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We discuss the predictive power of supersymmetric models with flavor symmetries, focusing on the
lepton sector of the standard model. In particular, we comment on schemes in which, after certain
‘flavons’ acquire their vacuum expectation values (VEVs), the charged lepton Yukawa couplings and the
neutrino mass matrix appear to have certain residual symmetries. In most analyses, only corrections to
the holomorphic superpotential from higher-dimensional operators are considered (for instance, in order
to generate a realistic θ13 mixing angle). In general, however, the flavon VEVs also modify the Kähler
potential and, therefore, the model predictions. We show that these corrections to the naive results can
be sizable. Furthermore, we present simple analytic formulae that allow us to understand the impact of
these corrections on the predictions for the masses and mixing parameters.

© 2012 Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

The observed patterns of fermion masses and mixing may origi-
nate from underlying flavor symmetries. Typically, such flavor sym-
metries are assumed to be spontaneously broken by the vacuum
expectation values (VEVs) of certain ‘flavon’ fields. Given a large
enough flavor symmetry, one may thus hope to obtain a scheme
that allows us to derive testable predictions. This applies, in par-
ticular, to settings in which flavor is generated at a very high scale,
which cannot be directly accessed at colliders.

In this work, we study supersymmetric extensions of the stan-
dard model, in which flavor is generated at a high scale. For
concreteness, we will take the scale of the flavon VEVs and the
cut-off of the theory to be around the unification scale, though
our results do not depend on this choice. On the other hand, one
can imagine models in which there is a large difference between
these two scales or which are renormalizable. In such models,
non-renormalizable corrections including the corrections from the
Kähler potential discussed in this Letter become unimportant.

In order to be specific, we focus on the lepton sector of the the-
ory, although our analysis can also be applied to the quark sector.
Generically, the relevant superpotential reads, at the leading order,

Wleading = 1

Λ
(Φe)g f Lg R f Hd + 1

ΛΛν
(Φν)g f Lg Hu L f Hu, (1.1)
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Fig. 1. The flavor symmetry GF gets broken to different subgroups in different sec-
tors of the theory.

where Lg and R f (with the flavor indices 1 � f , g � 3) denote the
lepton doublets and singlets, respectively, Hu and Hd are the Higgs
doublets of the supersymmetric standard model, whereas Φe and
Φν are the appropriate flavons. The two scales involved are the
cut-off scale of the theory Λ and the see–saw scale Λν . Once Φe

and Φν acquire their VEVs, this leads to the effective superpoten-
tial

Weff = (Ye)g f Lg R f Hd + 1

4
κg f Lg Hu L f Hu. (1.2)

In many models, one is left with a situation in which the flavon
VEVs 〈Φe〉 and 〈Φν〉 respect certain residual symmetries, which are
then dubbed symmetries of the charged lepton Yukawa couplings
or the neutrino mass matrix, respectively (cf. Fig. 1). Predictions of
such models are then based on these symmetries.

However, one may question if these are really robust predic-
tions of the respective models. In particular, while certain terms in
the superpotential appear to possess the aforementioned symme-
tries, the Lagrangian density often exhibits no residual symmetry.
In other words, the combined VEVs 〈Φe〉 and 〈Φν〉 break the fla-
vor symmetry completely. Moreover, the so-called predictions are
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subject to quantum corrections. For instance, the bi-maximal [1,2]
or tri–bi-maximal [3] mixing patterns are known not to be in-
variant under the renormalization group. On the other hand, the
statements below (1.2) do not single out a particular scale. There-
fore, one may wonder how such corrections can be consistent with
the statement that the charged lepton Yukawa couplings or the
neutrino mass matrix exhibit certain symmetries.

At the first glance, one may think that the corrections are re-
lated to possible higher-order terms that have to be added to the
leading order superpotential (1.1). However, it is rather straightfor-
ward to construct models in which such higher-order corrections
are absent to all orders. We will discuss such examples in a future
publication [4].

The true solution to this puzzle is that models of the above type
do not predict exact relations such as (tri–)bi-maximal mixing due
to the presence of the Kähler corrections induced by the flavon
VEVs [5,6], even if higher-order holomorphic corrections are ab-
sent. The Kähler potential should contain all terms consistent with
the flavor symmetry,

K = Kcanonical + �K , (1.3)

where the relevant canonical terms include (with the SM gauge
multiplets being set to zero)

Kcanonical ⊃ (
L f )†

δ f g Lg + (
R f )†

δ f g R g, (1.4)

and �K contains contractions of L f and R f and their Hermitian
conjugates with the flavons. First of all, each of these terms in �K
introduces one new parameter, i.e. its respective Kähler coefficient.
Furthermore, once the flavons attain their VEVs, the flavor symme-
try is broken thus modifying the Kähler metric. This modification
�K of the Kähler potential can be written as

�K = (
L f )†

(�KL) f g Lg + (
R f )†

(�K R) f g R g, (1.5)

with Hermitian matrices �KL and �K R whose structures are de-
termined by the flavor symmetries and the flavon VEVs.

The necessary field redefinitions to compensate for these addi-
tional terms and to retrieve a canonical Kähler potential affect the
superpotential. In particular, the Majorana mass matrix of the neu-
trinos and the Yukawa coupling matrix of the charged leptons are
altered. This leads to changes of the neutrino mixing parameters
irrespective of the existence of higher-order terms in the superpo-
tential.

The purpose of this Letter is to provide an analytic discussion
of these changes, using similar methods as for the renormaliza-
tion group (RG) equations in [7,8] and for the Kähler corrections in
[9,10]. We will argue that corrections from these changes can be
sizable and, therefore, without a better understanding of the Käh-
ler potential, predictions from spontaneously broken flavor sym-
metries are incomplete. We leave a more detailed analysis for a
future publication [4].

In Section 2 we will start out by describing a well-known model
that aims to explain the lepton mixing only with terms coming
from the superpotential. Section 3 is then devoted to the discus-
sion of the Kähler corrections. Based on the results obtained in
Sections 3.1 and 3.2 and using analytic formulae presented in Sec-
tion 3.4, we will argue in Section 3.5 that the changes compared
to an analysis without Kähler corrections are substantial. Finally,
Section 4 summarizes our conclusions.

2. Predictions from the superpotential couplings

We first focus on the predictions of flavor models from the
holomorphic couplings of the theory, i.e. the superpotential. To be
specific, we base our discussion on an example model [11] with
an A4 flavor symmetry [12], which serves as a prototype setting
leading to tri–bi-maximal lepton mixing.

Since the following discussion heavily depends on the group
structure of A4, we first review the necessary facts. In particular,
these are the possible contractions of fields transforming under
this symmetry. A4 has four inequivalent irreducible representa-
tions: three one-dimensional representations, denoted by 1, 1′ and
1′′ , and one triplet, denoted by 3. The relevant multiplication law
is

3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3s ⊕ 3a, (2.1)

where 3s and 3a denote the symmetric and the antisymmetric
triplet combinations, respectively. In terms of the components of
the two triplets, a and b,

(a ⊗ b)1 = a1b1 + a2b3 + a3b2, (2.2a)

(a ⊗ b)1′ = a3b3 + a1b2 + a2b1, (2.2b)

(a ⊗ b)1′′ = a2b2 + a1b3 + a3b1, (2.2c)

(a ⊗ b)3s = 1√
2

(2a1b1 − a2b3 − a3b2
2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

)
, (2.2d)

(a ⊗ b)3a = i

√
3

2

(a2b3 − a3b2
a1b2 − a2b1
a3b1 − a1b3

)
, (2.2e)

where (a ⊗ b)R indicates that a and b are contracted to the repre-
sentation R . Note that there are different conventions for normal-
izing the triplets 3i in the literature, and the corresponding factors
can be absorbed in the Kähler coefficients.

A well-known example for an A4 tri–bi-maximal model is given
by Altarelli et al. [11]. In this model, under A4 the three genera-
tions of left-handed lepton doublets transform as a triplet, L ∼ 3,
the right-handed charged leptons, eR, μR and τR, transform as 1,
1′′ , and 1′ , respectively, and the Higgs fields Hu and Hd transform
as pure singlets 1. Tri–bi-maximal mixing is achieved by the intro-
duction of three flavons: Φν and Φe , both of which transform as
triplets under the A4 symmetry, and a pure A4 singlet ξ ∼ 1. The
couplings of the flavons to the SM fields are (cf. Eq. (1.1))

Wν = λ1

ΛΛν

{[
(LHu) ⊗ (LHu)

]
3s

⊗ Φν

}
1

+ λ2

ΛΛν

[
(LHu) ⊗ (LHu)

]
1ξ, (2.3)

We = he

Λ
(Φe ⊗ L)1 HdeR + hμ

Λ
(Φe ⊗ L)1′ HdμR

+ hτ

Λ
(Φe ⊗ L)1′′ HdτR, (2.4)

where, as before, Λ and Λν are the flavon scale and the see–saw
scale, respectively.

Furthermore, the model is assumed to be invariant under a Z4
symmetry under which Φν and ξ change sign, whereas Φe is not
charged under this symmetry. The transformation properties of the
leptons under this Z4 are given by L → iL and R → −iR .

The A4 symmetry is then broken by assigning the following
VEVs to the flavons.

〈Φν〉 = (v, v, v), (2.5a)

〈Φe〉 = (
v ′,0,0

)
, (2.5b)

〈ξ〉 = w. (2.5c)
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Table 1
Tri–bi-maximal prediction for the neutrino mixing angles and best fit values from
the global fit by [13].

θ12 θ13 θ23

TBM prediction: arctan(
√

0.5) ≈ 35.3◦ 0 45◦

Best fit values (±1σ): (33.6+1.1
−1.0)◦ (8.93+0.46

−0.48)◦ (38.4+1.4
−1.2)◦

The resulting charged lepton Yukawa matrix after electroweak
symmetry breaking is diagonal and reads

me = vd diag(ye, yμ, yτ ), (2.6)

where vd is the VEV of Hd and ye,μ,τ = he,μ,τ
v ′
Λ

. The neutrino
mass matrix, however, is non-diagonal. It is given by

mν =
(a + 2d −d −d

−d 2d a − d
−d a − d 2d

)
, (2.7)

with a = 2λ2
v2

u
Λν

w
Λ

and d = √
2λ1

v2
u

Λν

v
Λ

, where vu is the VEV of Hu .
The neutrino mass matrix is diagonalized by the tri–bi-maximal
mixing matrix

UTBM =

⎛
⎜⎜⎝

√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎟⎠ . (2.8)

Since the charged lepton Yukawa matrix is already diagonal, the
mixing matrix UPMNS is identical to UTBM and the corresponding
mixing angles are shown in Table 1. In the same table, the best fit
values from the global fit on neutrino mixing parameters by [13]
are quoted. As one can see, the recent measurement of θ13 has
revealed a huge deviation from the predicted TBM value. In addi-
tion, the TBM prediction for θ23 also does not agree well with the
current global fit value, which indicates a sizable deviation from
maximal mixing.

These deviations seem to be difficult to explain with correc-
tions coming from the superpotential only. On the other hand, they
might originate from the flavon VEV-induced Kähler corrections as
we shall see in the following section.

3. Corrections due to Kähler potential terms

As discussed in the introduction, apart from the canonical
terms, there may exist extra terms in the Kähler potential induced
by the flavon VEVs. In the A4 example model discussed above,
these terms are contractions of the left-handed lepton doublets,
which transform as an A4 triplet, with one or several flavons. Af-
ter the flavons acquire a VEV, these terms lead to a Kähler metric
with off-diagonal terms. We shall sketch the computation for the
A4 example model, leaving the general derivation to [4].

3.1. Linear flavon corrections

The leading order contributions are linear in the flavons. These
linear terms are only suppressed by one power of the ratio of the
flavon VEV to the fundamental scale of the theory. The contribu-
tions in the A4 model discussed above read schematically

�K linear =
∑

i∈{a,s}

(
κ

(i)
Φν

Λ
�K (i)

L†(L⊗Φν)3i
+ κ

(i)
Φe

Λ
�K (i)

L†(L⊗Φe)3i

)

+ κξ
�Kξ L† L + h.c. (3.1)
Λ

However, it is easy to forbid any of these terms, by introducing
an additional symmetry (such as the Z4 symmetry in the exam-
ple model) under which all flavons are charged. Hence, we do
not consider the linear flavon corrections any further but turn to
contributions which are quadratic in the flavons, and cannot be
forbidden by any (conventional) symmetry.

3.2. Second order corrections

The corrections to the Kähler metric which are second order
in the flavon VEVs can be divided into two classes. The first class
consists of terms that are of the form (LΦν)†(LΦν) or (LΦe)

†(LΦe),
i.e. they are quadratic in one specific flavon. As mentioned above,
these cannot be forbidden by a (conventional) symmetry. This
is not true for the second class which consists of terms of the
form (LΦν)†(LΦe), i.e. they are contractions involving two differ-
ent flavons. For the same reasons as in the linear case, the second
class is not considered here.

All corrections discussed here can thus be obtained from suit-
able contractions of the terms (L ⊗ Φν)

†
R(L ⊗ Φν)R ′ and (L ⊗

Φe)
†
R(L ⊗ Φe)R ′ using the rules stated in (2.2). Although there

are numerous possible contractions, several of them give the same
correction �K to the Kähler metric up to the respective Kähler co-
efficient which is a complex number. All in all, there are 5 different
matrices which have to be considered. The first three matrices

P I = diag(1,0,0), P II = diag(0,1,0) and

P III = diag(0,0,1) (3.2a)

come from contractions of L with Φe . That is, their contribution
is proportional to (v ′)2, where v ′ is the size of the VEV of Φe ,
〈Φe〉 = (v ′,0,0). The remaining two matrices,

P IV =
(1 1 1

1 1 1
1 1 1

)
and PV =

( 0 i −i
−i 0 i
i −i 0

)
, (3.2b)

are contributions due to Φν . Therefore, their contribution in the
Kähler potential is proportional to v2 which is defined by 〈Φν〉 =
(v, v, v).

The third flavon ξ does not yield any relevant contribution since
it can only give an overall normalization factor, which does not
change the mixing angles. Another way of understanding this is by
observing that ξ is not a flavon in the strict sense as it transforms
trivially under A4, such that its VEV does not break A4.

Each of the corrections is suppressed by the cut-off scale Λ to
the second power. Furthermore, each of the terms comes with its
own Kähler coefficient κi , which, in general, is complex. Adding
the Hermitian conjugate always cancels either the term with the
real or the imaginary part of κi . We arranged our matrices Pi in a
way that all the coefficients can be chosen real. However, the val-
ues of the Kähler coefficients κi are not fixed by the symmetries of
the model and, therefore, their presence introduces additional con-
tinuous parameters. One may hope to be able to compute them in
a possible UV completion of the model. Generically, these higher-
order terms in the Kähler potential can come from integrating out
heavy modes that are required to complete the model in the UV.
Since one expects to have several of such modes, whose couplings
to the zero modes of the theory can moreover be unsuppressed,
and due to group theoretical factors, the Kähler coefficients can be
of the order unity or even larger.

Let us comment that the Kähler corrections will, in general, also
be important for the question of VEV alignment. That is, the scalar
potential that fixes the VEVs of the flavons at some desired pat-
tern will also be subject to these corrections, and one might expect
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deviations from the fully symmetric structures (such as those spec-
ified in (2.5)). We plan to discuss these issues in more detail in our
follow-up paper [4].

3.3. Corrections from the right-handed leptons

In principle, there are also contributions from the right-handed
sector. However, in the model discussed here, all right-handed
charged leptons are A4 singlets, and therefore, the corresponding
Kähler corrections can be made diagonal. More precisely, possible
off-diagonal terms can easily be forbidden by additional symme-
tries (cf. the discussion in 3.1). Since our basis is chosen such
that the original charged lepton Yukawa matrix is diagonal, a di-
agonal redefinition of the right-handed leptons R f cannot induce
any off-diagonal terms in the Yukawa matrix. Hence, the trans-
formed Yukawa matrix is still diagonal, only the eigenvalues may
be changed. This implies that such a field redefinition does not
have any influence on the neutrino mixing matrix. In conclusion,
the model can be modified such that the corrections from the
right-handed sector cannot change the mixing parameters, and
therefore, they are not discussed any further.

3.4. Analytic formulae for Kähler corrections

It is possible to derive some simple analytic formulae for the
change of the mixing parameters due to small non-diagonal terms
in the Kähler potential.1 Suppose that, after the flavon fields attain
their VEVs, the Kähler potential reads

K = Kcanonical + �K = L†(1 − 2xP )L (3.3)

with a Hermitian matrix P and an infinitesimal expansion param-
eter x. The Kähler metric is diagonalized to first order in x by the
field redefinition

L → L′ = (1 − xP )L. (3.4)

This field redefinition affects the effective neutrino mass operator
κ for the canonically normalized left-handed doublets L′ f ,

Wν � 1

4

(
L′ f Hu

)T [
κ + xP T κ + xκ P

]
g f L′ g Hu, (3.5)

where κ · v2
u = 2mν with mν specified in Eq. (2.7). That is, the

neutrino mass operator has effectively become x-dependent, and
the resulting neutrino mass matrix depends on x as

mν(x) � mν + xP T mν + xmν P . (3.6)

This leads to the differential equation

dmν

dx
= P T mν + mν P (3.7)

for the neutrino mass matrix, which holds locally at x = 0. This
equation has the same structure as the one governing the RG evo-
lution of the mass operator. In [7], analytic formulae describing
the evolution of the mixing parameters have been derived. Using
an analogous procedure, one can compute the derivatives of the
mixing parameters at x = 0.

To this end, one derives a differential equation for Uν from
Eq. (3.7) by substituting U∗

ν DνU †
ν for mν , where Dν is the diag-

onalized neutrino mass matrix. This equation can then be used

1 We only discuss the neutrino sector here. The left-handed and right-handed
charged lepton sectors can be dealt with separately in a similar manner. This will
be discussed in a future publication [4].
to determine the entries of U †
ν dUν/dx, which can also be writ-

ten in terms of the mixing angles and phases of the standard
parametrization of UPMNS. A similar procedure was also already
used in [10] to compute Kähler corrections.

With the Kähler coefficients and the ratios of flavon VEVs and
high scale Λ as input parameters, the resulting formulae can be
used to predict the change of the mixing parameters due to a non-
trivial Kähler metric for not too large deviations from the canonical
one. The detailed derivation of these formulae and a more thor-
ough discussion of their implications are deferred to a later pub-
lication [4]. Here, we only discuss some examples for the case of
the A4 model described above.

Let us briefly comment on the relation of Kähler corrections
and RG evolution (cf. also [9]). First of all, unlike RG corrections,
the Kähler corrections are not loop-suppressed. Furthermore, while
they are similar in structure, generally the Kähler corrections can
be along different directions. In particular, they are not restricted
to the diagonal. For example, in the model considered, the main RG
correction is essentially along the direction specified by the matrix
P III in Eq. (3.2a). The Kähler corrections, however, can be along any
of the five directions in Eq. (3.2). Which one(s) of these five direc-
tions dominate(s) depends upon the UV completion of the model.

3.5. Implications for the A4 example model

With the analytic formulae whose derivation was sketched
briefly in the foregoing section, we can compute the Kähler correc-
tions which arise in the example model [11] discussed in Section 2.

The most interesting correction is due to the matrix PV in
Eq. (3.2). It originates from the term (L ⊗ Φν)

†
3a

(L ⊗ Φν)3s + h.c.
in the Kähler potential. Performing the A4 contractions carefully,
one finds that the additional Kähler potential term is given by

�K = κV · v2

Λ2
· 3

√
3 · (L f )†

(PV) f g
(
Lg), (3.8)

where κV denotes the relevant Kähler coefficient.
The analytic formula for the change of θ13 compared to the case

of a canonical Kähler potential reads

�θ13 = κV · v2

Λ2
· 3

√
3 · 1√

2

(
2m1

m1 + m3
+ m2

e

m2
μ − m2

e
+ m2

e

m2
τ − m2

e

)

� κV · v2

Λ2
· 3

√
6

m1

m1 + m3
, (3.9)

where the mi are the neutrino masses. In the second line, the very
small contribution of the charged leptons has been neglected.

In the following, we assume that the normal neutrino hierarchy
is realized and use the current PDG [14] values for the differences
of the mass-squares,

�m2
21 = 7.50 · 10−5 (eV)2 and

�m2
32 = 2.32 · 10−3 (eV)2, (3.10)

as input parameters. Moreover, the ratio of VEV to the fundamen-
tal scale v/Λ is set to 0.2 and the Kähler coefficient κV is set to 1.
Then the variation of the change of θ13 with m1 can be studied and
is shown in Fig. 2. The deviation from the exact tri–bi-maximal
prediction is substantial, especially in the regime where m1 gets
large. This is also easy to see from the analytic formula that
asymptotically approaches a value of �θ13 ≈ 8.42◦ for m1 → ∞.
Based on the fact that the differential equation for the Kähler cor-
rections is similar in structure to the RG equation, our numerical
result is consistent with the expectation, as m1 → O(0.1 eV) cor-
responds to the near degenerate regime for the neutrino masses,
where an enhanced correction to the mixing angle is expected.
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Fig. 2. Change of θ13 due to the Kähler correction �K shown in Eq. (3.8) for
κV v2/Λ2 = (0.2)2. The continuous line shows the result of Eq. (3.9), which was
obtained using a linear approximation (cf. Section 3.4), while the dashed line shows
the result of a numerical computation. As one can see, the linear approximation
yields a very accurate estimate on the true change �θ13.

In contrast to the case of θ13, the changes of θ12 and θ23
are predicted to be zero if one uses the linear extrapolation of
their changes starting from the tri–bi-maximal mixing pattern.
However, as we have seen above, θ13 can undergo a substantial
change such that also the other two mixing angles change due
to higher-order non-linear terms. We have confirmed this behav-
ior numerically, using the MixingParameterTools package [8]. The
dependence of the change on the lightest neutrino mass m1 is
shown in Fig. 3. Both changes are significantly smaller than the
one of θ13.

A further interesting consequence of the Kähler correction is
the generation of CP violation. It arises due to the fact that the
matrix PV is complex. In fact, the Dirac CP phase δ, which is not
properly defined for exact tri–bi-maximal mixing due to θ13 = 0,
is close to δ = 3π/2 taking into account the corrections. Note that
similar relations can also be obtained from the holomorphic super-
potential in models with T ′ flavor symmetry [15].

There can, of course, be additional contributions from other P
matrices. Hence, as a second example of the implications of the
Kähler corrections, we discuss the case of P IV, which arises in all
possible singlet contractions of Φν , e.g. (L ⊗ Φν)

†
1(L ⊗ Φν)1 + h.c.

Including all coefficients, the corresponding term in the Kähler po-
tential is given by

�K = κIV · v2

2
· 2 · (L f )†

(P IV) f g
(
Lg). (3.11)
Λ

The resulting analytic formulae for the mixing angles are, in agree-
ment with the numerical computation, independent of the neu-
trino masses; they only depend on the charged lepton masses, e.g.

�θ12 = κIV · v2

Λ2
· √2 · (m2

μm2
τ − m4

e )

(m2
e − m2

μ)(m2
e − m2

τ )
. (3.12)

P IV does not induce any change of θ13, but the other two mix-
ing angles are shifted. In fact, the resulting change of θ12 for
κIV v2/Λ2 = (0.2)2 is about 3.2◦ while the change of θ23 is −2.3◦ .
In particular, for both sign choices of κIV one of the two mixing
angles is driven further away from its best fit value.

The chosen examples illustrate that predictions which are solely
based on the inspection of the superpotential are not very reliable.
Indeed, for example, the global fit value for θ13 = (8.93+0.46

−0.48)
◦ [13]

(cf. Table 1) can be accommodated without resorting to higher-
order contributions from the superpotential, provided the neutrino
mass spectrum is not too hierarchical, the ratio of flavon VEV to
the fundamental scale v/Λ is of the order of the Cabibbo angle
and the Kähler coefficient κV is of order one. On the other hand,
there are Kähler corrections that drive the theoretical predictions
for the mixing parameters far away from their current best fit val-
ues. Without any organizing principle for the Kähler potential, it
seems to be hardly possible to derive definite predictions from
discrete flavor symmetries. Our results also show that the Käh-
ler corrections can be more significant than the effects of the RG
evolution.

4. Conclusions

We have carefully re-examined models in which different
flavons appear to break a given flavor symmetry GF down to dif-
ferent subgroups in different sectors of the theory. In the context
of supersymmetric settings, the fact that there is no residual sym-
metry in the full Lagrangian manifests itself in corrections to the
Kähler potential K that break GF in all subsectors. We have ar-
gued that the corresponding higher-order terms in K are, in a way,
unavoidable as they cannot be forbidden by any (conventional)
symmetry. These terms come with certain coefficients, which are
not determined by the symmetries of the model and, therefore,
introduce additional continuous parameters. We have also argued
that the Kähler corrections are generically much larger and, there-
fore, more relevant than renormalization effects, which can also be
understood as Kähler corrections along a very specific direction.

In order to make our analysis more concrete, we have outlined
the discussion of the corrections in a model based on the flavor
symmetry GF = A4 × Z4 [11]. We have presented results of an
Fig. 3. Changes of (a) θ12 and (b) θ23 due to the Kähler correction �K shown in Eq. (3.8) for κV v2/Λ2 = (0.2)2 computed numerically.
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analytic discussion of the Kähler corrections, i.e. simple analytic
formulae that allow us to express the change in the prediction
on the mixing parameters induced by the respective flavon VEVs.
While leaving the full discussion for a future publication [4], we
have explicitly shown that in the simple A4 model, which predicts
tri–bi-maximal mixing at leading order, one of the flavon VEVs in-
duces a large variation of the mixing angle θ13 while leaving the
other mixing angles essentially unchanged. An optimistic interpre-
tation of this possibility may amount to the statement that even
simple models like the one discussed here can be consistent with
the recent measurement of θ13 [16–18]. One the other hand, one
may be more critical and question the actual predictive power of
a large class of flavor models that exist in the literature. As we
have seen in our second example, Kähler corrections might signifi-
cantly modify the predictions of a model. Hence, one may actually
argue that even in very simple models, a better understanding of
the Kähler potential is mandatory in order to achieve an accuracy
that can compete with the contemporary experimental precision.

In a future publication [4], we will provide more details on the
derivation of the analytic formulae used in this Letter.
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