xk). The process of finding

αk is called line search.

A typical structure of the model-based line search method can be described in the

following Algorithm 2.2. In Algorithm 2.2, γc is called the contraction factor that is used

to cut back the step αk and ηs is called the reduction factor that guarantees the actual

reduction in f(x) will be no less than ηs times the reduction predicted by model qk(x). Step

7 to Step 9 is called backtracking line search along pk.

Algorithm 2.2 A Model-based Line Search Method

1: Specify constants 0 < ηs < 1, and 0 < γc < 1;

2: k ← 0;

3: while not converged do

4: pk = argmind
{
qk(xk + d) = f(xk) +∇f(xk)

Td+ 1
2
dTBkd

}
;

5: αk ← 1;

6: ρk = (f(xk + αkpk)− f(xk)) / (qk(xk + αkpk)− qk(xk));

7: while ρk < ηs do

8: αk ← γcαk;

9: ρk = (f(xk + αkpk)− f(xk)) / (qk(xk + αkpk)− qk(xk));

10: end while

11: xk+1 ← xk + αkpk;

12: k ← k + 1;

13: end while

19

In Algorithm 2.2, it is worthwhile pointing out that the model of reduction in f(x)

as in Step 9 needs not be the same as the model used to define pk as in Step 4. When the

model of reduction in f(x) is linear, the sufficient decrease condition becomes

f(xk + αkpk) ≤ f(xk) + ηsαk∇f(xk)
Tpk

which is called the Armijo condition. An alternative to line search method will be the trust-

region method, in which the search direction and step are computed in one shot within a

trust region, within which the model is regarded as a “trusted” model of f(x). Trust-region

method will be used in Chapter 5 as an alternative to line search for minimizing the merit

function.

20

Chapter 3

A Primal-Dual Path-Following

Augmented Lagrangian Method

3.1 Introduction

In this chapter, a primal-dual path-following augmented Lagrangian method (PDAL)

is proposed for solving (NEP). This is an iterative method where at each iteration, a Newton-

like method is used to solve a perturbed optimality condition that defines a penalty trajectory

parameterized by both the penalty parameter and the estimated Lagrange multipliers. A

primal-dual augmented Lagrangian function is also defined as a merit function to guarantee

global convergence. It can be shown that this method is globally convergent and under

certain conditions, has a local quadratic convergence rate in the limit.

Section 3.2 provides the historical notes of methods for solving (NEP), which serves

as a general background. The path-following method of Armand and Omheni [3] is based

on minimizing the quadratic penalty function and is described in Section 3.3 as motivation.

The remainder of this chapter describes the proposed PDAL, and its convergence results.

Finally, numerical results from the CUTEst test collection are given in Chapter 6.

21

3.2 Background

This chapter focuses on solving the following problem, where both f(x) and c(x) are

assumed to be twice continuously differentiable.

minimize
x∈Rn

f(x) subject to c(x) = 0. (NEP)

Two prominent methods, the penalty function method and the augmented Lagrangian

method are described in this section. In addition, a general background of the proposed

primal-dual path-following augmented Lagrangian method is presented.

3.2.1 The Penalty Function Method

The solutions of problem (NEP) can be obtained by solving a sequence of uncon-

strained problems parameterized by a scalar µ. The class of penalty function method adopts

this idea by minimizing a sequence of penalty functions with the penalty parameters adjusted

dynamically. Among this class, the quadratic penalty method is one of the oldest idea which

may be traced back to a paper of Courant [7] in 1943 and a theoretical analysis by Fiacco

and McCormick [8, 9].

The conventional quadratic penalty function is formally defined as

P2(x;µ) = f(x) +
1

2µ
||c(x)||2,

where µ > 0 is called the penalty parameter, which is defined to penalize the sum of squares

of constraint violations.

In the conventional quadratic penalty function method, P2(x;µ) is minimized as an

unconstrained problem for a decreasing sequence {µk}k≥0 → 0+. Denote {x(µk)}k≥0 to

be the sequence of unconstrained local minimizers of P2(x;µ), and let x∗ be an arbitrary

limit point of {x(µk)}k≥0, then x∗ solves (NEP). To define the Newton iteration for finding

{x(µk)}k≥0, the gradient and Hessian of the quadratic penalty function P2(x;µ) are needed,

22

which are given by

∇P2(x;µ) = g(x) +
1

µ
J(x)T c(x)

∇2P2(x;µ) = ∇2f(x) +
1

µ

m∑
i=1

(ci(x)Hi(x)) +
1

µ
J(x)TJ(x)

= H(x, π) +
1

µ
J(x)TJ(x),

where π(x) = −c(x)/µ is a vector of penalty multipliers. At each iterate xk, the Newton

iteration is given by(
H(x, π) +

1

µ
J(x)TJ(x)

)
∆x = −

(
g(x) +

1

µ
J(x)T c(x)

)
, (3.1)

where H(x, π) = ∇2f(x)−
∑m

i=1 πi∇2ci(x).

The conventional quadratic penalty function method has very poor numerical perfor-

mance as the penalty parameter µ→ 0+. For many years, the ill-conditioning of the Hessian

∇2P2(x;µ) = H(x, π) + 1
µ
J(x)TJ(x) was thought to be the cause. To see this, consider the

nondegenerate case, i.e., where J(x) has full row rank, the eigenvalues of ∇2P2(x;µ) when

µ is sufficiently small can be characterized as:

m eigenvalues ≈ 1

µ
λ
(
J(x)TJ(x)

)
n eigenvalues ≈ λ

(
ZTH(x, π)Z

)
,

(3.2)

where J(x)Z = 0, and columns of Z are orthonormal. λ(H) denotes the eigenvalues of H

here. When µ is sufficient close to 0, the conditional number cond(∇2P2(x;µ)) ≈ O(1/µ),

which is unbounded as µ → 0+. This implies that the Newton equations associated with

finding a zero of the penalty function gradient ∇P (x;µ) become increasingly ill-conditioned

as µ→ 0+.

However, this ill-conditioning is not the main reason for the poor performance of

the conventional quadratic penalty function method. To see this, define the auxiliary vari-

able w = 1
µ
(J(x)∆x + c(x)), then the Newton equation ∇2P2(x;µ)p = −∇P2(x;µ) can be

23

rewritten in the following equivalent formH(x, π) J(x)T

J(x) −µI


∆x
w

 = −

g(x)

c(x)

 ,

which is well conditioned if problem (NEP) is well conditioned.

The two relations in (3.2) indicate that when µ ≈ 0, P2(x;µ) has a small curvature

in the null space of J(x), denoted by null(J(x)), but very large curvature in the space that

is orthogonal to null(J(x)). This means that P2(x;µ) may vary slowly along the vectors in

null(J(x)) but rapidly along the vectors that are orthogonal to null(J(x)). This implies poor

convergence if xk → x∗ in the tangent space.

Another perspective of the conventional quadratic penalty function method is to

consider the following perturbed optimality conditionsg(x)− J(x)Ty

c(x) + µy

 = 0. (3.3)

Notice that without µy, the second equation in (3.3), would be the same as the first-order

optimality condition for (NEP). Thus the term µy can be seen as a shift to the equality

constraints. As µ > 0 decreases, the solution (x(µ), y(µ)) of (3.3) defines a smooth penalty

trajectory that passes through the solution (x∗, y∗).

When µk is updated by µk+1, i.e., µk+1 < µk, the first Newton step ∆xk may not

always be parallel to the tangent of penalty trajectory at xk, which makes xk+∆xk generally

a poor starting point for finding the next iterate xk+1. To explain this further, consider any

(x(µ), y(µ)) on the penalty trajectory, i.e., (x(µ), y(µ)) satisfies the following equation defined

by g(x(µ))− J(x(µ))Ty(µ)

c(x(µ)) + µy(µ)

 = 0. (3.4)

24

Differentiating both sides of equation (3.4) with respect to µ givesH(x(µ), y(µ)) −J(x(µ))T

J(x(µ)) µI


x′(µ)

y′(µ)

 = −

 0

y(µ)

 . (3.5)

A simple rearrangement gives(
H(x(µ), y(µ)) +

1

µ
J(x(µ))TJ(x(µ))

)
x′(µ) = − 1

µ
J(x(µ))Ty(µ).

If (xk, yk) is on the penalty trajectory, i.e., xk = x(µk), yk = y(µk), then the tangent

at xk, denoted by x′(µk), is given by(
H(xk, yk) +

1

µk
JTk Jk

)
x′(µk) = − 1

µk
JTk yk. (3.6)

However, the Newton step ∆xk defined in equation (3.5) is given by(
H(xk, πk+1) +

1

µk+1

JTk Jk

)
∆xk = −

(
g(xk)− JTk πk+1

)
= −

(
g(xk)− JTk πk + JTk πk − JTk πk+1

)
= −

(
JTk yk −

µk
µk+1

JTk yk

)
= −JTk yk

(
1− µk

µk+1

)
.

(3.7)

The third equation holds because πk = −ck/µk = yk on the penalty trajectory. Compare

equation (3.6) with (3.7), since πk+1 6= πk, x
′(µk) and ∆xk may be quite different. This

implies that along the Newton direction, xk + ∆xk might move away from the penalty

trajectory and many line-search iterations are needed to drag the iterates back. Thus the

Newton step ∆xk is rejected and a conventional penalty function method will be inevitably

inefficient.

A general scheme of the conventional quadratic penalty method has been given in

Algorithm 3.1. In Step 8, the Armijo-type line search is used to guarantee the sufficient

decrease condition on P (x;µ) is satisfied. The positive definite matrix Ek in Step 5 is

25

introduced to serves as a “modification” of ∇2P2(xk;µ) to make ∇2P2(xk;µ) + Ek positive

definite, so the Newton step pk computed form Step 6 is guaranteed to be a descent direction

of P2(x;µ). In practice, Ek can be chosen to be a positive diagonal matrix, whose diagonals

are increased until ∇2P2(xk;µ) + Ek is sufficiently positive definite.

Algorithm 3.1 Conventional Quadratic Penalty Function Method

1: Choose constants ηs, γc, γ, ε with 0 < ηs <
1
2
, 0 < γc, γ < 1, and 0 < ε� 1;

2: Choose x0, initial penalty parameter µ0 > 0, and k ← 0;

3: while not converged do

4: while ||∇P2(xk;µ)|| > ε do

5: Define positive definite matrix Ek such that ∇2P2(xk;µ) +Ek is positive definite;

6: Solve (∇2P2(xk;µ) + Ek) pk = −∇P2(xk;µ); . Newton step

7: Set initial step αk ← 1;

8: while P2(xk + αkpk;µk) > P2(xk;µk) + ηsαk∇P2(xk;µk)
Tpk do

9: αk ← γcαk; . Line search along pk

10: end while

11: xk+1 ← xk + αkpk;

12: k ← k + 1;

13: end while

14: µk+1 ← γµk; . Decrease penalty parameter

15: end while

To explain the penalty trajectory intuitively, consider the following example HS7 from

the Hock-Schittkowski (HS) test collection. The HS problems are an important subclass of

the Constrained and Unconstrained Testing Environment (CUTEst) test collection, which is

a commonly used environment for testing optimization algorithms (see Chapter 6 for more

details). This example is used repeatedly throughout this chapter.

26

Example 3.2.1. Consider the following nonlinear equality constrained problem HS7 in two

variables.

minimize
x∈R2

ln(1 + x21)− x2

subject to (1 + x21)
2 + x22 − 4 = 0.

(HS7)

The unique isolated local (and also global) minimizer of HS7 is x∗ = (0,
√

3) with unique

optimal Lagrange multipliers y∗ = −
√

3/6, computed from g(x∗) = J(x∗)Ty∗. The level

curves of P (x;µ) for a sequence of decreasing µ are shown in Figure 3.1.

(a) µ = 10 (b) µ = 5

(c) µ = 1 (d) µ = 0.1

Figure 3.1: Level Curves of the Conventional Quadratic Penalty Function for Different Values of µ.

In Figure 3.1, the red elliptic is the feasible region and the blue point represents the solution

27

of HS7. It can be observed that as µ→ 0+, the level curves of P (x;µ) gradually resemble the

level curves of the constraint function and a sequence of its unconstrained local minimizers

approach x∗ vertically from above.

Theorem 3.2.1 provides the main convergence result of the conventional quadratic

function method, whose proof can be referred in Fiacco and McCormick [8].

Theorem 3.2.1. Suppose that f(x), c(x) ∈ C2, with yk = −c(xk)/µk being the penalty

multipliers, such that ||∇P (xk;µk)|| ≤ εk where εk → 0 as k → ∞, and that {xk}k≥0

converges to x∗ for which J(x∗) has full rank. Then x∗ satisfies the first-order optimality

conditions for (NEP) (see Theorem 2.1.1) and {yk}k≥0 converges to the associated Lagrange

multipliers y∗.

3.2.2 Augmented Lagrangian Method

The augmented Lagrangian method was first proposed by Hestenes [30] and Powell

[36], and then developed by Rockafellar [42], Bertsekas [5] and others. Powell derived the

augmented Lagrangian method as a shifted penalty function method for which the penalty

parameter µ does not need to converge to zero. The price that has to be paid for keeping µ

bounded away from zero is the need to update the estimated Lagrange multipliers at each

iteration. The augmented Lagrangian method is known to be robust in the case where J(x)

does not have full rank, i.e., gradient of the constraints are linearly dependent.

The relation of the penalty function method and the augmented Lagrangian method

can be understood by considering a problem in which the equality constraint c(x) = 0 is

replaced by the shifted constraint c(x)− µyE = 0, i.e.,

minimize
x∈Rn

f(x) subject to c(x)− µyE = 0, (PNEP)

where yE is the estimated Lagrange multipliers. Then the penalty function for solving

28

problem (PNEP) is given by

P̂ (x; yE , µ) = f(x) +
1

2µ
||c(x)− µyE ||2

= f(x) +
1

2µ

(
||c(x)||2 − 2µc(x)TyE + µ2||yE ||2

)
.

For a fixed pair (yE , µ), minimizing P̂ (x; yE , µ) is equivalent to minimizing the aug-

mented Lagrangian function defined as

LA(x; yE , µ) = f(x)− c(x)TyE +
1

2µ
||c(x)||2.

The main theoretical basis of the conventional augmented Lagrangian method is

stated in Theorem 3.2.2, which also indicates that µy∗ would be the optimal shift, where y∗

is the optimal Lagrange multipliers of (NEP).

Theorem 3.2.2. Suppose x∗ satisfies the second-order sufficient conditions for a minimizer

of (NEP) (see Theorem 2.1.3). Let y∗ be the corresponding optimal Lagrange multipliers at

x∗. Then there must exist a finite µ̄ > 0, for every 0 < µ < µ̄, a solution x∗ of (NEP) is an

isolated unconstrained minimizer of LA(x; y∗, µ).

Proof. By definition, LA(x; y∗, µ) = f(x)− c(x)Ty∗+ 1
2µ
||c(x)||2, the gradient and Hessian of

LA are given by

∇LA(x; y∗, µ) = g(x)− J(x)T (y∗ − 1

µ
c(x))

∇2LA(x; y∗, µ) = H(x, y∗ − 1

µ
c(x)) +

1

µ
J(x)TJ(x).

(3.8)

The first-order optimality condition implies that if x∗ is a solution of (NEP), then

c(x∗) = 0 and g(x∗) − J(x∗)Ty∗ = 0, which further implies that ∇LA(x∗; y∗, µ) = 0 and

∇2LA(x∗; y∗, µ) = H(x∗, y∗) + 1
µ
J(x∗)TJ(x∗). The second-order sufficient conditions (see

Theorem 2.1.3) imply that the reduced Hessian ZTH(x∗, y∗)Z must be positive definite,

where the columns of Z form the basis of null(J(x∗)). According to Debreu’s Lemma (see

Lemma 1.4.2), ∇2LA(x; y∗, µ) = H(x∗, y∗) + 1
µ
J(x∗)TJ(x∗) must be positive definite for all

29

0 < µ < µ̄ with some µ̄ > 0. Thus x∗ must be an isolated local minimizer of (NEP).

Based on Theorem 3.2.2, Hestenes and Powell proposed that x∗ be found by minimiz-

ing LA(x; yE , µ) for a sequence of values of (yE , µ). For a given pair (yE , µ), LA(x; yE , µ) may

be minimized by either a line-search or trust-region method for unconstrained optimization.

Once the minimization is complete, (yE , µ) are updated to encourage convergence. Ideally,

the update should allow yE → y∗ in the limit, with µ bounded below.

From the proof of Theorem 3.2.2, we know that when minimizing LA(x; yE , µ), the

associated Newton equation can be expressed by(
H(x, π(x)) +

1

µ
J(x)TJ(x)

)
p = −

(
g(x)− J(x)Tπ(x)

)
. (3.9)

A comparison of (3.1) with (3.9) indicates that although they share the “same” structure, the

multiplier estimate π(x) is different, with π(x) = −c(x)/µ in the quadratic penalty function

method and π(x) = yE − c(x)/µ in the augmented Lagrangian method. The primal-dual

form of the Newton equations (3.9) may be written asH(x, π(x)) J(x)T

J(x) −µIm


 ∆x

−∆y

 = −

 g(x)− J(x)Ty

c(x) + µ(y − yE)

 , (3.10)

where ∆y = − 1
µ

(J(x)∆x+ (c(x) + µ(y − yE))). The diagonal matrix −µIm in the (2, 2)-

block of the KKT matrix serves as a regularization of the KKT system (3.10).

A complete description of the augmented Lagrangian method is given in Algorithm 3.2.

The modification of ∇2LA(xk; y
E
k , µk) by adding some positive definite Ek is used to guar-

antee that pk is a descent direction for LA(x; yE , µ). In practice, Ek can be computed “on

the fly” while computing the symmetric indefinite factorization of Kµ (See Forsgren and

Gill [10]). Given the decreasing sequence {βk}k≥0, if ||c(xk+1)|| > βk, then µk is reduced to

penalize the constraint violations and enforce feasibility (see Step 13). For efficiency, the

multiplier estimate yE is frequently updated in Step 17 if the constraint violations are less

than the current tolerance εk.

30

Algorithm 3.2 Augmented Lagrangian Method for (NEP)

1: Choose constants ηs, γc, γ, α, ε with 0 < ηs <
1
2
, 0 < γc, γ, α < 1, and 0 < ε� 1;

2: Choose x0, y0, y
E
0 , µ0 > 0, and β0 = α||c(x0)||;

3: Initial iteration k ← 0;

4: while not converged do

5: Define positive definite matrix Ek such that ∇2LA(xk; y
E
k , µk)+Ek is positive definite;

6: Solve
(
∇2LA(xk; y

E
k , µk) + Ek

)
pk = −∇LA(xk; y

E
k , µk); . Newton step

7: Set initial step αk ← 1;

8: while LA(xk + αkpk; y
E
k , µk) > LA(xk; y

E
k , µk) + ηsαk∇LA(xk; y

E
k , µk)

Tpk do

9: αk ← γcαk; . Line search along pk

10: end while

11: xk+1 ← xk + αkpk;

12: if ||∇LA(xk+1; y
E
k , µk)|| ≤ εk then

13: if ||c(xk+1)|| > βk then

14: µk+1 ← γµk; . Decrease µ to enforce feasibility

15: βk+1 ← α||c(xk+1)||, εk+1 ← 1
2
εk;

16: else

17: yE
k+1 ← yE

k , µk+1 ← µk; . Update multipliers estimate

18: βk+1 ← βk, εk+1 ← εk;

19: end if

20: end if

21: k ← k + 1;

22: end while

Example 3.2.2. Consider applying the augmented Lagrangian method to solve problem HS7

31

again. Figure 3.2 shows the level curves of LA(x; yE , µ) for yE = −0.289, which is the

approximation of the optimal multipliers y∗ = −
√

3/6, and a decreasing sequence of µ.

(a) yE = −0.289, µ = 10 (b) yE = −0.289, µ = 5

(c) yE = −0.289, µ = 1 (d) yE = −0.289, µ = 0.1

Figure 3.2: Level Curves of augmented Lagrangian Function for Different Values of µ.

In Figure 3.2, the colored level curves of the augmented Lagrangian function LA(x; yE, µ)

are given for a decreasing sequence of µ. The red elliptic is the feasible region and the blue

point represents the solution of HS7. It can be shown that when µ is sufficiently small, then

x∗ is an unconstrained local minimizer of LA(x; y∗, µ). This implies that x∗ is “contained”

in the center of level curves of LA(x; yE , µ) and there is no need for reducing µ to zero. The

penalty trajectory will pass through x∗ as µ decreases to some sufficient small number.

32

3.3 Motivation of The Proposed Algorithm

This section describes a primal-dual path-following method for (NEP), proposed by

Armand et al. [2], which is a Newton-like method applied to a sequence of perturbed opti-

mality systems that follow naturally from the quadratic penalty approach. Their algorithm

has a “two-level”structure in which the outer iteration involves solving a perturbed KKT

linear system and monitoring the residual. If the residual is not sufficiently small, a quadratic

penalty function is minimized in the inner iteration to obtain global convergence. It has been

shown that whenever the primal-dual pair (xk, yk) converges to a regular solution (x∗, y∗),

if µk converges to 0 with a superlinear rate of convergence, then the algorithm reduces

asymptotically to Newton iterations and the inner iteration is no longer needed.

The first-order optimality condition for minimizing P2(x;µ) is given by

g(x) +
1

µ
J(x)T c(x) = 0. (3.11)

If y = −c(x)/µ is used as an auxiliary variable, then (3.11) is equivalent to the perturbed

optimality condition for (NEP):

F (x, y;µ) =

g(x)− J(x)Ty

c(x) + µy

 = 0. (3.12)

Define the primal-dual pair v(µ) = (x(µ), y(µ)), then F (x, y;µ) = 0 implicitly defines

a trajectory µ → v(µ) which passes through the solution (x∗, y∗) as µ → 0. The main

idea is to define a sequence of primal-dual iterates (xk, yk) that closely path-follows this

trajectory. Specifically, in the outer iteration, the idea is to apply a Newton-like method

on F (x, y;µk) = 0 for some decreasing sequence µk > 0. A steadily decreasing sequence of

εk > 0 is defined so that if the trial step ||F (x+k , y
+
k ;µk)|| ≤ εk, then (x+k , y

+
k) is accepted as

the next iterate. Otherwise the inner iteration is called where a penalty type merit function

that measures the distance of the current iterate to the trajectory is minimized by applying

a backtracking line search to obtain global convergence.

33

The merit function ψµ(v) used in the inner iteration is the primal-dual penalty func-

tion proposed by Forsgren and Gill [11]. This function is the conventional quadratic penalty

function plus a term that measures the distance of the current iterate to the path-following

trajectory.

ψµ(v) = f(x) +
1

2µ
||c(x)||2 +

ν

2µ
||c(x) + µy||2, (3.13)

where ν > 0 is a scaling parameter to balance the penalty of the constraint violations and

the distance to the path-following trajectory. v is the primal-dual pair defined as v = (x, y).

The gradient and Hessian of ψµ(v) are given by

∇ψµ(v) =

g(x) + J(x)T (1
µ
c(x) + ν

µ
(c(x) + µy))

ν(c(x) + µy)



∇2ψµ(v) =

H(x,−(1
µ
c(x) + ν

µ
(c(x) + µy))) νJT

νJ νµIm

 .

It is immediate that every primal-dual pair v = (x, y) on the trajectory defined by the

path-following equation (3.12) is a stationary point of ψµ(v). Furthermore, if the second order

sufficient conditions of (NEP) (see Theorem 2.1.3) hold at the primal-dual pair v∗ = (x∗, y∗),

then ∇2ψµ(v∗) must be positive definite, which guarantees that the local minimum could be

found.

In a subsequent paper [3], Armand and Omheni extended this method to a primal-dual

augmented Lagrangian method for solving the equality constrained minimization problem.

This is also a Newton-type method applied to the perturbed optimality conditions but it

based on the properties of the augmented Lagrangian function.

The next section describes an alternative perturbed optimality condition that may

also be regarded as defining an implicit penalty trajectory. A primal-dual augmented La-

grangian merit function is minimized to keep the iterates within a certain neighborhood of

the trajectory.

34

3.4 Description of the Proposed Algorithm

In this section, a detailed description of the proposed primal-dual path-following aug-

mented Lagrangian method (PDAL) is given. This method shares a similar “two-level”

structure containing both the outer and inner iterations. The idea is to define a trajectory

by a perturbed first-order optimality condition and then define a merit function with the

potential of giving limit point that satisfies the second-order necessary optimality condi-

tions. PDAL is also in part motivated by the Forsgren and Gill primal-dual interior method

(See [10]), but is intended to solve only equality constrained problems from a path-following

perspective.

In the outer iteration of PDAL, a trial iterate (x+k , y
+
k) is obtained by applying the

modified Newton’s method for finding the approximate solution of F (x, y; yE , µ) = 0, which

is defined by

F (x, y; yE , µ) =

 g(x)− J(x)Ty

c(x) + µ(y − yE)

 , (3.14)

where yE is the current Lagrange multipliers estimate and µ is the penalty parameter. If

(x+k , y
+
k) reduces ||F (x, y; yE , µ)|| sufficiently, then it is accepted as a new iterate. Oth-

erwise, the inner iteration is called where an augmented Lagrangian type merit function

M(x, y; yEk , µ) defined in (3.17) is minimized to restrict next iterate back to the neighbor-

hood of the path-following trajectory.

In fact, the path-following equation (3.14) can be obtained by considering the gra-

dient of the conventional augmented Lagrangian function LA(x; yE , µ) = f(x) − c(x)TyE +

1
2µ
||c(x)||2, which is given by

∇LA(x; yE , µ) = g(x)− J(x)T
(
yE − 1

µ
c(x)

)
.

If y = yE − c(x)/µ, then ∇LA(x; yE , µ) = 0 is equivalent to F (x, y; yE , µ) = 0, which is

exactly (3.14). So the idea is to find zeros of F (x, y; yE , µ) = 0 while updating parameters µ

and yE in a manner that guarantees strong convergence properties.

35

3.4.1 Description of The Outer Iteration

In the outer iteration of PDAL, a Newton-like method is used for finding the zeros

of F (x, y; yE , µ) = 0. At the current iterate (xk, yk), the linearization of F (x, y; yE , µ) at

(xk, yk, µk) with respect to (x, y, µ) is given by:H(xk, yk) −J(xk)
T

J(xk) µkIm


x+k − xk
y+k − yk

+

 0

yk − yE
k

 (µ+
k − µk) = −

 g(xk)− J(xk)
Tyk

c(xk) + µk(yk − yEk)

 ,

where H(xk, yk) is the Hessian of Lagrangian at (xk, yk), and (x+k , y
+
k) is the next trial iterate.

An equivalent but symmetric linear system can be rewritten asH(xk, yk) J(xk)
T

J(xk) −µkIm


x+k − xk
yk − y+k

+

 0

yk − yE
k

 (µ+
k − µk) = −

 g(xk)− J(xk)
Tyk

c(xk) + µk(yk − yEk)

 .

A simple rearrangement givesH(xk, yk) J(xk)
T

J(xk) −µkIm


x+k − xk
yk − y+k

 = −

 g(xk)− J(xk)
Tyk

c(xk) + µ+
k (yk − yEk)

 . (3.15)

If this KKT matrix is denoted by Kk, then (3.15) can be written as

Kk

x+k − xk
yk − y+k

 = −F (xk, yk; y
E , µ+

k). (3.16)

Note that the (2, 2)-block of Kk is −µkIm while an updated value of µ+
k (µ+

k < µk) is used

on the right-hand side of (3.16).

If the second-order sufficient conditions hold at (x, y) (see Theorem 2.1.3), then the

reduced Hessian Z(x)TH(x, y)Z(x) must be positive definite. According to Debreu’s Lemma

(see Lemma 1.4.2), there must exist a constant µ̄ > 0, such that H(x, y) + 1
µ
J(x)TJ(x) is

positive definite whenever 0 < µ < µ̄. The update rule of µk is based on this observation.

Specifically, if H(xk, yk) + 1
µk
JTk Jk is not sufficiently positive definite, then the trial µ+

k =

min
{
µ1+σ
k , aµk,

1
k

}
, where σ, a ∈ (0, 1). This strategy is the same as the one used by Armand

36

et al. [2, 3], and it can be observed numerically that as µk → 0+, the linear decrease of the

form aµk is more acceptable.

Another important issue is that if Kk has more than m negative eigenvalues, then the

(1, 1)-block need to be modified to ensure that In(Kk) = (n,m, 0) (and therefore that the

reduced Hessian is positive definite). There are many techniques of modifying matrices of

the form Kk. One example is to add a positive semidefinite matrix ηkIn to the (1, 1)-block

of Hk and increase ηk whenever Kk has more than m negative eigenvalues. This technique

is applied in Algorithm 3.3. Other techniques include the use of the modified symmetric

indefinite factorization of Kk (see, Forsgren, Gill and Murray [14], Gill and Wong [26, 27]).

Once the modified KKT system (3.16) has been solved and the next trial iterate

(x+k , y
+
k) obtained, if ||F (x+k , y

+
k ; yE

k , µ
+
k)||∞ ≤ ρs||F (xk, yk; y

E
k , µk)||∞ for some 0 < ρs < 1,

then (x+k , y
+
k , µ

+
k) → (xk+1, yk+1, µk+1) and the Lagrange multiplier estimate is updated by

y+k → yE
k+1. Otherwise the inner iteration is used to reduce ||F (x, y; yE , µ)||∞ by minimizing

the merit function using a line-search method.

Note also that the maximum number of inner iteration is limited for efficiency. It is not

worthwhile using too many inner iterations to force ||F (x+k , y
+
k ; yE

k , µ
+
k)||∞ ≤ εk, especially in

the early iterations when vk is far away from v∗. Here {εk} is a positive sequence decreasing

to zero. For example εk can be chosen as εk = ρs||F (xk, yk; y
E
k , µk)||∞ for some ρs ∈ (0, 1).

A different strategy for the choice of εk was adopted by Armand [2] where a relaxation

parameter ςk > 0 is introduced such that εk = ρs||F (xk, yk; y
E
k , µk)||+ ςk. In this case, there

are no restrictions on the maximum number of inner iterations.

A detailed description of the outer iteration of PDAL is given in the following Algo-

rithm 3.3.

37

Algorithm 3.3 Primal-Dual Path-Following Augmented Lagrangian Method (Outer)

1: Input: (prob); . Input in CUTEst format

2: Output: Solution (x∗, y∗, exit), exit indicates the exit code;

3: Choose x0, initial penalty parameter µ0, and k ← 0;

4: Choose constants 0 < as, σs, ρs, γc < 1, 0 < ηs <
1
2
, 0 < εs � 0, MaxItn, and MaxIItn;

5: while ||F (xk, yk; y
E
k , µk)||∞ ≥ εs and k ≤ MaxItn do

6: if H(xk, yk) + 1
µk
JTk Jk � 0 then . Update penalty parameter

7: Choose µ+
k , s.t. min

{
µ1+σs
k , asµk,

1
k

}
≤ µ+

k ≤ min
{
asµk,

1
k

}
;

8: Choose a symmetric Hk � 0, s.t. In(Kk) = In

Hk JTk

Jk −µkI

 = (n,m, 0);

9: else

10: µ+
k ← µk;

11: end if

12: Compute (x+k , y
+
k) by solving Kk(x

+
k − xk, yk − y

+
k) = −F (xk, yk; y

E
k , µ

+
k);

13: Set εk = ρs||F (xk, yk; y
E
k , µk)||∞, IItn ← 0; . Stopping criteria for inner iteration

14: if ||F (x+k , y
+
k ; yE

k , µ
+
k)||∞ ≤ εk then

15: (xk+1, yk+1, y
E
k+1, µk+1)← (x+k , y

+
k , y

+
k , µ

+
k);

16: else . Inner iteration

17: while ||F (xk+1, yk+1; y
E
k , µ

+
k)||∞ > εk and IItn ≤ MaxIItn do

18: Apply inner iterations to minimize merit function M(x, y; yEk , µ) in (3.17);

19: end while

20: µk+1 ← µ+
k , yE

k+1 ← yk+1;

21: end if

22: k ← k + 1;

23: end while

38

3.4.2 Description of the Inner Iteration

If ||F (x+k , y
+
k ; yE

k , µ
+
k)||∞ > εk, then an inner iteration is called and (x+k , y

+
k) is taken to

be the starting point for minimizing the merit functionM(x, y; yE
k , µ) of (3.17). The penalty

parameter is allowed to increase sometimes for the benefit of minimizingM(x, y; yE
k , µ) while

keeping M(x, y; yE
k , µ) non-increasing.

As above, a merit function needs to be defined whose local minimizer lies on the

trajectory defined by F (x, y; yE
k , µ) = 0. It is immediate that the function M(x, y; yE

k , µ)

such that

M(x, y; yE

k , µ) = f(x)− c(x)TyE

k +
1

2µ
||c(x)||2 +

1

2µ
||c(x) + µ(y − yE

k)||2 (3.17)

has this property. This function is a special case of the so-called generalized primal-dual

augmented Lagrangian function proposed by Robinson [41], Gill and Robinson [25], which

is defined as

Mν(x, y; yE

k , µ) = f(x)− c(x)TyE

k +
1

2µ
||c(x)||2 +

ν

2µ
||c(x) + µ(y − yE

k)||2,

where ν > 0 is a fixed scalar that balances the augmented Lagrangian function and the

primal-dual term. The function Mν(x, y; yE
k , µ) is equivalent to the Forsgren-Gill primal-

dual quadratic penalty function (see Forsgren and Gill [10]) defined in terms of the shifted

constraints c(x)−µyE = 0. For simplicity, ν = 1 is chosen in the merit functionM(x, y; yE
k , µ)

without sacrificing strong convergence results.

To simplify the notation, as yE
k is fixed during the inner iteration, letM(x, y; yE

k , µ) be

denoted by Mµ(x, y). Similarly, define the first-order Lagrange multiplier estimate π(x) =

yE
k − c(x)/µ, and a typical primal-dual pair of inner iterates as (xi, yi). Here, a Armijo

line-search method is applied for minimizing Mµ(x, y). In contrast, a trust-region method is

applied to minimize the shifted penalty-barrier merit function in Chapter 5.

First, the gradient and Hessian of the merit function Mµ(x, y) need to be defined,

39

which are given by

∇Mµ(x, y) =

g(x)− J(x)T (π + (π − y))

µ(y − π)



∇2Mµ(x, y) =

H(x, 2π − y) + 2
µ
J(x)TJ(x) J(x)T

J(x) µI

 .

Lemma 3.4.1 below states that by minimizing Mµ(x, y) while maintaining certain

second-order requirements, it is possible to restrict the iterates within a certain neighborhood

of the path-following trajectory defined by F (x, y; yE
k , µ) = 0.

Lemma 3.4.1. For any fixed yE
k and µ > 0, (xi, yi) satisfies F (xi, yi; y

E
k , µ) = 0 and

H(xi, yi)+ 1
µ
J(xi)

TJ(xi) is positive definite if and only if (xi, yi) is an isolated local minimizer

of the merit function Mµ(x, y).

Proof. The path-following equation F (x, y; yE
k , µ) = 0 implies that g(x) − J(x)Ty = 0 and

c(x) + µ(y − yE
k) = 0. Thus if (xi, yi) satisfies F (xi, yi; y

E
k , µ) = 0, then yi = yE

k − c(xi)/µ =

π(xi), i.e., yi = πi. According to the second equation and together with the relation g(xi)−

J(xi)
Tyi = 0, F (xi, yi; y

E
k , µ) = 0 is equivalent to ∇Mµ(xi, yi) = 0, i.e., (xi, yi) is a stationary

point of Mµ(x, y).

The Hessian∇2Mµ(x, y) at any point (xi, yi) on the path-following trajectory is given

by

∇2Mµ(xi, yi) =

H(xi, yi) + 2
µ
J(xi)

TJ(xi) J(xi)
T

J(xi) µI

 . (3.18)

For any (xi, yi) satisfying F (xi, yi; y
E
k , µ) = 0, if it further satisfies thatH(xi, yi)+

1
µ
J(xi)

TJ(xi)

is positive definite, then from the inertia relation

In
(
∇2Mµ(xi, yi)

)
= (m, 0, 0) + In

(
H(xi, yi) +

1

µ
J(xi)

TJ(xi)

)
,

which is obtained by observing that H(xi, yi)+ 1
µ
J(xi)

TJ(xi) is the Schur complement of µI in

40

equation (3.18). Thus ∇2Mµ(xi, yi) is positive definite if and only if H(xi, yi)+ 1
µ
J(xi)

TJ(xi)

is positive definite. As a result, if H(xi, yi) + 1
µ
J(xi)

TJ(xi) is positive definite, then (xi, yi)

must be an isolated local minimizer of Mµ(x, y).

It should be pointed out that Step 8 of Algorithm 3.3 and Step 5 of Algorithm 3.4

are used to force H(xk, yk) + 1
µ
J(xk)

TJ(xk) to be positive definite for every iterate (xk, yk),

which guarantees that a local minimizer of (NEP) is obtained in the limit. According to

Lemma 3.4.1, it is reasonable to minimizeMµ(x, y) in inner iterations to restrict the iterates

towards a gradually shrinking neighborhood of the path-following trajectory.

One challenge in inner iterations is that it becomes more difficult to minimize the

merit function Mµ(x, y) as µ → 0+. The technique described in Step 2 - Step 4 of Algo-

rithm 3.4 is introduced with this goal in mind, where µ is allowed to increase sometimes for

numerical benefits. Specifically, if ||yi − yE
k || 6= 0, then define

µ̂i =
||c(xi)||2
||yi − yE

k ||2
= argmin

µ

1

2µ
||c(xi) + µ(yi − yE

k)||2

then

µi =


max {µ̂i, µi−1} , if µ̂i ≤ 1

k

µi−1, otherwise,

which is similar to the strategy used by Armand et al. [2].

From the definition of M(x, y; yE
k , µ), it is clear that increasing µ will decrease the

penalty term 1
µ
||c(x)||2. So the choice of µ̂i satisfiesMµ̂i(xi, yi) ≤Mµi(xi, yi), i.e., increasing

the penalty parameter will not lead to an increase in the merit function while some numerical

benefits could be obtained.

It can also be shown that in the inner iteration, the Newton equations for minimizing

Mµ(x, y) have exactly the same structure as the Newton equations for finding the zeros

of F (x, y; yE
k , µ) = 0 in the outer iteration. To see this, the Hessian approximation Bi of

41

∇2Mµ(xi, yi) can be defined by equating πi = yi in the (1, 1)-block, which gives

Bi =

H(xi, yi) + 2
µ
J(xi)

TJ(xi) J(xi)
T

J(xi) µiIm

 .

It follows that the Newton equation for finding ∇Mµ(x, y) = 0 is given byH(xi, yi) + 2
µ
J(xi)

TJ(xi) J(xi)
T

J(xi) µiIm


∆xi
∆yi

 = −

g(xi)− J(xi)
T (πi + (πi − yi))

µ(yi − πi)

 .

(3.19)

Let L be the nonsingular matrix

L =

I − 2
µi
J(xi)

T

0 I

 .

Premultiplying both sides of equation (3.19) by L givesH(xi, yi) −J(xi)
T

J(xi) µiIm


∆xi
∆yi

 = −

g(xi)− J(xi)
Tyi

µ(yi − πi)

 , (3.20)

which is equivalent to the symmetric systemH(xi, yi) J(xi)
T

J(xi) −µiIm


 ∆xi

−∆yi

 = −

g(xi)− J(xi)
Tyi

µ(yi − πi)

 . (3.21)

A comparison of equations (3.15) and (3.21) shows that the KKT matrices have

exactly the same structure while they are different only on the right hand side. If the KKT

matrix of (3.21) has more than m negative eigenvalues, its inertia must be modified using

the same technique used to modify the KKT matrix in the outer iteration (see Section 3.4.1).

Finally, an Armijo line search is used if the unit step fails to give a sufficient decrease of

Mµ(x, y). Theorem 3.5.1 states that the search direction di is guaranteed to be a descent

direction for Mµ(x, y). A complete description of inner iteration is given in Algorithm 3.4

below.

42

Algorithm 3.4 A Primal-Dual Path-Following Augmented Lagrangian Method (Inner)

1: while ||F (xi, yi;µ
+
k , y

E
k)||∞ ≥ εk and IItn ≤ MaxIItn do

2: Define µ̂i =


||c(xi)||/||yi − yE

k ||, if ||yi − yE
k || 6= 0

Inf, otherwise

3: . Possibly increase µi

4: Define µi =


max(µ̂i, µi−1), if µ̂i ≤ 1

k

µi−1, otherwise

5: Choose a symmetric Hi � 0, s.t. In(Ki) = In

Hi JTi

Ji −µiI

 = (n,m, 0);

6: Compute the Newton direction by solving Ki(pi,−qi) = −F (xi, yi; y
E
k , µi);

7: The search direction is given by di = (pi, qi);

8: Set initial step αi ← 1;

9: whileMµi(vi + αidi) >Mµi(vi) + ηsαi∇Mµi(vi)
Tdi do

10: αi ← γcαi; . Armijo line search

11: end while

12: xi+1 ← xi + αipi;

13: yi+1 ← yi + αiqi;

14: IItn ← IItn + 1;

15: end while

Example 3.4.1. Consider applying the primal-dual path-following augmented Lagrangian

method Algorithm 3.3 and Algorithm 3.4 to solve problem HS7 again.

The path-following trajectories from different starting points are shown in Figure 3.3.

The level curves of the objective function are shown in colors with each function value indi-

cated. It can be observed that initially, the merit functionM(x, y; yE
k , µ) is minimized to force

43

(a) x0 = (1, 0) (b) x0 = (1.5,−2)

(c) x0 = (−2, 8) (d) x0 = (−2, 0)

Figure 3.3: Path-Following Trajectories of Primal-Dual Path-Following Augmented Lagrangian Method

the iterates into a neighborhood of x∗, then the iterates become the Newton iterates in the

limit and no inner iterations are needed. In the above figure, the final iterates converge to x∗

in the same “top down” manner. The numerical results show that local quadratic convergence

rate can be obtained in this example.

3.5 Convergence Analysis

In this section, the convergence results of both outer and inner iterations are pro-

vided. Under certain mild conditions, it can be shown that in inner iterations, either

44

lim infi→∞ ||F (xi, yi; y
E
k , µi)|| = 0 or the sequence {f(xk)}k≥0 is unbounded from below. The

iterates in outer iterations will converge to points satisfying the first order optimality con-

ditions if the sequence of Lagrange multipliers {yk}k≥0 are bounded and the primal iterates

are assumed to be within a compact set.

Theorem 3.5.1. In Algorithm 3.4, if the direction (pi,−qi) computed from Step 6 satisfies

Ki(pi,−qi) = −F (xi, yi; y
E
k , µi), where Ki satisfies the condition in Step 5, then the search

direction di = (pi, qi) is a descent direction for Mµi(x, y) at (xi, yi).

Proof. The equivalent Newton step for finding ∇Mµi(x, y) = 0 is given byH(xi, yi) J(xi)
T

J(xi) −µiIm


 pi

−qi

 = −

g(xi)− J(xi)
Tyi

µi(yi − πi)

 . (3.22)

A rearrangement gives

∇Mµi(xi, yi)
T (pi, qi) = g(xi)

Tpi − (2πi − yi)TJ(xi)pi + µi(yi − πi)T qi

= − 2

µi
(J(xi)pi + µiqi)

TJ(xi)pi − µi||qi||2 − pTi H(xi, yi)pi

= −pTi
(
H(xi, yi) +

1

µi
J(xi)

TJ(xi)

)
pi −

1

µi
||Jipi + µiqi||22.

(3.23)

The choice of H(xi, yi) requires H(xi, yi) + 1
µi
J(xi)

TJ(xi) to be positive definite, so for any

di 6= 0 it holds that ∇Mµi(xi, yi)
Tdi < 0, which implies that di must be a descent direction

for Mµi(x, y) at (xi, yi).

Given that di is a descent direction for Mµi(x, y) at (xi, yi), the Armijo line-search

can be performed along di to obtain sufficient decrease on Mµi(xi, yi) once the unit step

is rejected. The convergence result of the inner iterations is summarized in the following

Theorem 3.5.2.

Theorem 3.5.2. Assume that for all i, it holds that Ji = J(xi) and Hi = H(xi, yi) are

bounded and that Hi +
1
µi
JTi Ji is uniformly positive definite, i.e., pT (Hi +

1
µi
JTi Ji)p ≥ λs||p||2

45

for some λs > 0 and for all p 6= 0. Then for any fixed yE
k , the inner iterates converge in the

sense that

lim inf
i→∞

||F (xi, yi; y
E

k , µi)|| = 0 or lim
i→∞

f(xi) = −∞. (3.24)

Proof. The proof is by contradiction in three parts. Assume that (3.24) fails, i.e., {f(xi)}i≥0

are bounded below and also lim infi→∞ ||F (xi, yi; y
E
k , µi)|| > 0. According to (3.22), since

Hi, Ji are bounded and µi > 0 is bounded above by some µ̄, and on the right hand side

lim infi→∞ ||F (xi, yi; y
E
k , µi)|| > 0, so there must exist an ε > 0, such that ||di|| ≥ ε for all i.

The first part is to show that there exists a positive constant θ, such that

−∇Mµi(vi)
Tdi ≥ θ||di||2 for all i. (3.25)

Suppose that (3.25) does not hold, then there must exist a subsequence {ij}j≥0 such that

−∇Mµij
(vij)

Tdij < θij ||dij ||2, (3.26)

for some positive sequence θij → 0 as j →∞. Then according to (3.23) it must hold that

0 ≤ pTij(Hij +
1

µij
JTijJij)pij +

1

µij
||Jijpij + µijqij ||22 < θij ||dij ||2. (3.27)

and

0 ≤ λs||pij ||2 +
1

µij
||Jijpij + µijqij ||22 < θij ||dij ||2. (3.28)

The relation (3.28) is obtained from the uniform positive definiteness of Hi. Let

j →∞ in (3.28), then it can be concluded that limj→∞ ||pij || = 0, which further yields that

limj→∞ ||qij || = 0. So limj→∞ ||dij || = 0, which is a contradiction to ||di|| ≥ ε for all i. Thus

(3.25) holds.

The second part is to show that limi→∞ vi = v∗ and limi→∞ αi = 0. In the inner

iteration, denote vi+1 = vi + αidi. The Armijo condition (Step 9 in Algorithm 3.4) gives

−ηsαi∇Mµi(vi)
Tdi ≤Mµi(vi)−Mµi(vi+1) ≤Mµi(vi)−Mµi+1

(vi+1). (3.29)

46

The latter inequality is based on µi+1 ≥ µi and that the merit functionMµ(v) has a smaller

value with larger µ at the same v. Since −∇Mµi(vi)
Tdi ≥ θ||di||2 ≥ θε||di||, it can be

concluded that for any N > 0, it holds that

N∑
i=1

ηsθε||αidi|| ≤
N∑
i=1

(Mµi(vi)−Mµi+1
(vi+1))

=Mµ1(v1)−MµN+1
(vN+1)

≤Mµ1(v1)− f(xN+1) <∞.

(3.30)

It is obvious that f(xN+1) < MµN+1
(vN+1) from the definition of Mµ(v). By the

assumption that {f(xi)}i≥0 is bounded below, let N →∞,
∑∞

i=1 ||αidi|| =
∑∞

i=1 ||vi+1 − vi||

is absolutely convergent. So there must exist v∗, such that limi→∞ vi = v∗. It follows that

0 = lim
i→∞
||vi+1 − vi|| = lim

i→∞
||αidi||. (3.31)

As ||di|| ≥ ε for all i, then limi→∞ αi = 0.

The final part completes the proof by establishing the main contradiction. Because

limi→∞ αi = 0, the Armijo condition is violated, which means that there exists a v̄i = vi+ᾱdi

with 0 < ᾱ < 1 such that

Mµi(v̄i)−Mµi(vi) > ηsᾱ∇Mµi(vi)
Tdi. (3.32)

By the mean-value theorem, there exists v̂i = vi + α̂di, 0 < α̂i < ᾱi, such that

Mµi(v̄i)−Mµi(vi) = ᾱ∇Mµi(v̂i)
Tdi. (3.33)

Condition (3.32) and (3.33) together give that

∇Mµi(v̂i)
Tdi −∇Mµi(vi)

Tdi > (ηs − 1)∇Mµi(vi)
Tdi > 0. (3.34)

47

Combining (3.25) and (3.34) yields

(1− ηs)θ||di||2 < |(∇Mµi(v̂i)−∇Mµi(vi))
Tdi|

≤ ||∇Mµi(v̂i)−∇Mµi(vi)|| · ||di||.
(3.35)

The last inequality follows from the Cauchy-Schwarz inequality, and a simplification of (3.35)

gives the inequality

||∇Mµi(v̂i)−∇Mµi(vi)|| > (1− ηs)θ||di|| ≥ (1− ηs)θε,

because limi→∞ ||∇Mµi(v̂i) −∇Mµi(vi)|| = 0, and (1 − ηs)θε is a positive constant, which

leads to a contradiction.

The following two theorems provide the main convergence results for the outer itera-

tions of PDAL.

Theorem 3.5.3. Suppose the inner iterations successfully terminate, and let {vk}k≥0 be the

sequence generated by the outer iterations. Assume that both {||g(xk)||}k≥0 and {||J(xk)||}k≥0

are bounded. Then there are two possible outcomes.

• The sequence {yk}k≥0 is unbounded, in this case, the primal iterates approach a point

at which the LICQ does not hold, in other words, {xk}k≥0 has an accumulation point

x∗ at which J(x∗) is rank deficient,

• The sequence {yk}k≥0 is bounded, in this case, limk→∞ c(xk) = c(x∗) = 0.

Proof. The assumption that {||g(xk)||}k≥0 and {||J(xk)||}k≥0 are bounded is not uncommon,

for example, it can be assumed that all the iterates are within a compact set. Consider the

following two cases separately.

Case 1: If {yk}k≥0 is unbounded, then there exists a subsequence of {||yk||}k≥0 that goes

to infinity. By passing to a subsequence if necessary, it may be assumed without loss of

48

generality that ||yk|| → ∞. If ak = yk/||yk||, J(xk) = Jk, then

||JTk ak|| ≤
||g(xk)− JTk yk||+ ||g(xk)||

||yk||
→ 0.

As {||J(xk)||}k≥0 is bounded and ||ak|| = 1 for all k, they have a limits J∗ and a∗ satisfying

J∗a∗ = 0. As ||a∗|| = 1, the matrix J∗ must be rank deficient.

Case 2: If {yk}k≥0 is bounded. By the assumption that each inner iterations successfully

terminate, it holds that limk→∞ ||πk − yk|| = 0, where πk = yE
k − c(xk)/µk. It follows that

||c(xk)|| = ||µk(yE

k − πk)||

= |µk|||yE

k − πk||

≤ |µk| (||yE

k − yk||+ ||yk − πk||)→ 0,

as k →∞. In this case, it must hold that limk→∞ c(xk) = c(x∗) = 0.

Theorem 3.5.4. Suppose the inner iterations successfully terminate, and {vk}k≥0 be the

sequence generated by the outer iterations. Assume further that {xk}k≥0 is contained in a

compact set, {Hk}k≥0 is bounded and
{
Hk + 1

µk
JTk Jk

}
k≥0

is uniformly positive definite. If

(NEP) is feasible, then there are two possible outcomes:

• Case 1: {||yk||}k≥0 is unbounded and limk→∞ xk = x∗ such that J(x∗) is rank deficient,

• Case 2: {||yk||}k≥0 is bounded and any limit point of {vk}k≥0 satisfies the first-order

optimality condition of (NEP).

Proof. By the assumption {xk}k≥0 is contained in a compact set, it holds that {||g(xk)||}k≥0

and {||J(xk)||}k≥0 are bounded since both the objective function f(x) and the constraints

c(x) are assumed to be twice continuously differentiable. If {||yk||}k≥0 is unbounded, then ac-

cording to Theorem 3.5.3, {||J(xk)||}k≥0 has an accumulation point J∗ that is rank deficient.

If {||yk||}k≥0 is bounded, then the second case of Theorem 3.5.3 gives that limk→∞ c(xk) =

c(x∗) = 0. Step 14 in Algorithm 3.3 implies that limk→∞ ||F (xk, yk; y
E
k , µk)||∞ = 0, thus the

first-order optimality condition of (NEP) holds as well.

49

3.6 Acknowledgement

This chapter, in part is currently being prepared for submission for publication of the

material. Su, Fangyao; Gill, Philip E. The dissertation author was the primary investigator

and author of this material.

50

Chapter 4

A Combined Trust-Region

Line-Search Method

In the methods considered in the preceding chapters, it may be necessary to modify

the KKT matrix to obtain the correct inertia for the line-search method. In a trust-region

method, however, no such modifications are needed and thus the local quadratic model of

objective function is allowed to be nonconvex. The price that has to be paid is that trust-

region subproblem is generally more expensive to solve. In this chapter, background of

trust-region methods will be introduced, serving as a general background for Chapter 5.

In this chapter, the combined trust-region line-search method proposed by Gill and

Gertz [16] will be described. In their method, a line-search strategy is combined with a

trust-region method where the sufficient decrease condition is imposed. The line-search step

will also be used to update the trust-region radius. This motivates applying the method to

minimize the shifted penalty-barrier function because in conventional trust-region method,

a failure in obtaining a sufficient decrease in objective function generally requires the trust-

region radius to be decreased until some progress can be made. But in the case of minimizing

the shifted penalty-barrier function, the next step also needs to remain in the strict interior

of the feasible region, so a line-search strategy to cut it back into the feasible region may save

51

unnecessary iterations where the trust region radius is decreased. The combined strategy is

used when minimizing the shifted penalty-barrier function in Chapter 5.

4.1 Background on Trust-Region Methods

Iterative methods for unconstrained optimization problem could be classified into

two categories: line-search method and trust-region method. Trust-region method is robust

with strong convergence property, and unlike line-search method where inertia of the Hessian

matrix might need to be modified, could solve ill-conditioned problems. The local nonconvex

quadratic models are allowed in trust-region method, which is a huge advantage over its line-

search rivals.

At each iteration of trust-region method, the following trust-region subproblem (TRS)

needs to be solved

minimize
p

Qk(p) = gTk p+ 1
2
pTBkp subject to ||p|| ≤ δk, (4.1)

where δk > 0 is called the trust-region radius, gk = ∇f(xk) and Bk is either ∇2f(xk)

or its approximation. There is no requirement for Bk to be positive definite since a con-

tinuous quadratic function always achieves its minimum on the compact set B(xk; δk) =

{x : ||x− xk|| ≤ δk}. A more general restriction on trust-region radius usually takes the

form ||Nkp|| ≤ δk where the nonsingular matrix Nk is used to scale the problem. There is

no consensus on what is the best Nk and for simplicity we choose Nk = I for all k, which is

acceptable for well scaled problems.

A rough outline of a basic trust-region algorithm is given in Algorithm 4.1. At the

current iterate xk, the local quadratic model Qk of the objective function is minimized within

trust-region radius δk, which reflects how “trusted” the quadratic model can be to predict

a change in f(x). Upon finding an approximate solution pk of the trust-region subproblem

(4.1), a trial point xk + pk is tested. If the actual reduction in f(x) is within a given

52

factor of the reduction predicted by the quadratic model, then f(x) is assumed to have

sufficient decrease and the trial point is accepted as the next iterate.

Moreover, if the reduction in f(x) is larger than predicted, then the trust-region

radius is increased under the assumption that within a larger trust region, an acceptable

step can be obtained. If the trial point fails to give a sufficient decrease, then it is rejected

and trust-region radius is reduced under the assumption that a smaller trust-region radius

is necessary to provide a region in which the quadratic model is accurate.

Algorithm 4.1 Basic Trust-Region Method

1: Specify constants 0 < η1 < η2 < 1, 0 < η1 <
1
2
, 0 < γ2 < 1 < γ3;

2: Choose x0, k ← 0, δk ← 1;

3: while not converged do

4: Compute pk, an approximate solution of the trust-region subproblem (4.1);

5: ρk = (f(xk + pk)− f(xk))/Qk(pk);

6: if ρk ≥ η1 then . Sufficient decrease condition

7: Successful iteration: xk+1 ← xk + pk;

8: if ρk ≥ η2 then

9: δk+1 ← max {δk, γ3||pk||};

10: else

11: δk+1 ← δk;

12: end if

13: else

14: xk+1 ← xk;

15: δk+1 ← γ2||pk||;

16: end if

17: k ← k + 1;

18: end while

53

Most of the computational efforts in Algorithm 4.1 are spent on finding an approx-

imate solution of the trust-region subproblem (4.1). The following two lemmas given by

Moré and Sorensen [32] provide the theoretical basis for solving trust-region subproblem and

measuring the quality of an approximate solution.

Lemma 4.1.1. Let δk be a given positive constant, a vector pk is a global solution of the

trust-region subproblem (4.1) if and only if ||pk|| ≤ δk and there exists a unique σ ≥ 0 such

that the following two conditions hold

(Bk + σI)pk = −gk, σ · (δk − ||pk||) = 0, (4.2)

with (Bk + σI) positive semidefinite. Moreover if (Bk + σI) is positive definite, then the

global minimizer is unique.

Lemma 4.1.2. Suppose the assumptions in Lemma 4.1.1 hold and let σ and pk satisfy (4.2)

with Bk + σI positive semidefinite. Then there are three possible outcomes:

• pk solves minimizew {Q(w) : ||w|| = ||pk||},

• if σ = 0 and ||pk|| < δk, then pk solves the trust-region subproblem (4.1),

• if σ > 0 and ||pk|| = δk, then pk solves the trust-region subproblem (4.1).

Furthermore, if Bk + σI is positive definite, then p is the unique solution to the trust-region

subproblem (4.1)

Detailed proofs of Lemma 4.1.1 and Lemma 4.1.2 may be found in Sorensen [43].

Lemma 4.1.2 is important from computational standpoint because it provides the termination

rules for an iterative method for solving the trust-region subproblem (4.1). An important

result of Lemma 4.1.2 is stated in the next Lemma 4.1.3.

Lemma 4.1.3. The trust-region subproblem (4.1) has no solution with ||pk|| = δk if and only

if Bk is positive definite and ||B−1k pk|| < δk.

54

Proof. If Bk is positive definite and ||B−1k pk|| < δk, then Lemma 4.1.2 immediately gives

that B−1k pk is the global solution. On the other hand, if solution pk satisfies ||pk|| < δk then

according to the second equation of (4.2), it must hold that σ = 0 and thus Bk is positive

semidefinite. If Bk is singular, then there exists z 6= 0 in the null space of Bk such that

||pk + z|| = δk, then the second part of Lemma 4.1.2 implies that pk + z will be a solution

on the boundary, which is a contradiction!

The vector z in the proof of Lemma 4.1.3 is important in computing an approximate

solution to the trust-region subproblem, which will be discussed later in describing Moré and

Sorensen’s strategy in Section 4.4.

4.2 A Combined Trust-Region Line-Search Method

Combining trust-region method with line-search strategy is attractive to avoid re-

peatedly re-solving the trust-region subproblem when sufficient decrease condition fails to

hold. Because finding a solution of the linear system in the trust-region subproblem can

constitute a significant portion of computing time, thus performing a line search along the

trust-region step can reduce the number of systems to be solved and significantly reduce the

effort.

Historically, Toint [44], Nocedal and Yuan [34] employed line-search strategy in trust-

region method to find a positive step αk such that as long as xk+1 = xk + αkpk gives

f(xk+1) < f(xk), xk+1 will be accepted. Thus they do not impose a sufficient decrease

requirement on any step.

Gertz and Gill [15, 17] proposed a combined trust-region line-search method where the

sufficient decrease condition on objective function is satisfied by forcing the iterates to satisfy

Armijo-type condition, or stronger Wolfe-type condition (see Gertz [15]). This method is

based on the observation that the step produced by solving the trust-region subproblem is

often a suitable trial step for line-search technique. A detailed description of this method is

55

given in Algorithm 4.2, which will be used again in Chapter 5.

Algorithm 4.2 A Combined Trust-Region Line-Search Method

1: Specify constants 0 < η1 < η2 <
1
2
, 0 < γ2 < 1 < γ3, 1 ≤ ν ≤ 1/γ2;

2: Choose x0, k ← 0, δk ← 1;

3: while not converged do

4: Compute pk, an approximate solution of the trust-region subproblem (4.1);

5: ρk = (f(xk + pk)− f(xk))/Q−k (pk);

6: if ρk ≥ η1 then

7: Successful iteration: xk+1 ← xk + pk;

8: if ρk ≥ η2 then

9: Choose δk+1 ∈ [δk,max {δk, γ3||pk||}];

10: else

11: δk+1 ← δk;

12: end if

13: else

14: Find the smallest ` in {1, 2, · · · } such that αk = γ−`2 satisfies the condition that

15: (f(xk + αkpk)− f(xk))/Q−k (pk) ≥ η1; . Line search

16: xk+1 ← xk + αkpk;

17: Choose δk+1 ∈ [αk||pk||, αkν||pk||]; . Adjust trust-region radius

18: end if

19: k ← k + 1;

20: end while

In Step 5 and Step 15 of Algorithm 4.2 where the sufficient decrease condition on

56

f(x) is imposed, the model Q−k (pk) is defined by

Q−k (pk) =


Qk(pk), if pTkBkpk < 0

gTk pk, otherwise.

Note that if pTkBkpk ≥ 0, Q−k (pk) = gTk pk thus the sufficient decrease condition is stronger

than the criteria used in conventional trust-region method.

The idea behind Algorithm 4.2 is that if the trust-region subproblem fails to yield a

trial point that satisfies the sufficient decrease condition, then instead of remaining at the

current point and reducing the trust-region radius until good progress could be made (as in

Algorithm 4.1), a search is made along the direction pk and the step is reduced until the

sufficient decrease is satisfied and the next trust region is updated in accordance with the

current step. The existence of steps satisfying the Armijo condition is guaranteed by the

fact that pk is either a direction of decrease or a direction of negative curvature.

4.3 Convergence of the Trust-Region Method

In this section, the first-order convergence results of both Algorithm 4.1 and Algo-

rithm 4.2 will be provided. Under certain mild conditions, it can be shown that Algorithm 4.1

produces {xk}k≥0 for which limk→∞ ||g(xk)|| = 0. Since only the first order derivative of f(x)

is used such results are called the first-order convergence. Broadly speaking, the convergence

theory of trust-region method generally depends on how accurate an approximate solution

of the trust-region subproblem (4.1) is. One of the weak requirement was proposed by

Powell [40], who requires that the following conditions hold for some constant τ > 0,

Q(pk) ≤ −τ ||gk||min {δk, ||gk||/||Bk||} and ||p|| ≤ δk. (4.3)

For computational efficiency, it is unrealistic to obtain an exact global minimizer

of the trust-region subproblem. Instead, only an approximate solution of the trust-region

57

subproblem is needed as long as certain convergence criteria are met.

A simple but important approximate solution of the trust-region subproblem could

be obtained by minimizing the objective function along the gradient descent direction within

trust-region radius. This solution is generally known as Cauchy step pck, which is solution of

the following problem

Qk(pck) = min
p,α
{Qk(p) : p = −αgk, ||p|| ≤ δk} . (4.4)

Thus, the Cauchy step can be expressed as pck = αckgk, where αck is defined by

αck =


gTk gk/g

T
kBkgk, if gTk gk/g

T
kBkgk ≤ δk/||gk|| and gTkBkgk > 0;

δk/||gk||, otherwise.

The first proofs of first-order convergence for trust-region method are due to Powell

[37, 38, 39] which are summarized below.

Lemma 4.3.1. Given any norm || · ||, suppose a constant κ satisfies ||p||2 ≥ κ||p|| for all p,

then the Cauchy step pck satisfies the following inequality:

Q(pck) ≤ −1
2
κ2||gk||min {δk, ||gk||/||Bk||} . (4.5)

Proof. See Powell [37].

The minimum of Qk(p) is at least as small as Qk(pck), which implies that Lemma 4.3.1

provides an upper bound on the minimum value of Qk(p).

Theorem 4.3.2. Suppose that f : D ⊂ Rn 7→ R is continuously differentiable on the con-

vex region D, and let {xk}k≥0 ⊂ D be a sequence of iterates generated by Algorithm 4.1.

Assume further that pk satisfies condition (4.1), {||Bk||}k≥0 are bounded above and f(x) is

bounded below on D, then either the convergence criteria is met and the iterates terminate

or lim infk→∞ ||gk|| = 0.

58

Under the assumptions of Theorem 4.3.2, if the gradient g(x) is uniformly continuous

in some region containing all the iterates, then Algorithm 4.1 either terminates at some

iterate where the convergence criteria is met or limk→∞ ||gk|| = 0. Furthermore, Gertz [15]

proves that the line-search technique in Algorithm 4.2 will not interfere with the first-order

convergence properties of a conventional trust-region method, which is formally stated in

the following Theorem 4.3.3.

Theorem 4.3.3. Suppose the assumptions in Theorem 4.3.2 are satisfied, assume further

that g(x) is uniformly continuous in a region containing all the iterates {xk}k≥0. If the

solution of trust-region subproblem pk satisfies gTk pk ≤ 0, then Algorithm 4.2 will either

terminate at some iterate where the convergence criteria is satisfied or limk→∞ ||gk|| = 0.

Proof. See Theorem 2.2.8 in Gertz [15].

However, the first-order convergence limk→∞ ||g(xk)|| = 0 is not sufficient in distin-

guishing between local minimizers, maximizers and saddle points simplify because of the lack

of second order conditions. Moré and Sorensen [32] provide the following theorem which es-

tablishes the second order convergence results of trust-region method. This result further

demonstrates that the performance of trust-region method depend on how accurately the

trust-region subproblem can be solved.

Theorem 4.3.4. Let f : D ⊂ Rn 7→ R be twice continuously differentiable on the level

set Ω = {x : f(x) ≤ f(x0)} and {xk}k≥0 are provided by Algorithm 4.1 with Bk = ∇2f(xk).

Assume there exists β1 > 0 and β2 > 0 such that Qk(pk) ≤ −β1|Q∗k| with ||pk|| ≤ β2δk, where

Q∗k is optimal value of the trust-region subproblem (4.1). If Ω is compact then either the

algorithm terminates at x` with ∇f(x`) = 0 and ∇2f(x`) positive semidefinite, or {xk}k≥0

has a limit point x∗ ∈ Ω with ∇f(x∗) = 0 and ∇2f(x∗) positive semidefinite.

Proof. If∇f(x`) = 0 and∇2f(x`) is positive semidefinite for some x` ∈ Ω, then the algorithm

terminates. Otherwise Qk(pk) < 0 for all k ≥ 0 and {xk}k≥0 ∈ Ω are well defined. Suppose

59

pk is the solution of the trust-region subproblem (4.1), then

(
∇2f(xk) + σkI

)
pk = −gk, (4.6)

with σk ≥ 0, ∇2f(xk) + σkI positive semidefinite and σk · (δk − ||pk||) = 0. Assume the

Cholesky decomposition of ∇2f(xk) + σkI is given by ∇2f(xk) + σkI = RT
kRk. To prove the

convergence result, the following inequality is needed

Qk(pk) ≤ −1
2
β1
(
||Rkpk||2 + σkδ

2
k

)
, (4.7)

where β1 > 0 is constant. Inequality (4.7) can be established as follows:

Q∗k = gTk pk + 1
2
pTk∇2f(xk)pk

= −pTk
(
∇2f(xk) + σkI

)
pk + 1

2
pTk∇2f(xk)pk

= −1
2
pTk∇2f(xk)pk − σkpTk pk

= −1
2
||Rkpk||2 − σkδ2k.

As Qk(pk) ≤ −β1|Q∗k|, then (4.7) follows. Furthermore, it is immediate that

f(xk)− f(xk+1) ≥ 1
2
ηsβ1

(
||Rkpk||2 + σkδ

2
k

)
. (4.8)

Based on the inequalities above, it can be shown that the sequence {σk}k≥0 is not

bounded away from 0 by contradiction. Assume not, if σk ≥ ε > 0 for some constant ε > 0,

then

Qk(pk) ≤ −1
2
β1σkδ

2
k ≤ −1

2
β1σk||pk||2/β2

2 ≤ −1
2
β1ε||pk||2/β2

2 . (4.9)

The Taylor expansion of f(x) gives that

||f(xk + pk)− f(xk)−Qk(pk)|| ≤ 1
2
||pk||2 max

0≤ξ≤1
||∇2f(xk + ξpk)−∇2f(xk)||, (4.10)

then (4.9) and (4.10) together show that

|ρk − 1| ≤ β2
2

β1ε
max
0≤ξ≤1

||∇2f(xk + ξpk)−∇2f(xk)||,

60

where ρk = (f(xk + pk)− f(xk))/Qk(pk). Inequality (4.8) implies that {δk}k≥0 converges to

zero and thus {pk}k≥0 converges to zero as well, which implies that ρk > ηe for sufficient

large k and then the updating rule for the trust-region radius δk implies that δk is bounded

away from zero, which is a contradiction!

So far it has been established that {σk}k≥0 is not bounded away from zero. Thus

there must exist a subsequence of {σk}k≥0 converging to 0. As Ω is compact, it can be

assumed without loss of generality that the same sequence of {xk}k≥0 converges to x∗ in Ω.

Since ∇2f(xk) + σkI is positive semidefinite, ∇2f(x∗) must also be positive semidefinite. It

can also be shown that

||Rkpk||2 ≥
||∇f(xk)||2

||∇2f(xk)||+ σk
. (4.11)

The inequality (4.8) implies that limk→∞||Rkpk|| = 0, so by inequality (4.11), it can be

concluded that ∇f(x∗) = 0.

Gertz [15] shows that the combined trust-region line-search method described in Al-

gorithm 4.2 does not interfere with the second order convergence property. This result will

be summarized in the following theorem, whose proof can be referred in Theorem 3.2.2 and

Theorem 3.1.4 in [15], which is similar to the proof of Theorem 4.3.4.

Theorem 4.3.5. Let {xk} ⊂ Ω be the sequence of iterates generated by Algorithm 4.2.

Assume that all iterates lie in a compact set. Let f(x) be twice continuously differentiable

and ∇f(x),∇2f(x) be uniformly continuous in Ω. Assume that limk→∞ ||Bk −∇2f(x)|| = 0

and that ||Bk|| are bounded above. Assume further that there exists β2 > 0 such that Qk(pk) ≤

−β1|Q∗k| and the step length αk satisfies the condition (f(xk + αkpk) − f(xk))/Q−k (pk) ≥ η1

in Algorithm 4.2 with η1 <
1
2
(1−

√
1− β1). If x∗ is an isolated limit point of {xk}k≥0, then

∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.

The next section will focus on methods for finding an approximate solution of the

trust-region subproblem, the subscript k will be omitted for simplicity.

61

4.4 Computing a Trust-Region Step

In this section, the strategy proposed by Moré and Sorensen [32] for solving the trust-

region subproblem will be described, and the combined trust-region line-search method based

on this strategy will be used to minimize the primal-dual shifted penalty-barrier function in

Chapter 5.

Moré and Sorensen proposed an algorithm for the solution of trust-region subproblem

(4.1) which is guaranteed to obtain a nearly optimal solution in a finite number of iterations.

Their method aims at finding an approximate solution p satisfying

Q(p)−Q∗ ≤ σ1(2− σ1) max {|Q∗|, σ2} , ||p|| ≤ (1 + σ1)δ,

where σ1 and σ2 are constants in (0, 1), δ is the trust-region radius.

According to Lemma 4.1.3, the solution of trust-region subproblem (4.1) is straight-

forward if it does not lie on the boundary of the trust-region. Now assume that (4.1) has

a solution on the boundary, let λn be the smallest eigenvalue of the Hessian matrix B, and

Sλn = {z : Bz = λnz} be the corresponding eigenspace. If g is not perpendicular to Sλn ,

then ||pσ|| − δ = 0 has a solution σ ∈ (−λn,∞), where pσ = −(B + σI)−1g.

This solution can be found by solving the secular equation defined in (4.13) or its

modified version using Newton’s method. If g is perpendicular to Sλn , then ||pσ||−δ = 0 may

still have a solution on the interval (−λn,∞) and in this case the solution can be obtained by

solving the secular equation. However, if ||pσ|| − δ = 0 fails to have a solution on (−λn,∞),

this leads to certain numerical difficulties, which is called the hard case. In the hard case,

Moré and Sorensen propose to first obtain a direction p within ||p|| < δ by solving

(B − λnI)p = −g,

and then determine an eigenvector z ∈ Sλn satisfying

(B − λnI)(p+ τz) = −g, ||p+ τz|| = δ.

62

Then, according to Lemma 4.1.3, p + τz will be a solution to (4.1). In practice, for com-

putational efficiency, the eigenvector z may not necessarily be computed according to the

following lemma.

Lemma 4.4.1. Assume η ∈ (0, 1) is a given constant and further assume that

B + σI = RTR, (B + σI)p = −g, σ ≥ 0.

If the vector z satisfies

||p+ z|| = δ, ||Rz||2 ≤ η(||Rp||2 + σδ2), (4.12)

then it holds that

Q(p+ z) ≤ −1
2
(1− η)(||Rp||2 + σδ2) ≤ −(1− η)|Q∗|,

where |Q∗| is the optimal value of the trust-region subproblem (4.1)

Proof. See Moré and Sorensen [32].

Lemma 4.4.1 is important in dealing with the hard case, i.e., when σ ≥ 0 with B+σI

positive definite and the solution p of (B + σI)p = −g satisfies ||p|| < δ. It states that as

long as z satisfies ||Rz||2 ≤ η(||Rp||2 + σδ2), then |Q(p + z) − Q∗| ≤ η|Q∗| and p + z is a

nearly optimal solution to the trust-region subproblem (4.1). More precisely, we attempt to

find a vector z = τ ẑ that satisfies condition (4.12) and ||ẑ|| = 1. There are two choices of τ ,

and once ẑ is found, the one with smaller magnitude is chosen because we aim to minimize

||Rz|| according to (4.12). Details of how to find such ẑ could be referred to Sorensen [32],

which uses the LINPACK technique for estimating the smallest singular value of a triangular

matrix R (see [6]). Lemma 4.4.1 is thus important in setting one of the terminating criteria

for trust-region subproblem, i.e., for some constant γ1, whenever ||p|| < δ and

||Rz|| ≤ γ1(1− γ1) max
{
γ2, ||Rp||2 + σδ2

}
,

then the algorithm terminates with p+ z as the approximate solution.

63

In the non-hard case, the so-called secular equation was initially introduced to find σ

in (4.1), which is defined by

ψ(σ) = ||pσ|| − δ. (4.13)

The zero σ̂ of ψ(σ) on the interval (−λn,∞) needs to be found and σ = max {0, σ̂} is

the unique value of σ. the properties of secular equation are summarized in the following

Lemma 4.4.2.

Lemma 4.4.2. Define ψ(σ) = ||pσ|| − δ, where pσ is the solution of (B + σI)pσ = −g. Let

λn be the smallest eigenvalue of B, then ψ(σ) is nonincreasing and convex on (−λn,∞).

Furthermore, if g 6= 0, then ψ(σ) is strictly decreasing and strictly convex on (−λn,∞).

However ψ(σ) has singularities at the subset of eigenvalues of −B which makes ψ(σ)

highly nonlinear at points close to σ̂ which prevents Newton’s method from finding the zeros

of ψ(σ) = 0 efficiently. To avoid these numerical difficulties, a more adequate strategy is to

define ϕ(σ) as follows, which has no singularities near σ̂.

ϕ(σ) =
1

δ
− 1

||pσ||
, where (B + σI)pσ = −g. (4.14)

One benefit of using ϕ(σ) over ψ(σ) is that ϕ(σ) is usually approximately linear in

a large neighborhood of σ̂, thus Newton’s method could be applied quite efficiently. The

properties of ϕ(σ) are summarized in the following lemma, whose proof will be given since

it defines the Newton iterate for finding zeros of ϕ(σ).

Lemma 4.4.3. Assume ϕ(σ) is defined in (4.14) with g 6= 0 and g /∈ Sλn, which is the

eigenspace of λn, then the following conclusions hold.

• ϕ(σ) is twice continuously differentiable on (−λn,∞),

• ϕ(σ) is strictly decreasing and strictly convex on (−λn,∞),

• If limσ→(−λn)+ϕ(σ) > 0, then ϕ(σ) has a unique zero on (−λn,∞).

64

Proof. Part 1 is trivial, now suppose the eigenvalues of B are given by λ1 ≥ λ2 ≥ · · · ≥ λn,

then the second equation in (4.14) gives

||pσ|| = ||(B + σI)−1g||2 =
n∑
i=1

(
vTi g

σ + λi

)2

.

If vTn g 6= 0, then

lim
σ→−λn

ϕ(σ) =
1

δ
> 0, lim

σ→∞
ϕ(σ) = −∞. (4.15)

By the intermediate value theorem, there must exist at least one zero of ϕ(σ) on (−λn,∞).

For all σ ∈ (−λn,∞), the derivative and the second-order derivative of ϕ(σ) are given by

ϕ′(σ) =
wTd

||d||3
= −d

T (B + σI)−1d

||d||3

ϕ′′(σ) =
3

||d||5
(
||w||2||d||2 − (wTd)2

)
,

(4.16)

where w = −(B+ σI)−1d. Cauchy-Schwartz immediate implies that ϕ′′(σ) ≥ 0 and equality

holds if and only if w is a multiple of d. If so, w is also a multiple of g according to the

second equation in (4.14). So ϕ′(σ) < 0 and ϕ′′(σ) > 0 on (−λn,∞), which implies ϕ(σ) is

strictly decreasing and strictly convex on (−λn,∞). Then according to (4.15), ϕ(σ) has a

unique zero on (−λn,∞).

Lemma 4.4.4. Assume that ϕ(σ) has a zero σ̂ on (−λn,∞), i.e., the non-hard case, then

starting from σ0 ∈ (−λn, σ̂), the Newton’s iterate for calculating σ̂ can be written as

σk+1 = σk +
||dk||2

||uk||2

(
||dk|| − δ

δ

)
,

where RT
kRkdk = −g, RT

k uk = dk and Bk + σkI = RT
kRk.

65

Proof. In the proof of Lemma 4.4.3, equation (4.16) gives that

σk+1 = σk −
ϕ(σk)

ϕ′(σk)

= σk +
||dk||2

dTk (B + σkI)−1dk

(
||dk|| − δ

δ

)

= σk +
||dk||2

||R−Tk dk||2

(
||dk|| − δ

δ

)

= σk +
||dk||2

||uk||2

(
||dk|| − δ

δ

)
.

Then the conclusion immediately follows.

In practice, the choice of the starting point σ0 ∈ (−λn, σ̂) has to be taken care if

nothing is known about λn and σ̂. A safeguarding scheme is needed where the parameters

λL, λU , λS are defined such that λS is a lower bound on −λn, [λL, λU] in an interval of

uncertainty which contains the desired λ, and is expected to converge to (−λn, σ̂) with a

steadily decreasing length of the interval.

66

Chapter 5

A Primal-Dual Path-Following Shifted

Penalty-Barrier Method

5.1 Introduction

In this section, a proposed primal-dual path-following shifted penalty-barrier method

(PDPB) is described for solving the nonlinear inequality constrained optimization problem

(NIP). The method has a similar structure of the primal-dual path-following augmented

Lagrangian method described in Chapter 3 but has been extended to handle the nonlinear

inequality constraints.

In this proposed method, the optimality conditions of (NIP) have been perturbed

by the penalty and barrier parameters and Lagrange multipliers estimate, which can be

seen as implicitly defining a smooth path-following trajectory towards a local minimizer of

(NIP). This method has a similar“two-level” structure where in outer iteration, the Lagrange

multipliers estimate are updated by the current dual variables and the penalty and barrier

parameters might also be decreased to enforce the feasibility and complementarity require-

ments. To guarantee global convergence, a primal-dual shifted penalty-barrier function that

gauges distance of current iterate to the trajectory is defined as merit function. This merit

67

function has the property that its local minimizers lie on the path-following trajectory. Once

the iterate in an outer iteration departs from this trajectory, then inner iterations are called

and the merit function is minimized to force the next iterate back into the neighborhood of

the trajectory.

Section 5.2 provides a general background of the shifted barrier methods and path-

following methods for (NIP). The proposed algorithm PDPB is described in Section 5.3. The

convergence analysis of PDPB are provided in Section 5.4. Numerical results are given in

Chapter 6.

5.2 Background

5.2.1 Conventional Barrier Method

This chapter focuses on solving problem (NIP), where both f(x) and c(x) are assumed

to be twice continuously differentiable.

minimize
x∈Rn

f(x) subject to c(x) ≥ 0, (NIP)

One class of methods for solving (NIP) are barrier methods. For inequality constrained prob-

lems, barrier methods are motivated by minimizing a sequence of unconstrained functions

that combine the objective function and a positively weighted “barrier” term that prevents

iterates from leaving the interior of the feasible region. In these methods, given an initial

iterate x0 in the set F = {x : c(x) > 0}, all subsequent iterates will also lie in F . For this

reason, these methods are also known as interior methods. In the 1960s, interior methods

were popular for solving nonlinearly constrained problems, and the main rigorous mathe-

matical theory associated with barrier function was established by Fiacco and McCormick,

who described the relationship between the minimizers of penalty and barrier function and

solutions of the original constrained problem (see Fiacco and McCormick [8]).

68

The simplest logarithmic barrier function associated with (NIP) can be written as

B(x;µ) = f(x)− µ
m∑
i=1

ln ci(x), (5.1)

where µ > 0 is called barrier parameter.

The logarithmic terms are well defined only at points x for which c(x) > 0 but

becomes unbounded as x approaches points where the constraint is 0, and undefined for

which c(x) < 0, which creates a “barrier” near boundary. The idea of conventional barrier

method is to define a sequence of decreasing {µk}k≥0 with µk → 0+ and for a given µk,

B(x;µk) is minimized while maintaining c(x) > 0. The unconstrained local minimizer x(µk)

of B(x;µk) defines a continuously differentiable path called the barrier trajectory or central

path. The logarithmic barrier method can be seen as a path-following method that attempts

to follow this trajectory towards the local solution of (NIP).

The properties of logarithm barrier function may be intuitively illustrated by the

following example HS22 from Hock-Schittkowski test collection, which is one subclass of

Constrained and Unconstrained Testing Environment (CUTEst). This example will be used

repeatedly throughout the whole chapter.

Example 5.2.1. Consider the following nonlinear inequality constrained problem HS22 in

two variables, where the interior of feasible region is nonempty.

minimize
x∈R2

(x1 − 2)2 + (x2 − 1)2

subject to − x1 − x2 + 2 ≥ 0

− x21 + x2 ≥ 0.

(HS22)

In this problem, the unique local (and also global) minimizer is x∗ = (1, 1). Both constraints

are active at x∗, linear independent constraint qualification (LICQ) holds, and the unique

optimal Lagrange multipliers is given by y∗ = (2
3
, 2
3
), computed from ∇f(x∗) = J(x∗)Ty∗.

The level curves of objective function and feasible region of HS22 are shown in Fig-

ure 5.1. The level curves of objective function have been shown in colors with smaller value

69

towards its infeasible local minimizer x̂ = (2, 1). The shadow gray area denotes the feasible

region, and the red dot is the local (and global) constrained minimizer.

Figure 5.1: Feasible Region and Level Curves of Objective Function in HS22

The conventional logarithmic barrier function B(x;µ) in this example is given by

B(x;µ) = (x1 − 2)2 + (x2 − 1)2 − µ ln(−x1 − x2 + 2)− µ ln(−x21 + x2).

The function B(x;µ) is well defined everywhere in the interior of the feasible region with

the logarithmic term creates a “barrier” towards the boundary. Figures 5.2 shows the level

curves of B(x;µ) for a decreasing sequence of µ.

It can be observed that as µ→ 0+, the level curves of B(x;µ) will gradually resemble

the level curves of the objective function and the barrier term becomes less “weighted”. The

unconstrained local minimizer x(µ) of B(x;µ) will gradually approach x∗ = (1, 1) in the

interior of the feasible region. However, on the boundary, where the barrier term tends to

infinity, the level curves of B(x;µ) “jam” at x∗ and µ must be reduced to zero in order for

x(µ) to converge to x∗.

70

(a) µ = 10 (b) µ = 1

(c) µ = 0.1 (d) µ = 0.01

Figure 5.2: Level Curves of B(x;µ) in the Feasible Region for Different Values of µ.

To avoid this kind of “jam”, a modified barrier method is discussed in which the

barrier parameter µ is bounded away from zero. In this case, the constraints are shifted

so the feasible region is enlarged to include the boundary and x∗ lies in the interior of the

“expanded” feasible region, see Example 5.2.2.

If the second order sufficient conditions hold for an isolated minimizer of (NIP) (see

Theorem 2.1.8), then convergence results of the barrier methods can be summarized in the

following Theorem 5.2.1. To simplify the notation, the symbol C(x) is used to denote the

71

diagonalized vector c(x), i.e.,

C(x) =



c1(x) 0 · · · 0

0 c2(x) · · · 0

...
...

. . .
...

0 0 · · · cm(x)


(5.2)

Theorem 5.2.1 (Properties of the barrier trajectory). Let {µk} be a strictly decreasing

sequence of positive barrier parameters such that limk→∞ µk = 0. Moreover, if the second

order sufficient conditions (see Theorem 2.1.8) for an isolated minimizer hold at x∗, then

the following conclusions hold:

• there is at least one subsequence of unconstrained minimizers of the barrier function

B(x;µk) that converges to x∗;

• possibly passing to the sub-index, suppose {xk}k≥0 denote such a convergent subse-

quence. Then the sequence of barrier multipliers {yk}k≥0, defined by yk = µkC(x(µk))
−1e

has the property that every of its component is bounded; and,

• limk→∞ yk = ȳ ∈ Y(x∗).

If in addition, strict complementarity holds at x∗, i.e., there is a vector ȳ ∈ Y(x∗) such that

yi > 0 for all i ∈ A(x∗), then the following holds:

• ȳa > 0;

• for sufficiently large k, the Hessian matrix ∇2B(xk, µk) is positive definite;

• there exists a unique, continuously differentiable vector function x(µ) of unconstrained

minimizers of B(x, µ) for positive µ in a neighborhood of µ = 0; and,

• limµ→0+ x(µ) = x∗.

Proof. See Theorem 3.12 of Forsgren, Gill and Wright [13].

72

As B(x;µ) is continuously differentiable, its unconstrained local minimizer x(µ) sat-

isfies ∇B(x(µ);µ) = 0. The gradient and Hessian of B(x;µ) are given by

∇B(x;µ) = g(x)− µJ(x)TC(x)−1e

∇2B(x;µ) = ∇2f(x)−
m∑
i=1

µ

ci(x)
∇2ci(x) + µJ(x)TC(x)−2J(x)

= H(x, π) + J(x)TΠ(x)C(x)−1J(x),

where Π(x) is the diagonalized vector π(x), π(x) = µC(x)−1e , which is generally called

the barrier multipliers (by analogy with Lagrange multipliers). Then Newton’s method for

finding the stationary point of B(x;µ) can be written as

(
H(x, π) + J(x)TΠ(x)C(x)−1J(x)

)
p = −

(
g(x)− J(x)Tπ

)
. (5.3)

However, the direct unconstrained minimization of B(x;µ) is not recommended be-

cause of poor convergence as µ → 0+. For many years the ill-conditioning of H(x, π) +

J(x)TΠ(x)C(x)−1J(x) as µ → 0+ was blamed for this poor performance. However, it now

known that the real reason is that x(µ) is a poor estimate of x(µ̄) when µ is decreased to µ̄,

which implies that a full Newton step cannot be taken immediately after the barrier parame-

ter is reduced. This property implies that the classical primal barrier method is unavoidably

inefficient. A more detailed analysis can be referred to Wright [45].

5.2.2 Modified Primal-Dual Interior Methods

To avoid the difficulty of minimizing B(x;µ) as µ → 0+ in the conventional barrier

method, modified barrier method have been introduced that defines a sequence of uncon-

strained problems in which the barrier parameter µ remains bounded away from zero (see

Polyak [33, 35]). These methods are based on the observation that c(x) ≥ 0 is equivalent to

µ ln(1 + ci(x)/µ) ≥ 0 for any fixed µ > 0, i.e., their associated feasible sets are identical. So

73

problem (NIP) is equivalent to the following modified problem

minimize
x∈Rn

f(x)

subject to µ ln(1 + ci(x)/µ) ≥ 0.
(5.4)

The modified problem (5.4) serves as the main motivation for the modified barrier function

M(x;λ) defined in the following form

M(x;λ) = f(x)− µ
m∑
i=1

λi ln(1 + ci(x)/µ),

which is the conventional Lagrangian function for problem (5.4) with λ the vector of Lagrange

multipliers. An important property of M(x;λ) is that if (x∗, λ∗) is the optimal primal-dual

pair of problem (NIP), then there exists a constant µ∗ > 0 such that for all 0 < µ < µ∗, x∗ is

a local minimizer of M(x;λ∗), i.e., ∇M(x∗;λ∗) = 0 and ∇2M(x∗;λ∗) positive semidefinite

(see Polyak [33]). So x∗ can be obtained in just one unconstrained minimization if λ∗ is

known in advance.

In practice, however, both u∗ and λ∗ are generally unknown, so a sequence ofM(x;λ)

defined with the estimates of u∗ and λ∗ needs to be minimized. The multipliers estimate

is updated at each iteration and the barrier parameter is reduced once ∇2M(x;λ) is not

sufficient positive definite, just like the updating rule for penalty parameter in Algorithm 3.3

(see also, e.g., Polyak [35]).

In defining M(x;λ), it is required that 1 + ci(x)/µ > 0 for all 1 ≤ i ≤ m, i.e.,

c(x) + µe > 0, so the feasible region has been enlarged in the sense that c(x) = 0 is allowed,

where c(x) has to be strictly positive in defining B(x;µ). To explain this intuitively, consider

again the following example HS22, which has been discussed in Example 5.2.1.

Example 5.2.2. To illustrate how the feasible region is enlarged in the modified barrier

method and its benefits of keeping µ bounded away from 0, the example HS22 is reused as

74

before. In this case, the modified barrier function M(x;λ) is defined by

M(x;λ) = (x1 − 2)2 + (x2 − 1)2

− µλ1 ln(1 + (−x1 − x2 + 2)/µ)− µλ2 ln(1 + (−x21 + x2)/µ).

The feasible region and the level curves of M(x;λ) are shown below where λ is set to λ̄ =

(0.66, 0.66), which is the approximation of the optimal multipliers λ∗ = (2
3
, 2
3
) and the barrier

parameter µ is set to 10−1. The graph on the left shows the feasible region and the level

curves of the modified barrier function M(x;λ) for µ = 10−1 and λ̄ = (0.66, 0.66). The

graph on the right is the “microscope” of M(x; λ̄) around the constrained local minimizer

x∗ = (1, 1).

(a) µ = 0.1, λ̄ = (0.66, 0.66) (b) µ = 0.1, λ̄ = (0.66, 0.66)

Figure 5.3: Feasible Region and Level Curves of M(x;λ) with µ = 10−1

It can be shown that the feasible region has been expanded in the larger gray region

and the level curves of M(x; λ̄) no longer “jam” near the boundary. In fact, the constrained

local minimizer x∗ = (1, 1) (the red point) now has been contained in the “interior” of the

level curves and the barrier parameter µ need not converge to zero.

However, equation (5.3) explicitly involves only x, the so-called primal variables. By

far the most popular interior-point methods today are primal-dual methods, which are the

next main topic.

75

Consider solving ∇B(x(µ);µ) = 0 with the dual variables introduced. Denote y(µ) =

µC(x(µ))−1e, then ∇B(x(µ);µ) = 0 can be rewritten in the following formg(x(µ))− J(x(µ))Ty(µ)

c(x(µ)) · y(µ)

 =

 0

µe

 . (5.5)

In this form, (x(µ), y(µ)) can be regarded as tracing out the primal-dual trajectory

as µ→ 0+, where c(x(µ)) > 0 and y(µ) > 0 are enforced implicitly. If we define

Fµ(x, y) =

g(x)− J(x)Ty

c(x) · y − µe

 , (5.6)

then (5.5) can be regarded as a primal-dual path-following formula defined by Fµ(x, y) = 0.

The corresponding Newton equation for finding the zeros of Fµ(x, y) is expressed asH(x, y) −J(x)T

Y J(x) C(x)


∆x
∆y

 = −

g(x)− J(x)Ty

c(x) · y − µe

 , (5.7)

where C(x) is the diagonalized c(x) and H(x, y) is the Hessian of Lagrangian.

Naturally, the primal-dual equation (5.7) does not solely constitute a complete algo-

rithm for nonlinear programming. The nonsingularity of the primal-dual system (5.7) can

only be expected in the neighborhood of a trajectory of barrier minimizers. When the prob-

lem is nonconvex and the current primal-dual iterate is far from the trajectory, there is no

guarantee that a solution of system (5.7) exists. Moreover, finding zeros of Fµ(x, y) is not

enough as the second-order conditions associated with minimizing the barrier method have

not been exploited.

For this reason and also to obtain the global convergence from any arbitrary feasible

starting point, a merit function that measures and ensures the progress towards the solution

(x∗, y∗) is needed. Consider the following primal-dual barrier function,

Mµ(x, y) = f(x)− µ
m∑
i=1

ln ci(x)−
m∑
i=1

{
ln

(
yici(x)

µ

)
+

(
1− yici(x)

µ

)}
, (5.8)

76

where yi > 0 and ci(x) > 0 are imposed implicitly.

The function Mµ(x, y) can be seen as the classical logarithm barrier function plus a

term that measures the distance of (x, y) to the trajectory Fµ(x, y) = 0. If problem (NIP) is

nonconvex, the advantage of usingMµ(x, y) as the merit function over other functions, say,

M̂µ(x, y) = ||Fµ(x, y)|| is that it can distinguish between local minimizers and maximizers

by enforcing second-order conditions. Lemma 5.2.2 shows that the isolated local minimizer

of the barrier function is also a local minimizer of Mµ(x, y).

Lemma 5.2.2. Assume that (x(µ), y(µ)) is an isolated local minimizer of the barrier function

defined in (5.1), then for any µ > 0 sufficiently small, (x(µ), y(µ)) is also an unconstrained

local minimizer of Mµ(x, y).

Proof. To simplify the notation, denote π(x) = µC(x)−1e, and D(x, y) = Y −1C(x), where

Y is the diagonalized y. The gradient of Mµ(x, y) can be written as

∇Mµ(x, y) =

g(x)− J(x)T (2π(x)− y)

D(y − π(x))

 .

If it holds that (x, y) = (x(µ), y(µ)), then π(x) = µC(x(µ))−1e = y(µ) and g(x(µ))−

J(x(µ))Ty(µ) = 0. Since (x(µ), y(µ)) is an isolated minimizer of the barrier function B(x;µ),

this implies

∇Mµ(x(µ), y(µ)) =

g(x(µ))− J(x(µ))Ty(µ)

0

 = 0,

so (x(µ), y(µ)) is a stationary point ofMµ(x, y). The remainder of the proof establishes that

∇2Mµ(x(µ), y(µ)) is positive definite. The Hessian of Mµ(x, y) is given by

∇2Mµ(x, y) =

H(x, 2π(x)− y) J(x)T

J(x) DΠ(x)Y −1

 ,

77

where Π(x) is the diagonalized π(x). If (x, y) = (x(µ), y(µ)), then

∇2Mµ(x(µ), y(µ)) =

H(x(µ), y(µ)) J(x(µ))T

J(x(µ)) D

 .

As ∇2Mµ(x(µ), y(µ)) is symmetric, its inertia can be obtained by considering the Schur

complement of D, and denote Ĥ(µ) = H(x(µ), y(µ)) + J(x(µ))TD−1J(x(µ)), then

In
(
∇2Mµ(x(µ), y(µ))

)
= In

(
Ĥ(µ)

)
+ (m, 0, 0).

Since Ĥ(µ) is the Hessian of B(x;µ), which is positive definite on the trajectory defined by

(5.5). Thus it must hold that

In
(
∇2Mµ(x(µ), y(µ))

)
= (n, 0, 0) + (m, 0, 0) = (n+m, 0, 0).

So ∇2Mµ(x(µ), y(µ)) is positive definite, which completes the proof.

The scheme of following the trajectory defined by equation (5.6) together with using

merit functionMµ(x, y) in (5.8) to restrict all the iterates in the neighborhood of the trajec-

tory has the same “two-level” structure of inner and outer iterations. The barrier parameter

µ is steadily reduced in the outer iterations andMµ(x, y) is minimized for the fixed µ in the

inner iterations.

However, there are still some drawbacks of this scheme, e.g., the treatment for equal-

ity constraints and the difficulty for finding a strictly feasible point, which is nontrivial.

Moreover, the barrier parameter µ still needs to converge to zero thus certain numerical

benefits are lost.

In the algorithm proposed in the next section, we aim at path-following a perturbed

first-order optimality condition which allows both the penalty parameter µP and the barrier

parameter µB to be bounded away from 0. A primal-dual shifted penalty-barrier merit func-

tion is used to obtain global convergence that is able to handle both equality and inequality

constraints.

78

5.3 Description of the Proposed Algorithm

5.3.1 Algorithm Overview

The form of constraints in (NIP) can be treated either directly as c(x) ≥ 0 or indirectly

as equality and nonnegative slack variable c(x) − s = 0, s ≥ 0. The use of slack variables

avoids the need to find a strictly feasible initial point. The introduction of slack variables

gives the equivalent problem (NIPs), which is repeated here for convenience:

minimize
x∈Rn, s∈Rm

f(x) subject to c(x)− s = 0, s ≥ 0. (NIPs)

Another benefit of using slack variables s is that strict feasibility with respect to

simple bounds s ≥ 0 is easily maintained, since a step to the boundary of a general nonlinear

constraint must be calculated by iteration, leading to less efficient evaluations of constraints

at infeasible points.

Under certain optimality conditions, the vector (x∗, s∗, y∗, w∗) is said to be a first-

order KKT point for problem (NIPs) if the following optimality condition holds

c(x∗)− s∗ = 0, s∗ ≥ 0, (5.9)

g(x∗)− J(x∗)Ty∗ = 0, y∗ − w∗ = 0, (5.10)

s∗ · w∗ = 0, w∗ ≥ 0, (5.11)

where y∗ and w∗ are the optimal Lagrange multipliers for c(x)−s = 0 and s ≥ 0 respectively,

and (x, s, y, w) are called the primal-dual pairs.

Similar to the idea in primal-dual path-following augmented Lagrangian method for

problem (NEP) in Algorithm 3.3 described in Chapter 3, consider the path-following equation

(5.12). F (x, s, y, w; yE , wE , µP , µB) = 0 can be seen as a perturbation on the optimality

79

conditions of (5.3.2) - (5.3.4).

F (x, s, y, w; yE , wE , µP , µB) =



g(x)− J(x)Ty

y − w

c(x)− s+ µP(y − yE)

s · w + µB(w − wE)


= 0, (5.12)

where yE and wE are estimated Lagrange multipliers for c(x)− s = 0 and s ≥ 0 respectively,

µP > 0 and µB > 0 are the penalty and barrier parameters.

If y − yE = 0 and w − wE = 0, then (5.12) is exactly the same as the first order

optimality condition of (NIPs). As µP(y−yE)→ 0 and µB(w−wE)→ 0, a zero (x, s, y, w) of

F (x, s, y, w; yE , wE , µP , µB) with s > 0 and w > 0 will gradually approximate the solution of

equation (5.9) – (5.12). So the penalty parameter µP and the barrier parameter µB , together

with the Lagrange multipliers estimates yE and wE , can be thought as implicitly defining a

path-following trajectory, and the primal-dual pairs (x, s, y, w) tends to follow this trajectory

towards a local constrained minimizer of (NIPs).

Unlike the conventional quadratic penalty function methods, which require µP → 0

(see Bertsekas [4]), the penalty parameter µP no longer needs to be reduced to zero as yE is

an increasingly accurate multipliers estimate. Similarly, the barrier parameter µB no longer

needs to be reduced to zero as the conventional barrier methods do. This can lead to certain

numeric benefits since in the conventional barrier methods, the barrier term will create a

singularity near the boundary of the feasible region if µB → 0 (see Gill [13, 22, 23]).

In the outer iteration of PDPB, if the primal-dual pairs vk = (xk, sk, yk, wk) fall within

current neighborhood of the trajectory defined by (5.12), then yE and wE are updated by

the current dual variables yk and wk. µP and µB might also be adjusted according to the

feasibility and complementarity violations. If, however, the current iterates departs from the

path-following trajectory, then inner iteration is called where a shifted penalty-barrier merit

function is minimized to restrict the iterates within current neighborhood of the trajectory.

The combined trust-region line-search method introduced in Chapter 4 is used to minimize

80

the merit function. For further details see Section 5.3.4.

5.3.2 Description of the Outer Iteration

In the outer iteration of PDPB, it stops once the residue of ||F (vk; y
E
k , w

E
k , µ

P
k , µ

B
k)|| is

sufficiently close to 0. At the current iterate (xk, sk, yk, wk), if

||F (vk; y
E

k−1, w
E

k−1, µ
P

k−1, µ
B

k−1)|| < η1||F (vk−1; y
E

k−1, w
E

k−1, µ
P

k−1, µ
B

k−1)||, (5.13)

where η1 ∈ (0, 1) is a constant that controls the speed of ||F || converging to zero. If condition

(5.13) is satisfied, then the current iterate vk is thought to be sufficiently close to the path-

following trajectory, and this iteration is designated as an O-iteration. In this case, vk is

accepted and the multiplier estimates are updated by yE
k = yk, w

E
k = wk.

The necessity for updating the penalty and barrier parameter depends on the fea-

sibility and complementarity violation. Define the first order stationary, feasibility and

complementarity measure to be κstny(vk), κfeas(vk), κcomp(vk) respectively, i.e.,

κstny(vk) = max
(
||gk − JTk yk||, ||yk − wk||

)
κfeas(vk) = ||ck − sk||

κcomp(vk) = ||min (q1(vk), q2(vk, µ
B

k)) ||,

where q1(vk) and q2(vk, µ
B
k) in κcomp(vk) are defined by

q1(vk) = max (|min (sk, wk, 0)|, |sk · wk|)

q2(vk, µ
B

k) = max (|min (sk + µB

ke, wk, 0)|, |(sk + µB

ke) · wk|, µB

ke) .
(5.14)

Given these definitions, a detailed description of the outer iteration of PDPB is given in

Algorithm 5.1.

81

Algorithm 5.1 Primal-Dual Path-Following Shifted Penalty-Barrier Method (Outer)

1: Input: (prob); . Input in the CUTEst format

2: Output: (x∗, y∗, converged);

3: Specify constants 0 < aP , aB, η1, ρ1, ρ2, θµ, γc, γs < 1 ≤ ν;

4: Specify constants 0 < ηs < ηe <
1
2
, 1 < γe, Tol, MaxItn;

5: Initialize x0, s0, y0, w0, y
E , wE , µP , µB , δ0;

6: Define κstny(vk) = max
(
||gk − JTk yk||, ||yk − wk||

)
.

7: Define κfeas(vk) = ||ck − sk||, and κcomp(vk) = max (||min (sk, wk)||, ||sk · wk||)

8: while ||Fk|| > Tol and k ≤ MaxItn do

9: if ||Fk|| ≤ η1||Fk−1|| then . Outer Iteration, adjust parameters

10: if κfeas(vk) ≥ ρ1κfeas(vk−1) then

11: µP
k ← min ((µP

k)(1+θµ), aPµ
P
k);

12: end if

13: if κcomp(vk) ≥ ρ2κcomp(vk−1) then

14: µB
k ← min ((µB

k)(1+θµ), aBµ
B
k);

15: end if

16: yE
k ← yk;

17: wE
k ← wk;

18: else . Inner Iteration, minimize merit function

19: Update primal-dual pairs vk = (xk, sk, yk, wk) by using either trust-region method

20: or a combined trust-region line-search method to minimize the merit function.

21: end if

22: Update Fk, κstny(vk), κfeas(vk), κcomp(vk);

23: k ← k + 1;

24: end while

82

During the outer iterations, in Step 8 and Step 11 of Algorithm 5.1, the residues

of κfeas and κcomp are observed as they are used to determine if the penalty or barrier

parameter needs to be reduced. Define ρ1, ρ2 ∈ (0, 1) to be the constants that control the

rate of convergence of κfeas, κcomp to zero. If κfeas(vk) ≥ ρ1κfeas(vk−1), then µP
k is reduced

to force feasibility. Meanwhile, if κcomp(vk) ≥ ρ2κcomp(vk−1), then µB
k needs to be reduced to

enforce on the complementarity.

In Step 9 and Step 12 of Algorithm 5.1, the strategy for decreasing µP either super-

linearly in the form of µP
k = (µP

k)(1+θµ) or linearly in the form of µP
k = aPµ

P
k , whichever is

smaller, is the same as the one that was used in Algorithm 3.3 in Chapter 3.

If condition (5.13) fails to hold, then the current iterate vk is thought to be not

sufficiently close to the trajectory. In this case, inner iteration is called and a primal-dual

shifted penalty-barrier merit function is minimized. Properties of this merit function are

discussed further in the next section 5.3.3.

5.3.3 A Shifted Penalty-Barrier Merit Function

Following the trajectory defined in equation (5.12), a merit function is needed to

measure the distance between the current iterate and this trajectory. This merit function

can be formally defined by

M(x, s, y, w; yE , wE , µP , µB) =f(x)− (c− s)TyE

+
1

2µP
‖c− s‖2 +

1

2µP
‖c− s+ µP(y − yE)‖2

−
m∑
i=1

µBwE

i ln(wi(si + µB)2) +
m∑
i=1

wi(si + µB),

(5.15)

which was proposed by Gill, Kungurtsev, and Robinson (see Gill [19]), which can be seen

as more generalized form of the Forsgren-Gill penalty-barrier function (see Forsgren and

83

Gill [11]) used for solving (NIP) defined by

Mµ(x, y) =f(x)− µ
∑
i∈I

ln ci(x) +
1

2µ

∑
i∈E

ci(x)2

− µ
∑
i∈I

(
ln

(
ci(x)yi
µ

)
+
µ− ci(x)yi

µ

)
+

1

2µ

∑
i∈E

(ci(x) + µyi)
2 ,

where the slack variables s are not used, and the penalty and barrier parameters are chosen

to be the same value.

When definingM(x, s, y, w; yE , wE , µP , µB) in equation (5.15), it is required that wi >

0 and si+µB > 0, for all 1 ≤ i ≤ m. The requirement s > 0 in (NIPs) has been relaxed to be

S + µBI > 0, which can be seen as an enlarge of the feasible region like the modified barrier

methods do. Lemma 5.3.1 shows that under certain second-order conditions, point (x, s, y, w)

on the trajectory defined by (5.12) is a local minimizer ofM(x, s, y, w; yE , wE , µP , µB). Thus,

this path-following trajectory can be regarded as “trajectory of minimizers” of the merit

function.

Lemma 5.3.1. Assume that both f(x) and c(x) are twice continuously differentiable, and

all the iterates satisfy wi > 0 and si + µB > 0 for all 1 ≤ i ≤ m. Assume further that

(x, s, y, w) is on the trajectory defined by (5.12) and denote DP = µPIm and DB = (S +

µBIm)W−1, where S and W denote the diagonalized s and w respectively. If H(x, y) +

J(x)T (DP + DB)−1J(x) is positive definite, then (x, s, y, w) is an unconstrained minimizer

of M(x, s, y, w; yE , wE , µP , µB) for any fixed pair (yE , wE , µP , µB).

Proof. For simplicity, omit the notation (yE , wE , µP , µB) below since they are all fixed. Denote

the merit functionM(x, s, y, w; yE , wE , µP , µB) simply byM. The proof, as before, is to show

that ∇M = 0 and ∇2M positive definite on the trajectory. First, the auxiliary vectors πP

and πB needs to be defined as follows,

πP = yE − 1

µP
(c(x)− s)

πB = µB(S + µBIm)−1wE .

(5.16)

84

On the trajectory defined by (5.12), since S + µBIm is positive diagonal matrix, then

the following two relations hold,

πP − y = − 1

µP
(c(x)− s+ µP(y − yE)) = 0

πB − w = −(S + µBIm)−1(s · w + µB(w − wE)) = 0.

On the other hand, the gradient of M is given by

∇M(x, s, y, w) =



g(x)− J(x)T (πP + (πP − y))

−(y − w) + 2(πP − πB)

−µP(πP − y)

−(S + µBIm)W−1(πB − w)


.

If (x, s, y, w) is on the trajectory, then πP − y = 0 and πB − w = 0. Combined with the

path-following equation (5.12), it holds that ∇M(x, s, y, w) = 0, thus (x, s, y, w) must be a

stationary point for M.

It remains to show that ∇2M is positive definite on the trajectory. The Hessian of

M on the trajectory is given by

∇2MT =



H(x, y) + 2J(x)TD−1P J(x) −2J(x)TD−1P J(x)T 0

−2D−1P J(x) 2(D−1P +D−1B) −Im Im

J(x) −Im DP 0

0 Im 0 DB


. (5.17)

As ∇2MT is symmetric, using the Schur complement of (DP , DB) gives that

In
(
∇2MT

)
= (2m, 0, 0) + In

H(x, y) + J(x)TD−1P J(x) −J(x)TD−1P

−D−1P J(x) D−1P +D−1B


= (3m, 0, 0) + In

(
H(x, y) + J(x)T (DP +DB)−1J(x)

)
= (3m+ n, 0, 0).

85

The last equality holds if H(x, y) + J(x)T (DP +DB)−1J(x) is positive definite. Thus

∇2MT must be positive definite on the path-following trajectory, and (x, s, y, w) must be

an isolated local minimizer of M(x, s, y, w).

Lemma 5.3.1 establishes the theoretical basis of the inner iteration of PDPB in the

sense thatM(x, s, y, w; yE , wE , µP , µB) gauges the distance between the current iterate to the

path-following trajectory defined by (5.12). It follows that by minimizing M, it is possible

to restrict all iterates within current neighborhood of the trajectory.

The following Theorem 5.3.2 shows that H(x, y) + J(x)T (DP + DB)−1J(x) is indeed

positive definite in a sufficiently small neighborhood of a solution of (NIPs) that satisfies

second order sufficient optimality conditions (see Theorem 2.1.11), and the strict comple-

mentarity condition holds.

Theorem 5.3.2. The Hessian ∇2MT defined in (5.17) is positive definite for all u =

(x, s, y, w; yE , wE , µP , µB) that are sufficiently close to u∗ = (x∗, s∗, y∗, w∗; y∗, w∗, 0, 0), where

(x∗, s∗, y∗, w∗) is a solution of (NIPs) that satisfies the second order sufficient conditions and

strict complementarity.

Proof. As in the proof of Lemma 5.3.1, it is necessary to show that H(x, y) + J(x)T (DP +

DB)−1J(x) is positive definite for all u sufficiently close to u∗. Let H = H(x, y) and J = J(x).

As (x∗, s∗, y∗, w∗) is a solution of (NIP) for which strict complementarity and the second-

order optimality conditions hold, it is immediate that

max {s∗, w∗} > 0,

pTH(x∗, y∗)p > 0 for all p 6= 0 satisfying JA(x∗)p = 0,

(5.18)

where A denotes the active set at x∗ defined by A = {i : [c(x∗)]i = 0} = {i : [s∗]i = 0}. Then

it holds that

H + JT (DP +DB)−1J = H + JTA
(
µPIm + (SA + µBIm)W−1

A
)−1

JA

+ JTI
(
µPIm + (SI + µBIm)W−1

I
)−1

JI ,

86

where I ∪A = {1, 2, . . . ,m} and I ∩A = ∅. SA and SI are the submatrices of S containing

of the row and columns from the index set A and I respectively, with a similar meaning

for WA and WI . If u and u∗ are the quantities defined in this theorem, then the following

relations hold

lim
u→u∗

J(x) = J(x∗), lim
u→u∗

H(x, y) = H(x∗, y∗), (5.19)

lim
u→u∗

[
µPIm + (SA + µBIm)W−1

A
]−1
i

=∞. (5.20)

for all 1 ≤ i ≤ m. Using the same argument as the Theorem 3.1 in [25], (5.18) and (5.19)

imply that H + JTA
(
µPIm + (SA + µBIm)W−1

A
)−1

JA is positive definite for all u sufficiently

close to u∗. Combing this with the fact that JTI
(
µPIm + (SI + µBIm)W−1

I
)−1

JI is positive

semidefinite, we can conclude thatH+JT (DP+DB)−1J is positive definite for all u sufficiently

close to u∗, which concludes the proof.

Lemma 5.3.1 and Theorem 5.3.2 together imply that under certain second order

sufficient order conditions, by path-following the trajectory (5.12) and restrict all the iterates

near the neighborhood of it using the merit functionM(x, s, y, w; yE , wE , µP , µB), we are able

to trace out to a local constrained minimizer of (NIPs).

5.3.4 Description of the Inner Iteration

In this section, the combined trust-region line-search method (Algorithm 4.2) that is

described in Chapter 4 is used to minimize the merit function M(x, s, y, w;µP , µB , yE , wE),

where (µP , µB , yE , wE) are fixed. To simplify the notation, the merit function is denoted by

M(x, s, y, w) in this section. As before, the following auxiliary vectors are defined

πP = πP(x, s) = yE − 1

µP
(c(x)− s)

πB = πB(s) = µB(S + µBIm)−1wE .

In a conventional trust-region method, the following trust-region subproblem (TRS)

87

needs to be solved approximately at each iterate (xk, sk, yk, wk)

(TRS) minimize
p∈Rn+3m

pT∇Mk + 1
2
pTBkp

subject to ‖p‖Tk ≤ δk,

(5.21)

where Bk is an approximation of∇2M(xk, sk, yk, wk), Tk is a positive definite diagonal matrix

to be defined later, and δk > 0 is the trust-region radius. Define the positive definite diagonal

matrices

DP = µP

kIm, and DB = (Sk + µB

k Im)W−1
k .

Then the gradient of M(x, s, y, w) at (xk, sk, yk, wk) can be written as

∇Mk =



gk − JTk (πPk + (πPk − yk))

(πPk + (πPk − yk))− (πBk + (πBk − wk))

−DP (πPk − yk)

−DB(πBk − wk)


,

where gk = g(xk) and Jk = J(xk). Using the same notation, the Hessian of M(x, s, y, w) at

(xk, sk, yk, wk) is given by

∇2Mk =



Hk + 2JTk D
−1
P Jk −2JTk D

−1
P JTk 0

−2D−1P Jk 2(D−1P +D−1B W−1
k ΠB

k) −Im Im

Jk −Im DP 0

0 Im 0 DBW
−1
k ΠB

k


, (5.22)

where Hk = H(xk, π
P
k + (πP

k − yk)) and ΠB
k = ΠB(xk), the diagonalized column vector πB

k .

On the path-following trajectory (5.12), πB
k = wk which implies that the Hessian

approximation Bk can be chosen by setting πP
k = yk and W−1

k ΠB
k = I in (5.22), which

88

implies the approximation of ∇2M(xk, sk, yk, wk) to be

Bk =



Ĥk + 2JTk D
−1
P Jk −2JTk D

−1
P JTk 0

−2D−1P Jk 2(D−1P +D−1B) −Im Im

Jk −Im DP 0

0 Im 0 DB


, (5.23)

where Ĥk = H(xk, yk). In line-search method, a further modification on Ĥk may be needed

if Bk is not sufficiently positive definite. In trust-region method, however, no such further

modification on Ĥk is needed since the quadratic model of the objective function in the

trust-region subproblem is allowed to be nonconvex.

The next lemma provides the theoretical basis for defining the positive definite diag-

onal Tk defined in (5.21) and for finding the approximate solution ∆vk of the trust-region

subproblem.

Lemma 5.3.3. ∆vk is a global solution of the trust-region subproblem (5.21) if and only if

‖∆vk‖Tk ≤ δk and there exists σk ≥ 0, such that

(Bk + σkTk)∆vk = −∇Mk, and σk(δk − ‖∆vk‖Tk) = 0, (5.24)

with Bk + σkTk positive semidefinite. For any global minimizer ∆vk, the value of σk is

unique. Furthermore, if a global minimum is achieved for more than one ∆vk, then σk is

independent of ∆vk. Moreover, if Bk +σkTk is positive definite, then the global solution ∆vk

is also unique.

The first equation in (5.24) together with the structure of Bk defined in (5.23) imply

that the positive definite diagonal Tk may be set as

Tk =



In 0 0 0

0 Im 0 0

0 0 DP 0

0 0 0 DB


,

89

where In and Im are the identity matrices of size n and m respectively. With this choice of

Tk, (Bk + σkTk)vk = −∇Mk can be written as



Ĥk + 2JTk D
−1
P Jk + σkIn −2JTk D

−1
P JTk 0

−2D−1P Jk 2(D−1P +D−1B) + σkIm −Im Im

Jk −Im (1 + σk)DP 0

0 Im 0 (1 + σk)DB





∆xk

∆sk

∆yk

∆wk


= −∇Mk.

(5.25)

For simplicity, let B(σk) = Bk + σkTk.

However, the matrix B(σk) never needs to be factorized and equation (5.25) will never

be solved explicitly in order to find ∆vk. Instead, an equivalent equation could be obtained

by multiplying the following Lk to both sides of equation (5.25).

Lk =



In 0 −2JTk D
−1
P 0

0 Im 2D−1P −2D−1B

0 0 Im 0

0 0 0 Im


,

which gives the following equivalent unsymmetric system

Ĥk + σkIn 0 −(1 + 2σk)J
T
k 0

0 σkIm (1 + 2σk)Im −(1 + 2σk)Im

Jk −Im (1 + σk)DP 0

0 Im 0 (1 + σk)DB





∆xk

∆sk

∆yk

∆wk


= −



gk − JTk yk

yk − wk

−DP (πP − yk)

−DB(πB − wk)


.

(5.26)

Equation (5.26) can be symmetrized by “transferring” the factor −(1 + 2σk) into ∆yk and

90

∆wk, which gives the following equivalent symmetric system:

Ĥk + σkIn 0 JTk 0

0 σkIm −Im Im

Jk −Im −σ̂kDP 0

0 Im 0 −σ̂kDB





∆xk

∆sk

−∆ŷk

−∆ŵk


= −



gk − JTk yk

yk − wk

−DP (πP − yk)

−DB(πB − wk)


, (5.27)

where σ̂k = (1 + σk)/(1 + 2σk), ∆ŷk = (1 + 2σk)∆yk, and ∆ŵk = (1 + 2σk)∆wk. Denote

further that the KKT matrix in (5.27) to be N(σk). Equation (5.27) is a symmetric and

well-scaled system where −σ̂kDP and −σ̂kDB can be regarded as a regularization on N(σk).

In fact, (5.27) can be solved in an equivalent equations in a smaller size by using the

block elimination, which gives the following equations

∆ŵk = (Im + σkσ̂kDB)−1 (σkDB(πB − wk) +∆ŷk − wk + yk)

∆sk = DB(πB − wk)− σ̂kDB∆ŵk,

(5.28)

where ∆xk and ∆ŷk satisfy the equationsĤk + σkIn −JTk

Jk σ̂k(DP + D̂B)


∆xk
∆ŷk

 = −

gk − JTk yk
ηy

 , (5.29)

where in equation (5.29), the following auxiliary variables are defined.

D̂B =DB(Im + σkσ̂kDB)−1

ηy =σ̂kD̂B(σkDB(πB − wk)− wk + yk)−DB(πB − wk)−DP (πP − yk),

An equivalent symmetric system of equation (5.29) is given byĤk + σkIn JTk

Jk −σ̂k(DP + D̂B)


 ∆xk

−∆ŷk

 = −

gk − J
T
k yk

ηy

 . (5.30)

Denote the KKT matrix in (5.30) to be K(σk). Then equation (5.30) together with (5.28)

are the only linear systems that we indeed solve. After ∆ŷk and ∆ŵk is obtained, then we

91

can compute ∆y and ∆w using the following equations

∆ŷk = (1 + 2σk)∆yk, and ∆ŵk = (1 + 2σk)∆wk.

Instead of solving equation (5.25), which is in the (n+ 3m) dimensional space, we can solve

the equivalent symmetric KKT system (5.30) in a smaller space of dimension (n+m). Thus

certain numerical benefits could be obtained.

Another advantage is that when the trust-region subproblem is solved, B(σk) is re-

quired to be positive semidefinite, and fortunately, the inertia of B(σk) can be deduced from

the inertia of K(σk). The inertia relations of In(B(σk)), In(N(σk)) and In(K(σk)) can be

formally stated in the following Lemma 5.3.4.

Lemma 5.3.4. Let B(σk), N(σk) and K(σk) be the KKT matrices defined in equation (5.23),

(5.27), and (5.30). Denote the auxiliary H̄k to be H̄k = Ĥk + σkIn + 1
σ̂k
JTk (DP + D̂B)−1Jk.

Then the following inertia relations hold:

In(B(σk)) = (3m, 0, 0) + In(H̄k)

In(N(σk)) = (m, 2m, 0) + In(H̄k)

In(K(σk)) = (0,m, 0) + In(H̄k).

Proof. As B(σk), N(σk) and K(σk) are all symmetric, the proof can be done by repeatedly

using the Schur complement to deduce the inertia of each of them. From equation (5.30),

K(σk) is defined as

K(σk) =

Ĥk + σkIn JTk

Jk −σ̂k(DP + D̂B)

 ,

because DP +D̂B is a positive diagonal matrix and σ̂k > 0, computing the Schur complement

92

of the (2, 2) block gives

In(K(σk)) = (0,m, 0) + In

(
Ĥk + σkIn +

1

σ̂k
JTk (DP + D̂B)−1Jk

)
= (0,m, 0) + In(H̄k),

where H̄k = Ĥk + σkIn + 1
σ̂k
JTk (DP + D̂B)−1Jk.

The same argument can be applied to obtain the inertia of N(σk), which is defined

as follows

N(σk) =



Ĥk + σkIn 0 JTk 0

0 σkIm −Im Im

Jk −Im −σ̂kDP 0

0 Im 0 −σ̂kDB


.

As DP and DB are positive diagonal matrices and σ̂k > 0, the inertia of N(σk) can be

obtained by computing the Schur complement, which gives

In(N(σk)) = (0, 2m, 0) + In

Ĥk + σkIn + 1
σ̂k
JTk D

−1
P Jk − 1

σ̂ k
JTk D

−1
P

− 1
σ̂k
D−1P Jk σkIm + 1

σk
(D−1P +D−1B)


= (m, 2m, 0) + In

(
Ĥk + σkIn +

1

σ̂k
JTk (DP + D̂B)−1Jk

)
= (m, 2m, 0) + In(H̄k).

Since σkIm + 1
σk

(D−1P + D−1B) is a positive definite diagonal matrix, computing its Schur

complement gives the second equation.

The last part is done using the exactly same argument to obtain the inertia of B(σk),

93

which is defined by

B(σk) =



Ĥk + 2JTk D
−1
P Jk + σkIn −2JTk D

−1
P JTk 0

−2D−1P Jk 2(D−1P +D−1B) + σkIm −Im Im

Jk −Im (1 + σk)DP 0

0 Im 0 (1 + σk)DB


.

Since DP and DB are positive diagonal matrices and σ̂k > 0, the inertia of B(σk) can be

obtained by computing its Schur complement, which gives

In(B(σk)) = (2m, 0, 0) + In

Ĥk + σkIn + 1
σ̂k
JTk D

−1
P Jk − 1

σ̂k
JTk D

−1
P

− 1
σ̂k
D−1P Jk σkIm + 1

σk
(D−1P +D−1B)


= (3m, 0, 0) + In

(
Ĥk + σkIn +

1

σ̂k
JTk (DP + D̂B)−1Jk

)
= (3m, 0, 0) + In(H̄k).

Then the conclusions follow immediately.

Lemma 5.3.4 is useful in that there is no need to factorize B(σk) ∈ R(n+3m)×(n+3m)

in order to check if it is positive semidefinite, which is required when solving the trust-

region subproblem. We only need to factorize K(σk) ∈ R(n+m)×(n+m) when solving the linear

equation (5.30) and the inertia of B(σk) can be obtained as a byproduct.

The practical way for computing the inertia of K(σk) can be done by doing LDLT

decomposition on K(σk), i.e., P TK(σk)P
T = LDLT , and the number of negative eigenvalues

of K(σk) is the number of 2 × 2 blocks and negative 1 × 1 blocks of D. If K(σk) has more

than m negative eigenvalues, which means that B(σk) is not positive semidefinite, then σk

needs to be increased and K(σk) needs to be refactorized and the linear equation (5.30) be

solved again.

Algorithm 5.2 gives a complete description of the inner iteration of PDPB, corre-

sponding to Step 16 to Step 17 of Algorithm 5.1, which applies a combined trust-region

94

line-search method to minimize the merit function.

Algorithm 5.2 A Primal-Dual Path-following Shifted Penalty-Barrier Method (Inner)

1: while ||Fk|| > η1||Fk−1|| do

2: Find an approximate solution ∆vk of the trust-region subproblem (5.21);

3: Set initial step αk ← 1;

4: while sk + µB
ke+ αk∆sk > 0 or wk + αk∆wk > 0 fails do . Ensure feasibility

5: αk ← γsαk;

6: end while

7: ρk = (M(vk + αk∆vk)−M(vk))/Q−k (αk∆vk);

8: if ρk ≥ ηs then

9: vk+1 ← vk + αk∆vk;

10: sk+1 ← max
(
sk+1, ck+1 − µP

k (yE
k + 1

2
(wk+1 − yk+1))

)
; . Reset slack variables

11: if ρk ≥ ηe then

12: δk ← max (γeδk, γe||αk∆vk||Tk);

13: end if

14: else . Line search along ∆vk

15: βk ← 1;

16: while (M(vk + αkβk∆vk)−M(vk))/Q−k (αkβk∆vk) < ηs do

17: βk ← γsβk;

18: end while

19: vk+1 ← vk + αkβk∆vk;

20: sk+1 ← max
(
sk+1, ck+1 − µP

k (yE
k + 1

2
(wk+1 − yk+1))

)
; . Reset slack variables

21: Choose δk ∈ [||αkβk∆vk||Tk , ν||αkβk∆vk||Tk]; . Adjust trust-region radius

22: end if

23: end while

95

In Algorithm 5.2, Step 3 to Step 6 enforces that sk + µB
ke > 0 and wk > 0 for all k.

If either condition is violated, a line search is needed to find the step αk that satisfies

sk + µB

ke+ αk∆sk > 0

wk + αk∆wk > 0.

(5.31)

As sk and wk are column vectors, the condition (5.31) is easier to implement than finding

αk such that c(xk + αk∆xk) ≥ 0, since many unnecessary infeasible constraint evaluations

may be needed. This is another advantage of introducing the slack variable s.

In Step 7, the model Q−k (pk) = gTk pk+ 1
2

min (0, pTkHkpk) is used to enforce the Armijo-

type condition, where ηs ∈ (0, 1
2
),

M(vk + αk∆vk)−M(vk) ≤ ηsQ−k (αk∆vk), (5.32)

which is the same condition that has been used in Algorithm 4.2.

If αk∆vk gives a sufficient decrease on M(x, s, y, w), then vk+1 = vk + αk∆vk is

accepted as the next iterate. Otherwise, an Armijo-type line search is used to find βk ∈ (0, 1)

such that the Armijo condition

M(vk + αkβk∆vk) ≤M(vk) + ηsQ−k (αkβk∆vk),

is satisfied. The existence of such βk has been proved in Lemma 5.4.2. Thus αkβk∆vk gives

a sufficient decrease on M. Also, the next trust-region radius is adjusted by

δk ∈ [||αkβk∆vk||Tk , ν||αkβk∆vk||Tk] ,

which is based on the previous line-search step. This strategy for updating the trust-region

radius is the same as the one used by Gill and Gertz (see Algorithm 4.2).

Finally, in Step 10 and Step 20 of Algorithm 5.2, the slack reset whenever the primal-

dual pair vk is updated is given by

sk+1 ← max
(
sk+1, ck+1 − µP

k (yE

k + 1
2
(wk+1 − yk+1))

)
.

96

This slack reset is especially useful to handle problems that are locally infeasible which is a

challenge for nonconvex optimization problems. This result is summarized in Theorem 5.4.7.

Meanwhile, for inner iterations, we also tried applying the conventional trust-region

method to minimize M(x, s, y, w), as is shown in Algorithm 5.3. The difference between

these two methods is that in Algorithm 5.3, once αk∆vk fails to yield a sufficient decrease

on M (Step 8, Algorithm 5.3), then trust-region radius δk is reduced and the trust-region

subproblem is solved again until a sufficient decrease could be obtained.

Algorithm 5.3 A Primal-Dual Path-following Shifted Penalty-Barrier Method (Inner)

1: while ||Fk|| > η1||Fk−1|| do

2: Solve the trust-region subproblem (5.21) approximately to find a direction ∆vk;

3: Set initial step αk ← 1;

4: while sk + µB
ke+ αk∆sk > 0 or wk + αk∆wk > 0 fails do . Ensure feasibility

5: αk ← γsαk;

6: end while

7: ρk = (M(vk + αk∆vk)−M(vk))/Q−k (αk∆vk);

8: if ρk ≥ ηs then

9: vk+1 ← vk + αk∆vk;

10: sk+1 ← max
(
sk+1, ck+1 − µP

k (yE
k + 1

2
(wk+1 − yk+1))

)
; . Reset sk

11: if ρk ≥ ηe then

12: δk ← max (γeδk, γe||αk∆vk||Tk);

13: end if

14: else

15: δk ← γcδk; . Reduce trust-region radius

16: end if

17: end while

97

It is worthwhile to note that each time vk is updated, the slack variable sk needs to be

reset (Step 9, Step 16 in Algorithm 5.2, and Step 10 in Algorithm 5.3) as well for efficiency.

The same slack-variable reset strategy has been used by Gill et al. [24]. This slack reset

implies that

ck+1 − sk+1 ≤ µP

k

(
yE

k + 1
2
(wk+1 − yk+1)

)
, (5.33)

which ensures that any limit point (x∗, s∗) of (xk, sk) satisfies c(x∗)− s∗ ≤ 0 if {yE
k }k≥0 and

{wk+1 − yk+1}k≥0 are bounded and µP
k converging to 0, which is suitable to handle the locally

infeasible problem. Lemma 5.3.5 below shows that the slack reset will not lead to an increase

for the merit function M(x, s, y, w).

Lemma 5.3.5. Define ŝk = ck+1 − µP
k

(
yE
k + 1

2
(wk+1 − yk+1)

)
, then the slack reset sk+1 in

Step 20 of Algorithm 5.2, defined as sk+1 = max (sk+1, ŝk) will not lead to an increase in the

merit function M(x, s, y, w).

Proof. Since the slack reset procedure has the effect of possibly increasing the value of some

of its components, which means the term −
∑m

i=1 µ
BwE

i ln(wi(si+µ
B)2) inM will not increase

(see the definition of M in (5.15)). Denote the rest part of M by M̂, i.e.,

M̂(x, s, y, w; yE , wE , µP , µB) = f(x)− (c− s)TyE

+
1

2µP
‖c− s‖2 +

1

2µP
‖c− s+ µP(y − yE)‖2 +

m∑
i=1

wi(si + µB).

Then it holds that

∇sM̂(x, s, y, w) = yE + w +
1

µP
(2(s− c(x))− µP(y − yE))

∇ssM̂(x, s, y, w) =
2

µP
> 0.

Thus setting ∇sM̂(x, s, y, w) = 0 gives

ŝ = c(x)− µP(yE + 1
2
(y − w)).

98

Also M̂ is strictly convex with respect to s, so ŝ minimizes M̂(x, s, y, w). Thus after

(xk+1, sk+1, yk+1, wk+1) is obtained, and for fixed µP
k , y

E
k in inner iteration, a further slack

reset ŝk = ck+1 − µP
k

(
yE
k + 1

2
(wk+1 − yk+1

)
will not lead to an increase in M.

Example 5.3.1. Consider problem HS22 that has been used in Example 5.2.1. The proposed

primal-dual path-following shifted penalty-barrier method has been used to solve this problem

again and the trajectories are shown in Figure 5.4 corresponding to different starting points.

(a) x0 = (−3, 2) (b) x0 = (−1,−1)

(c) x0 = (3, 5) (d) x0 = (0, 1)

Figure 5.4: Different Path-Following Trajectories Starting From Either Feasible or Infeasible Points.

The first three graphs in Figure 5.4 show path-following trajectories associated with

infeasible starting points and the last one shows the trajectory with a feasible starting point.

Initially, the merit function M(x, s, y, w; yE
k , w

E
k , µ

P
k , µ

B
k) is minimized to drive the iterates

99

into some neighborhood of x∗, then the iterates are Newton iterates in the limit and inner

iterations are no longer needed.

5.4 Convergence Analysis

In this section, convergence results are presented for the proposed primal-dual path-

following shifted penalty-barrier method. First, a convergence analysis of the inner iteration

Algorithm 5.2 are discussed. Lemma 5.4.1 from Moré and Sorensen [31] is needed to show

that the merit function M is monotonically decreasing.

Lemma 5.4.1. Suppose Φ(β) : R 7→ R be twice continuously differentiable on the open

interval I containing the origin, and assume that ηs ∈ (0, 1). Then there must exist an

β̄ > 0 such that

Φ(β) ≤ Φ(0) + ηs
(
Φ′(0)β + 1

2
Φ′(0)β2

)
,

for all β ∈ [0, β̄] provided that either Φ′(0) < 0, or Φ′(0) = 0 and Φ′′(0) < 0.

Proof. See Lemma 2.2 in Moré and Sorensen [31].

Lemma 5.4.2. Assume that Algorithm 5.2 generates an infinite sequence, i.e., ∇M(vk) 6= 0

for all k ≥ 0, and the sequence {xk}k≥0 is contained in a compact set. Assume further that

M is bounded below. If either ∇MT
k∆vk < 0 or ∇MT

k∆vk = 0 and ∆vTk∇2Mk∆vk <

η1∆v
T
kBk∆vk, where η1 ∈ (0, 1), then for any constant αk ∈ (0, 1), there must exist an

βk ∈ (0, 1), such that βk satisfies the Armijo condition

M(vk + αkβk∆vk)−M(vk) ≤ ηsQ−k (αkβk∆vk),

corresponding to Step 16 in Algorithm 5.2.

Proof. Define Φ(β) =M(vk+αkβ∆vk), which is twice continuously differentiable. Then the

100

first and second derivative of Φ(β) at zero is given by

Φ′(0) = αk∇MT
k∆vk

Φ′′(0) = α2
k∆v

T
k∇2Mk∆vk,

where∇Mk = ∇M(vk) and∇2Mk = ∇2M(vk). Since∆vk is the solution of the trust region

subproblem, which satisfies the positive semidefinite system (Bk+σkTk)∆vk = −∇Mk. Thus

it holds that

Φ′(0) = αk∇MT
k∆vk = −αk∆vTk (Bk + σkTk)∆vk ≤ 0.

If Bk + σkTk is positive definite, then for any ∆vk 6= 0, Φ′(0) < 0. Otherwise, for

positive semidefinite Bk + σkTk, and ∆vk satisfying ∆vTk (Bk + σkTk)∆vk = 0, it must hold

that Φ′(0) = 0, i.e.,

∆vTkBk∆vk = −σk∆vTk Tk∆vk < 0.

According to the assumption ∆vTk∇2Mk∆vk < η1∆v
T
kBk∆vk, it holds that

Φ′′(0) = α2
k∆v

T
k∇2Mk∆vk < η1α

2
k∆v

T
kBk∆vk < 0.

According to Lemma 5.4.1, it holds that

Φ(β) ≤ Φ(0) + ηs
(
Φ′(0)β + 1

2
Φ′′(0)β2

)
,

which is equivalent to

M(vk + αkβk∆vk)−M(vk) ≤ ηsQ−k (αkβk∆vk),

which completes the proof.

According to Lemma 5.4.1 and Lemma 5.4.2, it has been shown that the sequence of

iterates {vk}k≥0 satisfiesM(vk+1) <M(vk) for all k. The next theorem gives the properties

of the primal-dual pairs of the iterates generated by Algorithm 5.2, which provides a complete

description of the properties of the merit function M(x, s, y, w; yE , wE , µP , µB) for fixed pair

101

(yE , wE , µP , µB). This proof is similar to the proof of Lemma 3.2 in Gill et al. [20].

Theorem 5.4.3. Assume that f(x), c(x) are twice continuously differentiable, {xk}k≥0 are

contained in a compact set. Then the iterates {vk}k≥0 generated by Algorithm 5.2 satisfies

the following properties, where (yE , wE , µP , µB) are all fixed,

• the sequence {sk}, {ck − sk}, {yk}, {wk} are uniformly bounded,

• for all i, it holds that lim infk≥0[sk + µBe]i > 0 and lim infk≥0[wk]i > 0.

Proof. To simplify the notation, denote ck = c(xk), fk = f(xk) and Mk = M(vk). First

prove the sequence {sk} are uniformly bounded. Suppose not, since sk + µBe > 0 by con-

struction for all k, then there must exist a subsequence S, and a component i, such that

lim
k∈S

[sk]i =∞, and [sk]i ≥ [sk]j for all j,

Using the assumptions that {xk}k≥0 are contained in a compact set and f is continu-

ous, it must hold that {fk}k∈S are bounded below and
{

(ck − sk)TyE
}
k∈S cannot go to

−∞ faster than {||sk||}k∈S . Also
{

1
2µP
||ck − sk||2

}
k∈S
→ +∞ in the same rate as ||sk||2,

{
∑m

i=1[wk]i([sk]i + µB)}k∈S are bounded below, and
{

1
2µP
||ck − sk + µP(yk − yE)||

}
k∈S

are

bounded below by 0. If −{
∑m

i=1 µ
BwE

i ln([wk]i([sk]i + µB))}k∈S is bounded below, then there

must exist S1 ⊆ S and a component j satisfying

lim
k∈S1

[sk + µBe]j[wk]j = +∞,

[sk + µBe]j[wk]j ≥ [sk + µBe]`[wk]` for all ` and k ∈ S1.
(5.34)

These limits imply that {
∑m

i=1[wk]i([sk]i + µB)}k∈S1 converges to +∞ faster than the se-

quence {−
∑m

i=1 µ
BwE

i ln([wk]i([sk]i + µB))}
k∈S1 converges to −∞. Then it must follow that

limk∈SMk = +∞, which contradicts Lemma 5.4.2. It follows that the sequence {sk} is

uniformly bounded.

It can also be shown by contradiction that {yk} are uniformly bounded. If this were

102

not the case, then there must exist a subsequence S and a component i such that

lim
k∈S
|[yk]i| = +∞, and |[yk]i| ≥ |[yk]j| for all j,

For k ∈ S, the sequence {fk},
{

(ck − sk)TyE
}

,
{

1
2µP
||ck − sk||2

}
are uniformly bounded,{

1
2µP
||ck − sk + µP(yk − yE)||2

}
k∈S

converges to +∞ at the rate of [yk]
2
i since {sk} is uni-

formly bounded. The sequence {−
∑m

i=1 µ
BwE

i ln([sk]i + µB)}k∈S is uniformly bounded below

because wE > 0, and {
∑m

i=1[wk]i([sk]i + µB)}k∈S is bounded below by zero trivially, thus if

{−
∑m

i=1 µ
BwE

i ln([wk]i([sk]i + µB))}k∈S is bounded below, then it follows that limk∈SMk =

+∞, which contradicts Lemma 5.4.2. Thus {−
∑m

i=1 µ
BwE

i ln([wk]i([sk]i + µB))}k∈S must

converge to −∞, so condition (5.34) is satisfied for some subsequence S1 ⊆ S and a com-

ponent j. Then for k ∈ S1 and this j, it holds that {
∑m

i=1[wk]i([sk]i + µB)}k∈S1 converges

to +∞ faster than the sequence {−
∑m

i=1 µ
BwE

i ln([wk]i([sk]i + µB))}k∈S1 converging to −∞,

which contradicts Lemma 5.4.2 again. So {yk} must be uniformly bounded.

Next we show that {wk} is uniformly bounded. If not there must exist a subsequence

S and a component i such that

lim
k∈S

[wk]i = +∞, and [wk]i ≥ [wk]j for all j, (5.35)

It follows that there must exist S1 ⊆ S and J ⊆ {1, 2, . . . ,m} satisfying the condition

lim
k∈S1

[wk]j = +∞ for all j ∈ J , and {[wk]j : j /∈ J , k ∈ S1} is bounded.

As {sk} and {yk} are uniformly bounded, then for k ∈ S, the sequence {fk},
{

(ck − sk)TyE
}

,{
1

2µP
||ck − sk||2

}
, and

{
1

2µP
||ck − sk + µP(yk − yE)||2

}
are bounded. Then from condition

(5.35), it follows that {−
∑m

i=1 µ
BwE

i ln(([sk]i + µB)2[wk]i)}k∈S is asymptotically bounded be-

low by {−
∑m

i=1 µ
BwE

i ln([wk]i)}k∈S . Thus it must hold that

[wk]j([sk]j + µB) = O(ln([wk]i)) for all j ∈ {1, 2, . . . ,m} , (5.36)

otherwise limk∈SMk = +∞, which contradicts Lemma 5.4.2. It follows from (5.36) that

103

there must exist a constant κ1 > 0 such that

ln([sk]j + µB) ≤ ln

(
κ1 ln([wk]i)

[wk]j

)
= ln(κ1) + ln(ln([wk]i))− ln([wk]j),

for all 1 ≤ j ≤ m and k sufficient large. Define α = [wE]i/4||wE ||1 > 0, which is well-defined

because wE > 0 by construction. Then it holds that

2 ln(ln([wk]i))− ln([wk]j) ≤ α ln([wk]i), (5.37)

for all j ∈ J and sufficient large k ∈ S1. Then there exist positive constants κ2, κ3 satisfying

−
m∑
i=1

µBwE

i ln
(
([sk]i + µB)2[wk]i

)
≥ −κ2 − µB

∑
j∈J

wE

j (2 ln([sk]j + µB) + ln([wk]j))

≥ −κ2 − µB
∑
j∈J

wE

j (2 ln(κ1) + 2 ln(ln([wk]i))− ln([wk]j))

≥ −κ3 − µB
∑
j∈J

wE

j (2 ln(ln([wk]i))− ln([wk]j))

≥ −κ3 − µBwE

i (2 ln(ln([wk]i))− ln([wk]i)) .

Combining these values with condition (5.37) gives

−
m∑
i=1

µBwE

i ln
(
([sk]i + µB)2[wk]i

)
≥ −κ3 − µBwE

i (2 ln(ln([wk]i))− ln([wk]i))− µB
∑

j∈J ,j 6=i

wE

j (2 ln(ln([wk]i))− ln([wk]j))

≥ −κ3 − µBwE

i (2 ln(ln([wk]i))− ln([wk]i))− µB
∑

j∈J ,j 6=i

wE

j α ln([wk]i)

≥ −κ3 − µBwE

i (2 ln(ln([wk]i))− ln([wk]i))− µBα ln([wk]i)||wE ||,

(5.38)

104

holds for sufficiently large k ∈ S1. Condition (5.38) together with condition (5.37) gives

−
m∑
i=1

µBwE

i ln
(
([sk]i + µB)2[wk]i

)
≥ −κ3 +

1

4
µB ln([wk]i), (5.39)

which implies that

lim
k∈S1

(
−

m∑
i=1

µBwE

i ln
(
([sk]i + µB)2[wk]i

))
= +∞. (5.40)

It follows immediately that limk∈S1Mk = +∞, which contradicts Lemma 5.4.2. Thus it

must hold that {wk} is bounded.

Based on the results of part 1, part 2 can also be established by contradiction in a sim-

ilar argument. As before, for all k ∈ S, the sequence {fk},
{

(ck − sk)TyE
}

,
{

1
2µP
||ck − sk||2

}
,{

1
2µP
||ck − sk + µP(yk − yE)||2

}
, and {

∑m
i=1[wk]i([sk]i + µB)} are all bounded. If it holds that

lim infk∈S [sk+µ
Be]i = 0 for some subset S and some component i, then condition (5.40) holds,

so limk∈S1Mk = +∞, which contradicts to Lemma 5.4.2. Thus lim infk≥0[sk + µBe]i > 0 for

all i. Similarly, it holds that lim infk≥0[wk]i > 0 for all i.

Based on Theorem 5.4.3, we can further prove the following Theorem 5.4.4, which is

used for the proof in the main convergence result of Theorem 5.4.5.

Theorem 5.4.4. Assume all the assumption in Theorem 5.4.3 holds, then the iterates

{vk}k≥0 generated by Algorithm 5.2 further satisfies the following properties, where the pair

(yE , wE , µP , µB) are all fixed,

• {πP
k },

{
πBk
}

, and {∇M(vk)} are uniformly bounded,

• there must exist a scalar Mlow satisfying M(vk) ≥Mlow > −∞ for all k.

Proof. To show part 1, by the definition of πP
k = πP(xk, sk) = yE − (ck − sk)/µ

P , it is

immediate that {πP
k } are uniformly bounded since {ck − sk} are uniformly bounded and

yE , µP are fixed. Similarly, πBk = πB(sk) = µB(Sk +µBI)−1wE , since lim infk≥0[sk +µBe]i > 0

for all i, {sk} are uniformly bounded, and wE , µB are fixed,
{
πBk
}

are uniformly bounded.

105

Finally, the uniform boundedness of {∇M(vk)} immediately follows based on the uniform

boundedness of {sk}, {ck − sk}, {yk}, {wk}, {πP
k },

{
πBk
}

from its definition in (5.22).

For part 2, it can be shown that each term in the merit function M are bounded

below. {fk} are uniformly bounded below by the continuity of f(x) and {xk} are contained

in compact set.
{

(ck − sk)TyE
}

are bounded since {ck − sk} are uniformly bounded and yE

are fixed. The two penalty terms
{

1
2µP
||ck − sk||2

}
, and

{
1

2µP
||ck − sk + µP(yk − yE)||2

}
are

nonnegative, trivially bounded below by 0. {−
∑m

i=1 µ
BwE

i ln(([sk]i + µB)2[wk]i)} is uniformly

bounded below since lim infk≥0[sk + µBe]i > 0 for all i, {wk} are uniformly bounded and

µB , wE are fixed. The last part {
∑m

i=1[wk]i([sk]i + µB)} are nonnegative since wk > 0 by

construction for all k.

Based on Theorem 5.4.3 and Theorem 5.4.4, the next theorem provides the main

convergence result of inner iteration.

Theorem 5.4.5. Suppose all the assumptions in Theorem 5.4.3 hold, then the sequence

{vk}k≥0 generated by Algorithm 5.2 satisfies limk→∞∇M(vk) = 0.

Proof. The proof is by contradiction. Denote M(vk) to be Mk. Suppose there exists a

constant ε > 0 and a subsequence S such that ||∇Mk|| ≥ ε for all k ∈ S. Then it

follows from Theorem 5.4.3 and Theorem 5.4.4 that limk∈SMk = Mmin > −∞. Then by

Lemma 5.4.2, the Armijo condition (Step 16, Algorithm 5.2) is satisfied for all k ∈ S. Then

it must hold that

lim
k→∞

αk∇MT
k∆vk = 0, (5.41)

which further implies that limk∈S αk = 0. This implies that there must exist a subsequence

S1 ⊆ S and a component i, such that for all k ∈ S, either

[sk + αk∆sk]i + µB > 0, and [sk +
1

γs
αk∆sk]i + µB ≤ 0, (5.42)

106

where γs ∈ (0, 1) is the line-search factor in Algorithm 5.2, or

[wk + αk∆wk]i > 0, and [wk +
1

γs
αk∆wk]i ≤ 0. (5.43)

Without loss of generality, suppose condition (5.43) holds. Then there must exist some ε > 0

such that

ε < wk+1 = wk + αk∆wk = wk +
1

γs
αk∆wk −

1

γs
αk∆wk + αk∆wk, (5.44)

for some sufficiently large k. So it must hold that

wk +
1

γs
αk∆wk > ε+

1

γs
αk∆wk − αk∆wk = ε+ αk∆wk(

1

γs
− 1) > 0, (5.45)

which contradicts to condition (5.43), thus it must hold that limk→∞∇M(vk) = 0.

So far the convergence analysis of the inner iterations has been established, but the

adjustment of the pair (yE , wE , µP , µB) must be done carefully in the outer iteration to enforce

a strong convergence property. To distinguish between the outer and inner iterations, it is

convenient to define

O = {k : iteration k is an outer iteration (O-iteration)}

F = {k : iteration k is an inner iteration (F-iteration)} .

First, Theorem 5.4.6 shows that any limit point of an infinite sequence of O iterations

must be CAKKT point (see Definition 2.1.11).

Theorem 5.4.6. Suppose all the assumptions in Theorem 5.4.3 hold. If |O| = ∞, then

there exists a limit point (x∗, s∗) of the sequence {(xk+1, sk+1)}k∈O and any such point must

be a CAKKT point.

Proof. By the assumption that {xk}k∈O are contained in a compact set, then there must exist

a subsequence K ⊆ O and one limit point of {xk}k∈K, denoted by x∗. By the continuity of

c(x), it follows that limk∈K c(xk) = c(x∗). As |O| =∞, according to Step 7 of Algorithm 5.1,

107

it must hold that limk∈K ||Fk|| = 0. Then it follows that limk∈K(c(xk)−sk) = 0 since yE
k = yk

is updated infinitely many often. Define s∗ = c(x∗), it follows that {sk}k∈K → limk∈K c(xk) =

c(x∗) = s∗, which implies that c(x∗)− s∗ = 0. For all i ∈ {1, 2, . . . ,m}, define the following

two sets:

Q1 = {k : [q1(vk)]i ≤ [q2(vk, µ
B

k)]i}Q2 = {k : [q2(vk, µ
B

k)]i < [q1(vk)]i} ,

where the definition of q1(vk) and q2(vk, µ
B
k) can be referred in equation (5.14). If |K∩Q1| =

∞, then it follows from {κcomp(vk, µB
k)}k∈K → 0 that [s∗]i = limk∈K∩Q1 [sk]i ≥ 0. Similarly, if

|K ∩ Q2| =∞, then

[s∗]i = lim
k∈K∩Q2

[sk]i = lim
k∈K∩Q2

[sk + µB

ke]i ≥ 0,

from the definition of Q2. Then it is immediate that [s∗]i ≥ 0 as claimed. Thus (x∗, s∗) must

be feasible.

It remains to show that (x∗, s∗) must be a CAKKT point. Consider the sequence

{xk, s̄k, yk, wk}k∈K where s̄k = sk if k ∈ Q1 and s̄k = sk + µB
ke if k ∈ Q2. If |O ∩ Q2| < ∞,

since limk∈K sk = s∗, it follows that limk∈K {[s̄k]i}k∈K → [s∗]i. However, if |O ∩ Q2| = ∞,

since limk∈K κcomp(vk, µ
B
k) = 0, then by the definition of Q2, it is immediate that {µB

k} → 0,

giving limk∈K {[s̄k]i}k∈K → [s∗]i for all i ∈ {1, 2, . . . ,m}. Thus limk∈K s̄k = s∗.

Then it can be shown that {xk, s̄k, yk, wk}k∈K satisfies the definition of CAKKT point

defined in (2.1). It follows from the previous argument that limk∈K ||F (vk)|| = 0, which

implies that limk∈K(gk−JTk yk) = 0 and limk∈K(yk−wk) = 0. Step 4 in Algorithm 5.2 implies

that wk ≥ 0 for all k, thus limk∈K wk ≥ 0. Finally, if |K ∩ Q1| = ∞, then the definition of

s̄k, qi(vk) and limk∈K κcomp(vk, µ
B
k) = 0 imply that limk∈K∩Q1 [wk · s̄k]i = 0 for all i. A similar

argument yields that limk∈K∩Q2 [wk · s̄k]i = 0. Thus these two cases lead to the conclusion

that limk∈K wk · s̄k = 0, which implies that (x∗, s∗) must be a CAKKT point.

Then the next theorems will show that if |O| <∞, then all limit points of the set of

F -iterations are infeasible stationary points, which is defined below.

108

Definition 5.4.1 (Infeasible stationary point). The pair (x∗, s∗) is called an infeasible sta-

tionary point if c(x∗)− s∗ 6= 0 and the following optimality conditions hold

J(x∗)T (c(x∗)− s∗) = 0, s∗ ≥ 0,

s∗ · (c(x∗)− s∗) = 0, c(x∗)− s∗ ≤ 0,

where J(x∗) represents the Jacobi of c(x) at x∗.

Theorem 5.4.7. Suppose all the assumptions in Theorem 5.4.3 hold. If |O| < ∞, then

there must exist at least one limit point (x∗, s∗) of {(xk, sk)}k∈F , and any such limit point is

an infeasible stationary point defined in Definition 5.4.1.

Proof. First, it is shown that {sk}k∈F is bounded. If this were not the case, then there must

exist a subsequence K ⊆ F and a component i for which limk∈K[sk]i = +∞. Since {wE
k }k∈K

are bounded and {µB
k}k∈K > 0 are monotonically decreasing, it follows that limk∈K[πBk]i = 0

by the definition of πB in equation (5.16). A similar argument gives that limk∈K[πP
k]i = 0.

However, the boundedness of {yE
k } and the assumption that limk∈K[sk]i = +∞ imply that

limk∈K[c(xk)]i = +∞ which is impossible since {xk} are assumed to be in a compact set and

c(x) is continuous. Thus {sk}k∈K must be bounded.

The boundedness of {sk}k∈K and the fact that {xk} are contained in a compact

set imply that there must exist a subsequence K ⊆ F and a limit point (x∗, s∗), such

that limk∈K(xk, sk) = (x∗, s∗). It remains to show that (x∗, s∗) satisfies the conditions in

Definition 5.4.1. Since {yE
k } are bounded and limk∈F |yk − wk| = 0 if |F| = ∞, then as

{µP
k} → 0, Lemma 5.3.5 gives that for any k ∈ K, it holds that

c(xk+1)− sk+1 ≤ µP

k

(
yE

k + 1
2
(wk+1 − yk+1)

)
→ 0,

which implies that c(x∗) − s∗ ≤ 0. If |F| = ∞ and step 7 in Algorithm 5.1 is satisfied

infinitely many times, then the update µB
k+1 = 1

2
µB
k forces

{
µB
k+1

}
→ 0. Since sk + µB

ke > 0

by construction, thus s∗ ≥ 0 as claimed.

For a proof of J(x∗)T (c(x∗)− s∗) = 0, notice that the gradient of the merit function

109

M must satisfy

lim
k∈K
∇xM(vk+1; y

E

k , w
E

k , µ
P

k , µ
B

k) = 0.

As |F| =∞ and according to Lemma 5.3.1, multiply ∇xM(vk+1; y
E
k , w

E
k , µ

P
k , µ

B
k) by µP

k gives

that

lim
k∈K

(
µP

kg(xk+1)− J(xk+1)
T
(
µP

kπ
P

k+1 + µP

k (πP

k+1 − yk+1)
))

= 0,

because limk∈K xk = x∗ and limk∈K µ
P
k = 0. Then it holds that

lim
k∈K

(
−J(xk+1)

T (µP

kπ
P

k+1)
)

= lim
k∈K

(
−J(xk+1)

T (µP

ky
E

k − c(xk+1) + sk+1)
)

= 0.

This limit, together with the fact that the sequence {yE
k } is bounded, {µP

k} → 0, and

{(xk+1, sk+1)}k∈K → (x∗, s∗) imply that J(x∗)T (c(x∗)− s∗) = 0.

Finally, it remains to show that s∗ · (c(x∗)−s∗) = 0. From the preceding argument, it

holds that limk∈K(πBk+1 − πP
k+1) = 0. The boundedness of the sequence {µP

k (sk+1 + µB
k I)}k∈K

yields the following relation

lim
k∈K

(µB

kµ
P

kw
E

k − µP

k (Sk+1 + µB

k I)yE

k + (Sk+1 + µB

k I)(c(xk+1)− sk+1)) = 0.

Moreover, as limk∈K sk = s∗, {µP
k} → 0 and {yE

k }, {wE
k } are bounded. It holds that

lim
k∈K

(Sk+1 + µB

k I)(c(xk+1)− sk+1) = 0. (5.46)

Because c(x∗)−s∗ 6= 0, there must exist a component i, such that [c(x∗)−s∗]i 6= 0. Combining

this with the fact that limk∈K(xk, sk) = (x∗, s∗) shows that limk∈K[sk+1]i + µB
k = 0. Since

s∗ ≥ 0, it must hold that {µB
k}k∈K → 0. As {µB

k} is also monotonically decreasing to 0, then

it is immediate from relation (5.46) that s∗(c(x∗)− s∗) = 0 which completes the proof.

At the end of this section, Theorem 5.4.8 provides the main convergence results for

the outer iteration.

Theorem 5.4.8. Suppose that the assumptions of Theorem 5.4.3 hold. Then one of the

following two results must hold:

110

• |O| =∞, then the limit point of {(xk+1, sk+1)}k∈O exists, denoted by (x∗, s∗), which is

a CAKKT point of problem (NIPs). If the Cone-Continuity Property (CCP) holds at

(x∗, s∗), then (x∗, s∗) is a KKT point point for problem (NIPs).

• |O| < ∞, |F| = ∞. Then the limit point of {(xk+1, sk+1)}k∈F exists and every such

limit point (x∗, s∗) is an infeasible stationary point.

Proof. It is clear one of the two cases must occur. If |O| = ∞, then according to Theo-

rem 5.4.6, the conclusion immediately follows. The proof of CAKKT point under CCP is

in fact a KKT point can be found in Andreani et al. [1]. Part 2 follows immediately from

Theorem 5.4.7.

5.5 Acknowledgement

This chapter, in part is currently being prepared for submission for publication of the

material. Su, Fangyao; Gill, Philip E. The dissertation author was the primary investigator

and author of this material.

111

Chapter 6

Numerical Implementations

In this chapter, numerical results of the proposed primal-dual path-following aug-

mented Lagrangian method for (NEP) in Chapter 3, and the proposed primal-dual path-

following shifted penalty-barrier method for (NIP) in Chapter 5 are presented. In optimiza-

tion society, CUTEst test collection is commonly used to provide a fair comparison of the

optimization algorithms. It stands for Constrained and Unconstrained Testing Environment,

previously called CUTEr, which contains a set of test problems for both linear and nonlinear,

constrained and unconstrained optimization problems (see Gould, Orban and Toint [28, 29]).

The implementation of the proposed algorithms was done in MATLAB R2015ASP1 and run

on the 2014 MacbookPro with 8 GB 1600 MHz processor.

Although each problem in CUTEst has its own individual form, the most general

format can be described as

minimize
x∈Rn

f(x)

subject to c` ≤ c(x) ≤ cu, a` ≤ Ax ≤ au, x` ≤ x ≤ xu,

where f(x) is the objective function, A ∈ Rm×n, and c` ≤ cu, a` ≤ au, x` ≤ xu are constant

vectors that represent the lower and upper bounds of nonlinear constraints, linear constraints

and the primal variables respectively.

112

Section 6.1 concerns the primal-dual path-following augmented Lagrangian method

proposed in Chapter 3. The numerical results of the primal-dual path-following shifted

penalty-barrier method proposed in Chapter 5 are given in Section 6.2. Both conventional

trust-region method and a combined trust-region line-search method have been applied for

minimizing the merit function and their performance are compared. It has been shown

that the combined trust-region line-search method generally requires fewer matrix factoriza-

tions and fewer iterations compared with the conventional trust-region method, which brings

numerical benefits for minimizing the shifted penalty-barrier function.

Table 6.1 defines the headings and their meanings for all numerical tables in this

chapter.

Table 6.1: Definition of the Headings

Heading Meaning

prob Problem name in CUTEst

m Number of constraints

n Number of primal variables

Opt-f(x) Optimal value of objective function

Opt-First Norm of first order optimality

Opt-Stny Norm of stationarity, i.e., ||g(x∗)− J(x∗)Ty∗||

||c(x∗)|| Norm of constraint violations

OItr Number of outer iterations

FItr Number of inner iterations

CPU(s) Required CPU time (in seconds)

Conv Exit code:

1: Optimal solution found

0: Failure due to iteration limit reached

2: Converge to an infeasible stationary point

3: Failure due to time limit reached (10800 seconds)

113

6.1 Numerical Results of Primal-Dual Path-Following

Augmented Lagrangian Method

This section provides the numerical results of the primal-dual path-following aug-

mented Lagrangian method (PDAL) described in Chapter 3. Problems from CUTEst in

all-equality form are tested, i.e., in the form (NEP):

minimize
x∈Rn

f(x) subject to c(x) = 0. (NEP)

The proposed algorithm has both “outer” and “inner” iterations, defined by “OItr”

and “FItr” in the table. In the outer iteration, the penalty parameter and multipliers

estimate are updated, and the optimality conditions are tested. In the inner iteration,

the merit function M(x, y; yE
k , µ) defined in (3.17) is minimized, and the penalty parameter

is allowed to increase sometimes for numerical benefits.

The default parameters are listed in Table 6.2. The specific meaning of each parameter

can be referred to Algorithm 3.3 and Algorithm 3.4 in Chapter 3.

Table 6.2: Default parameters used in PDAL

Parameter value Parameter value

as 0.1 εs 1e-7

σs 0.2 γc 0.5

ρs 0.9 α0 1.0

ηs 1.0e-2 µ0 0.1

x0 prob.x MaxIItn 10

Inf 1e+15 MaxItn 1500

All together, 73 out of the 74 tested problems are solved successfully with the optimal

solution found. The only failure is MSS2, which most existing software finds hard to solve.

114

Table 6.3: Numerical Results of PDAL

Prob m n Opt-f(x) Opt-Stny ||c(x∗)|| OItr FItr CPU(s) Conv

ARGTRIG 200 200 0.00000e+00 5.49084e-10 1.41947e-10 5 0 0.229810 1

BT1 1 2 -1.00000e+00 2.84217e-14 1.95399e-14 9 14 0.324616 1

BT2 1 3 3.25682e-02 2.75224e-09 1.46824e-09 12 0 0.067248 1

BT3 3 5 4.09302e+00 8.88178e-16 6.75581e-08 5 0 0.042930 1

BT4 2 3 -4.55105e+01 6.99231e-09 4.80356e-15 9 11 0.476788 1

BT5 2 3 9.61715e+02 5.88132e-08 1.58882e-14 10 10 0.247276 1

BT6 2 5 2.77045e-01 3.41272e-08 1.00357e-13 12 3 0.057052 1

BT7 3 5 3.06499e+02 7.82834e-08 8.88178e-16 42 118 0.435378 1

BT8 2 5 1.00000e+00 9.13233e-08 9.97801e-08 13 0 0.011517 1

BT9 2 4 -1.00000e+00 1.46397e-08 2.43629e-10 10 0 0.008416 1

BT10 2 2 -1.00000e+00 1.17402e-11 7.23266e-15 8 0 0.011576 1

BT11 3 5 8.24891e-01 4.89242e-09 1.58955e-11 7 1 0.013968 1

BT12 3 5 6.18812e+00 7.86596e-11 1.52906e-12 6 0 0.006814 1

BOOTH 2 2 0.00000e+00 1.22277e-08 1.56796e-09 4 0 0.067839 1

BROWNALE 200 200 0.00000e+00 4.00449e-09 3.83438e-11 7 0 0.283986 1

BYRDSPHR 2 3 -4.68330e+00 8.03247e-09 2.17039e-08 7 20 0.348069 1

CHANDHEQ 100 100 0.00000e+00 8.83994e-08 1.18458e-08 15 0 0.283138 1

CHANDHEU 500 500 0.00000e+00 8.99585e-08 2.65607e-08 15 0 6.880703 1

CLUSTER 2 2 0.00000e+00 3.33714e-12 1.52494e-11 9 0 0.010396 1

CUBENE 2 2 0.00000e+00 8.30210e-09 2.54709e-10 5 1 0.079753 1

EIGMAXB 101 101 -9.67435e-04 5.00775e-10 2.12520e-15 13 60 0.717963 1

EIGMAXC 202 202 -1.00000e+00 1.09871e-08 6.63260e-15 9 10 0.863621 1

EIGMINB 101 101 9.67435e-04 1.01473e-11 1.83735e-15 14 63 0.732214 1

EIGMINC 202 202 1.00000e+00 9.21129e-09 5.04252e-14 9 10 0.805016 1

GENHS28 8 10 9.27174e-01 2.22045e-16 3.68100e-08 4 0 0.012480 1

GOTTFR 2 2 0.00000e+00 6.26224e-13 7.39327e-14 8 11 0.167976 1

HATFLDF 3 3 0.00000e+00 3.00428e-13 8.21021e-17 11 20 0.223787 1

HATFLDG 25 25 0.00000e+00 1.87041e-10 4.81917e-12 7 10 0.123092 1

HEART6 6 6 0.00000e+00 3.42552e-18 1.23200e-14 40 260 6.615571 1

HEART8 8 8 0.00000e+00 9.05655e-15 3.33067e-16 12 30 0.181248 1

HIMMELBA 2 2 0.00000e+00 2.97834e-08 1.03777e-08 4 0 0.066296 1

HIMMELBC 2 2 0.00000e+00 8.08462e-08 2.41950e-08 6 10 0.135004 1

HIMMELBE 3 3 0.00000e+00 8.23424e-10 1.81998e-10 5 0 0.066122 1

HS100LNP 2 7 6.80630e+02 1.77636e-15 2.84556e-14 20 10 0.098372 1

HS111LNP 3 10 -4.77611e+01 6.10558e-08 3.05325e-08 10 5 0.048769 1

HS26 1 3 2.81121e-12 1.72766e-08 2.35156e-08 20 12 0.022988 1

HS27 1 3 4.00000e-02 1.08568e-12 5.58442e-14 6 1 0.083247 1

HS28 1 3 0.00000e+00 4.43728e-16 4.44089e-16 3 0 0.007645 1

115

Table 6.3: Numerical Results of PDAL (continued)

Prob m n Opt-f(x) Opt-Stny ||c(x∗)|| OItr FItr CPU(s) Conv

HS39 2 4 -1.00000e+00 1.46397e-08 2.43629e-10 10 0 0.037938 1

HS40 3 4 -2.50000e-01 5.93110e-09 1.34016e-11 7 2 0.054932 1

HS42 2 4 1.38579e+01 1.66859e-09 9.03895e-10 6 0 0.066704 1

HS46 2 5 6.19255e-10 8.54932e-08 1.39065e-09 18 20 1.093597 1

HS47 3 5 1.42212e-12 3.78873e-08 1.33944e-08 19 0 0.034106 1

HS48 2 5 0.00000e+00 0.00000e+00 0.00000e+00 3 0 0.005807 1

HS49 2 5 3.62439e-10 8.30436e-08 4.44089e-16 18 3 0.026359 1

HS50 3 5 1.51929e-64 1.28966e-17 6.28037e-16 10 0 0.009258 1

HS51 3 5 2.33974e-19 3.84452e-16 2.91421e-10 5 0 0.067605 1

HS52 3 5 5.32665e+00 8.88178e-16 1.47541e-11 6 0 0.006888 1

HS53 3 5 4.09302e+00 8.88178e-16 6.75581e-08 5 0 0.060449 1

HS56 4 7 -3.45600e+00 1.65648e-08 3.61299e-14 16 20 0.488529 1

HS6 1 2 5.04457e-17 7.09842e-09 5.90372e-11 4 2 0.079973 1

HS60 1 3 5.04457e-17 3.25834e-12 3.25834e-12 9 2 0.088096 1

HS61 2 3 -1.43646e+02 1.13687e-13 1.15879e-12 7 10 0.148419 1

HS7 1 2 -1.73205e+00 1.33338e-13 4.35207e-13 7 1 0.084446 1

HS77 2 5 2.41505e-01 2.22008e-08 1.17332e-09 10 2 0.110051 1

HS78 3 5 -2.91970e+00 3.49185e-08 3.71582e-12 7 1 0.084409 1

HS79 3 5 7.87768e-02 1.67192e-09 6.57084e-09 5 0 0.073266 1

HS8 2 2 -1.00000e+00 7.26249e-11 3.70990e-11 6 10 0.110542 1

HS9 1 2 -5.00000e-01 2.76909e-08 8.87042e-10 5 2 0.083123 1

HYDCAR20 99 99 0.00000e+00 7.13955e-12 2.54085e-13 23 120 1.304093 1

HYDCAR6 29 29 0.00000e+00 7.57366e-09 8.86869e-14 15 80 0.489626 1

HYPCIR 2 2 0.00000e+00 7.07905e-12 4.64338e-11 6 10 0.094463 1

INTEGREQ 500 502 0.00000e+00 1.20783e-08 1.22638e-07 4 0 2.251935 1

MARATOS 1 2 -1.00000e+00 4.19978e-11 8.37632e-11 6 0 0.066108 1

METHANB8 31 31 0.00000e+00 2.58376e-09 2.99989e-11 8 0 0.031527 1

METHANL8 31 31 0.00000e+00 1.45873e-08 3.87512e-13 11 22 0.403805 1

MSS1 73 90 -9.00000e+00 7.62993e-08 5.46212e-16 42 70 1.250480 1

MSS2 703 756 -4.80082e+02 2.76238e+00 2.94624e-01 6 1 10800 3

MWRIGHT 3 5 2.49788e+01 1.50090e-08 9.15513e-16 13 2 0.115340 1

ORTHREGB 6 27 2.20269e-26 3.37002e-12 1.46783e-14 6 0 0.078225 1

POWELLBS 2 2 0.00000e+00 1.20221e-16 2.27077e-16 19 120 0.370171 1

POWELLSQ 2 2 0.00000e+00 7.27007e-09 3.17057e-09 6 6 0.088129 1

RECIPE 3 3 0.00000e+00 3.53080e-09 9.32348e-08 15 0 0.087483 1

RSNBRNE 2 2 0.00000e+00 3.23758e-10 1.59191e-11 5 1 0.083472 1

S316-322 1 2 3.34315e+02 4.97131e-11 3.86133e-11 8 3 0.100933 1

SINVALNE 2 2 0.00000e+00 2.62161e-09 2.25440e-12 5 10 0.152583 1

ZANGWIL3 3 3 0.00000e+00 1.45923e-11 5.94197e-11 5 0 0.061785 1

116

6.2 Numerical Results of Primal-Dual Path-Following

Shifted Penalty-Barrier Method

This section provides the numerical results of the primal-dual path-following shifted

penalty-barrier method (PDPB) for (NIP) described in Chapter 5. Similar to the primal-dual

path-following augmented Lagrangian method, this method has both the “outer” and “inner”

iteration, defined by “OItr” and “FItr” in the table. The outer iterations update the mul-

tipliers estimate and adjust the penalty and barrier parameters depending on the feasibility

and complementarity violations. In the inner iteration, a primal-dual shifted penalty-barrier

merit functionM(x, s, y, w; yE , wE , µP , µB) defined in Equation (5.15) is minimized to restrict

the iterates to lie within current neighborhood of the trajectory. Problems in all-inequality

form, i.e., in the form of (NIP) from CUTEst are tested.

minimize
x∈Rn

f(x) subject to c(x) ≥ 0. (NIP)

Table 6.4 lists the default parameters. The specific meaning of each parameter is

described in Algorithm 5.1 and Algorithm 5.2.

Table 6.4: Default Parameters Used in PDPB

Parameter value Parameter value

aP 0.5 δ0 0.5

aB 0.75 ρ1 0.5

θµ 0.2 α0 1.0

γs 0.5 η1 0.5

γc 0.5 ηs 0.05

γe 2 ηe 0.25

yE
Max 1.0e+6 tiny 1.0e-12

Tol 1.0e-5 MaxItn 1500

Both the conventional trust-region method and a combined trust-region line-search

117

method have been applied for minimizing M(x, s, y, w; yE , wE , µP , µB) and their numerical

performance are compared. A detailed description of these two methods can be referred to

Algorithm 5.2 and Algorithm 5.3.

When minimizing the shifted barrier function where the logarithm term creates a

“barrier” near boundary, the next iterate not only has to guarantee the sufficient decrease

condition be satisfied but also has to be restricted in the interior of feasible region. Some-

times, the trust-region trial step is rejected simply because it falls into the infeasible region.

In this case, it may be too expensive to reduce trust-region radius and wait for the next

iterate to become feasible. Thus, line search strategy along the trust-region step that pulls

iterates back into the interior of feasible region will be cheaper than stalling and continuously

reducing the trust-region radius.

If the tested problems are in all-equality form, i.e., the slack variable s = 0, then the

numerical results are given in Table 6.5 where conventional trust-region method is applied,

and in Table 6.6 where the combined trust-region line-search method is applied. Otherwise,

if the set F = {x : c(x) > 0} is nonempty, the numerical results are given in Table 6.5 and

Table 6.6 respectively. It can be observed from those tables that the combined trust-region

line-search method will generally require fewer matrix factorizations and fewer iterations

than conventional trust-region method.

When s = 0, there will be no barrier term in the proposed primal-dual path-following

shifted penalty-barrier method, so only the penalty term is retained. In this case, the

proposed algorithm only fails to solve MSS2 due to the maximum running time limit is

reached. In the case where F = {x : c(x) > 0} is nonempty, this algorithm efficiently solves

most of the problems except a series of similar problems HS88, HS89, HS90, HS91 and HS92,

where it stops at a infeasible stationary point in these five special cases.

118

Table 6.5: Numerical Results of PDPB – With Trust-Region Method

Prob m n Opt-f(x) Opt-Stny ||c(x∗)|| OItr FItr CPU(s) Conv

ARGTRIG 200 200 0.00000e+00 7.43711e-11 7.99169e-09 3 4 0.952822 1

BT1 1 2 -9.99780e-01 5.99023e-08 2.20984e-06 6 751 0.861791 1

BT2 1 3 3.25682e-02 2.33638e-06 8.88559e-07 10 27 0.280940 1

BT3 3 5 4.09302e+00 4.44089e-16 1.90853e-07 2 8 0.171912 1

BT4 2 3 -4.55105e+01 4.02987e-08 2.64722e-07 2 53 0.195089 1

BT5 2 3 9.61715e+02 1.67374e-07 1.82205e-06 3 63 0.270413 1

BT6 2 5 2.77045e-01 1.36992e-08 1.92293e-09 9 23 0.294572 1

BT7 3 5 3.06038e+02 9.39800e-06 7.08547e-06 4 119 0.347058 1

BT8 2 5 1.00000e+00 2.74600e-06 4.67786e-06 8 10 0.234397 1

BT9 2 4 -1.00000e+00 2.48338e-08 2.69270e-07 6 9 0.181054 1

BT10 2 2 -1.00000e+00 1.31836e-06 7.23266e-15 5 6 0.221727 1

BT11 3 5 8.24885e-01 3.98395e-06 3.82443e-06 4 10 0.233964 1

BT12 3 5 6.18812e+00 3.70274e-13 2.11061e-11 4 34 0.255343 1

BOOTH 2 2 0.00000e+00 8.20186e-16 1.33227e-15 1 4 0.074317 1

BROWNALE 200 200 0.00000e+00 1.59080e-10 7.39680e-09 2 7 0.634235 1

BYRDSPHR 2 3 -4.68330e+00 1.72237e-09 1.90422e-06 5 96 0.351170 1

CHANDHEQ 100 100 0.00000e+00 9.21653e-07 1.79118e-06 7 11 0.452917 1

CHANDHEU 500 500 0.00000e+00 2.72999e-07 1.02360e-06 7 12 16.214911 1

CLUSTER 2 2 0.00000e+00 1.41126e-07 3.37438e-07 7 9 0.115730 1

CUBENE 2 2 0.00000e+00 1.60289e-16 1.11022e-15 3 25 0.199684 1

EIGMAXB 101 101 -9.67461e-04 3.04837e-08 4.51759e-08 6 256 5.822212 1

EIGMAXC 202 202 -1.00000e+00 1.23224e-07 3.88125e-13 3 6 1.071794 1

EIGMINB 101 101 9.67436e-04 8.17435e-12 1.33950e-10 7 247 30.551729 1

EIGMINC 202 202 1.00000e+00 3.14108e-09 1.27017e-07 3 6 1.069688 1

GENHS28 8 10 9.27174e-01 2.99349e-15 5.02258e-07 1 4 0.179981 1

GOTTFR 2 2 0.00000e+00 9.49538e-06 4.09181e-06 3 22 0.278952 1

HATFLDF 3 3 0.00000e+00 9.58511e-10 8.87424e-09 7 143 0.473387 1

HATFLDG 25 25 0.00000e+00 4.39815e-07 1.23535e-06 3 10 0.234190 1

HEART6 6 6 0.00000e+00 1.12858e-07 1.08957e-06 3 1690 2.117593 1

HEART8 8 8 0.00000e+00 5.16782e-10 2.87181e-08 2 133 0.328297 1

HIMMELBA 2 2 0.00000e+00 1.59941e-15 0.00000e+00 1 4 0.175033 1

HIMMELBC 2 2 0.00000e+00 1.75555e-06 5.29443e-06 1 6 0.158203 1

HIMMELBE 3 3 0.00000e+00 9.15623e-16 1.00000e-06 1 5 0.159197 1

HS100LNP 2 7 6.80630e+02 3.15786e-11 5.23143e-11 4 14 0.233470 1

HS111LNP 3 10 -4.77612e+01 5.78432e-06 4.14268e-06 8 60 0.278535 1

HS26 1 3 1.27430e-09 1.35845e-06 4.92545e-06 10 86 0.265542 1

HS27 1 3 4.00000e-02 4.24216e-11 3.94214e-08 15 122 0.526288 1

HS28 1 3 3.85186e-31 1.41307e-15 2.22045e-16 1 4 0.160659 1

119

Table 6.5: Numerical Results of PDPB – With Trust-Region Method (continued)

Prob m n Opt-f(x) Opt-Stny ||c(x∗)|| OItr FItr CPU(s) Conv

HS39 2 4 -1.00000e+00 2.48338e-08 2.69270e-07 6 9 0.200949 1

HS40 3 4 -2.50000e-01 2.51283e-09 6.08638e-08 3 33 0.227671 1

HS42 2 4 1.38579e+01 4.69410e-08 2.32192e-07 3 13 0.212463 1

HS46 2 5 5.96648e-10 4.77149e-07 6.04114e-06 11 23 0.170300 1

HS47 3 5 -2.67123e-02 5.54922e-08 2.66841e-06 8 42 0.187677 1

HS48 2 5 0.00000e+00 3.65426e-15 0.00000e+00 1 5 0.180120 1

HS49 2 5 2.05086e-08 6.85506e-06 1.33227e-15 13 16 0.293868 1

HS50 3 5 1.91548e-18 3.04341e-10 2.92808e-09 7 10 0.208468 1

HS51 3 5 4.29979e-13 1.05241e-14 4.08939e-07 1 4 0.164597 1

HS52 3 5 5.32664e+00 1.53837e-15 4.77340e-07 2 5 0.243172 1

HS53 3 5 4.09302e+00 9.93014e-16 1.90853e-07 2 5 0.280386 1

HS56 4 7 -3.45600e+00 1.07917e-06 8.18490e-08 3 98 0.314760 1

HS6 1 2 3.65538e-14 3.82414e-07 6.54531e-07 10 143 0.624099 1

HS60 1 3 3.25682e-02 8.57865e-10 1.95316e-10 4 50 0.309392 1

HS61 2 3 -1.43646e+02 2.97752e-08 1.33597e-07 2 58 0.230313 1

HS7 1 2 -1.73205e+00 4.85740e-11 2.41995e-10 6 45 0.332307 1

HS77 2 5 2.41505e-01 2.42202e-09 6.81452e-10 9 24 0.280364 1

HS78 3 5 -2.91970e+00 3.41112e-09 4.67863e-09 3 36 0.195700 1

HS79 3 5 7.87768e-02 9.36802e-06 3.31779e-06 3 5 0.207189 1

HS8 2 2 -1.00000e+00 8.56648e-10 1.67585e-08 2 7 0.151906 1

HS9 1 2 -5.00000e-01 2.44869e-14 1.77636e-15 4 5 0.233552 1

HYDCAR20 99 99 0.00000e+00 6.94830e-10 2.70142e-12 15 3265 72.639923 1

HYDCAR6 29 29 0.00000e+00 1.06478e-09 1.23769e-08 9 520 2.172299 1

HYPCIR 2 2 0.00000e+00 4.88113e-06 5.81552e-06 1 5 0.181564 1

INTEGREQ 500 502 0.00000e+00 2.44596e-10 3.25265e-08 2 5 6.066171 1

MARATOS 1 2 -1.00000e+00 5.16311e-08 9.33994e-07 4 40 0.211696 1

METHANB8 31 31 0.00000e+00 2.06141e-07 1.18209e-06 3 4 0.254157 1

METHANL8 31 31 0.00000e+00 3.72736e-11 9.58332e-09 7 74 0.743951 1

MSS1 73 90 -1.60000e+01 6.32760e-09 2.06310e-15 19 1138 14.708731 1

MSS2 703 756 -4.70743e+02 5.76711e+02 2.60104e-01 4 722 10800 3

MWRIGHT 3 5 2.49788e+01 1.78438e-06 4.93969e-06 3 13 0.259208 1

ORTHREGB 6 27 1.67903e-17 1.25817e-07 2.55146e-12 10 281 1.089761 1

POWELLBS 2 2 0.00000e+00 2.11131e-06 5.74141e-10 7 146 3.681982 1

POWELLSQ 2 2 0.00000e+00 4.15097e-09 7.73387e-10 9 3453 2.781519 1

RECIPE 3 3 0.00000e+00 1.97045e-06 4.34753e-10 8 13 0.211220 1

RSNBRNE 2 2 0.00000e+00 8.89737e-17 0.00000e+00 3 25 0.252081 1

S316-322 1 2 3.34314e+02 1.89984e-09 1.28399e-06 6 76 0.249859 1

SINVALNE 2 2 0.00000e+00 5.84730e-15 2.87811e-10 2 27 0.194386 1

ZANGWIL3 3 3 0.00000e+00 3.38529e-15 3.81378e-15 2 9 0.167490 1

120

Table 6.5: Numerical Results of PDPB – With Trust-Region Method (continued)

Prob m n Opt-f(x) Opt-Stny Opt-Comp OItr FItr CPU(s) Conv

EXPFITA 22 5 1.13661e-03 4.99541e-14 2.60840e-11 29 53 0.766353 1

EXPFITB 102 5 5.01937e-03 2.24062e-13 2.09330e-10 24 113 7.320574 1

EXPFITC 502 5 2.33013e-02 5.51434e-11 9.81935e-07 26 151 313.492405 1

GIGOMEZ1 3 3 -3.00000e+00 7.22371e-10 1.74803e-09 7 44 0.366754 1

GIGOMEZ2 3 3 1.95222e+00 4.09806e-09 7.50766e-09 9 17 0.325394 1

GIGOMEZ3 3 3 2.00000e+00 1.65262e-10 1.56760e-09 8 11 0.277596 1

HS10 1 2 -1.00000e+00 1.59009e-09 1.63575e-09 8 13 0.215553 1

HS100 4 7 6.80630e+02 4.48219e-11 6.74230e-10 10 26 0.331773 1

HS100MOD 4 7 6.78680e+02 1.63875e-14 5.41995e-14 26 44 0.594596 1

HS11 1 2 -8.49849e+00 3.90313e-09 4.00553e-09 6 11 0.242098 1

HS113 8 10 2.43062e+01 4.17379e-13 2.87606e-10 15 33 0.429074 1

HS12 1 2 -3.00000e+01 9.44711e-11 7.36180e-11 7 23 0.301156 1

HS22 2 2 1.00001e+00 7.86918e-10 1.82354e-08 5 9 0.237382 1

HS268 5 5 3.27418e-11 7.07829e-12 2.90682e-07 24 62 0.563898 1

HS29 1 3 -2.26274e+01 1.77636e-15 3.67949e-13 6 35 0.298755 1

HS43 3 4 -4.39999e+01 5.36912e-09 2.63859e-08 8 32 0.311707 1

HS88 5 10 5.71642e-18 2.88136e-09 2.16212e-03 5 10 0.263530 2

HS89 1 3 5.40608e-01 5.54237e-09 4.49043e-05 7 23 0.288065 2

HS90 1 4 5.47649e-01 4.95812e-09 8.68826e-05 7 42 0.393203 2

HS91 1 5 5.70836e-01 1.54280e-10 3.89287e-05 7 49 0.470243 2

HS92 1 6 4.50754e-01 3.09376e-09 6.42206e-05 5 39 0.484255 2

MADSEN 6 3 6.16429e-01 2.35452e-10 4.39974e-09 11 39 0.378771 1

MINMAXRB 4 3 -3.20909e-09 2.64233e-14 3.77907e-09 7 72 0.433615 1

S268 5 5 3.27418e-11 7.07829e-12 2.90682e-07 24 62 0.530553 1

SPIRAL 2 3 -7.38762e-13 1.16258e-10 2.69270e-16 9 131 0.497645 1

VANDERM1 199 100 0.00000e+00 1.77153e-13 1.19263e-11 30 58 27.813040 1

VANDERM2 199 100 0.00000e+00 1.77153e-13 1.19263e-11 30 58 27.597196 1

VANDERM3 199 100 0.00000e+00 3.75000e-12 1.29209e-11 20 44 20.435622 1

WOMFLET 3 3 -8.42719e-15 4.21885e-15 1.31224e-15 8 52 0.371955 1

121

Table 6.6: Numerical Results of PDPB – With Combined Trust-Region Line-Search Method

Prob m n Opt-f(x) Opt-Stny ||c(x∗)|| OItr FItr CPU(s) Conv

ARGTRIG 200 200 0.00000e+00 8.06606e-09 7.99169e-09 3 4 1.272725 1

BT1 1 2 -9.99128e-01 2.59542e-07 8.76799e-06 5 1138 2.315680 1

BT2 1 3 3.25682e-02 1.29598e-09 5.03859e-10 13 40 0.291255 1

BT3 3 5 4.09302e+00 4.44089e-16 1.90853e-07 2 8 0.187089 1

BT4 2 3 -4.55105e+01 1.20004e-09 5.59273e-08 2 29 0.218116 1

BT5 2 3 9.61715e+02 5.31689e-13 3.63165e-11 3 32 0.217986 1

BT6 2 5 2.77045e-01 9.06976e-06 4.70017e-07 8 12 0.211533 1

BT7 3 5 3.60382e+02 3.65579e-06 4.90734e-06 5 15 0.193667 1

BT8 2 5 1.00000e+00 2.74600e-06 4.67786e-06 8 10 0.211385 1

BT9 2 4 -1.00000e+00 2.48338e-08 2.69270e-07 6 9 0.181574 1

BT10 2 2 -1.00000e+00 3.44373e-07 1.31836e-06 5 6 0.189296 1

BT11 3 5 8.24885e-01 1.25108e-09 7.45289e-08 5 9 0.214555 1

BT12 3 5 6.18812e+00 3.65028e-07 2.56367e-06 5 39 0.266790 1

BOOTH 2 2 0.00000e+00 8.20186e-16 1.33227e-15 1 4 0.113742 1

BROWNALE 200 200 0.00000e+00 1.59080e-10 7.39680e-09 2 7 0.704079 1

BYRDSPHR 2 3 -4.68330e+00 6.80735e-12 6.21694e-11 6 76 0.428139 1

CHANDHEQ 100 100 0.00000e+00 9.21653e-07 1.79118e-06 7 11 0.752851 1

CHANDHEU 500 500 0.00000e+00 2.72999e-07 1.02360e-06 7 12 16.127269 1

CLUSTER 2 2 0.00000e+00 1.41126e-07 3.37438e-07 7 9 0.165137 1

CUBENE 2 2 0.00000e+00 1.55411e-13 9.19242e-07 5 11 0.224762 1

EIGMAXB 101 101 -2.41391e-02 2.87081e-06 4.92425e-07 7 113 2.900165 1

EIGMAXC 202 202 -1.00000e+00 2.04706e-09 1.23224e-07 3 6 1.036842 1

EIGMINB 101 101 8.70136e-03 3.17435e-06 3.05175e-07 6 125 3.528658 1

EIGMINC 202 202 1.00000e+00 3.14108e-09 1.27017e-07 3 6 1.209293 1

GENHS28 8 10 9.27174e-01 2.99349e-15 5.02258e-07 1 4 0.197985 1

GOTTFR 2 2 0.00000e+00 7.71694e-06 3.75938e-06 3 7 0.238518 1

HATFLDF 3 3 0.00000e+00 5.05935e-09 2.46610e-10 7 66 0.365711 1

HATFLDG 25 25 0.00000e+00 1.43030e-08 1.36108e-07 4 8 0.181484 1

HEART6 6 6 0.00000e+00 5.55477e-12 4.52767e-11 3 677 1.504923 1

HEART8 8 8 0.00000e+00 3.34916e-07 7.06718e-07 2 39 0.211308 1

HIMMELBA 2 2 0.00000e+00 1.59941e-15 0.00000e+00 1 4 0.140900 1

HIMMELBC 2 2 0.00000e+00 1.75555e-06 5.29443e-06 1 6 0.149396 1

HIMMELBE 3 3 0.00000e+00 9.15623e-16 1.00000e-06 1 5 0.156458 1

HS100LNP 2 7 6.80630e+02 5.41698e-09 1.85731e-09 4 22 0.218618 1

HS111LNP 3 10 -4.77612e+01 2.21969e-07 1.52999e-07 9 54 0.283487 1

HS26 1 3 3.20965e-14 2.02687e-07 2.49163e-06 10 49 0.323904 1

HS27 1 3 4.00000e-02 1.42986e-09 4.91685e-07 10 70 0.382045 1

HS28 1 3 3.85186e-31 1.41307e-15 2.22045e-16 1 4 0.183492 1

122

Table 6.6: Numerical Results of PDPB – With Combined Trust-Region Line-Search Method (continued)

Prob m n Opt-f(x) Opt-Stny ||c(x∗)|| OItr FItr CPU(s) Conv

HS39 2 4 -1.00000e+00 2.48338e-08 2.69270e-07 6 9 0.186183 1

HS40 3 4 -2.50000e-01 2.99075e-08 5.09329e-08 4 18 0.189881 1

HS42 2 4 1.38579e+01 7.54255e-06 2.28365e-06 3 9 0.175114 1

HS46 2 5 7.50615e-10 5.66017e-07 6.76763e-06 12 16 0.240622 1

HS47 3 5 5.71366e-10 2.88479e-06 7.22961e-07 7 21 0.288569 1

HS48 2 5 4.93038e-32 3.65426e-15 0.00000e+00 1 5 0.165841 1

HS49 2 5 2.05086e-08 6.85506e-06 1.33227e-15 13 16 0.229758 1

HS50 3 5 1.91548e-18 3.04341e-10 2.92808e-09 7 10 0.196628 1

HS51 3 5 4.29979e-13 1.05241e-14 4.08939e-07 1 4 0.140374 1

HS52 3 5 5.32664e+00 1.53837e-15 4.77340e-07 2 5 0.144989 1

HS53 3 5 4.09302e+00 9.93014e-16 1.90853e-07 2 5 0.184323 1

HS56 4 7 -3.45600e+00 6.50545e-08 9.16030e-09 3 57 0.269088 1

HS6 1 2 1.12189e-13 6.69930e-07 1.16893e-06 11 188 0.704800 1

HS60 1 3 3.25682e-02 2.40142e-06 9.34017e-07 4 39 0.276654 1

HS61 2 3 -1.43646e+02 1.97692e-07 2.57440e-07 2 40 0.190021 1

HS7 1 2 -1.73205e+00 2.32806e-10 9.09067e-10 6 28 0.276134 1

HS77 2 5 2.41505e-01 1.20612e-06 1.07632e-07 8 13 0.251527 1

HS78 3 5 -2.91970e+00 1.37457e-06 1.55949e-06 2 19 0.203791 1

HS79 3 5 7.87768e-02 9.36802e-06 3.31779e-06 3 5 0.174588 1

HS8 2 2 -1.00000e+00 8.56648e-10 1.67585e-08 2 7 0.162667 1

HS9 1 2 -5.00000e-01 2.44869e-14 1.77636e-15 4 5 0.204034 1

HYDCAR20 99 99 0.00000e+00 8.33355e-07 3.22427e-08 14 1839 46.196419 1

HYDCAR6 29 29 0.00000e+00 1.86043e-06 3.74133e-06 8 194 1.413919 1

HYPCIR 2 2 0.00000e+00 4.88113e-06 5.81552e-06 1 5 0.181564 1

INTEGREQ 500 502 0.00000e+00 2.44596e-10 3.25265e-08 2 5 5.037539 1

MARATOS 1 2 -1.00000e+00 7.69744e-10 4.25298e-09 4 23 0.205090 1

METHANB8 31 31 0.00000e+00 2.06141e-07 1.18209e-06 3 4 0.199214 1

METHANL8 31 31 0.00000e+00 1.81779e-09 1.30471e-08 5 11 0.280644 1

MSS1 73 90 -1.60000e+01 2.84308e-08 4.02030e-09 15 750 11.036012 1

MSS2 703 756 -4.70743e+02 5.76711e+02 2.60104e-01 4 722 10800 3

MWRIGHT 3 5 2.49788e+01 7.62659e-06 2.25925e-06 3 8 0.217571 1

ORTHREGB 6 27 1.96510e-14 9.90443e-06 8.83928e-09 8 260 1.173991 1

POWELLBS 2 2 0.00000e+00 1.11824e-08 2.87932e-11 14 156 6.415692 1

POWELLSQ 2 2 0.00000e+00 8.23021e-06 2.09012e-06 6 179 0.347545 1

RECIPE 3 3 0.00000e+00 1.97045e-06 4.34753e-10 8 13 0.218666 1

RSNBRNE 2 2 0.00000e+00 1.75346e-16 2.22045e-15 3 13 0.208964 1

S316-322 1 2 3.34314e+02 2.36584e-08 4.55391e-06 6 50 0.228420 1

SINVALNE 2 2 0.00000e+00 6.88650e-19 9.38963e-16 2 18 0.249397 1

ZANGWIL3 3 3 0.00000e+00 3.38529e-15 3.81378e-15 2 9 0.161238 1

123

Table 6.6: Numerical Results of PDPB – With Combined Trust-Region Line-Search Method(continued)

Prob m n Opt-f(x) Opt-Stny Opt-Comp OItr FItr CPU(s) Conv

EXPFITA 22 5 1.13661e-03 4.99541e-14 2.60840e-11 29 53 0.802748 1

EXPFITB 102 5 5.01937e-03 2.24062e-13 2.09330e-10 24 113 5.884853 1

EXPFITC 502 5 2.33013e-02 5.51434e-11 9.81935e-07 26 151 310.223433 1

GIGOMEZ1 3 3 -3.00000e+00 3.34093e-10 1.23977e-09 6 50 0.399629 1

GIGOMEZ2 3 3 1.95222e+00 4.09806e-09 7.50766e-09 9 17 0.406706 1

GIGOMEZ3 3 3 2.00000e+00 1.65262e-10 1.56760e-09 8 11 0.320078 1

HS10 1 2 -1.00000e+00 1.59009e-09 1.63575e-09 8 13 0.266225 1

HS100 4 7 6.80630e+02 4.48219e-11 6.74230e-10 10 26 0.356232 1

HS100MOD 4 7 6.78680e+02 4.27177e-14 5.64757e-14 25 40 0.557153 1

HS11 1 2 -8.49849e+00 3.90313e-09 4.00553e-09 6 11 0.273735 1

HS113 8 10 2.43062e+01 4.17379e-13 2.87606e-10 15 35 0.404290 1

HS12 1 2 -3.00000e+01 3.79642e-13 5.00945e-11 6 19 0.277470 1

HS22 2 2 1.00001e+00 7.86918e-10 1.82354e-08 5 9 0.237382 1

HS268 5 5 3.27418e-11 7.07829e-12 2.90682e-07 24 62 0.563898 1

HS29 1 3 -2.26274e+01 1.32990e-13 1.51649e-12 5 22 0.319252 1

HS43 3 4 -4.39999e+01 6.70764e-09 5.89163e-08 8 26 0.360654 1

HS88 5 10 5.71642e-18 2.88136e-09 2.16212e-03 5 10 0.312474 2

HS89 1 3 5.40098e-01 5.79596e-09 4.50112e-05 7 18 0.391706 2

HS90 1 4 5.47648e-01 2.96035e-09 8.68831e-05 7 19 0.467704 2

HS91 1 5 4.72821e-01 2.10720e-11 5.83515e-05 5 20 0.445347 2

HS92 1 6 4.90790e-01 5.86898e-13 2.69504e-05 6 24 0.514359 2

MADSEN 6 3 6.16430e-01 1.97249e-10 4.30007e-09 11 41 0.534958 1

MINMAXRB 4 3 -4.52210e-16 1.40756e-10 2.27653e-08 6 46 0.410297 1

S268 5 5 3.27418e-11 7.07829e-12 2.90682e-07 24 62 0.632436 1

SPIRAL 2 3 -1.36224e-11 9.41038e-10 1.36102e-14 8 73 0.419347 1

VANDERM1 199 100 0.00000e+00 7.83180e-14 3.28268e-12 18 41 19.142302 1

VANDERM2 199 100 0.00000e+00 1.77153e-13 1.19263e-11 18 41 18.721808 1

VANDERM3 199 100 0.00000e+00 2.88437e-13 1.26707e-12 33 47 24.838323 1

WOMFLET 3 3 -2.00215e-10 3.06189e-12 1.87451e-12 6 34 0.423700 1

124

Bibliography

[1] R. Andreani, J. M. Martinez, A. Ramos, and P. J. Silva. A cone-continuity constraint
qualification and algorithmic consequences. Optimization Online, 2015.

[2] P. Armand, J. Benoist, R. Omheni, and V. Pateloup. Study of a primal-dual algorithm
for equality constrained minimization. Computational Optimization and Applications,
59(3):405–433, 2014.

[3] P. Armand and R. Omheni. A globally and quadratically convergent primal–dual aug-
mented Lagrangian algorithm for equality constrained optimization. Optimization Meth-
ods and Software, 32(1):1–21, 2017.

[4] D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE
Trans. Automatic Control, AC-21(2):174–184, 1976.

[5] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Athena
Scientific, Belmont, Massachusetts, 1996.

[6] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson. An estimate for the
condition number of a matrix. SIAM J. Numer. Anal., 16(2):368–375, 1979.

[7] R. Courant. Variational methods for the solution of problems of equilibrium and vibra-
tions. Bull. Amer. Math. Soc., 49(1):1–23, 01 1943.

[8] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. John Wiley and Sons, Inc., New York-London-Sydney, 1968.

[9] A. V. Fiacco and G. P. McCormick. Nonlinear Programming. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, second edition, 1990. Reprint of the 1968 original.

[10] A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex nonlinear
programming. Numerical Analysis Report 96-3, Department of Mathematics, University
of California, San Diego, La Jolla, CA, 1996.

[11] A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex nonlinear
programming. SIAM J. Optim., 8:1132–1152, 1998.

[12] A. Forsgren, P. E. Gill, and E. Wong. Primal and dual active-set methods for convex
quadratic programming. Math. Program., 159:460–508, 2016.

125

[13] A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear optimization.
SIAM Rev., 44:525–597, 2002.

[14] A. L. Forsgren, P. E. Gill, and W. Murray. A modified Newton method for unconstrained
minimization. Report SOL 89-12, Department of Operations Research, Stanford Uni-
versity, Stanford, CA, 1989.

[15] E. M. Gertz. Combination Trust-Region Line-Search Methods for Unconstrained Opti-
mization. PhD thesis, Department of Mathematics, University of California, San Diego,
1999.

[16] E. M. Gertz. A quasi-Newton trust-region method. Math. Program., 100(3, Ser. A):447–
470, 2004.

[17] E. M. Gertz and P. E. Gill. A primal-dual trust-region algorithm for nonlinear pro-
gramming. Numerical Analysis Report NA 02-1, University of California, San Diego,
2002.

[18] P. E. Gill, V. Kungurtsev, and D. P. Robinson. A stabilized sqp method: superlinear
convergence. Mathematical Programming, 163(1):369–410, 2017.

[19] P. E. Gill, V. Kungurtsev, and D. P. Robinson. A shifted primal-dual penalty-barrier
method for nonlinear optimization. 2018.

[20] P. E. Gill, V. Kungurtsev, and D. P. Robinson. A shifted primal-dual penalty-barrier
method for nonlinear optimization. Center for Computational Mathematics Report
CCoM 19-03, University of California, San Diego, 2019.

[21] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders. Primal-dual methods for
linear programming. Report SOL 91-3, Department of Operations Research, Stanford
University, Stanford, CA, 1991.

[22] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders. Solving reduced KKT
systems in barrier methods for linear and quadratic programming. Report SOL 91-7,
Department of Operations Research, Stanford University, Stanford, CA, 1991.

[23] P. E. Gill, W. Murray, D. B. Ponceleón, and M. A. Saunders. Preconditioners for
indefinite systems arising in optimization. SIAM J. Matrix Anal. Appl., 13:292–311,
1992.

[24] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Rev., 47:99–131, 2005.

[25] P. E. Gill and D. P. Robinson. A primal-dual augmented Lagrangian. Numerical
Analysis Report 08-2, Department of Mathematics, University of California, San Diego,
La Jolla, CA, 2008.

[26] P. E. Gill and E. Wong. Sequential quadratic programming methods. In J. Lee and
S. Leyffer, editors, Mixed Integer Nonlinear Programming, volume 154 of The IMA
Volumes in Mathematics and its Applications, pages 147–224. Springer New York, 2012.

126

[27] P. E. Gill and E. Wong. Methods for convex and general quadratic programming. Math.
Prog. Comp., 7:71–112, 2015.

[28] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEr and SifDec: A constrained and
unconstrained testing environment, revisited. ACM Trans. Math. Software, 29(4):373–
394, 2003.

[29] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and uncon-
strained testing environment with safe threads. Technical report, Rutherford Appleton
Laboratory, Chilton, England, 2013.

[30] M. R. Hestenes. Multiplier and gradient methods. J. Optim. Theory Appl., 4:303–320,
1969.

[31] J. J. Moré and D. C. Sorensen. On the use of directions of negative curvature in a
modified Newton method. Math. Program., 16:1–20, 1979.

[32] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci. and Statist.
Comput., 4:553–572, 1983.

[33] S. G. Nash, R. Polyak, and A. Sofer. Numerical comparison of barrier and modified-
barrier methods for large-scale bound-constrained optimization. In D. W. Hearn and
P. M. Pardalos, editors, Large-Scale Optimization: State of the Art, pages 319–338.
Kluwer, Dordrecht, 1994.

[34] J. Nocedal and Y.-X. Yuan. Combining trust region and line search techniques. In
Advances in Nonlinear Programming (Beijing, 1996), volume 14 of Appl. Optim., pages
153–175. Kluwer Acad. Publ., Dordrecht, 1998.

[35] R. A. Polyak. Modified barrier functions (theory and methods). Math. Program., 54(2,
Ser. A):177–222, 1992.

[36] M. J. D. Powell. A method for nonlinear constraints in minimization problems. In
R. Fletcher, editor, Optimization, pages 283–298, London and New York, 1969. Aca-
demic Press.

[37] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, editor, Nu-
merical Methods for Nonlinear Algebraic Equations, pages 87–114. Gordon and Breach,
1970.

[38] M. J. D. Powell. A new algorithm for unconstrained optimization. In J. B. Rosen, O. L.
Mangasarian, and K. Ritter, editors, Nonlinear Programming (Proc. Sympos., Univ. of
Wisconsin, Madison, Wis., 1970), pages 31–65. Academic Press, New York, 1970.

[39] M. J. D. Powell. Convergence properties of a class of minimization algorithms. In O. L.
Mangasarian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear Programming, 2
(Proc. Sympos. Special Interest Group on Math. Programming, Univ. Wisconsin, Madi-
son, Wis., 1974), pages 1–27. Academic Press, New York, 1974.

127

[40] M. J. D. Powell. On the global convergence of trust region algorithms for unconstrained
minimization. Math. Programming, 29(3):297–303, 1984.

[41] D. P. Robinson. Primal-Dual Methods for Nonlinear Optimization. PhD thesis, Depart-
ment of Mathematics, University of California San Diego, La Jolla, CA, 2007.

[42] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey,
1970.

[43] D. C. Sorensen. Newton’s method with a model trust region modification. SIAM J.
Numer. Anal., 19(2):409–426, 1982.

[44] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization.
In I. S. Duff, editor, Sparse Matrices and Their Uses, pages 57–88, London and New
York, 1981. Academic Press.

[45] M. H. Wright. Ill-conditioning and computational error in interior methods for nonlinear
programming. SIAM J. Optim., 9(1):84–111, 1998.

128

	Signature Page
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Problem Description
	Contributions of This Dissertation
	Notation
	Some Useful Results

	Background
	Optimality Conditions
	Optimality Conditions for (NEP)
	Optimality Conditions for (NIP)

	Newton's Method and Line Search
	Newton's Method
	Model-Based Line Search Methods

	A Primal-Dual Path-Following Augmented Lagrangian Method
	Introduction
	Background
	The Penalty Function Method
	Augmented Lagrangian Method

	Motivation of The Proposed Algorithm
	Description of the Proposed Algorithm
	Description of The Outer Iteration
	Description of the Inner Iteration

	Convergence Analysis
	Acknowledgement

	A Combined Trust-Region Line-Search Method
	Background on Trust-Region Methods
	A Combined Trust-Region Line-Search Method
	Convergence of the Trust-Region Method
	Computing a Trust-Region Step

	A Primal-Dual Path-Following Shifted Penalty-Barrier Method
	Introduction
	Background
	Conventional Barrier Method
	Modified Primal-Dual Interior Methods

	Description of the Proposed Algorithm
	Algorithm Overview
	Description of the Outer Iteration
	A Shifted Penalty-Barrier Merit Function
	Description of the Inner Iteration

	Convergence Analysis
	Acknowledgement

	Numerical Implementations
	Numerical Results of Primal-Dual Path-Following Augmented Lagrangian Method
	Numerical Results of Primal-Dual Path-Following Shifted Penalty-Barrier Method

	Bibliography

