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ABSTRACT OF THE DISSERTATION

Detection and Localization of a Submatrix: Theory, Methods and Algorithms

by

Yuchao Liu

Doctor of Philosophy in Mathematics (with a specialization in Statistics)

University of California, San Diego, 2018

Professor Ery Arias-Castro, Chair

We consider the problem of detecting and localizing an submatrix with larger-than-

usual entries inside a large, noisy matrix. This problem arises from analysis of data in

genetics, bioinformatics, and social sciences. We consider that entries of the data matrix are

independently following distributions from a natural exponential family, which generalizes

the common Gaussian assumptions in the literature. In Chapter 2 a permutation test for

testing the existence of the elevated submatrix is studied. The test’s asymptotic power is

illustrated, and its robust variation (rank method) is also studied. In The latter part of

Chapter 2 and Chapter 3 we remove the prior knowledge of the submatrix size, aiming

to develop adaptive methods for detection and localization. Latter part of Chapter 2

xi



proposes a Bonferroni testing framework based on the permutation scan test, to solve

the detection problem. An accelerating framework is also developed without sacrificing

asymptotic power. In Chapter 3, a new size-adaptive estimator is proposed to solve the

localization problem. Its asymptotic performance is studied, and two fast algorithms to

approximate the estimator are developed.
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Chapter 1

Introduction

This chapter introduces the background of the submatrix detection and localization

problems as well as their applications in different areas. Following that we describe

the problem setup, and build a statistical model to transfer the problem to a statistical

hypothesis testing / parameter estimation problem. A natural exponential family of

distributions is also introduced, as an important parameterization tool in the evaluation of

the methods proposed in the thesis. Finally, the thesis structure is described in the last

section.

1.1 An Example

Matrix type data appears in different research fields, such as genetics, social sciences,

and many other fields such as ecology and bioinformatics. In many cases, the row indexes

and column indexes are individuals or units that can interact with each other, and the

entry values inside the data matrix represents the strength of the interaction. We use the

data from a study in biomedical sciences [STQ08] as an example. In Figure 1.1(a), the

row indexes represent genes, and the column indexes represent different conditions. Each

element inside the data matrix, denoted aij, indicates the transcript abundance of gene i
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Figure 1.1: [STQ08] Transcript abundance heatmap

under condition j. This type of data appears in the applications of microarray technology

- a technique exploring the relationship of gene expressions and different situations. See

[SD01] for a general description of microarray technology.

Usually researchers are interested in finding useful information from the data in

order to make inferences or help making scientific discovery. As shown in Figure 1.1(b), if

the rows and columns are permuted in a proper way, a submatrix containing comparatively

high values will appear in the upper left corner. This indicates that the genes, marked by

the submatrix’s rows, have relatively high transcript abundance under some conditions,
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which are also marked by the submatrix’s columns. Figure 1.1(c) shows the finding of

another such submatrix, which is not overlapping with the one found in Figure 1.1(b).

Therefore, a submatrix containing larger-than-usual data in the data matrix are

usually of special interest to people wanting to make use of the data. The process of

finding such submatrices is usually referred as bi-clustering, or co-clustering. See [CC00]

for analysis of gene expression data and [MO04, TSS05, KKZ09, CA11] for a survey and

[PBZ+06] for a comparison of the methods. For the applications in social science, we refer

the reader to [For10]. In this thesis, we mainly solve the following two problems:

● Does the data matrix contain a submatrix, such that entries inside the submatrix is

larger-than-usual? (Detection problem)

● Given the data matrix, how to find a submatrix containing larger-than-usual entries?

(Localization problem)

For each problem we propose methods, analyze the methods under specific parameterized

statistical models, and give corresponding algorithms.

1.2 Problem Setup

We now restate the problem in a general setup. Denote X as the data matrix

observed, and (M,N) as the number of rows and columns of X. The detection problem in

the previous section can be formalized into the a hypothesis testing problem, distinguishing

the situations when the data matrix X contains only IID entries, against the situation where

there are submatrices containing larger-than-usual entries. Usually the former situation

is referred as the null hypothesis, or zero hypothesis, and the latter one as alternative

hypothesis.

A hypothesis testing problem requires us to find a proper measurable function φ

that maps from the sample space to [0, 1]. If X is observed, one reject H0 with probability

3



φ(X). In other words, one would like to have φ(X) close to 1 when X is generated under

H1. In practice, p-value is usually used to perform the hypothesis testing. The p-value

P(X) is valued in [0,1], and satisfies

P(P(X) ≤ α) ≤ α (1.1)

with H0 true and α ∈ [0,1]. The function φ based on the p-values take the form φ(X) =

1(P(X) ≤ α0), with some predetermined α0 ∈ [0,1] controlling type-I error rate.

For the localization problem, the main task is to output the row and column indexes

of the submatrix containing larger-than-usual values. Denote [M] = {1, . . . ,M}. We would

like to find a function Φ mapping from the sample space to the collection of subsets of

[M] × [N], such that the submatrix indexed by Φ(X) contains larger-than-usual values.

We need the function to be accurate, that is, when there is an elevated submatrix, with

high probability the function will find its row and column indexes. And the function should

enjoy computational tractability. This means when a data matrix is inputted, the time and

computational power consumed in calculating Φ, or approximating Φ, should be reasonable.

1.2.1 Related Works

There is an active research line focusing on different aspects of submatrix detection

and localization. [ACL17, BI13] concentrate on detection of the existence of such an elevated

submatrix, and asymptotic behaviors of tests. [BIS15, KBRS11] displayed the minimal

signal strength needed for the existence of successful submatrix localizer without the

introduction of sparsity and proved some finite sample property. [HWX15a] also considered

minimal signal strength issues under symmetric data structure, and [HWX15b] developed

upper and lower signal bounds for weak consistent estimators (w.h.p. estimators with

error rate converging to 0). A convex optimization framework for biclustering is proposed
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and associated algorithms are developed in [CAB17]. A selective inference framework for

quantifying the information contained within a selected submatrix is proposed by [LST15].

The calculation issue is attracting increasing attentions from the researchers in

the field, and some papers are addressing with the tradeoff between statistical power

and computational tractability [MW15, CX16, CLR+17]. In the meantime, theoretically

computationally tractable (a.k.a. running in polynomial time with respect to sample size)

algorithms are developed. See [KBRS11] for a survey. Other computationally tractable

methods are analyzed such as semidefinite relaxation [CX16], spectral method [CLR+17],

message passing [HWX15b], and largest marginal gaps [BC16]. Iterative algorithm with

Lasso type optimization target is developed in [TW14].

Another active research line worth mentioning here is on the stochastic block model

(SBM). In the setup of SBM the observation is a graph, with edges independently connected.

See [HLL83] for a detailed introduction. The detection problem is to distinguish between

an Erdős-Rényi graph and a graph with group of nodes usually closely connected. The

localization problem is to cluster the nodes by the closeness of their connection.

If the adjacency matrix of the graph is considered, the problem shares many

properties with submatrix detection and localization (the adjacency matrix is symmetric

with independent upper triangle nodes, compared with submatrix localization problem).

There are works considering the existence of consistency detectors [ZZ+16], the existence of

consistency clustering methods [MNS15], semi-definite programming [CX16, ABH16], and

spectral methods [CCT12, McS01].

1.3 Natural Exponential Family

We introduce a natural exponential family of distributions, that is useful in the

construction of statistical model in the thesis. We consider a one parameter exponential
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family to build up the parametric framework, as studied in papers such as [BI13, ACTW17,

ACL17]. We define such a distribution family by selecting a distribution ν with mean

zero and variance 1. Denote ϕ(θ) as the moment generating function of ν, say ϕ(θ) =

∫ e
θtν(dt), and furthermore we require ϕ(θ) < ∞ for all θ in [0, θ⋆). Here θ⋆ is defined

as sup{θ ∶ ϕ(θ) < ∞} and could be equal to infinity. The parametrization is finished by

defining fθ, θ ∈ [0, θ⋆) as the density indexed with θ with respect to ν as

fθ(x) = exp{θx − logϕ(θ)}. (1.2)

By selecting different ν, the distribution family covers Normal family (ν = N(0, 1)), Poisson

family (ν = P(1) − 1), and Rademacher family (ν = Rade(0.5)), etc. Note that with ν fixed,

the distribution family is stochastically monotone in θ ([LR05], Lemma 3.4.2), which is to

say, for X1 ∼ fθ1 and X2 ∼ fθ2 with 0 ≤ θ2 ≤ θ1 ≤ θ⋆ and fixed ν,

P0(X1 ≥ t) ≥ P(X2 ≥ t),∀t ∈ R. (1.3)

This fact enables us to model the submatrix localization problem with θ controlling the

signal strength. If X ∼ fθ, with θ increasing, X is more ’elevated’, or is more larger than

usual, if we denote ν or f0 as the distribution of usual entries.

With this parametrization tool we may model the microarray data, which usually

is described as Gaussian, and integer data such as 0 − 1 data (directed graph or presence-

absence matrices in Ecology. See [Got00] for examples).

1.4 Thesis Structure

The rest of the thesis will go as follows. In Chapter 2 we will introduce a permutation

test framework dealing with the detection problem. The asymptotic power of the test
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under the parametric framework based on the natural exponential family will be analyzed,

and is compared with some state-of-the-art parametric methods. A robust variation of

the permutation test using ranks is also analyzed and the power loss is exactly illustrated.

Then, the testing procedure is used to construct a Bonferroni framework dealing with

the case when the submatrix’s size is unknown. The Bonferroni style permutation test’s

asymptotic power is shown. An accelerated version of the Bonferroni type permutation

test is also introduced, and we show that the acceleration will not sacrifice the first order

asymptotic power of the test.

In Chapter 3, an estimator of the submatrix indexes is introduced to tackle the

localization problem, with submatrix size unknown. We illustrate the conditions under

which the estimator is accurate with high probability, and two associated algorithms are

introduced to approximate the estimator.
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Chapter 2

Detection of a Submatrix via

Permutation Test

2.1 Introduction

In this chapter we introduce a permutation test framework to discover submatrix

type anomalies lying inside large data matrix. The problem is inspired by the work from

bi-clustering, which has emerged as an important set of tools in bioinformatics, in particular,

in the analysis of gene expression data [CC00]. It comes in different forms, and in fact the

various methods proposed under that umbrella may target different goals. Here we follow

[SWPN09], where the problem is posed as that of discovering a submatrix of unusually

large values in a (large) data matrix. For example, in the context of a microarray dataset,

the data matrix is organized by genes (rows) and samples (columns). As described before,

we let X = (Xij) denote the matrix, M denote the number of rows and N denote the

number of columns, so the data matrix X is M -by-N .

8



2.1.1 Submatrix detection

We consider the detection problem in its simplest form, that of merely detecting

of the presence of an anomalous (or unusual) submatrix, which leads to a hypothesis

testing problem. This was considered by Butucea and Ingster [BI13] from a minimax

perspective. Their work relies on parametric assumptions. For example, in the normal

model, they assume that the Xij’s are independent and normal, with mean θij and unit

variance. Under the null hypothesis θij = 0 for all i ∈ [M] ∶= {1, . . . ,M} and all j ∈ [N].

Under the (composite) alternative there is a m-by-n submatrix indexed by Itrue ⊂ [M] and

Jtrue ⊂ [N] such that

θij ≥ θ�, ∀(i, j) ∈ Itrue × Jtrue, (2.1)

while θij = 0 otherwise. Here θ� > 0 controls the signal-to-noise ratio. In that paper, Butucea

and Ingster precisely establish how large θ� needs to be as a function of (M,N,m,n) in

order for there to exist a procedure that has (worst-case) risk tending to zero in the

large-sample limit (i.e., as the size of the matrix grows). They consider two tests which

together are shown to be minimax optimal. One is the ‘sum test’ based on

sum(X) = ∑
i∈[M]

∑
j∈[N]

Xij. (2.2)

It is most useful when the submatrix is large relative to the data matrix. The other one is

the ‘scan test’ which, when the submatrix size is known (meaning m and n are known), is

based on

scan(X) = max
I⊂[M],∣I∣=m

max
J⊂[N],∣J ∣=n

∑
i∈I

∑
j∈J

Xij. (2.3)

To avoid making parametric assumptions, some works such as [BNW05, HTE+00]

have suggested a calibration by permutation. We consider two somewhat stylized permuta-

tion approaches:
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● Unidimensional permutation. The entries are permuted within their row. (One could

permute within columns, which is the same after transposition.)

● Bidimensional permutation. The matrix is vectorized, the entries are permuted

uniformly at random as one would in a vector, and the vector is reshaped into a

matrix of same dimensions.

The first method is most relevant when one is not willing to assume that the entries in

different rows are comparable. It is appealing in the context of microarray data and was

suggested, for example, in [HTE+00]. The second method is most relevant in a setting

where all the variables are comparable. In the parlance of hypothesis testing, the first

method derives from a model where the entries within each row are exchangeable under the

null, while the second method arises when assuming that all the entries are exchangeable

under the null.

Contribution 1 (Calibration by permutation). We analyze the performance of the scan

test when calibrated using one of these two permutation approaches. We show that,

regardless of the variant, the resulting test is (first order) asymptotically as powerful as a

calibration by Monte Carlo with full knowledge of the parametric model. We prove this

under some standard parametric models.

Remark 1. We focus on the scan statistic (2.3) and abandon the sum statistic (2.2) for at

least two reasons: 1) the sum statistic cannot be calibrated without knowledge of the null

distribution; 2) the sum statistic is able to surpass the scan statistic when it is impossible

to locate the submatrix with any reasonable accuracy, which is somewhat less interesting

to the practitioner.

A calibration by permutation is computationally intensive in that it requires the

repeated computation of the test statistic on permuted data. In practice, several hundred
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permutations are used, which can cause the method to be rather time-consuming. A

possible way to avoid this is to use ranks, which was traditionally important before the

availability of computers with enough computational power. [Het84] is a classical reference.

In line with the two permutation methods described above, we consider the corresponding

methods for ranking the entries:

● Unidimensional ranks. The entries are ranked relative to the other entries in their

row.

● Bidimensional ranks. The entries are ranked relative to the all other entries.

The use of ranks has the benefit of only requiring calibration (typically done on a computer

nowadays) once for each matrix size M ×N . It has the added benefit of yielding a method

that is much more robust to outliers.

Contribution 2 (Rank-based method). We analyze the performance of the scan test when

the entries are replaced by their ranks following one of the two methods just described. We

show that, regardless of the variant, there is a mild loss of asymptotic power, which we

precisely quantify. We do this under some standard parametric models.

In reality, the elevated submatrix’s size, namely (m,n) in (2.3), is rarely known.

When m and n are unknown, one can perform a scan test for each (m,n) in some range of

interest and control for multiple testing using the Bonferroni method. From [BI13], and

also from other prior work (e.g., [ACV14]), we know that the resulting procedure achieves

the same first-order asymptotic performance. In this chapter, we manage to show that out

permutation test framework also enjoys such property.

Contribution 3 (First-order asymptotic performance of Bonferroni permutation test).

We develop a Bonferroni testing procedure based on the permutation test. We show that

the testing procedure (at the first order) is asymptotically as powerful as the permutation
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test and the test proposed by [BI13] when (m,n) is known. This result is analyzed and

proved under some standard exponential family parameter assumptions.

As permutation test is computationally hard to calibrate (usually the total number

of permutations are increasing exponentially with the sample size), in practice a Monte

Carlo calibration method is executed. This requires independent sampling from the group of

permutation patterns for a decent number of times. However still, due to the computational

complexity of (2.3), performing permutation tests on all combinations of (m,n) could be

extremely consuming in time and computational power. We construct a subset of [M]×[N],

such that by performing permutation test on all (m,n) inside this subset, we can still

detect the existence of the elevated submatrix with no sacrifice of the power on the first

order.

Contribution 4 (Bonferroni procedure on an approximate net). We propose an power-

preserving fast test based on the Bonferroni permutation test, with the Bonferroni pro-

cedures working on a proper approximate net of [M] × [N]. We show that this test is as

powerful as the Bonferroni permutation test on all pairs of (m,n) in [M] × [N]. This is

also analyzed and proved under some standard exponential family parameter assumptions.

2.1.2 More related work

The scan statistic (2.3) is computationally intractable and there has been efforts to

offer alternative approaches. We already mentioned [SWPN09], which proposes an alternate

optimization strategy: given a set of rows, optimize over the set of columns, and vice versa,

alternating in this fashion until convergence to a local maximum. This is the algorithm we

use in our simulations. It does not come with theoretical guarantees (other than converging

to a local maximum, a recently work [GL16] proves that the algorithm gives ”promising”

result with high probability under IID Gaussian entries in square matrices, but still it is
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not guaranteed to be exact) but performs well numerically.

Our work here is not on the computational complexity of the problem. Rather

we assume that we can compute the scan statistic and proceed to study it. In effect, we

contribute here to a long line of work that studies permutation and rank-based methods

for nonparametric inference. Most notably, we continue [ACTW17] where it studies the

detection problem under a similar premise but under much more stringent structural

assumptions. The setting there would correspond to an instance where the submatrix is

in fact a block, meaning, that Itrue and Jtrue are of the form Itrue = {i + 1, . . . , i + k} and

Jtrue = {j + 1, . . . , j + l}. The present setting assumes much less structure. The related

applications are very different in the end. Nevertheless, the technical arguments developed

in [ACTW17] apply here with only minor adaptation. The main differences are that we

consider two types of permutation and ranking protocols.

2.1.3 Content

The rest of the chapter is organized as follows. In Section 2.2 we describe a parametric

setting where likelihood methods have been shown to perform well. This parametric setting

will serve as benchmark for the nonparametric methods that ensue. In Section 2.3 we study

the scan statistic with each of the two types of calibration by permutation. In Section 2.4

we study the rank-based scan statistic using each of the two types of ranking. In Section 2.5

we present some numerical experiments on simulated data. All the proofs are in Section 2.7.

2.2 The parametric scan

Following the classical line in the literature on nonparametric tests, we will evaluate

the nonparametric methods introduced later on a family on parametric models. As in

[BI13], and in [ACTW17], we consider a one-parameter exponential family in Section 1.3.
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Such a parametric model is attractive as a benchmark because it includes these

popular models and also because likelihood methods are known to be asymptotically

optimal under such a model. [BI13] shows this is the case for the problem of detection,

where the generalized likelihood ratio test is based on the scan statistic (2.3).

Under such a parametric model, the detection problem is formalized as a hypothesis

testing problem where ν plays the role of null distribution. In detail, suppose that the

submatrix is known to be m × n. The search space is therefore

Sm,n ∶= {S = I × J ∶ I ⊂ [M], ∣I∣ =m and J ⊂ [N], ∣J ∣ = n}.

We assume that the Xij’s are independent with Xij ∼ fθij , and the testing problem is

H0 ∶ θij = 0, ∀(i, j) ∈ [M] × [N],

versus

H1 ∶ ∃Strue ∈ Sm,n such that

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

θij ≥ θ�, ∀(i, j) ∈ Strue,

θij = 0, otherwise.

Here θ� controls the signal-to-noise ratio and is assumed to be known in this formulation.

(The sum test and the scan test do not need to know this parameter.)

In this context, we have the following.

Theorem 1 ([BI13]). Consider an exponential model as described above, with ν having

finite fourth moment. Assume that

M,N,m,n→∞,
m

M
,
n

N
→ 0,

log(M ∨N)

m ∧ n
→ 0. (2.4)
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Then the sum test based on (2.2), at any fixed level α > 0, has limiting power 1 when

θ�
mn

√
MN

→∞.

Then the scan test based on (2.3), at any fixed level α > 0, has limiting power 1 when

lim inf
θ�
√
mn

√

2(m log M
m + n log N

n )

> 1. (2.5)

Conversely, the following matching lower bound holds. Assume in addition that logM ≍

logN and m ≍ n. Then any test at any fixed level α > 0 has limiting power at most α when

θ�
mn

√
MN

→ 0 and lim inf
θ�
√
mn

√

2(m log M
m + n log N

n )

< 1.

We note that [BI13] derived their lower bound under slightly weaker assumptions

on M,N,m,n.

Remark 2. Proper calibration in this context is based on knowledge of the null distribution

ν. In more detail, consider a test that rejects for large values of a statistic T (X). Assuming

a desired level of α > 0 and that ν is either diffuse or discrete (for simplicity), the critical

value for T is set at tα, where tα = inf{t ∶ ν(T (X) ≥ t) ≤ α}. The test is then I{T (X) ≥ tα}.

In practice, tα may be approximated by Monte Carlo sampling.

2.3 Permutation scan tests

In the previous section we described the work of Butucea and Ingster [BI13], who

in certain parametric models show that the sum test (2.2) and scan test (2.3) are jointly

optimal for the problem of detecting a submatrix. This is so if they are both calibrated

with full knowledge of the null distribution (denoted ν earlier).
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What if the null distribution is unknown? A proven approach is via permutation.

This is shown to be optimal in some classical settings [LR05] and was recently shown to

also be optimal in more structured detection settings [ACTW17]. We prove that this is

also the case in the present setting of detecting a submatrix. We consider the two types of

permutation, unidimensional and bidimensional, described in Section 2.1.1. More elaborate

permutation schemes have been suggested, e.g., in [BNW05], but these are not considered

here, in part to keep the exposition simple. Indeed, we simply aim at showing that a

calibration by permutation performs very well in the present context.

Let Π be a subgroup of permutations of [M] × [N], identified with [MN]. Then a

calibration by permutation of the scan statistic (or any other statistic) yields the P-value

P(X) =
#{π ∈ Π ∶ scan(Xπ) ≥ scan(X)}

∣Π∣
, (2.6)

where Xπ = (Xπ(i,j)) is the matrix permuted by π. The permutation scan test at level α is

the test I{P(X) ≤ α}. It is well-known that P(X) is a valid P-value in the sense that it

dominates the uniform distribution on [0,1] under the null [LR05]. (This remains true of

a Monte Carlo approximation.)

The set of unidimensional permutations, denoted Π1, is that of all permutations

that permute within each row, while the set of bidimensional permutations, denoted Π2, is

simply the set of all permutations. Obviously, Π1 ⊂ Π2 with ∣Π1∣ = (N !)M and ∣Π2∣ = (MN)!,

and they are both groups.1

Theorem 2. Consider an exponential model as described in Section 2.2. In addition to

(2.4), assume

log3
(M ∨N)/(m ∧ n) → 0, (2.7)

and that either (i) ν has support bounded from above, or (ii) maxi,j θij ≤ θ̄ for some θ̄ < θ⋆

1The group structure is important. See the detailed discussion in [HG14].

16



fixed. Let the group of permutations Π be either Π1 or Π2; if Π = Π1, we require that

ϕ(θ) < ∞ for some θ < 0. Then the permutation scan test based on (2.6), at any fixed level

α > 0, has limiting power 1 when (2.5) holds.

The additional condition (on ν or the nonzero θij’s) seems artificial, but just as in

[ACTW17], we are not able to eliminate it. Other than that, in view of Theorem 1 we

see that the permutation scan test — just like the parametric scan test — is optimal to

first-order under a general one-parameter exponential model.

2.4 Rank-based scan tests

Rank tests are classical special cases of permutation tests [Het84]. Traditionally,

when computers were not as readily available and not as powerful, permutation tests were

not practical, but rank tests could still be, as long as calibration had been done once for

the same (or a comparable) problem size. Another well-known advantage of rank tests is

their robustness to outliers.

We consider the two ranking protocols described in Section 2.1.1. After the observa-

tions are ranked, the distribution under the null is the permutation distribution, either

uni- or bi-dimensional depending on the ranking protocol. This is strictly true under an

appropriate exchangeability condition, which holds in the null model we consider here

where all observations are IID. In fact, the unidimensional rank scan test is a form of

unidimensional permutation test, and the bidimensional rank scan is a form of bidimensional

permutation test, each time, the statistic being the rank scan

scan(R) = max
I⊂[M],∣I∣=m

max
J⊂[N],∣J ∣=n

∑
i∈I

∑
j∈J

Rij, (2.8)

where R = (Rij) is the matrix of ranks.
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Rank tests have been studied in minute detail in the classical setting [Het84, HS67].

Typically, this is done, again, by comparing their performance with the likelihood ratio test

in the context of some parametric model. There is usually some loss in efficiency, unless

one tailors the procedure to a particular parametric family.2 Such a performance analysis

was recently carried out for the rank scan in more structured settings [ACTW17]. We

again extend this work here and obtain the following.

Define

Υ = E(Z1(Z>Y )) +
1

2
E(Z1(Z=Y ))

where Y,Z are IID with distribution ν. (This is the same constant introduced by

[ACTW17].)

Theorem 3. Consider an exponential model as described in Section 2.2. Assume that (2.4)

holds. Let the group of permutations Π be either Π1 or Π2. The rank scan test at any fixed

level α > 0 has limiting power 1 when

lim inf
θ�
√
mn

√

2(m log M
m + n log N

n )

>
1

2
√

3Υ
. (2.9)

Compared to the (optimal) performance of the parametric and permutation scan

tests in the same setting (Theorem 1 and Theorem 2), we see that there is a loss in power.

However, the loss can be quite small. For example, as argued in [ACTW17], in the normal

model 1/(2
√

3Υ) =
√
π/3 ≈ 1.023.

2Actually, [Haj62] proposes a more complex method that avoids the need for knowing the parametric
family.
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2.5 Numerical experiments

We performed some numerical experiments to assess the accuracy of our asymptotic

theory. To do so, we had to deal with two major issues in terms of computational complexity.

The first issue is the computation of the scan statistic defined in (2.3). There are no known

computationally tractable method for doing so. As [BI13] did, we opted instead for an

approximation in the form of the alternate optimization (or hill-climbing) algorithm of

[SWPN09]. Since in principle this algorithm only converges to a local maximum, we run

the algorithm on several random initializations and take the largest output. The second

issue is that of computing the permutation P-value defined in (2.6). (This is true for the

permutation test and also for the special case of the rank test.) Indeed, examining all

possible permutations in Π (either Π1 or Π2) is only feasible for very small matrices. As

usual, we opted for Monte Carlo sampling. Specifically, we picked π1, . . . πB IID uniform

from Π with B = 500 in our setup. We then estimate the permutation P-value by

P̂(X) =
#{b ∈ [B] ∶ scan(Xπb) ≥ scan(X)} + 1

B + 1
.

We mention that when rank methods are applied, the ties in the data are broken

randomly.

Simulation setup Our simulation strategy is as follows. A data matrix X of size M ×N

is generated with the anomaly as [m] × [n]. All the entries of X are independent with

distribution f0 (same as ν) except for the anomalous ones which have distribution fθ�

for some θ� > 0. We compare the permutation tests and rank tests (unidimensional and

bidimensional) with the scan test calibrated by Monte Carlo (using 500 samples), which

serves as an oracle benchmark as it has full knowledge of the null distribution f0. By

construction, all tests have the prescribed level. As we increase θ�, the P-values of the
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different tests are recorded. Each setting is repeated 200 times.

As one of the main purposes of our simulations is to confirm our theory, we zoom in

on the region near the critical value

θcrit =

√
2(m log M

m + n log N
n )

mn
,

which comes from (2.5). Specifically, we increase θ� from 0.5 × θcrit to 1.5 × θcrit with step

size 0.125 × θcrit to explore the behavior of P-values around the critical value.

The Normal Case Here we generate data from normal family, where fθ corresponds

to N(θ,1). We used two setups, (M,N,m,n) = (200,100,10,15) and (M,N,m,n) =

(200, 100, 30, 10), to assess the performance of the tests under different anomaly sizes. The

resulting boxplots of the averaged P-values are shown in Figure 2.1.

From the plots we see that the P-values are generally very close to 0 when θ� exceeds

θcrit. When (m,n) = (10, 15) the convergence towards 0 is slower, which may be due to the

small size of the anomalous submatrix. As expected, the (oracle) Monte Carlo test is best,

followed by the bidimensional permutation test, followed by the unidimensional permutation

test. That said, the differences appear to be minor, which confirms our theoretical findings.

For the rank tests, we observe a similar behavior of the P-values, with the bidimen-

sional showing superiority over the unidimensional rank test, but the loss of power with

respect to the oracle test is a bit more substantial, as predicted by the theory. As shown

before, 1/(2
√

3Υ) ≈ 1.03 for the standard normal, so that we should place the critical

threshold approximately at 1.03 × θcrit. This appears to be confirmed in the setting where

(m,n) = (30,10). While the P-values for the rank tests converge relatively slowly when

(m,n) = (10,15) (for unidimensional rank test the P-value is close to 0 at θ = 1.5 × θcrit),

this may be due to the relatively small size of the anomaly.
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Figure 2.1: P-values of various forms of scan tests in the normal model
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Figure 2.2: P-values of various forms of scan tests in the Poisson model

The Poisson Case As another example, we consider the Poisson family, where fθ

corresponds to P(eθ) − 1. The data matrix and anomaly sizes are the same as they are in

the normal case. The resulting boxplots of the P-values are shown in Figure 2.2. Overall,

we observe a similar behavior of the P-values.

22



2.6 Bonferroni Permutation Test

2.6.1 Ordinary Bonferroni Procedure

In this section we construct the Bonferroni permutation test procedure under

the situation where (m,n) is unknown. While the null hypothesis remains unchanged,

the information of (m,n), contained inside the alternative hypothesis as mentioned in

Section 2.2, will be removed. Therefore the hypotheses will be changed as

H0 ∶ θij = 0, ∀(i, j) ∈ [M] × [N],

versus

H1 ∶ ∃Strue such that

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

θij ≥ θ�, ∀(i, j) ∈ Strue,

θij = 0, otherwise.

Here Strue is a subset of [M] × [N] and do not have size regulations. Correspondingly, we

define H1(m,n) as the alternative hypothesis defined in Section 2.2. So under H1(m,n),

Strue has size (m,n) and has entries equipped with θ bounded from below. By realizing

the fact that H1 is true if and only if there exists some (m,n) such that H1(m,n) is true,

we can perform test on H1(m,n) for all pairs of (m,n), and use Bonferroni correction in

order to control the type I error. We adapt the permutation test from Section 2.3 here.

We start by defining some notations which has similar meanings in the previous

sections, but have footnotes with (m,n) since (m,n) is allowed to change in this case. We

start with the scan statistics:

scanm,n(X) = max
I⊂[M],∣I∣=m

max
J⊂[N],∣J ∣=n

∑
i∈I

∑
j∈J

Xij. (2.10)
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and the permutation test distinguishing H0 and H1(m,n) will be of the same from of (2.6),

but with a bit of different notation:

Pm,n(X) =
∣{π ∈ Π ∶ scanm,n(Xπ) ≥ scanm,n(X)}∣

∣Π∣
. (2.11)

For each pair of (m,n), calculate Pm,n(X), and calculate the final Bonferroni corrected

p-value as

PB(X) = min(MN min
m,n

Pm,n(X),1). (2.12)

One rejects H0 when PB(X) is less than some pre-determined level α. Due to the property

of Bonferroni type of tests, this test has level α if each test concerning H0 and H1(m,n)

has level α, which is a proved fact in [LR05], regardless of the dependencies between tests.

Being a conservative method in multiple testing, Bonferroni method usually loses

statistical power in exchange for controlling the family wise error rate. However indicated

by some previous work (as mentioned before, [ACV14, BI13]), the Bonferroni procedure

achieves the same first-order asymptotic power as the scan test with oracle knowledge of

the submatrix size.

Theorem 4. Consider an exponential model as described in (1.2). Assume that there exists

a pair of (m,n) such that H1(m,n) is true, and all the assumptions in Theorem 2 are

satisfied. Then in probability,

PB(X) → 0.

2.6.2 A Power-preserving Fast Test

We build our Bonferroni testing framework on the permutation test, which is by

nature a computationally intensive method. Calculation of scan statistic (2.10) is NP-hard,

and the total number of permutation ∣Π∣ will skyrocket when the number of data increases.
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In practice the scan statistic is calculated by LAS algorithm proposed by [SWPN09], as in

[BI13], and the permutation test is done by Monte-Carlo sampling, as in Section 2.5. In

detail, a large number B is fixed, and permutations {π1, . . . , πB} is the IID sample from

uniform distribution on ∣Π∣. Then Pm,n is approximated by

P̂m,n(X) =
∣{i ∶ scanm,n(Xπi) ≥ scanm,n(X)}∣ + 1

B + 1
. (2.13)

As illustrated in Section 2.5, the calculation of the scan statistic (2.10) is already difficult,

even if the size (m,n) is known. Now with the submatrix size unknown, we have added

the difficulty since the scan statistic under all possible combinations of (m,n), will be

calculated during the Bonferroni process. In principle, the Bonferroni method requires

going over all submatrix sizes, but we only scan a carefully chosen subset to lighten up

the computational burden. Inspired by [ACDH05], we illustrate the construction of such

subset on [M] × [N], and show that the first-order statistical power is preserved.

The subset of [M] × [N] we are going to construct in order to approximate the

elements in [M] × [N] is called an approximate net. We first construct one-dimensional

approximate net on [M]. We start by the following definition.

Definition 1. The binary expansion of an integer c is the sequence {ai(c)} with ai(c) ∈ {0, 1}

and i ≤ ⌊log2 c⌋, such that

c =
⌊log2 c⌋

∑
i=0

ai(c)2
i.

After representing an integer in the binary numeral system, one may approximate

this integer by keeping the first k digits of its binary expansion. Denote c′ as the integer

satisfying

ai(c
′) = ai(c)1{i ≥ ⌊log2 c⌋ − k + 1}. (2.14)
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To find such an approximation of c, represent c in its binary expansion, keep the

first k digits, and shrink the rest to zero. Finally calculate c′ by the formula in Definition 1.

It captures the main part of the integer and the difference could be controlled by k. The

following lemma gives an upper bound of the difference rate.

Lemma 1. If c′ defined as in (2.14),

0 ≤
c − c′

c
≤ 21−k.

Note that the difference rate is only associated with k, and not associated with the

value of c. Therefore if we apply the approximation to a collection of integers, the difference

rate will be controlled uniformly among all the integers in the collection by the choice of k.

Now we construct the approximation net of [M] based on the approximation.

Definition 2. An approximation net Sk(M), of set [M], is defined as

Sk(M) = {c′ ∶ There exists c ∈ [M] such that (2.14) holds}.

The cardinality of Sk(M) can be much less than M as k is chosen properly. For

example, set k = log2 log2M + 1 and it can be shown that ∣Sk(M)∣ = O((log2M)2). Note

that in this case k →∞ when M →∞, and by Lemma 1 we know that for every c ∈ [M],

there exists some c′ ∈ Sk(M) such that c′ = (1 + o(1))c, and o(1) is uniform among [M].

Based on the one-dimensional approximation net defined in Definition 2, we can

similarly extend the idea to sets of two-dimensional integer pairs. We perform the Bonferroni-

type testing procedure on Sk(M) × Sl(N), instead of [M] × [N]. In detail, we use the

following Bonferroni corrected p-value:

PA
k,l(X) = min(∣Sk(M)∣∣Sl(N)∣ min

(s,t)∈Sk(M)×Sl(N)
Ps,t(X),1). (2.15)
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The idea is to use the property of approximation net to eliminate a significant portion of

calculation by reducing the scanning region of the Bonferroni process, while keeping the

accuracy through choosing a proper pair of (k, l). Assume we are under H1(m,n). When

setting k, l →∞, there is a pair of (m′, n′) ∈ Sk(M) × Sl(N) that is close enough to (m,n),

and Pm′,n′(X) will converge to zero fast enough such that brings the Bonferroni corrected

p-value to zero as well.

It is clear that (2.15) defines a proper p-value. The following theorem describes the

asymptotic power of the Bonferroni test on the approximate net.

Theorem 5. Assume all the assumptions in Theorem 4 hold. Further set k, l →∞. Then

in probability

PA
k.l(X) → 0.

2.7 Proofs

2.7.1 Preliminaries

We start with some preliminary results. First, for any one-parameter exponential

family (fθ ∶ θ ∈ Θ) described in Section 1.3 with a standardized base distribution ν, as we

consider to be here,

Eθ(X) ≥ θ, ∀θ ∈ Θ. (2.16)

Next, in the same context, if sup Θ > 0 (which we assume throughout), then fθ has a

sub-exponential right tail, which is uniform in θ ∈ θ̄ if θ̄ ∈ Θ. In particular, there is γ̄ that

depends on θ̄ > 0 such that, if X1, . . . ,Xk are independent, with Xj ∼ fθj and θj ≤ θ̄, then

max
j∈[k]

Xj ≤ γ̄ log k, with probability tending 1 as k →∞. (2.17)
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By symmetry, if inf Θ < 0 (which we assume in the case of unidimensional permutations), the

same is true on the left. In particular, ν itself (corresponding to θ = 0) has a sub-exponential

left tail in this case, meaning that there is a constant γ0 > 0 such that, if X1, . . . ,Xk are

IID ν, then

min
j∈[k]

Xj ≥ −γ0 log k, with probability tending 1 as k →∞. (2.18)

2.7.2 Proof of Theorem 2

Unidimensional Case

In what follows, we take Π = Π1. Recall that in this case we assume in addition that

ϕ(θ) < ∞ for some θ < 0. This implies that ν as sub-exponential tails.

Case (i) We first focus on the condition where ν has support bounded from above and

let b0 denote such an upper bound. (Necessarily, b0 > 0 since ν has zero mean.) Thus,

regardless of the θij’s,

P(maxi,jXij ≤ b0) = 1. (2.19)

The permutation scan test has limiting power 1 if and only if P(P(X) ≤ α) → 1 under the

alternative. We show that by proving the stronger claim that P(X) → 0 in probability

under the alternative.

We first work conditional on X = x, where x = (xij) denotes a realization of X = (Xij)

where xij ≤ b0 for all (i, j), which is typical due to (2.19). We may equivalently center the

rows of X before scanning, and the resulting test remains unchanged. Therefore, we may

assume that all the rows of x sum to 0. Let ζ = scan(x) for short. We have

P(x) = P(scan(xπ) ≥ ζ),
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where the randomness comes solely from π, uniformly drawn from Π. Using the union

bound, we get

P(x) ≤ ∣Sm,n∣ max
S∈Sm,n

P (∑(i,j)∈S xπ(i,j) ≥ ζ).

For each i ∈ [N], let (Aij ∶ j ∈ [n]) be a sample from (xij ∶ j ∈ [N]) without replacement

and let Ai = ∑j∈[n]Aij. Note that A1, . . . ,AM are independent and, for S = I × J , we have

∑
(i,j)∈S

xπ(i,j) ∼ ∑
i∈I

Ai.

Fix I ⊂ [M] of size m. Using Markov’s inequality and the independence of the Ai’s, we get

P (∑i∈I Ai ≥ ζ) ≤ e
−cζ∏i∈I φi(c),

where φi is the moment generating function of Ai. The key is [Hoe63, Theorem 4], which

implies that φi ≤ ψi, where ψi is the moment generating function of Bi, where Bi = ∑j∈[n]Bij

and (Bij ∶ j ∈ [n]) is a sample from (xij ∶ j ∈ [N]) with replacement, meaning that these are

IID random variables uniformly distributed in (xij ∶ j ∈ [N]). We have Bij ≤ b0, and the

classical arguments leading to the (one-sided) Bernstein inequality yield the usual bound

ψi(c) ≤ exp(
nc2σ2

i

2

ecb0 − 1 − cb0

c2b2
0/2

) ,

where σ2
i is the variance of Bi1, meaning, σ2

i ∶=
1
N ∑j∈[N](xij − x̄i)

2, with x̄i ∶=
1
N ∑j∈[N] xij

being the mean. Letting σ2 = maxi∈[M] σ
2
i , we derive

e−cζ∏
i∈I

φi(c) ≤ e
−cζ
∏
i∈I

exp(
nc2σ2

i

2

ecb0 − 1 − cb0

c2b2
0/2

) ≤ e−cζ exp(
mnc2σ2

2

ecb0 − 1 − cb0

c2b2
0/2

) ,

the latter being the usual bound that leads to Bernstein’s inequality, and the same
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optimization over c then yields

P (∑i∈IAi ≥ ζ) ≤ exp(−
ζ2

2mnσ2 + 2
3b0ζ

) .

We now emphasize the dependency of ζ and σ2 on x by adding x as a subscript. Noting

that this bound is independent of I (of size m), we get

P(x) ≤ ∣Sm,n∣ exp(−
ζ2
x

2mnσ2
x +

2
3b0ζx

) . (2.20)

We now free X and bound ζX from below, and σ2
X from above. When doing so, we

need to take into account that we assumed the rows summed to 0. When this is no longer

the case, ζX denotes the scan of X after centering all the rows. Let X̄i denote the mean of

row i. By definition of the scan in (2.3),

ζX ≥ ζtrue ∶= ∑
i∈Itrue

∑
j∈Jtrue

(Xij − X̄i) = (1 − n
N ) ∑

i∈Itrue

∑
j∈Jtrue

Xij −
n
N ∑
i∈Itrue

∑
j∉Jtrue

Xij.

For the expectation, by (2.4) and (2.16), we have

E(ζtrue) ≥ (1 − n
N ) ∑

i∈Itrue

∑
j∈Jtrue

θij ≥ (1 − o(1))mnθ�.

For the variance, we have Var(Xij) = 1 when (i, j) ∉ Strue (since ν has variance 1) and

Var(Xij) ≤ E(X2
ij) ≤ b

2
0 always. Using this, we derive

Var(ζtrue) ≤mnb
2
0 + ( nN )2mN =mn(b2

0 +
n
N ) = O(mn).

Because of (2.4) and (2.5), E(ζtrue) ≫
√

Var(ζtrue), and thus by Chebyshev’s inequality,

ζtrue = (1 + oP (1))E(ζtrue) ≥ (1 + oP (1))mnθ�. (2.21)
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We now bound σ2
x. For i ∈ Itrue, we have

σ2
i (X) ≤

1

N
∑
j∈[N]

X2
ij =

1

N
∑

j∈Jtrue

X2
ij +

1

N
∑

j∉Jtrue

X2
ij ≤

nb2
0

N
+

1

N
∑

j∉Jtrue

X2
ij.

For i ∉ Itrue,

σ2
i (X) ≤

1

N
∑
j∈[N]

X2
ij.

Therefore

σ2
X

sto
≤ 1 + o(1) +max

i∈[M]

1

N
∑
j∈[N]

Tij, (2.22)

where (Tij ∶ (i, j) ∈ [M] × [N]) are IID with distribution that of X2 − 1 when X ∼ ν. Note

that E(Tij) = 0 since ν has variance 1 and

max
i,j

Tij ≤ t̄ ∶= b
2
0 ∨ (γ0 log(MN))2,

by (2.19) and when the following event holds

A ∶= {min
i,j

Xij ≥ −γ0 log(MN)},

which by (2.18) happens with probability tending to 1. Let PA be the probability conditional

on A and EA the corresponding expectation. Let µA = EA(Tij) and τ 2
A = VarA(Tij). Note

that τ 2
A < ∞ because ν has finite fourth moment. By Bernstein’s inequality, for any c > µA,

PA (
1

N
∑
j∈[N]

Tij > c) ≤ exp( −
N(c − µA)

2

2τ 2
A +

2
3 t̄c

).
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Then, using a union bound,

PA (max
i∈[M]

1

N
∑
j∈[N]

Tij > c) ≤M exp( −
N(c − µA)

2

2τ 2
A +

2
3 t̄c

). (2.23)

Taking natural logs, noting that µA → 0 and τ 2
A → τ 2 ∶= Var(Tij), as well as t̄ = O(log(MN)),

and using (2.4) and (2.7), we see that the RHS tends to 0 for any c > 0 fixed. Therefore

maxi∈[M]
1
N ∑j∈[N] Tij = oP (1) conditional on A, and since P(A) → 1, also unconditionally.

Coming back to (2.22), we conclude that

σ2
X = 1 + oP (1). (2.24)

The upper bound on ζX and the lower bound on σ2
X, combined, imply by monotonicity

that

ζ2
X

2mnσ2
X + 2

3b0ζX
≥ (1 + oP (1))

mnθ2
�

2 + 2
3b0θ�

.

We also have ∣Sm,n∣ = (
M
m
)(
N
n
), so that

log ∣Sm,n∣ = log (
M
m
) + log (

N
n
) ≤ (1 + o(1))Λ,

with

Λ ∶= (m log M
m + n log N

n
),

where in the last inequality we used (2.4) and the fact that log (
K
k
) ≤ k log(K/k) + k for all

integers 1 ≤ k ≤K.
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Coming back to (2.20) and collecting all the bounds in between, we find that

logP(X) ≤ (1 + o(1))Λ − (1 + oP (1))
mnθ2

�

2 + 2
3b0θ�

.

Under (2.5), there is ε > 0 such that, eventually,

θ� ≥ (1 + ε)
√

2Λ/(mn). (2.25)

When that’s the case, we get

logP(X) ≤ (1 + o(1))Λ − (1 + oP (1))
(1 + 2ε)Λ

1 + 1
3b0(1 + ε)

√
2Λ/(mn)

. (2.26)

Noting that Λ/(mn) = o(1) and Λ→∞ under (2.4), we get

logP(X) ≤ −(1 + oP (1))2εΛ→ −∞,

which is what we needed to prove.

Case (ii) We now consider the case where θij ≤ θ̄ for all (i, j) ∈ [M]×[N] for some θ̄ < θ∗.

Although (2.19) may not hold for any b0, we redefine b0 = γ̄ log(MN), where γ̄ depends on

θ̄, and condition on the event

B ∶= {max
i,j

Xij ≤ b0},

which holds with probability tending to 1 by (2.17). The bound (2.20) holds unchanged

(assuming that maxi,j xij ≤ b0). What is different is how ζX and σ2
X are handled, now that

we conditioned on B. Let PB and EB denote the probability and expectation conditional

on B.
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We have

EB(ζtrue) ≥ (1 − n
N ) ∑

i∈Itrue

∑
j∈Jtrue

EB(Xij) −
n
N ∑
i∈Itrue

∑
j∉Jtrue

EB(Xij)

= (1 − n
N ) ∑

i∈Itrue

∑
j∈Jtrue

E(Xij ∣Xij ≤ b0) −
n
N ∑
i∈Itrue

∑
j∉Jtrue

E(Xij ∣Xij ≤ b0)

≥ (1 + o(1))mnθ�.

In the last inequality, for j ∉ Jtrue we used the fact that E(Xij) = 0, which implies that

EB(Xij) ≤ 0 in that case. And for j ∈ Jtrue we used the fact that E(Xij ∣Xij ≤ b0) → θij ≥ θ�

combined with a Cèsaro-type argument. On the other hand, in a similar way, we also have

VarB(ζtrue) = O(mnb2
0) = O(mn log2

(MN)).

So we still have EB(ζtrue) ≫
√

VarB(ζtrue), by (2.4) and (2.5), and in addition (2.7). In

particular, (2.21) holds under B. In very much the same way, one can verify that the same

is true of (2.24).

From there we get to (2.26) in exactly the same way, conditionally on B, and

then unconditionally since P(B) → 1. Then, to conclude, we only need to check that

b0

√
Λ/(mn) = o(1), which is the case by (2.7).

Bidimensional Case

The following lemma is at the center of our argument.

Lemma 2 ([ACTW17] Lemma 2, Bernstein’s inequality for sampling without replacement).

Let (Z1, . . . , Zm) be obtained by sampling without replacement from a given a set of real

numbers {z1, . . . , zJ} ⊂ R. Define zmax = maxj zj, z̄ =
1
J ∑j zj, and σ2

z =
1
J ∑j(zj − z̄)

2. Then
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the sample mean Z̄ = 1
m ∑iZi satisfies

P (Z̄ ≥ z̄ + t) ≤ exp

⎡
⎢
⎢
⎢
⎢
⎣

−
mt2

2σ2
z +

2
3(zmax − z̄)t

⎤
⎥
⎥
⎥
⎥
⎦

, ∀t ≥ 0.

The lemma is a result from [Ser74]. We also refer the reader to [BM+15, BLM13]

for further details of the lemma.

Starting from here we denote S∗ = Itrue × Jtrue as the true anomaly submatrix, and

recall that (m,n) are its row and column sizes. For a submatrix index set S, denote

YS(X) = ∑(i,j)∈SXij. Now fix some S ∈ Sm,n and uniformly sample a permutation π ∈ Π2.

Also, if we conditional a realization of X, say x, by Lemma 2, we have

Pπ (
YS(xπ)

mn
− x̄ > t) ≤ exp

⎛

⎝
−

t2mn

2σ2
x +

2
3(xmax − x̄)t

⎞

⎠
,

where xmax is the largest value in the data matrix x, and σ2
x here, is redefined as the sample

variance of the data if x is treated as a one dimensional data vector. Notice that the

probability is on the permutation process. Therefore we rewrite the above inequality as

∑
π∈Π2

1(
YS(xπ)
mn − x̄ > t)

∣Π2∣
≤ exp

⎛

⎝
−

t2mn

2σ2
x +

2
3(xmax − x̄)t

⎞

⎠
.

Notice that with π fixed,

1
⎛

⎝

scan(x)

mn
− x̄ > t

⎞

⎠
≤ ∑
S∈Sm,n

1
⎛

⎝

YS(xπ)

mn
− x̄ > t

⎞

⎠
.
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Therefore, if set t = scan(x)/mn − x̄, we have

P(x) = ∑
π∈Π2

1
⎛

⎝

scan(x)
mn − x̄ > t

⎞

⎠

∣Π2∣

≤ ∣Sm,n∣ exp
⎛

⎝
−

mn(scanm,n(x)/mn − x̄)2

2σ2
x +

2
3(xmax − x̄)(scanm,n(x)/mn − x̄)

⎞

⎠

Note that this inequality holds for all the realizations of X, thus we allow X change and

focusing on the quantity

∣Sm,n∣ exp
⎛

⎝
−

mn(scanm,n(X)/mn − X̄)2

2σ2
X + 2

3(Xmax − X̄)(scanm,n(X)/mn − X̄)

⎞

⎠
. (2.27)

We show that this quantity is oP (1).

We start with bounding X̄ by rewriting X̄ as

X̄ =
∑i,jXij

MN
=
mn

MN
⋅
∑(i,j)∈S∗Xij

mn
+
MN −mn

MN
⋅
∑(i,j)∉S∗Xij

MN −mn
.

With θ in the anomalous submatrix bounded from above, or the support of fθ being

bounded, the first term is oP (1) since mn = o(MN). By Law of Large Numbers, the second

term is oP (1) given that distribution f0 has mean zero. So

X̄ = oP (1).

Follow (2.17), we can bound Xmax with

P(Xmax < γ̄ log(MN)) → 1. (2.28)

Denote the event A = {Xmax < γ̄ log(MN)}. All the following arguments are conditional on
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A. But since A happens with probability tending to 1, all the conditional high probability

events will happen unconditionally with high probability as well.

We do similar operations to bound σ2
X as follows.

σ2
X =

1

MN
∑
i,j

(Xij − X̄)2 ≤
1

MN
∑
i,j

X2
ij

=
mn

MN
⋅
∑Xij∈S∗X

2
ij

mn
+
MN −mn

MN
⋅
∑Xij∉S∗X

2
ij

MN −mn
.

The first term is oP (1) if distribution fθ has finite second moment, which can be derived

from the assumption. The second term is 1+oP (1) by Law of Large Numbers and Slutsky’s

Lemma. Therefore

σ2
X = 1 + oP (1) (2.29)

Finally we bound scanm,n(X)/mn − X̄ as a whole. By the definition of the scan

statistic,

scanm,n(X)

mn
− X̄ ≥

YS∗(X)

mn
− X̄ = X̄S∗ − X̄,

here X̄S∗ = ∑(i,j)∈S∗Xij/mn represents the average in the submatrix indexed by S∗. Rewrite

Xij = E(Xij) +Zij for Xij ∈ S∗, where Zij has mean zero and bounded second moment. By

Law of Large numbers, as well as (2.16),

X̄S∗ =
1

mn
∑

Xij∈S∗
EXij +OP (

1
√
mn

) ≥ θ� +OP (
1

√
mn

).

Note that X̄ = OP (1/
√
MN) and mn = o(MN),

scanm,n(X)

mn
− X̄ ≥ θ� +OP (

1
√
MN

)
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By (2.5) we know that
√
mnθ� → ∞, or θ� ≫ 1/

√
MN , so we can rewrite the equation

above as

scanm,n(X)

mn
− X̄ ≥ θ�(1 + oP (1)). (2.30)

Plug in (2.28), (2.29) and (2.30) into (2.27), we have

P(X) ≤ ∣Sm,n∣ exp( −
(1 + oP (1))θ2

�mn

2(1 + oP (1)) +
2
c(logMN)θ�(1 + oP (1))

).

From (2.7) we get the second term in the denominator in the exponent component is oP (1).

Assume in (2.5),

lim inf
θ2
�mn

2(m log M
m + n log N

n )
≥ 1 + ε

with some constant ε > 0, then eventually with high probability we well have

log(P(X)) ≤ log(∣Sm,n∣) −
(1 − ε/2)θ2

�mn

2(1 + ε/8)

≤ log(∣Sm,n∣) − (1 +
ε

4 + ε/2
)Λ.

By the fact that ∣Sm,n∣ ≤ (1 + o(1))Λ, we have eventually

log(∣Sm,n∣) ≤ ((1 +
ε

8 + ε
))Λ.

So the with high probability the permutation p-value is bounded from above by

log(P(X)) ≤ −(
ε

8 + ε
)Λ (2.31)

which finishes the proof.
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2.7.3 Proof of Theorem 3

Unidimensional Case

As rank tests are permutation tests, it suffices to specialize and detail the arguments

given in Section 2.7.2. We focus again on the unidimensional case. In that case, in each

row i, the ranks (Rij ∶ j ∈ [N]) are a permutation of {1, . . . ,N}. Therefore the row mean is

(N + 1)/2 and the variance is (N2 − 1)/12. Hence, with R = r denoting the ranks of X = x,

(2.20) becomes

P(r) ≤ ∣Sm,n∣ exp [−
ζ2
r

2mn((N2 − 1)/12) + 2
3Nζr

] , (2.32)

where, as before, ζr is the rank scan of r with the row means removed.

As in [ACTW17], by a monotonicity argument, we may reduce the situation to

the last favorable case where θij = θ� when (i, j) ∈ Strue and assume an equality in (2.25).

Following the same arguments used in [ACTW17] for bounding ζR from below, we arrive at

ζR ≥mn(N − n)(θ�Υ −O(θ2
�)) +Op(N

√
mn) = (1 + oP (1))mnNθ�Υ.

ζ2
r

2mn((N2 − 1)/12) + 2
3Nζr

≥ (1 + oP (1))
mnθ2

�Υ2

2/12 + 2
3θ�Υ

. (2.33)

From (2.9), there exists some ε > 0 such that eventually,

Υθ� ≥ (1 + ε)

√
2Λ

12mn
.

Along with (2.33) and (2.32), we have the bound

logP(R) ≤ (1 + o(1))Λ − (1 + oP (1))
(1 + 2ε)2Λ

12

2/12 + 2
3(1 + ε)

√
2Λ

12mn

.

39



With Λ/mn→ 0 and Λ→∞,

logP(R) ≤ −(1 + o(1))2εΛ→ −∞,

which concludes the proof.

When θij ≥ θ� with (i, j) ∈ Strue, note that pθ is increasing with θ, therefore the

P-value will be stochastically dominated by the one during proof.

Bidimensional Case

According to the analysis before, all that remains to be done is to study the

performance of the rank scan test under the alternative.

We may directly go through the same procedure as in the data case, to obtain

P(r) ≤ ∣Sm,n∣ exp
⎛

⎝
−

Γ(r)2

(MN)2

6 + MN

2
√

∣S∗∣
Γ(r)

⎞

⎠
,

where we used σ2
r = ((MN)2 − 1)/12 < (MN)2/12, rmax = MN and r̄ = (MN + 1)/2, so

that rmax − r̄ < (MN)/2. Here we use Γ(r) = scan(r)/
√

∣S∗∣ −
√

∣S∗∣(MN + 1)/2, where

∣S∗∣ =mn. The previous bounds can be directly computed when there are no ties in the

ranks, and it is easy to verify that they also hold if ties are dealt with in any of the classical

ways (assigning the average rank, randomly breaking ties, etc). As before, this is a result

conditional on the observations X = x and hence the ranks R = r. The next step is to

remove this conditioning, which now amounts to controlling the term Γ(R).

Let S∗ denote the anomalous submatrix under the alternative and first assume that

θ = θ� for all entries inside S∗. By our assumptions on the size of the anomalous submatrix,

we assume θ� → 0 as M,N →∞.
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Since

Γ(R) ≥ YS∗(R)/
√

∣S∗∣ −
√

∣S∗∣
MN + 1

2
,

we focus on obtaining a lower bound on Ỹ (R) ∶= YS∗(R)/
√

∣S∗∣ that applies with high

probability.

Take any v,w ∈ S∗ distinct and define

ζθ = Eθ(Rv), σ2
θ = Varθ(Rv), ξθ = Covθ(Rv,Rw).

Note that

Eθ[ỸS∗(R)] =
√

∣S∣ζθ� , Varθ[ỸS∗(R)] = σ2
θ�
+ (∣S∗∣ − 1)ξθ� ,

and so, by Chebyshev’s inequality,

ỸS∗(R) =
√

∣S∗∣ζθ� +OP (
√
σ2
θ�
+ ∣S∗∣ξθ�).

With the lemma 3 in [ACTW17], we can obtain

ζθ� =
MN+1

2 + (MN − ∣S∗∣)(ζθ� −
1
2), σ2

θ�
≤ 4(MN)2, ξθ� ≤ 2MN.

which gives

ỸS∗(R) −
√

∣S∗∣MN+1
2 =

√
∣S∗∣(MN − ∣S∗∣)(ζθ� −

1
2) +OP (MN). (2.34)
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Use Lemma 3 from [ACTW17] again, we have

ζθ� ≥
1
2 + θ�Υ −O(θ2

�).

Plug in (2.34), noting that
√

∣S∣θ� →∞ in (2.9) and ∣S∗∣ =mn = o(MN),

ỸS∗(R) −
√

∣S∗∣MN+1
2 ≥ (1 + o(1))MN

√
∣S∗∣θ�Υ (2.35)

By the same argument of the previous proof,

log(P(R)) ≤ log(∣Sm,n∣) −
(1 + o(1))(MN)2∣S∗∣θ2

�Υ2

(MN)2

6 + MN

2
√

∣S∗∣
(1 + o(1))MN

√
∣S∗∣θ�Υ

= log(∣Sm,n∣) −
(1 + o(1))∣S∗∣θ2

�Υ2

1
6 +

1
2(1 + o(1))θ�Υ

Assuming θ� → 0 ensures the second term of the denominator is o(1). Assume in (2.9),

lim inf
mnθ2

�

2(m log(M/m) + n log(N/n))
=

1

12Υ2
(1 + ε)

with some constant ε > 0, eventually we will have

log(P(R)) ≤ log(∣S∣) − (1 + 2ε
3 )Λ.

By the same argument on ∣Sm,n∣ such that log ∣Sm,n∣ ≤ (1 + o(1))Λ , eventually

log ∣S∣ ≤ (1 + ε
3)Λ,
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so we can derive

log(P(r)) ≤ −
ε

3
(m log(

M

m
) + n log(

N

n
)).

We reach the conclusion that the rank test calibrated by permutation has power going to 1

as M,N →∞ when θ = θ� for all the entries inside the elevated submatrix.

Finally, to establish the result when θij ≥ θ�, we use the fact that the permutation

p-value under this case is stochastically dominated by the p-value used in the proof.

2.7.4 Proof of Theorem 4

We first show that the test has level α. To show this, we fix a pair of (m,n) and

show that P(Pm,n(X) ≥ α) ≤ α. By the standard argument on the level of Bonferroni

test, we will finish the proof on the level. Assuming the null is true, scanm,n(π(X)) has

the same distribution with scanm,n(X) under either permutation methods. Therefore we

define

Tk = scanm,n(πk(X)), k ∈ [(MN)!],

and assume Tk0 = scanm,n(X), then rank(Tk0) is uniformly distributed on [(MN)!] (if the

ties are broken randomly). We have

P(Pm,n(X) ≤ α) ≤ P(rank(Ti0) ≤ ⌊α(MN !)⌋) ≤
⌊α(MN !)⌋

MN !
≤ α.

Therefore all we need to show is that the p-value tends to zero under the alternative.

Bidimensional permutation

We refer to the proof in Theorem 2 and directly use the results there. We only

consider the permutation p-value calibrated under the true anomaly size (m,n), which
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denoted as Pm,n(X). By the definition of P(X), we have

P(X) ≤MNPm,n(X).

By the inequality controlling Pm,n(X), namely (2.31), we have

log[MNPm,n(X)] ≤ log(MN) − (
ε

8 + ε
)Λ.

Recall that Λ = (m log M
m +n log N

n
), it is easily to see that log(MN) = o(1)Λ with the help

of (2.7). Therefore eventually

log(MN) ≤ εΛ/16

which implies

log[MNPm,n(X)] ≤ log(MN) − (
ε

16 + ε
)Λ.

which concludes the proof.

Unidimensional permutation

We also refer to the proof in Section 2.3. Under the unidimensional permutation,

for the permutation p-value with (m,n) known, we have

logPm,n(X) ≤ −(1 + oP (1))δ log(∣Smn∣).
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Here δ is a positive constant related to the difference between both sides of (2.5). Note

that log(MN) = o(1) log(∣Smn∣) by (2.7), therefore directly,

logP(X) ≤ log(MN) + logPm,n(X)

≤ −(1 + oP (1))δ log ∣Smn∣ + log(MN) = −(1 + oP (1))δ log(∣Smn∣).

2.7.5 Proof of Lemma 1

From (2.14),

c′ − c =
⌊log2 c⌋−k

∑
i=0

ai(c)2
i ≤

⌊log2 c⌋−k

∑
i=0

2i ≤ 2⌊log2 c⌋−k+1.

Observing that c = 2log2 c, we have

c − c′

c
≤ 2i ≤ 2⌊log2 c⌋−k+1−log2 c ≤ 21−k.

2.7.6 Proof of Theorem 5

We illustrate the bidimensional case here, since the unidimensional case is following

the same proof strategy and basically a rework of the existing proof of Theorem 2 on the

unidimensional case.

From Lemma 1, we may find (m′, n′) ∈ Sk(M) × Sl(N) such that m′ ≤ m,n′ ≤ n

and m′ = (1 + o(1))m,n′ = (1 + o(1))n. Now we consider performing permutation test on

(m′, n′) and bound Pm′,n′ by the same way in the previous proof of Theorem 4.

We rewrite (2.27) as follows, as well as multiplied by the Bonferroni correction
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factor. The PA
k,l(X) is bounded by the following,

∣Sk(M)∣∣Sl(N)∣∣Sm′,n′ ∣ exp
⎛

⎝
−

m′n′(scanm′,n′(X)/m′n′ − X̄)2

2σ2
X + 2

3(Xmax − X̄)(scanm′,n′(X)/m′n′ − X̄)

⎞

⎠
.

Note that ∣Sk(M)∣∣Sl(N)∣ ≤MN . Combined with m′ = (1+ o(1))m,n′ = (1+ o(1))n, all we

need to verify is the following,

scanm′,n′(X)

m′n′
− X̄ ≥ θ�(1 + oP (1)). (2.36)

This is done by realizing that scanm′,n′(X) ≥ YS′(X), where S′ ⊂ S∗ and have m′ rows and

n′ columns. Since m′, n′ →∞, the same argument yields

scanm′,n′(X)

m′n′
≥ θ� +OP (

1
√
m′n′

) = θ� +OP (
1

√
mn

). (2.37)

Everything else follows the argument of the proof of Theorem 2, and (2.36) will be verified,

which leads to the following,

∣Sm′,n′ ∣ exp
⎛

⎝
−

m′n′(scanm′,n′(X)/m′n′ − X̄)2

2σ2
X + 2

3(Xmax − X̄)(scanm′,n′(X)/m′n′ − X̄)

⎞

⎠
≤ −εΛ

for some positive constant ε. Now realize that

∣Sk(M)∣∣Sl(N)∣ ≤MN,

we have log(∣Sk(M)∣∣Sl(N)∣) = o(1)Λ. Therefore eventually log(∣Sk(M)∣∣Sl(N)∣) ≤ 0.5εΛ

and this will conclude the proof.
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Chapter 3

Size-adaptive Submatrix Localization

3.1 Introduction

In this chapter we consider the problem of localizing the anomalous submatrix inside

a large data matrix. Observing a data matrix X, the problem of submatrix localization,

or bi-clustering, is to locate some submatrix, whose entries are ’elevated’, or ’significant’,

compared to the entries outside the submatrix. Usually the index sets are of special interest,

since the elevated entries may stand for some potential association or relationship between

the index sets. Notice that unlike in the previous chapter, where we are mainly interested in

distinguishing data sets containing such information from pure noise, here we are interested

in finding the submatrix that contains information, and separate it from the data matrix.

3.1.1 Submatrix localization

As in the previous chapters, we denote M and N as the number of rows and columns

of the observed data X. We further assume that there is only one submatrix, of size m∗×n∗,

to be localized (notice the notation change), as in the simplest case. Furthermore we

introduce the Gaussian assumption to the distribution of the entries, as well as homogeneity
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both inside and outside the anomaly, namely:

Xij = θ1{(i,j)∈(I∗×J∗)} + εij (3.1)

where εij are IID following standard normal distribution, and I∗ ⊂ [M], J∗ ⊂ [N] are index

sets of the elevated submatrix with size (m∗, n∗) respectively. The parameter θ, which is

assumed to be strictly positive in this case, quantifies the signal contained in the submatrix.

This parametric setup is used in [KBRS11] and [BIS15], where they focus on locating

the submatrix by the scan statistic [BI13], with full knowledge of the anomaly size (m∗, n∗).

In detail, the scan statistic, with (m∗, n∗) known, is defined as

scanm∗,n∗(X) = max
I⊂[M],∣I ∣=m∗,J⊂[N],∣J ∣=n∗

∑
(i,j)∈I×J

Xij. (3.2)

Here we use the symbol [M] to represent integer set {1, . . . ,M}, and function ∣ ⋅ ∣ represents

the cardinality of a set. Localizing the submatrix by the scan statistic is simply returning

the row and column indexes reaching the maximal, namely:

Φscan(X) = {(I, J) ∶ ∑
(i,j)∈I×J

Xij = scanm∗,n∗(X)}

It is shown that this estimator has the ’minimax’ property under Gaussian assumption:

Theorem 6 ([BIS15] Theorem 2.1, 2.2). Under (3.1), assume that

M,N,m∗, n∗ →∞, ,
max(m∗, n∗)

min(M,N)
→ 0. (3.3)
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Denote

θ0 = max{

√
2 logn∗ +

√
2 log(N − n∗)

√
m∗

,

√
2 logm∗ +

√
2 log(M −m∗)

√
n∗

,

√
2n∗ log(N/n∗) + 2m∗ log(M/m∗)

√
m∗n∗

}.

Then if

lim inf θ/θ0 > 1,

the estimator Φscan(X) is consistent, meaning that P(Φscan(X) ≠ I∗ × J∗) → 0.

Moreover, if

lim sup θ/θ0 < 1,

there does not exist a uniformly consistent estimator that recovers I∗ × J∗.

Theorem 6 provides lower bound of the signal for the existence of highly probably

exact estimators, and proved that the estimator based on scan statistic will reach the lower

bound. In order to make use of the scan statistic, exact prior knowledge of the anomaly

size (m,n) is critical.

We consider the case when the submatrix size (m,n) is not known and as part of

the parameters to be estimated. Therefore another form of scan statistic, different from

proposed in (3.2), is in need in order to recover the submatrix.

Contribution 5 (Multiscale scan statistic and its property). We propose a multiscale

scan statistic as an estimator under the parametric model defined in Section 3.1.1. We

prove that under some regularity conditions, this statistic exactly recovers the submatrix

with high probability, when the signal strength is similar to order described in Theorem 6.
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Additionally, the theory is extended to the case when entries follow distributions from a

one-parameter exponential family.

Unfortunately, the finding of such a scan statistic is proved to be NP-hard, which is

from the fact that calculation of the scan statistic (3.2) is NP-hard ([CC00] Theorem 1).

To tackle the problem of calculating the scan statistic defined in (3.2), [SWPN09] develops

an iterative algorithm (LAS) for a efficiently approximation. Based on the LAS algorithm,

we develop two algorithms in order to approach our proposed statistic:

Contribution 6. We develop iterative algorithms to solve the problem of finding the

proposed multiscale scan statistic. One algorithm adapts the idea of [SWPN09] and is

a hill-climbing type optimization algorithm. The other is a golden section search type

optimization procedure. Both algorithms are multiscale and apply to the case when (m,n)

are unknown, while providing good performance in the simulation study.

3.1.2 Content

The following of this chapter are arranged as follows. In Section 3.2 we introduce the

multiscale scan statistic, and reveal the connection between the statistic and the likelihood

ratio test under the Gaussian parametrization model, with its theoretical property proved

in Section 3.4. Section 3.3 introduces the main algorithms approaching the statistic. A

hill-climbing search algorithm and a golden section search algorithm are introduced in

details. The chapter is finished by a simulation study in Section 3.5. The technical proofs

go into the appendix.

51



3.2 The multiscale scan statistic

3.2.1 Normalized scan statistic

When (m∗, n∗) is unknown, the original scan statistic from (3.2) will change with

different inputs of predetermined submatrix sizes. We would like to continue using the

scan statistic framework, but a criteria for carrying out comparison between different scan

statistic results under different submatrix sizes inputs is in need. For example, if two

potential submatrix sizes (m1, n1) and (m2, n2) are investigated, how to determine which

one of (scanm1,n1(X), scanm2,n2(X)) is more ‘significant’? It is clear that one can not

compare them directly with the value since it heavily favors the larger submatrix sizes.

Also, it is worth mentioning that comparing the average of entries inside the submatrix

returned by the scan statistic, namely, scanm,n(X)/(mn), is not proper since this criteria

will mark the 1 × 1 submatrix containing maxi,jXij as the most significant.

Our proposed multiscale scan statistic is inspired by [ACTW17] where the authors

aims to detect an interval with unusual large mean inside a sequence of observations, with

interval length unknown. In their work the authors introduce a scan statistic, which is

searching for the interval containing the largest normalized mean. Following this idea, we

focus the normalized scan statistic as scanm,n(X)/
√
mn. This statistic is also used in the

testing procedure for detecting the existence of elevated submatrix by [BI13].

Another reason to focus on such normalization approach is that, as discussed in

[ACG13], the scan statistic as the test statistic in [ACTW17] is asymptotically equivalent to

a form of generalized likelihood ratio test. We illustrate the same idea here with Gaussian

assumption, as specified previously in (3.1). Consider the hypothesis testing problem

regarding data X, where

H0 ∶Xij are iid N(0,1)
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versus

H1 ∶ There exists nonempty I∗ and J∗ such that (3.1) holds.

The likelihood ratio test statistic takes the form of rejecting H0 when

Λ =
maxθ∈R,(I,J)⊂[M]×[N]∏(i,j)∈I×J φ(Xij − θ)∏(i,j)∉I×J φ(Xij)

∏(i,j)∈[M]×[N] φ(Xij)
,

is large. With some algebra, it can be shown that the test is equivalent to rejecting H0

when the following quantity is large:

max
I⊂[M],J⊂[N]

∑(i,j)∈I×J Xij
√

∣I ∣∣J ∣
,

Therefore, normalized scan statistics captures the deviation of a model parametrized by

(3.1) from pure Gaussian noise. And naturally the submatrix responsible for generating

such a deviation is the estimator of indexes for the elevated submatrix.

3.2.2 Comparing normalized scan statistics

When comparing two normalized scan statistic, especially when the sizes of the scan

statistics are differing significantly, we need to consider the effect of background noise into the

comparison. For example, consider two sets of sizes (m1, n1) and (m2, n2), and denote Sm,n

as the collection of submatrices with size (m,n). If ∣Sm1,n1 ∣ is larger than ∣Sm2,n2 ∣ by a very

large margin, and further assume all Xij are iid standard normal (which means that there is

no signal contained), it will be likely that scanm1,n1(X)/
√
m1n1 > scanm2,n2(X)/

√
m2n2

since the former is taking maximal over more elements than the latter. This tells us that

we need more adjusting elements to construct our multiscale scan statistic.

Inspired by the multiscale testing procedure in [BI13], we denote the following
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quantity:

λm,n =

¿
Á
ÁÀ2 log [MN(

M

m
)(
N

n
)], (3.4)

and our multiscale scan statistic is defined as

mscan(X) = max
I⊂[M],J⊂[N]

{
∑(i,j)∈I×J Xij

√
∣I ∣∣J ∣

− λ∣I ∣,∣J ∣}. (3.5)

Naturally, the corresponding estimator for localizing the elevated submatrix will be

Φmscan(X) = {(I, J) ∶ ∑
(i,j)∈I×J

Xij =
√

∣I ∣∣J ∣(mscan(X) + λ∣I ∣,∣J ∣)}. (3.6)

In the following chapters we will answer the two major problems centered at this

proposed estimator: how to calculate the estimator provided data, and when will this

estimator be successful for finding the true elevated submatrix.

3.3 Two iterative searching algorithm

The calculation of (3.6) requires operations exponentially increasing with (M,N)

in the worst case, because to obtain the statistic, one may screen over all the submatrices

of X and the totally number of submatrices is equal to 2M+N . This fact makes the direct

calculation of the multiscale scan statistic computationally intractable. Another method

to illustrate the computational intractability of (3.6) is to realize that the computation of

(3.6) is harder than that of (3.2), and the latter is proved to be NP-hard by [CC00]. Thus

an fast and scalable algorithm approaching the estimator is needed in order to put the

methodology into practice.

When the true anomaly size (m∗, n∗) is known, [SWPN09] proposed an iterative

hill-climbing algorithm (LAS) to approach the statistic in (3.5).
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Algorithm 1: Shabalin’s Hill-climbing Algorithm (LAS)

Input: m∗, n∗, initial row indexes Î with ∣Î ∣ =m∗

Output: Î, Ĵ
1 Calculate the sum Sj = ∑i∈ÎXij, and let Ĵ be the column index set

corresponding to the largest n∗ items in {Sj}Nj=1

2 Calculate the sum Ti = ∑j∈Ĵ Xij, and renew Î be the row index set

corresponding to the largest m∗ items in {Ti}Mi=1

3 Repeat Steps 1 and 2, till converge.

As a hill-climbing algorithm, Algorithm 1 may be trapped into local maximums

therefore in practice people initiate the algorithm several times with random Î, and take

the output with the largest entry sum, as [BI13] and [ACL17] did in their simulations.

3.3.1 Adaptive hill-climbing

We follow the idea of Algorithm 1. Each round we fixing row or column indexes

while optimizing the other one. In each round of the iteration, we fix either row or column

indexes of the temporary estimator, and renew the other by maximizing the multiscale

scan statistic according to (3.5). Therefore each round keeps improving the target function

denoted by (3.5).

Algorithm 2: Adaptive Hill-climbing Algorithm

Input: m, n, initial row indexes Î0

Output: Î, Ĵ
1 Run Algorithm 1 based on the initial input, obtaining (Î , Ĵ)

2 Calculate the sum Sj = ∑i∈ÎXij. Let S�
j = ∑

j
k=1 S(k)/

√
j − λ

∣Î ∣,j where {S(k)}
N
k=1

are order statistics for {Sk}Nk=1;

3 Renew n by S�
n = maxj S

�
j , and renew Ĵ by ∑j∈Ĵ Sj = ∑

n
k=1 S(k)

4 Calculate the sum Ti = ∑j∈Ĵ Xij . Let T �
i = ∑

i
l=1 T(l)/

√
i − λi,∣Ĵ ∣ where {T(l)}

M
l=1 are

order statistics for {Tl}Ml=1;

5 Renew m by T �
m = maxi T

�
i , and renew Î by ∑i∈Î Tj = ∑

m
l=1 T(l);

6 Repeat Steps 2-5, till converge.

Note that the initial input m and n in Algorithm 2 does not necessarily represent
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any prior knowledge of the anomaly size. One can start with a moderately small guess (e.g.

m = n = 5) and the algorithm will renew the estimated anomaly size automatically. Also,

by randomly initiating the algorithm several times and picking up the result with largest

corresponding normalized entry mean, one can prevent the algorithm from being stuck at

local maximals.

3.3.2 Golden section search

An alternative algorithm was inspired by the 2 dimensional golden section search

on finding the maximal of a unimodal target function (see [Cha09] for a general survey of

the algorithm in N dimensions). The idea is to set the target function f as the function of

the submatrix size (m,n):

fX(m,n) =
scanm,n(X)

√
mn

− λm,n, (3.7)

and the multiscale scan statistic is the maximal of f :

mscan(X) = max
m,n

fX(m,n)

Note that the scan statistic part of (3.7) could be computed, or approximated, by Al-

gorithm 1, with reasonable fast speed and good accuracy (just modify the output from

index sets to the corresponding sum-of-entries in the algorithm). Therefore we may apply

2 dimensional golden section search on f and eventually we will land on the pair (m,n)

maximizing (3.7), and Algorithm 1 will return the solution to (3.6).

It is worth noticing that the algorithm needs to stop the loop when the searching

frame is less or equal to 3 × 3, otherwise the loop would not break because of the discrete

nature in the index sets (the searching frame will not shrink). Therefore the algorithm
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Algorithm 3: Golden Section Search Algorithm

Input: m̄, n̄, initial row indexes Î
Output: Î, Ĵ

1 Calculate f(s, t) by getting the value of
∑
(i,j)∈Î×Ĵ Xij

√
st

− λs,t, where (Î , Ĵ) are the

output of Algorithm 1 when the input submatrix size is (s, t);
2 Denote (mmin, nmin) = (1,1), (mmax, nmax) = (m̄, n̄);
3 Calculate m1 = ⌈mmax + (mmin −mmax)φ⌉,m2 = ⌊mmin + (mmax −mmin)φ⌋,

n1 = ⌈nmax + (nmin − nmax)φ⌉, n2 = ⌊mmin + (nmax − nmin)φ⌋;
4 Calculate f(m1, n1), f(m2, n1), f(m1, n2), f(m2, n2), denote

(m#, n#) = arg max(i,j)∈{1,2}2 f(mi, nj) ;
5 Denote (m∗, n∗) = arg max(i,j)∈{1,2}2 ∣∣(m#, n#) − (mi, nj)∣∣,

(m∗, n∗) = arg min(k,l)∈{min,max}2 ∣∣(m#, n#) − (mk, nl)∣∣;
6 Renew (mmax, nmax) = (max(m∗,m∗),max(n∗, n∗)),

(mmin, nmin) = (min(m∗,m∗),min(n∗, n∗));
7 Repeat Steps 3-6, till max(mmax −mmin, nmax − nmin) ≤ 3;
8 Calculate f(s, t) for all (s, t) ∈ [mmin,mmax] × [mmin,mmax] ∩N2. Denote the

maximal among the results as f(m̂, n̂). Finalize (Î , Ĵ) as the output of
Algorithm 1 with input (m̂, n̂).

switches to exhaust search after the searching frame is less or equal to 3 × 3, during which

there are less than 9 extra search operations, which does not contribute significantly to the

total running time of the algorithm.

Different from Algorithm 2, the initial submatrix size pair guess (m̄, n̄) is an potential

upper bound of the anomaly size, since the algorithm is searching for the anomaly with

size less or equal to this pair. Possibly some prior knowledge will apply in the initialization

of the algorithm, but again, it does not require any exact prior knowledge of the anomaly

size.

A rationale behind the golden section search algorithm is that, we consider function

f to be unimodal on [m̄] × [n̄], as well as that f(m∗, n∗) is the global maximum in this

region. While we are unable to give a rigorous condition for the signal strength to ensure the

former statement, the latter statement could be ensured by the theorems in Section 3.4. We

perform a simulation on the unimodal issue in Section 3.5.4, to illustrate the unimodality

of (3.7) when the signal strength is beyond a proper threshold.
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3.4 Theoretical property

3.4.1 Gaussian entries

We establish the minimal information bound, over which the estimator based on

multiscale scan statistic will be equal to the true anomaly with high probability, with a

constraint on the parameter space. The information contained in the anomaly is quantified

with the value of θ. Recall that the true anomaly I∗ × J∗ has size (m∗, n∗), as defined in

Section 3.2. We allow θ to change with (M,N,m∗, n∗).

We have the following theorem describing the information needed for the proposed

estimator to succeed:

Theorem 7 (Exact recovery). Under the assumption of (3.1) and suppose (3.3) holds. Set

a pair of positive constants (τ1, τ2) such that τ2 = 1 + τ−1
1 . And define

θ1 = {(1 + τ1)
λm∗,n∗
√
m∗n∗

},

and

θ2 = {2(τ 1.5
2 + τ 1.25

2 )max [

√
log(M −m∗) + logm∗

n∗
,

√
log(N − n∗) + logn∗

m∗
]}.

If

lim inf
θ

max(θ1, θ2)
> 1, (3.8)

the estimator defined by (3.6) is equal to (I∗, J∗) with high probability as (M,N,m∗, n∗) →

∞.

Remark 3. The θ1 corresponds to the last component of θ0 defined in Theorem 6. And θ2

is corresponding to the rest of θ0, which represent different requirements to the signal from

row and column structures. We can see that with sparsity assumption (3.3), these signal
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bounds essentially represents the same order of signal.

3.4.2 An extension to an exponential family

In practice the Gaussian assumption is not satisfied in many situations. Therefore

it is of importance to extend the result to a distribution family that covers several common

data types. We consider a one parameter exponential family to build up the parametric

framework, as mentioned in Section 1.3. The localization problem can now be formalized

with ν as the role of noise, and entries in the anomaly are distributed as fθ. Formally,

Xij ∼

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

fθ (i, j) ∈ I∗ × J∗

ν (i, j) ∉ I∗ × J∗
(3.9)

Note that distribution f0 = ν.

We may model the submatrix localization problem with θ controlling the signal

strength. With θ increasing, the anomaly is more ’elevated’, making the localization

problem relatively easier to solve.

Here we build the similar minimax theory under the assumption of exponential

family. This provide theoretical foundation for applying our proposed method under much

wider data types.

Theorem 8 (Lower bound under exponential family assumption). Under the assumption

of (1.2) and suppose (3.3) holds. Additionally, we assume

max(logM, logN)

min(m∗, n∗)
→ 0. (3.10)

Then if

θ =
√
αmax(

√
logM

n∗
,

√
logN

m∗
).
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with α ∈ (0,1/8), every estimator of (I∗, J∗) with full knowledge of (m∗, n∗) will fail to

exactly recover (I∗, J∗) with probability bounded away from zero.

This theorem is an extension of Theorem 1 in [KBRS11] where the authors considered

Gaussian assumption instead of the exponential family. This result also partially answers

the open problem raised by [BIS15] asking for a lower bound of signal strength under

distribution of the exponential family.

Before we head into evaluating the performance of our proposed estimator (3.6)

applied under the exponential family assumption, we need to re-define the adjusting quantity

in (3.4).

Fixing a constant δ > 0, we re-define

λm,n =

¿
Á
ÁÀ(2 + δ) log [MN(

M

m
)(
N

n
)]. (3.11)

The multiscale scan statistic, and its associated estimator of the elevated submatrix, is

defined again according to (3.5) and (3.6).

Now we illustrate the minimal information needed for the estimator defined in (3.6)

to succeed under the exponential family case:

Theorem 9 (Exact recovery under exponential family assumption). Under the assumption

of (1.2) and suppose (3.3) and (3.10) holds. Furthermore define a sequence of integer sets

D(M,N) ⊂ [M] × [N] such that

lim sup
(m,n)∈D(M,N)

λm,n
√
mn

M,N→∞
ÐÐÐÐ→ 0. (3.12)

Additionally, assume (m∗, n∗) ∈ D(M,N).
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Denote positive constant (τ1, τ2) such that τ2 = 1 + τ−1
1 , and again,

θ1 = {(1 + τ1)
λm∗,n∗
√
m∗n∗

},

and

θ2 = {2(τ 1.5
2 + τ 1.25

2 )max [

√
log(M −m∗) + logm∗

n∗
,

√
log(N − n∗) + logn∗

m∗
]}.

If

lim inf
θ

max(θ1, θ2)
> 1,

the estimator defined by

{(I, J) ∶ (∣I ∣, ∣J ∣) ∈ D(M,N); ∑
(i,j)∈I×J

Xij =
√

∣I ∣∣J ∣(mscan(X) + λ∣I ∣,∣J ∣)}.

is equal to (I∗, J∗) with high probability as (M,N,m,n) → ∞.

Remark 4. D(M,N) and (3.10), (3.12) are requirements on the anomaly size which refrains

it from being too small. Then Central Limit Theorem drives the asymptotic behavior of

the statistic close to the normal case, which makes these two theorems similar.

3.5 Numerical experiments

We perform some simulation experiments to check the asymptotic performance of

our proposed estimator, as well as evaluate the performance of the proposed two algorithms.

The framework is to generate matrix with random entries according to (3.1) as well as

(3.9), and perform the algorithms on the generated data. The elevated submatrix is set

to be [m∗] × [n∗], and the evaluation criteria for a result (Î , Ĵ) from algorithms is the
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logarithm of cardinality of disjunctive union between the result and the truth, namely

Err(Î , Ĵ) = log(∣Î △ [m∗]∣ + ∣Ĵ △ [n∗]∣ + 1), (3.13)

where the operator △ stand for the symmetric difference between sets.

We compare the proposed algorithms with two computationally tractable algorithms

with proved consistency. One is spectral method [CLR+17], which uses singular value

decomposition along with k-means clustering on the singular vectors. The other is greatest

marginal gap method [BC16], which splits the indexes at the place when the largest drop

of marginal sums occurs.

We take a balanced setup where (M,N,m∗, n∗) = (1000,1200,170,140), and an

unbalanced setup where (M,N,m∗, n∗) = (4000, 500, 70, 250). The latter is aiming to mimic

a common case-control setup during biomedical study. For each fixed signal strength, the

data is independently generated 30 times and error counts defined by (3.13) for all the

algorithms are saved. Three data types (normal, Poisson, Rademacher) are investigated to

illustrate the performance of algorithms under different types of data.

3.5.1 Signal strength

The signal strength is quantified by the parameter θ of the entries inside the

submatrix. As discussed before, it represents how significant the submatrix is elevated from

the noisy background. In order to capture the change point of algorithm performances

during the increasing of signal strength, we denote the following quantity θcrit:

θcrit = max(

√
logM

n∗
,

√
logN

m∗
).
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This is part of the quantity at the left side of (3.8), inside Theorem 7. We zoom in to the

interval [1.0 × θcrit, 4.0 × θcrit]. The signal strength is increased in the process of simulation,

each time by 0.1θcrit in order to accurately sketch the change of (3.13) when the signal

strength goes up.

3.5.2 Simulation result

Figure 3.1 demonstrates the result for the balanced case, and shows that both

algorithms have there error counts converging to 0 when the signal strength is larger than

2θcrit. Under the unbalanced case, Figure 3.2 exhibits a phase transition phenomenon for

both algorithms, where the error counts sharply drop to 0 after signal strength goes beyond

a certain bound. We discover that there is a potential performance difference between

these two algorithms, however we should see that both algorithms would provide perfect

submatrix recovery before the signal strength reaches 4θcrit, and the multiscale scan statistic

is actually recovering the submatrix perfectly when θ is beyond 1.5θcrit (see the result from

golden section search).

It is worth mentioning that in both cases, our proposed methods outperform the

other two computationally tractable methods. In the balanced case, both hill-climbing

and golden section search beats the spectral method by a small margin, while the error of

greatest marginal gap method does not converge in the region. In the imbalanced case,

though the hill-climbing falls short comparing to the spectral method, golden section search

method beats the other three, proving that the criteria we proposed has better performance.

In other data types, similar results are illustrated, except for the Rademacher

imbalanced design where the hill-climbing algorithm’s error counts fails to converge to zero.

However in that case the golden section search manages to beat the other three algorithms

in performance. See Figure 3.3 to Figure 3.6 for the simulation results.
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Figure 3.1: Error counts for a balanced design, Normal entries

0

2

4

6

8

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

θ (multiplication of θcrit)

E
rr

or

Adaptive Hill−climbing Golden Section Search Greatest Marginal Gap Spectral Method

(M,N,m*,n*) = (4000,500,70,250), Normal

Figure 3.2: Error counts for an imbalanced design, Normal entries
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Figure 3.3: Error counts for a balanced design, Poisson entries
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Figure 3.4: Error counts for an imbalanced design, Poisson entries
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Figure 3.5: Error counts for a balanced design, Rademacher entries
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3.5.3 Computing time

Here we present the computing time for executing the programs described in

the previous section. The simulated data is from model (3.1), with corresponding sizes

(M,N,m∗, n∗) = (1000,1000,100,100) and signal strength θ = 2.5θcrit. Each data set

generated goes through the four algorithms exhibited in the previous section, and the time

consumed for executing the program is recorded. The procedure is repeated 100 times.
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elapsed system user

category
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e

method

Adaptive Hill−climbing

Golden Section Search

Greatest Marginal Gap

Spectral Method

Figure 3.7: Computing times for different algorithms

The computing time is calculated by function ’proc.time’ in programming language

R. Category ’user’ represents the time for executing the program codes, ’system’ is the CPU

time charged for execution by the system on behalf of the calling process, and ’elapsed’ is

the sum of the other two. As an algorithm linear in computing time [CLR+17], spectral

method consumed significantly more time than the two iterative algorithms proposed. As

expected, the clustering algorithm based on the largest marginal gap is the fastest, however

it does not own promising clustering accuracy according to the previous simulation.
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3.5.4 Unimodality issue in Algorithm 3

Golden section search presented in Algorithm 3 requires the function defined in (3.7)

to be unimodal, in order to successfully discover the global maximal. In general, checking

the unimodality of a function is often hard and here we present some numerical experiment

for illustrating the unimodality of the target function defined in (3.7).

We use two simulated Gaussian data set to illustrate the result. For each combination

of (M,N,m∗, n∗), set the level of signal as θ = 2θcrit, which is just above the signal level

such that the search algorithm makes few to zero mistakes. Then for every pair of (m,n)

such that m ≤ m̄, n ≤ n̄, we calculate the function value according to (3.7). Due to the

computing power constraint, the scan statistic scanm,n(X) is calculated by Algorithm 1,

and λm,n is approximated by

λ̂m,n =
√

2(logM + logN +m log(M/m) + n log(N/n).

Here we exploit the fact that log (
K
k
) ≈ k log(K/k) when k ≪K. We follow the simulation

ideas in the previous section, examining both balanced and imbalanced cases. In the

balanced setup, (M,N,m,n) = (300, 360, 40, 60) and (m̄, n̄) = (100, 120). In the imbalanced

setup, (M,N,m,n) = (500,50,10,25) and (m̄, n̄) = (100,50).
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Figure 3.8: Levelplots for illustrating unimodality

To better illustrate the unimodality, the simulated data is raised to its fourth

moment to enlarge the difference around the mode. We can see from Figure 3.8 that except

a few points around the edge, the target function (3.7) has a clear unimodal structure on

the majority of the search field [m̄] × [n̄].
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3.6 Conclusion and discussion

In this chapter we propose a new multiscale scan statistic for localizing the elevated

submatrix inside a large noisy matrix, which does not require prior knowledge on the

elevated submatrix size. We show that our estimator successes will high probability with

signal at the same order of the minimax bound, and design two algorithms with decent

approximating accuracy and computing speed. There are, however, some problems for

future work and discussions.

Minimaxity of the multiple scan statistic: [BIS15] showed a sharp minimax

signal bound, as we described in Theorem 6. Can our estimator based on the multiscale

scan statistic reach the minimax bound? While we are unable to reduce the constant in

Theorem 7 to the bound, we conjecture that our estimator is essentially minimax.

Proof of unimodality of (3.7): What is the relationship of (M,N,m∗, n∗, m̄, n̄)

and θ, such that (3.7) is unimodal on [m̄] × [n̄] with high probability? Solution to this

problem will directly lead to the success guarantee of Algorithm 3.

Computationally tractable algorithms for the multiscale scan: There are

literature about using computationally tractable methods such as semidefinite programming

to solve NP-hard problems (for example, [CX16] on using SDP on finding the maximal

likelihood estimator). Designing and analyzing such an algorithm for the multiscale scan

statistic will be a interesting topic on the computational side.

Tight minimax bound for exponential family case: As [BIS15] mentioned,

minimax theory on the case of exponential family is still open. We give a bound which

is based on [KBRS11], which we believe is not tight enough. Also, although the scan

statistic under the exponential family setup is proved to be minimax in testing by [BI13],

the analysis of its localization performance is still open.
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3.7 Proofs

3.7.1 Technical lemmas

In this section, we present several technical lemmas which are used in our proofs to

the theorems.

Denote E = (Eij) as an M ×N matrix with IID entries. For a submatrix S of E,

define

ZS =
ES
√

∣S∣
, ES = ∑

(i,j)∈S

Eij.

Let Sm,n be the class of subsets S = I × J ⊂ [M] × [N] with ∣I ∣ =m and ∣J ∣ = n. Consider

the event

Am,n ∶ max
S∈Sm,n

ZS ≤ λm,n, (3.14)

where λm,n are defined in (3.4).

Lemma 3. If Eij are IID standard normal, P(⋂m,nAm,n) → 1 as M ∧N →∞.

Proof. It is not hard to see that for any S, ZS has standard normal distribution. By a tail

bound on the cumulative density function of standard normal distribution, namely

Φ(−t) ≤
e−t

2/2

t
, (3.15)

along with union bound, we have

P(⋃
m,n
Acm,n) ≤ ∑

m,n

P(Acm,n) ≤ ∑
m,n

∑
S∈Sm,n

P(ZS > λm,n) = ∑
m,n

∑
S∈Sm,n

Φ(−λm,n)

≤ ∑
m,n

∑
S∈Sm,n

1

λm,n
exp{−λ2

m,n/2} = ∑
m,n

∑
S∈Sm,n

1

λm,n
(MN(

M

m
)(
N

n
))

=
1

λm,n
→ 0.
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By taking complement we finish the proof of the lemma.

Now we consider the situation where the entries of E are IID following ν defined in

Section 1.3. Consider the event defined in (3.14) where λm,n are defined in (3.11).

Lemma 4. If Eij are IID following ν, P(⋂(m,n)∈D(M,N)Am,n) → 1 as M ∧N → ∞, where

D(M,N) is defined in (3.12).

Proof. Consider a submatrix S ∈ Sm,n, with (m,n) ∈ D(M,N). We first show that when

Eij are IID ν, P(ZS > λm,n) ≤ exp{−(λm,n)2(1 + o(1))/2}, and we can bring those o(1)

uniformly to 0 on all pairs of (m,n) ∈ D(M,N).

Note that

P(ZS > λm,n) = P(ES >
√
mnλm,n) = P(eζES > eζ

√
mnλm,n) ≤

(E eζE11)mn

eζ
√
mnλm,n

,

where ζ is an arbitrary positive constant, and the last inequality is from Markov inequality.

We denote φ(⋅) as the moment generating function of ν, as we did in Section 1.3.

Taking natural log at both sides yields

logP(ZS > λm,n) ≤mn log[φ(ζ)] − ζ
√
mnλm,n.

Since ν has mean zero and variance 1, we do a Taylor expansion style decomposition, which

yields log[φ(x)] = x2/2 + ψ(x2), where when x→ 0+, ψ(x2)/x2 → 0.

Collecting all the components, and plugging in ζ = λm,n/
√
mn, we have

logP(ZS > λm,n) ≤ −
(λm,n)2

2
(1 +

ψ((λm,n)2/(mn))

(λm,n)2/(mn)
).

Now we see that from the definition of D(M,N), the latter part of the right hand

side is uniformly (1 + o(1)) for all pairs of (m,n) on D(M,N).
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We apply the same argument in the proof of Lemma 3:

P( ⋂
(m,n)∈D(M,N)

(Am,n)
c) ≤ ∑

(m,n)∈D(M,N)

P((Am,n)c) ≤ ∑
(m,n)∈D(M,N)

∑
S∈Sm,n

P(ZS > λm,n)

≤ ∑
(m,n)∈D(M,N)

∑
S∈Sm,n

exp{ −
(λm,n)2

2
(1 + o(1))}

≤ ∑
(m,n)∈D(M,N)

∑
S∈Sm,n

exp{ − (1 + δ/3) log [MN(
M

m
)(
N

n
)]}

≤
1

(MN)δ/3
→ 0.

This finishes the proof.

Lemma 5. For any positive integer k and K such that k <K,

(
K

k
)

k

≤ (
K

k
) ≤ (

eK

k
)

k

Some quick results from this Lemma are:

Corollary 1.

log (
K

k
) ≤ min(k,K − k) log(

K

k
+ 1)

The proof is straight forward form the latter part of Lemma 5. And:

Corollary 2. Fix K, (
K
k
)/k is monotone decreasing in k.

Proof. Pick an arbitrary k, the aim is to show

log (
K
k−1

)

k − 1
≥

log (
K
k
)

k
,
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which is equivalent to

k log (
K

k
) + k log(

K − k + 1

k
) ≥ (k − 1) log (

K

k
). (3.16)

Here we used the fact (
K
k
)(k/(K − k + 1)) = (

K
k−1

). From Lemma 5,

log (
K

k
) ≥ k log(

K

k
) ≥ k log(

K − k + 1

k
),

which is enough to show (3.16).

3.7.2 Proof of Theorem 7

Denote S∗ = I∗ × J∗ as the index set of the true anomaly. For the submatrices in

Sm,n, define their affinity in size as

ρm,n = max
S∈Sm,n

∣S ∩ S∗∣
√

∣S∣∣S∗∣
=

(m ∧m∗)
√
mm∗

(n ∧ n∗)
√
nn∗

.

For a specific submatrix S with size (m,n), such that S ∩ S∗ is a s × t submatrix,

define the affinity of coverage as

υm,n,s,t =
st

√
mm∗nn∗

.

The proof strategy is that, with high probability (converging to 1), we can sequen-

tially rule out the submatrices with low affinity in size and coverage from the result of

proposed estimator. Then we analyze those submatrices left behind, which have size and

coverage comparable with the true anomaly.
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Low affinity in size

Denote ϑ = θ
√
m∗n∗ and from (3.8) we know that ϑ ≥ (1+ τ1)λm∗,n∗ . Here we follow

the style of notations in Section 3.7.1, for a submatrix S ∈ Sm,n, defining

YS =
XS
√

∣S∣
, XS = ∑

(i,j)∈S

Xij.

From Lemma 3, assuming that ⋂m,nAm,n holds, we have

max
S∈Sm,n

YS − λm,n ≤ ϑρm,n.

On the other hand,

YS∗ − λS∗ = ϑ − λm∗,n∗ +Op(1).

The latter is strictly larger than the former when

ϑ − λm∗,n∗ +Op(1) − ϑρm,n ≥ [τ1 − (1 + τ1)ρm,n]λm∗,n∗ +O(1) > 0. (3.17)

If ρm,n < τ−1
2 , or τ1 − (1 + τ1)ρm,n > 0, (3.17) will eventually hold with high probability

(since λm∗,n∗ →∞). Therefore we rule out all the submatrices belonging to Sm,n such that

ρm,n < τ−1
2 .

Low affinity in coverage

With a bit abuse of notation, we define

Sm,n,s,t = {S = I × J ∈ Sm,n ∶ ∣I ∩ I
∗∣ = s and ∣J ∩ J∗∣ = t},

75



and it is trivial to see that all S ∈ Sm,n,s,t have the same affinity in coverage. We aim to

exclude those Sm,n,s,t such that υm,n,s,t < τ−1
2 .

In fact, this is done by the same argument of the previous section. From Lemma 3,

assuming that ⋂m,nAm,n holds, we have

max
S∈Sm,n,s,t

YS − λm,n ≤ ϑυm,n,s,t.

and by replacing ρm,n by υm,n,s,t in the previous section we can exclude submatrices in Sm,n,s,t

such that υm,n,s,t < τ−1
2 from the result of our proposed estimator with high probability.

One-point failure probability

Remember S∗ = I∗ × J∗ as the true anomaly index set. For a candidate submatrix

S′ = I ′ × J ′, we make the following notation:

S1 = S
∗ ∩ S′, S2 = S

∗ ∖ S′, S3 = S
′ ∖ S∗,

and

m′ = ∣I ′∣, n′ = ∣J ′∣, s = ∣I∗ ∩ I ′∣, t = ∣J∗ ∩ J ′∣.

Notice that, from the previous two sections, we have

τ−1
2 m∗ ≤m′ ≤ τ2m

∗, τ−1
2 m∗ ≤m′ ≤ τ2m

∗, τ−1
2 n∗ ≤ n′ ≤ τ2n

∗, τ−1
2 n∗ ≤ t ≤ τ2n

∗ (3.18)

We quantify the probability that S′, instead of S∗, is returned by the estimator in
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(3.6), namely

P(YS∗ − λm∗,n∗ ≤ YS′ − λm′,n′)

= P(
√
m′n′(XS∗) ≤ (

√
m∗n∗XS′) +

√
m∗n∗m′n′(λm∗,n∗ − λm′,n′))

= P(
√
m′n′(XS1 +XS2

) ≤
√
m∗n∗(XS1 +XS3

) +
√
m∗n∗m′n′(λm∗,n∗ − λm′,n′))

= P(
√
m′n′XS2 + (

√
m′n′ −

√
m∗n∗)XS1 −

√
m∗n∗XS3 ≤

√
m∗n∗m′n′(λm∗,n∗ − λm′,n′))

(3.19)

Under the assumption of (3.1), the last line of (3.19) is equivalent to

P(Z(m′, n′, s, t) ≤
√
m∗n∗m′n′(λm∗,n∗ − λm′,n′)),

where Z(m′, n′, s.t) is following normal distribution with mean (
√
m′n′m∗n∗ −

√
m∗n∗st)θ

and variance 2(m∗n∗m′n′ −
√
m∗n∗m′n′st).

We claim that, for all pairs of (m′, n′) such that λm′,n′ ≤ λm∗,n∗ , we have

√
m∗n∗m′n′(λm∗,n∗ − λm′,n′)

(
√
m′n′m∗n∗ −

√
m∗n∗st)θ

≤
1

1 + τ1

. (3.20)

To see this, note that θ
√
m∗n∗ ≥ (1 + τ1)λm∗,n∗ from (3.8), and (s, t) ≤ (m∗ ∧m′, n∗ ∧ n′)

by definition. Therefore it suffices to show the following:

1 − λm′,n′/λm∗,n∗

(1 − (m∗ ∧m′)(n∗ ∧ n′)/
√
m∗n∗m′n′))

≤ 1.

or equivalently,

λm′,n′

λm∗,n∗
≥

(m∗ ∧m′)(n∗ ∧ n′)
√
m∗n∗m′n′

. (3.21)

Without loss of generality we focus on the case when (m′, n′) ≤ (m∗, n∗) (to see this, assume
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m′ >m and n′ ≤m and consider m′′ ≈ (m∗)2/m′. It provides the same right hand side but

smaller left hand side). Now we may transform (3.21) to

¿
Á
ÁÀ2(log(MN) + log (

M
m′

) + log (
N
n′
)

m′n′
≥

¿
Á
ÁÀ2(log(MN) + log (

M
m∗

) + log (
N
n∗
)

m∗n∗
, (3.22)

which holds due to Corollary 2. Now (3.20) directly leads to

P(Z(m′, n′, s, t) ≤
√
m∗n∗m′n′(λm∗,n∗ − λm′,n′))

≤ P(Z(m′, n′, s, t) ≤
1

1 + τ1

EZ(m′, n′, s, t)).

By a variation of (3.15) (namely: Φ(−t) ≤ e−t
2/2 with t > 0),

P(Z(m′, n′, s, t) ≤
√
m∗n∗m′n′(λm∗,n∗ − λm′,n′)) ≤ exp{ −

m∗n∗θ2

4τ 2
2

(1 −
st

√
m∗n∗m′n′

)}.

(3.23)

A union bound approach

First from union bound, the probability of a submatrix in Sm′,n′,s,t being returned is

bounded by

(
m∗

s
)(
M −m∗

m′ − s
)(
n∗

t
)(
N − n∗

n′ − t
) exp{ −

m∗n∗θ2

4τ 2
2

(1 −
st

√
m∗n∗m′n′

)},

which by Corollary 1, is further bounded from above by

qm′n′st = exp{[(m∗ − s) ∧ s] logm∗+(m′ − s) log(M −m∗) + [(n∗ − t) ∧ t] logn∗

+ (n′ − t) log(N − n∗) −
m∗n∗θ2

4τ 2
2

(1 −
st

√
m∗n∗m′n′

)}.

We partition the parameter space by different values of (m′, n′, s, t) and apply a
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union bound:

P(S∗ not returned) ≤ C[n∗2m∗ max
(n′,s,t)

qm∗n′st

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(I)

+m∗2n∗ max
(m′,s,t)

qm′n∗st

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(II)

+m∗2n∗2 max
(m′,n′,s,t)

qm′n′st

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(III)

].

Here C is a fixed constant associated with τ2, but is not changing with M,N,m∗, n∗. And

we have applied the result from (3.18) to obtain the coefficients. Part (I) and (II) are

corresponding to the cases when m′ =m and n′ = n, while (III) excludes the union of these

two cases. The maximal is taken correspondingly. Note that we completely ignore the case

when m′ =m and n′ = n since it was considered in [BIS15].

We show how to bound (I) and (III), and (II) could be bounded similarly with (I)

by symmetry.

Part 1 : In this part we show that (I) is bounded towards zero. First realize from

(3.18) that

st
√
m∗2n∗n′

> τ−1
2 . (3.24)

Note that (3.24) infers t/
√
m∗2n∗n′ > 1/(τ2s) ≥ 1/(τ2m∗), where the latter part of the

inequalities is from the fact that s ≤m∗ is always holding. Immediately we have

m∗n∗θ2

4τ 2
2

t
√
m∗2n∗n′

>
n∗θ2

4τ 3
2

> logm∗ + log(M −m∗).

The last part is from (3.8). This ensures qm∗n′st is monotone increasing with s therefore we

set s =m∗ in the following argument.

We now take a closer look at

qm∗n′m∗t = exp{[(n∗ − t) ∧ t] logn∗ + (n′ − t) log(N − n∗) −
m∗n∗θ2

4τ 2
2

(1 −
t

√
n∗n′

)}.

79



Since

m∗n∗θ2

4τ 2
2

1
√
n∗n′

=
m∗θ2

4τ 2
2

√
n∗

n′
≥
m∗θ2

4τ 3
2

≥ logn∗ + log(N − n∗),

the same argument on the monotonicity of s implies that qm∗n′m∗t is monotone increasing

in t as well. Therefore we take t = min(n∗, n′).

Case 1 (n′ < n∗, t = n′): Under this, we may simplify

qm∗n′m∗n′ = exp{[(n∗ − n′) ∧ n′] logn∗ −
mnθ2

4τ 2
2

(1 −

√
n′

n
)}

≤ exp{(n∗ − n′) logn∗ −
mnθ2

4τ 2
2

(1 −

√
n′

n
)}.

Denote the right hand side as Q1(n′). We compare Q1(n′ + 1) and Q1(n′):

Q1(n′ + 1)

Q1(n′)
= exp{ − logn∗ +

m∗n∗θ2

τ 2
2

(

√
n′ + 1

n∗
−

√
n′

n∗
)}

= exp{ − logn∗ +
m∗θ2

4τ 2
2

⋅
√
n∗(

√
n′ + 1 −

√
n′)}

(convexity of function f(x) =
√
x) ≥ exp{ − logn∗ +

m∗θ2

4τ 2
2

⋅

√
n∗

2
√
n′ + 1

}

(from (3.8) and n′ + 1 ≤ n) ≥ exp{ − logn∗ +
1

2
(logn∗ + log(N − n∗))} ≥ 1.

(3.25)

Therefore qm∗n′m∗n′ is monotone non-decreasing in n′. By setting n′ = n∗ − 1 we will bound
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(I) with

n∗2m∗Q1(n
∗ − 1) = exp{3 logn∗ + logm∗ −

m∗n∗θ2

4τ 2
2

(1 −

√
n∗ − 1

n∗
)}

(n∗ −
√
n∗(n∗ − 1) = 0.5 + o(1)) = exp{3 logn∗ + logm∗ −

m∗θ2

8τ 2
2

(1 + o(1))}

(from (3.8)) < exp{3 logn∗ + logm∗ − 2 logn∗ − 2 log(N − n∗)} → 0

Note that for the last line we used the fact that (3.8) infers m∗θ2 ≥ 16τ 2
2 (logn∗+log(N−n∗))

eventually. We will use this back and forth in the following text.

Case 2 (n′ > n∗, t = n∗): The plugging-in procedure yields

qm∗n′m∗n∗ = exp{(n′ − n∗) log(N − n∗) −
m∗n∗θ2

4τ 2
2

(1 −

√
n∗

n′
)}.

Denote the right hand side as Q2(n′). We see that the maximal of Q2(n′) on the interval

[n∗ + 1, τ2n∗] can only happen on the interval endpoints. First we set n′ = n∗ + 1. Now look

at

n∗2m∗Q(n∗ + 1) = exp{2 logn∗ + logm∗ + log(N − n∗) −
m∗n∗θ2

4τ 2
2

(1 −

√
n∗

n∗ + 1
)}

≤ exp{2 logn∗ + logm∗ + log(N − n∗) −
m∗θ2

8τ 2
2

(1 + o(1))}

< exp{3 logn∗ + logm∗ − 2 log(N − n∗) − 2 log(n∗)} → 0 (3.26)

The first inequality is from n∗ −
√
n∗(n∗ − 1) = 0.5 + o(1), and the second is from

(3.8). Next we set n = τ2n∗:

n∗2m∗Q(τ2n
∗) = exp{(τ2 − 1)n∗ log(N − n∗)(1 + o(1)) −

m∗n∗θ2

4τ 2
2

(1 −

√
1

τ2

)} (3.27)
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In order to send the right hand side to 0, we need

lim inf
m∗n∗θ2(1 −

√
τ−1

2 )/4τ 2
2

(τ2 − 1)n∗ log(N − n∗)
> 1,

or

lim inf
m∗θ2/4τ 2

2

log(N − n)
≥ τ2 +

√
τ2

which is ensured by (3.8).

By summing up all the results we finished bounding (I) towards 0, and by symmetry

we can bound (II) as well.

Part 2 : In the following part we bound (III) by the similar arguments as above. We

start with

st
√
m′m∗n′n∗

> τ−1
2 . (3.28)

The first task is to show that qm′n′st is monotone non-decreasing for both s and t. This can

be done by realizing that (3.28) implies

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

m∗n∗θ2

4τ 2
2

t
√
m∗n∗m′n′

≥
n∗θ2

4τ 3
2

m∗n∗θ2

4τ 2
2

s
√
m∗n∗m′n′

≥
m∗θ2

4τ 3
2

,

and with (3.8), eventually

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

n∗θ2

4τ 3
2

≥ logm∗ + log(M −m∗)

m∗θ2

4τ 3
2

≥ logn∗ + log(N − n∗).

The monotonicity holds from the same argument in Case 2 of Part 1. Due to this, we

set (s, t) = (min(m∗,m′),min(n∗, n′)). Naturally there are for cases inside the discussion,
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namely:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m′ <m∗, n′ < n∗, (s, t) = (m′, n′)

m′ <m∗, n′ > n∗, (s, t) = (m′, n∗)

m′ >m∗, n′ < n∗, (s, t) = (m∗, n′)

m′ >m∗, n′ > n∗, (s, t) = (m∗, n∗)

(3.29)

Note that we exclude all the cases with equal signs since they are included in the previous

argument. We illustrate the proof under the first case here and the rest three are similar

therefore omitted in the text. When m′ <m∗, n′ < n∗, we have (s, t) = (m′, n′). And this

leads our attention to

qm′n′m′n′ ≤ exp{(m∗ −m′) logm∗ + (n∗ − n′) logn∗ −
θ2m∗n∗

4τ 2
2

(1 −

√
m′n′

m∗n∗
)}.

Compare to the argument in (3.25), in order to show qm′n′m′n′ is monotone non-decreasing

in m′, all we need to show is

m∗n∗θ2

4τ 2
2

(

√
(m′ + 1)n′

m∗n∗
−

√
m′n′

m∗n∗
) ≥ logm∗.

This can be achieved by

m∗n∗θ2

4τ 2
2

(

√
(m′ + 1)n′

m∗n∗
−

√
m′n′

m∗n∗
) ≥

n∗θ2

8τ 2
2

√
n′

n∗
m∗

m′ + 1
≥
n∗θ2

8τ 3
2

≥
1

2
[logm∗ + log(M −m∗)],

where the first inequality is from the convexity of function f(x) =
√
x, the second coming

from the fact that (s, t) = (m′, n′), therefore

√
n′

n

m

m′ + 1
≥

√
n′

n

m′

m
=

st
√
mm′nn′

> τ−1
2 ,

and the last coming form (3.8). Similarly, qm′n′m′n′ is non-decreasing in n′ as well. Therefore
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in this case (m′, n′) = (m− 1, n− 1). Similar arguments would shrink the search of maximal

to the following four cases, according to (3.29), and we omit the process here:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m′ <m∗, n′ < n∗ ⇒ (m′, n′) = (m∗ − 1, n∗ − 1)

m′ <m∗, n′ > n∗ ⇒ (m′, n′) = (m∗ − 1, n∗ + 1) or (m∗ − 1, τ2n
∗)

m′ >m∗, n′ < n∗ ⇒ (m′, n′) = (m∗ + 1, n∗ − 1) or (τ2m
∗, n∗ − 1)

m′ >m∗, n′ > n∗ ⇒ (m′, n′) = (m∗ + 1 or τ2m
∗, n∗ + 1 or τ2n

∗).

(3.30)

The left hand side is the regulations for (m′, n′) and the right hand side is the value(s) of

(m′, n′) that achieves the maximal. For multiple possibilities of (m′, n′), we evaluate all

the choices and show that all of them will bring (III) to converge to zero.

Now, what we need to check is that m∗2n∗2qm′n′st → 0 under all the four cases with

(3.29) and (3.30). Since the process of checking is similar, we display one under the last

case here and the other three cases can be similarly extended. We display the last case

here, which includes four further cases.

Under (m′, n′) = (m∗ + 1, n∗ + 1), we have

m∗2n∗2q(m∗+1)(n∗+1)m∗n∗ = exp{2(logm∗ + logn∗) + log(N − n∗) + log(M −m∗)

−
m∗n∗θ2

4τ 2
2

(1 −

√
m∗n∗

(m∗ + 1)(n∗ + 1)
)}
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whose right hand side is bounded by

exp{2(logm∗ + logn∗) + log(N − n∗) + log(M −m∗)

−
m∗n∗θ2

4τ 2
2

(
(m∗ + n∗ + 1)/(m∗ + 1)(n∗ + 1)

1 +
√
m∗n∗/(m∗ + 1)(n∗ + 1)

)}

≤ exp{2(logm∗ + logn∗) + log(N − n∗) + log(M −m∗) − (1 + o(1))
(m∗ + n∗)θ2

8τ 2
2

}

≤ exp{ − (1 + o(1))(log(M − n∗) + log(N − n∗))} → 0,

where the last line is from (3.8).

Under (m′, n′) = (τ2m∗, τ2n∗), we have

m∗2n∗2q(τ2m∗)(τ2n∗)m∗n∗ = exp{(1 + o(1))(τ2 − 1)[n∗ log(N − n∗) +m∗ log(M −m∗)]

−
m∗n∗θ2

4τ 2
2

(1 − τ−1
2 )}. (3.31)

Note that by (3.8)

m∗n∗θ2

4τ 3
2

=
m∗n∗θ2

8τ 3
2

+
m∗n∗θ2

8τ 3
2

≥ 2[m∗ log(N − n∗) + n∗ log(M −m∗)],

the right hand side of (3.31) is bounded by

exp{ − (1 + o(1))(τ2 − 1)[m∗ log(N − n∗) + n∗ log(M −m∗)]}.

which converges to 0.
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Under (m′, n′) = (τ2m∗, n∗ + 1), we have

m∗2n∗2q(τ2m∗)(n∗+1)m∗n∗ = exp{(1 + o(1))(τ2 − 1)m∗ log(M −m∗)

+ 2 logn∗ + log(N − n∗) −
m∗n∗θ2

4τ 2
2

(1 −

√
n∗

τ2(n∗ + 1)
)}. (3.32)

with a proper chosen ε, which converge to zero eventually, we may have

(1 −

√
n∗

τ2(n∗ + 1)
)(1 + ε) ≥ 1 −

√
1

τ2

+ 1 −

√
n∗

(n∗ + 1)
.

So we can bound the right hand side of (3.32) with

exp{(1 + o(1))[(τ2 − 1)m∗ log(M −m∗) + 2 logn∗ −
m∗n∗θ2

4τ 2
2

(1 −

√
1

τ2

)]}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(A)

× exp{(1 + o(1))[ log(N − n∗) −
m∗n∗θ2

4τ 2
2

(1 −

√
n∗

(n∗ + 1)
)]}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(B)

Note that log(n∗) ≤ log(M −m∗) by (3.3), so (τ2 − 1)m∗ log(M −m∗) + 2 logn∗ = (1 +

o(1))(τ2 − 1)m∗ log(M −m∗). Then we can bound (A) by the techniques in (3.27) and (B)

by (3.26). This case is finished. The case left over is checked by symmetry.

By checking all four cases we manage to control (III) towards 0, which completes

the proof.

3.7.3 Proof of Theorem 8

Without loss of generality, assume S∗ = [m∗] × [n∗]. Denote the joint distribution of

the entries under this assumption as P0. Correspondingly denote Pj as the joint distribution

of the entries when S∗ = [m∗] × {[n∗ − 1] ∪ {j}}, with j ∈ N ∩ [n∗ + 1,N]. The proof is
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complete by following the proof of Theorem 1 in [KBRS11], if the following holds,

D(P0∣∣Pj) ≥m
∗θ2(1 + o(1)),

where D(⋅∣∣⋅) is the Kullback Leibler divergence between two distributions. In fact, with

some direct calculation,

D(P0∣∣Pj) = ∑
i∈[m∗]

∫ log(eθxin∗−log(ϕ(θ)))eθxin∗−log(ϕ(θ))ν(dxin∗)

+ ∑
i∈[m∗]

∫ log(e−θxij+log(ϕ(θ)))ν(dxij)

= ∑
i∈[m∗]

∫ (θxin∗ − log(ϕ(θ)))eθxin∗−log(ϕ(θ))ν(dxin∗)

+ ∑
i∈[m∗]

∫ (−θxij + log(ϕ(θ)))ν(dxij)

(i)
= ∑
i∈[m∗]

xin∗θe
θxin∗−log(ϕ(θ))ν(dxin∗)

(ii)
≥ ∑

i∈[m∗]

θ2(1 + o(1)) =m∗θ2(1 + o(1)).

where (i) uses the fact that ν has mean 0, and (ii) follows from the fact that E(X) ≥

θ(1 + o(1)) if X ∼ fθ with θ → 0 (see the arguments under (16) of [ACTW17] and (7) of

[ACL17]). Here θ → 0 is ensured by (3.10). Replace (15) of the proof of Theorem 1 in

[KBRS11], and the result follows.

3.7.4 Proof of Theorem 9

Proof. The proof is essentially following the proof for Theorem 7, except that we need to

check (i) Lemma 3 still holds under the exponential family assumption; (ii) (3.23) holds

eventually. (i) can be done by Lemma 4, therefore we focus on (ii) here.

We use the same notations and representations as the previous proof of Theorem 7,
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evaluating the following quantity

P (YS∗ − λm∗,n∗ ≤ YS′ − λm′,n′). (3.33)

Note that Xij ∼ fθ when (i, j) ∈ (I∗ × J∗), and Xij ∼ ν otherwise. Furthermore we assume

that

θ = Ceθ0.

with a constant Ce > 1. For θ larger than quantities of this order, the stochastic monotone

property from (1.3) ensures the recovery becoming easier. Note that in this case θ → 0 as

M,N →∞. By the same decomposition of (3.19), we rewrite, and bound (3.33) as

P(
√
m′n′(XS∗) ≤ (

√
m∗n∗XS′) +

√
m∗n∗m′n′(λm∗,n∗ − λm′,n′))

= P( exp{ −
√
m′n′ζXS2} exp{ − (

√
m′n′ −

√
mn)ζXS1} exp{

√
mnζXS3} ≥

exp{ − τ
√
m∗n∗m′n′(λm∗,n∗ − λm′,n′)})

(i)
≤ E( exp{ −

√
m′n′ζXS2})E( exp{ − (

√
m′n′ −

√
mn)ζXS1})E( exp{

√
mnζXS3})

exp{ζ
√
m∗n∗m′n′(λm∗,n∗ − λm′,n′)}

(ii)
≤ [E ( exp{−

√
m′n′ζXθ})]

m∗n∗−st

[E ( exp{−(
√
m′n′ −

√
m∗n∗)ζXθ})]

st

[E ( exp{
√
m∗n∗ζX0})]

m′n′−st

exp{
ζ(

√
m′n′m∗n∗ −

√
m∗n∗st)θ)

1 + τ1

}.

(3.34)

Here ζ > 0 is a constant, Xθ ∼ fθ and X0 ∼ ν. Meanwhile, (i) is from Markov inequality and

(ii) is from independence among the entries, as well as (3.20).

88



The following fact enables us to further simplify the above expression, with a little

abusing of notations:

E ( exp{−ζXθ}) = ∫ e−ζxeθx−logϕ(θ)ν(dx) =
ϕ(θ − ζ)

ϕ(θ)
,

with ζ ∈ (0, θ). Therefore, if (
√
m′n′ζ, (

√
m′n′ −

√
m∗n∗)ζ) < θ and

√
m∗n∗ζ < θ∗, (3.34) is

equal to

ϕ(θ −
√
m′n′τ)m

∗n∗−stϕ(θ − (
√
m′n′ −

√
m∗n∗)τ)stϕ(

√
m∗n∗τ)m

′n′−st

ϕ(θ)m∗n∗

× exp{
ζ(

√
m′n′m∗n∗ −

√
m∗n∗st)θ)

1 + τ1

} (3.35)

By the fact that E(X0) = 0 and Var (X0) = 1, when x > 0 is close to zero, Taylor

expansion on logϕ(⋅) shows

logϕ(x) =
1

2
x2 + o(x2).

We now set

√
m′n′τ =

θ

2
[1 +

1

1 + τ1

],

and from (3.10) we have
√
m′n′τ → 0. Meanwhile, (3.12) tells that

√
m∗n∗τ ∝ θ

√
m∗n∗/m′n′ → 0

as well. To see this, note that

θ = O(

√
logM + logN

m∗ + n∗
),
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therefore

θ

√
m∗n∗

m′n′
= O(

¿
Á
ÁÀ(logM + logN)m∗n∗

m′n′(m∗ + n∗)
) = O(

√
max(logM, logN)

m∗ + n∗
),

and this is o(1) by (3.10). The last part is from (3.18).

Take a natural log on (3.35), and by the expansion above and some algebra, we have

logP (YS∗ − λm∗,n∗ ≤ YS′ − λm′,n′) ≤ −
m∗n∗θ2

4
(1 −

st
√
m∗n∗m′n′

)(1 + o(1))

and this finishes the proof.
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