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ABSTRACT
Peiérls’ Théorém and thé Bogoliubov inéquality are used to derive a
variaetional prinéiple for the grand partition function of a quantum mechanical
system. The variational principle is applied to the case of a general non- |
relativistic Hamiltonian with two~body forces, under tﬁe special Bégéliubov

transformation.
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1. INTRODﬁCTIONf
' Since‘the 6riginal'work of Bethe1 35 years ago, much effort has been

devoted to the calculation of level densities and other nuclear statistical |
. properties (see in particular the review article by Eriésone). But bnly in
recent years has there been any effort to obtain levei:densities directly starting
from a realistic Hamil£onian.3' |

In nuclear ph&sics, the systems éonsidered ha;e léss than 300 particles.
We cannot simply take over concepts from-ordinary,theimodynamics, i.e. systems
with over 1020 pafticles. The éoncept of the grand paftitibn function is‘intro-
duced abstrgétly.

Consider first a system with one kind of"particlé A state of the system
is defined by‘2 constants of the motion, the numbef of particles N and the energy
E. | |

The gfand partition function is defined as

7 = Z exp B(uwv' - E') o | (1.1)
N'E' | o

. L :
where the sum is over all possible values of N' and E'. The sum over energies

can be replaced by an integral if the proper weighting function is inserted;
this is none other than-the level density p(N,E). Strictly spesking o(N,E) is

defined as

o(N,E) = Z §(E - i«:') .
E! .
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In practice the level density is considered to be a continuous function.' Thus

Z = Z [dE' p(N', E') exp (av' - BE') , (1.2)
N' . ' .

where we have written

|
a=B8u . - (1.3)
The grand partition function is essentially a Laplace transform of the
level density; the latter can be obtained by inversion.  Specifically b(N,E)
is the inverse Laplace transform of the coefficient of:exp (oN) in the grand

partition function:

» Y+ico +1ﬂ . . ‘
p(N,E) = (Qm) f aB f , (1.4)
Y-ico Yu-im : -
where
= 0nZ - ol + BE . T (1.5)

The integrals in Eq. (1.4) can be evaluated approximately by the method

of steepest deséent. The exponent S has a saddle point at

3 4nZ 0 AnZ o . | : '
. . E= =~ 38 . . (1.6)

Then the level density is given approximately by

S :
- € ‘ : o
p(N’E) = o Dl/2 s : (1'7)




where

9%z 5%nz
2 538
|
2%z 3%z
909 862

all evaluated at the saddle point.
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. o (1.8)

" The exact values of the energies E' of the nuclear states are not known.

So 72 will be_rewritten as

7 = mp o~B(H = UN) ,

(1.9)

where H and N are now quantum mechanical operators. This permits the evaluation

of Z in any convenient set of quantum states.

It is simple to generalize this treatment to a system with two kinds of

particles, neutrons and protons.

Z = Tr exp [-B(H ~ Hy Nn - up NP)] .

~

The grand partition function becomes

(1.10)

Nn’ NP are number operators for neutrons and protons. Proceeding as before

S

e
P (Qn)3/2D172

p(N, N_, E)

)]
s

where

nZ - a N
n'n

(1.11)

- o_ N_+ BE (1.12)

P P ?
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9%z 3°4nZ 9%0n7
aocn2 aanaap aanBB
b | 2wz 3%z 5%4nz S O (113)
0. da 2 o 9R ? -t
n p - 90 o)
S |

9807 9°4nZ 52407

v _BanBB Bapas 882

all evaluated at the saddle point defined by

_ 9 2nZ -9tz . _ 9 %nz - _ ,
N, = o, NS o E =-S5 o (1.1k)

The angular momentum dependence of the level density.can be obtained by
addihg another constant of the motion: M, the magneti¢ quahtum number. The

appropriéte generaliiation ofvthe grand partition function is
Z=Trexp [-B(H - wy N - N -0l . (1.15)

As before

S - § '
. . e . . .
o(N , N , M, E) = : - ‘ (1.16)
n’> 'p (2“)2Dl72 | .
where S = n%Z - @ Nn - ap Np - W+ BE . (r.17)
We have put

v = By . ' : : | | (1.18)



<

-5- | LBL-207

D is, as before, a determinant of second derivatives:

3°4nz 32807 9%nZ 9%4n7
5 2 - 90, 90, 90,. 9V 20, 9B
G.n n P n n .
%007 3°4nZ 3°4nZ 3240z
| aanaap . Bd.pg , Bocpa\) Bapas |
D= o | - - (1.19)
SQZnZ _ 822nZ lenz 322nZ
vaanav Bapav_ 3v2_ VOB
822nZ 322nZ BQQnZ 322nZ
da. 9B BapaB | ovap 382

v = 2tn v = 2tn
n a0, : P o,

3 fnZ 3 4nZ
M- 5 E---——aB (1.20)

v'The'J-dependence of the level.density is obtained by a procedure due to

Bethel

o(N_ , N, Jd,E)=p(N ,N,ME|  -pln,N,ME)| . (1.21)

np nop M=J R § VoS 05 -
The theory of level densities bears close resemblance to ordinary

thermodynamics. | is the Fermi energy, B is the inverse temperature, S is the

entropy; the saddle—poiht equations_(1.6), (1.14), or (1.20) are the same as

~in thermodynamics.



-6- . o LBL-20T

What is different is the presence of the term D1/2 in the denominator

of therlevelvdensity expression. In ordinary thermodynamics S is overwhelmingly

greater than 1/2 &n D; we simply identify S with £n p.  In the nuclear case this

approximetion is more gquestionable, and ceftainly shoﬁld not be made in an
accurate calculation.

In the past, calculations of the grand partition function and other

statistical quantities were based on a set of independent single-particle states

with occupation numbers n, and energy €,. Then

T

i

Zniei , | ' , ‘ (1.22)

i

=
[}

td
1

and:the grand partition function becomes
: -B(e; - u)
Z = j{:{1.+ e S |
i :

No effort was made to relate the € to a realistic'Hamiltonian.

Recently, Sano and Yamésaki3 and othersh-6 have takén the first steps
in this direction. Their level density calculations dreAbased on a Hamiitonian
which includes a simple version of the pairing interactibn (between nucleons in
states differing only by the sign of the magnetic quanfum number).

In this paper we will develop a variational principle. for the grand

partition function which is suitable for a more general Hamiltonian. The principle

is based on Peierls' theorem and the Bogoliubov ineqﬁélity. An application will be

made to the case of a Hamiltonian with two~body fOrées.’f
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2. ‘VARIATIONAL PRINCIPLE FOR THE GRAND PARTITION FUNCTION '

A wéllfknown'variatiohal‘prihciple stateé that the groﬁnd—state energy
of a quantum mechénical system is less than or equél fo the>expectétion value
of the Hamiltonién with an.arbitrary wévefunction. Giveﬁ.a trial ﬁavefunction
with adjustable parameters, the best falues of the pafameters are those which
minimize the expectation value of the Hamiltonian.

In tﬁis work we'will derive a variatiénal principle for the grand partition
function which is a thermal extension of the vafiational principle for the ground

T 8,9

state. A joiﬁt application of Peierls’ theorem  and the Bogoliubov inequality leads .

to a strict lower bound for the grand partition function. The variational principle
consists in adjﬁsting the available parameters 80 as to maximize this lower bound.

‘Peierls’ theorem7 says that
7 = Tr e-»BH > Ze-s (x|H|x) , . L (2.1)
k o

where |k ) is an arbitrary set of orthonormal states (see Appendix B for proof).

In other words,'if H., is the diagonal part of the Hamiltonian in some

d

representation, then

-BH L o
Tr e BH Z Tr e d . (2.2)

N

If any Hamiltonian operator is written as H = HO + Hl’ we can make use of

the Bogoliubov inequalitya’g (see Appendix C_for»proof):'

, -BH
-B(H 9

. + H.) -BH Tr(H, e
n Tr e : 1 0 : 1

0_ > SLnTre ’ "8 -BH

Tr e

: (2.3)
o \
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Once a'representétion is chosen to pick out H the diagonal terms of H,

d’

and H, is suitable expressed as Hy + Hy, then the right—hénd side of (2.3) is

a strict lower bound for the grand partitibn function.

Adjustable parameteré can be introduced both in thé choicé of representation
for Hd and in the form of Ho and Hl' The paremeters ﬁre then varied to maximizé
the lower BOund of the grand partition function.

The Hamiltonian of a nonrelativistic system of identical Fermions inter-

acting by 2-body interactions is

_ + 1 + + . : -
H = Z TOLY Sy Cy + 7 Z VOLBYﬁ u Cg C§ Oy - .(2-’4)
oy . aBys N ‘ _
The et, e are single-~particle creation and énnihilation operators

a’ “a

satisfying the usual anticommutation relations

+

[ehs cgl, = [egs cgl, = 0

[os cgl, =84 = | . (2.5)

The TaY are single-particle matrix elements of the kinetic energy and
any overall field; the VaByS are antisymmetrized interaction matrix elements.

They have a number of symmetry properties:

yao oy

VB = ‘VOtBYG 3 (2.6)




since the T and V operators-a.r'e Hermitian;

vBay6,= VaBGy == VaByd >

by the definition of antisymmetric matrix elements.

Let us introduce a new set of creation and annihilation operators a;, a

LBL-207

(2.7)

a’

' . : + . .
by a linear transformation of the € Cyr "We can use Wick's theorem to rewrite

o

. the Hamiltonian in terms of the new operators.

The tra.néfdrmed Hamiltonian consists of 3 terms:
H=10 +H2 + Hu

Fully contracted terms:

: + 1 . + +
U= ZTGY(C.OL cy) oy Z VaByG (ca CY)<'CB CG)
oy ' . oByS ' .

1 + +
+E.Z VOLB'Y(S(CG.CB)<C(S CY>
0BYS

Terms with 2,meontract‘ed'operators:

25
I}

+ o+ | +
H, = Z TOL‘Y Poey Gy it Z Vogys (‘cB. cs ) Cq Oy
ay » oBYS s

1 ++‘_ o St IS | .
AN Z VaBva[“:_acB)' Cg oy Pt CQ.CB’<C5 cy)].

-0BYS

(2.8)

(2.10)
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Terms with 4 uncontracted operators:

=31 s ot o . -
H, =7 Z VOLBY(S tey cg Cg cY P | (2.11)
aByS .
The symbol : : is for normal order. It is understood thet the normal ordering

\

U + o R T
refers to the a's, not the c's. (ca cY ) is_the expectation value of Cy, cY in

: +
the vacuum state of the new operators aa, aa.

[4

_ v . , S . +
A linear transformetion connects the single-particle operators ¢y’ g

to a get of qﬁasi—particle operatdrs a;, ay To'appiy Peierls' theorem we must
' +
pick out of H2 and Hh the terms diagonal in the 840 8y representation.
The disgonal terms must create the same quasiparticles they destroy.’
+ :
This means the only combinations of a, a operators we can get in the diagonal
. ' L + + + .
terms of H2 and.Hh are products like 8, 8y and &y aY &Y 8y Iptroduc1ng the

number operators

n = g
o 8,

o

e+

we can write the diagonal terms of the transformed Hamiltonian under any linear

transformation of the original representation as:

o

- 1S R
Hd..Uf Zwa n, + 35 Z waynaan . | - (2.12)
, oy _ - ,

The eyact form of U,Ywa end W depends on the choice of linear trans-

oy
formation,
© To apply the BogoliuboV-ineQuality Hd must be'decomposed into HO + Hi.
Following the lead of Bogoli'ubov8 and othersg’lo we choose |
H == Z W (o ~£)n - f) : (2 13)- 
12 ay o Te’Vy T Ta * : _ - '

oy

12

[
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Then

B x0-25 W £ e +SE a - (2.14)

0 2 oy Ta Ty oo ’ o :

: Cay ' o ) o
.where'

B, =W+ Z Moy Ty | . (2.15)

o o, : :

The fa_are variational parameters.

1

The physical significance of this decomposition is that the 'interaction

term" H) involves only products of fluctuations n, - f,» provided that f, is

thermal average of N,

8,9 have shown that with'thisbdecomposition the Bogoliubov

Bogoliubov et al.
inequality is in fact an equality with a remainder term of o;der V;llcompared to
thebieading'terms, V being the volume of the system. In the nuclear cea.se’V-l
is equivalent fo‘A_l, whére A is the number of nucleéns.' |

The Bogoliubov inequality says that n Z is a lower bound to the grand

partition function, where
:  (2.16)
Substitufing in (2.14): . _ : v

BH o - ZE“ "o

Tr e .>0 = exp - B[U - %
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If the trace is calculated in the quasi—particle representation the n,
operators are diegonal, and have eigenvalues O or 1. So

-BH, 2 ' ’

Tre O=exp-BlU-3 waa ]H(1+e ) . (2.18)

Substituting (2.13) and (2.18) into (2.16):

| ( o,
-8E Tr nn e
_ oo o B oY
n Zl =B U + E n(1 + el ) - 5 E WaY — -BHO
' oy Tr e
-BH
0 o
Tr(n_ e ) .
o ST
= 8 E Yoy Ta -BH, B | (2.19)

The last two terms in the above equation can be evaluated by.taking

derivetives of (2,17) with respect to E: - -
—BH
Tr(na e O) o . o
L R (2.20)
Tr e e + 1
~-BH . RE
0 o .
Tr(n n_ e ) § e : :
QY = oY + 1. . - (2.21) -
-BH, BE, 2 BEy BE,
Tr e (e ~+1)° (e ~+1)(e =~ +1)
Substituting back into (2.19):
| -BE ' - '
o g = IR 1
&n Zl = -B U+ Z ﬁn(l + e ) - ) Z WaY . BEG . BEa |
: a Coay (e ~ +1)(e +1)
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B Z Wor.y BE, ‘ ' %5
_ oy é + 1 s
The term
. BE
o
_B Z W8 =
2 ay "oy  BE, 2
: e + 1)

was dropped from the sbove equation, since it is of order Afl.

n Z .contaihs 2 sets of adjustable parameters. u, Wa’ W__ depend on the

1 oy
choice of representation. They are functions of a set of independent parameters,

say ¢a. The fa form of a second set. Applying the variational principle means
maximizing n Zl' Therefore we have |

azn»zl 9&n Zl

- of

= = 0 . ' : (2.23)

The first condition yields

o BE S\
0 =:-§: WoW g ( LS ) .
. oy o8 BE BE Y
- oy (e %+ 1)2 e T +1 |

e +
which requires that

A S | D O (e.ay)



—1h- | - LBL-207 .
With the help of (2.24) the second condition gives

3¢6 Z 3% Z———Ia% :af . A | (2.25)

(2.25) is equivalent to

0= 3¢6 , o - (2.26)
in which
E=U+ZWf+-l-Zw £t (2.27)
o 2 oy Ty ' :

H is a "thermal average" of the Hamiltonian. - It is the same as Hy (see Eq. (2.12))
with the number operators n, replaced by their "thermal averages" £,

Substituting (2.2L4) into (2.22), n Z, can be rewritten as

S _ -BE : '
fnZ. =-B U+ n (1 + e a) + B § W 1 , (2.28)
1 Z 2 Z oy~ BE_ BE,
o . _ oy (e + 1)(e + 1)
or
_ ' LB T '
tnz, =-8U- Z tm (1 -£) + 5 Z LAVENE VR (2.29)

ay

To summarize the variational‘principle:

a) express the diagonal part of the Hamiltonian in the chosen representation as



vn .

B L i3 ik K £ : Y P s

CONE A V 5 S D S D D S 0
.

-
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b) vary the parameters in the choice of representation by minimizing
- _ 1
H—U+.ZWI‘+-—ZW £ £,
: oo 2 oy "o 7y
o oy .

keeping the f's constant;
c) the approximate value of the grand partition function is given by Eq. (2.28)

or (2.29), where’

1

=3
Q

i
QZ!

+

=
8
>

The following section gives an application of this variational principle.
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III. SPECIAL BOGOLIUBOV TRANSFORMATION

3-6 has used a simple pairing model

Most recent work on level dehsities

in which all pairing matrix elements are equal and all others are zero. The
+ . ‘ '

quasiparticle operators 8y 8 &re connected to the single-particle operators

+ ,
¢y’ Sa by the special Bogoliubov transformation

= - C - C-
a.a uOf. o v
+ : : :
e =u ¢ - C—= . . . . . _ .1
o o o VOL o, : (3 )
a

ua and v_ are real numbers. The notation Q refers to the time-reversed state

of o.
In this section the variational principlé préviously derived will be
applied to the case of the special Bogoliubov transformation.

It gan»ﬁe assumed that the interaction is time-reversal invariant and

therefore, with a proper cheice of phases, the matrix elements are real. Bearihg'

in mind Eq. (2.6) this means that

vyGaB = vaByG
Varys = Vagys (3.2)
The a;; aa satisfy thevusual anticommutatiqg rules
+ + ,
[a'a)A a8]+ = [aaa aB]+ =0
= (3.3)

+ .
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if

u- é u,

Va T Vo . (3.4)
The inverse transformation is

+ *,

Ca " Y% % T Yo %G

4 .
¢ =u &a + VvV 8 . ‘ ' (3‘5)

a o o o O

To épply the variational principle we must first:obtain the diagohal terms
of the Hamiltonian in the quasi-particle fepresentation. This requires the evalua~
‘,.' . + .v
tion of contractions of pairs of ¢ , c operators and of diagonal terms of normal

+ . + '
products of ¢ , ¢ operators. The contractions of ¢ , ¢ operators are

+ o+
(ca cg Y = - fca cg ) = Gaé‘ua vy
- , - B
(ca cB_) = GOLB A .. _ | v(3.6)

The fully-contracted term of the transformed Hamiltonian follows from

Eq. (2.9) and (3.6):
[ e - | 2.2 1 C ‘
U= ZTaoc Yo ¥ 3 Z Vocyay Vo Vo * T Z 'Vou&y? YaVa WYy - (3.7)
o o . .

The other terms of the transformed Hamiltonian, Eq. (2.10) and (2.11),
require the evaluation of the diagonal terms of some normal products of ¢ , ¢

operators. Aftef some algebra these emerge as
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+ 4+ 5 [ . ]
u Cg fq =~ F % g fg = = 8B UVe (B 2 * ag oy
+ o 2 + 2 +
Cy Cg g = Gas [ua a, 8, = Vg aavaa] , | | (3.8)
and
+ o+ )
cach s Sy g
N 4 22 + + 22 + +
= (GGYGBS - 6a668Y)(uauB 8,880%, * VoVg 85% 8ge5
- vzug atara a- - u2v2 o aran ) + 6 uv. uv (a tofe 8 + atataa
o8 %a%s%% ~ %' %8B B3 G T 20 A e M e
+ atats a- + ata+a—a') . | *(3.9)
oYy o ayYy o N

Substituting (3 6), (3.8), and (3.9) into (2 10) end (2 ll) gives the dlagonal

terms of H and Hh’ namely H

24

=}
I

» 2 ' 2 > o v P
24 Z?a %uoc (Taa + Z oryory Y) ~Va (.T&&‘+ Z V&y’o’w vy) %
o Y ' . a o

- _Zna u vy ZquY Va&ﬁ s : (3.10)
a Y. ' :
o ; 2, 22 22, 22 -
Hya = 2' i (ua“Y Yo'y Voyay ~ (0 Yo'y auY)va?on'r
‘ oy _ v
+ E: Doy uava u v, V. = .  :i: . ) : (3.1})
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The na are number operators for quasiparticles:

meters fa' After some manipulation

oy

1 ¢

+F Z aom—( v, v (1= £, -2
oy

Putting

o . 1/2
Ty = Uy, (1 - £, - fa)

v, (1-1, - f)l/2 .

<l
il

gives a relatively simple form for H:

- _ i - . _‘,_Q' -
H= Zfa Tt 3 Z £4fy Yoy * Z £0 Veyay Yy +_ZTW v

H is obtained by replacing the ha operators in Hd =

E;Z'f.' +—Z vomY Zwa(l-f‘—f-)

-
Y

LBL-207

N

o

U‘f-H2d + 3hd by the para-

(3.12)
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1 : 2 =2 1 === | :
+3 Z Voyay Vo Vo * EZ \/ sy Yovoly Yy . (3.13)
oy : -

Application of the variational principle consists in minimizing H with
respect to a set of independent transformation parameters, keeping the fa

constant. The 'w-ra can be taken as the independent parameters. Since

=2 -

uoa+voc_'l_foc_fc'x, R
we have

Ny _ Vo

ava Ug,

Bearing in mind Eq. (3.4), the requirement

leads to
0=2uv [T + v‘ (x're+f)+T_..+Z,v;-(w72+f)]'
a o" oo ayoy" 'y Y Qo ayoy -y Y
-2 =2 - - : ' '
+ (ua - va) Z Va&y‘? uYL,IY - | | | (3.1k4)
With the definitions

Ha='1'('m Z (v +f)-Tw Z ayw[fy-i-v(l-fY—‘f?_)]

(3.;5)
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. Aa —_ 2 Z YY u V . 2 Z am u-Yv-Y(l -Y _f.'?) > (3-16)
Y ’ Y
(3.14) gives
'O=ﬁ'}§'r(H +H=) + (32~ 7)) A o | : (3.17)

Thié equation is formélly'the same as the usual BCS equation for u and v.
In fact, multiplying (3.17) by (1 - £, - fa) gives

N ' ‘ 2 2

O-uv(Ha+Ha)+(ua-Va)Aa '

oo

and thus

uy, =3 (l + = ) . - (3.18)
| + A |

where
é :.:A;L-»'(H + H—) ' ' S | (3.19)
2 Vo o : : . : '

Substituting (3.18) back into (3.16) gives the "generalized gap equation"

A =5 - = (1 - - - . 3.20
a” Z Vogyy (2= £y - ) .-————Y———e = - (3.20)
Y _ . \JE_ + A
. Y Y
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In the simple pairing theory, all the nonpairing matrix‘elements are
zero and all the pairing matrix elements are équal, within a phase factor. 1In

other words

|va8Y6| = G 83 675 (3.21)

In this simple theory Ha'is usually set equal to:Taa. The other terms

in Eq. (3.15) are taken to represent a self-energy term which is effectively

LS

included in T . Equation (3.16) gives

la gl = %-ji: GIquyl Q-f -£) \ | | (3.22)
24 L

and thus |Aa| is independent of the state o in the simple pairing theory. So

there is just one '"gap equation"

Q&

= E:(l - f - f=) N S . - | - (3.23)
= Y Y 62+A2
, Y . _

The general equations differ in the details from the equations of ﬁhe
simple pairing theory. Th§ "single particle energy"'€a incluqes seif-consistent
energy terms. In the simple pairing theory? the Ea are taken to be éonstant; the
general theory allows for tgmperature dependence of the_;elf—consistent field.

In éeneral, the pairing matrix elements of the form va&u& are lﬁrggr than
those of form V - o Y # 0. This will make the temperéﬁﬁre dependence of Aa

acyy
qualitatively different from that of A in the simple pairing theory.




)
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The theory presented here is not the most general one. With the
special Bogoliubbv'transformatipn, Eq..(3;l), we have put constraints on what
we'aIIOW'té happen as the temperaturé is varied. 1In éffec§ we are saying that
fhe only thiﬁg:that'changes 18 the pairing (i.é. thé‘admixture of & state with
the coireépondipg time-reversed state in a givén quasiparticle state).

In ordér fo allow for mixing of single~-particle states with each other,

the transformation to use is the general BOgoiiubov transformation:

+ + .
A : A* »
'aa°Z<omcu Bt )
T

‘The application of the variational principle for the grand partition function

to the case of the general Bogoliubov transformation is currently being worked

on, and will be the object of a future paper.
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APPENDIX A

The Convexity Theorem

A function is convex in a given interval if its second derivative is -
always of the same sign in that interval. The sign o.f the second derivative can
be chosen as pos'itive (by multiplying by -1 if necessary).'

We can easily prove the convexity theorem:

s

dx2

w, are a set of weights such that

If > 0 in a given interval, x, are a set of points in that interval,

w, =0
and
Y =l (a1)
a‘ .
then _
Zwa f(xa} Sl ZWO" xa) . — (A2)
o ' ' a ‘ o S
Proof: Define x = Zwa X, : (a3)
: = :

Taylor's expasnsion gives
£(x ) = £(x) + (x_ - ;c-) £'(x) + -]—'(x - ;)2 f"(»E )
o - o 270 o
where

|Ea| < Ixa-x .




A
Sod A3

LS
L
‘jf’
b
o
R
-
3
.

o
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Multiply the above equation by L and sum over o:

Z W, 2(x)) 'f"‘)z W +f(X)Zw(x

o

+5 ) wlx, - f"<a>
3 ,

The second term on the right-hand side vanishes because of (Al) and .(A3).

So

Yy £lx) = 2+ 3 Y w, (x, - D (Y

o o

Since f"(&a) is positive

Z w, flx,) = £2(x) = ¢ (Zwa'xa) | QED
. o o . :

We get equality only ifvxa =x .
The convexity theorem has & simple geometric interpretation.in the case

of 2 points, Xy and X5 let'w1 =1 - Wy, T W From (A2)

wela) ¢ (1w 2(xy) > ghog + (1= wixy)
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This means that for a function with a positive‘second derivative any

point A on the chord CD is above the point B on the cﬁrve with the same abscissa.

o, B(x)
e
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APPENDIX B

Peierls' Theorem

The convexity theorem can be used to prdve somevtheorems“about diagbnal

' matrix.elements;'including Peierls' theorem.

We begin with the following theorem:
Given an operator X and an arbitrary set of orfhonormal states |k ) , then

for any function f(x) with. a positive second'derivati?e, then
(xle(x)|x?) = £({k|x|x)) . : o (B1)
Proof: Let xa-Be the eigehvalues-of X, and Iq ) its.eigenstates. There is a

unitary transformation connecting the states |a'7 with the states Ik ), with

coefficients (k|a ) such that

Z | (ko) |® =1
o .

We can apply the convexitj theorem (A2) with w = | (x|a >|2 :
Z | Ckla?|® £(x,) = f(Z| (kla )| xa) . (B2)
o : : a ' o

The_ieft—hand side of (B2) equals

'Z.<k|q.}_<a|f(x)-|o;)(otlk) = (klf(x)lk) .
x -
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Similarly the right hand side of (B2) is £( ¢(k|X|k)). This immediately yields .

(B1).

If we sum (Bl) over all states |k ) we get an inequality involving the

trace of f(X):

Tr £(X) - > Zf( (k|xlx)) . o : ~ (B3)
k Lo '
In the particular case where f(x) = o Bx and the operator X is the
' 7

Hamiltonian we get Peierls' theorem:

et > el o B
k ' '
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1

o APPENDIX C

The Bogoliubov Inequality

The Bogoliubov inequality folloﬁs_from the convexity theorem and Peierls'
theorenm.

If we decompose the Hamiltonian H into the sum HO + Hl the Bogoliubov

inequality gives a lower bound for the partition function:
—BHO) |

C-B(H, + H.) ~B8H Tr(H,e
n Tr e »9~ 1 Z4n'Tr e 0 _ R ————l:gﬁ__— .

Tr e 0

(1)

1

Proof: Let Sa be the eigenvalues of H. and |a ) its eigenstates. From Pelerls

0

theorem:

_ -B(H, + H) ‘

Tr e >z exp-B(OL|HO+H1|OL> .

- v .
or
~B(Hy + H;) _
Tre > Z exp - Ble, + (aln fad)T i (c2)

o

let us apply the convexity theorem with

1]
R

£x)

><
[i]
,A .
2
[
._‘ .
e
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exp [-B Z e—_-ﬁ{— Caliyfad] . (c3)

Tr e

W= e-Bea/ e—Bea
o
o
-B¢e -BH
= e 0L/ Tr e
(A2) gives
-8y -8 CalH, o) - By
e . 1 >
—————————— e =
Z 'BHO . ‘ . 0
o Tr e o Tr.e
. But
-Re -BH :
ol _ 0
Z e (aIHlla) = Tr(Hl.e )
o
(c2), (c3), and (Ck) combine to give
- . : -BHO
-8(H, + H,) ' ~BH, Tr(H, e )
Tr e Z .Tre - exp | -B _
‘ '-'BHO

(ck)
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