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ABSTRACT.	

The	main	objective	of	this	report	is	to	develop	an	exploratory	mathematical	

analysis	motivated	by	the	Becks	et	al.	(2005)	experiments,	which	will	be	

presented	in	Chapter	1.		Related	details	of	the	resulting	model	will	be	

presented	in	Chapter	2,	and	a	detailed	non-dimensionalization	will	follow	in	

Chapter	3.		During	the	research	to	be	described,	a	potential	relationship	to	

Shannon	information	theory	was	realized,	and	this	will	be	developed	in	

Chapter	4.		Several	avenues	for	future	research	are	suggested,	and	a	more	

mathematically-oriented	presentation	of	the	non-linear	dynamical	properties	

of	the	equations	developed	in	Chapter	1	may	be	found	in	Faybishenko	et	al.	

(2018).		
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Chapter	1:	Mathematical	Analysis	of	the	Becks	et	al.	(1995)	Experiments.	

1.1.	Introduction.	

	 Deterministic	chaotic	dynamics	in	biological	systems	has	not	received	as	

much	attention	as	that	in	electronic	or	fluid-mechanical	systems,	and	

mathematical	models	are	at	an	early	stage	of	development	(Faybishenko	and	

Molz	(2013).		However,	this	has	started	to	change.		Molz	and	Faybishenko	

(2013)	have	recently	concluded	that	three	papers	(Becks	et	al,	2005;	Graham	

et	al.	2007;	Beninca	et	al.,	2008),	using	experimental	studies	and	relevant	

mathematics,	may	provide	convincing	demonstrations	that	deterministic	

chaos	is	present	in	relatively	simple	biochemical	systems	of	an	ecological	

nature.	(See	Constantino	et	al.,	1997	for	additional	support.)		For	example,	

Graham	et	al.	(2007)	reported	experimental	results	demonstrating	the	

phenomenon	of	chaotic	instability	in	biological	nitrification	in	a	controlled	

laboratory	environment.		In	this	study,	the	aerobic	bioreactors	(aerated	

containers	of	nutrient	solution	and	microbes)	were	filled	initially	with	a	

mixture	of	wastewater	from	a	treatment	plant	and	simulated	wastewater	

involving	a	mixture	of	many	microbes.	The	main	variables	recorded	as	a	time	

series	were	total	bacteria,	ammonia-oxidizing	bacteria	(AOB),	nitrite-oxidizing	

bacteria	(NOB),	and	protozoa,	along	with	effluent	concentrations	of	nitrate,	

nitrite	and	total	ammonia.		The	method	of	Rosenstein	et	al.	(1993)	was	used	to	

calculate	Lyapunov	exponents,	which	fell	roughly	in	a	range	from	0.05	to		

0.2	d-1.		Graham	et	al.	(2007)	concluded	that	“nitrification	is	prone	to	chaotic	

behavior	because	of	a	fragile	AOB-NOB	mutualism,”	i.e.,	interaction.	

	 Beninca	et	al.	(2008)	conducted	a	laboratory	experiment	over	a	period		
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of	6.3	years,	which	demonstrated	chaotic	dynamics	in	a	plankton	community	

in	a	water	sample	obtained	from	the	Baltic	Sea.		This	experiment	was	housed	

in	a	cylindrical	container	that	was	45	cm	in	diameter,	74	cm	high	and	filled	

with	90	l	of	water	with	a	10	cm	sediment	layer	at	the	bottom.	The	

“predictability”	of	each	data	set	was	shown	to	decrease	with	time	(essentially	

lost	after	15	-	30	days),	consistent	with	positive	Lyapunov	exponents	

averaging	about	0.058	per	day.	While	small,	these	numbers	are	significantly	

above	zero	because	of	the	large	amount	of	data	collected.	They	were	

calculated	based	on	2	methods:	attractor	reconstruction	using	time-delay	

plots,	and	direct	calculation	of	the	Lyapunov	exponents	(Kantz	and	Schreiber,	

1997).	It	is	apparent	that	when	dealing	with	exponential	divergence	of	

trajectories	in	phase-space,	the	dominant	and	positive	Lyapunov	exponent	

does	not	have	to	be	large	for	the	phenomenon	of	chaotic	dynamics	to	be	

important.	

	 A	particularly	detailed	experiment	was	that	of	Becks	et	al.	(2005).		That	

team	studied	a	microbial	food	web	in	a	chemostat,	with	additional	analyses	

presented	during	following	years	(Becks	and	Arndt,	2008,	2009).	A	conceptual	

model	of	these	experiments	is	shown	in	Figure	1.1.		The	food	web	was	

composed	of	a	nutrient	source,	2	bacteria	that	consumed	nutrient	(a	rod	and	a	

coccus),	and	a	ciliate	predator	that	consumed	both	bacteria.		The	variable	

supporting	the	system	was	the	food	supply	that	was	varied	by	changing	the	
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Figure	1.1.		Diagram	of	the	Becks	et	al.	(2005)	chemostat	system.		A	nutrient	solution	
flowing	left	to	right	was	consumed	by	two	microbes	(rods	and	cocci),	with	rods	being	
stronger	competitors	for	nutrient	than	cocci.		A	ciliate	predator	fed	on	both	
microbes,	but	preferred	rods	over	cocci.	
	
dilution	rate	(chemostat	flow	through/chemostat	volume,	having	units	of	

inverse	time).		The	4	coupled	dependent	variables	were	concentrations	of	

nutrient	(mg/cc)	and	each	of	the	3	microbes	(cells/cc).		For	a	fixed	set	of	

dilution	rates,	the	3	microbe	concentrations	were	measured	at	a	selected	set	

of	approximately	daily	time	intervals.		Each	set	of	data	constituted	a	time	

series	(concentrations	at	discrete	times),	and	deterministic	chaos	was	

identified	by	using	a	computerized	version	of	the	analytical	procedure	

developed	by	Rosenstein	et	al.	(1993)	for	calculating	the	largest	Lyapunov	

exponent	(TISEAN	package	[Hegger	et	al.,	(1999)).		Classical	steady	states	

were	observed	at	D	=0.9/day	and	0.75/day,	chaotic	dynamics	were	observed	

at	D	=	0.5/day,	and	periodic	dynamics	were	observed	at	a	slightly	lower	D	=	

0.45/day.		(See	Becks	et	al.	(2005)	for	additional	details.)			
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	1.2.	Mathematical	Model	Development.	

	 To	describe	the	processes	of	the	Becks	et	al.	experiment,	we	first	

modified	the	original	3-equation	mathematical	model	(nutrient	plus	2	

microbes)	developed	by	Kot	et	al.	(1992)	to	a	4	equation	model.		Four	

dependent	variables	were	identified:	n(t),	r(t),	c(t)	and	p(t).		The	units	of	the	

nutrient	concentration	were	mg/cc,	while	those	of	the	microbes	were	cell	

numbers/cc	(cells/cc).		Thus	in	order	to	conserve	mass	in	the	resulting	model,	

an	average	microbial	mass	had	to	be	selected	for	each	microbe	type.		This	was	

done	based	on	measured	microbe	volume	averages	published	by	Becks	et	al.	

(2005),	along	with	an	assumed	density	of	1	g/cc:	(r	mass	(mr)	=	1.6E-9	mg;	c	

mass	(mc)	=	8.2E-9	mg,	and	p	mass	(mp)	=	3.2E-6	mg).		With	these	minor	

differences,	the	Kot	et	al.	(1992)	equations	for	a	nutrient	(mg/cc),	a	rod	

(cells/cc)	and	a	predator	(cells/cc)	would	be	written	as:	

	

0
( )- - ( )                                       

( )( )( ) ( ) - - ( )  (b)   
( )

( ) ( )( )

rn r

rn rn

pr r pr r
rn r

rn pr pr r

p r p
pr

pr

n rmdn Dn Dn a
dt Y K n

rm pmd rm n rm D rm
dt K n Y K rm

d pm rm pm
dt K

µ

µ
µ

µ

⎡ ⎤
=            ⎢ ⎥+⎣ ⎦

⎡ ⎤⎡ ⎤
=           ⎢ ⎥⎢ ⎥+ +⎢ ⎥⎣ ⎦ ⎣ ⎦

= - ( )  (c)                         
( ) p

r

D pm
rm

⎡ ⎤
            ⎢ ⎥

+⎢ ⎥⎣ ⎦

	 	 	 	 (1.1)	

	

These	three	equations	are	identical	to	those	used	by	Kot	et	al.	(1992),	with	S	=	

n,	H	=	rmr,	and	P	=	pmp.		All	the	“mx”	terms	are	mean	mass	per	respective	

microbe,	so	r	and	p	are	dimensionless	numbers	of	rods	and	predators	per	cc,	

the	microbe	“concentration”	units	recorded	by	Becks	et	al.	(2005).		All	the	

other	constant	terms	are	various	maximum	specific	growth	rates	“μx”,	half	
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saturation	constants	“Kx”	and	yield	coefficients	“Yx”.		(For	a	quick	overview	of	

Monod	kinetics,	see	(https://en.wikipedia/wiki/Monod_equation).	

		 To	extend	Equations	(1.1)	to	include	one	more	nutrient-consuming	

microbe,	a	cocci,	an	equation	similar	to	(1.1b)	is	added,	along	with	the	

analogous	coupling	terms,	resulting	in	the	following	system	of	4	ordinary	

differential	equations	(New	terms	in	red.).			

0
( )- - -                                 

( )( )(

(

) ( ) - - ( )                     

)

(

            
( )

)

rn r

rn rn

pr r pr r
rn r

rn pr p

cn c

cn cn

r r

c

n rmdn Dn Dn
dt Y K n

rm pmd rm n rm D rm
dt

n cm
Y K n

d cm

K n Y K rm

µ

µ
µ

µ⎡ ⎤
= ⎢ ⎥+⎣ ⎦

⎡ ⎤⎡ ⎤
=

⎡ ⎤
⎢ ⎥+

⎢ ⎥⎢ ⎥+ +⎢ ⎥⎣ ⎦ ⎣

⎣

⎦

⎦

                                

( ) ( )( )
- ( )                     

( )( )( ) - - (

  
(

)
( )

( )
)

( )
( )

pc c pc
cn c

cn pc pc c

c pp r p
pr p

pr pr
pc

c c

d p

cm pmn cm D cm
dt K n Y K cm

cm pmm rm p
K

m
D pm

dt K rm cm
µ

µ
µ

µ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥+ +⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥

+⎢

⎡ ⎤
= +  ⎢ ⎥

+⎢ ⎥⎥⎣ ⎣ ⎦⎦

(1.2)	

The	parameters	involved	are	once	again	maximum	specific	growth	rates	(μxx),	

half	saturation	constants	(Kxx)	and	yield	coefficients	(Yxx),	a	total	of	twelve.		

Equations	(1.2)	are	direct	generalizations	of	the	Kot	et	al.	(1992)	model,	and	

their	mathematical	validity	was	checked	by	showing	that	a	mass	balance	was	

maintained,	and	when	the	Kot	et	al.	(1992)	initial	conditions	and	parameter	

values	were	used,	with	one	microbe	forced	to	die	out,	output	equivalent	to	

Figure	3	of	Kot	et	al.	(1992)	was	reproduced.			As	written,	however,	Equations	

(1.2)	do	not	include	information	from	the	supplemental	experiments	of	Becks	

et	al.	(2005)	or	particular	information	on	how	a	chemostat	operates,	such	as	

potential	nutrient	recycling	from	dying	biomass.		Using	Equations	(1.2)	alone,	

we	were	not	able	to	produce	chaotic	dynamics,	and	it	was	difficult	to	produce	

solutions	wherein	all	microbes	survived	indefinitely.		Further	details	

concerning	the	initial	studies	of	Equations	(1.2)	are	given	in	Chapter	2.	 	
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In	expanding	(1.2)	as	motivated	by	the	Becks	et	al.	supplemental	

experiments,	the	specific	death	rate	of	predators	and	their	biomass	recycling	

to	nutrient	are	likely	to	be	important,	because	their	average	mass	is	about	

1000	times	greater	than	that	of	each	feeding	microbe.		Moreover,	populations	

of	feeding	microbes	decrease	mainly	due	to	consumption	by	predators,	while	

nothing	consumes	the	dying	predators.		When	predators	die,	their	bodies	

simply	break	down	with	remains	consumed	or	flushed	out	of	the	well-mixed	

chemostat.		Because	of	these	considerations,	natural	death	and	biomass	

recycling	of	the	feeding	microbes	is	assumed	to	be	negligible	relative	to	

predators,	and	this	was	supported	also	by	numerical	experiments.		The	

specific	death	rate	for	predators	and	the	nutrient	recycling	terms	will	be	

identified	in	the	final	equation	set	that	is	developed.	

			 As	observed	in	the	Becks	et	al.	supplemental	experiments,	in	the	

absence	of	predators	r	was	able	to	out-compete	c	for	nutrient,	and	at	an	

identical	population	of	r	and	c	(4x106	cells/cc),	p	consumed	r	cells	over	c	cells	

in	the	ratio	of	4:1.		In	the	absence	of	further	guidance	from	the	experiments,	

we	decided	to	incorporate	the	additional	information	into	Equations	(1.2),	to	

arrive	at	Equations	(1.10),	as	follows:		1)	When	r	and	c	are	low,	p	chooses	

them	on	an	equal	basis	even	though	in	general	r	is	preferred	over	c	(Starving	

organisms	are	not	choosy?),		2)	At	high	r	and	c,	as	observed	in	the	

experiments,	p	chooses	r	four	times	more	than	c,	and	3)	in	competition	for	

nutrient	with	no	predators,	the	cocci	will	die	out	first.	

	 A	simple	way	to	impose	condition	3,	is	to	set	the	value	of rnµ ,	the	

maximum	specific	growth	rate	of	r	on	n,	equal	to cnkµ ,	with 1k > .		Then	for	 k 	

sufficiently	large,	r	will	always	outcompete	c.		Incorporating	conditions	1	and	

2	is	more	involved,	but	it	is	still	straightforward.					
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	 Based	on	the	Becks	et	al.	[1995,	Figure.1]	data,	the	r	and	c	

concentrations	are	ranging	from	about	1x105	cells/cc	to	2x106	cells/cc.		On	a	

cell	numbers	basis	(see	the	2nd	and	3rd	members	of	Equations	(1.2)),	the	

respective	uptake	rates	of	p	on	r	(drp/dt)	and	p	on	c	(dcp/dt	)	may	be	

expressed	as:	

	

			       ( ) ( )
p pp p

pr pc

pr pc

pr r pc c
and

pm r pm cdr dc
dt Y K m r dt Y K m c

µ µ
= =

+ + 																										 	 (1.3)	

Assuming	that	for	the	minimum	values	of	r	and	c	(r	=	c	=	1x105	cells/cc)	

p pdr dc
dt dt

= 		,	we	obtain	from	(1.3):		

	
5 5

5 5

(1 10 ) (1 10 )
   

1 10 1 10( ) ( )
p p

pr pc

pr pc

pr r pc c

x x
x x

pm pm
Y K m Y K m

µ µ
=

+ +
	 	 	 											 	 	 	(1.4)	

	

Assuming	that	for	maximum	values	of	r	and	c	(r	=	c	=	2x106	cells/cc)	

		

we	obtain:	

( )
( )

( )
( )

6 6

6 6

2 10 4 2 10

2 10 2 10
p pr p pc

pr pr r pc pc c

pm x pm x

Y K x m Y K x m

µ µ
=

+ +
										 	 	 	 	 	 (1.5)		

				

	 We	will	modify	the	numerator	and	denominator	of	drp/dt,	given	in	(1.3),	

in	order	to	achieve	the	equalities	specified	in	Equations	(1.4)	and	(1.5).		The	

maximum	specific	growth	rate	of	p	on	r	will	become	μpr(m1r+i1),	and	the	

4p pdr dc
dt dt

=
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denominator	will	become	Kpr	+m2r+mrr,	with	m1,	i1	and	m2	constants.		

Substituting	this	in	drp/dt	yields		

	 	 	 	 	 	 	 	 	 	

( )1 1

2( )
pp

pr

pr

pr r

m r ipm rdr
dt Y K m r m r

µ +
=

+ + 									 	 	 	 	 	 (1.6)	

Thus	we	are	making	 prµ and		 prK 	linear	functions	of	r.		To	keep	the	overall	

units	consistent,	m1	has	the	units	of	(cells/cc)-1,	i1	is	dimensionless,	and	m2	has	

the	units	of	mg.		Eq.	(1.6)	is	a	new	semi-empirical	relationship	expressing	a	

modified	form	of	the	Monod	kinetics	equation,	motivated	by	experiment,	and	

is	given	to	take	into	account	a	p	preference	change	for	r	relative	to	c.		Then	to	

satisfy	Equations	(1.4)	and	(1.5),	the	following	conditions	must	be	met:	
5

1 1
5 5 5

6
1 1

6 6 6
2

2

(10 )
    ,                     

10 10 10

(2 10 )
       

2 10 2 10

( ) ( )
4

( 2 10 ) ( )

pr

pr r pc

pr pc

pc

pr pc c

pr pc

pr r pc c

m i
and

m

x m i
m x x

Y K m Y K m

Y K x m Y K m

µµ

µ µ

+

+

+

+

=
+ +

=
+ +

	 										 	 	(1.7)		

	 	

The	introduced	parameters	m1	and	i1	must	satisfy	the	following	conditions:	

105m1	+	i1	=	1,	and	2x106m1	+	i1	=	4,	also	setting	μpr	=	μpc.		These	conditions	

yield	m1	=	1.579x10-6	(cells/cc)-1	and	i1	=	0.8421.		The	corresponding	

conditions	on	m2	are:	

( ) ( )
( ) ( )

5 5 5
2

6 6 6
2

10 10   10  ,             

2 10 2 10   2 10  

 pr pr r pc pc c

pr pr r pc pc c

Y K m m Y K m and

Y K x m x m K x mY
+ + +

+ + +

=

=
	 			 								 	 (1.8)	 																	

If	we	set	Ypr	=	Ypc	and	Kpr	=	Kpc,	Equations	(1.8)	become:	
5 5 5

2
6 6 6

2

10 10   10  ,             

2 10 2 10   2 10    

 r c

r c

m m m and
x m x m x m

+

+

=
=

	 	 	 	 	 							 	 	(1.9)	
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It	can	be	seen	from	both	relationships	that	 -9 -
2

9 -9- 8.2 10 -1.6 10 6.6 10c rm mm x x x= ==

mg.		So	Equations	(1.2)	adapted	to	the	Becks	et	al.	supplemental	experiments,	

admittedly	in	a	non-unique	way,	may	be	written	as	Equations	(1.10)	after	

dividing	through	by	the	microbial	masses	(changed	parameters	in	red.).	

0
( )( )- - -  + ( )                              

((1.58 6) 0.842) ( )( ) - -     
(6.6 9) ( )
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In	these	equations,	δp	is	the	specific	death	rate	for	predators,	which	is	recycled	

to	nutrient	at	the	efficiency	“EF	≤	1”	in	the	1st	equation	of	set	(1.10).	

Equations	(1.10)	also	are	subject	to	the	parameter	restraints,	resulting	from	

equations	(1.7,	1.8	&	1.9),	given	by:	

k cn

pc

rn

pr

pr p

p pcr

cK
Y Y

= µ

= µ

Κ

µ

=

µ

=

		 	 	 	 	 	 	 	 	 (1.10a)	

	 Now	that	the	predators	have	been	made	to	prefer	rods	over	cocci	with	

an	increasing	rod	population,	the	rods	are	disadvantaged	and	would	tend	to	

die	out.		Based	on	numerical	experiments,	this	is	prevented	by	setting	the	“k“	

factor	in	the	first	of	Equations	(1.10a)	to	1.5.		As	presented	in	Chapter	3,	

dimensionless	forms	of	Equations	(1.10)	were	developed	also	in	order	to	aid	
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the	numerical	simulations	of	the	Becks	et	al.	experiments	and	the	

understanding	of	parameter	interactions.		These	dimensionless	equations	may	

also	serve	as	a	basis	for	further	study	of	a	more	abstract	mathematical	nature.			

They	are	also	used	in	the	Chapter	4	study	of	Shannon	information	theory	

applied	to	chaotic	dynamics.		Further	details	concerning	the	mathematical	

nature	of	the	introduced	preference	change	are	given	in	the	“Supplemental	

Information”	at	the	end	of	this	chapter.							

	

1.3.	Results.	
	
	 Equations	(1.10)	were	solved	using	MATLAB	software	(ODE45)	subject	

to	the	initial	conditions	of	n(0)	=	0.03	mg/cc,	r(0)	=	4.2E6	cells/cc,	c(0)	=	

1.0E6	cells/cc	and	p(0)	=	3000	cells/cc.		These	should	not	be	viewed	as	

specifically-measured	initial	conditions,	since	such	measurements	were	not	

made.		However,	several	different	initial	conditions	that	were	tested	

converged	to	the	same	system	(strange)	attractor.	A	set	of	parameters	that	

produced	chaotic	dynamics	is	listed	in	Table	1.1	

Based	on	parameter	values	selected	in	Kot	et	al.	(1992)	and	value	

ranges	given	in	Kravchenko	et	al.	(2004),	the	Table	1.1	values	appear	

reasonable	in	a	physiological	sense.	Other	than	the	dilution	rate	and	mean	

microbe	masses,	we	arrived	at	the	remaining	parameter	values	by	trial	and	

error	coupled	to	numerical	simulation	experiments.	With	so	many	parameters	

necessary,	and	few	measurements	available,	we	think	it	would	be	potentially	

misleading	to	adapt	a	more	formal	parameter-fitting	algorithm.		However,	a	

more	detailed	parameter	sensitivity	analysis	may	be	found	in	Faybishenko,	et	

al.	(2018).		This	publication	also	describes	in	more	detail	the	mathematical	

properties	of	the	dynamics	produced	by	Equations	(1.10).	
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Table	 1.1.	 Parameter	 values	 used	 in	 Equations	 (1.10)	 that	 yield	 chaotic	 dynamics	
with	the	dilution	rate	utilized	in	Becks	et	al.	(2005).		
														
						D		

		(hr-1)	

					n0		

(mg/cc)	

					μrn	

			(hr-1)	

				Yrn	

	

					Krn	

(mg/cc)	

	

					μcn	

			(hr-1)	

			Ycn	 						Kcn	

(mg/cc)	

	

0.0208	 0.15	 0.1873	 0.4	 0.009	 0.1248	 0.4	 0.009	

μpr	

(hr-1)	

Ypr	 Kpr	

(mg/cc)	

	

μpc	

(hr-1)	

Ypc	 Kpc	

(mg/cc)	

	

δp	

(hr-1)	

mr	

(mg)	

0.05117	 0.6	 0.009	 0.05117	 0.6	 0.009	 0.00416	 1.6E-9	

mc	

(mg)	

mp	

(mg)	

EF	 m1	

(cc)	

i1	 m2	

(mg)	

---	 ---	

8.2E-9	 3.2E-6	 0.5	 1.6E-6	 0.8421	 6.6E-9	 ---	 ---	

	

The	results	of	simulations,	based	on	the	parameter	values	listed	in	Table	

1.1,	are	shown	in	Figures	1.2	and	1.3.		Listed	in	Table	1.2	are	the	ranges	of	

maximum	Lyapunov	exponents	given	in	Becks	et	al.	(2005),	which	are	

reasonably	close	to	those	calculated	from	our	simulated	time	series.			By	

varying	D	and	other	coefficients	to	keep	the	dimensionless	forms	of	Equations	

(1.10)	constant,	it	was	possible	to	“tune”	the	Lyapunov	exponents	to	be	even	

closer	to	the	experimental	values.		However,	D	was	measured	carefully	in	the	

experiments,	so	we	decided	to	work	only	with	those	values.	
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Figure 1.2. System-space (phase-space) plot of r(t), c(t) and p(t) for the parameters listed in 
Table 1.1 for D = 0.5/d (0.0208/hr) .  A strange attractor is evident.  
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Figure	1.3.	Irregular,	non-periodic,	dynamics	of	n(t),	r(t),	c(t)	and	p(t)	associated	
with	the	system-space	plot	in	Fig	1.2.		By	counting	apparent	concentration	peaks,	
the	mean	 frequency	 of	 the	 simulated	 data	 appears	 lower	 than	 that	 observed	 in	
Becks	et	al.	[2005],	but	still	within	50%.		However,	the	mean	model	frequency	can	
be	selected	by	changing	the	dimensionless	ratios	of	max	specific growth	and	death	
rates	to	D	(Chapter	3).	
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Table	1.2.	Lyapunov	exponents	used	to	identify	the	presence	of	deterministic	chaos	
based	on	the	time	series	of	concentrations	shown	in	Figure	1.3	(Calculations	were	
conducted	using	the	R	package	“fractal”	version:	2.0-1.)	
	
Parameters	 n	 r	 c	 p	

Time	delay	

(hr.)	

79	 90	 93	 80	

Largest	

Lyapunov	

exponent	

(hr-1)	

	

0.085	 0.016	

(0.009-0.012)*	

Avg.	=	0.011	

0.004	

(0.006-0.015)*	

Avg.	=	0.01	

0.015	

(0.006-0.008)*	

Avg.	=	0.007	

Note	*:	range	of	maximum	Lyapunov	exponents	determined	by	Becks	et	al.	(2005).			
	
	 As	in	the	Becks	et	al.	experiments,	after	obtaining	chaotic	dynamics	at	a	

dilution	rate	D=0.5/day	(0.0208/hr),	we	decreased	D	to	0.45/day	

(0.01875/hr)	with	other	parameters	as	listed	in	Table	1.1.		It	is	shown	in	

Figure	1.4	that	the	output	starts	in	an	irregular	manner,	and	then	becomes	

steady	state	with	the	cocci	dying	out.		In	the	experiments,	the	results	were	

periodic	with	all	microbes	surviving.	

For	a	D	value	of	0.9/d	(0.0375/hr),	both	simulations	and	experiments	

produced	a	classical	steady	state	with	one	microbe	dying	out.		However,	the	

simulations	resulted	in	the	rods	dying	out,	as	shown	in	Figire1.5,	while	in	the	

Becks	et	al.	experiments	the	cocci	died	out.		With	this	more	classical	result,	it	

should	be	relatively	easy	to	“fit”	the	model	to	the	Becks	et	al.	classical	results.		

To	illustrate	this,	we	adjusted	three	parameters	listed	in	Table	1.1.		The	

maximum	specific	growth	rate	for	the	cocci	was	changed	from	0.1248/hr	to		
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Figure	1.4.	Resulting	nutrient	and	microbe	kinetics	with	D	=	0.45/d	(0.01875/hr.),	as	
was	done	in	the	Becks	et	al.	(2005)	experiments.	
	 	



19	
	

	
													Figure	1.5.	Resulting	nutrient	and	microbe	kinetics	with	D	=	0.9/d	(0.0375/hr).	
	
	
0.1/hr.,	and	the	mean	masses	of	the	rods	and	predators	were	changed	

respectively	from	1.6E-9	mg	and	3.2E-6	mg	to	2.2E-9	mg	and	2.23E-6	mg.		The	

resulting	simulations	shown	in	Figure	1.6,	are	essentially	identical	to	the	

results	in	Becks	et	al.	for	D	=	0.9/d	(0.0375/hr).		However,	with	these	

parameter	values	and	D	=	0.5/day	the	chaotic	dynamics	could	not	be	

reproduced.	
	
	
	 	



20	
	

	
	

	
Figure	1.6.	Simulated	nutrient	and	microbe	dynamics	that	match	the	Becks	et	al.	
[2005,	Fig.	1]	results	for	D	=	0.9/d	(0.0375/hr).	
	

	

We	also	solved	Equations	(1.10)	with	D=0.75/d	(0.03125/h.),	which	produced	

a	classical	steady-state	with	the	rods	dying	out	as	shown	in	Figure	1.7;	Becks	

et	al.	achieved	a	steady	state	also,	but	with	all	microbes	surviving.		Once	again,	

similar	but	not	identical.					
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Figure	1.7.		Resulting	nutrient	and	microbe	dynamics	with	D	=	0.75/d	(0.03125/h).		
Both	the	model	and	experiments	produced	classical	steady	states,	but	all	microbes	
survived	in	the	experiments	while	the	rods	died	out	in	the	model.	
	

1.4.	Discussion	and	Conclusions.	

Clearly,	the	developed	model	with	the	mix	of	measured	and	selected	

parameters	and	coupling	functions	is	not	capturing	all	of	the	experimental	

details,	and	this	would	be	expected	with	a	chaotic/classical	model	having	

many	unmeasured	parameters	and	microbe	coupling	functions.		What	the	

results	seem	to	be	telling	us	is	that	future	experiments	should	be	designed	to	

have	a	mix	of	modeling	and	testing	so	that	the	parameter	values	for	the	actual	
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experimental	kinetics	are	better	defined.		This	is	a	significant	analytical	and	

experimental	challenge,	but	the	need	is	also	emphasized	in	the	review	paper	

by	Fussmann	(2007).			

	 However,	there	were	several	interesting	parallels	between	the	

experimental	and	model	results.	The	nature	and	magnitudes	of	the	model	

outputs	were	quite	similar,	and	in	one	case	they	were	made	identical	to	the	

experimental	results.		At	the	dilution	rate	utilized	by	Becks	et	al.	that	resulted	

in	chaotic	dynamics,	the	experimental	and	simulated	Lyapunov	exponent	

values	were	in	reasonable	agreement.		We	therefore	conclude	that	the	

availability	of	experimental	results	and	a	mathematical	model,	both	producing	

classical	and	deterministic	chaotic	dynamics	under	similar	conditions,	is	a	

useful	first	step	that	provides	new	insight	that	may	lead	to	better	

understanding	of	complex	phenomena	in	microbial	systems	and	motivate	

further	studies.	From	our	viewpoint,	the	key	methodology	for	obtaining	

internal	chaotic	dynamics	was	to	cause	the	preference	of	p	for	r	vs.	c	to	vary	

with	the	r	concentration,	and	to	make	r	more	competitive	for	nutrient	than	c,	

as	well	as	to	recycle	some	dying	p	biomass.		This	was	also	consistent	with	the	

experimental	details,	and	it	appears	fortunate	that	Becks	et	al.	(1995)	had	the	

foresight	to	perform	the	supplemental	measurements	related	to	food	

preferences	and	relative	competitiveness	of	the	various	microbes.		In	this	area	

our	mathematical	model	suggests	a	prediction:	simulated	chaotic	dynamics	

required	that	the	predator	preference	for	rods	versus	cocci	vary	significantly	

with	rod	population	density,	and	this	could	be	checked	experimentally	using	the	

Becks	et	al.	(2005)	measurement	procedures	with	the	microbe	types	used	in	

their	experiments.		(See	Supplemental	Information,	page	27.)		
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The	simulated	deterministic	chaos,	and	that	of	Becks	et	al.,	was	purely	a	

system-internal	phenomenon;	the	feeding	rates	were	maintained	constant	

during	each	experiment,	and	external	environmental	effects	were	minimized	

by	conducting	experiments	in	the	dark	at	constant	temperature.		In	the	

simulations	producing	chaotic	dynamics,	all	three	microbes	survived	-	what	

has	been	called	previously	a	type	of	“sustainable	state”,	with	the	concept	of	

“state”	represented	by	the	strange	attractor	(Molz	and	Faybishenko,	2013).		In	

the	simulated	non-chaotic	cases,	one	microbe	always	died	out,	unless	we	

imposed	a	microbe	weakening	with	population	growth,	which	added	

additional	parameters	to	the	model.		So	this	aspect	was	not	studied	in	depth.		

However,	we	were	able	to	obtain	a	different	type	of	chaotic	dynamics	driven	

by	a	sinusoidal	feeding	rate	analogous	to	that	produced	in	Kot	et	al.	(1992)		

for	a	two-microbe	system	(See	Chapter	2.).		

	 Nonlinearity	of	natural	microbial	systems	is	the	rule,	because	biological	

components	(fluxes,	plants,	microbes,	etc.),	which	are	often	represented	by	

the	dependent	variables	of	system	models	and	experiments,	interact	with	

each	other	in	situation-dependent	synergistic	and/or	antagonistic	ways	

(feedbacks).		When	deterministic	chaotic	dynamics	occur,	the	classical	

concept	of	ordered	individual	variation	is	lost,	with	time	dependence	

becoming	irregular,	non-periodic	and	not	predictable	in	the	long	term	-	hence	

the	term	“deterministic	chaos.”			At	least	in	a	microbial	system,	however,	a	

new	type	of	order	appears	at	the	system	level	in	the	form	of	a	time-persistent	

and	bounded	“strange	attractor”	in	system	(phase)	space.		Thinking	about	the	

attractor	as	representing	the	“full	System”,	we	don’t	perceive	anything	

“chaotic”,	in	the	original	meaning	of	the	word,	about	such	a	structure.	How	

this	higher-level	system	order	arises,	and	what	is	behind	it	in	a	
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biophysical/chemical	sense,	needs	to	be	studied	further,	which	is	a	truly	

interdisciplinary	problem	involving	biochemistry,	irreversible	

thermodynamics,	nonlinear	dynamics	and	perhaps	Shannon	information	

theory	(Schneider	and	Kay,	1994;	Ben-Naim,	2008;	Feistel	and	Ebling,	2011;	

Sagawa,	2014).		The	potential	connection	to	information	theory	is	intriguing,	

because	anything	described	by	a	probability	distribution	has	a	Shannon	

measure	of	information	(Ben-Naim,	2008),	although	the	concept	applies	in	its	

fullest	sense	only	to	discrete	probability	distributions.		The	statistical	aspects	

of	deterministic	chaotic	time	series	also	have	information	measures,	but	

classical	steady	or	periodic	states	do	not.		This	is	a	physical/mathematic	

difference	between	classical	steady-states	and	the	time-persistent	states	of	

deterministic	chaos	that	may	be	fundamental.		Based	on	a	recent	paper	by	

Liepe	et	al.	(2013),	there	is	increasing	interest	in	information	concepts	related	

to	systems	biology.		Such	material	is	discussed	further	in	Chapter	4,	which	

introduces	some	proposed	information	concepts	related	specifically	to	

biological	systems.	

	 The	mathematical	model	represented	by	Equations	(1.2)	or	(1.10)	may	

be	generalized	further	in	several	ways.		Additional	microbes	may	be	added,	

and	the	interaction	kinetics	may	be	modified	to	represent	what	is	actually	

occurring	in	a	given	experiment.		Such	modification	is	not	difficult	in	a	formal	

mathematical	sense;	the	challenge	is	to	base	such	modifications	on	

experimental	evidence	and	motivation.		Another	interesting	idea	would	be	to	

perform	experiments	involving	a	spatial	variable.		This	leads	one	to	consider	

biofilms	(Benefield	and	Molz,	1985).		It	is	observed	that	nicely	structured	and	

controlled	biofilms	can	be	grown	on	electrodes,	and	electrical	measurements	

can	be	made	very	precisely	(Yoho	et	al.,	2014).		Finally	one	could	extend	the	
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Becks	et	al.	(2005)	supplemental	experiments	on	predator	preference	change	

from	105	cells/cc	to	4x106	cells/cc	to	determine	if	there	is	a	preference	change	

and	what	the	mathematical	form	is	(Christofferson	et	al.,	1997).	
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S1.		Supplemental	Information	Concerning	Predator	Preference	Change.	

Based	on	unmodified	Monod	kinetics,	the	uptakes	of	r	and	c	by	P	in	cells	per	hour	

is	given	by	

	

      ( ) ( )
p pp p

pr pc

pr pc

pr r pc c
and

pm r pm cdr dc
dt Y K m r dt Y K m c

µ µ
= =

+ + 																 	 	 (S1)	
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We	modified	this	to	make	the	uptake	rates	on	a	cellular	basis	equal	at	r	=	c	=	

1E5,	and	to	have	r	uptake	4	times	faster	than	c	uptake	at	r	=	c	=	2.0E6.		To	do	

this,	µpr	and	Kpr	were	made	linear	functions	of	r,	i.e.	µpr	=	µpr(m1r	+	i1)		and		Kpr	

=	Kpr	+	m2r.		This	resulted	in:	

	

1 1

2
   

( )
( )

pp
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pr
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m r i
m r

pm rdr
dt Y K m r
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+
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+ 	 	 	 	 	 	 	 	 (S2)	

The	ratio	of	( pdr
dt )/(

pdc
dt )	is	now	given	by:	
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Applying	the	conditions	on	r	and	c	at	1E5	and	2.0E6	resulted	in	m1	=	1.597E-6,		

i1	=	0.8421	and	m2	=	mc	–	mr.		In	addition,	it	was	required	that		

andpr pc pr pc pr pcK Y Yµ = µ = Κ ,       =
											 	 	 	 	 (S4)	

When	all	this	is	substituted	in	(S3)	with	the	condition	that	r	=	c,	one	obtains	

	 	

(1.579 6 0.8421)
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Most	terms	cancel,	and	the	final	simple	and	clear	result	is:	

	

1 1( ) / (1.579 6) 0.8421p pRatio r
dr dc m r i E rdt dt
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = + = − + 	 	 	 (S6)	
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Ratio(1E5)	=	1		and		Ratio(2E6)	=	4,	with	a	linear	variation	with	r.	So	whenever	

r	and	c	are	at	the	same	cell	densities,	the	uptake	rate	ratio	is	given	by	(S6).		

Becks	et	al.	measured	this	ratio	at	one	r	and	c	value	and	got	4.		But	it	could	be	

done	at	a	variety	of	values	to	see	if	(S6)	is	approximately	valid,	or	if	there	is	

some	other	type	of	variation,	or	perhaps	no	variation.		We	would	actually	

expect	some	other	type	of	variation,	but	any	type	of	predator	preference	

change	for	r	vs	c	could	be	an	important	part	of	the	overall	dynamics.		It	would	

illustrate	how	potential	couplings	can	be	complex	beyond	any	of	the	classical	

kinetic	expressions.		The	applicable	experimental	technical	was	developed	

some	time	ago	by	Christofferson	et	al.	(1997.)			
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Chapter2:	Further	Study	of	the	Becks	et	al.	Equations.	

2.1.	Introduction.	

	 As	given	in	Chapter	1,	straight	generalization	of	the	Kot	et	al	(1992)	

system	results	in	
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The	parameters	involved	are	maximum	specific	growth	rates	(μ),	half	

saturation	constants	(K)	and	yield	coefficients	(Y),	a	total	of	twelve.		The	actual	

parameter	values	that	applied	to	the	Becks	et	al.	experiments	are	not	known	

in	detail,	so	the	initial	objective	was	to	study	the	properties	of	model	(2.1)	

using	the	experiments	as	a	guide.		(We	elected	to	work	with	the	equations	in	

dimensional	form,	because	(like	us)	we	thought	most	readers	would	find	it	

easier	to	maintain	a	physical	feel	for	what	might	be	happening.		Dimensionless	

results	may	be	found	in	Chapter	3)		A	convenient	and	reasonable	set	of	values	

for	starting	this	process,	similar	to	those	selected	by	Kot	et	al.(1992)	are	given	

in	Table	2.1.		Initial	conditions	were	selected	as	n(0)	=	0.03	mg/cc,	r(0)	=	
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4.2x106	cells/cc,	c(0)	=	106	cells/cc	and	p(0)	=	3000	cells/cc.		These	are	in	the	

range	of	values	observed	in	the	Becks	et	al.	experiments,	but	they	should	not	

be	viewed	as	specifically-measured	initial	conditions.		Many	other	initial	

conditions	give	sensible	results.		
	
Table	2.1.	Parameter	values	selected	for	an	initial	mathematical	analysis	of	the	Becks	
et	al.	experiments	using	the	generalized	Kot	et	al.	Model	(2.1).		Units	for	“μ”	are	hr-1,	
for	“K”	are	mg/cc,	and	“Y”	are	mg/mg.		Microbial	masses	are	held	constant	at	the	
values	given	(mg)	in	Chapter	1.	
	

μrn	 μcn	 μpr	 μpc	 Krn	 Kcn	 Kpr	 Kpc	 Yrn	 Ycn	 	 Ypr	 Ypc	

0.7	 0.65	 0.211	 0.246	 0.008	 0.009	 0.019	 0.009	 0.4	 0.4	 	 0.6	 0.6	

	

For	reasonable	parameter	values,	Equations	(2.1)	would	not	yield	a	stable	

solution	having	non-zero	values	for	all	dependent	variables.		The	common	

behavior	was	either	for	the	rods	to	die	out,	leaving	only	cocci	and	predators,	

or	for	the	cocci	to	die	out,	leaving	only	rods	and	predators.	Less	than	1%	

changes	in	the	controlling	parameters	could	flip	the	system	from	all	c,	n	and	p	

to	all	r,	n	and	p,	or	vice-versa.		Therefore,	if	the	full	system	being	simulated	is	

defined	as	a	finite,	varying	mixture	of	nutrient,	rods,	cocci	and	predators,	as	

observed	in	most	of	the	Becks	et	al.	experiments,	one	could	say	that	Equations	

(2.1),	due	to	die-offs	of	rods	or	cocci,	do	not	yield	a	stable,	long-term,	four-

variable	solution.		For	this	reason,	it	was	decided	to	modify	the	model	as	

follows.		

	

2.2.	Another	Model	Generalization.	

Many	organisms	weaken	somewhat	with	success,	and	are	also	subject	to	

a	natural	death	rate—the	so-called	intrinsic	death	rate.		In	addition,	the	
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biomass	of	dead	microbes	becomes	a	new	nutrient	source,	so	the	death	of	a	

relatively	large	predator	could	provide	nutrient	for	many	relatively	small	

cocci	or	rods.		This	process	is	called	biomass	recycling	to	nutrient.		All	three	

potential	processes,	weakening	with	success,	intrinsic	death	rates	and	

biomass	recycling	are	taken	into	account	in	Model	2.2:		(New	terms	in	red.)	
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(2.2)	

	
The	terms	in	Equations	(2.2)	containing	slopes	“Sij”	cause	a	small	linear	

decrease		of	the	maximum	specific	growth	rates	as	microbe	mass	

concentrations	increase,	and	the	“δ”	terms	represent	the	specific	(intrinsic)	

death	rates	for	each	microbe.		The	last	term	in	the	nutrient	equation	(1st	

Equation	of	(2.2))	sums	the	dying	biomass	and	converts	it	to	nutrient	with	

conversion	efficiency	“EF”.		The	eight	additional	selected	parameter	values	are	

listed	in	Table	2.2,	with	specific	death	rates	for	rods	and	cocci	not	needed.	
	
Table	2.2.		New	parameters	in	Equations	(2.1),	and	a	set	of	test	values.		Units	of	“S”	
are	mg-1,	units	of	the	specific	death	rates	“δ”	are	hr-1,	and	0	≤	EF	≤	1	is	dimensionless.	
	

Srn	 Scn	 Spr	 Spc	 δ	r	 δ	c	 δ	p	 EF	
50.0	 1.0	 1.0	 1.0	 0.0	 0.0	 0.02	 0.5	
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2.3.	Results.	

Using	MATLAB	software,	for	the	parameter	values	listed	in	Tables	2.1	

and	2.2,	we	solved	Equations	(2.2)	for	a	dilution	rate	D	=	0.1	hr-1,	and	an	

inflowing	nutrient	concentration	n0	=	0.15	mg/cc.		Dependent	variables	(n,	r,	c,	

and	p)	as	functions	of	time	are	presented	in	Figure	2.1.		

	All	the	microbes	now	exist	together,	and	the	overall	solutions	are	

periodic.		Many	test	runs	with	different	parameters	have	shown	much	more	

stable	behavior	of	the	dependent	variables,	so	we	are	observing	the	situation	

in	which	added	model	nonlinearity	causes	increased	system-wide	stability.		

The	situation	when	the	most	abundant	microbes	are	weakened	leads	to	

evolutionary	dynamics	of	specific	predator-prey	pairs,	which	oscillate	in	time	

similar	to	those	predicted	by	the	classical	Lotka-Volterra	equations,	and	which	

are	also	called	“Kill-the-Winner”	systems	(Bratbak	et	al.,	1990;;	Rohwer	and	

Barott,	2012).		At	this	point,	the	problem	we	experienced	was	that	regardless	

of	the	selected	parameter	values,	chaotic	dynamics	would	not	occur.		This	was	

shown	to	be	true	rigorously	by	Kot	et	al.	in	their	three-variable	study,	before	

inducing	chaotic	dynamics	by	making	the	feeding	rate	periodic.		So	we	decided	

to	try	this	in	our	system	by	replacing	the	inflowing	nutrient	concentration	[n0	

=	0.15]	with	[n0	=	0.15(1	-	0.5sin(0.52t))],	which	represents	a	sinusoidal	

variation	about	0.15	mg/cc	with	an	amplitude	of	0.075	and	a	period	of	12	hr.		

The	resulting	dynamics	shown	in	Figures	2.2	and	2.3	appear	analogous	to	that	

observed	by	Kot	et	al.	(1992)	in	their	three-variable	system	with	a	sinusoidal	

feeding	rate	given	by	0.155(1+0.6sin(0.262t))	in	our	units.		The	diagnostic	
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parameters	for	the	nonlinear	concentration	time	series	shown	in	Figure	2.3	

are	summarized	in	Table	2.3.			

	

	

	

	
Fig.	2.1		Nutrient	mass	concentrations	and	microbial	number	concentrations	as	functions	of	
time.		With	the	modified	Equations	(2.2),	it	is	now	relatively	easy	to	produce	stable	periodic	
oscillations	of	concentrations	of	all	three	microbes	
Fig.	2.1		Nutrient	mass	concentrations	and	microbial	number	concentrations	as	functions	of	
time.		With	the	modified	Equations	(2.2),	it	is	now	relatively	easy	to	produce	stable	periodic	
oscillations	of	concentrations	of	all	three	microbes	
	
	
	 	

Nutrient	(mg/cc)		 Rods (cells/cc) 

Figure	2.1.		Nutrient	mass	concentrations	and	microbial	cell	number	concentrations	as	
functions	of	time	(hr.).		With	the	modified	Equations	(2.2),	it	is	now	relatively	easy	to	
produce	stable	periodic	oscillations	of	concentrations	of	all	three	microbes.		
	

Cocci	(Cells/cc)	 Preds.	(cells/cc)	

 Rods (cells/cc) vs. Time (hr) 

  Predators (cells/cc) vs. Time (hr)  
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Table	2.3.	Diagnostic	nonlinear	dynamics	parameters	used	to	identify	the	presence	
of	deterministic	chaos	based	on	the	time	series	of	concentrations	shown	in	Figures	
2.2	and	2.3.		(Note:		Analysis	using	R	software	packages	“FRACTAL”).		
		

Parameters	 n	 r	 c	 p	
Time	delay	
(hr.)	

18	 56	 69	 62	

Correlation	
dimension	
d2	

1.97	 0.91	 1.75	 1.08	

Embedding	
dimension	

4	 2	 2	 2	

Information	
dimension	
d1	

2.22	 1.42	 1.28	 1.65	

Largest	
Lyapunov	
exp.	(hr-1)	

0.28	 0.41	 0.40	 0.40	

Sum	of	
Lyapunov	
exponents	

-1.40	 -0.16	 ~	0	 ~0	

Hurst	
exponent	

0.527	 0.637	 0.552	 0.642	
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Figure	2.2.		Plots	of	nutrient	and	microbes	as	functions	of	time	resulting	from	a	
solution	of	Equations	(2.2),	using	parameter	values	specified	in	Tables	2.1	and	
2.2,	along	with	a	sinusoidal,	12	hr.	period,	feeding	rate.	The	only	parameter	
difference	with	the	solution	shown	in	Figure	2.1	is	the	sinusoidal	feeding	rate.	
	

Nutrient	(mg/cc)	 Rods	(cells/cc)	

Cocci	(cells/cc)	 Preds	(cells/cc)	
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	 	Figure	2.3.		3-D	system	space	plots	of	Equations	(4)	solution	with	an	
inflowing	nutrient	concentration	given	by	Dn0	=	[0.15(1	-	0.5sin(0.52t))].		A	
strange	attractor	is	evident.	
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2.4.	Conclusions.	

	 We	did	not	further	pursue	the	time-dependent	feeding	rate	solutions,	

because	the	feeding	rate	was	held	constant	in	the	Becks	et	al.	(2005)	experiments	

that	were	conducted	in	the	dark	at	constant	temperature.		So,	the	chaotic	

dynamics	obtained	was	strictly	an	internal	process.		The	idea	of	microbe	

weakening	with	population	growth	was	dropped	also	because	of	the	added	

parameters	involved.		Instead	we	focused	on	better	implementation	of	the	results	

of	the	supplemental	experiments	involving	predator	preference	for	rods	versus	

cocci	and	the	ability	of	rods	to	out-compete	cocci	for	food	under	starvation	

conditions.		It	is	entirely	possible,	however,	that	the	inclusion	of	microbe	

weakening	with	population	growth	could	result	in	an	overall	formulation	that	is	

superior	in	some	way,	so	this	possibility	should	be	examined	in	future	research.	
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Chapter	3.		Dimensionless	Forms	for	Equations	(1.10).	

3.1.	Introduction.	

	 While	exploring	the	nature	and	implications	of	coupled,	nonlinear,	

equation	systems,	it	is	often	enlightening	to	put	the	equations	in	non-

dimensional	form	–	as	was	done	by	Kot	et	al.	(1992).		Such	a	formulation	has	

obvious	advantages	for	a	more	general	mathematical	analysis	beyond	that	

presented	in	this	report.		However,	we	did	use	dimensionless	equations	to	

better	understand	parameter	interactions,	and	to	further	check	the	

consistency	of	our	formulations.	

	

3.2.	Dimensionless	Formulation.	

	 Equations	(1.10)	may	be	written	as:	
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Following	the	lead	of	Kot	et	al.	(1992),	we	define	the	dimensionless	variables	

given	by:	
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0 0 0 0

, , , pcr

rn cn rn cn pr pc

pmcmrmnw x y z and Dt
n Y n Y n Y Y Y Y n

τ= = = = = 	 	 				(3.1a)	

This	results	in	the	substitutions	listed	in	(I-1b):	

0 0 0 0, , , / ,r rn c cn p rn cn pr pcn n w rm xY n cm yY n pm zY Y Y Y n and t Dτ= = = = = 		(3.1b)	

which	yields	the	equation	set:	

0 0
0 0 0 0 0 0

0 0

rn cn
rn cn rn cn pr pc p

rn rn cn cn

n w n wdwDn Dn xY n yY n Dn w zY Y Y Y n EF
d Y K n w Y K n w

µ µ
δ

τ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
	

0
0 0

0

1 0 1 0
0 0

2 0 0

0
0 0

0

( )

( / ) ( ) ( ) (3.2)
/ ( )

( )

rn rn rn
rn

pr rn r rn
rn cn pr pc rn

pr pr rn r rn

pc
cn cn cn

cn p

n wdxDY n x Y n
d K n w

m xY n m i x Y n zY Y Y Y n Dx Y n
Y K m xY n m x Y n

n wdyDY n y Y n
d K n w Y

µ
τ

µ
            

µ
µ

τ

⎡ ⎤⎛ ⎞
= +⎢ ⎥⎜ ⎟

+⎝ ⎠⎣ ⎦

⎛ ⎞+
− −⎜ ⎟⎜ ⎟+ +⎝ ⎠

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

+⎝ ⎠⎣ ⎦

0
0 0

0

( ) ( )
( )
cn

rn cn pr pc cn
c pc cn

y Y n zY Y Y Y n Dy Y n
K y Y n

⎛ ⎞
−⎜ ⎟⎜ ⎟+⎝ ⎠

0 0
1 0 1

2 0 0 0

( ) ( )( / )
/ ( ) ( )

rn cn
PR rn r pc p

pr rn r rn pc cn

x Y n y Y ndzD z m xY n m i z Dz z
d K m xY n m x Y n K y Y n

µ µ δ
τ

⎛ ⎞ ⎛ ⎞
= + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ 	

	

Further	simplification	results	in:	
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0 0

1
/ /

rn cn pr pc prn cn

rn cn

zY Y Y Y EFdw wx wy w
d D K n w D K n w D

δµ µ
τ

⎛ ⎞ ⎛ ⎞
= − − − +⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠
	

2
1 0

0 0 2

1

0 2

0 0

( )
/ / ( ) ( / 1)

/ ( ) ( / 1)

/ / ( )

pr rn cn pcrn

rn r pr rn r

pr cn pc

pr rn r

pc rn prcn

cn pc cn

mY n Y Ydx wx x z
d D K n w m D K Y n x m m

iY Y xz x
D K Y n x m m

Y Ydy wy yz y
d D K n w D K Y n y

µµ
τ

µ

µµ
           

τ

⎛ ⎞⎛ ⎞
= − +⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

⎛ ⎞
− −⎜ ⎟⎜ ⎟+ +⎝ ⎠

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

(3.3)                               

2
1 0 1

0 2 0 2

0

/ ( / 1) / ( / 1)

(1 )
/

pr rn pr

r pr rn r pr rn r

pc p

pc cn

mY n idz x z xz
d Dm K Y n x m m D K Y n x m m

yz z
D K Y n y D

µ µ

τ

µ δ

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ − +⎜ ⎟⎜ ⎟+⎝ ⎠

	

	

Defining	the	dimensionless	parameters	(3.4),	and	substituting	in	(3.3)	results	

in	the	dimensionless	equation	set	(3.5):	
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1 1 1 1( )
1 1

dw wx wyA B w C z
d a w b wτ

⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
	

	

2

1 2 2 (3.5)
1 2 ( 2 ) 2 ( 2 )

dx wx x z xzA B C x
d a w b x b a b x b a

                                             
τ

⎛ ⎞ ⎛ ⎞⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠
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⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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3.3.	Example	Solution	to	the	Dimensionless	Equations.	

	 Substituting	the	numerical	parameter	values	in	Table	(1.1)	into	the	

derived	dimensionless	parameters	results	in	the	equation	set	(3.6)	

	

1. 9.0048 6. 0.0058( )
0.06 0.06

dw wx wy w z
d w wτ

⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
	

	

2

9.0048 35.4254 0.4972 (3.6)
0.06 0.15 (5.125) 0.15 (5.125)

dx wx x z xz x
d w x x

                                 
τ

⎛ ⎞ ⎛ ⎞⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠

	

6. .5904
0.06 0.15

dy wy yz y
d w yτ

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
	

2

147.61 2.0716 0 2.46 1.2( )
0.15 (5.125) .15 (5.125) 0.15

dz x z xz yz z
d x x yτ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠⎝ ⎠

	

	 Equations	(3.6)	were	solved	with	slightly	different	initial	conditions,	

because	we	wanted	all	points	to	fall	on	the	strange	attractor	right	from	the	

beginning	as	a	basis	for	the	following	Chapter	4	dealing	with	Shannon	

Information	Theory.		So	an	attractor	starting	point	given	by	w	=	0.579,	x	=	

0.0193,	y	=	0.0516	and	z	=	1.079	was	utilized.		

		

3.4.	Results	and	Discussion.	

Results	are	given	in	Figures	3.1,	3.2	and	3.3.	
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Figure	3.1.		Plots	of	the	four	dimensionless	variables	w	(nutrient),	x	(rods),	y	(cocci)	
and	z	(predators).		Chaotic	dynamics	is	evident.		 	
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Figure	3.2.		A	system-space	plot	of	dimensionless	rods	vs.	cocci	vs.	predators	yields	
the	usual	3-D	section	of	the	4-D	strange	attractor.	
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Figure	3.3.		Dimensionless	system-space	3-D	section	plot	of	nutrient	vs.	rods	vs.	
predators.	
	
	
		
	 It	is	evident	that	the	appearance	of	the	dimensionless	results	is	

essentially	the	same	as	the	dimensionless	cases	presented	in	Chapter	1.		

Figure	3.1	shows	variable	plots	that	are	irregular,	non-periodic	functions	of	

time	that	are	not	predictable	in	detail.		This	results	in	a	strange	attractor	plot,	

4-dimensional	in	the	general	case,	that	Fraser	and	Swinney	(1986)	

characterize	as	having	a	well-defined,	asymptotic	probability	distribution.		

Nevertheless,	the	plots	of	various	variable	pairs	shown	in	Figures	(3.4)	

through	(3.6)	do	not	show	relationships	that	are	random	in	the	classical	sense.		

More	recent	work	by	Anishchenko	et	al.	(2004)	provides	additional	
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justification	for	a	statistical	approach.		They	divide	attractors	into	the	classes	

of	hyperbolic,	quasi-hyperbolic	and	non-hyperbolic.		(The	well-known	Lorenz	

attractor	is	of	the	quasi-hyperbolic	type.)		They	also	study	the	effect	of	noise	

on	the	calculation	of	invariant	measures	such	as	Lyapunov	exponents	and	

invariant	statistical	measures.		According	to	Anishchenko	et	al.	(2004)	most	

chaotic	attractors	that	are	dealt	with	in	real	experiments	and	numerical	

simulations	are	of	the	non-hyperbolic	type,	which	is	the	classification	that	

	

Figure	3.4.		Dimensionless	plot	of	predator	cells	(y-axis)	vs.	cocci	cells	(x-axis).		
Clearly,	the	relationship	is	not	random	in	the	classical	sense.			 	
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Figure	3.5.		Dimensionless	plot	of	predator	cells	(y-axis)	vs.	rod	cells	(x-axis).		Again,	

the	relationship	is	not	random	in	the	classical	sense.		

	

the	attractor	in	Figure	3.2	probably	falls	under.		Properties	of	non-hyperbolic	

attractors	are	more	sensitive	to	noise,	and	their	statistical	properties	cannot	

be	proven	to	exist	as	rigorously,	but	they	can	be	approximated	by	numerical	

calculation.		In	Chapter	4	we	calculate	probability	distributions	numerically	

for	the	variables	in	Figure	3.1,	and	the	results	seem	well	defined	in	that	stable	

distributions	result	as	the	number	of	data	points	are	increased.		Shannon	

information	concepts	and	statistics,	as	they	might	apply	to	biological	systems,	

are	discussed	further	in	Chapter	4.			 	
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Figure	3.6.		Dimensionless	plot	of	Cocci	cells	(y-axis)	vs.	rods	(x-axis).		Again,	the	
relationship	is	not	random	in	the	classical	sense	
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Chapter	4:		How	Might	Information	Theory	Relate	to	Chaotic	Dynamics	in	

Biological	Systems?	

	

4.1.	Introduction.	

	 If	deterministic	chaotic	dynamics	(DCD)	can	be	viewed	as	some	type	of	

sustainable	state,	then	one	thing	it	has	in	common	with	classical	steady	and	

periodic	steady	states	is	that	they	are	time-persistent	-	meaning	that	once	set	

up,	the	states	persist	indefinitely	in	a	mathematical	sense.		However,	as	

pointed	out	by	Fraser	and	Swinney	(1986),	“Strange	attractors	are	ergodic	

and	have	well-defined,	asymptotic	probability	distributions”,	although	as	

discussed	in	Chapter	3,	the	relationship	between	the	variable	pairs	do	not	

appear	random	in	the	classical	sense	–	only	non-predictable	in	detail.		(We	

will	return	to	this	later.)		Thus,	unlike	classical	steady-states,	the	attractor	

variables	have	Shannon	measures	of	information,	something	that	may	make	

them	distinct.		Fraser	and	Swinney	(1986)	deal	with	the	concept	of	mutual	

information	because	it	generalizes	readily	from	discrete	probability	

distributions,	mostly	studied	by	Shannon,	(Ben-Naim,	2008)	to	the	continuous	

case.		What	is	commonly	called	“Shannon	information”	or	“Shannon	entropy”	

does	not	generalize	directly.		However,	this	latter	concept	is	what	we	will	

work	with	initially.		Rather	than	call	it	information	or	entropy,	for	reasons	that	

will	become	clear,	we	will	call	it	for	now	“Shannon’s	measure	of	

uncertainty“(SMU).		For	a	discrete	probability	distribution	(PD)	having	n	

possibilities,	Shannon’s	measure	is	given	by	
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( )2
1

( )
n

i i
i

SMU P Log P
=

= −∑ 	 	 	 	 	 	 	 (4.1)	

Uncertainty	does	not	sound	much	like	information,	so	what	justifies	the	

uncertainty	interpretation?	

	

4.2.	Interpretation	of	Shannon’s	Measure.	

As	described	in	his	two	clearly	written	and	highly	recommended	books,	

Ben-Naim	(2008,	2015)	describes	the	puzzling	nature	of	the	concept	of	

Shannon	Information.		He	points	out	that	Shannon’s	original	objective	was	to	

develop	a	“measure	of	information,	choice	and	uncertainty”,	so	as	far	as	

Shannon	was	concerned,	one	could	refer	to	Shannon’s	measure	of	information	

as	Shannon’s	measure	of	uncertainty	(SMU),	with	the	resulting	numbers	called	

bits	when	base	2	logs	are	used	(natural	and	base	10	log	units	are	called	nats	

and	harts	respectively)	.		Shannon’s	original	motivation	was	to	use	the	

Shannon	measure	concept	and	resulting	mathematics	to	manipulate	and	

reproduce	digital	and	other	signals	(Shannon	and	Weaver,	1998).		As	such,	it	

had	no	relation	to	the	“meaning”	contained	in	the	signals,	analogous	to	the	

task	of	reproducing	a	page	of	words	with	no	concern	for	what	the	words	mean	

-	just	the	letters,	spaces	and	their	respective	probabilities	of	appearing.		In	

fact,	paragraphs	conveying	identical	“meaning”	but	written	in	different	

languages	produce	different	Shannon	measures	(Ben-Naim,	2015).				

	 If	modern	information	theory	is	going	to	find	broad	application	in	

scientific	disciplines,	one	would	expect	biological	systems	to	be	prime	areas	of	

application,	because	a	huge	amount	of	signal	and	signal	processing	is	involved,	
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both	conscious	and	unconscious	(Bialek,	2012;	Eigen,	2013).		Within	

microbes,	the	continuous	signaling	process	starts	with	the	DNA,	and	it	is	

combined	with	“sensory”	signals	from	the	surrounding	environment.		At	

numerous	locations,	signals	are	received,	processed	and	new	signals	sent	out	

to	additional	locations.		Ultimately,	this	results	in	organism	behavior,	some	of	

which,	such	as	nutrient	seeking	and	threat	avoidance,	can	be	observed.		Ben-

Naim	(2008,	2015)	makes	a	clear	distinction	between	what	he	calls	

“Shannon’s	measure	of	information”	and	the	various	types	of	“meaningful	or	

behavior-inducing	information”	that	he	calls	“colloquial”	information.		The	

obvious	question	is:	how	might	one	relate	to	the	other,	because	general	

meaning	of	some	type	has	to	be	derived	from	a	Shannon-quantified	signal	in	

order	for	the	signal	to	be	of	any	interest	at	all,	and	the	“meaning”	does	not	

have	to	be	conscious	as	shown	by	the	Venus	flytrap	study	of	Bӧhm	et	al.	

(2016).		Can	these	thoughts	be	made	clearer?	

	 The	clarity	issue	begins	immediately	when	one	tries	to	explain	or	

understand	Shannon	measure	concepts,	because	all	the	involved	

understanding	is	colloquial.		Shannon’s	measure	applies	directly	to	any	well-

defined	discrete	probability	distribution,	and	probability	distributions	are	

associated	intimately	with	uncertainty,	so	the	uncertainty	interpretation	is	

appealing.		This	is	more	consistent	with	the	thermodynamic	entropy	concept	

that	is	also	viewed	by	many	individuals	as	a	measure	of	uncertainty.		In	fact,	

Ben-Naim	(2008)	argues	convincingly	that	temperature	should	have	the	units	

of	energy,	not	degrees,	making	the	statistical	mechanical	interpretation	of	

thermodynamic	entropy	dimensionless	and	identical	formally	to	Shannon	

entropy,	although	Shannon	entropy	can	apply	to	probability	distributions	that	

have	no	relation	to	thermodynamics.		So	how	might	the	uncertainty	
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interpretation,	Shannons’s	measure	of	uncertainty	(SMU),	be	applied	to	

biological	systems,	and	what	are	the	implications?	

	 To	begin	answering	that	question,	let	us	consider	hunting	for	food	in	a	

forest.		Assume	there	are	20	distinct	locations	where	food	might	be	found,	and	

the	task	performer	(TP)	doesn’t	know	where	to	start.		Assume	further	that	the	

TP	has	at	least	a	rudimentary	consciousness.		The	best	that	can	be	done	on	the	

initial	search,	without	some	kind	of	prior	knowledge,	is	to	assign	a	Bayesian	

probability	of	1/20	to	each	location	and	start	looking.		This	would	be	

equivalent	to	maximizing	the	SMU	(maximum	uncertainty	principle)	to	arrive	

at	the	“best”	initial	estimate	of	the	underlying	PDF	(Jaynes,	1957;	Ben-Naim,	

2015).			When	the	food	is	found,	the	TP	knows	where	it	was,	and	the	first	trial	

uncertainty	(sometimes	called	missing	information)	is	removed	-	which	could	

be	at	the	first	location	observed,	the	final	location	or	any	location	in	between.		

If	the	food	location	is	and	will	always	be	truly	uniformly	random,	the	TP	can	

never	do	better	than	random	guessing	(maximum	uncertainty),	and	Shannon’s	

Measure	takes	on	its	maximum	possible	value	for	that	particular	task	given	

by:	
20

max 2 2
1

1( ) 20[ (20)] 4.32 ,
20i i

i
SMU PLog P Log bits  

=

= − = + =∑ 	 	 	 	 						(4.2)	

This	result	is	consistent	logically	with	viewing	the	SMU	as	a	measure	of	

uncertainty	or	degree	of	randomness,	and	Grassberger	(1991)	alludes	to	this	

by	suggesting	that	the	phrase	“net	flow	of	(Shannon)	information”	would	be	

better	expressed	as	“net	flow	of	Shannon	ignorance”.		Still	another	viewpoint	

would	be	that	the	combined	system	including	the	TP	would	always	stay	at	

maximum	Shannon	entropy.			
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	 Let	us	now	suppose	that	the	food	location	is	not	truly	random,	but	

follows	a	discrete,	objective	probability	distribution,	with	Pi	being	equal	to	

0.01	at	each	location	except	location	7	where	it	is	0.81.		Now	it	is	possible,	

with	repeated	food	searches,	to	discover	that	food	will	be	found	at	location	7	

about	80%	of	the	time,	and	this	knowledge	we	view	as	the	potential	

development	of	colloquial	information	and	a	decrease	in	the	SMU.		This	more	

refined	(less	random)	probability	distribution	has	a	Shannon	measure	of		
20

2 2 2
1

1 1( ) 19 0.01 ( ) 0.81 1.51 ,
0.01 0.81i i

i
SMU PLog P Log Log bits 

=

⎡ ⎤ ⎡ ⎤= − =− + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ 	 	 (4.3)	

The	SMU	decreases	as	the	probability	distribution	becomes	less	random,	and	

the	ability	to	find	food	on	the	1st	try,	and	on	average	over	many	tries,	

increases.		So	for	a	given	task,	if	the	SMU	is	low	compared	to	its	maximum	

possible	value	(Log2(n)),	the	task	becomes		easier	to	accomplish	with	repeated	

trials.		Thus,	we	see	the	development	of	colloquial	information	as	a	time-

dependent	process	resulting	from	an	improved	understanding	of	the	PD	

underlying	the	SMU	with	repeated	task	performance.			

	 This	discussion	is	implying	that	a	particular	SMU	value	is	the	result	of	an	

interaction	between	a	PD	and	a	particular	task	performer.		In	a	more	abstract	

sense,	this	may	be	what	Grassberger	(1991)	meant	by	the	statement,	“----	

complexity	will	be	viewed	as	a	property	not	exclusively	associated	with	the	

observed	object,	but	rather	as	a	subjective	property	reflecting	the	observer-

object	relationship.”		In	order	to	calculate	a	SMU,	a	set	of	events	and	their	

respective	probabilities	are	needed,	but	where	does	this	sense	of	probability	

come	from	if	not	from	the	knowledge	of	an	observer	or	task	performer?		In	

natural	systems	such	knowledge	can	be	highly	indirect,	involving	various	

conditional	probabilities.		As	the	TP	improves	based	on	the	use	of	prior	
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information	from	previous	search	attempts,	the	process	takes	on	a	subjective,	

Bayesian	nature	(Gillies,	2000;	Bernardo	and	Smith,	2001).			

	 If	a	TP	has	conscious	memory	of	some	type,	then	one	can	see	how	a	

rudimentary	understanding	of	a	probability	distribution	associated	with	a	

SMU	can	be	developed	and	refined,	but	what	about	the	unconscious	case?		

Evolution	by	mutation	and	natural	selection	appears	to	be	unconscious,	but	

there	is	a	“memory”	of	successful	past	mutations	retained	in	the	genes	(DNA)	

of	a	species.		As	an	example	of	the	end	(present	time)	result	of	probability	

refinement	on	an	evolutionary	timescale	associated	with	a	task,	let’s	consider	

in	more	detail	the	insect	capture	and	digestion	methodology	of	the	Venus	

flytrap,	mentioned	previously	and	elucidated	in	biochemical	detail	by	Bӧhm,	

et	al.	(2016).		The	Venus	flytrap	has	a	leaf	that	closes,	potentially	trapping	an	

insect,	when	its	hair	cells	are	stimulated.		Obviously,	it	is	important	to	close	

and	begin	the	digestive	process	only	when	an	insect	is	present,	not	just	an	

inanimate	particle	of	some	type	blown	in	by	the	wind,	wind	turbulence	alone	

or	the	touch	of	a	nearby	plant.		What	started	the	flytrap	species	down	the	

insect-capturing	pathway	initially	is	unknown;	in	fact,	one	can	imagine	

multiple	possibilities	for	starting	points.		So	what	is	the	probability	that	“hair	

cell	stimulation”	means	“insect	present”?		Obviously,	if	the	probability	was	

overestimated,	the	plant	would	be	wasting	a	lot	of	its	metabolic	energy	

capturing	and	tying	to	digest	junk.		Here’s	how	the	plant	got	sufficiently	close	

to	the	true	probability	that	“stimulation	implies	insect”.		A)	One	hair	cell	

stimulation	and	nothing	more	→	ignore;	B)	a	2nd	stimulation	within	about	20	

sec.	of	the	1st	→	close	and	wait;	if	nothing	more,	reopen;	C)	1st	additional	

stimulation	after	closing	→	start	the	digestive	process;	D)	3rd	stimulation	after	

closing	→	proceed	with	digestion	and	activate	full	nutrient	uptake.		The	big	
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difference	between	inanimate	hair-cell	stimulations	and	insects,	is	that	the	

insect	craws	and	wiggles	when	confined,	so	presumably	through	the	process	

of	mutation	and	natural	selection	the	flytrap	species	has	acquired	a	

methodology	to	time	and	count	the	possible	insect	stimulations.		If	a	set	of	

stimulations	is	within	an	acceptable	pattern,	then	the	probability	of	an	insect	

being	present	is	sufficiently	high	that	on	average,	leaf	closing,	digesting	and	

nutrient	absorption	is	energetically	positive	for	the	plant.		If	the	net	energy	

expenditure	could	not	be	made	positive,	then	presumably	the	insect	

consuming	methodology	would	not	have	evolved.		The	essential	process	

seems	to	be	trial	and	error	(mutations)	along	with	preserving	DNA	mutations	

(memory)	that	increase	plant	survival	on	average	(natural	selection).		

Evidently,	consciousness	is	not	required,	but	DNA	entities	interacting	with	the	

natural	world	can	form	at	least	rudimentary	memories	of	a	probabilistic	

nature.	

	

4.3.	The	concept	of	Redundancy.	

	 So	far	we	have	focused	on	the	uncertainty	interpretation	of	Shannon’s	

measure,	so	why	is	Shannon’s	development	commonly	called	“information	

theory”?		This	is	clarified	by	realizing	that	knowledge	and	uncertainty	are	the	

opposite	of	each	other	when	dealing	with	PD	structure.		When	characterizing	

a	PD,	decreasing	SMU	means	increasing	information	about	PD	structure	and	

vice-versa.		This	inverse	relationship	between	uncertainty	and	information	is	

what	makes	Shannon’s	measure	so	confusing	when	calling	it	some	type	of	

“information”,	and	as	pointed	out	by	Ben-Naim	(2008,	2015),	there	is	an	

immense	amount	of	confusion	in	the	public	literature.		This	inverse	
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relationship	can	be	clarified	further	by	employing	a	normalized	measure	to	

characterize	the	degree	of	non-randomness	in	a	probability	distribution	

defining	a	SMU	called	the	redundancy	R.		It	is	defined	by	(Ben-Naim,	2015):	

( )max

max

SMU SMU
R

SMU
−

= .	 	 	 	 	 	 	 	 	 (4.4)	

So	R	can	be	used	to	distinguish	between	a	totally	random	process	within	a	

specified	domain	(SMU	=	SMUmax	→	R	=	0)	and	an	event	with	a	probability	of	

one	(SMU	=	0	→	R	=	1).		Thus,	for	the	probability	distribution	associated	with	

Equation	(1)	R	=	0,	and	for	Equation	(2):	

		

( )4.32 1.51
0.65

4.32
R

−
= = 	 	 	 	 	 	 					 	 											(4.5)	

Evidently,	R	is	a	measure	of	how	much	information	can	be	obtained	about	the	

nature	of	a	probability	distribution	through	repeated	sampling.		One	can	

imagine	that	the	degree	of	sophistication	of	this	mental	process	can	vary	

widely.			For	example,	many	small	prey	animals,	such	as	rodents,	are	more	

active	at	particular	times	during	the	day,	such	as	early	morning	or	late	

afternoon.		By	merely	recognizing	and	retaining	this	in	some	way,	a	predator	

could	choose	to	be	especially	active	during	such	time	periods	in	particular	

locations,	and	thereby	increase	the	probability	of	hunting	success.		At	the	

other	extreme	we	have	humans,	who	often	spend	a	lifetime,	or	multiple	

lifetimes	(culture),	trying	to	improve	success	on	a	particular	task.			

	 An	interesting	question	related	to	probability	that	arises	with	humans	is	

the	possible	relationship	between	evolving	subjective	probability	and	the	

underlying	objective	probability	if	the	latter	actually	exists.		Consider	the	

gambling	industry	and	the	game	of	roulette	with	a	perfect	roulette	wheel	

(Although	no	roulette	wheel	is	perfect.).		For	each	possible	bet,	an	objective	
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probability	can	be	calculated,	and	for	any	bet	the	player	on	average	will	lose.		

A	true	beginning	player	will	have	no	knowledge	of	the	relative	probabilities	of	

the	different	bets	(internal	SMU	=	SMUmax),	but	through	study	and	practice	

perhaps	the	actual	probabilities	could	be	learned	and	remembered	by	the	

player,	so	that	the	internal	SMU	and	the	objective	SMU	would	be	closer	to	the	

same.		Such	a	player	still	could	not	win	on	average,	but	he/she	could	do	better	

on	average	than	an	inexperienced	player.		The	experienced	player	would	be	

taking	advantage	of	the	learnable	redundancy	in	the	objective	probability	

distribution.		In	the	extreme,	it	would	appear	that	learning	can	sometimes	

reduce	a	subjective	probability	distribution	to	a	redundancy	of	1	(SMU	of	0),	

leading	to	the	realization	that	the	process	studied	is	actually	deterministic,	

perhaps	in	a	complex	way,	not	random.		The	main	process	for	doing	this	has	

been	the	“scientific	method”.		New	ideas	are	analogous	to	mutations,	and	

successful	experiments	are	analogous	to	natural	selection.	

	 The	concept	of	redundancy	as	a	measure	of	degree	of	non-randomness	

appears	fundamental	and	essential	to	the	origin	and	evolution	of	living	

systems	(Wagner,	2014).		What	if	one	asked	the	question:	“Assuming	that	at	

least	one	amino	acid	combination	will	be	successful,	what	is	the	probability	

that	a	random	enzyme	composed	of	347	amino	acids,	like	the	ADH1	protein	in	

Yeast	(Raj	et	al.,	2014),	will	enable	the	fermentation	of	glucose	to	ethanol?”	

Superficially,	the	question	seems	reasonable	in	an	experimental	sense.		One	

would	simply	begin	by	building	each	combination	and	checking	its	catalytic	

capabilities.		The	number	of	successes	divided	by	the	total	number	of	unique	

combinations	would	be	the	desired	probability.		If	one	assumed	a	redundancy	

of	zero	in	the	applicable	probability	distribution,	then	each	347-member	

combination	would	be	equally	probable	and	the	SMU	would	be	maximum.		So	
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how	many	combinations	would	one	have	to	check?		Since	there	are	about	20	

amino	acids	that	appear	in	natural	proteins,	the	unbelievable	number	is	20347	

possible	combinations	-	much,	much	larger	than	the	total	number	of	hydrogen	

atoms	in	the	entire	universe	(about	1090,	Wagner	(2014)).		Only	if	there	were	

a	redundancy	near	one	in	the	applicable	probability	distribution,	could	the	

Yeast	species	have	found	a	successful	enzyme	through	mutation	and	natural	

selection	during	the	time	that	Earth	has	existed	(about	5	billion	years	or	only	

1017	seconds!).		As	presented	in	the	seminal	work	summarized	by	Wagner	

(2014),	such	redundancy	is	absolutely	essential	to	Darwin’s	theory	of	

evolution	by	mutation	and	natural	selection,	and	this	fact	has	been	largely	

hidden	in	the	structures	of	life,	only	now	starting	to	be	realized.	

	 Another	interesting	implication	of	information	theory	is	that	the	

willingness	to	gamble,	consciously	or	unconsciously,	is	essential	to	the	

development	of	life.		When	one	faces	a	new	task	with	a	desired	outcome,	such	

as	finding	food	without	being	injured	or	killed,	one	adopts	the	best	plan	

available	and	proceeds	with	the	task.		This	is	the	essence	of	gambling.		Then	

one	follows	the	dictum:	“If	once	you	fail,	try,	try	again”.		As	one’s	

understanding	of	the	PD	involved	increases,	the	probability	of	success	also	

increases.		In	the	human	case,	perhaps	some	mix-up	in	processing	all	of	this	is	

behind	the	phenomenon	called	“pathological	gambling’	where	the	involved	PD	

is	structured	by	other	humans	so	that	the	probability	of	success	is	always	less	

than	1/2	no	matter	how	many	times	the	task	is	repeated.		But	we	all	have	to	

gamble	a	little	in	order	to	be	successful	in	life.	
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4.4.	What	About	Continuous	Probability	Densities?	

	 When	dealing	with	discrete	PDs	having	uniform	probability	P	=	1/n,	the	

maximum	SMU	is	always	given	by:	

	

max 2 2 2
1

1 1( ) ( ) ( )
n

i

nSMU Log Log n Log n
n n n=

⎛ ⎞= − = =⎜ ⎟
⎝ ⎠

∑ 	,		 								(4.5)	

	

and	one	can	observe	that	SMUmax	goes	to	infinity	as	n	goes	to	infinity.		This	

makes	sense,	because	if	one	has	an	infinite	number	of	choices	of	equal	

probability,	then	one	has	infinite	uncertainty.			

Transformation	to	the	continuous	case	is	presented	in	Appendix	I	of	

Ben-Naim	(2008),	and	we	will	outline	his	procedure	below.		Let	us	assume	

that	there	is	a	probability	distribution	for	the	rod	population,	r(t),	shown	in	

Figure	1.3.		Let	the	resulting	probability	density	function	be	given	by,	PFr,	

defined	on	its	respective	interval,	with	the	associated	random	variable	being	

R.		Then	using	PFr	defined	on	interval	(a,b)	we	want:	

	

	

2

1

1 2( R r ) ( ) , ( ) 1
r b

r r
r a

Pb r PF r dr with PF r dr≤  ≤ =     =   ∫ ∫ 																(4.6)	

	

Now	divide	the	interval	(a,b)	into	n	parts	of	equal	width	w=(b	–	a)/n,	with	r1	=	

a,		

ri	=	a	+	(i-1)w	and	rn+1	=	a	+	nw	=	b.		Then	for	any	interval	bounded	by	ri	and	

ri+1		,	the	probability,	P,	of	falling	in	that	interval,	as	it	depends	on	i	and	n,	is:	
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Then	for	some	finite	n,	the	Shannon	Measure,	now	called	SMr(n),	is	given	by:	

	

	

2
1

( ) ( , ) [ ( , )]
n

r
i

SM n P i n Log P i n
=

= −∑ 		,														which	is	equivalent	to:	
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With	several	additional	steps,	Ben-Naim	(2008)	shows	that	as	n	→	∞,	

Equation	(4.8)	becomes:	

	

2 2
lim( ) [ ( )]

b

r r r
a

b aSM PF r Log PF r dr Log
n n

−⎛ ⎞= − − ⎜ ⎟→∞ ⎝ ⎠∫ ,	 						(4.9)	

	

which	obviously	goes	to	infinity	as	n	approaches	infinity,	but	the	integral	

portion	is	finite.		We	also	note	that	probability	density	values,	unlike	true	

probability,	can	be	greater	than	one,	which	can	lead	to	negative	SM	values,	

something	that	never	happens	with	true	probabilities	which	are	always	<	1.			

The	Integral	portion	of	Equation	(4.9)	appears	well-defined	

mathematically,	but	what	it	now	means	physically	is	not	clear.		It	is	certainly	

different	from	the	discrete	case,	which	is	always	maximized	by	the	uniform,	



64	
	

discrete	distribution,	so	the	concept	of	redundancy	is	also	not	defined	

immediately.		Accordingly,	this	potential	line	of	development	will	not	be	

followed	further	in	this	chapter.		

	

4.5.	Calculation	of	Chaotic	Information	Measures.	

	 In	earlier	portions	of	this	chapter,	we	discussed	learning	about	the	

nature	of	discrete	probability	distributions	in	natural	systems	as	being	a	

Bayesian	(subjective)	process,	and	the	concept	of	a	continuous	probability	

density	function	is	highly	abstract	(Think	of	the	fly	trap	example).		In	addition,	

virtually	all	living	systems	are	not	concerned	about	tiny	differences	in	the	

measures	of	variables	that	vary	over	large	ranges.		One	part	in	10	might	be	of	

interest,	but	not	one	part	in	100	or	1000.		So	in	calculating	information	

measures	for	chaotic	distributions	we	will	continue	to	use	discrete	

approximations	to	the	variable	distributions.		In	addition,	Shannon’s	measure	

of	uncertainty	is	dimensionless,	along	with	redundancy,	so	we	will	work	with	

the	dimensionless	forms	of	the	coupled	nonlinear	system	that	was	developed	

in	Chapter	3.	

	 Calculating	numerically	a	trajectory	along	a	strange	attractor	appears	

equivalent	to	a	sampling	process,	in	that	the	round-off	error	at	each	time	step	

will	alter	the	following	calculations.		This	invites	one	to	calculate	a	discrete	

probability	distribution	for	each	of	the	chaotic	time	series	that	results	(See	

Figure	3.1),	and	a	set	of	distributions	are	shown	in	Figures	4.1	through	4.4.	

The	figures	are	arranged	from	the	lowest	to	the	highest	redundancy	values,	

which	along	with	the	Shannon	measures	are	given	in	Table	4.1.			
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Figure	4.1.		Discrete	probability	distribution	for	the	dimensionless	predator	values	
shown	in	Figure	3.1.		The	domain	of	values	was	divided	into	21	ranges	of	equal	width	
1.085E-1.	
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Figure	4.2.		Discrete	probability	distribution	for	the	dimensionless	nutrient	values	
shown	in	Figure	3.1.		The	domain	of	values	was	divided	into	21	ranges	of	equal	width	
3.6525E-2.	
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Figure	4.3.		Discrete	probability	distribution	for	the	dimensionless	cocci	values	
shown	in	Figure	3.1.		The	domain	of	values	was	divided	into	21	ranges	of	equal	width	
2.35E-2.	
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Figure	4.4.		Discrete	probability	distribution	for	the	dimensionless	rod	values	shown	
in	Figure	3.1.		The	domain	of	values	was	divided	into	21	ranges	of	equal	width		
5.3625E-3.	
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Table	4.1.		Values	for	Shannon’s	measures	of	uncertainty	(SMU)	and	the	resulting	
redundancy	(RD)	values	for	the	discrete	probability	distributions	shown	in	Figures	
4.1	through	4.4.			The	maximum	possible	SMU	=	(29)1/2	=	4.392.			
	

Concentrations	 Shannon’s	Measure	 Redundancy	

Predators	 4.368	 0.005464	

Nutrients	 4.235	 0.0366	

Cocci	 3.566	 0.1881	

Rods	 2.771	 0.369	

	

	 Looking	at	the	four	figures	and	the	corresponding	SMU	and	RD	values	in	

Table	4.1,	we	see	that	as	the	PDs	become	more	structured	(less	uniformly	

random),	the	SMU	values	decrease	and	the	RD	values	increase.		In	this	

situation,	the	predators	apparently	have	the	best	deal.		Their	concentrations,	

stay	well	above	zero,	and	they	are	not	highly	erratic.		The	cocci	have	the	2nd	

best	deal	and	the	rods	come	in	last.		Both	nutrient-consuming	microbes,	

however,	have	high	probabilities	of	being	at	the	low	end	of	their	concentration	

ranges	where	survival	is	the	most	precarious.		The	nutrient	concentrations	do	

not	appear	to	be	especially	limiting,	with	a	probability	trending	toward	the	

high	concentration	end.		It	would	appear	that	the	rods	and	to	a	lesser	extent	

the	cocci	are	fighting	for	survival,	but	as	long	as	the	system	stays	on	its	chaotic	

attractor	it	is	sustainable.		The	predators	change	their	consumption	emphasis	

between	rods	and	cocci	so	that	they	are	relatively	well	fed	without	destroying	

one	of	their	food	sources.					
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4.6.	Summary	and	Future	Research	Suggestions.	

												Due	to	the	common	observation	of	extreme	sensitivity	of	mathematical	

models	of	ecological/microbial	systems	producing	DCD	to	parameter	

variations,	we	have	suggested	that	something	fundamental	may	be	missing	

from	the	current	mathematical	formulations.	Unlike	the	classical	steady	or	

periodic	steady	states,	a	strange	attractor	has	several	Shannon	measures	

including	SMU	and	R.		So	how	might	one	begin	to	incorporate	such	concepts	

into	the	modeling	process?	

	 We	can’t	answer	this	question	fully,	but	to	begin	the	process	a	logically	

and	mathematically	consistent	interpretation	of	Shannon	Information	Theory	

as	applied	to	ecological	systems	is	presented.		In	such	a	development,	what	is	

commonly	called	Shannon’s	measure	of	information	is	identified	as	a	measure	

of	uncertainty	relative	to	the	structure	of	the	involved	discrete	probability	

distribution,	with	maximum	uncertainty	occurring	when	the	PD	is	uniform.		

As	the	relevant	PD	takes	on	more	structure,	the	SMU	decreases	as	Bayesian	

(colloquial)	information	concerning	the	structure	increases.		The	PD	property	

called	redundancy	is	presented	as	a	convenient	dimensionless	measure	of	

uncertainty,	taking	on	the	value	of	zero	when	the	involved	PD	is	uniform	

(maximum	uncertainty)	and	the	value	of	unity	when	the	PD	has	one	unique	

value	and	actually	represents	a	deterministic	process	(	no	uncertainty).			

	 It	its	original	application	to	digital	and	other	types	of	communication,	it	

is	easy	to	confuse	the	colloquial	or	common	information	that	a	message	may	

contain,	and	be	read	by	a	human	observer	(decoder),	and	the	actual	Shannon	

information	that	relates	to	the	probability	and	structure	of	the	various	

symbols	that	compose	the	message	–	nothing	more.		In	the	

ecological/microbial	application	this	problem	is	removed	by	identifying	
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colloquial	information	with	the	(Bayesian)	knowledge	that	a	task	performer	

may	develop	as	her/his	colloquial	knowledge	of	a	PD	increases	with	repeated	

task	performance.		As	a	task	subject	to	a	certain	PD	is	repeated,	the	task	

performer	can	develop	prior	and	improving	understanding	of	PD	structure,	

and	this	subjective	Shannon	measure	of	uncertainty	will	decrease	or	the	PD	

redundancy	will	increase.		If	the	actual	PD	structure	is	truly	uniform	and	

random,	a	task	performer	can	never	learn	from	repeated	task	performance	

and	the	SMU	will	stay	at	its	maximum	value	with	a	zero	redundancy.		

	 As	an	elementary	application	of	these	concepts,	we	calculated	the	

Shannon	measure	of	uncertainty	and	the	related	redundancy	for	each	member	

of	a	four-component	chemostat	involving	a	nutrient	and	three	microbes.		The	

actual	experiment	demonstrated	DCD	(Becks	et	al.,	2005),	but	the	calculations	

were	based	on	the	output	of	a	recently	published	model	that	also	produced	

DCD	for	a	certain	parameter	set	(Faybishenko	et	al.,	2018).		Of	the	three	

microbes	involved,	a	rod,	coccus	and	ciliate	predator,	the	predator	held	the	

most	dominant	position	and	the	rods	the	least	dominant	position.		The	result	

was	a	redundancy	of	0.005	for	the	predator’s	PD,	0.188	for	the	cocci	PD	and	

0.369	for	the	rod’s	PD.		Thus,	in	a	PD	sense	the	predators	had	the	least	

structured	PD,	while	the	rods	had	the	most	structured.		The	overall	objective	

of	the	rods	and	cocci	was	to	compete	for	the	available	nutrients,	while	the	

objective	of	the	predator	was	to	consume	rods	and	cocci	without	wiping	out	

either	microbe	class.		Presumably,	each	microbe	would	attempt	to	optimize	its	

individual	situation	in	the	continuously	changing	chemostat	environment.		

How	this	might	be	done	is	not	clear	and	probably	not	incorporated	into	the	

model	in	a	complete	way.	
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	 It	is	worth	devoting	more	discussion	to	the	sense	in	which	the	

chemostat	variables	(n,	r,	c,	p)	can	be	represented	by	the	PDs	shown	in	

Figures	4.1	through	4.4.		The	references	dealing	with	this	question	in	the	most	

mathematically	rigorous	manner	are	Fraser	and	Swinney	(1986)	and	

Anishchenko	et	al.	(2004).		Both	references	conclude	that	strange	attractors	

are	typically	ergodic,	with	well-defined	asymptotic	probability	distributions,	

although	this	can	be	proven	more	rigorously	for	some	attractor	classes	than	

others.		At	the	same	time,	Figures	3.4	through	3.6	show	that	when	various	

variables	are	plotted	against	each	other,	the	result	does	not	appear	random	in	

the	classical	sense;	the	plots	appear	more	deterministic.		Due	to	extreme	

sensitivity	to	initial	conditions	(Lyapunov	exponent	>	0),	a	numerical	solution	

producing	DCD	is	equivalent	to	an	ultimately	unbiased	sampling	of	the	phase	

space	if	the	initial	trajectory	points	influenced	by	the	particular	starting	point	

are	thrown	out	(Fraser	and	Swinney,	1986).		The	solution	round-off	error	at	

each	numerical	step	(not	just	the	first)	influences	future	values	in	such	a	way	

that	mathematical	predictably	is	lost,	so	the	result	becomes	a	sampling	of	an	

ergodic	(independent	of	attractor	starting	point)	distribution	of	points.		Such	a	

sampling	has	a	mean,	variance	and	additional	statistical	measures	–	a	class	of	

numbers	that	are	structured,	bounded,	but	unpredictable	in	a	deterministic	

sense.		

The	mathematics	of	information	theory	goes	well	beyond	the	simple	

calculations	presented	in	this	chapter.		As	described	in	Kantz	and	Schreiber	

(2004),	several	other	Shannon	information-motivated	measures	have	been	

developed	for	analyzing	random	or	chaotic	time	series	not	necessarily	applied	

to	microbial	population	dynamics.		The	concept	of	mutual	information	has	

found	several	applications	(Fraser	and	Swinney,	1986).		In	dealing	with	
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microbial	population	dynamics,	however,	it	appeared	initially	that	the	so-

called	“transfer	entropy”	of	Schreiber	(2000)	might	be	particularly	useful.		As	

stated	in	his	abstract:	“The	standard	time-delayed	mutual	information	fails	to	

distinguish	information	that	is	actually	exchanged	(between	time	series	

members)	from	shared	information	due	to	common	history	and	input	signals.		

The	resulting	transfer	entropy	is	able	to	distinguish	effectively	driving	and	

responding	elements	and	to	detect	asymmetry	in	the	interaction	subsystems.”		

These	appear	to	be	very	promising	concepts	when	applied	to	microbial	and	

other	types	of	ecological	systems.			

However,	James	et	al.	(2016)	maintain	that	transfer	entropy	cannot	be	

viewed	as	an	information	flow.		According	to	Cructhfield	(2018,	Personal	

communication.),	another	promising	candidate	for	information	transfer	is	the	

cumulative	residual	entropy	of	Rao	et	al.	(2004).		This	measure	also	has	the	

potential	advantage	of	being	applicable	to	probability	density	functions	as	

well	as	discrete	distributions.		The	potential	relation	of	chaotic	dynamics	to	

the	appropriate	information	flows,	being	careful	of	what	“information”	

actually	means	in	an	ecological	context,	appears	very	interesting,	and	it	should	

be	considered	as	a	prime	area	for	future	research.		The	discussion	involving	a	

task	performer	was	dynamic,	but	the	Shannon	measures	based	on	a	strange	

attractor	appear	to	be	some	type	of	average.		Thus,	there	is	a	clear	need	to	

bring	in	system	dynamics		

Another	question	is,	how	does	one	build	a	precise	mathematical	model	

of	the	interacting	components	(task	performers)	of	an	ecological	system	that	

reproduces	the	DCD	observed	in	an	experiment	or	possibly	in	the	natural	

environment?		In	considering	the	Becks	et	al.	(2005)	experiment,	the	microbes	

involved	respond	to	their	changing	environment	in	a	continuous	manner.		The	
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responses	are	directed	by	meaningful	(colloquial)	information	obtained	from	

their	individual	genetic	codes	and	related	metabolism.		Here	we	must	be	very	

careful.		What	is	commonly	called	the	Shannon	measure	of	information	(that	

we	have	called	SMU)	applied	to	the	genetic	code,	has	no	relationship	to	the	

meaning	carried	by	or	derived	from	decoding.		The	meaning	is	derived	by	the	

decoding	process	involving	an	energy	source,	ribosomal	synthesis	of	proteins,	

and	the	resulting	metabolic	processes.		The	associated	microbial	responses	

would	be	expected	to	have	extensive	flexibility	and	variability	in	responding	

to	the	changing	environment,	derived	from	millions	of	years	of	evolution.		This	

leads	us	to	question	whether	a	precise	mathematical	model	reproducing	the	

coupled	dynamics	would	contain	any	parameters	that	would	be	constants.		If	

all	parameters	are	functions	of	the	dependent	variables,	how	can	they	be	

measured	in	detail	for	highly	variable	systems	prior	to	the	actual	experiment?		

Such	an	unsolved	problem	could	also	be	a	source	of	instability	in	a	

mathematical	model	producing	DCD	that	was	observed	in	an	experiment.	
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