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Executive Summary 

 
This report offers guidelines and protocols for measuring the effects of time-based rates, 
enabling technology, and various other treatments on customers’ levels and patterns of electricity 
usage. Although the focus is on evaluating consumer behavior studies (CBS) that involve field 
trials and pilots, the methods can be extended to assessing the large-scale programs that may 
follow. CBSs are undertaken to resolve uncertainties and ambiguities about how consumers 
respond to inducements to modify their electricity demand. Those inducements include price 
structures; feedback and information; and enabling technologies embedded in programs such as: 
critical peak, time-of use, real-time pricing; peak time rebate or critical peak rebate; home energy 
reports and in-home displays; and all manner of device controls for appliances and plug loads. 
Although the focus of this report is on consumer studies—where the subjects are households—
the behavioral sciences principles discussed and many of the methods recommended apply 
equally to studying commercial and industrial customer electricity demand.  
 
The report is written from the perspective of an analyst who evaluates pilots and field trials. It 
links choices made in the experimental design to analysis methods that are applicable to the 
design. In other words, the report addresses how best to ascertain whether interventions produced 
the intended and significant changes in electricity demand. Because experiments and pilots can 
be and are designed in many different ways, a wide range of methods is discussed. They share 
the goal of precisely measuring whether changes in electricity usage are caused by the 
intervention being tested. This guide serves as a starting point to help analysts decide what 
should be done and understand what it takes to accomplish that end. Extensive references 
provide the required technical details. 
  
Background 
DOE and EPRI share an interest in establishing protocols for analyzing the results of CBS pilots 
and field experiments. DOE has funded 11 CBS projects as part of its Smart Grid Investment 
Grant program. EPRI is supporting utilities in fielding CBS project as part of its Smart Grid 
Demonstration project. In some cases, both DOE and EPRI are involved in the design and 
evaluation of the studies. In all cases, they share a commitment to ensuring that rigorous 
scientific practices and protocols are applied so that the results are useful to the project host 
utility and can be extrapolated to wider circumstances. This ensures that the resources expended 
to conduct these studies have widespread applicability. 
 
EPRI and DOE, through Lawrence Berkeley National Laboratory (LBNL), collaborated on 
guidelines for designing experiments for Smart Grid research (EPRI report 1020342, 2010; DOE 
2010, and EPRI has issued guidelines on designing CBS studies (EPRI report 1025734, 2012). 
This report contributes to that body of work by addressing how to evaluate the results of pilots 
and experiments. 
 
Objectives 
This report provides analysts responsible for evaluating CBS pilots and experiments with a 
single-source primer on the methods and practices available—and when each is applicable. 
Guidance on choosing a method is provided along with information on their rigorous 
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applications and full and transparent reporting of the results. This report advances the 
understanding of how consumers use and value electricity; in particular, it characterizes the ways 
in which behavioral inducements can be employed to modify electricity demand.   
 
Approach 
The project began with a schematic representation of robust experiments that can be designed to 
define the range of situations an analyst will encounter. Each was associated with a specific set 
of issues that must be addressed in evaluating the results. These determine the extent to which 
the analysis is straightforward. For example, analysis of variance sufficiently tests for significant 
effects, but unanticipated or unavoidable conditions may result in the design failing to comply 
with the rigorous provisions that define a randomized control trial— the Gold Standard for 
statistical testing of effects.  
 
Results 
The analysis protocols address the specific condition of the experiment, adjusting (as required) 
for intervening factors that may have undermined what was initially a randomized control trial 
(RCT) design. Corrective measures are provided for cases in which a RCT is not possible but 
when the intent is to estimate the population impact of the behavioral interventions.  
Applications, Value, and Use 
 
Utility program evaluators can use this report to develop an evaluation plan that produces 
credible results which will allow others to understand what was done and why. Pilot and 
experiment designers will find these protocols helpful in choosing a design and anticipating all of 
the data that will be required to produce useful findings. 
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1. Introduction 

 
In the past several decades, there has been much study and debate about how customers use and 
value electricity. Improved understanding of electricity consumption behavior would help the 
industry to find better ways to achieve energy and peak demand savings. Furthermore, 
technology advancements—including advanced metering infrastructure (AMI), smart meters, 
and wireless communications—allow for innovative and less costly ways to encourage efficient 
patterns of consumption through time-based rates, enabling technology, and feedback.  
 
Research to portray and characterize customer electricity consumption behaviors accelerated 
about 30 years ago, in large part because of federal and local legislation and regulatory 
mandates. In the 1980s, issues related to load research, cost allocation, marginal cost estimation, 
rate design, and time-differentiated pricing were addressed through various research activities. 
During that time, several utilities implemented time-of-use rates, both mandatory (primarily for 
large general-service customers) and voluntary (for all customers).  
 
In the 1990s, federal and state governments in some parts of the United States began to 
restructure and deregulate the U.S. electric power industry to facilitate the creation and 
management of wholesale power markets and retail competition. As the reforms spread, research 
programs at the retail level on many of these issues slowed, while existing programs were either 
capped to new enrollment or dismantled altogether.  
 
Over the past decade, utilities have increasingly sought to install AMI or smart meters. Programs 
that offered customers inducements to alter their electricity use, either on an ongoing basis (price 
response) or under limited and specific circumstances (demand response), were generally an 
integral part of the benefits assessment that justified the investment (described in EPRI report 
1017006, 2008). Regulators and stakeholders demanded a greater level of detail about the 
performance of these programs to justify the utility’s purported benefits because prior research 
efforts had not focused on the types of opportunities enabled by AMI.  
 
The result was a new wave of pilots and experiments designed to quantify the effects of a variety 
of behavioral inducement programs on participants’ electricity use, focused on both the timing 
and level of those load changes.  
 
Although evaluations of these research efforts share many common methods and protocols, they 
differ substantially in their execution and level of detail to which methods and results are 
reported. Some of these differences are a result of the variety of rate treatments (for example, 
real-time pricing, variable peak pricing, critical peak pricing, and peak time or critical peak 
rebate) that were evaluated. Analysis methods applicable to time-differentiated rate schedules 
(for example, time-of-use [TOU]) are not always applicable to rates that vary infrequently (for 
example, critical peak pricing [CPP]).  
 
In addition, these studies were conducted under a variety of circumstances. Some were initiated 
by utilities interested in clarifying performance impact levels; others were mandated by 
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regulators in a way that dictated the research agenda as well as the experimental design. Still 
others were shaped by many stakeholders with different interests. As a result, the pilot program 
designs and evaluation efforts were often narrowly focused, at the expense of a more general 
investigation of the impacts hypothesized to be most important. As such, the application of 
different analytical methods and approaches to the reporting of the results has made it difficult to 
compare the conclusions drawn across studies. 
 
It is in part because of these combined circumstances that many important aspects of how 
customers use and value electricity remain unanswered. There are several serious gaps in the 
understanding of our ability to influence customer demand through time-based rates, enabling 
technology, feedback, and education (EPRI report 1025856). There are gaps in our knowledge 
about both the size and persistence of the load impacts; the heterogeneity in load impacts across 
customer segments; and the extent to which the customer response in those pilots can be 
extrapolated to other customers, utilities, and regions of the country.  
 
There is a plethora of research efforts ongoing to characterize how behavioral inducements 
influence electricity consumption.  More are likely in the near future. 1 The potential exists for 
these initiatives to fill many of these remaining gaps in our knowledge and advance our 
understanding of electricity customer behavior. To that end, a substantial effort to provide 
guidance on the research design, analysis and coordination across studies may eliminate any 
serious methodological shortcomings and avoid the squandering of scarce resources that would 
have resulted in a duplication of effort, missed opportunities and/or misleading findings.  

1.1 Purpose of This Report 
 
This report constructs, explains, and rationalizes analysis protocols for measuring the effects of 
time-based rates, enabling technology, and various other treatments on customers’ levels and 
patterns of electricity usage. In particular, protocols for the three critical phases of pilot programs 
are outlined and discussed: experimental design, analyses for measuring the observed effects on 
customer electricity usage, and the reporting of the results. 2  Although the focus is on evaluating 
pilots and experiments, the methods can be extended to assessing the large-scale programs that 
may follow to verify the initial impact estimates.  
 

                                                 
1 For example, there is the U.S. Department of Energy’s Smart Grid Investment Grants (SGIG) funded through the 
American Recovery and Reinvestment Act (ARRA). These matching grants were awarded to several electric utilities 
to fund 11 pilots focusing on time-based rates, enabling technology, and other treatments. A second set of pilots will 
be undertaken through EPRI’s new program, Understanding the Utility Customer (Program 182), whose purpose is 
to bring a fresh perspective to understanding the behavior of electricity consumers. This program was commissioned 
to explore new and innovative ways to communicate with customers and actively engage them in decisions that 
affect electricity usage. 
2 In preparing this report, it is assumed for the most part that the pilot studies have been completed or are at least 
underway. Therefore, we recommend a range in protocols that applies to a variety of circumstances in terms of 
questions addressed, experimental design, data availability, and measured effects. The several guidance documents 
prepared by DOE’s SGIG Technical Advisory Group and listed in the references provide valuable advice for 
conducting pilot studies to those utilities interested in initiating new customer behavioral studies.  
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The structure and application of the experimental design determine the reference load that serves 
as the foundation for all analyses. The reference load, also referred to as the counterfactual load, 
represents (and is an estimate of) what the usage would have been among treatment group 
customers had they not been exposed to the treatment. Experimental designs include: 
randomized controlled trials (RCTs), randomized encouragement designs (REDs), matched 
control group methods, and within-subjects methods. This reference load and its validation are 
critical to understanding the reliability of the results from the subsequent empirical analyses. 
These issues are discussed along with a descriptive analysis of the load and other data collected 
during the pilot, which are believed to be an essential first step in any program evaluation that 
requires the analysis of such large amounts of data.   
 
The analyses for measuring the effects of various treatments on customer electricity usage are 
divided into two broad groups:  

1. Those that focus on estimating the effects of treatments after the fact, without 
imposing any specific behavioral structure  

2. Those that use an assumed model of decision-making to estimate underlying 
behavioral parameters 

 
The first category of analyses is almost entirely statistical in nature: established analytical 
methods are used to estimate the effect of the treatment and indicate the confidence level in the 
results. The second group relies on economic theory in addition to statistical methods. Formal 
models are employed that impose the principle tenets of utility (consumers) or profit (businesses) 
maximization.  
 
We see these categorically differentiated methods as complements. They are part of a series of 
analyses recommended in this report to ensure that the findings are statistically robust, 
informative about the nature of behaviors, and actionable for subsequent program design.  
In proposing these analytical methods, considerable discussion is devoted to the reporting of the 
results of the analyses conducted. Only through transparent and thorough description of the 
analytical method used can we ensure that the results are readily accessible to reviewers, critics, 
and potential users so that they understand what was done and consider the implications for their 
design or evaluation effort.  

1.2 Roadmap to the Content of the Report 
 
Our goal is to make the measurement of the effects of various treatments on customer electricity 
usage accessible and understandable to a broad range of evaluators, utility staff, and policy 
makers with many different backgrounds. We also strive to provide sufficient explanation of 
analysis methods so that analysts and those who review their evaluations can ascertain which 
analyses are appropriate to use in certain circumstances. Toward this goal, the report provides a 
technical exposition to shed light on the potential biases that are part of the variation in measured 
values and are crucial for interpreting reported results and comparing results across projects.  
 
The discussions of analysis methods that follow in the next three sections describe the 
circumstances under which they are important along with their applications. These discussions 
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are followed by a more technical exposition to help analysts understand what data are required 
and which tools are needed to apply the techniques. This requires some familiarity with statistics 
and economics as well as comfort with mathematical expressions of logical concepts. Those who 
desire a more in-depth discussion will find details in the footnotes and the appendices, which are 
supplemented by references to valuable source materials that provide original derivations and 
examples of their application. 
 
Section 2 outlines a framework for the evaluation of the consumer behavior studies, which 
includes recommendations for initial descriptive analysis of the data and procedures for 
establishing a reference load that serves as the basis of comparison with electricity usage 
measured during the experiment. Section 3 describes methods for conducting statistical analyses 
to measure treatment effects in a model-free context. Section 4 presents methods for measuring 
response and impacts using economic models that impose assumptions about the basic tenets of 
consumer behavior. Section 5 provides a summary of findings.  

1.3 Additional Analyses  
 
It is important to emphasize that the discussion that follows does not include one important step 
in a complete, thorough, and exhaustive examination of the treatment impacts.  
 
A thorough analysis of an experiment would characterize not only what participants did, but also 
who participated and why. These issues are important for both an opt-in (volunteer subjects) and 
opt-out (conscripted subjects) design. This understanding of the factors that determine the 
decision to opt-in or opt-out is important for extrapolating the derived treatment effects to the 
larger population of customers. If the decision to participate can be associated with observable or 
measurable customer characteristics, the quantification of the relative importance of those factors 
and how they correlate with customer responsiveness will greatly improve the effectiveness of 
recruitment campaigns. 
 
How to conduct this choice modeling is not addressed in this report because it involves a 
foundational theory and analytical methods that are different from those that define statistical 
impact analyses and demand modeling. Choice models are explicit expressions of an underlying 
theory of how consumers make choices. 3  To do justice to the different approaches available 
                                                 
3 Formal choice models are the ideal vehicle for characterizing participation. They can be used to test hypotheses in 
which the feature being observed is not measured continuously, such as with energy usage or hourly prices, but 
rather as a state or conditioned outcome. For example, either individual customers opted out of the pilot or they did 
not—a dichotomous outcome. Another application is to identify causal drivers to observed treatment responses. For 
example, one may use the subset of participants who are identified as responders to identify what customer attributes 
and circumstances appear to have contributed to that behavior.  
 
Logit models are regression-based models that are functionally similar to commonly used Ordinary Least Squares 
(OLS) regression models. However, they differ from other regression models in that they account explicitly for the 
fact that the outcome is the result of a dichotomous choice. For this reason, the left-hand-side (dependent) variable 
in the model takes on only values of one or zero, depending on whether the customer chooses to take some action or 
not (for example, yes/no, buy/not buy, or respond/not respond). The right-hand-side (explanatory) variables are 
customer characteristics (for example, conventional central air vs. heat pump) and descriptions of the treatments 
(that is, rebate level) to which the customer has been exposed. 
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would equally require an exposition of theory and practice much like the one applied in this 
document, and include conceptual and notational complexity that requires time to absorb. As 
such, we have chosen to keep this report to a manageable size by focusing exclusively on the 
analyses for measuring the effects of various treatments on customer electricity usage 
measurement. We anticipate issuing a stand-alone report that provides a thorough, but 
understandable, discussion of choice modeling and its application to consumer behavior studies 
(CBS) analyses. 
 
  

                                                                                                                                                             
 
The estimation of choice models requires information about individual customer circumstances that may be drivers 
of behavioral change, for example, the stock of household appliances, household income, the number and age of 
residents, and premise characteristics (such as square footage and efficiency investments).  
 
For an excellent and complete discussion of the logit model and other models of discrete choices, see W. Greene, 
Econometric Analysis. 5th edition, Englewood Cliffs, NJ: Prentice Hall, Inc., 2003, Chapter 21. 
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2. Framework for the Evaluation of Consumer Behavior Studies 

 
This report defines and describes a set of analyses that, in the evaluation of consumer behavior 
studies (CBS), address the following fundamental objective: 

 Identify how the choices on the levels and patterns of customers’ energy consumption are 
affected by the incentives and information embedded in time-based rates, enabling 
technology, feedback strategies, and other treatments.  

 
The metrics that address this fundamental question include the following: 4  

1. The average impacts on consumption at specific times of interest (for example, 
annually, during all events, or during peak periods), which are discussed in Section 3 

2. The own-price elasticities of electricity demand and the elasticities of substitution for 
peak and off-peak electricity demand, which are discussed in Section 4 

 
The analysis of a CBS may extend beyond simply testing for the treatment effect. For purposes 
of marketing or customer recruitment during program implementation, utilities may also find it 
important to have knowledge of how socioeconomic characteristics of customers (for example, 
income or age), premise characteristics (size, appliance stock, and so on), and exogenous factors 
such as weather affect customers’ levels and patterns of usage.  
 
The extent to which these richer characterizations of response in an overall assessment of a CBS 
can be pursued depends on the experimental design, the objectives of the study, and the data and 
other information available to address these issues. Several types of data may be available, 
including energy usage data, survey data on customer demographics and premise characteristics, 
and data on the interaction between customers and the treatment-related communication and 
automation/control technology. These data may be available for both the pre- and post-treatment 
periods, for both control and treatment group customers. The way in which these data are used to 
enhance the characterization of treatment effects is discussed in Sections 3 and 4.  
 
As noted previously, there is an additional important research objective in the evaluation of any 
CBS study: characterizing what factors drive treatment participation in instances in which study 
participants are not conscripted, but subscribed, as is often the case in CBS studies. This 
understanding can be accomplished through the use of choice modeling analysis methods that 
associate customer circumstances with the likelihood of agreeing to participate and creates a 
categorization or segmentation system that informs large-scale program recruitment. Because 
this objective is antecedent to the establishment of a cause-and-effect relationship for treatments, 
and because the methods involve an entirely different set of analytical techniques, the discussion 
of choice models is left to a subsequent inquiry.  

                                                 
4 Depending on the particular objectives of the study and the data available, DOE’s SGIG Technical Advisory 
Group recommends that some or all of eight impact metrics should be used “to describe the impacts of pricing and 
information and automation/control technology on customer electricity consumption” (DOE 2010, p.1). The first 
four metrics are specific forms of the first one listed above and include the average annual electricity impact in kWh, 
the average hourly impact in kWh, the system coincident peak demand impact in MW, and reliability requirement 
impacts in MW. The next four metrics are specific forms of the second one listed above and include the own-price 
elasticity, the cross-price elasticity, the daily price elasticity, and the elasticity of substitution. 
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2.1 Components of an Evaluation Framework 
 
We propose that there are six essential components to any CBS evaluation as shown in the 
following graphic. This image is used throughout the report to indicate the topical content of the 
narrative. 
 

 
 
These components are as follows:  

 Identify the specific questions that the analysis must address. Some of these questions 
are readily apparent from the types of rates and other treatments in the pilots. For 
example, an experiment that includes several different rate structures is intended to 
establish differences among their impacts on electricity usage, perhaps primarily during 
peak periods or events. The null hypotheses could be constructed as follows: There is no 
difference in their respective impacts on the level of peak period usage. Likewise, another 
example might be an experiment that included an in-home display that simply shows 
loads and another that also allows the consumer to compare current usage to an 
established goal or a target level dictated by participation in an event-based program. The 
hypothesis is as follows: There is no difference in the event usage between subjects with 
the different devices.  

 Other questions might be less obvious but equally important. For example, 
recruitment may have been accomplished through distinct engagement steps, and the 
effectiveness of these steps is an important research question. The hypotheses involve 
several constituent elements, and the data required to test them are records and process 
logs. The testing of these (and several dozen more) hypotheses was part of ComEd’s 
Customer Applications Study, an experiment of unprecedented scale and scope 
(described in EPRI report 1023644).  

 Select the best possible reference load model (or models), given the data available. 
The reference load, also known the counterfactual load, is an estimate of what electricity 
usage would have transpired among treatment group customers had they not been 
exposed to the treatment. The reference load is determined by the form of the 
experimental design, the particular questions of interest, and the available data. These 
issues are discussed in more detail below. 

 Validate the reference load model. This consists of a demonstration that the model 
accurately predicts load for the treatment groups under conditions similar to those of 
interest but where loads are observed. This demonstration of the degree of accuracy is 
crucial for an outsider to be able to interpret the results. The issue of validation is 
discussed in more detail below.  

 Estimate load impacts and confidence intervals using the reference load model. This 
involves two parts. The first is to establish measurements of the impact based on the 
reference load and the actual usage data. The second is to subject that measured change 
(in kWh, for example) to tests of significance. It is not enough that there was a measured 
change; it must be established that that change was due solely to the treatment. This is 
accomplished through the calculation of standard errors and confidence intervals and is 
discussed in Section 3.  
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 Estimate consumer demand models needed to derive various price elasticities and 
elasticities of substitution. Load impacts are derived by taking the price as given (this 
seems sensible because it is the effect of the treatment price(s) that we want to evaluate). 
However, those prices are not necessarily the ones that would be used by the utility in 
practice. In addition, even if they are, other utilities would likely use different prices—so 
how can other utilities extrapolate the results of one experiment to its own 
circumstances? An electricity demand model provides a way to extend the measured 
price effect to other nominal and relative prices through a metric called price elasticity. 
These models involve a different structure but use many of the same estimation 
techniques used in load impact modeling. They are discussed in Section 4.  

 Report the results. By establishing protocols for reporting research results, we ensure 
that the experimental design and its validation are well documented, as are the analytical 
methods used to conduct the empirical analyses. As a result, the estimated load impacts 
and demand models are communicated in a consistent way that facilitates, to the extent 
possible, comparability with results across pilots. These reports must be accessible and 
understandable to a broad range of evaluators, utility staff, and policy makers with many 
different backgrounds. Recommendations about what information should be documented 
appear throughout the text where each topic is discussed. 

 
This report is directed toward a broad range of evaluators and utility staff with many different 
backgrounds. We presume that readers are familiar with basic statistics and econometrics and 
have the economics background needed for empirical demand modeling. In addition, we assume 
that readers have basic knowledge of the theory underlying the designs being analyzed. For 
example, we do not lay out the entire theory behind a randomized controlled trial design (RCT) 
or a randomized encouragement design (RED). We specify only the particular validation 
exercises and analyses applicable to each. Finally, we assume that there are certain procedures—
such as propensity score matching and bootstrapping—that the reader can learn using standard 
texts. 5  As stated, however, more details about several of the methods, particularly those related 
to demand modeling, are found in the footnotes and selected appendices. 

2.2 Characterization of Rate and Other Treatments  
 
New service offerings, which are the subject of experimentation, include highly structured 
pricing structures as well as various types of enabling technologies and information/feedback 
mechanisms that may help customers make more informed decisions about electricity use. 
Enabling technologies, like device or premise controls (for example in-home displays and 
programmable controllable thermostats) may help customers respond to price inducements so 
that the combined effect may be greater than what is indicated by the price effect alone. 
Feedback may also enrich the price response because it gives customers information about when 
they use electricity. Some have proposed that feedback is a substitute for at least some pricing 
structures. 

                                                 
5 For a comprehensive book on statistical and econometric techniques, see Greene (2011). For a technical guide to 
program evaluation, see Imbens and Wooldridge (2009), which includes an extensive discussion of RED methods 
and propensity score matching, among other useful methods. For a guide to program evaluation and implementation, 
see Duflo, Glennerster, and Kremer (2007), which includes a discussion of RED methods.  
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For convenience of discussion and for some types of analysis, treatments can be divided into two 
broad categories: event-based and non-event-based. This distinction is useful for determining the 
appropriate analytical methods. A pilot, however, may deploy any number of treatments that are 
variations on a basic rate or feedback structure or that involve combinations of characteristics of 
both event-based and non-event-based treatments. 
 

 
 
 
 
 
For event-based treatments, customers are offered inducements to reduce their load during only a 
few hours of a few days of the year—referred to as events. Those inducements, which are 
treatments in the experimental vernacular, can involve event price incentives (that is, the 
potential to reduce the bill) or penalties, as are common in direct load control rate designs to 
enforce load reduction agreements. The effects of the treatment during the events and perhaps 
even in the hours immediately surrounding them are expected to be much larger than at any other 
time. The analysis for estimating the effects of event-based treatments often focuses on the 
impacts during these event periods and ignores spill-over effects—load changes in other periods 
of event days. This does not have to be the case, however; the analysis can and should be 
constructed to also test whether load at other times of the day is affected.  
 
Event-based treatments are typically constructed as overlay options on a basic rate for firm 
electricity service, which results in temporary and occasional adjustments to the underlying rate 
structure. 6  For residential customers, there are three main types of overlay options: critical peak 
pricing (CPP), critical peak rebate (CPR), and utility load control programs (DOE 2010c; EPRI 
2011). 7  These are equally applicable to commercial and industrial customers. 
 
Based on short-term system emergency conditions, high costs, or both, a critical peak pricing 
(CPP) overlay allows the utility to call a limited number of events during pre-specified time 
periods, such as 1:00–5:00 p.m. on summer weekdays. Under most CPP programs, critical events 
are determined by system conditions: highly elevated supply costs to avert setting a higher 
system peak demand, or the possibility that system reliability will be compromised. The CPP 
event, whose price incentive has been pre-established, is announced to customers in advance; 
notice may be delivered anywhere from a few hours to the day before the event. Customers pay 
the higher CPP price for all electricity usage during the critical event but typically pay a slightly 
lower rate than other customers on a standard rate all other hours of the year. 
 
With a critical peak rebate (CPR), also called a peak time rebate (PTR), pricing overlay is 
conceptually similar to a CPP except that under a CPR, the participant during an event is paid an 
                                                 
6 A taxonomy of electric pricing structures can be found in EPRI report 1021962. Overlays, sometime referred to as 
riders, modify some aspect(s) of a basic rate structure, which usually applies only occasionally and under unusual 
conditions.  
7 Two terms are used to describe the same rate structure: peak time rebate (PTR) and critical peak rebate (CPR).  
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event credit ($/kWh) for energy reductions measured relative to a customer baseline load (CBL). 
There is no higher rate or penalty associated with consumption during the critical event itself. 
A direct load control (DLC) overlay allows the utility to directly control a residential customer’s 
individual appliances, such as water heaters, air conditioners, or pool pumps. In some cases, the 
load is controlled by the customer, which allows the customer to choose when and by how much 
to reduce load during events. When the device control is solely under the authority of the utility, 
there is often an option for the customer to override the control. Although that may seem to be a 
subtle distinction, it is an important one. There may be a very different event response depending 
on the nature of human behavior, especially based on the size of the penalty for overriding a 
control instruction.  
 

 
 
 
 
 
Non-event-based treatments provide motivations to routinely change usage behavior on an 
ongoing, daily basis through treatments such as time-based rates, information and feedback about 
usage behavior, or control devices that facilitate easier changes in usage behavior. In contrast to 
event-based treatments, a non-event treatment is always in effect after its onset rather than only 
during certain critical events. For these types of treatments, it might be reasonable to hypothesize 
that, in addition to leading to a reduction during certain targeted times of the day, the treatment 
might also lead to an overall reduction in energy use and a shifting of usage from targeted to 
non-targeted times of day. The analysis of both of these effects is discussed later in this report. 
 
There are several categories of non-event treatments, including time-of-use (TOU) rates,8 in-
home displays (IHDs), programmable communicating thermostats (PCTs), feedback 
mechanisms, educational efforts, and combinations of these. For these types of treatments, it may 
be reasonable to hypothesize that, in addition to leading to a reduction during certain targeted 
times of the day, the treatment might also lead to an overall reduction in energy use and/or a shift 
in usage from targeted to non-targeted times of day. For example, a PCT might result in lower 
settings many times of the day and year that result in reduced electricity usage.  
 
Other time-based rates, such as real-time pricing (RTP) 9 or variable peak pricing (VPP) 10, 
embody characteristics of both event-based and non-event-based treatments. These rates embody 

                                                 
8 A time-of-use (TOU) rate typically has two or more daily price periods. In the case of two periods, there is a lower 
commodity price non-peak period and a higher commodity price peak period. In some instances, there can also be 
what is commonly known as a shoulder period. This shoulder period typically is defined as the hours adjacent to and 
on either side of the peak period, and the price in this shoulder is generally between the non-peak period price and 
the peak period price. Because prices on peak and on the shoulder period are higher than those during the non-peak 
period, the TOU rate provides incentives for customers to shift usage away from the peak to the shoulder and off-
peak periods and from the shoulder to the off-peak period. 
9 A real-time pricing (RTP) rate provides customers with incentives to shift load from higher priced periods to lower 
priced periods. Customers face prices set for each hour of the day, and the prices are usually scaled to follow the 
cost of electricity supply or, in deregulated markets, hourly prices are generally scaled to wholesale energy market 
prices (for example, PJM Interconnection (PJM) day-ahead or real-time energy market prices). For residential 
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characteristics of both event-based and non-event-based treatments because prices vary 
according to prevailing system supply and reliability conditions. At times, prices reach levels 
close to or commensurate with event prices; at other times, prices are measurably above the 
average price. Both of these situations offer inducements to alter usage. Furthermore, many other 
treatments that have recently been used in research efforts likewise embody characteristics of 
both event-based and non-event-based treatments—as is the case when dynamic rates are 
combined with overlays.  
 
For example, some of the treatments involving CPP or CPR overlays have flat rates as the 
background rate, but others have either TOU or RTP rates as background rates. As with non-
event-based treatments, these “hybrid” treatments are always in effect, but—as with event-based 
treatments—they present customers with particularly high prices at times that are not known far 
in advance. For these types of hybrid treatments, and depending on the utility’s objectives, it may 
be appropriate to estimate event-related load impacts as well as the load shifting and energy 
conservation impacts that result when other inducements are built into the rate structure.  

2.3 Experimental Design and Selection of Reference Load 

 
 
 
 
 
 
The quality and usefulness of the estimated effects of electricity rate treatments or other 
interventions depend significantly on their internal and external validity. If a study is internally 
valid, it can reasonably be stated that the estimated impacts were caused by the intervention 
being evaluated. If a study is externally valid, the findings can confidently be extrapolated to a 
larger population of interest.  
 
The choice of experimental design is the most important factor for establishing internal validity. 
This choice must be made before the study begins so that customers can be recruited in a way 
that is appropriate for the particular design. To obtain internally valid estimates of how any 
treatment affects household-level electricity usage, one needs to compare measured consumption 
after the intervention with an unbiased estimate of the household-level electricity consumption 
behaviors that would have been observed in the absence of the intervention. The unbiased 
estimate of load in the absence of the treatment is often referred to as the reference load, the 

                                                                                                                                                             
customers, these prices are typically supplied to the customers with a day-ahead notice, but they could also be 
provided with as little as an hour’s notice.  
10 Variable peak pricing (VPP) is a hybrid between a TOU rate and an RTP rate. For the VPP rate, the peak period is 
defined in advance, but the price established for the on-peak period varies daily based on system or market 
conditions. The same low off-peak price is charged for usage during each hour of the off-peak period. 
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counterfactual load, or the control group. Internal validity therefore critically depends on the 
study’s experimental design, which determines how the counterfactual is established.  
 
Throughout this report, four basic categories of experimental design (with corresponding 
reference load methods) are considered: randomized controlled trials (RCTs), randomized 
encouragement designs (REDs), matched control groups, and within-subject designs.11  Before 
continuing, we emphasize that RCTs and REDs produce unbiased estimates of treatment effects 
that are based on a minimal set of assumptions by virtue of how the reference loads are 
established. Matched control group and within-subject methods, on the other hand, require much 
stronger assumptions about the nature of customers in the control and treatment groups. If these 
stronger assumptions are violated, these methods may produce biased results.12  The extent of the 
biases in the estimates of load impacts is not knowable a priori or even after the fact, so there is 
no way to judge the extent to which the results are misleading. Therefore, during the initial 
stages in any pilot study’s design, we cannot recommend the adoption of either the matched 
control group or the within-subject design. 
 
Because the purpose of this report, however, is to outline a general set of research protocols to 
assess the impacts of CBS experiments and pilots, we recognize that there are still circumstances 
under which these latter two research designs will come into play. Despite efforts to encourage 
careful consideration and selection of an appropriate research design during the planning stages 
of a new pilot study, there will continue to be instances in which an appropriate and rigorous 
design was not adopted. Equally important—and despite the best efforts to identify an 
appropriate control group—there may be problems in a study’s implementation that preclude the 
control group’s use in defining a reference load even though the experimental design was an 
appropriate one.  
 
A similar situation may arise, for example, if smart meter interval data are available only for 
customers exposed to the treatment. Under any of these circumstances, a reference load must be 
constructed another way—perhaps using matching or within-sample methods. In what follows, 
reasons for these circumstances are discussed in greater detail. We do so because, by not doing 
so, the only recourse would be to abandon any formal (and structural) evaluation of the data and 
results—in other words, throwing away the data.  
 
For these reasons, throughout this report a hierarchy of analytical methods to be used to estimate 
the effects from treatment interventions is discussed. The extent to which the various methods 

                                                 
11 There is a fifth type of experimental design method called regression discontinuity. This method is not described 
in detail in this report because at this time it is not commonly used in energy evaluations and requires a more 
complex analysis method. This method works if the eligibility requirement for households to participate in a 
program is based on a cutoff value for a characteristic that varies within the population but that cutoff value is not 
endogenously determined. For example, households at or above a cutoff energy consumption value of 900 kWh per 
month might be eligible to participate in a behavior-based efficiency program, while those with energy consumption 
below 900 kWh are ineligible. For examples of program evaluations using regression discontinuity, see Ito (2012) 
and Davis and Boomhower (2013). Also see Imbens, G. W. and T. Lemieux, 2008: “Regression Discontinuity 
Designs: A Guide to Practice,” Journal of Econometrics 142 (2): 615–635; Ito and Koichiro, “Does Conservation 
Targeting Work? Evidence from a Statewide Electricity Rebate Program in California,” 2012. 
12 Regression discontinuity designs typically yield results that are less biased than those from matched control group 
and within-subject designs. See Imbens and Lemieux (2008). 
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can be used depends, of course, on the initial experimental design, the success in 
implementation, and the available data. Much of the focus is on the circumstances under which it 
is appropriate and possible to define reference loads based on RCTs or REDs and the appropriate 
interpretation of methods and results. When circumstances do not allow for the application of 
these methods, we suggest methods lower in the hierarchy and discuss how the results must be 
interpreted differently. This thorough discussion of the analytical methods and their application 
may also facilitate comparisons with the results from previous studies.  
 
In this section, the discussion is focused primarily on RCTs and REDs. For both event-based and 
non-event-based treatments, Section 3 describes the detailed mechanics for estimating load 
impacts based on RCTs and REDs as well as for other methods, such as those that rely on 
matching and within-subject methods. Section 4 discusses structural economic demand models 
needed to estimate measures of price response—a critical component in an overall program 
assessment. 

2.3.1 Randomized Controlled Trials 
 
In the program evaluation literature, randomized controlled trials (RCTs) are widely viewed as 
the “gold standard” of evaluation methods. Their application in CBS experiments is discussed in 
EPRI report 1020855. The process begins by selecting a random sample of customers from the 
population of interest (that is, the sample frame). The second step is to randomly assign 
customers to either the treatment or the control group. To ensure both internal and external 
validity of the results, it is necessary that this assignment be through conscription. That is, 
customers in the sample frame have no choice as to whether they are assigned to the treatment or 
to the control group. Those assigned to the treatment group will be subject to the treatment, and 
those assigned to the control group will have no access to the treatment.13  The next step is to 
administer the intervention of interest to the treatment group. By contrast, the control group 
receives no intervention. This control group’s load becomes the reference load; it provides a 
measure of the load that would have been obtained for those in the treatment group(s) had they 
not been exposed to the treatment.  
 
Because this experimental approach eliminates the effects of selection bias and other 
confounding factors, reference loads constructed in this way facilitate direct comparisons of 
differences in outcomes across treatment and control groups—the latter serving as the 
counterfactual—and the estimated treatment effects are unbiased. To maintain the integrity of the 
design, it is important that no customer choices affect treatment or control group assignments, so 
that the only difference between the two groups is the result of random assignment.  
The main effect of interest for these RCTs is the program impact, or the effect of the treatment 
program on customers. This is called the intention-to-treat (ITT) effect. Estimates of the ITT 
effect are derived through simple comparisons of the difference in the outcomes across the 
treatment and control groups. The mechanics of this analysis for both event-based and non-
event-based treatments are described in Section 3 under the RCT subsections.  

                                                 
13 This is the approach adopted in the large pilot for the Customer Applications Program (CAP) conducted by 
ComEd in 2011 (EPRI 1023644). Customers randomly selected for the treatment groups were automatically enrolled 
in the program unless they took specific action to opt-out. 
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Because this “pure” RCT selects customers for both the control group and the treatment group 
randomly and no customer is allowed to drop or opt-out of the assignment, there is no volunteer 
or selection bias—and the internal and external validity of the results is preserved. There are, 
however, other experimental designs characterized as RCTs, but they differ in some important 
respects.  
 
As before, the process in these designs begins by selecting a random sample from the population 
of interest (the sample frame). The second step, however, is to solicit or encourage customers to 
sign up for the study (usually through an opt-in or an opt-out process); see Figure 1. The third 
step is to randomly assign customers who already signed up for the study (that is, the recruited 
customers) to either treatment or control groups. This is done through conscription: once 
customers sign up for the study, they are assigned randomly and do not have a choice to be in 
either the treatment or control group. The expectation is that those so assigned will be subject to 
the treatment.  
 
However, there are several other ways this can be accomplished that do not require the treatment 
to be mandated. The method chosen affects what analytical methods are used to test if measured 
changes resulting from treatments are statistically significant.   
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Figure 2 illustrates the way in which the chosen design points to the appropriate analytical 
methods to employ.   
 

Figure 1: Recruitment of subjects to CBS experiments: The RED perspective 
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Figure 2: A comparison of experimental designs and their implications for analyzing the results 
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The fourth step is to administer the intervention of interest to the treatment group. Because, by 
contrast, the control group receives no intervention, it provides a measure of what would have 
happened to those in the treatment group(s) had they not been exposed to the treatment.  
 
Because this experimental approach eliminates the effects of selection bias and other 
confounding factors for customers who have already signed up for the study, reference loads 
constructed in this way facilitate direct comparisons of differences in outcomes across treatment 
and control groups—the latter serving as the counterfactual—and result in unbiased estimates of 
the treatment effects. To maintain the integrity of the design, it is important that no customer 
choices affect treatment or control group assignments, so that the only difference between the 
two groups is the result of random assignment. This process guarantees the internal validity of 
the results for customers who signed up for the study. However, because the random assignment 
to either control or treatment groups includes only those customers recruited to the program, the 
results have no external validity. 
 
Recognizing this limitation, this experimental design in other respects resembles that of an RCT. 
The main effect of interest for these RCTs is the program impact, or the effect of the treatment 
program on customers who signed up for the program (for example, the effect of an IHD 
program on customers who signed up for the program by opting in or by not opting out). Again, 
this is called the intention-to-treat (ITT) effect.  
 
This ITT effect is an unbiased measure of the treatment effect only if one can enforce mandatory 
compliance with the treatment. In many cases, however, at least a few customers in the treatment 
group may not actually comply with the treatment (for example, in an IHD study, customers 
assigned to the treatment group may not actually install and plug in the IHD; in a CPP study, 
customers may refuse to actually sign up for the rate after they have already been assigned to the 
treatment group). In this event, the ITT effect is an unbiased measure of being assigned to the 
treatment but not necessarily complying with it. For this ITT effect to be unbiased, it is necessary 
to use data from every customer originally assigned to either a control or treatment group, 
regardless of whether they later dropped out or did not comply. 
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In addition, there may be a secondary effect of interest: the effect of the treatment-on-the-treated 
(TOT), or the effect of actually complying with the treatment (for example, the effect of an IHD 
on those who actually installed and plugged it in or the effect of a CPP rate on those who were 
actually exposed to the rate).  
 
The ITT effect is estimated simply by comparing the difference in the outcomes across the 
treatment and control groups; this analysis is described in Section 3 under the RCT subsections. 
To estimate the effect of the TOT, we can proceed in two steps. The first step is to estimate the 
ITT effect using all of the customers in the treatment and control groups, regardless of whether 
they complied. This is followed by a scaling exercise to focus only on the subset of customers 
that was treated (see Figure 2-2). Because this process for estimating a TOT effect is actually a 
special case of the estimation used for a RED, it is described in detail in the RED subsection of 
Section 3. For the more general RED experimental design, this TOT effect is called a local 
average treatment effect, or LATE. This is described in more detail next.  

2.3.2 Randomized Encouragement Design 
 
Despite the considerable advantages offered by RCTs, it may not be feasible to randomize 
recruited customers who already signed up for the study and place some of them into a control 
group where the treatment is denied or delayed. In this case, a randomized encouragement design 
(RED) can be a good option. Essentially, an RED moves the randomization process closer to the 
beginning of the customer enrollment process so that customers are randomized into a control or 
treatment group before they are solicited or encouraged to sign up for a study. This means that 
after randomization, customers still make a choice that impacts their disposition in the study. 
However, as discussed, this choice does not affect their group assignment for analysis.  
 
Under a RED design, a population of customers is still subject to random assignment to either a 
treatment or control group, but the treatment consists of an encouragement to take up the rate or 
technology treatment through a subscription process that allows customers to decline 
participation (see Figure 1). For example, the encouragement might consist of a marketing 
program implemented to a randomly chosen subset of the eligible population to recruit customers 
to a time-based retail rate. The control group consists of randomly chosen customers who are not 
encouraged to take up the treatment. In most cases, the control group customers do not know that 
they are involved the study (therefore, attrition occurs for reasons external to the study). If 
control group customers learn of the opportunity afforded by the treatment on their own, they 
may be allowed to take up the treatment. One special case of a RED design is if the control 
customers are not allowed to take up the treatment even if they learn of it on their own. This 
special case may in fact be the most typical case for energy pilots. 
 
By directing the encouragement at only a subset of the population, more customers in the 
treatment group to whom the encouragement is directed will, in all likelihood, sign up for the 
treatment than will do so in the control group (especially for the case in which control group 
customers are not allowed to take up the treatment). Therefore, the application of an 
encouragement induces a correlation between being in the treatment group (for example, being 
asked to join the rate) and signing up for the treatment (for example, being on the rate). This 
correlation can be used to produce an unbiased estimate of the effect of the treatment on the 
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customers who subscribed to it because of the encouragement, termed a local average treatment 
effect (LATE). For the special sub-case in which control customers are not allowed to take up 
the treatment, this unbiased LATE estimate will be the effect of the TOT and will give the same 
result an RCT would have given.14  The analysis of the LATE estimate can be accomplished in 
two steps, the first of which is the same as the analysis of the ITT estimate described in Section 3 
under the RCT subsections, and the second of which is described in Section 3 under the RED 
subsections.  
 
2.3.2.1 A Further Discussion of the LATE and TOT Effects 

 
Although the mechanics of estimating the ITT and the LATE and TOT effects for both event-
based and non-event-based electricity rate treatments are discussed in Section 3, it is critical at 
this point to understand the assumptions that underpin the validity of these estimators, the 
frameworks that can motivate the estimators, and some practical issues about the extent to which 
the data needed to estimate these effects can be made available during the conduct of pilot rate 
programs.  
 
To help motivate the discussion, outlined below is a simple instrumental variable (IV) approach 
to the estimation of TOT and LATE effects.15 This simple model is adapted from Brookhart et al. 
(2010). The ITT estimator is given in Eq. 1. When the compliance guarantees needed for the ITT 
estimator to be an unbiased estimator of the load impact are not possible, Brookhart et al. (2010) 
argue that the ITT estimator can at best provide evidence about the presence of the treatment 
effect. They go on to provide an instrumental variable estimator of the TOT or LATE effect. 
They consider the case of a dichotomous instrument and demonstrate the connection to a linear 
structural equation model in which the TOT or LATE effects can be estimated by two-stage least 
squares or an equivalent two-step application of ordinary least squares.  
 
In an RCT, the ITT estimator for mean outcomes between rate treatment and control groups is 
shown in the following equation: 
 
Eq. 1: ߚூ்் ൌ ܼ|ሾܻܧ ൌ 1ሿ െ ܼ|ሾܻܧ ൌ 0ሿ	  

 
where: E is the expectations operator, Y is the outcome (for example, load impact), and Z is the 
instrumental variable; Z = 1 if the customer is assigned to receive the rate treatment and zero 
otherwise. If one is guaranteed that control group customers have no access to the rate treatment 
and that all customers in the rate treatment group actually go on the rate, this ITT estimator 
provides an unbiased estimate of the treatment effect—the load impact.  
 
If such compliance guarantees are not possible, this ITT estimator can at best provide evidence 
only about the presence of the treatment effect. When no such guarantees are possible, treatment 

                                                 
14 This is one reason that an RCT is preferable to an RED. The estimated effect for an RCT can always produce 
estimates of the treatment-on-the-treated, whereas if an RED allows control customers to take up the treatment, the 
RED can produce an estimate of the treatment only on the customers who took up the rate because of the 
encouragement, which leaves out the treatment on those who took up the rate for other reasons. 
15 The source for this example is Brookhart et. al. (2010); adapted from the discussion of the model applied to 
medical interventions. 
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effects can be modeled in an instrumental variable framework. With a dichotomous instrument, 
the IV estimator of the TOT or LATE effect is as follows: 
 

Eq. 2: ߚூ௏ ൌ
ாሾ௒|௓ୀଵሿିாሾ௒|௓ୀ଴ሿ

ாሾ௑|௓ୀଵሿିாሾ௑|௓ୀ଴ሿ
  

 
where: Y again is the outcome, Z is the instrument, X is the rate treatment, and βIV is a measure of 
the effect of X on Y. The numerator βIV is the ITT estimator, but the denominator is the difference 
in treatment rates between levels of the instruments—a measure of compliance. If there is perfect 
compliance or if we are in the guaranteed conscription case, ܧሾܺ|ܼ ൌ 1ሿ െ ܼ|ሾܺܧ ൌ 0ሿ ൌ 1.The 
instrument predicts the rate treatment exactly, and the IV estimator is equal to the ITT estimator. 
As noncompliance increases, the denominator of the IV estimator shrinks and the IV estimator 
itself increases relative to the ITT estimator.  
 
This simple estimator, βIV, is called the Wald estimator. It can be motivated in a variety of 
ways—one is through its connection to a set of linear structural equations. Interpreted in this 
way, there is a two-equation model. The first equation (X) is one for the rate treatment 
assignment that is a function of the instrument and perhaps potential confounding factors. The 
outcome equation (Y) is a function of the treatment and potential covariates.  
 
Eq. 3: ܺ ൌ ଴ߙ ൅ ଵܼߙ ൅ ܥଶߙ ൅ ߳ଵ 
 
Eq. 4: ܻ ൌ ଴ߚ ൅ ଵܼߚ ൅ ܥଶߚ ൅ ߳ଶ 
 
where C is a vector of possible covariates, and α’s and β’s are vectors of parameters. The 
treatment effect is β2. The ordinary-least squares (OLS) estimate of this effect is unbiased only if 
the exposure to treatment is uncorrelated with ߳ଶ. The magnitude of the bias is directly related to 
the strength of this correlation.  
 
These two equations can be estimated by two-stage least squares or equivalently in two steps. 
The equation for X is estimated by OLS. The equation for Y is estimated by OLS after replacing 
X with its predicted values from the estimated equation for X. If there are no covariates included 
in these two equations, the resulting two-stage least squares estimates of β2 is equal to the Wald 
estimator.  
 
Table 1 and Table 2 offer side-by-side comparisons of assumptions and the data requirements 
needed for unbiased TOT and LATE estimators. We recommend that the material in these tables 
be studied carefully. This side-by-side comparison is particularly convenient because of the 
similarity between a study designed as the special case of an RED that does not allow control 
customers to take up the treatment and a study designed as an RCT with a secondary TOT effect 
for treatment customers who actually use the treatment. In the RCT case, the assignment to the 
treatment group could be considered the encouragement, with customers deciding whether to 
actually use the treatment. In both cases, the first step of analysis is an estimate of the ITT effect, 
followed by a LATE analysis (which is equal to the TOT effect analysis in both cases). The 
major difference may be that a study designed as an RED will have to be planned so that enough 
customers are enrolled to meet the larger sample size needed to provide estimates of the LATE 
effect with an acceptable degree of statistical significance. If the study were designed initially as 



21 
 

an RCT, the sample may not include enough customers to estimate the TOT effect with any 
acceptable degree of statistical significance. 
 
There are three important assumptions that must hold for the TOT and LATE estimators to be 
unbiased. These are listed side by side in Table 1because they are quite similar for both the TOT 
and the LATE estimators. For both, the independence assumption is usually true by design, and 
the monotonicity assumption is fairly easy to believe. The exclusion assumption, however, may 
be a concern in the case of a RED design. That is, there may be some cases in which the 
encouragement itself, separately from the treatment, actually causes energy savings. The best 
way to deal with this is to design the encouragement so that it emphasizes the importance of 
signing up for the program rather than emphasizing how important it is to save energy.  
    
The interpretation of the TOT and LATE estimators within a linear structural model framework 
(for example, Equations 3 and 4 in Table 1) is convenient. When these three assumptions are 
valid and there are no covariates included in either of these equations, the treatment effect, β, 
from Equation 4 is identical to the Wald estimator in Equation 2. When there are heterogeneous 
treatment effects (for example, load response depends on income, house, and family size), 
however, this linear model may no longer be a good model for the data.  Fortunately, even if the 
treatment effects are heterogeneous (Brookhart et al., 1996), show that under the “monotonicity” 
assumption, the Wald estimator in Equation 2 still yields the average treatment effect among the 
“compliers.” This result has important implications for the internal validity of this measure of the 
average treatment effect. 
 

Table 1: Assumptions to ensure the validity of TOT and LATE estimators 
TOT LATE 

Independence 
Customers are randomly assigned to the control 

and treatment groups. 
Customers are randomly assigned to the control 

group that was not encouraged or to the treatment 
group that was encouraged. 

Exclusion 
Assignment to the treatment and control groups 

does not affect the impact of using or not using the 
treatment (for example, it assumes that customers 
who receive the IHD but do not install it do not 

save energy just by virtue of having the IHD in an 
unopened box in their house). 

Assignment to the encouraged and not encouraged 
groups does not affect the impact of receiving the 
treatment (for example, it assumes that customers 

who are marketed to and asked to sign up for a 
time-based rate do not save energy just by virtue of 

being marketed to). 
Monotonicity 

Customers in the treatment group are not less likely 
to use the treatment than if they had not been in the 

treatment group (for example, it assumes that 
although being in the treatment group may have no 
effect on whether a customer installs and plugs in 
their IHD, there is no one who did not install and 

plug in their IHD because they were in the 
treatment group). 

Customers who are encouraged are not less likely 
to receive the treatment than if they had not been 

encouraged (for example, it assumes that although 
being encouraged to sign up may not increase the 

likelihood that a customer signs up, there is no one 
who did not sign up specifically because they were 

encouraged). 
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Table 2: Data requirements to estimate the TOT and LATE effects 
TOT LATE 

An analysis of a study designed as an RCT must 
include data on the outcome being studied (for 

example, energy use) for every customer who was 
originally randomly assigned to a control or 

treatment group. 

• An analysis of a study designed as an RED 
must include data on the outcome being studied 

(for example, hourly energy use) for every 
customer who was originally randomly assigned to 

the encouraged or to the non-encouraged group, 
regardless of whether they actually signed up. 

Specifically, if some treatment customers drop out 
of the study midway through, one cannot simply 

discard those customers; they must be included in 
the final analysis as part of the treatment group. 

Specifically, one cannot simply discard the 
customers who were encouraged but did not sign 

up for the treatment. If these customers are 
discarded, the treatment and control groups would 

no longer be comparable. The treatment group 
would contain only the types of people who would 

sign up for the study, while the control group 
would contain both the types of customers who 
would sign up and the types who would not sign 

up. The control group would therefore no longer be 
a good reference load for the treatment group. The 
only exception to this rule is the sources of drop-

outs of the utility billing system that can be 
reasonably expected to affect the treatment and 
control groups equally (for example, customers 
who move away—it is unlikely that a customer 

would be more likely to move away as a result of 
treatment or non-treatment). 

Likewise, for a TOT analysis, one cannot simply 
discard the customers in the treatment group who 

did not actually use the treatment. If these 
customers are discarded, the treatment and control 
groups would no longer be comparable. The only 

exception to this rule is that there are some sources 
of drop-outs of the utility billing system that can be 

reasonably expected to affect the treatment and 
control groups equally (for example, customers 
who move away—it is unlikely that a customer 

would be more likely to move away as a result of 
treatment or non-treatment). Excluding these 

customers affects the study’s external validity but 
not its internal validity. 

Customers in the treatment group who do not sign 
up for the treatment (even though they are 

encouraged) and customers in the control group 
who sign up for the treatment (even though they are 
not encouraged) add noise to the analysis without 

providing information about the treatment of 
interest. 

It is important to note that many technology-based 
treatments will likely include several customers 

who do not actually use their treatment despite the 
intent to do so. This may be the result of 

technology compatibility issues.  For example, a 
typical in-home display or programmable 

thermostat will have certain limitations that allow it 
to work only at certain homes. These limitations 

cannot always be perfectly predicted prior to 
customer recruitment. Therefore, some customers 

Estimates of LATE therefore have greater variance 
per treated customer than do ITT estimates; 

therefore REDs require a larger sample size than 
RCTs. 
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will be assigned to the treatment group, but they 
will be unable to have a device installed.  In this 
situation, those customers should be kept in the 

treatment group to maintain the original 
comparability between treatment and control 

groups. The impacts can then be estimated using an 
ITT analysis followed by an analysis of the TOT. 

 
Because a major purpose for conducting a large-scale rate pilot is to estimate load impacts, 
hourly load data by customer is typically among the data collected throughout the study’s 
treatment period. The major challenges to be overcome in preparing these data sets for any 
empirical estimation are well known and similar to those that would be encountered in any large-
scale empirical analysis.  
 
There is yet another essential data requirement for estimating TOT or LATE effects. In both 
cases, data on the outcome being studied (for example, hourly load data needed to estimate the 
load impact) must be obtained for every customer who was originally randomly assigned—to a 
control or treatment group in a TOT analysis and to the encouraged or non-encouraged group in 
a LATE analysis. These data must be collected regardless of whether the customers actually 
signed up for the rate treatment.   
 
The discussions in Table 2 underscore reasons these data must be collected for every customer 
who was randomly assigned as well as the consequences for not having the data. It is particularly 
critical to collect these data for customers who were either randomly assigned to the treatment or 
encouraged to do so but chose not to. Otherwise, as explained in Table 2, the control and 
treatment groups will no longer be comparable.  
 
Despite the compelling reasons for needing these data, these data requirements potentially pose 
serious challenges in the implementation of any pilot study. If an appropriate meter is installed, 
there may be little difficulty in collecting load data for customers assigned to the treatment group 
but who were not able to participate because a critical device (such as an IHD or a controllable 
thermostat) could not be installed. This is also likely to be the case in an RED for customers in 
the non-encouraged group who are offered the treatment after they have contacted the utility. 
 
The situation can be quite different in pilots in which the utility must install the meters needed to 
collect the hourly load data both for customers in the control group and those randomly recruited 
for the treatment group using an opt-in strategy. Based on experience in past pilot studies, 
utilities are not inclined to install meters for customers randomly recruited but who did not opt-in 
to the treatment. It raises the cost with no apparent benefit.  In these cases, there seemed to be no 
reason to be concerned about metering the load for customers who did not opt-in; therefore, the 
expense of installing the meter could hardly be justified.  
 
On the surface, there might seem to be an easy remedy: make those in charge of pilot 
implementation aware of the issue, and have them make sure that meters are installed. The larger 
problem, however, stems from the fact that in past pilots, only 5-15% of those customers 
contacted actually opt-in.  This means that meters must be installed for the remaining 85–90% of 
those customers contacted initially. Given the low opt-in percentages, it is easy to envision how 
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the expense of meter installation could be prohibitive. If the expense is not an issue, and the 
meters are installed, however, these customers are still “non-compliers.” This 85–90% non-
compliance rate could, in turn, affect the validity of estimates of the TOT or LATE effects. This 
happens because of the effect of these high rates of non-compliance on the performance of the 
instrumental variable equation (Equation 3 in Table 2-1). That is, the instrument (Z) in this 
equation may now not be a strong predictor of who agreed to go on the rate treatment, Brookhart 
et al. (2010, p. 540) point to three problems with weak instruments: 

 The finite sample bias of standard IV estimators is inversely proportional to the F-statistic 
that tests for the significance of the instrument in the first-stage model.  

 Small violations of the IV assumptions can lead to tremendous inconsistency in the IV 
estimator when the IV is weak. 

 Weak instruments yield highly variable estimates of treatment effects and limit the power 
to detect small effects even in very large studies. 

2.3.3 When a Control Is Not Part of the Design 
 
In the evaluation of some CBSs, it may be impossible to use either an RCT or a RED method to 
develop a reference load, for several reasons.  For example, smart meter interval data may be 
available only for customers exposed to the treatment because the experiment commences with 
the installation of the meters.  Or, despite the best intentions, there may have been unforeseen 
difficulties in selecting the control group. These difficulties may be uncovered only after the fact 
through a careful examination of data for the control group; these difficulties may lead to the 
conclusion that it is impossible to define an appropriate reference load based on the control 
group.  
 
Under these circumstances, there are two main options—both of which rely on making 
assumptions in addition to those required for either a RCT or a RED. First, it may be possible to 
construct a matched control group using customers from the broader population. Second, it may 
be possible to use the load observed for the treatment customers during non-event periods to 
define a reference load model and thereby produce an estimate of the effect of an event-based 
treatment.  
 
In a recent EPRI report on the evaluation of energy information feedback pilots, the following 
conclusion was stated with respect to the use of matched control groups:  
 

“Matching methods by themselves are to be used sparingly because they are prone to the 
introduction of bias that cannot be anticipated or measured. The calculated estimates of 
differences (or difference of differences) are biased (they cannot be inferred to reflect the 
real values) and inconsistent (the variance is large and unknown, so we cannot make 
statements about the confidence interval around the estimate). These constitute a strong 
cautionary. However compelling the results based on experience, intuition, or other 
indicators of a treatment effect, the experiment does not provide confirming and 
incontrovertible evidence that the observed effect is attributable solely to the treatment” 

 
That conclusion was specific to the use of matching for information feedback, a particular type 
of non-event-based treatment. The same conclusion applies here, however, with a caveat: in 
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certain cases of event-based treatments with sufficiently rich analysis data, the expected 
treatment effect is large enough and the range of likely bias small enough that a matching 
analysis may be useful. A similar point applies to within-subjects analyses, discussed next. 
 
The only situation in which either of these methods is convincing enough to use as a reference 
load is in the analysis of an event-based program where there are a substantial number of non-
event periods with conditions similar to those observed during events (for example, similar 
temperatures or similar time of the week). Without these conditions, these methods are 
suggestive at best and should not be used for decision making that requires a high degree of 
confidence. This discussion of these methods is limited to this situation.   
 
The assumptions underlying each of these options are somewhat similar. At a high level, they are 
as follows: 

1. For within-subjects designs, we must first assume that there is no selection bias in the 
customers who subscribed to the study.    

2. We must assume that we can control for all differences that exist between event 
periods and non-event periods using only observable variables. For example, it is 
frequently the case that event days coincide with very hot days and that the set of 
non-event days contains few or no days as hot as the event days. In this case, we must 
assume that we can control for the differences in usage that arise between event and 
non-event days—aside from the effect of the events—using a function of temperature. 
In other cases, event days may not coincide with the hottest days, but we must always 
look for ways in which they differ systematically from non-event days. 

3. For a matched control group, we must first assume that we can control for all 
selection bias using observable variables (such as demographic and geographic 
variables as well as loads observed during non-treatment periods). Second, we must 
assume that we can also control for all differences that exist between event periods 
and non-event periods using observable variables and the change in energy use during 
those periods for the matched control group. For example, on hot days, we must 
assume that households may change their energy use relative to non-hot days, but the 
treatment and matched control groups would have changed their usage because it was 
hot in the same way in the absence of an event after controlling for observables.  

 
For matched (after the fact) control groups, the most promising variables on which to match are 
loads observed during non-event periods with event-like temperature conditions. For within-
subjects methods, a credible reference load model for events will require the observation of loads 
observed under very similar conditions. In each case, there is an implied assumption that 
customer usage during these non-event periods is an accurate reflection of what usage would 
have been during event periods if the customer had not been on the treatment. If event days are 
not systematically different from non-event days—except in ways that can be controlled for—
that may be a reasonable assumption. If non-event day periods during the post-CPP enrollment 
period are used in the analysis, both matched control groups and within-subjects analyses also 
require the assumption that the treatment affects behavior only on event days; therefore, non-
event periods provide a useful counterfactual.  
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For matched control groups, regardless of how well the matching procedure appears to work 
(that is, when the selection criteria are compared, the control and treatment appear identical), the 
possibility of unobservable differences between groups producing bias in the results cannot be 
ruled out. This is frequently described as relying on an unconfoundedness assumption, whereby 
we assume that there are no variables that are unobservable and correlated with both the 
treatment and usage behavior in the population. This is a strong assumption that typically cannot 
be tested (unless the study is specifically designed as a RCT and analyzed with a matching 
method so that the degree of bias can be estimated). The implication of this assumption is that 
standard judgments about statistical significance of estimated impacts must be qualified: 
statistical significance is always conditional on the unconfoundedness assumption. In the context 
of an event-based program, in which non-event period load is used for matching, the 
unconfoundedness assumption can be expressed as follows: just because the matched customers 
have loads similar to those of the treatment group during event-like periods does not mean that 
they will have loads similar to those of the treatment group during actual event periods. This risk 
is unavoidable with this method, and the consequences are unknowable—therefore the 
admonishment to avoid this recourse by adopting a RCT design.  
 
The matched control group method assumes that the way in which the treatment group’s energy 
use would have changed in the absence of an event is fully represented by the control group and 
observable variables. Within-subjects methods require the additional assumption that the way in 
which the treatment group’s energy use would have changed in the absence of an event is fully 
represented by observable variables only. For example, it assumes that a proper functional form 
can be developed for expressing load as a function of temperature, day of the week, and other 
observables in order to predict reference load (for example, a fixed effects model, discussed next, 
that includes many other factors that influence load and therefore net out the event effect.) 
Therefore, within-subjects methods have additional specification error risk. This risk is likely 
small if there are many non-event days with event-like conditions. The risk is unknowable 
otherwise and may result in the drawing of erroneous conclusions that have adverse 
consequences. The fact that a pilot is being undertaken suggests that there are important 
uncertainties that need to be resolved. Additional risk would not contribute to the goal. 

2.3.4 Summary 
  
In this section, we have laid out the required assumptions and measurements necessary to 
implement a valid RCT or RED. The best method is an RCT. However, this requires assigning 
customers to treatments, which may not be feasible or practical, thereby diluting the statistical 
basis for the findings (EPRI report 1023644, 2012). A common approach is to invite customers 
to participate, focusing the analysis on how volunteers respond to treatment. The results apply 
only to the population of customer that would volunteer. However, if the program being tested is 
intended to be employed using self-selection, this approach comports with the project goal.  
 
The common practice is to focus the measuring of electricity usage on those who volunteered to 
participate. In the last subsection, we raised an issue that should be of concern for utilities that 
may have undertaken pilot studies without metering those customers who declined the invitation 
to participate in a treatment or who turned out to be non-compliers among the opt-in treatment 
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groups. Under some circumstances, the control may be corrupted, despite its having been drawn 
randomly from the population of potential volunteers (the sample frame).  
 
The key to a credible conclusion about the treatment effect is establishing a control group under 
an RCT or a RED. If a randomized control is not drawn at the onset or data are not correctly 
collected, as discussed elsewhere in this report, we must in this case resort to the non-
experimental methods of matching and/or within-subjects methods to construct a reference load. 
Such an analysis based on either of these methods may never be free of the possibility of bias. 
Despite this potential difficulty, the only recourse (that is, to not conducting the analysis based 
on one of these two methods) would be to abandon any formal (and structural) evaluation of the 
data and results—throwing away the data.  
 

2.4 Assessment and Diagnostics of the Research Design 
  

 
 
Every research design has potential flaws. The experimental designs recommended in this 
report—RCTs and REDs—typically have the best chance of producing accurate impact 
estimates. However, even they can lead to inaccurate results in at least two ways. First, they can 
be incorrectly implemented. Second, although randomization ensures that treatment and control 
groups are identical in expectation and that over many experiments they are identical on average, 
in any implementation of an experiment the treatment and control groups will be less than 
perfectly balanced across observable variables. This is not an indication that the experiment or 
the impact estimates are invalid. However, these differences can affect the outcome of the 
experiment and are therefore important to understand in interpreting the results of a given 
implementation of an experiment.  
 
In the evaluation literature, this issue is sometimes referred to as the amount of overlap in 
covariate distributions between treatment and control groups. In the ideal experiment, the overlap 
between the distributions of covariates in treatment and control groups would be complete.  It is 
simple to show empirically, however, that some randomly drawn groups will be more like one 
another than others. Because the control group is meant to provide a view of the behavior of the 
treatment group in the absence of the treatment, a study is more likely to produce impact 
estimates reflecting only the effect of the treatment when the characteristics of the treatment and 
control groups are more similar prior to treatment. 
 
Imai, King, and Stuart (2008) state the issue this way: 

“Randomly assigning the values of the treatment variable…which is normally considered 
the sine qua non of experimental research, reduces the components of estimation error 
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arising from observed and unobserved variables on average, but not exactly in sample… 
16 

 
Similarly, Altman (1985) says: 
 

“While there is a probabilistic argument that on average random groups will have the 
same characteristics, it is quite likely in practice in a given trial that the subjects with 
some particular characteristics will not be split equally between groups. 
 
Imbalance between baseline groups is clearly undesirable, as the essence of a controlled 
trial is to compare groups that differ only with respect to their treatment. “ 

 
As a simple example, suppose we use an RCT to estimate the impact of a CPP rate. Suppose that 
through random selection, the treatment group has 10% greater prevalence of air conditioning 
(AC) in the home. This is still a fully valid experiment, and its results are properly considered 
among the results of a set of other CPP experiments. However, in interpreting the results of this 
experiment in isolation, it is useful to know about the difference between the treatment and 
control groups. In this case, it would probably suggest that load impacts would be somewhat 
underestimated because the control group would have a lower load during the CPP period than 
the treatment group’s expected load would have been in the absence of the event.  
 
This bias can be at least partially addressed through the inclusion of pre-treatment load in the 
analysis and/or through the use of control variables, such as the presence of AC. By estimating 
the regression models using a “fixed-effects” estimator to capture customer-specific effects, we 
may be able to account for some unexplained variation in the model. However, these methods 
can correct for differences only between groups that do not change over time, which, for 
example, would not perfectly account for the effect of one group having greater AC load. More 
complicated modeling to account for non-comparability, such as specifying load as a function of 
recent temperatures and daily and seasonal patterns, may be limited because of lack of data for 
modeling; it may also lead to misspecification. Such modeling can certainly improve estimates, 
but the degree of accuracy becomes much more difficult to assess. Therefore, estimates of load 
impacts are more reliable if the control group is quite similar to the treatment group. 
 
This section describes two simple ways to illustrate comparability between groups. 
Unfortunately, there is no simple answer to the question of how similar the treatment and control 
groups must be in order to trust a study’s results. Randomly drawn groups are an important 
foundation, but beyond that, groups that are more alike are preferred. There is no “yes/no” 
mathematical test to determine whether two groups are sufficiently similar. There are ways to 
examine the data and tests that can be performed that can bring to light ways in which the groups 
differ, but whether those constitute reasons to rethink the study’s results is at least partially a 
subjective determination.  

                                                 
16 “Misunderstandings between Experimentalists and Observationalists about Causal Inference,” by Imai, King, and 
Stuart, published in the Journal of the Royal Statistical Society, Series A, 2008. 
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Therefore, we view the recommendations in this section as good faith gestures of transparency 
rather than as strict tests of validity. They allow outsiders to assess the possibility that the 
experiment was not implemented correctly—by checking, for example, whether gross 
imbalances arise between large treatment and control groups. They also allow outsiders to 
personally judge whether the random variation between the groups is of concern in interpreting 
the results of the experiment, even in cases in which the experiment was perfectly implemented.  
 
For analysis types not based on RCTs and REDs, similar assessments of the research design can 
be performed. With a matched control group method, the treatment group can be compared to the 
matched control group. For a within-subjects method, the analogous comparison is between 
actual electric load and model predicted load on non-event days (as described next). In the case 
of matched control groups or within-subjects methods (for which only one of the following 
exercises applies), the suggestions can be seen as a “full-disclosure” exercise in which evaluators 
give reviewers information about how well their modeling eliminated observable bias from the 
analysis (or how well the modeling produced similar covariate distributions across groups), 
recognizing the limitations of the methods previously discussed. For example, it would be much 
more valuable to an outside reviewer to know that a matched control group had pre-treatment 
differences from the control group of about 50 kWh per month in monthly usage than to simply 
know that a matched group was created. The methods suggested are not meant to be the “last 
word” in reference load assessment or experimental best practice, and more statistically 
sophisticated evaluators may be able to provide better metrics of reference load validity. 
However, current experience with evaluations suggests that the alternative to these suggestions is 
typically no assessment rather than more sophisticated assessment. Moreover, the following 
suggestions have become standard practice to report in the “Data Overview” section of academic 
reports on field experiments.  The main addition that we suggest—graphing pre-treatment loads 
(or non-event period loads, in some cases)—is a variation on the same exercise but adapted to 
the field of electric load studies.  

2.4.1 Illustrating Comparability Between Groups  
We recommend using two main types of data to assess the comparability between groups: 
demographic data and usage data, preferably at the hourly level. We also recommend tracking 
and reporting the number of customers in each group who close their accounts during the 
experiment.  
 
In a recent RCT-based evaluation of an AC load control program, for example, the authors began 
this validation process by creating a table that shows the fractions of the treatment and control 
groups located within each of seven local capacity areas—an important geographical 
characteristic. The table also shows average monthly usage for the summer months for both 
groups and the fractions of customers in each group who are on PG&E’s CARE tariff, an 
underlying rate for low-income customers (see Table 3).  The table contains t-statistics and p-
values for the differences between the groups and shows that the RCT sampling worked quite 
well. Even in cases in which there are statistically significant differences between groups, the 
differences are quite small on an absolute basis.  This is perhaps a classic example of the 
criticism of p-values: they are mainly a test of whether the sample size is large enough. In this 
case, we conclude that the sample was well randomized, but the sample sizes are so large 
(roughly 15,000 treatment and 150,000 control) that small differences sometimes produce 
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significant p-values. This is a valid criticism of reporting p-values in this case; however, in cases 
of smaller samples and larger deviations in mean values, the p-value is a useful heuristic to help 
determine how likely it is that the difference is systematic or of concern. 
 

Table 3: Validation of treatment and control groups 
Variable Control Treatment T-stat P-value 
Greater Bay Area 0.34 0.34 1.5 93% 
Greater Fresno 0.19 0.19 -2.2 1% 
Kern 0.04 0.03 6.1 100% 
Northern Coast 0.06 0.06 -3.1 0% 
Other 0.17 0.17 -2.3 1% 
Sierra 0.11 0.11 1.1 87% 
Stockton 0.09 0.09 2.5 99% 
% of CARE customer 0.29 .29 -1.6 5% 
Avg. Summer Monthly (kWh) 743 741 0.3 63% 
Avg. Usage from 2-3 PM 1.47 1.45 1.3 91% 
Avg. Usage from 3-4 PM 1.76 1.73 1.4 92% 
Avg. Usage from 4-5 PM 2.00 1.98 1.0 85% 
Avg. Usage from 5-6 PM 2.15 2.15 0.2 59% 
Avg. Usage from 6-7 PM 2.10 2.11 -0.5 32% 
Avg. Hourly Usage (kWH) 1.15 1.15 0.1 56% 
 
It is, however, more important to demonstrate that the treatment and control groups have similar 
usage patterns than it is to demonstrate that the groups are comparable across geographic and 
demographic characteristics. The fundamental assumption underlying the reference load model 
for each of these analyses is that the control or non-encouraged control group load is an accurate 
estimate of what the load in the treatment or encouraged group would have been had it not been 
exposed to treatment.  To show that this is likely a realistic assumption, we must demonstrate 
that loads between the groups are very similar prior to the treatment, under conditions of 
interest—either event-like conditions for event-based treatments or peak periods for non-event 
treatments. We recommend showing graphs of hourly average usage in each group for the same 
set of pre-treatment days that will be used to control for pre-treatment differences in the main 
analysis (see Section 3 for more discussion of selecting pre-treatment data). It is likely that 
several of the important graphs may already have been constructed during the initial descriptive 
analysis of the data.  
 
If no pre-treatment data are available, and if the background rate for a CPP treatment (for 
example) is the default residential rate, it may be possible to assume that treatment and control 
customers would exhibit similar behavior on non-event days. The use of this assumption is not 
recommended unless no pre-treatment data are available. For non-event-based programs, such an 
assumption is not an option—and little can be done unless pre-treatment data are available. One 
can hope that in either case the graphs show that the load is generally quite similar between the 
groups and that it deviates noticeably between groups at some times of the day. Simply seeing 
the scale and frequency of the deviations can be useful in understanding the degree to which 
treatment and control groups match, which can be important for interpreting the impact 
estimates. 
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For within-subjects analyses, a similar exercise can be performed in which the reference load 
model is used to predict load during the most event-like non-event periods in the data. This is 
best done by withholding the event-like conditions from the model for fitting and then predicting 
the reference load for the withheld periods. To provide the model with some event-like 
conditions for fitting, we recommend a procedure in which several event-like days are chosen for 
validation; the model is then fit several times, each time withholding one of the event-like non-
event days and predicting for that day. We refer to this as out-of-sample testing. A graph such as 
the one we suggest to demonstrate treatment and control comparability can then be used to 
demonstrate the accuracy of the within-subjects reference load model. Although there may be 
other useful ways to perform this demonstration, this procedure is recommended because it is 
fairly simple and reduces the likelihood of over-fitting the model (by making it more difficult to 
do so), which is a frequent problem in within-subjects models. 
 
An example of such a graph is shown in Figure 3 (this is also taken from the RCT-based analysis 
that produced Table 3). The graph shows that on several hot non-event days, the treatment and 
control groups have virtually identical loads. This provides strong evidence that on event days, 
these groups would also have similar loads were it not for the intervention of load control. 
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Figure 3: Validation of reference load for air conditioning load control 

 
 
For the case of a non-event-based treatment, it might be convenient to show the average loads 
over different types of days rather than every day individually. Unlike with the event-based case, 
for non-event-based treatments we are interested in group comparability under many different 
conditions. A good way to organize the figures might be according to categories of high 
temperature on weekdays and weekends. For example, one could show average hourly usage in 
each group on weekdays with high temperatures in the 70s, 80s, 90s, and above 100—each as its 
own daily average—and similarly, but separately, for weekends. 
 
This examination of the load data and other observables is of great value in an informal sense 
because it gives the analyst a much better idea of how comparable the groups are and can 
indicate problems in implementation. However, the data can also be used to test more formally 
whether important differences exist between the treatment and control groups. We propose one 
such test. Note, however, that the assumption of balanced identical underlying distributions of 
characteristics between treatment and control customers implies dozens of possible statistical 
tests that could be performed.  
 
In the suggested test, a discrete choice regression (either a probit, logit, or ordinary least-squares 
regression) is run on the treatment and control groups. The dependent variable is an indicator of 
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being in the treatment group; the independent variables are all of the observable characteristics 
(for example, location, income level, and relative energy usage in different time periods) along 
with the relevant hourly pre-treatment loads being examined. For the probit or logit models, the 
likelihood ratio test of the joint significance of the coefficients should be insignificant. Similarly, 
for the linear model, the F-test of the significance of the coefficients should be insignificant.  

2.4.2 Unbalanced Loads in RCT or RED 
 
If significant differences are found between treatment and control groups in an RCT or RED, 
then we suggest the following. First, determine whether the differences are likely to have arisen 
by chance. This can be determined through a combination of statistical analyses of the 
differences, in light of the size of each group, and an examination of the process through which 
customers were assigned to groups.  
 
If evidence arises that the sample selection process was corrupted, then the corruption should be 
corrected when possible. For example, perhaps some customers were wrongly shifted from the 
control group to the treatment group, but the original assignments can be recovered. If the 
corruption cannot be corrected, then we suggest using the non-experimental methods we 
discuss—matching or within-subjects methods, with the understanding that those methods rely 
on much stronger assumptions and therefore are more likely to produce biased results. 
 
If no evidence arises that the sample selection process was corrupted, but differences between 
the treatment and control group appear large, then the situation is complicated. No finite sample 
will ever have perfect balance between treatment and control, but closer balance suggests a more 
plausible counterfactual. There is no cut-and-dried answer to how big the imbalance must be 
before it is worth altering an analysis, but if the imbalance seems large enough to have a 
significant impact on the results, then we suggest that first impact estimates be developed and 
reported using the methods we describe for RCTs or REDs. We also suggest using an ex post 
matching procedure to increase balance between the treatment and control groups through re-
weighting or truncating the control group, the treatment group or both.  This ex post weighting 
cannot introduce self-selection bias, but it can alter the external validity of the impacts being 
measured since the impact estimates are now representative of the weighted treatment group. We 
then suggest using the RCT or RED methods on these groups to produce and report impact 
estimates that can be compared to the unmatched results to see how large the difference is due to 
the imbalance. 
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3. Load Impact Analysis 
 
A useful place to begin an assessment of any pilot that includes event- and/or non-event-based 
treatments is with a comprehensive examination of the load impacts. These are raw (physical) 
measurements made to estimate the effects of time-based rates, enabling technology, and various 
other treatments on customers’ levels and patterns of electricity usage. The term load impact, as 
used in the assessment of pilot treatments, can be defined in several ways, depending somewhat 
on the nature of the treatments and the overall objectives of the pilot. For example, load impacts 
are often defined by the reduction in measures of electricity usage (such as a percentage of 
average annual, daily, or hourly electricity usage) or by the reduction in usage during certain 
hours of the day, during the system coincident peak demand, or during certain hours of particular 
days (such as the event hours on days when CPP events are called).  
 
The study of load impacts falls within a broad group of analyses that are primarily statistical and 
that measure the impacts or effects of the behavior. If one is to have confidence in the estimates 
of the behavioral parameters derived from the estimated economic models, it is first necessary to 
be confident in understanding the results from performing the statistical analyses of these load 
impacts.  
 
As detailed in Section 2, the process of selecting and validating the control group and reference 
load leads to one of three outcomes: 1) the reference load is from an RCT, 2) the reference load 
is from a RED, and 3) despite the best efforts to select an appropriate control group, problems in 
implementation preclude its use as a model to define a reference load based on the experimental 
design. The situation is similar if, for example, smart meter interval data are available only for 
customers exposed to the treatment. Under these circumstances, a reference load must be 
constructed using matching or within-subjects methods.  
 
Several statistical methods are frequently used in estimating these load impacts, including fixed-
effects estimators, analysis of variance and covariance (ANOVA) and (ANCOVA), difference-
in-differences (D-in-D) models, and general treatment effects models. These methods are 
discussed in detail in Appendices A, B, and C. Fixed-effects regression formulations have been 
particularly convenient as analysts of recent pilot studies have sought to exploit the panel nature 
of the load data normally generated through these pilots.  The use of a fixed-effects estimator is 
likely to improve the fit of a regression model because it includes a way to identify a fixed effect 
for each household. Importantly, this fixed-effects estimator is equivalent to ordinary least-
squares regression (OLS) with a dummy variable included for each household. 
 
Both D-in-D and ANOVA/ANCOVA methods can be formulated as fixed-effects regressions. 
Therefore, in the examples discussed in this section, the focus is on a fixed-effects framework 
with no loss of generality about the implications. 
 
Note that the suggested analyses are not the only valid ways to estimate load impacts. Other 
specifications that focus on different levels of aggregation across time or participants may be 
examined. The analyses shown are relatively straightforward and can be conducted for any CBS 
pilot. The results should be of interest to those investigating similar types of treatments and 
should be comparable across pilots. 
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As mentioned, there are three separate outcomes in the selection of a reference load. The models 
and methods needed to estimate load impacts from either event-based or non-event based 
treatments differ depending on which of these three outcomes is obtained. This section describes 
these methods in a systematic fashion, focusing first on estimating load impacts for event-based 
treatments and then for non-event-based treatments. 

3.1 Event-based Treatments 
 

 
 
 
 
 
 
 
 
As discussed previously, there are three main types of event-based treatments: CPP, CPR, and 
utility load control programs. In each case, the utility determines a set number of hours in which 
customers will either be given a large price incentive to reduce load (CPP and CPR) or will have 
their load reduced directly for them by the utility (load control). With CPP and CPR, customers 
are usually notified the day before the event occurs; with load control, customers may or may not 
be notified. Each type of program focuses on the reduction of usage during peak times when 
wholesale electricity is expensive or in cases in which system conditions require load reductions. 
Although these programs may produce net energy savings over the course of a day, week, or 
billing cycle (the so-called conservation effect), they function primarily as a way to reduce peak 
demand. We focus on an analysis of that aspect of the treatment and, for convenience, all event 
treatments are generically referred to as a rate.  
 
Events are usually focused on very hot summer afternoons, although some utilities may use these 
programs to reduce peak demand in the winter as well. Much of the following discussion 
presumes that the focus is on estimating the effects for hot summer days. The same discussion 
can apply to winter days by focusing on very cold days rather than very hot days. A reference 
load model for this type of program must consist of a method for estimating what the average 
usage of the treatment population would have been during the event period(s) had it not been 
exposed to the treatment—the counterfactual. We focus on the task of estimating the average 
impact of each event separately.17 

                                                 
17 The same methods (with small variations) can be used for different levels of possible granularity, such as 
estimating the impact of each hour of each event or estimating the degree of pre- or post-event load shifting. It is 
also possible to structure the model to estimate the average impact over all events. However, by examining the rate 
treatments separately, the regression model is algebraically equivalent to one in which multiple treatments are 
examined. This ability to examine multiple treatments may be particularly helpful, for example, where in addition to 
a CPP rate treatment, the pilot also includes CPR and load control treatments. 
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3.1.1 Estimation Using an RCT 

 
 
 
 
 
 
 
 
 
 
Assuming that the reference load is defined by an RCT and that some pre-treatment interval data 
are available for the entire population of interest, the best method to estimate event load impacts 
in this context is a form of D-in-D regression. The following example illustrates the method.  
 
Suppose we have the set of days described in Table 4, which lists two hot pre-treatment days and 
two CPP event days along with relevant data for each. For this example, suppose that hourly load 
data are available for all customers in the treatment and control groups for May through October. 
Furthermore, suppose that there were only two CPP events, covering the hours 1–5 PM, and that 
the four days shown are the hottest of the summer, with the next hottest day having a high 
temperature of 86°F (30°C). 
 

Table 4: Hypothetical situation for modeling the effect of a CPP rate using an RCT 

Date Day Type 
Avg. Load 1-5 PM 
Control (kW) 

Avg. Load 1-5 PM 
Treatment (kW) 

High Temperature 
(°F) 

6/1/2012 Pre-treatment 1.05 1.11 99 
6/15/2012 Pre-treatment 1.10 1.19 94 
7/9/2012 CPP event 1.43 1.05 100 
8/1/2012 CPP event 2.20 1.62 103 
 
The determination of exactly which pre-treatment data to include in the model requires judgment 
about which, if any, pre-treatment periods occurred under conditions similar to the event periods. 
This case is fairly typical in that there is a small number of event days and a small number of 
useful pre-treatment days. Days with temperatures more than 5–10 degrees lower than the event 
days are not considered useful to adjust for pre-existing differences between groups. Moreover, 
in this example, it is likely that the useful pre-treatment days are fairly different from the event 
days because they are earlier in the summer season (for example, June vs. July/August); 
temperatures are somewhat lower than on the event days. Despite these differences, the pre-
treatment days are worth including in the model because they show that there is a noticeable 
difference in average loads between the treatment and control groups on non-treatment hot days.  
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Because electricity usage for a household depends on many factors that are consistent over the 
course of the summer, it is fairly likely that these differences between groups are persistent. If 
this is true, the estimate of the effect of the treatment can be improved by eliminating from the 
model these differences in average loads so that the treatment effect is isolated. In expectation, 
this reduces the model’s variance. Once we see what the pre-treatment differences actually are, 
this step can be viewed as directly subtracting our best estimate of the bias because of imbalance 
between the groups. The most useful specification would include a set of pre-treatment days with 
the same conditions as the event days, but this situation is unlikely to occur. Regardless, it is 
generally better to use pre-treatment data than not to use it.  
 
The recommended regression specification for the example in the table is shown in Equation 3-1: 

Eq 3: ݈݀ܽ݋௜௧ ൌ ܽ௜ ൅ ܾଵ ௜ܶܫݔଵ ൅ ܾଶ ௜ܶܫݔଶ ൅ ܾଷܫଵ ൅ ܾସܫଶ ൅   ௜௧ݑ

 

Table 5: Variables in regression Eq. 3 
Variable Descriptions 
loadit Load in kW for customer i at time t 
ai Estimated customer-specific additive constant (frequently referred to as a customer 

fixed effects)18 
b1 Estimated average effect of first CPP event 
b2 Estimated average effect of secondCPP event 
b3 , b4 Estimated effect of each CPP time period on treatment group and control group 

customers 
I1, I2 Indicator variables equal to one during the first and second CPP events, 

respectively; equal to one for all customers during those events 
Ti Indicator variable equal to one for treatment group customers; zero otherwise 
TixI1 Indicator variables equal to one for treatment group customers during the first and 

second CPP events, respectively; zero otherwise 
uit The error of the regression for customer i at time t, which is likely to be correlated 

over time within customers 
 
The simplest way to represent time (time t) is to define the dependent variable as load values 
equal to the average load for each customer during the event hours on each date (for example, 1–
5 PM for each event day), although other specifications of time can also work.  
 
Standard errors for the treatment effects should also be estimated using the “cluster” option 
available as part of the regression function in most statistical packages. By applying this cluster 
option at the customer level, the estimated standard errors of the treatment effects will account 
for correlation in errors at the customer level over time. Failure to use this option can bias the 
standard error of the treatment effects downward, indicating that the confidence interval around 
the estimated treatment effect is too narrow and leading to estimates that appear to be more 
accurate than they actually are. In other words, the level of the estimated parameters is not 
affected, but the variance of the estimates is biased. 
                                                 
18 These customer fixed effects are normally incorporated into the model using a fixed effects estimator, as 
discussed in Appendix A. This fixed effects estimator or its equivalent is contained in many widely used 
econometrics software packages. In estimation, many apply procedures such as generalized least squares (GLS) to 
control for heteroskedasticity.    
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One way to check for errors in analysis or possible underlying inconsistencies in the definition of 
the variables or the dataset is to compare the results from the recommended regression to the 
results of a D-in-D calculation, which can be done based on the information in Table 5. Based on 
Table 4, a D-in-D calculation of b1 is shown in Eq. 4:  
 

Eq. 4: ܾଵ ൌ ሺ1.43 െ 1.05ሻ െ ቀଵ.଴ହାଵ.ଵ଴ିଵ.ଵଵିଵ.ଵଽ
ଶ

ቁ ൌ 0.45 

 
The first term represents the difference between the treatment and control groups during the first 
CPP event; the second term represents the average difference between the two groups during the 
pre-treatment periods.19 A simple estimate of the standard error of the estimate is equal to the 
square root of the sum of the squares of the standard errors of the average difference between the 
pre-treatment and event load in the treatment and control groups. Similarly, a D-in-D calculation 
of b2 equals 0.65.  
 
Because it aggregates observations over time, this method (which is, in effect, ANOVA) of 
calculating b1 and b2 is likely to result in an estimate that is less precise than the value generated 
from the panel data regression model in Eq. 4.20 We are not aware of an analogous secondary 
method for checking the regression standard errors. 
 
The recommended regression in Eq. 4 is based on the assumption that pre-treatment data are 
available, which may not always be true. In this case, it is impossible to adjust for pre-treatment 
differences between treatment and control groups, but it is possible to estimate load impacts 
using load for the control group as a reference load. This will result in a treatment effect estimate 
that is still unbiased but that may be less precise. The appropriate regression specification in this 
case is shown in Eq.5: 
 
Eq. 5: ݈݀ܽ݋௜௧ ൌ ܽ ൅ ܾଵ ௜ܶܫݔଵ ൅ ܾଶ ௜ܶܫݔଶ ൅  ௜௧ݑ
 
Note that here there are no customer-specific constants as there were in Eq.3. 21 In this case, a 
way to check for analysis errors is to compare the results from the recommended regression to 
the results of subtracting the average load in the treatment group during the event from the 
average load in the control group during the event, which could be done with the last two rows of 
Table 4Table 3-1 (that is, excluding the pre-treatment numbers). The standard error of the 
estimate is equal to the square root of the sum of the squares of the standard errors of the average 
load in the treatment and control groups—the typical calculation for estimating standard errors of 
differences. 

                                                 
19 This particular way to estimate b1 is equivalent to the D-in-D estimator given in Equation 3-2, with the exception 
that the event day effects are estimated separately and averaged in the calculation of b1. 
20 It must be remembered that if the regression function in Equation 3-2 is estimated by OLS rather than the fixed-
effects estimator, the results will be equivalent to those in the decomposition table in Appendix A.  
21 This is a direct result of the fact that in order to include customer fixed effects in these models estimated by a 
fixed-effects estimator, any variable that does not differ over time must be included as an interaction term with a 
variable that differs over time. Without the pre-treatment data, the variables tixI1 and tixI2 are constant for each 
customer over time, so if they are included in the regression (as they must be), the “fixed effects” cannot be used. 
See Appendix A for a detailed discussion.  
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One issue that has to be addressed is that most utility billing is done on monthly cycles with bill 
dates that differ across customers. This means that some approximation has to be used to assign 
customer usage values to particular months. A simple method is to assign to a particular month 
all bills that were finalized prior to the middle of the next month and to assign to the next month 
all bills that were finalized after that. The month during which each customer was enrolled in the 
treatment could be excluded from the analysis because it would constitute a partial treatment 
month. A more complicated method that may be more accurate is to assign each day a usage 
value based on the monthly bill divided by the number of days in that billing cycle. Then, each 
daily value can be assigned to the month in which it occurs. For example, if a customer used 600 
kWh in a billing cycle from April 15–May 14, the daily value for each of those days would be 
600 kWh/30 days = 20 kWh/day. That value would then be assigned to the last half of the days in 
April and the first half of the days in May. Again, the month that each customer enrolled on the 
treatment could be excluded. 

3.1.2 Estimation Using an RED 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
We use the same example to illustrate the methods to estimate event-day load impacts when the 
reference load is defined using an RED. Under this RED method, a population of customers is 
still subject to random assignment to treatment and control groups, but the treatment consists of 
an encouragement to take up the rate (as described in Section 2). The encouragement induces a 
correlation between being in the treatment group and being on the rate, which can then be used to 
produce an unbiased estimate of the effect of the rate on the customers who took up the rate 
because of the encouragement (called a local average treatment effect, or LATE). Theoretically, 
even weak encouragement could work for estimating load impacts if sample sizes were large 
enough. However, as a practical matter, it must be the case that 1) a large fraction of customers 
who receive encouragement actually take up the treatment and 2) only a small fraction of 
customers who do not receive encouragement learn of the opportunity and take up the treatment 
on their own (and, in a special case of REDs, control customers who do not receive the 
encouragement are in fact not allowed to take up the treatment if they find it on their own). For 
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this reason, it is important to report these data up front, as is done in Table 6. The table shows a 
(hypothetical) reasonably successful RED in which almost two-thirds of encouraged customers 
took the offered rate and a very small fraction of non-encouraged customers did so.22 In the case 
of an RCT in which treatment customers are allowed to opt-out, the encouraged group consists of 
the treatment group, and the fraction accepting the rate is the fraction that chooses not to opt-out. 
 

Table 6: Percentage of customers in the encouraged and not encouraged groups accepting the rate 
Group Accept Rate (%) Refuse Rate (%) 
Encouraged 65 35 
Not encouraged 2 98 
 
The most straightforward method for estimating load impacts in this case is to perform two 
analysis steps: first, an estimate of the ITT effect of the encouragement and second, a scaling 
exercise to estimate the LATE. To estimate the ITT effect, use the same regression function 
described for RCTs. In this case, the RCT regression (Eq. 3) is altered so that TixI1 and TixI2 are 
equal to unity for any customer in the encouraged group during Critical Peak Events 1 and 2, 
respectively, and zero otherwise. This means that the estimated coefficients on those variables 
represent the effects of a CPP event on customers encouraged to sign up for the rate rather than 
the effect of a CPP event on customers who actually signed up for the rate.  
 
Second, to estimate the LATE, or the effect of the treatment on customers who actually took up 
the treatment because they were encouraged (rather than the effect of only the encouragement), 
the estimated ITT effect for each event (that is, b1 or b2 from Eq. 3) is divided by the difference 
in the fraction of customers who took up the rate between the encouraged group and the non-
encouraged group:  
 

ܧܶܣܮ ൌ ூ்்

%	௢௙	௘௡௖௢௨௥௔௚௘ௗ	௧௛௔௧	௦௜௚௡௘ௗ	௨௣ି%	௢௙	௡௢௧	௘௡௖௢௨௥௔௚௘ௗ	௧௛௔௧	௦௜௚௡௘ௗ	௨௣
   

 
In Table 6, for example, that fraction equals 0.65 - 0.02 = 0.63.23 This is equivalent to scaling up 
the ITT encouragement effect for each event by 1/0.63 = 1.59. Note that this fraction might be 
different for each CPP event if customers decide to sign up for or drop out of the rate between 
events. 
 
The standard error of the LATE estimate can be developed similarly. To do so, we take the 
standard error of the ITT effect estimate and divide it in the same way as the estimate: by the 
difference in the fraction of customers who took up the rate between the encouraged group and 
the non-encouraged group. This calculation illustrates the way in which lower take-up levels in 
the encouraged group lead to inflated standard errors of the treatment effect.  
 

௅஺்ாܧܵ ൌ
ௌா಺೅೅

%	௢௙	௘௡௖௢௨௥௔௚௘ௗ	௧௛௔௧	௦௜௚௡௘ௗ	௨௣ି%	௢௙	௡௢௧	௘௡௖௢௨௥௔௚௘ௗ	௧௛௔௧	௦௜௚௡௘ௗ	௨௣
   

                                                 
22 Note that the numbers in this example are closer to what would be expected from a default (or opt-out) 
encouragement. Opt-in recruiting to a rate would probably produce much lower subscription rates. 
23 Note that in the special case of an RED in which the control customers (the non-encouraged customers) are not 
allowed to sign up for the treatment, LATE is simply the estimate of the ITT effect divided by the fraction of 
customers who signed up for the program out of all of those encouraged to do so. 



41 
 

 
As an alternative to this analysis of first estimating the ITT effect and then scaling it to get an 
estimate of LATE, LATE can be estimated directly using a two-stage instrumental variables 
approach. Taking as an example the hypothetical CPP situation from Table 4, the first-stage 
regressions have as their dependent variables indicators for being on the rate during each CPP 
event and as their independent variables a constant—an indicator for being in the encouraged 
group and indicator variables for each CPP period. Note that the first stage is estimated over all 
time periods, including pre-treatment time periods. The dependent variables in the first-stage 
regressions will equal zero for all customers during all pre-treatment time periods. For treatment 
time periods, there are two variables to be instrumented: being on the CPP rate during the first 
CPP event and being on the CPP rate during the second CPP event. Consequently, we need at 
least two instruments. In this case, there are exactly two instruments: being in the encouraged 
group during the first CPP event and being in the encouraged group on the CPP rate during the 
second CPP event.  
 
The second stage is then the same regression specification as in Eq. 3, but the predicted values 
from the first stage are used instead of TixI1 and TixI2. This system of equations is shown below:  
 
Eq. 6:  

௜ܶܫݔଵ ൌ ܽଵ௜ ൅ ܾହܫாܫݔଵ ൅ ܾ଺ܫாܫݔଶ ൅ ܾ଻ܫଵ ൅ ଶܫ଼ܾ ൅      ௜௧ߝ
௜ܶܫݔଶ ൌ ܽଶ௜ ൅ ܾଽܫாܫݔଵ ൅ ܾଵ଴ܫாܫݔଶ ൅ ܾଵଵܫଵ ൅ ܾଵଶܫଶ ൅ ߳௜௧   
௜௧݀ܽ݋݈ ൌ ܽ௜ ൅ ܾଵ పܶܫݔ෢ ଵ ൅ ܾଶ పܶܫݔ෢ ଶ ൅ ܾଷܫଵ ൅ ܾସܫଶ ൅      ௜௧ݑ
 
This two-stage process may have to be completed more than once if the fraction of customers on 
the rate changed significantly between events. In that case, the same specification holds—but 
only events in which the fraction of customers on the rate stayed nearly constant should be 
included in the same estimation.  
 
The two-stage instrumental variables process should produce estimates of LATE identical to 
those obtained through the first method: estimating the ITT effect and scaling it by dividing by 
the difference in the take-up rate between encouraged and non-encouraged customers.  
 
 

Table 7: Variables in regression Eq. 6 
Variable Descriptions 
loadit Load in kW for customer i at time t 
ai,a1i,a2i Estimated customer-specific additive constant  
b1 Estimated average effect of first CPP event who are on CPP 
b2 Estimated average effect of  second CPP event who are on CPP 
b3 , b4 Estimated effect of each CPP time period on treatment group and control group 

customers 
b5,b6,b9,b10 Estimated effect of the encouragement on CPP take-up during each CPP event; note 

that b6 and b9 should be very close to zero 
b7,b8,b11,b12 Estimated effect of CPP time periods in the first-stage regressions 
I1, I2 Indicator variables equal to one during the first and second CPP events, 

respectively; equal to one for all customers during those events 
IE Indicator variable equal to one for customers in the encouraged group; zero 
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otherwise 
Ti Indicator variable equal to one for treatment group customers; zero otherwise 

૚෣ࡵଙ࢞ࢀ ૛෣ࡵଙ࢞ࢀ,  Fitted values from the first-stage regressions 

uit The error of the regression for customer i at time t, which is likely to be correlated 
over time within customers 

 Error terms in the first-stage regressions ࢚࢏ࣕ	,࢚࢏ࢿ

3.1.3 Estimation Using a Matched Control Group 
 

 
 
 
 
 
 
 
 
 
 
 
If an RCT or RED was not implemented or was implemented unsuccessfully, there is no control 
group to serve as the reference load. One possible remedy is to identify a matched control group 
and then perform the same D-in-D regression analysis described in the sub-section on using an 
RCT for estimation. As mentioned previously, this method is inferior to the RCT or RED designs 
for two reasons: 
 
There may be a very limited set of observable variables to use for matching customers. This 
means that there will probably be noticeable biases between the groups, regardless of the 
matching procedure used. 
 
The use of a matched control group relies on the unconfoundedness assumption; we must assume 
that there are no unobservable variables correlated with both being on the treatment and usage 
behavior.  
 
Regardless of how well the matching procedure appears to work, we can never rule out the 
possibility of unobservable differences between groups producing bias in the results. In the case 
of event-based programs in which the underlying rate in the treatment group is the customer’s 
default rate, if only small differences between the treatment group and the matched control group 
are observed on non-event days that are similar to event days, one may be more convinced that 
the control group is a good reference case and that therefore the bias is small. However, this is 
always a subjective determination: all coefficient estimates and judgments of statistical 
significance become conditional on the unconfoundedness assumption, which is unknowable 
(unless one is specifically testing the level of bias by running an RCT).  
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The matching process uses propensity score matching to identify customers who are not subject 
to the treatment but who have similar characteristics to customers who are subject to the 
treatment. Several similar methods can be used to control for selection (described in EPRI report 
1020855). For the method described here, the matching process leads to resulting (matched) 
control and treatment groups that can then be used in an analysis identical to that for an RCT.  
The matching process attempts to use observable variables such as those listed next to predict 
how likely customers are to participate. Customers who did not choose to participate but who are 
predicted to have a somewhat high propensity to participate are then used as the matched control 
group. 
 
For a study with event-based treatments, propensity score matching is based on the following 
observable variables in order of priority, with the understanding that not all of them will be 
available: 
 

1. Hourly usage at the customer level during the afternoon and evening on hot, pre-
treatment days 

2. If pre-treatment data are not available, hourly usage at the customer level during the 
afternoon and evening on hot, non-event, post-treatment days if the event-based treatment 
is the only treatment the customer is subject to (that is, the underlying rate is not TOU, 
and the customer has not been provided with an IHD or PCT) 

3. Customer-level demographic and location information, such as size of house, income, 
number of people in the household, age, and ZIP code 

4. As a last resort, aggregate-level demographic information such as income, size of house, 
and age, based on census block group data 

Having performed the propensity score match to produce a control group, the regression analysis 
to measure load impacts is the same as that described in the discussion of RCT methods. 
However, again we emphasize that the interpretation of results after a matching exercise is not 
the same as in the RCT case. Standard measures of statistical significance are conditional on the 
unconfoundedness assumption, which is unknowable. In addition to the method described here, 
other methods exist for controlling for selection bias.24  
 
 
 
 
 
 
 
 

                                                 
24 For example, the propensity score, rather than being used to create the control group, may be added as a variable 
in part of the regression. See Imbens and Wooldridge (2009) for this and other examples. 
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3.1.4 Within Subjects Methods 
 

 
 
 
 
 
 
 
 
 
It may not be possible to use treatment-control methods for several reasons. For example, it may 
be the case that smart meter interval data are required to measure and test impacts, and they are 
available only for customers exposed to the treatment. In the case of event-based treatments, a 
reference load model and an estimate of the effect of the treatment can still be produced using 
measured load of the subjects in the treatment group during non-event periods. However, within-
subjects methods require more assumptions than matching methods (as described in Section 2) 
and may therefore be more susceptible to bias because of inaccurate assumptions. These methods 
should be used only if other methods are not possible.  
 
The estimated reference load for an event in this case represents an estimate of what the load 
would have been in the treatment group had an event not been called. The validity of the within-
subjects method relies on two assumptions. First, it assumes that there is a set of non-event days 
that has sufficiently comparable characteristics to the set of event days—so that it is reasonable 
to assume that the only difference in customer behavior during event days and the comparable 
non-event days is that they experienced the treatment in effect during event days (for example, 
the comparable non-event days have similar temperatures and daylight hours to those of the 
event days). Second, if the underlying rate is the default rate in the population, the assumption is 
that customers do not alter their non-event behavior very much as a result of being on the rate. If 
both of these conditions are fulfilled, non-treatment days are an acceptable approximation of 
what the load would have been if the treatment group had never been on the rate. This may 
frequently be the case.  
 
Within-subjects models consist of either panel regressions on only the treatment group or 
regressions run individually for each customer. In each case, event impacts are measured using 
indicator variables for event periods. Although we will not go into the details of this method here 
(there are many industry examples of these types of analysis),25 the following suggestions are 
provided: 
 

                                                 
25 For an example of a within-subjects method, see many of the demand response evaluations published in California 
over the past several years.  For a particular example, see “2010 Load Impact Evaluation of San Diego Gas & 
Electric Company's Summer Saver Program” prepared by the FSC Group and available 
at: http://www.calmac.org/publications/SDGE_2010_Summer_Saver_Load_Impact_Report.pdf Also see EPRI 
report 1023644. 
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 There is little value to including in the data set non-event days in which temperatures are 
far different than event temperatures. Given that CPP days are often the hottest days of 
the summer, a typical problem in this modeling approach is a lack of relevant non-event 
days for modeling. 

 In determining which variables to include and which conditions to attempt to control for, 
it is best to keep expectations modest. The amount of independent variation in weather at 
different times of day over the course of a summer is usually low. The same is true of 
variation in seasonal conditions and day-of-week conditions independent of weather.= 

 The predictive accuracy of any model can be assessed using an out-of-sample testing 
regime26 in which several non-event days with event-like conditions are withheld from 
the model during fitting. Load predictions from the model can then be compared to actual 
load on these days to assess predictive accuracy. The result of this exercise should be 
displayed in graphs. This exercise also limits the potential for over-fitting the model (that 
is, adding meaningless variables). Over-fitting to the out-of-sample days is still possible. 
Whether a model is being over-fit requires some judgment. The question for any given 
variable’s inclusion is this: Is it really plausible that there is enough variation in this 
variable, independent of all of the other variables, for this coefficient to be well-
measured? For example, if we think that morning temperature in particular is a useful 
predictor of CPP impacts in addition to daily average temperature, we need to determine 
whether the data provide significant variation in morning temperature for the relevant 
range of daily average temperatures. 

3.2 Non-event Based Treatments 
 

 
 
 
 
 
 
 
 
As indicated, there are several types of non-event treatments: TOU rates, IHDs, PCTs, some 
kinds of feedback information, educational efforts, and combinations of them are referred to 
generically as treatments in this section.27 Customers are exposed to a treatment upon the 

                                                 
26 Also commonly referred to as cross-validation. 
27 Some feedback mechanisms involve providing customers with a single dose of information designed to help them 
better understand when and how they use electricity; this single dose qualifies as a non-event treatment. Others 
involve providing routine information, which also qualifies as a non-event treatment. Some provide only periodic 
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initiation of the treatment period that provides a motivation to change usage behavior—through 
incentives, by providing more information about usage behavior, or by providing tools that more 
easily allow changes in usage behavior. Furthermore, the treatment is always present after its 
onset rather than only during certain critical events. For these types of treatments, it might be 
reasonable to hypothesize that in addition to leading to a reduction in usage during certain 
targeted times of the day, the treatment might also lead to an overall reduction in energy use and 
to a shift in usage from targeted to non-targeted times of day. We discuss the analysis of both of 
these effects. 
 
In addition to the fact that these treatments are always present, there is another important 
difference between the event- and non-event-based treatments that directly affect the ability to 
measure impacts of non-event-based treatments. The effect of non-event-based treatments on 
usage at any given time is likely to be smaller than that of an event-based treatment during an 
event, in part because what is being measured is the annual change in electricity usage—not 
usage for a few hours of a day. As a practical matter, this means that there are more stringent 
analytical requirements for measuring the effect of non-event-based treatments well enough to 
establish their value. Therefore, a larger sample size may be needed to achieve statistically 
significant estimates. If the price signal (the peak to off-peak price ratio) in TOU rate is quite low 
(3:1 or less), the expected effect on peak period usage is usually 5% or less. The effects of IHDs, 
PCTs, or education are now being tested through pilots and experiments. Early indications 
suggest that total electricity usage changes are less than 5%. The energy conservation effects of 
these programs are also likely to be modest—in the range of 0% to 5% of usage. A synthesis of 
pilot results is available in EPRI report 1025856 (2013).  
 
Given these characteristics, it is unlikely that practically useful estimates of the effects of these 
treatments can be developed using any design other than an RCT or a RED with a low rate of 
non-compliers. As described in Section 2, the assumptions required for using matching or 
within-subjects methods are likely to be less valid with non-event-based treatments. For that 
reason, the discussion is limited to estimating energy use effects and shifting effects based on 
these two experimental designs. 
 
We discuss the estimation of two important load impacts for these non-event-based treatments: 
demand-shifting and energy conservation. Demand-shifting in this context refers to any change 
in usage during particular hours, regardless of whether that usage change is made up for during 
other hours (this may be less likely if the treatment is designed to elicit conservation). This may 
or may not be the case, but an estimation scheme that covers all hours of the day can answer that 
question. 
 
 

                                                                                                                                                             
information that would qualify as a sort of event-based treatment, except that the timing of the treatment is not 
associated with an extreme day of system conditions (EPRI report 1020855). 
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3.2.1 Estimation of Demand-Shifting Using an RCT 

 
 
 
 
 
 
 
 
 
Estimating the demand-shifting effect of these rates based on an RCT is best done using a D-in-
D regression, similar to the one for event-based programs using Eq. 3. It may be of interest to 
measure usage shifting behavior for any particular hour of the day or for a particular block of 
hours. Consider the example in which the interest is estimating the degree to which a treatment 
causes customers to shift usage away from the time period of 1–5 PM on weekdays.  
 
We recommend estimating an effect that is specific to the days and/or months of interest and 
separating the analysis as such. For example, if the target of the treatment is reduction during 
weekdays, weekdays should be separated from weekends; likewise, if summer is the target, it 
should be separated from other seasons. As a secondary analysis, a further separation of days (or 
an inclusion of interaction variables for those categories) may provide insight into the 
effectiveness of the treatment. Specifically, dividing days into at least two categories based on 
weather conditions may be useful if customers may have more scope to shift load at times when 
it is very hot or very cold. Another possibility is to explicitly model effects of weather in the 
model. However, this requires specifying a functional form for weather, which both increases the 
complexity of the model and may lead to misspecification.  
 
In this example, the recommended fixed-effect regression to estimate the effect of the treatment 
under normal conditions during 1–5 PM on weekdays in the summer is shown in Eq. 7: 
 
Eq. 7: ݈݀ܽ݋௜௧ ൌ ܽ௜ ൅ ܾଵ ௜ܶܫݔଵ ൅ ܾଶܫଵ ൅     ௜௧ݑ
 
The load data that should be included in the regression are loads measured at the customer level 
during the periods of interest in that specific regression: in this example, summer weekdays from 
1 to 5 PM. Both the treatment and pre-treatment periods should be included. Separate regressions 
can be run for different combinations of day type, season, and conditions. Similarly, the 
regressions can be run for any time of day to determine the average impact at that time (for 
example, the regression could also be run for every hour except for 1–5 PM to estimate the degree 
to which usage shifted from peak to off-peak).28 
 
 
 

                                                 
28 It is also possible to use interactions of indicator variables to produce these results all at once. However, because it 
is sufficient to use separate regressions, this is not discussed further.  

Identify 
Questions

Select 
Reference 
Load Model

Validate 
Reference 
Load Model

Estimate 
Load 

Impacts

Estimate 
Demand 
Models

Report 
Results

 Event‐based  
 Non‐event 

based 
o Demand 
o Conserva‐

tion

 RCT 
 RED 
 Matching 

 Within 
subjects 

1. Select days and hours of primary interest during the 

treatment and pre‐treatment (for example, peak hours 

on hot days). 

2. Estimate the impact of the treatment and the standard 

errors of the estimates. 



48 
 

Table 8: Variables in regression Eq.7 
Variable Descriptions 
loadit Load in kWh for customer i at time t, including only weekdays in the summer under 

normal conditions 
ai Estimated customer-specific additive constant 
b1 Estimated average effect of the treatment 
b2 Estimated effect of the treatment period for all treatment group and control group 

customers 
I1 Indicator variable equal to one during treatment periods; zero otherwise 
TixI1 Indicator variables equal to one for treatment group customers during the treatment 

period, respectively; zero otherwise 
uit The error of the regression for customer i at time t, which is likely to be correlated 

over time within customers 
 
As an example of the secondary analysis mentioned previously, suppose that the area of interest 
is in the Midwest and that all days are divided into categories normal and extreme, where normal 
is defined as having high temperatures in the range of 25–85°F (4–29°C) and extreme is defined 
as temperatures outside that range. This categorization separates summer days between those that 
are mild and those that are very hot, and winter days between those that are mild and those that 
are very cold. The specification in Equation 3-5 could then be used separately for days in each 
category. 
 
Standard errors of the treatment effect should be estimated using the “cluster” option available in 
most statistical packages as part of the regression function. Applying clustering at the customer 
level will produce estimates of standard errors that account for correlation in errors at the 
customer level over time.  

3.2.2 Estimation of Energy Conservation Using an RCT 
 

 
 
 
 
 
 
 
 
 
 
 
Estimating energy conservation effects of one of these treatments does not require smart meter 
interval data; it can be performed using monthly billing data alone (although using smart meter 
interval data may increase the precision of the estimate). Estimating the overall energy savings 
associated with such a treatment is done using a specification similar to Eq. 7. Suppose that we 
are estimating the energy savings associated with an IHD that has been in place for a treatment 
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group for a year. Also suppose that we have one year of pre-treatment monthly billing data for all 
customers in the treatment group and the control group. To estimate the overall average energy 
savings associated with the IHD during the year-long experiment, we would regress monthly 
usage for each customer for each month onto a customer-specific constant—an indicator equal to 
one during the treatment period and zero otherwise and an indicator equal to one for customers in 
the treatment group during the treatment period and zero otherwise. This specification is shown 
in Eq. 8: 
 
Eq. 8: ݈݀ܽ݋௜௠ ൌ ܽ௜ ൅ ܾଵ ௜ܶܫݔଵ ൅ ܾଶܫଵ ൅    ௜௠ݑ
 

Table 9: Variables in regression Eq. 8 
Variable  Descriptions 

loadim  Monthly usage in kWh for customer i during month m, including only weekdays in 
the summer under normal conditions 

ai  Estimated customer‐specific additive constant 
b1  Estimated average effect of the treatment 
b2  Estimated effect of the treatment period for all treatment group and control group 

customers 
I1  Indicator variable equal to one during treatment periods; zero otherwise 
TixI1  Indicator variables equal to one for treatment group customers during the 

treatment period, respectively; zero otherwise 
uim  The error of the regression for customer i during month  m, which is likely to be 

correlated over time within customers 

 
A common variation on this specification includes indicator variables for each month-year 
combination rather than a single indicator variable for the treatment period—primarily to test for 
persistence of the treatment effect, but also to test for seasonal effects.29 In addition, this 
specification can be adapted to include different estimated effects for each month.  
 
Standard errors of the treatment effect should be estimated using the “cluster” option available in 
most statistical packages as part of the regression function. Applying clustering at the customer 
level will produce estimates of standard errors that account for correlation in errors at the 
customer level over time. 
 
Rather than estimating the model using absolute load values, there might be interest in using the 
logarithm of load as the dependent variable to directly estimate percentage reductions in energy 
usage. Although there may be some value in that exercise,30 we do not recommend it. Instead, we 
recommend estimating the model on raw load values and then converting the estimated effect to 
a percentage of observed usage. Estimating the effect using the logarithm of usage tends to 
equalize the effect of customers with different levels of overall usage. If large customers tend to 
reduce usage much more than small customers as a fraction of their overall usage, this likely 
understates the energy conservation effect in the population. Keeping the dependent variable 

                                                 
29 Alcott, H., “Social Norms and Energy Conservation,” Journal of Public Economics 95 (2011) 1082–1095. 
30 In particular, the time-based and customer-specific indicator variables tend to explain more of the variation in 
usage in a model in which load is converted into logarithmic terms rather than in a linear model. 
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linear avoids this problem. An alternative would be to use the logarithm of usage but to fit 
separate treatment effects for customers based on their overall level of usage. 
 
One issue that has to be addressed is that most utility billing is done on monthly cycles with bill 
dates that differ across customers. This means that some approximation has to be used to assign 
customer usage values to particular months. A simple method is to assign to a particular month 
all bills that were finalized prior to the middle of the next month and to assign to the next month 
all bills that were finalized after that. The month during which each customer was enrolled in the 
treatment could be excluded from the analysis because it would constitute a partial treatment 
month. A more complicated method that may be more accurate is to assign each day a usage 
value based on the monthly bill divided by the number of days in that billing cycle. Then, each 
daily value can be assigned to the month in which it occurs. For example, if a customer used 600 
kWh in a billing cycle from April 15–May 14, the daily value for each of those days would be 
600 kWh/30 days = 20 kWh/day. That value would then be assigned to the last half of the days in 
April and the first half of the days in May. Again, the month that each customer enrolled on the 
treatment could be excluded. 

3.2.3 Estimation of Demand Shifting Using an RED 
 

 
 
 
 
 
 
 
 
 
 
 
 
As above, there are two main ways to develop estimates of load impacts and of standard errors 
for an RED design. The most straightforward method to develop load impacts is to use the same 
regression function described for RCTs to first estimate the ITT effect of the encouragement. In 
this case, the RCT regression (Equation 3-5) is altered so that T is equal to one for any customer 
in the encouraged group during the treatment period. This means that the estimated coefficient 
on that variable represents the effect of the treatment on customers encouraged to take the 
treatment rather than on customers who necessarily took the treatment.  
 
The second step is to estimate the LATE, or the effect of the treatment on those who actually 
took up the treatment (rather than the effect of the encouragement). LATE can be estimated by 
dividing the effect of the encouragement (that is, b1 from Equation 3-5) by the difference in the 
fraction of customers who took up the rate between the encouraged group and the non-
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encouraged group. For example, considering the example in Table 3-3, that fraction equals 0.65 - 
0.02 = 0.63. This is equivalent to scaling up the ITT encouragement effect by 1/0.63 = 1.59.  
As discussed in the event-based section above, to develop standard errors for the LATE 
estimator, the standard error estimates of the TOT encouragement effect can also be divided by 
the fraction of customers who took up the rate in the encouraged group minus the fraction who 
took up the rate in the non-encouraged group. 
 
As an alternative to scaling the regression results of the encouragement, the regression can be 
specified in terms of instrumental variables, with the encouragement during the treatment period 
acting as an instrument for the treatment during the treatment period. Taking as an example the 
hypothetical situation in Equation 3-5 but supposing that an RED was implemented instead of an 
RCT, the first-stage regression has as its dependent variable an indicator for having the treatment 
during the treatment period and as its independent variables a constant: an indicator for being in 
the encouraged group and an indicator variable for the treatment period. Note that the first stage 
is estimated over all time periods, including pre-treatment time periods. The dependent variable 
in the first-stage regression will equal zero for all customers during all pre-treatment time 
periods. The second stage is then the same regression specification as in Equation 3-5 but using 
the predicted values from the first stage in place of T୧xIଵ. This system of equations is shown 
below:  
 
Eq. 9: ௜ܶܫݔଵ ൌ ܽଵ௜ ൅ ܾଷܫாܫݔଵ ൅ ܾସܫଵ ൅   ௜௧ߝ
Eq. 10: ݈݀ܽ݋௜௧ ൌ ܽ௜ ൅ ܾଵ పܶܫݔଵ෣ ൅ ܾଶܫଵ ൅  ௜௧ݑ
 

Table 10: Variables in regression Eq. 9 and Eq. 10 
Variable Descriptions 
loadit Load in kWh for customer i at time t, including only weekdays in the summer under 

normal conditions (but here t is a specified set of hours: those when demand 
measurement counts) 

ai,a1i Estimated customer-specific additive constant 
b1 Estimated average effect of the treatment 
b2 Estimated effect of the treatment period for all customers 
b3 Estimated average effect of the encouragement on treatment take-up 
b4 Estimated effect of the treatment period in the first stage regression 
I1 Indicator variable equal to one during treatment periods; zero otherwise 
IE Indicator variable equal to one for customers in the encouraged group; zero 

otherwise 
Ti Indicator variables equal to one for treatment group customers; zero otherwise 
TixI1 Indicator variables equal to one for treatment group customers during the treatment 

period, respectively; zero otherwise 

૚෣ࡵଙ࢞ࢀ  Fitted values from Eq. 9 

uit The error of the regression for customer i during time t, which is likely to be 
correlated over time within customers 

εit The error in the first-stage regressions 
 
If the fraction of customers on the rate in the encouraged and non-encouraged groups changes 
significantly during the study period, it may be useful to repeat this analysis separately for time 
periods of relatively stable treatment rates. 
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Just as in the RCT case, standard errors should be estimated using the “cluster” option available 
in most statistical packages as part of the regression function. Applying clustering at the 
customer level will produce estimates that account for correlation in errors at the customer level 
over time. 
 
The two-stage process should produce treatment effect estimates identical to those obtained 
through the first method of running an ITT analysis on the encouraged variable and dividing by 
the difference in the take-up rate between encouraged and non-encouraged customers. The two-
stage process will produce slightly different standard errors than the first method, but they are 
unlikely to be materially different.  

3.2.4 Estimation of Energy Conservation Using an RED 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The same basic principles discussed above apply to using an RED to estimate energy 
conservation rather than demand shifting. First, an estimate of the ITT effect can be developed, 
with a variable for being in the encouraged group used in place of the treatment group variable. 
To estimate the LATE (the effect of the treatment on customers who took up the treatment 
because they were encouraged), that estimate can then be scaled by the difference between the 
fraction of encouraged customers who took up the rate and the fraction of non-encouraged 
customers who took up the rate.  
 
Again, standard error estimates can be developed by multiplying the standard error estimates for 
the encouraged variable in the ITT regression on encouragement by the difference in the fraction 
of customers who took up the rate between the encouraged and the non-encouraged group.  
 
As in “Estimation of Demand-Shifting Using an RED” and extending the example by supposing 
that the situation in Eq. 8 is implemented as an RED rather than an RCT, the LATE estimate can 
also be specified by using instrumental variables. The first-stage regression has as its dependent 
variable an indicator for having the treatment and as its independent variables a constant: an 
indicator for being in the encouraged group during the treatment period and an indicator equal to 
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one during the treatment period and zero otherwise. The second-stage regression is the same as 
Eq. 8 but with the fitted values from the first stage used in place of the treatment variable. 
 
Eq. 11: ௜ܶܫݔଵ ൌ ܽଵ௜ ൅ ܾଷܫாܫݔଵ ൅ ܾସܫଵ ൅   ௜௠ߝ
Eq. 12: ݈݀ܽ݋௜௠ ൌ ܽ௜ ൅ ܾଵ పܶܫݔଵ෣ ൅ ܾଶܫଵ ൅  ௜௠ݑ
 

Table 11: Variables in regression Eq. 11 and Eq. 12 
Variable Descriptions 
loadim Monthly usage in kWh for customer i during month m, including only weekdays in 

the summer under normal conditions 
ai,a1i Estimated customer-specific additive constant 
b1 Estimated average effect of the treatment 
b2 Estimated effect of the treatment period for all customers 
b3 Estimated effect of the encouragement on treatment take-up 
b4 Estimated effect of the treatment period in the first stage regression 
I1 Indicator variable equal to one during treatment periods; zero otherwise 
IE Indicator variable equal to one for customers in the encouraged group; zero 

otherwise 
Ti Indicator variables equal to one for treatment group customers; zero otherwise 
TixI1 Indicator variables equal to one for treatment group customers during the treatment 

period, respectively; zero otherwise 

૚෣ࡵଙ࢞ࢀ  Fitted values from Eq. 11 

uim The error of the regression for customer i during month m, which is likely to be 
correlated over time within customers 

εim The error in the first-stage regression for customer i during month m 
 
As in the case of Eq. 8, a common variation would include indicator variables for each month-
year combination. Standard errors should be estimated using the “cluster” option available in 
most statistical packages as part of the regression function. Applying clustering at the customer 
level will produce estimates that account for correlation in errors at the customer level over time. 
 
The two-stage process should produce LATE estimates identical to those obtained through the 
first method of running the ITT regression on the encouraged variable and dividing by the 
difference in the take-up rate between encouraged and non-encouraged customers.  
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4. Models of Price Response 

 
 
 
 
 
 
 
 
 
 
The methods previously discussed are used primarily to estimate load impacts, often defined by 
the reduction in measures of electricity usage such as a percentage of average annual, daily, or 
hourly electricity usage, or by the reduction in usage during certain hours of the day or during the 
system coincident peak demand. These physical measurements estimate the effects of time-based 
rates, enabling technology, and various other treatments on customers’ levels and patterns of 
electricity usage. They reveal very limited information, however, about why or how customers 
respond to the rates or treatments—in particular, the effect of prices—to support drawing 
definitive and universally applicable conclusions about the effects of a single price structure 
compared to the behavioral influences of alternative rate structures. 
 
Moreover, by definition, dynamic rate structures involve rates that change over time; the models 
discussed in Section 3 that measure load impacts are silent about how these changes in prices 
affect customers’ levels and patterns of electricity usage. Measures of price response are a 
critical component in an overall program assessment. Price effects must be accounted for 
explicitly in order to make informed and reliable judgments about the impacts of dynamic 
pricing structures. Utilities routinely use some measure of price response in forecasting 
electricity demand for the purposes of setting rates and capacity planning, and marketing 
departments need this information to recruit customers to alternative rates.  
 
To obtain estimates of price response, it is necessary to estimate electricity demand functions and 
derive from them price elasticities.31 Price elasticities differ from raw measurements of changes 
in electricity consumption (load impacts) in that they measure the percentage change in 
electricity demand resulting from a 1% change in the price of electricity. In other words, the 
measured impact can be tested for significance and extended to treatment levels other than those 
tested.  
 
We turn now to a discussion of the methods used to estimate these price effects. The models of 
price response that are an essential part of an assessment of dynamic rate structures provide 
estimates of two measures of the price elasticity of demand: an own-price elasticity demand for 
electricity and an elasticity of substitution between two time periods of the day.  

                                                 
31 Throughout this discussion, it is assumed that the reader has some background in economics and demand 
modeling. For completeness and to assist those with less background in economics, much of the theory underlying 
the methods and models is provided in footnotes and technical appendices. 

Identify 
Questions

Select 
Reference 
Load Model

Validate 
Reference 
Load Model

Estimate 
Load 

Impacts

Estimate 
Demand 
Models

Report 
Results

 Own‐price elasticity 
o Log‐linear model 

o Semi‐log model 

 Elasticity of substitution  
o CES model 

o GL model 



55 
 

 
The first measure is an own-price elasticity of demand for electricity, or the percentage change in 
electricity usage during some period of time (for example, day, week, billing period, or season) 
that results from a 1% change in the price of electricity during that same period of time. The 
own-price elasticity of demand is characterized by some analysts as a measure of an overall 
effect on usage due to customer’s movement from a fixed rate to a dynamic rate structure. The 
effect may be an increase or a decrease in usage, depending on the pricing structure and how the 
customer values electricity. Because the demand for electricity is expected to rise as the price of 
electricity falls, the own-price elasticity of demand should be negative. 
 
The elasticity of substitution quantifies load shifting between time periods within a day. To 
measure load shifting, most recent studies have adopted a convention of dividing the day into a 
peak and an off-peak period.32 Formally, to characterize the way in which changes in prices 
cause a change in usage across these periods, we estimate an elasticity of substitution between 
the peak and off-peak period—which is defined as the percentage change in ratio of the peak to 
off-peak electricity usage resulting from a 1% change in the ratio of off-peak to peak electricity 
prices.33 By defining the elasticity of substitution in this way (for example, the ratio of off-peak 
to peak price of electricity), positive values of the elasticity of substitution are consistent with the 
underlying theory of demand. As the ratio of the off-peak price falls relative to the peak price, 
this inverse price ratio falls, and the ratio of peak to off-peak usage would be expected to fall as 
well.  
 
The following paragraphs describe the estimation of these two types of price elasticities with 
several examples that involve more than one treatment. In many applications, separate models 
could be specified to estimate the elasticities for each treatment.34 We believe, however, that 
there are advantages to estimating these elasticities by pooling the data and estimating a single 
model when possible. This modeling approach facilitates tests of hypotheses concerning the 
differences in the elasticities across treatments by first selecting a “reference treatment group” 
and then capturing the differential treatment effects by introducing dummy (or zero-one 
categorical) variables for the remaining treatment groups.35 In situations in which there are fewer 
                                                 
32 This peak period is most often defined as a period of hours in which prices in a dynamic rate, such as an RTP rate, 
are generally high. In the case of rates with an overlay option, such as a CPP, the peak period is defined as those 
hours for the CPP event. Defined in this way, this peak period may or may not be coincident with the system peak 
demand.  
33 Because there may be statistical correlations between the equation used to estimate the daily own-price elasticity 
of demand and the equation needed to estimate the elasticity of substitution, the two equations can be estimated 
jointly using a seemingly unrelated regressions (SUR) technique to obtain the most efficient parameter estimators. 
34 Assuming that one has estimates of identically specified regression models for each treatment group, one can test 
for the hypothesis that the regression coefficients that capture the treatment effects differ for any pair of treatments. 
For large, independent samples—and under the null hypothesis that two regression coefficients are equal—the 
difference between the two coefficients divided by the square root of the sum of the two squared standard errors for 
the coefficients follows a standard unit normal distribution (Clogg et al.,1995, pp. 1273–1277).  
35 Gujarati (1970a, b) was among the first to discuss the use of dummy variables to test the equality of pairs, or 
larger sets of coefficients in two or more regressions, where these regressions could be for treatment groups of equal 
or unequal size. This approach is consistent with models estimated using customer fixed-effects estimators, and it is 
also possible to correct for heteroskedasticity within or across treatments using any of several well-known methods 
for doing so (Gujarati, 1970b). Furthermore, it is also well known that the separate regressions for each treatment 
group can be retrieved from a single regression model for all treatment groups combined by adding dummy 
variables for all but the reference group as well as the interaction terms between each of these dummy variables with 
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treatments or just a single treatment, the model specifications are, of course, simpler. Several 
additional examples of alternative specifications of these models used to estimate own-price 
elasticities and elasticities of substitution are provided in the pilot studies reviewed in EPRI 
reports 1023562 and 1024867. 

4.1 Estimating Own-Price Elasticities of Demand 
 
In many empirical analyses of dynamic rates, estimates of own-price elasticities of demand are 
derived from log-linear demand models in which the natural logarithm of average hourly or total 
daily usage is modeled as a function of the natural logarithm of the average of that day’s hourly 
prices. This model is convenient because the coefficient on the logarithm of price can be 
interpreted directly as the own-price elasticity of demand. 
 
In its simplest model specification, the own-price elasticity of demand is constant at all prices 
and usage levels. Despite the fact that a log-linear demand model is a rather ad hoc specification, 
it has nonetheless been used widely in the empirical estimation of demand equations for products 
ranging from agricultural and food commodities and other consumer goods to energy.36 Because 
its application to dynamic rates is typically to estimate very short-run electricity demand models 
(for example, daily demand), prices of substitutes such as other forms of electricity are assumed 
not to vary. In such analyses, there is no reason to consider the demand for more than this single 
product.  
 
Were it necessary, however, to apply this constant elasticity model to a complete demand system 
for more than two products, it would be integrable only if it were generated by an additive 
logarithmic utility function—in which case the own-price elasticities would be equal to minus 
unity, and all cross-price elasticities would be equal to zero (LaFrance 1986). LaFrance (1986) 
goes on to show that a constant elasticity of demand model is only slightly less restrictive for 
incomplete systems of demand equations. Despite these restrictions needed for such a model to 
conform to the conditions required for complete demand systems, the application of a log-linear 
demand model has stood the test of time—particularly as an approximation for forecasting or for 
use in estimating very short-run demand curves in which prices of substitute or complementary 
commodities are unlikely to change. 

4.1.1 The Log-Linear Model 
 
It is instructive to consider a specific example. Let us assume that we have a pooled data set that 
consists of a time series of cross-sections and that there are t = 1,…,n daily observations for each 
customer i = 1,…,m. Let us also assume that there are three rate treatments in this pilot:  

                                                                                                                                                             
each of the regressors in the single equation (for example, Gujarati, 1970b and Clogg et al., 1995). Finally, one can 
still test for the equality of treatment effects across groups even if not all of the interaction terms between the 
dummy variables and the regressors are included in the model. In this case, however, the tests are conditioned on the 
assumption that effects of certain regressors do not differ across groups.  
36 It is ad hoc in the sense that it is not structurally consistent with utility theory, so the interpretation of the 
parameters as elasticities is representative—although not necessarily fully so—of electricity demand.  
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1. Customers in the first treatment face an RTP rate in which the 24-hourly prices are 
announced a day ahead.  

2. Customers in the second rate treatment generally face the RTP prices, but there are a 
certain number of critical peak event days that can be called during the summer months. 
On RTP/CPP event days, Treatment 2 customers pay very high CPP prices during the 
peak hours of the day.  

3. Finally, customers in Treatment 3 face RTP prices on all but the critical event days; 
during the event hours they are paid the high CPP prices to reduce load, called a peak 
time rebate (RTP-PTR). Because prices differ by hour for customers in each of the rate 
treatments, average daily prices will as well.  

Therefore, we can specify a simple log-linear model to estimate the daily own-price elasticity of 
demand for electricity as: 
 
Eq. 13: ݈݊ܭ௧௜ ൌ ߙ ൅ ݈݊ߚ ௧ܲ௜ ൅  ௧௜ݑ
 
where: Kt is the daily demand measured in kWh, and Pti is a measure of the daily price of 
electricity in $/kWh (perhaps the average hourly price on a given day), and uti is an error term.  
 
In this form, the model restricts the own-price elasticity of demand to be constant for every day 
and for every customer, regardless of differences in the weather or in customer or premise 
characteristics. As mentioned, this limitation can be addressed in the model specification by 
adding other variables to the model as interaction terms with the price variable.37  
 
For example, to account for the effect of different weather conditions on the daily demand for 
electricity—and for its effect on price response—we can augment Equation 4-1 in several ways. 
The resulting specification is more complex but complete (for example, Equation 4-2). We begin 
by adding two weather variables. The first, CDti, measures cooling degrees, and it enters as an 
intercept shifter, controlling for differences in daily electricity demand as temperature changes. 
The second, Hti, on the other hand, takes on the binary values of unity for hot days and zero 
otherwise, where a hot day is defined as one in which a heat index is above 85°F (29°C). In the 
specification of the demand equation, this variable is included as an interaction term that 
accounts for a change in the own-price elasticity of demand between hot and cool days.38 

                                                 
37 In this model, one could also include dummy variables to control for the effects of groups of customers or 
customer-specific characteristics. These demand models can include customer fixed effects in a manner similar to 
that used in the models of load impacts. Therefore, if we also exploit the pooled nature of the data and estimate a 
fixed-effects model, the only way to identify the effects of explanatory variables that are time-invariant for each 
customer is to assume that these customer or premise characteristics (for example, AC) affect usage primarily 
through their interaction with treatments and/or factors (for example, weather) that vary over time. Therefore, these 
effects can be captured by the coefficient associated with variables created by constructing interaction terms 
between these types of variables with those variables that represent the various treatments. Although we do not 
specify this model specifically as a fixed-effects model, the model specification is consistent with this way of 
capturing the effects of these customer-specific characteristics. If we were to specify a fixed-effects model, we 
would add a term µi to the model in Equation 4-1 and use a fixed-effects estimator to estimate the model. 
38 The specific construction of these two weather variables is primarily for purposes of illustration and follows 
Boisvert et al. (2007).  
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Next, assume that the binary variable (ACi) takes on a value of unity if the customer has central 
AC, and zero otherwise. Assume further that we suspect that the daily demand for electricity will 
depend on the rate treatment. We can choose the RTP customers as the reference group and 
include (0, 1) dummy variables for customers in the other rate treatments to test the hypothesis 
that own-price elasticities will differ by rate treatment. Therefore, we specify a (0, 1) variable for 
customers on an RTP-CPP rate (CPPi) and another (0, 1) variable (PTRi) for customers on an 
RTP-PTR rate. Finally, we specify a (0, 1) variable (Lowi). If the customer is a low-income 
customer, this variable is unity; otherwise, it is zero.  
 
By including these additional variables in the original model in Eq. 13, the estimating equation 
would now take the following form: 
 
Eq. 14: ݈݊ܭ௧௜ ൌ ߙ ൅ ܿܿሺܦܥ௧ሻ ൅ ሾߚ ൅ ܽܿሺܥܣ௜ሻ ൅ ௧ሻܪሺݐ݋݄ ൅ ܲܥሺ݌ܿ ௜ܲሻ ൅ ሺܴܲܶ௜ሻݐ݌ ൅
௜ሻሿ݈݊ݓ݋ܮሺݓݓ ௧ܲ௜ ൅  ௧௜ݑ
 
To estimate this model, there are now eight variables in the model—one dependent variable, 
 ,௧௜, and seven independent variables: (CDt), lnPti, (ACi)lnPti, (Ht)lnPti, (CPPi)lnPtiܭ݈݊
(PTRi)lnPti, and (Lowi)lnPti.

39 
 
The parameters associated with these variables are evident from Eq. 14. Because the variable 
(CDt) measures the cooling degrees, one might expect that as this variable increases ceteris 
paribus, there would be an increase in the demand for electricity at any price. We would 
therefore expect the estimated value of the coefficient on this variable to be positive, cc > 0, 
shifting the demand curve upward.  
 
To identify the own-price elasticity of demand for electricity, recall that it should be negative. 
We would expect that the coefficient on the logarithm of price, β, would be negative. We can 
identify the effects of the other variables on the daily own-price elasticity of demand as follows.  
Define the effective own-price elasticity of demand as εE. Accordingly, we have:  
 
Eq. 15: ̂ߝா ൌ መߚ ൅ ܽෞܿሺܥܣ௜ሻ ൅ ෢ݐ݋݄ ሺܪ௧ሻ ൅ ෞሺܴܶ݌ܿ ௜ܲሻ ൅ ෞݎݐ݌ ሺܴܲܶ௜ሻ ൅ ෞݓݓ ሺݓ݋ܮ௜ሻ  
 
where the superscript “hat” (^) indicates an estimated coefficient. We might expect customers 
who rely on AC to keep cool on hot summer days to be less willing to reduce load in response to 
a price increase than customers with no AC. Therefore, the own-price elasticity of demand would 
be lower (for example, a negative number closer to zero), implying that ac > 0.  
Furthermore, because customers on both RTP and PTR rates are faced with different, and 
substantially higher, prices during some hours of the day, one might expect these customers to be 
more likely to change daily demand in response to prices—in part because they may be more 
aware of daily changes in prices and so on. Therefore, we might expect the coefficients on these 
two variables to be negative, cp < 0 and ptr < 0, increasing the absolute value of the own-price 
elasticity of demand.  

                                                 
39 Regardless of how these models are estimated (for example, with or without the fixed-effects estimator), standard 
errors should be estimated using the “cluster” option, available in most statistical packages, to account for 
correlation in errors at the customer level over time. 
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If one expects that the customer’s willingness to reduce demand as the price rises is lower on hot 
days, one would expect the coefficient on the variable for Ht to be positive, hot > 0.  
 
Finally, it is a bit more difficult to speculate on the sign of the coefficient on the variable 
representing low-income customers. On one hand, they may be more likely to reduce usage when 
prices rise in order to reduce their bill. However, they may also be less able to do so, relative to 
high-income customers, because they may have an older and less energy-efficient stock of 
appliances or only a window AC unit. For these reasons, the coefficient, ww, could be positive or 
negative.  
 
Based on this discussion, it is clear that these additional factors can work to increase or decrease 
the own-price elasticity of demand. The net effect on this measure of price response will depend 
on the relative sizes of the positive and negative coefficients.  
 
In this model, there are now several separate own-price elasticities of demand (one for each 
combination of values for the six dummy variables included as slope shifters in Eq. 13). As a 
base of comparison, assume that the customer is not low income, is on neither an RTP-CPP nor 
an RTP-PTR rate, and does not have AC. If it is not a hot day, then ACi = 0; Ht = 0; CPPi = 0; 
PTRi = 0; and Lowi = 0. Because all of the dummy variables are zero, the elasticity of demand is 
simply given by: 
 
Eq. 16: ̂ߝா ൌ መߚ  
 
Any of the combinatorial estimates of the elasticity of demand can be depicted in a similar 
fashion. The coefficients that appear in a particular estimate depend on which of the dummy 
variables take on values of unity and which take on values of zero. For illustration, three of the 
possible elasticities of demand are listed next.    
 
If the customer is not low income but is an RTP-CPP customer with AC, and it is a hot day, then 
ACti = 1; Hti = 1; CPPti = 1; PTRti = 0; and Lowti = 0. Therefore: 
 
Eq. 17: ̂ߝா ൌ መߚ ൅ ܽෞܿ ൅ ෞ݌ܿ ൅ ෢ݐ݋݄  
 
If the customer is not low income, is on neither an RTP-CPP nor an RTP-PTR rate and does not 
have AC, and it is a hot day, then ACti = 0; Hti = 1; RTPti = 0; CPPti = 0; Lowti = 0; and EVt = 0. 
Therefore: 
 
Eq. 18: ̂ߝா ൌ መߚ ൅ ෢ݐ݋݄   
 
If it is a hot day, but it is an event day, and the customer has AC, is low income, and is on neither 
an RTP nor a CPP rate, then ACti = 1; Hti = 1; CPPti = 0; PTRti = 0; Lowti = 1; and EVti = 0. 
Therefore: 
 
Eq. 19: ̂ߝா ൌ መߚ ൅ 	ܽෞܿ ൅ ෢ݐ݋݄ ൅ ෞݓݓ  
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In each of Eq. 17, 18, and 19, the net result on the customer’s willingness to reduce load in 
response to price relative to the base or reference case of Eq. 16, as measured by the elasticity of 
demand, depends on the extent to which the sum of the relevant positive effects (for example, ac 
> 0 and/or hot > 0) is partially or totally offset by negative effects (for example, cp < 0 and ptr < 
0), remembering that the sign on the low-income variable, ww, could be positive or negative.  
 
In this example of a daily demand function for electricity, we have focused on only one intercept 
shifter and six slope shifters formed by interaction terms with the logarithm of price. There are, 
of course, several other variables that could logically be included in the demand equation, 
depending on the types of rate and information treatments in the pilot and the type of 
socioeconomic data collected in any customer survey. For example, it may be logical to include 
slope shifters for customers who are given access to enabling technology and/or educational 
information about certain dynamic rates.  

4.1.2 The Semi-Log Model 
 
In addition to the log-linear model of demand, it is not uncommon for analysts to also estimate 
semi-log demand models in which the natural logarithm of usage is regressed on the price of 
electricity—not on the logarithm of the electricity price. This model is distinguished from the 
log-linear model in that the own-price elasticity of demand is a function of the price level (for 
example, the estimated coefficient on the price term multiplied by the price), indicating that 
demand is more elastic at high prices.  
 
These models are also typically specified to include some conditioning variables such as 
intercept shifters and/or as interaction terms with the logarithm of price. By including these 
additional variables, the demand curve  is shifted and/or twisted. Therefore, the own-price 
elasticities in this model will also differ depending on the conditioning variables—such as 
weather, customer or premise circumstances, whether the customer has access to enabling 
technology, and whether it is an event day.40 
 
The semi-log demand model consistent with the log-linear demand model in this example is 
specified below; all variables are defined in the log-linear model above. The model, excluding 
any shifter variables, is given by:41 
 
Eq. 20: ݈݊ܭ௧௜ ൌ ߙ ൅ ߚ ௧ܲ௜ ൅  ௧௜ݑ
Once the additional variables are added to form the respective intercept and slope shifters, the 
model becomes:42 
 

                                                 
40 Examples of such specifications are found in EPRI’s review of recent dynamic rate pilots (EPRI 1023562). 
41 As discussed along with the log-linear model, we can also exploit the pooled nature of the data. If we were to do 
so by specifying a fixed-effects model, we would add a term µi to the model in Equation 4-9 and use a fixed-effects 
estimator to estimate the model. 
42 Again, regardless of how these models are estimated (for example, with or without the fixed-effects estimator), 
standard errors should be estimated using the “cluster” option, available in most statistical packages, to account for 
correlation in errors at the customer level over time. 
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Eq. 21: lnK୲୧ ൌ α൅ ccሺCD୲ሻ ൅ ሾβ൅ acሺAC୧ሻ ൅ hotሺH୲ሻ ൅ cpሺCPP୧ሻ ൅ ptrሺPTR୧ሻ ൅
wwሺLow୲୧ሻሿP୲୧ ൅ u୲୧݈݊ܭ௧௜ ൌ ߙ ൅ ܿܿሺܦܥ௧ሻ ൅ ሾߚ ൅ ܽܿሺܥܣ௜ሻ ൅ ௧ሻܪሺݐ݋݄ ൅ ܲܥሺ݌ܿ ௜ܲሻ ൅
ሺܴܲܶ௜ሻݎݐ݌ ൅ ௧௜ሻሿݓ݋ܮሺݓݓ ௧ܲ௜ ൅   ௧௜ݑ
 
The equation for the own-price elasticity of demand is now as shown in Equation 4-10, where 
the “hat” (^) represents an estimated coefficient: 
 
Eq. 22:  ̂ߝா ൌ ሾߚመ ൅ ܽෞܿሺܥܣ௜ሻ ൅ ෢ݐ݋݄ ሺܪ௧ሻ ൅ ܲܥෞሺ݌ܿ ௜ܲሻ ൅ ෞݎݐ݌ ሺܴܲܶ௜ሻ ൅ ෞݓݓ ሺݓ݋ܮ௜ሻሿ ௧ܲ௜ 
 
Eq. 22 differs from Eq. 15 in that all terms are multiplied by price ( ௧ܲ௜ሻ. Therefore, the own-price 
elasticity of demand for electricity varies directly with the price of electricity; in the log-linear 
model, the own-price elasticity does not depend only on the price but is determined by the price 
structure employed. In this model, there are again several separate own-price elasticities of 
demand—one for each combination of (0, 1) values for the six dummy variables. They are 
formed similarly to Eq. 16 through Eq. 19.  
 
The interpretation of the results would be similar as well. For simplicity, we have used the same 
symbols to represent the coefficients for the variables in the model. However, if both models in 
Eq. 14 and Eq. 21 were estimated from the same data, the estimated parameters would certainly 
differ because the price variable in Eq. 14 is lnPt, whereas the price variable is simply Pt in Eq. 
21. These estimates of the own-price elasticities would differ both because of the different 
parameter estimates and the fact that the price also appears in Eq. 22 but not in Eq. 16.  

4.1.3 Comparison to Load Impact Analysis 
 
In recent dynamic rate pilots, the empirical specifications of these demand models (whether log-
linear or semi-log) employed to estimate own-price elasticities of demand are strikingly similar 
to the specification of models used to estimate load impacts. They share many aspects of their 
mathematical structure and employ the same estimation techniques. The primary distinction is 
the inclusion of prices as explanatory variables in the demand specifications; for this reason, 
some analysts argue that these demand models also provide a better measure of a conservation 
effect of dynamic rates (for example, how the overall or average daily price changes associated 
with a change in relative prices affects total daily energy consumption). 
 
Because of the lack of substitutes for electricity in the short term, these models normally do not 
include the prices for substitute forms of energy. We might also expect estimates of this notion 
of the own-price elasticity of demand to be rather small in absolute value (perhaps relatively 
close to zero). For the most part, the empirical evidence in recent pilot studies, as in past studies, 
confirms this hypothesis.43 
 
Despite this empirical evidence, analysts are often surprised that the measured conservation 
effects (for example, the reduction in daily usage) from these new rates are extremely small or 
that, in some cases, daily demand increases. These results may in fact be consistent with the new 
rate structure, which, in the utility’s attempt to retain the revenue neutrality of the rate, would 

                                                 
43 Again, see EPRI’s review of recent dynamic rate pilots (EPRI reports 1023562 and 1024867).  
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lead to an actual reduction in daily average hourly price of electricity, albeit it a rather small 
one.44   

4.2 Measures of Load Shifting: Estimating Elasticities of Substitution 
 
The elasticity of substitution measures the percentage change in the ratio of electricity usage 
during these peak hours to the electricity usage in these non-peak hours resulting from a 1% 
change in the ratio of the off-peak to peak prices of electricity. (The bold emphasizes the 
different mathematical structure of how price response is portrayed.)  
 
To estimate this measure of load shifting between time periods within a day, one must define the 
peak and off-peak electricity by specifying what hours of the day are assigned to each in addition 
to other sorting criteria, such as whether those periods are applicable to weekends or apply year-
round. In most pilots in which elasticities of substitution are estimated, the peak periods are 
defined for purposes of estimation to coincide with the event hours for the CPP rates.45 
 
To estimate the elasticity of substitution, one can assume that the underlying model of demand 
(derived from a consumer utility function) takes on one of two basic algebraic forms: a standard 
constant elasticity of substitution (CES) model or a more flexible form, the generalized Leontief 
(GL) model. Both the GL and CES models accommodate tests of the null hypothesis that the 
elasticity of substitution is zero. The capacity to test the elasticity of substitution against the 
hypothesis that its value is zero is a particularly attractive feature because some segments of 
residential customers or certain types of commercial and industrial customers are unable or 
unwilling to change electricity usage from one part of the day to another.  
 
The GL model is more flexible in that the elasticity of substitution between peak and off-peak 
electricity can differ among customers as well as daily. This characteristic of the model is a 
distinct advantage if there is good reason to believe 1) that the inherent ability or capacity of 
some customers to shift load is substantially different from that of others and 2) that these shifts 
may be in response to nominal peak prices as well as off-peak to peak price ratios. These 
differences can be masked in CES-type models because they are washed out by averaging out 
individual customer’s measures by enforcing the assumptiom of a constant measure of the 
elasticities of substitution.46 The derivations of the elasticities of substitution for each of these 
demand models are given in Appendix D. 

                                                 
44 Revenue neutrality is achieved when, based on the class average load profile, the conventional rate and the 
dynamic rate yield the same bill for that average level of load. That is, unless customers on the average alter their 
usage on the dynamic rate, they will pay the same. However, this revenue neutrality is premised on the class load. 
Individual customers have a greater or lesser degree of equality in bills depending on their particular load profile 
relative to that of the class average. Accordingly, some may realize an opportunistic gain simply by subscribing—
their bill is lower without responding.  
45 These peak hours may or may not be coincident with the system peak demand. In cases in which the CPP 
customers face an RTP rate on non-event days, the RTP prices are generally higher in these hours than during other 
hours of the day. 
46 In a study of large commercial and industrial customers, Boisvert et al. (2007) found this to be the case. The 
extent to which this may also be true for residential customers is an open question, although in the evaluation of the 
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4.2.1 The CES Model 
 
As its name implies, the elasticity of substitution derived from the CES model is constant, and 
one can estimate the elasticity of substitution by creating a data set of daily observations for all 
customers, and regressing the ratio of peak to off-peak electricity usage on the ratio of off-peak 
to peak prices.47 Through the inclusion of interaction terms between the ratio of peak to off-peak 
prices and other independent variables, the model specification can be enriched to allow for the 
elasticity of substitution to differ by such things as customer or premise characteristics, weather, 
whether a customer is a CPP or PTR participant, and whether the customer has enabling 
technology .48 
 
To illustrate, we discuss a CES model for the elasticity of substitution between peak and off-peak 
electricity usage that is consistent with variables used to generate intercept and slope shifters in 
the example daily demand Equations 4-2 and 4-9. To reiterate, let us assume that we have a 
pooled data set that consists of a time series of cross-sections and that there are t = 1,…,n daily 
observations for each customer i = 1,…,m. Customers in the first of three rate treatments face an 
RTP rate in which the 24-hourly prices are announced a day ahead. Customers in the second rate 
treatment generally face the RTP prices, but there are a certain number of critical peak event 
days that can be called during the summer months. On these event days, Treatment 2 customers 
pay very high CPP prices during the peak hours of the day (RTP-CPP). Finally, customers in 
Treatment 3 face RTP prices on all but the critical event days, but during the event hours they are 
paid the high CPP prices to reduce load—called a peak time rebate (RTP-PTR). Then, we begin 
with the model (as derived in Appendix D):49 
 

                                                                                                                                                             
recent ComEd CAP program, these differences were not large enough to warrant the additional computational 
complexity of the GL model (EPRI report 1023644).  
47 This within-day elasticity of substitution between peak and off-peak electricity can also be estimated using a 
nested CES (NCES) model. This model is unique in that it allocates a customer’s electricity expenditures separately 
within a day and between days. The within-day elasticity of substitution is constant, but it can differ from the 
constant elasticity of substitution between days. In the NCES structure, the between-day elasticity of substitution is 
important if its value differs from that of the within-day elasticity of substitution. If the between-day elasticity is 
larger than the corresponding within-day elasticity on a CPP event day, for example, load is shifted away from event 
days. This would be a questionable result for residential customers whose load during event days is likely to be 
largely discretionary. However, for some commercial or industrial customers who shift load to non-event days to 
make up for lost production, this model may well be appropriate. One early application of this NCES model to large 
industrial customers is by Herriges et al. (1993).  
48 By allowing the elasticity of substitution to differ based on these characteristics, we effectively account for 
differences in the curvature of the indifference curves of the customer’s underlying utility function. As the degree of 
the curvature increases, the elasticities of substitution fall (substitution possibilities are fewer); if they become less 
curved, the elasticities of substitution increase.  
49 In this model, one could also include dummy variables to control for the effects of groups of customers or 
customer-specific characteristics. However, if we also exploit the pooled nature of the data and estimate a fixed-
effects model, the only way to identify the effects of explanatory variables that are time-invariant for each customer 
is to assume that these customer or premise characteristics (for example, AC) affect usage primarily through their 
interaction with treatments and/or factors (for example, weather) that vary over time. Therefore, these effects can be 
captured by the coefficient associated with variables created by constructing interaction terms between these types 
of variables with those that represent the various treatments. Although we do not specify this specifically as a fixed-
effects model, the model specification is consistent with this way of capturing the effects of these customer-specific 
characteristics. If we were to specify a fixed-effects model, we would add a term µi to the models in Equation 4-11 
and use a fixed-effects estimator to estimate the model. 
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Eq. 23:  ln
൫௄೛೟೔൯

ሺ௄೚೟೔ሻ
ൌ ߛ ൅ ߪ ln

ሺ௥೚೟೔ሻ

൫௥೛೟೔൯
൅ ߳௧௜ 

 
where Kpti and Kopi are electricity usages during the peak and off-peak periods, respectively, and 
rti and roti are electricity prices during the peak and off-peak periods, respectively. In this form, 
the model restricts the elasticity of substitution to be constant for every day and every customer 
in all three treatments, and it is equal to σ.  
 
It is also important to note that the price term is expressed as the inverse price ratio. This 
explains why one would expect elasticities of substitution to be positive (for example, σ > 0).50 
That is, in moving from a flat rate to an RTP rate or a TOU rate, the peak price would normally 
be above the flat rate and the off-peak price would normally be below the flat rate. These 
changes lead to a decrease in the off-peak to peak price ratio, which in turn leads to a substitution 
of off-peak load for peak load—resulting in a reduction in the ratio of peak to off-peak load.  
 
We can account for the effect of different weather conditions on the demand for peak and off-
peak electricity by augmenting Eq. 23 with two weather variables. The first, variable (CDt), 
measures cooling degrees, and it enters as an intercept shifter, controlling for differences in peak 
to off-peak usage as temperature changes. Variable Ht takes on the binary values of unity for hot 
days and zero otherwise, where a hot day is defined in some measurable terms, for example, 
when a heat index is above 85°F (29°C). 
 
Furthermore, assume that the binary variable (ACi) takes on a value of unity if the customer has 
central AC and is zero otherwise. We specify a (0, 1) variable (Lowti) if the customer is a low-
income customer, in which case this variable is assigned a value of unity; otherwise it is zero. 
Finally, in this model to estimate elasticities of substitution, it is particularly important to test for 
differences in the effect of various rate treatments on the willingness of customers to shift load 
from peak to off-peak periods. Therefore, we also specify a (0, 1) variable for customers on an 
RTP-CPP rate (CPPi) and another (0, 1) variable (PTRi) for customers on an RTP-PTR rate. By 
adding these variables to the original model in Eq. 23, the model to be estimated is now as shown 
in Eq. 24: 
 
Eq. 24: 

ln
൫௄೛೟೔൯

ሺ௄೚೟೔ሻ
ൌ ߛ ൅ ܿ݀ሺܦܥ௧ሻ ൅ ሾߪ ൅ܽሺܥܣ௧௜ሻ ൅ ݄ሺܪ௧ሻ ൅ cሺܲܥ ௜ܲሻ ൅ ܿሺܴܲܶ௜ሻ ൅ ௜ሻሿlnݓ݋ܮሺݓ

ሺ௥೚೟೔ሻ

൫௥೛೟೔൯
൅

߳௧௜ 
 
To estimate this model, there are now eight variables: one dependent variable and seven 
independent variables along with a constant term γ. 
 

The dependent variable is ln
൫௄೛೟೔൯

ሺ௄೚೟೔ሻ
. The independent variables are as follows:51 

                                                 
50 Some analysts do not invert the price ratio on the right-hand side; this alternative convention results in the same 
estimated numerical value but with a negative sign.  
51 Again, regardless of how these models are estimated (for example, with or without the fixed-effects estimator), 
standard errors should be estimated using the “cluster” option, available in most statistical packages, to account for 
correlation in errors at the customer level over time.  
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ሺܦܥ௧ሻ; 	ln
ሺݎ௢௧௜ሻ

൫ݎ௣௧௜൯
;	ሺܥܣ௜ሻln

ሺݎ௢௧௜ሻ

൫ݎ௣௧௜൯
;	ሺܪ௧ሻln

ሺݎ௢௧௜ሻ

൫ݎ௣௧௜൯
;	ሺܲܥ ௜ܲሻln

ሺݎ௢௧௜ሻ

൫ݎ௣௧௜൯
;	 

ሺܴܲܶ௜ሻln
ሺ௥೚೟೔ሻ

൫௥೛೟೔൯
; ܽ݊݀	ሺݓ݋ܮ௜ሻ݈݊

ሺ௥೚೟೔ሻ
ሺ௥೛೟೔ሻ

  

 
The parameters associated with these variables are evident from Eq. 24. Because the variable 
(CDti) measures the cooling degrees, one might expect that as this variable increases, ceteris 
paribus, there would be an increase in the ratio of the hourly peak to off-peak electricity use and 
the value of the coefficient on this variable is therefore positive, cd > 0. To interpret the other 
variables, it is essential to recognize that they affect the elasticity of substitution in the following 
way. Define the effective elasticity of substitution as σE. We have: 
 
Eq. 25:  ߪොா ൌ ොߪ ൅ ොܽሺܥܣ௧௜ሻ ൅	 ෠݄ሺܪ௧௜ሻ ൅ ܿ̂ሺܲܥ ௧ܲ௜ሻ ൅ ෞሺܴܲܶ௧௜ሻݐ݌ ൅  ௧௜ሻሻݓ݋ܮෝሺݓ
 
where the “hat” (^) indicates an estimated coefficient.  
 
We might expect those customers who rely on AC to keep cool on hot summer days to be less 
willing to shift load off-peak than customers with no AC. The elasticity of substitution would be 
lower, and a < 0. If one expects that the customer’s willingness to shift load from peak to off-
peak falls on hot days, one would expect the coefficient on the variable for (Ht) to be negative as 
well: h < 0.  
 
Because customers on both RTP and CPP rates are faced with higher, and variable, prices during 
peak hours of the day, one might expect these customers to be more willing to shift load from 
peak to off-peak hours. We might expect the coefficients on these two variables to be positive, c 
> 0 and pt > 0, increasing the elasticity of substitution. As with the daily demand model, it is not 
easy to speculate on the “sign” of the coefficient on the variable (Low). In efforts by low-income 
customers to reduce their electricity bill, one might expect them to be more willing to shift load 
from peak to off-peak periods in response to higher peak prices, but their ability to do so may be 
hampered by the nature of their stocks of appliances. The net effect could be determined only 
empirically.  
 
In this model, there are now several separate elasticities of substitution (one for each 
combination of values for the five dummy variables). As previously, we assume the following as 
a base of comparison: 1) the customer does not have AC, 2) it is not a hot day or an event day, 3) 
the customer is not low-income, 4) the customer is not on an RTP-CPP rate, and 5) the customer 
is not on an RTP-PTR rate. Therefore, ACi = 0; Ht = 0; CPPi = 0, PTRi = 0; and Lowi = 0. 
Because all of the dummy variables are zero, the elasticity of substitution is simply given by: 
 
Eq. 26: ߪොா ൌ  ොߪ
 
Any of the other number of separate estimates of the elasticity of substitution can be depicted in 
a similar fashion. The coefficients that appear in a particular estimate depend on which of the 
dummy variables take on values of unity and which take on values of zero. The net result on the 
willingness to shift load relative to this “base” customer, as defined in Equation 4-14, depends on 
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the extent to which the sum of the relevant negative effects (for example, a < 0 and h < 0) are 
partially or totally offset by positive effects (for example, c > 0 and pt > 0 > 0), recognizing that 
the parameter w may be positive or negative. For illustration, three of the possible elasticities of 
substitution are listed next.    
 
If the customer has AC and is on the RTP-CPP rate, and it is a hot day, then ACi = 1; Ht = 1; 
CPPi = 1; PTRi = 0; Lowi =0; and EVt = 1. Therefore: 
 
Eq. 27:   ߪොா ൌ ොߪ ൅ ොܽ ൅	 ෠݄ ൅ ܿ̂ 
 
If the customer is not low-income, is neither on an RTP-CPP rate nor on an RTP-PTR rate, does 
not have AC, and it is a hot day, then ACi = 0; Ht = 1; CPPi = 0, PTRi = 0; and Lowi = 0 = 0. 
Therefore: 
 
Eq. 28:  ߪොா ൌ ොߪ ൅	 ෠݄ 
 
If it is not a hot day, and the customer is on an RTP-CPP rate, is a low-income customer, and has 
AC, then ACi = 1; Ht = 0; CPPi = 1, PTRi = 0; and Lowi = 1. Therefore: 
 
Eq. 29: ߪොா ൌ ොߪ ൅ ොܽ ൅ ܿ̂ ൅  ෝ52ݓ

4.2.2 The GL Model 
 
In contrast to the CES model, the GL model is more flexible in that the elasticity of substitution 
between peak and off-peak electricity can differ by customer and by day. This characteristic of 
the model is a distinct advantage if, as emphasized previously, there is reason to believe that the 
inherent ability or capacity of some customers to shift load is substantially different from that of 
other customers and differs among days—the differences are therefore masked in CES-type 
models because they end up being “averaged” out in the constant measures of the elasticities of 
substitution.  
 
With the added flexibility of the GL model, it is also possible to test whether the elasticity of 
substitution value is zero and also to test if the elasticities of substitution differ by customer and 
by day. The procedures for estimating these elasticities based on the GL model are derived in 
detail in Appendix D. 
 
Flexibility comes at a substantial cost in terms of the computational burden. Because the 
elasticities of substitution can differ by customer and by day, separate equations must be 
estimated for each customer. For this reason, some information is lost by not exploiting the panel 
                                                 
52 In this example of the CES specification of the elasticity of substitution, it is also important to emphasize that, in 
these equations to estimate elasticities of substitution of peak for off-peak electricity, we have again focused on only 
one intercept shifter and five slope shifters formed by interaction terms with the logarithm of price. There are, of 
course, several other variables that could be logically included in the demand equation, depending on the types of 
rate and information treatments in the pilot and the type of socioeconomic data collected in any customer survey. 
For example, it may be logical to include slope shifters for customers who are given access to enabling technology 
and/or educational information about certain dynamic rates.  
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nature of the data. Furthermore, the process begins with the estimation of the ratio of daily peak 
to off-peak expenditure shares using a method of nonlinear least squares. From the results of 
these estimated equations, it is possible to calculate predicted shares and use them in the 
calculation of the elasticities of substitution. As is shown in Appendix D, it is quite easy to 
incorporate weather variables into equations to estimate the expenditure shares; in so doing, the 
elasticities of substitution are also functions of the weather variables.   
 
The GL procedure yields a distribution of daily elasticities of substitution for each customer. 
However, this procedure does not identify any factors other than weather (such as customer and 
premise characteristics, the presence of enabling technology, or education) that explain why 
these elasticities of substitution for each customer differ by day. This can be accomplished by 
estimating another regression model. This second regression is specified by first creating a 
pooled data set that includes the daily estimates of the elasticities of substitution for all 
customers. This data set is then merged with customer-level data for customer and premise 
characteristics, the presence of enabling technology, education, and so on. The estimates of the 
daily elasticities of substitution are then regressed on these various exogenous factors related to, 
for example, customer and premise characteristics.  
 
These procedures for constructing and estimating an additional regression model are also 
developed in detail in Appendix D under the heading of a “meta-analysis.” It is clear that one 
must be convinced that the elasticities of substitution differ substantially across customer and 
time to justify the extra computational burden needed to use estimate elasticities of substitution 
based on the GL model. Such a justification may be more likely in the analysis of large, diverse 
commercial and industrial customers than in an application involving residential customers. 
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5. Summary and Conclusions 

Price and demand response—particularly the latter—have experienced resurgence in the past 
decade.  Widespread utility interest over the past decade to invest in AMI have compelled 
regulators and other policymakers to assess the validity of purported non-operational benefits 
from price and/or demand response enabled by such investments, in part because many prior 
research efforts had not explicitly focused on such types of opportunities in a systematic fashion. 
The new wave of pilots and experiments is designed to quantify the effects of a variety of 
behavioral inducement programs on participants’ electricity consumption patterns.  
In implementing these experiments and pilots, utilities used a variety of design, execution, and 
evaluation methods. These differences have made it difficult to compare readily and usefully the 
conclusions drawn across studies, leaving many important aspects about customers’ use and 
value of electricity unanswered. In response, many policymakers continue the cycle by 
compelling their regulated utilities to undertake their own unique research efforts to characterize 
the way in which behavioral inducements influence electricity consumption (EPRI report 
1025856, 2012).  
 
The potential exists for these initiatives to fill many of these remaining gaps in our knowledge 
and advance our understanding of electricity customer behavior. However, a substantial effort at 
this juncture to provide guidance on the research design, analysis and coordination across studies 
may eliminate any serious methodological shortcomings and avoid the squandering of scarce 
resources which would have resulted in a duplication of effort, missed opportunities, and/or 
misleading findings.  
 
This report strives to define analysis protocols and practices for measuring the effects of time-
based rates, enabling technology, and various other treatments on customers’ levels and patterns 
of electricity usage. The exposition segments programs and their behavioral inducements in 
relation to whether they were event-based or non-event-based to illustrate the differences in 
methodological approaches to designing, implementing, and evaluating pilots that included these 
types of treatments. It focuses on experimental designs that will, in theory, produce the most 
robust estimates of impacts on demand reductions, demand shifting, and/or energy conservation: 
randomized control trials or randomized encouragement designs. However, it also identifies the 
conditions under which alternative impact estimation techniques could be applied. Several 
different models of price response are reviewed as ways to estimate accurately own-price 
elasticities and/or substitution elasticities, important metrics for extrapolating results to price 
levels not directly integrated into the pilot or experiment. 
 

 
 
In addition to using the proper analysis methods, advancing our understanding of how price and 
other inducements alter electricity demand requires that analysts fully report the methods they 
used and the result they produced. This should include, at a minimum, a description of the study 
design, a description of the data, complete details of the empirical specification and econometric 
estimation, and the results derived from the estimated models. Documentation should include the 
following, at a minimum:  

Identify 
Questions

Select 
Reference 
Load Model

Validate 
Reference 
Load Model

Estimate 
Load 

Impacts

Estimate 
Demand 
Models

Report 
Results
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 Description of the sample frame and target population  

 Description of all of the treatments applied 

 Randomization or other assignment methods used  

 Recruitment approach used 

 Number of customers in each step of the enrollment and retention process (that is, the 
number solicited, the number recruited, the number that dropped out initially, the number 
that installed the required technology, and so on) 

 Description of the actual implementation 

Because all of these pilots and experiments rely on analysis techniques to arrive at an impact 
estimate, a description of the data employed in those analysis techniques is likewise critical for 
an outside reviewer to assess the robustness of the results. Specifically, the data description 
should include, at a minimum, the frequency and duration of the data used in the analysis, the 
group of customers for which the data were collected, and any other data (such as demographic 
data) that were collected.  
 
The data description should also describe any data that are missing, imperfect, interpolated, or 
atypical in any way. Customers, dates, and times that were included or excluded should be 
described. Each empirical model should be specified in detail, including precise definitions of 
the reference load, the dependent and independent variables, and the interpretation of any 
coefficients that are to be estimated. At a minimum, these models should include an estimate of 
each rate, technology, and information treatment. 
 
Documenting the statistical procedures used to estimate each model is another vital step in 
garnering credibility for the final set of reported impact estimates. In addition to a general model 
specification, any special treatment of the error structure and/or method of estimating standard 
errors of the estimated coefficients should be reported and a short statement justifying the use of 
these procedures provided.  
 
The results from the estimation of each model should be detailed along with the standard errors 
on the coefficients and the results of any hypothesis tests. We recommend that each estimate be 
reported in the following four standardized formats (where the impact hour is the hour of interest 
for the evaluation, for example, event hours for CPP rates or daily peak hours for TOU rates) for 
ease of comparability across pilots: 

 The average kWh reduction per customer per impact hour (for example, 0.5 kWh per 
weekday peak hour per customer) 

 The average percent energy reduction per impact hour (for example, 40% per weekday 
peak hour per customer) 

 The total energy conservation: the average kWh reduction per customer per month over 
all hours in that month (for example, $0.40 kWh per month per customer) 

 The average percent energy reduction per month over all hours in that month (for 
example, 4% per month per customer) 
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In addition to aggregate load impact estimates, a variety of additional analyses associated with 
these pilots or experiments could be undertaken that would help the industry to better understand 
the expected benefits that could be derived from a full implementation of the elements included 
in the pilot or experiment.  
 
For example, deriving load impact and/or elasticity estimates for different time windows (for 
example, for certain months or certain hours) or durations (for example, first year vs. second 
year) is important for understanding the degree of persistence in a customer’s response. 
Segmenting the load impact and/or elasticity estimates for certain subsets of customers (for 
example, for high-energy usage customers or for low-income customers) helps utility program 
designers and marketing staff to effectively target the program to customers most likely to enroll 
and produce the largest load impacts.  
 
Analyzing customer choice to join the behavioral inducement program and to remain with that 
program over time can help a utility to set reasonable expectations for recruitment and retention 
efforts, which—when taken in conjunction with load impact estimates—can help the utility to 
understand the total load impacts such a program can produce over time. Although not discussed 
here, these types of analyses are vital for the industry to gain a better and more detailed 
understanding of how different subsets of customers make choices to pursue such rates and 
programs and how they respond once exposed to them.  
 
Analysts are charged with conducting the best possible scientifically directed evaluation and 
providing interpretations of the results. An experiment or pilot that is fully evaluated using the 
proper methods is a success, regardless of the outcome.  
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7. Appendix A:Panel Data Fixed-Effects Estimators 
A data set consisting of hourly load data by customer, for many customers, has both cross-
sectional and time-series components that define a panel data structure. In other words, panel 
data provide measurements of certain characteristics (load, in this case) for many of the same 
subjects (customers) over many time periods (hours over the period of the pilot study). 
Comparisons across customers in any time period involve a cross-sectional analysis. 
Comparisons of single customers over time involve a time-series analysis. Panel data methods, in 
contrast, include both perspectives and provide a way to isolate treatment effects among 
customers.  
 
It follows that load impacts for CBS pilots can and should be modeled using methods designed 
specifically for the analysis of data that have this particular panel data structure.53 As suggested 
in the DOE’s TAG guide, Techniques for Estimating Impact Measurements, panel data models 
can be structured empirically to estimate the effects of the three primary types of factors that 
affect customers’ electricity consumption:  

1. Factors that are fixed for the customer over the study time period but that differ 
across customers (for example, household income, dwelling type and size, and 
appliance stock) 

2. Factors that do not vary across customers at any one time but that do differ over time 
(for example, day of the week or hour of the day)  

3. Factors that differ over time but through interactions with factors that are fixed for the 
customer (for example, weather and central air conditioning usage) 

The fixed factors (Item 1) are accounted for in the way in which the model is structured and 
estimation is accomplished, but individual customer effects are seldom explicitly derived. By 
accounting for the effects of the factors that differ over time, panel regression models can 
potentially explain much more variation in electricity consumption than other techniques that do 
not account for the time variation in such factors. Because more of the variation in patterns of 
electricity usage is potentially explained in the panel regression model, it is also likely that the 
estimates of treatment impacts will be measured with greater precision. Moreover, these models 
may correct for bias in the treatment effects by controlling for the effects of otherwise omitted 
variables—the constant customer effects. 
 
Put somewhat differently, most researchers would probably agree that cross-sectional 
heterogeneity reflected in these panel data is likely to be the norm. That is, there are unmeasured 
variables that, at least in part, determine each customer’s electricity consumption; one should 
account for their combined influence. This influence can be captured by specifying a different 
customer effect in a regression model used to explain differences in electricity consumption 
across customers.  

                                                 
53 Wooldridge (2010) argues that for panel data, which consist of repeated observations on the same cross sections 
of individuals, households, or firms over time, the random sampling assumption appears to be too restrictive. There 
ought to be allowance for correlation in firm or household behavior over time. In the analysis of panel data, 
particularly when there are many observations in the cross section over a relatively short period of time, it is often 
assumed that there is random sampling in the cross section but with unrestricted dependence over time.  
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In the econometrics literature, two major types of panel data models have been suggested to 
improve the estimation when faced with this unobservable heterogeneity: a fixed-effects model 
and a random effects model. Each involves a different approach to accounting for the presence of 
a different intercept for each customer (that is, a cross-sectional unit). 
 
According to Allison (2005), Wooldridge explains that in a modern econometric framework, the 
unobserved differences (in this case, among customers) are always regarded as random variables. 
The two models differ in what is assumed about the structure of the correlations between the 
variables that are observed and those that are not. In a random effects model, the unobserved 
variables are assumed to be uncorrelated with observed variables. In fixed-effects models, the 
unobserved variables can have any correlation with the observed variables. The latter 
specification makes it convenient to account for effects of unobserved variables; it is equivalent 
to treating the unobserved variables as fixed parameters embodied in the constant term of the 
specification.  
 
For this reason, the fixed-effects model is also equivalent to a model in which these influences 
are captured by the presence of a separate intercept for each customer through the inclusion of a 
separate dummy variable (which defines the constant of the recession) for each customer. In this 
way, the individual customer effects are measured by the coefficients on customer-specific 
dummy variables in an OLS regression. Although this makes sense conceptually, such an 
application would be problematic because it would require the introduction of a dummy variable 
into the model for each of the customers. For short time periods and with many customers 
(which reduces degrees of freedom in estimation), this may make estimation impossible or erode 
the measures of statistical significance.  
 
This difficulty is avoided through the application of the fixed-effects estimator, which, as 
Kennedy (2010) remarks, is OLS applied to the fixed-effects model. The fixed-effects estimator 
avoids the difficulty in the degrees of freedom through a transformation of the data, 
accomplished by subtracting from each observation (measured variables) for each customer the 
average of the observations for that customer. In so doing, OLS can be applied to the 
transformed data to obtain the desired parameter estimates.54 
 
Kennedy (2008) also points to another major drawback to the fixed-effects model, and it is 
potentially more serious. The transformation of the data involved in the estimation process 
effectively fails to take into account the effects of explanatory variables that do not vary over 
time for an individual customer. This would seem to preclude adding as independent variables in 
the model characteristics that are constant by customer and may have an effect, such as income, 
household size, and premise central air conditioning. This happens because the values of these 
variables have the same value for the customer in every time period. Therefore, when the values 
for each customer for each time period are subtracted from the average across time periods, the 
variables take on a value of zero.  
 

                                                 
54 This fixed-effects estimator or its equivalent is contained in many widely used econometrics software packages. In 
estimating, many apply procedures such as generalized least squares (GLS) to control for heteroskedasticity.    
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Kennedy (2010) goes on to explain that the two drawbacks can be overcome through the 
application of a random effects model in which there is a separate intercept term for each 
customer, but the intercepts are viewed as having been drawn from a pool of possible values. The 
intercept terms are interpreted as random—included in and accounted for in the error term rather 
than the constant of the regression.  
 
The random effects model seems to account for independent variables in the model that do not 
vary over time by customer. However, to test for whether the fixed- or random effects model is 
the most appropriate specification, it is necessary to test whether the random effects estimator is 
unbiased.55 Moreover, because random effects models embody the assumption that all of the 
variables omitted from the regression function have random influence on the dependent variable, 
they are assumed to be uncorrelated with any of the independent variables included in the 
regression. This is a strong assumption; it is justified only when observations have been 
randomly assigned to treatment and control conditions, with no significant attrition in treatment 
or control groups, which defines an RCT. Because these conditions are difficult to achieve in 
practice, this random effects model is rarely used (DOE 2010d). 
 
If the random effects estimator is not unbiased (and, in practice, this would seem likely to be the 
case), the fixed-effects model is appropriate. Moreover, we are again faced with the conundrum 
that we cannot identify the effects of an explanatory variable that is time-invariant for each 
customer when there is no variation to explain. It turns out that the solution to this dilemma is 
rather simple, but only if one is willing to assume that customer or premise characteristics (for 
example, air conditioning) affect usage primarily through their interaction with treatments and/or 
factors (for example, weather) that do vary over time. These effects are captured by coefficient 
associated with variables created with interaction terms between these types of variables and 
those that represent the various treatments.  
 

The Fixed-Effects Model 

This fixed-effects model is being employed in the analysis of dynamic rate pilots, particularly to 
estimate such performance measures as the peak load impacts during CPP events (EPRI 
1024867). Although the specific empirical specifications differ across studies, the fact remains 
that the approach is equivalent to including a separate dummy (0, 1) variable for each 
customer.56 
 

                                                 
55 Kennedy (2010) suggests the following strategy for estimation with panel data. The process begins by testing that 
the null hypothesis that the customer-specific intercepts are equal. If one fails to reject this null hypothesis, the data 
can be pooled. If this null hypothesis, however, is rejected, a Hausman test is applied to test whether the random 
effects estimator is unbiased. If one fails to reject this test, the random effects estimator is used. If the null 
hypothesis is rejected, the fixed-effects estimator is used.  
56 Wooldridge (2010) also contains an excellent discussion of fixed-effects models. He emphasizes that the 
econometrics software that computes the fixed effects rarely reports the “estimates of the individual customer 
effects” (at least in part because there are typically a very large number of them). He goes on to argue that because 
these effects are equivalent to the coefficients on customer-specific dummy variables in an OLS regression, it is 
possible to compute the sample average, sample median, or sample quartiles of these effects to gain some idea of the 
way in which the heterogeneity is distributed across the sample.  
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In its simplest form, this model would include only those independent dummy variables 
associated with the treatment groups. Because the different customer intercepts control for 
effects unique to that customer but constant over the time period, some analysts would seem to 
argue that because of its fixed-effects nature, the model does not need to include unchanging 
customer characteristics such as premise square footage, stock of electrical appliances, and 
household socioeconomic characteristics. Because each customer has a different base load, a 
different response to weather, and different patterns of consumption that change over time, the 
inclusion of these fixed-effects controls for the amount of variance in the model. By including 
fixed (stationary) time effects, the model would also control for differences in consumption 
across days as a result of temperature, sunshine, and any other variable over time factors 
common to all customers for any day.  
 
It is likely that such a model could explain a large portion of the variation in customer load. 
However, because the only included independent variables are for the rate treatment effects and 
the event days, this type of application of fixed-effects approach for measuring load impacts is 
extremely compact and stylized. Although computationally convenient, this formulation is 
shortsighted in that it fails to investigate which exogenous factors (those outside of the control of 
the rate provider) are exerting an influence on customer usage and to measure the size of that 
influence. That influence (or lack thereof) may be the result of particular market conditions in 
which the study was conducted to specific customer and premise characteristics. Failure to 
account for the effects of these factors certainly limits the usefulness of the results, especially in 
other contexts. Without knowing how customer and premise characteristics affect usage, it is 
impossible to use the results to market alternative rates or, for impact distributional 
considerations, to know the effects of rates on socioeconomic groups, such as the elderly or those 
with low incomes.  
 
This shortcoming of the stylized specification of the fixed-effects model, however, does not 
render the fixed-effects structure inappropriate. Rather, we argue that the model should be 
constructed to include the variables necessary to account for the rate treatment effects, the effects 
of prices or price ratios, and differences in important factors such as customer demographics, 
premise characteristics, and weather.  
 
As explained previously, the added complexity can be accommodated within this fixed-effects 
structure if one is willing to assume that these customer characteristics (for example, air 
conditioning) affect usage primarily through their interaction with treatments and/or factors (for 
example, weather) that vary over time. Because this would seem to be a reasonable hypothesis to 
test, the effects of these factors can be captured by the coefficients associated with variables 
created by constructing interaction terms between these types of variables with those that 
represent the various treatments. Furthermore, by constructing the model in this way, we can 
easily add interaction terms to identify the way in which the rate treatments interact with 
enabling technology and socioeconomic and other identifiable customer characteristics to 
determine load impacts. Within an expanded fixed-effects model, the customer fixed effects still 
account for remaining unobserved factors that result in customer heterogeneity.57 

                                                 
57 In Section 4, we discuss models to estimate two measures of price response: an own-price elasticity and an 
elasticity of substitution. These models have been estimated using a panel data fixed-effect estimator. For example, 
the analysts who conducted the evaluation of the recent Baltimore Gas & Electric Smart Energy Pricing Pilot 
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A balanced modeling strategy has the potential to identify or decompose the separate effects of 
these important variables that affect customer load impacts—and the results are important for 
marketing and for understanding important policy implications of alternative rate structures. 
However, the benefits from this more balanced modeling strategy also underscore the need to 
obtain reliable customer-level information that can be combined with the customer load and 
price data. We cannot stress enough the importance of having access to these additional data for 
most—and better still, all—customers in the sample.58 The survey questionnaire must be 
carefully designed to collect what might be the important influences, and there must be a 
concerted effort to administer the survey in a way that ensures a high customer response rate. 
 

                                                                                                                                                             
(Faruqui and Sergici 2009) adopt what we have called here a more balanced approach. They specify a two-equation 
demand system to estimate an own-price elasticity and an elasticity of substitution. In each of the demand equations, 
they include the customer fixed effects to control for customer-specific characteristics that do not vary over time. 
The differences in the price effects across treatments can still be estimated by including interaction terms between 
the appropriate price variables and the dummy variables for the treatments, even though the treatments do not vary 
over time for any customer.  
The analysts of the recent assessment of PG&E’s Smart Rate TariffTM employ an alternative to the fixed-effect 
approach (George and Bode 2008). They estimate time series regressions at the individual customer level rather than 
pooling the data for all customers. In so doing, these analysts argue that they not only capture the effects particular 
to the unobservable characteristics of each customer, but they also allow for the coefficients on the other variables in 
the model to differ by customer. They argue that this strategy leads to results that are more accurate at the customer 
level and that it facilitates the calculation of the effects by customer segments in addition to the average for all 
participants. The strategy does come at the cost of substantial additional computational time. If there are data from 
survey responses on the socioeconomic characteristics of customers and characteristics of premises, one might also 
exploit the richness of the panel data fixed-effects model and still generate many of the same effects using 
interaction terms between treatments, prices, and customer characteristics.  
58 If survey data are collected for only some of the subjects, the data available for this more comprehensive 
assessment of effects are limited to customers for whom there are data. The results may then be valid only for the 
subset of customers, and the ability to generalize to a broader population may be extremely limited.  
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8. Appendix B: Analysis of Variance and/or Covariance 
 
Because the experimental designs of most pilot studies involve a series of treatment and control 
groups, one approach to identify treatment effects is to apply methods of analysis of variance 
(ANOVA) to test for differences in the average electricity consumption of various types (for 
example, average daily consumption and average hourly peak-period consumption) between 
treatment and control groups. 
 
ANOVA is a statistical technique designed to determine whether a particular classification of the 
data is meaningful, such as whether the mean performance measures of impacts differ among the 
various treatment and control groups. The ANOVA test is based on the decomposition of the 
total variation in the dependent variable (the measure of performance) into that resulting from the 
variation between treatments and that from the variation within each treatment. This 
decomposition is used to construct an F statistic to test the hypothesis that the between-treatment 
variation is large relative to the within-treatment variation. This result assumes that the treatment 
classification is meaningful and that there is significant variation in the dependent variable 
between treatments.  
 
An ANOVA test can be conducted in a convenient way through the specification of a dummy 
variable regression model, in which the dependent variable is the impact measure by customer 
and the independent variables are (0, 1) dummy variables for each treatment. These variables are 
assigned a value of unity if the customer belongs to that treatment group, and zero otherwise. As 
Kennedy (2008) points out, the coefficients on the dummy variables are the treatment means, the 
between-treatment variation is the regression’s explained variation, the within-treatment 
variation is the regression’s unexplained variation, and the ANOVA F test is equivalent to 
testing whether the dummy variable coefficients are significantly different from one another. 

Kennedy (2008) further states: “The main advantage of the dummy variable regression approach 
is that it provides estimates of the magnitudes of the [treatment] variations on the dependent 
variables (as well as testing whether the classification is meaningful).”  
 
Within a regression framework, the standard ANOVA test is a joint test that all of the regression 
coefficients for all treatments are not different from zero. Anderson et al. (1999), for example, 
provide a simple demonstration that one can also generate these standard ANOVA results from a 
linear regression model in which the explanatory variables are dummy (0, 1) for n-1 treatments. 
The test of the joint null hypothesis that the means of the performance measure (for example, the 
dependent variable) are no different across treatments is an F test for the regression line.  
For example, assume that the model has M customers, each assigned to one of N treatments. If, 
for simplicity, there are three treatments (that is, N = 3), we can say that Treatment 3 is the 
control group. We define two (0, 1) variables for two of the treatments; recall that we need only 
define N-1 dummy variables. The regression model is as follows: 
 
Eq. B-1: ௜ܻ ൌ ଴ߚ ൅ ଵߚ ଵܺ௜ ൅ ଶܺଶ௜ߚ ൅  ௜ߝ
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where Yi is electricity use during some time period for customer i, X1i is 1 if customer i is in 
Treatment Group 1 and zero otherwise; X2i is 1 if customer i is in Treatment Group 2 and zero 
otherwise; and εi is an error term. The coefficient β0 is the expected value of Y for those 
customers in Treatment 3, perhaps the control group, while β0 + β1 is the expected (mean) value 
of Y for customers in Treatment Group 1, and β0 + β2 is the expected (mean) value of Y for 
Treatment Group 2.  
 
If, as in ANOVA, we want to test the null hypothesis that there are no differences in the means 
of Y across the groups, this is equivalent to a joint test of H0: β1 = β2 = 0. This is a test of the 
significance of the regression relationship itself. To perform the test, we compute the ratio of the 
mean between-group sum of squared errors and the mean within-group sum of squared errors. 
This ratio follows an F distribution with degrees of freedom (N-1, M-2). If one fails to reject the 
null hypothesis, it is unlikely that we would reject the null hypotheses for both of the individual 
coefficients on a treatment variable based on the standard t-tests of individual regression 
coefficients.  
 
Kennedy (2008) goes on to explain that the analysis of covariance (ANCOVA) is an extension of 
ANOVA designed to handle situations in which there are some uncontrolled variables that 
cannot be standardized between treatments. Although these situations can still be modeled using 
dummy variables to capture the treatment classification, in this case we regress the dependent 
(performance) variable on both the treatment dummy variables and the other uncontrolled 
variables. In so doing, the F test for the ANCOVA is equivalent to testing whether the 
coefficients of all of the dummy variables are statistically significantly different from one 
another.  
 
By constructing the models in this way, the observable factors that cannot be standardized 
between treatments can be used to explain some of the variation in electricity consumption 
within any particular cross section. These effects are in addition to the effects of the (0, 1) 
variables that account for the presence or absence of a particular treatment. Through the 
construction of interaction terms between these additional variables and the treatment indicator 
variables, the regression equations can include unique slope parameter(s) as well as intercept 
parameters for the treatment and control groups. If any of the slope parameters for the treatment 
and control groups is not significantly different from zero, the differences in the intercepts can be 
interpreted as the treatment effects. If this is not the case, one must conclude that the impacts of 
the treatments are affected by the interaction between the treatments and the other observable 
factors (for example, household or premise characteristics) because the slopes—as well as the 
intercepts for the two groups—are different. 
 
The incorporation of covariates related to customer circumstances to control for some cross-
sectional variation in the performance measures may improve the efficiency of the estimation of 
the impact on electricity consumption, in particular if the other factors are influential.  
However, it can also be argued that that even these ANCOVA models still fail to take advantage 
of the efficiency gains in estimation made possible by using the additional data and information 
being collected as a result of the panel structure of the data (for example, DOE 2010d). By using 
this additional information, one may capture the effects of variables that change over time. The 
ability to exploit the panel structure has been enhanced dramatically in recent years as a result of 
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the advances in our understanding of the econometrics of panel data and the development of 
software that facilitates the estimation of these panel data models. 
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9. Appendix C: Measuring Treatment Effects – Difference-in-Differences Estimator 
 
Under ideal conditions in conducting rate pilots, we will have access to hourly load data for all 
customers in the rate treatments as well as similar data for all customers in a valid control group. 
Furthermore, if the hourly load data for both treatment and control groups are for time periods 
both before and after the beginning of the treatment, we can use the pooled cross-sectional data 
to isolate and quantify the effects of these rate treatments on one or more measures of load 
response as mentioned above.  
 
In the econometrics literature, models that exploit the richness of the data contained in pooled 
cross-sectional data sets with these characteristics are often discussed within the general context 
of policy analysis, and the focus in on what has become known as a difference-in-differences 
estimator.59 In unpublished lecture notes, Imbens and Wooldridge state that the simplest set up is 
one “where outcomes are observed for two groups for two time periods. One of the groups is 
exposed to a treatment in the second period but not in the first period. The second group is not 
exposed to the treatment during either period. In the case where the same units within a group are 
observed in each time period, the average gain in the second (control) group is subtracted from 
the average gain in the first (treatment) group.”  
 
In our case, we would be interested in the differences in the energy usage or demand for 
electricity “(before and after treatment) between consumers who have been randomly assigned to 
a given combination of pricing and/or information and automation/control technology and a 
control group that was not exposed to the combination” (DOE 2010d). If we let Ygti equal our 
measure of electricity consumption for customer i = 1,…, I in group g = c (control), m 
(treatment) and time t = 1 (pre-treatment), 2 (post-treatment), the difference-in-differences (D-in-
D) measure of the impact of the treatment can be given by Eq. C-1:  
 
Eq. C-1: ଓ݉ݐܿܽ݌ෟ ௗି௜௡ିௗ ൌ ൫ തܻ௠,ଶ െ തܻ௠,ଵ൯ െ ൫ തܻ௖,ଶ െ തܻ௖,ଵ൯ 
 
where തܻ௚,௧ is the average electricity consumption for individuals in group g and time period t. We 
simply compute the changes in the average consumption over time for each of the two groups 
and then we calculate the difference between these changes. Because the order in which the 
differences are taken does not matter, we could alternatively compute the differences in the 
averages between the two groups in each time period and then calculate the difference over time. 
This leads to an equivalent expression for the estimated impact:  
 

                                                 
59 The methodology applied to before and after the treatment panel data sets also has numerous applications when 
the data are generated from some natural or quasi-experiment. Wooldridge (2006) suggests that a “natural 
experiment occurs when some exogenous event—often a change in government policy—changes the environment in 
which individuals, families, firms, or cities operate” (p. 458). Therefore, a natural experiment always has a control 
group (for example, those not affected by the policy change or other exogenous event) and a treatment group (for 
example, those affected by the change in policy or the exogenous event). However, in the case of a natural 
experiment, the control and treatment groups are determined by the nature of the exogenous event or policy rather 
than being randomly and explicitly chosen, as in a true experiment.  
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Eq. C-2: ଓ݉ݐܿܽ݌ෟ ௗି௜௡ିௗ ൌ ൫ തܻ௠,ଶ െ തܻ௖,ଶ൯ െ ൫ തܻ௧,ଵ െ തܻ௖,ଵ൯ 
 
The null hypothesis that there are no differences in electricity consumption between the two 
groups can be tested using a simple t-test or through ANOVA. Although this D-in-D estimator is 
easy to calculate, it is unlikely to be of much use in this simple form for studying changes in 
electricity consumption. It suffers from the same limitations as other ANOVA analyses because 
electricity consumption differs greatly among randomly selected consumers. These differences 
are the result of customer and premise characteristics such as dwelling size, household size, 
occupancy patterns, and appliance holdings. 
 
This D-in-D estimator can also be developed within a linear regression framework; we can 
demonstrate how this model can be expanded to overcome several of its limitations. The 
regression model is for any generic customer in any of the groups:  
 
Eq. C-3: ܻ ൌ ଴ߙ ൅ ଶܦ଴ߜ ൅ ௠ܦଵߙ ൅ ௠ܦଶܦଵߜ ൅  ߝ
 
where D2 is a dummy variable that takes on a value of unity if the observation is from the second 
(post-treatment) period and zero otherwise, and Dm is a dummy variable that takes on a value of 
unity if the observation is for a member of the treatment group and zero otherwise. Therefore, the 
treatment variable Dm captures any differences in consumption between the treatment and control 
groups, while 0, the coefficient on the time period variable D2, captures the effect on Y that 
would have occurred even without the rate treatment. Finally, the coefficient of interest is 1 
because it defines the interaction between the time period and the treatment dummies, D2 Dm, 
which is the same as a dummy variable equal to unity for those post-treatment observations for 
customers in the treatment group. Therefore, 1 is often called the average treatment effect 
because it measures the effect of the treatment on the average outcome of Y. Because the 
coefficients on dummy variables in regression models capture differences in mean outcomes for 
a particular group, this coefficient is equivalent to the measure in Eq. C-1 and C-2. The 
regression model in Eq. C-3 is often decomposed as in Table C-1, which measures before and 
after the treatment for both the control and treatment groups and for the differences.  

Table C-1: Before and After the Treatment for Control and Treatment Groups 

 Before After After - Before
Control α0 α0+δ0 δ0 
Treatment α0+ α1 α0+δ0+ α1+δ1 δ0 +δ1 
Treatment – Control α1 α1+δ1 δ1 
 
When viewed as a linear regression model, it is easy to envision how this model that generates 
the D-in-D estimator can be extended to account for differences in electricity consumption 
among randomly selected consumers resulting from customer and premise characteristics such as 
dwelling size, household size, occupancy patterns, and appliance holdings. The strategy is simply 
one of adding covariates to the model that reflect these differences in customer and premise 
characteristics. This more general model is now as shown in Eq. C-4: 
 
Eq. C-4:  ܻ ൌ ଴ߙ ൅ ଶܦ଴ߜ ൅ ௠ܦଵߙ ൅ ௠ܦଶܦଵߜ ൅ ∑ ௝ܨ௝ߛ

௃
௝ୀଵ ൅  ߝ
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where Fj is the jth customer or premise characteristic (for example, dwelling size, household size, 
occupancy patterns, or appliance holdings) for a representative member of any group, and other 
variables are defined as above. The only caution in interpreting the results of this more robust 
model is that the OLS estimates of 1 no longer has the simple form as depicted in Eq. C-1 or C-
2, but its interpretation is similar (Wooldridge 2006, p. 459). 
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10. Appendix D: Electricity Demand Models to Estimate Load Shifting 

10.1 Conceptual Models for Electricity Demand 
 
Our methodologies for estimating the effects of alternative electricity rate structures and enabling 
technologies on electricity usage are based on the neoclassical theory of customer behavior. As 
suggested by Caves and Christensen (1980b, c) and others in their analyses of early electricity 
pricing experiments, such an approach ensures that the empirical specification of the estimated 
demand equations is consistent with the maximization of customer utility (for example, 
satisfaction) subject to a budget constraint and that the estimated demand elasticities are 
internally consistent.  
 
Further, by placing certain restrictions on the form of the utility function, it is possible to 
conceptualize the analysis in stages. This is important for several reasons. Residential customers 
purchase electricity along with a large number of commodities, including other types of energy 
and products such as housing, transportation, clothing, food, health care, education, and 
recreation. Within each of the major categories, expenditures are allocated among the 
subcomponents of each—for example, among meat, vegetables, and grains in the food category.  
 
However, as a commodity, electricity is unlike most others. Because it is not storable, it is 
generally purchased continuously throughout the day on an as-needed basis. Equally important, 
electricity is not consumed directly by customers. Rather, its demand is a derived demand 
because customers derive satisfaction (for example, utility) from the services that come from 
electrical appliances. Therefore, the satisfaction from purchases of electricity is embodied in the 
derived demand for distinct services such as lighting, HVAC, electronic devices, ovens, and 
refrigerators. In the short term, a utility customer’s demand for electricity is conditioned by an 
existing stock of electricity appliances. As suggested by much of the research into the value of 
feedback information, the demand for electricity may well be further conditioned by the 
availability of advanced metering infrastructure (AMI) technology and education (for example, 
Boisvert et al. 2009).  
 
By viewing the analysis of electricity demand in stages, we can distinguish at a minimum 
between a customer’s allocation of electricity purchases among different time periods from the 
allocation of total income or expenditures between electricity and other nondurable goods and 
services in any time period. Beyond the transparency it brings to the analysis, Caves and 
Christensen (1980b) argue that it is desirable, if not essential, to analyze the allocation of 
electricity expenditures in stages because of the availability of data.  
 
As in other experiments with time-differentiated electricity rates, the pilot involving the five rate 
treatments in ComEd’s CAP provides extensive data on electricity use and rates as well as some 
data on structure characteristics and appliance stock—but very little, if any, information on the 
purchase of others goods. At best, there are likely to be only crude estimates of income. By 
focusing exclusively on electricity use while disregarding income and the customer’s total 
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budget, we can make good use of the detailed data from the pilot. However, in so doing, our 
estimates of the important demand elasticities are only partial elasticities.  
 
As explained in more detail next, implicit in this two-stage analysis is the assumption that 
electricity is separable in the customer’s utility function.60 Accordingly, the customer’s 
budgeting process can be viewed as proceeding in two stages. Because we are especially 
interested in the incentives that dynamic rates provide for shifting load between high- priced and 
low-priced times of the day, much of our focus is on the first stage of the process in which we 
can characterize the allocation of electricity use by time-of-day. Although the elasticities from 
this stage are partial elasticities of substitution and partial price elasticities, they have several 
useful interpretations that are also discussed next.61 

10.2 Conditional Demand for Electricity 
In modeling the customer’s allocation of daily electricity for several rate treatments that differ by 
hour, it is conceptually possible to model each hour of the day. For purposes of discussing the 
modeling framework, however, it is sufficient to examine the allocation of electricity 
consumption between high-priced (peak) hours and low-priced (off-peak) hours.62 This issue is 
addressed in detail next.  
 
Because this modeling framework measures the amount of load shifted from peak to off-peak 
periods, it is particularly appropriate to analyze rates that differ by time of day, regardless of 
whether the rate involves fixed time-of-use (TOU) rates or rates that have a dynamic aspect such 
as day-ahead real-time pricing (DA-RTP) or critical peak pricing (CPP). The model may also 
offer limited information about overall energy conservation.  
 

                                                 
60 The critical assumption underlying the “separability” of consumption is that an individual’s preference between 
two collections of goods that differ only in the components of one subset of a category are independent of the 
identical other components of another category. In addition to its intuitive appeal, this assumption of separability 
allows for the identification of conditional demand functions for goods in any category. These conditional demand 
functions can be defined for when one or more goods is pre-allocated. In general, a conditional demand function for 
a good in the remaining subset that is not pre-allocated expresses the demand for that good as a function of 1) the 
prices of all goods in the subset of goods not pre-allocated, 2) total expenditures on the subset of goods, and 3) the 
quantities of pre-allocated goods (for example, Pollak 1971, p. 424).  
61 The primary focus of empirical analysis of the demand for electricity is on estimating the elasticity of substitution 
between peak and off-peak electricity demand and how this differs for customers across rate treatments. This 
elasticity of substitution is often denoted by σ, and in our case it measures the substitution effect quantified by the 
percentage change in the ratio of peak to off-peak electricity use caused by a 1% change in the ratio of off-peak to 
peak electricity prices. In conducting the empirical analysis, we do, however, also obtain estimates of the conditional 
own-price elasticities of demand for peak and off-peak electricity. These are defined as the percentage changes in 
peak (off-peak) electricity use caused by a 1% change in the price of peak (off-peak) electricity. These own-price 
elasticities are estimated primarily to check that the estimated models are consistent with demand theory. They do 
offer some measure of demand response in a particular time period to changes in the price in that period, but they 
must be interpreted with care. Because we have no data on customers’ income, our estimated own-price elasticities 
of demand for peak and off-peak elasticity are measured conditional on the level of a customer’s utility remaining 
unchanged.  
62 The use of the terms peak and off-peak is primarily for convenience and distinguishes between hours in which 
prices are generally high and those when they are low. This division of hours may or may not correspond with the 
system peak.  
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In contrast, this model of the first-stage decision process is not sufficient to examine rates such 
as an inclining block rate (IBR) because prices under this rate do not vary by time of day. The 
price varies by the quantity consumed. The primary decision of customers under the IBR rate 
involves how much electricity to consume during the billing period rather than how much 
electricity to consume at different hours of the day. Through its inclining block, the IBR rate 
embodies an incentive to reduce overall electricity consumption; the critical part of the 
customer’s choice is the selection of the block within which to consume the last unit of 
electricity. A discussion of the framework necessary to study customer price response under an 
IBR rate is beyond the scope of this appendix.  

10.3 Modeling Customer Response to Prices that Differ by Time of Day 
Electricity uses in two distinct daily periods (for example, peak and off-peak) may be valued 
differently by the customer. Peak and off-peak electricity consumption may also be 
complementary goods so that the customer demands electricity during the two periods in nearly 
fixed proportions (for example, Taylor et al. 2005 and Boisvert et al. 2007). To capture these 
ideas in a demand model, we specify a customer’s utility function that is separable in electricity 
commodities as:  

  opn kkUxxxVV ,,,...,, 21  

where V is the utility function of the customer, xi
 
is the goods and services other than electricity 

consumed, and kp
 
and ko

 
are the amounts of electricity consumed in peak and off-peak periods, 

respectively. Electricity is assumed to be separable in consumption from other goods and 
services. Therefore, the sub-function U(kp,ko) represents a sub-utility function for the customer; it 
reflects the fact that a customer can attain a given level of satisfaction from electricity 
consumption by consuming different amounts of peak and off-peak electricity that together yield 
a given level of utility or satisfaction, say U0.  
In studying the impact of dynamic rates, it is important to measure the customer’s load shifting 
from peak (or event) hours to off-peak (non-event) hours. This is accomplished by estimating an 
elasticity of substitution, defined as the percentage change in the ratio of peak to off-peak usage 
resulting from a 1% change in the ratio of off-peak to peak prices. Because this change in the 
ratio of usage is related to the change in the inverse price ratio, the sign of the elasticity of 
substitution is expected to be positive.  
The estimated elasticity of substitution is consistent with conventional demand models for 
electricity, and there are two empirical specifications that dominate the empirical studies. One is 
based on a constant elasticity of substitution (CES) demand model, and (as its name suggests) the 
estimated elasticities of substitution are constant—they do not depend on the nominal levels of 
prices.63 
 
In contrast, the elasticity of substitution can also be estimated based on the application of the 
generalized Leontief (GL) demand model. This model is much more flexible than the CES 
model, and through its application the estimated elasticities of substitution can differ depending 
on the nominal prices of peak and off-peak electricity. Although this flexibility may be more 
important in the study of some dynamic rate designs than others and more critical for some 

                                                 
63 As indicated below, the elasticities of substitution based on the CES model can, however, differ based on weather 
or customer or premise characteristics. 



92 
 

customer classes than others, its application is not without its risks: this flexible-form demand 
function imposes virtually no structure on the underlying demand system. Based on the GL 
specification, we can control for each customer’s typical load profile and for the effects of 
weather. These customer-specific regressions provide estimates of the elasticities of substitution 
that differ by day. 
 
Although this GL model has some attractive features and accommodates differences in 
elasticities of substitution by customer and by day, the computational burden in its application, 
relative to the CES model, is substantial. Therefore, before adopting this approach, it is important 
to determine whether such a flexible form is needed and that the computational complexities are 
therefore justified. 
 
It is primarily for this reason that we begin this appendix with a discussion of the CES model. 
The major limitation of this model in its simplest form is that the elasticities of substitution are 
constant at all data points. However, in any demand model specification, it is important to 
include some non-economic variables, such as those reflecting differences in daily or hourly 
weather conditions. With this in mind, some of the limitations imposed by the CES model can be 
overcome. By being able to account for differences between normal days and event days through 
the specification of categorical variables, we can also go part way toward allowing the 
elasticities of substitution to differ on the basis of the peak to off-peak price ratio. We outline 
such an alternative next.  

10.4 The CES Model 
To develop this model, we begin by assuming that the customer’s separable, sub-utility function, 
U, for the consumption of electricity is given by:  
 

Eq. D-1:    
/1

)1(
  op KKAU  

 
where Kp and Ko are consumption of peak and off-peak electricity, respectively, and A, δ, and ρ 
are parameters to be estimated. Furthermore, assume that the peak and off-peak prices for 
electricity are rp and ro, respectively, and that the customer’s electricity budget is B. The 
customer’s decision problem is to maximize utility from the consumption of peak and off-peak 
electricity subject to the budget allocated to electricity consumption. That is, it is to maximize:  
 

Eq. D-2:   ][)1(
/1

ooppop KrKrBKKAL 
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Chang and Wainwright (2005) derive convenient expressions for the partial derivatives of utility 
with respect to the two goods—in our case, peak and off-peak electricity. Using their results, the 
first-order necessary conditions for a maximum are:  
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Then, forming the ratio of the first-order conditions (Equations D-3 and D-4), we have: 
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After some reorganization, Equation D-6 reduces to:  
 

Eq. D-7: 
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10.4.1 Identifying the Elasticity of Substitution 
By raising both sides of Equation D-7 to the 1/(1+ρ) power, we solve for the ratio of peak to off-
peak electricity consumption as a function of the ratio of off-peak to peak prices:  
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Chang and Wainwright (2005) show that σ = 1/(1+ρ) is the elasticity of substitution—in our 
case, the percentage change in the ratio of peak to off-peak consumption resulting from a 1% 
change in the off-peak to peak price of electricity. By taking the logarithm of this equation and 
substituting σ for 1/(1+ρ), we can confirm this interpretation of σ: 
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64 It is well-known that the CES model is self-dual in the sense that an indirect utility function that could be derived 
from the maximization problem in Eq. D-2 has the same algebraic form as the direct utility function in Eq. D-1. 
Therefore, if one began this derivation with a dual indirect CES utility function, Eq. D-9 still depicts the relationship 
between the ratio of peak to off-peak electricity use and the inverse price ratio. 
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10.4.2 The Estimating Equation  

By letting 
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ln , we can simplify the expression to: 
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Although we cannot obtain an estimate of δ, we are able to add an error term, u, to this equation 
and obtain an estimate of the elasticity of substitution, σ, by ordinary least squares. Although we 
suppress the subscript i = 1,…,m to indicate the individual customer, let us assume that we have 
a pooled data set that consists of a time series of cross sections and that there are t = 1,…,n daily 
observations for each customer, i = 1,…,m. 
 
To simplify the algebra, let us assume a slightly simpler model than the one discussed in the text. 
That is, let us assume that there are only two rate treatments in this pilot. Customers in the first 
treatment face a real-time pricing (RTP) rate in which the 24-hourly prices are announced a day 
ahead. However, although customers in the second rate treatment generally face the RTP prices, 
there are a certain number of critical peak event days that can be called during the summer 
months. On these event days, Treatment 2 customers pay very high CPP prices during the peak 
hours of the day (call the rate RTP-CPP). Then, we can begin with the model: 
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for every customer regardless of the rate treatment. However, as demonstrated previously, we 
can account for the effect of several different exogenous conditions and customer and premise 
circumstances by enriching the model with additional variables. 65 At the end of this discussion, 
we illustrate the way in which these estimates of the elasticities of substitution can also be used 
to estimate t constant utility, and cross-price elasticities of demand for peak and off-peak 
electricity usage. For this demonstration, it is sufficient to specify a model that contains only a 
subset of the effects included in the model in the text.  
 
For this model, we again account for the effects of different weather conditions on the demand 
for peak and off-peak electricity by augmenting Eq. D-11 with two weather variables. The first, 
CDt, measures cooling degrees, and it enters as an intercept shifter—controlling for differences 
                                                 
65 In this model, one could also include dummy variables to control for the effects of groups of customers or 
customer-specific characteristics. However, if we also exploit the pooled nature of the data and estimate a fixed-
effects model, the only way to identify the effects of explanatory variables that are time-invariant for each customer 
is to assume that these customer or premise characteristics (for example, air conditioning) affect usage primarily 
through their interaction with treatments and/or factors (for example, weather) that do vary over time. Therefore, 
these effects can be captured by the coefficient associated with variables created by constructing interaction terms 
between these types of variables with those that represent the various treatments. Although we do not specify this as 
a fixed-effects model, the model specification is consistent with this way of capturing the effects of these customer-
specific characteristics. If we were to specify a fixed-effects model, we would add a term µi to the models in 
Equation D-11 and use a fixed-effects estimator to estimate the model.  
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in peak to off-peak usage as temperature changes. Variable Ht takes on the binary values of unity 
for hot days and zero otherwise, where a hot day is defined as one in which a heat index is above 
85oF (29oC).66 We can also specify a binary variable CPPt that takes on a value of unity for 
customers on the RTP-CPP rate and zero otherwise. Finally, assume that the binary variable 
(ACi) takes on a value of unity if the customer has central air conditioning and zero otherwise. 
By including these two weather-related variables—the rate treatment variable and the variable 
for central air in the model—the estimating equation takes the following form:67 
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To estimate this model, there are now six variables: one dependent variable, five independent 
variables, and a constant term γ.68 
 
The parameters associated with these variables are evident from Equation D-12. Accordingly, 
because the variable (CDt) measures the cooling degrees, one might expect that as this variable 
increases ceteris paribus, there would be an increase in the ratio of the hourly peak to off-peak 
electricity use. Therefore, one might expect the estimated value of the coefficient on this variable 
to be positive, cd > 0.  

10.4.3 The Estimated Elasticities of Substitution 
To interpret the other variables, it is essential to recognize that they affect the elasticity of 
substitution in the following way. Define the effective elasticity of substitution as σE. 
Accordingly, we have: 
 

Eq. D-13: )(ˆ
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where the “hat” (^) indicates an estimated coefficient. Because customers that rely on air 
conditioning to keep cool on hot summer days, we might expect those customers to be less 
willing to shift load off peak, and the elasticity of substitution would be lower than for customers 
with no air conditioning—therefore, a < 0. If one expects that the customer’s willingness to shift 
load from peak to off-peak falls, one would expect the coefficient on the variable for Ht to be 
negative as well: h < 0. Further, if one would expect a customer’s willingness to shift load from 
peak to off-peak during event days (over and above the response resulting from higher prices), 
one would expect that the coefficient on the event day variable would be c > 0. This effect is in 
the opposite direction from that for the hot day. If both circumstances occur on the same day, the 
anticipated effects may partially offset one another. In this model, there are now eight separate 
elasticities of substitution (one for each combination of values for the three dummy variables); 
similar to the discussion in the text, any of the separate estimates of the elasticity of substitution 

                                                 
66 The specific construction of these two weather variables is primarily for illustration purposes and follows Boisvert 
et al. (2007).  
67 There could also be some alternative specifications in which CDt could affect the elasticity of substitution or 
where Ht would enter as an intercept shifter and affect the ratio of peak to off-peak electricity consumption directly 
as well as indirectly through the elasticity of substitution.  
68 For completeness, these variables are listed in the discussion of this example in the text.  
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can be derived from Equation D-13. The coefficients that appear in a particular estimate depend 
on which of the dummy variables take on values of unity and which take on values of zero.  

10.4.4 Estimating the Compensated Own- and Cross-Price Elasticities 
From this CES model, we can also estimate the compensated own-price elasticities of peak and 
off-peak electricity usage. Using the same example from above, we first solve Equation D-14:  
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for the peak to off-peak ratio of electricity use. The result is: 
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Furthermore, we can solve for the Koti: 
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We also know what the actual total expenditures for electricity are on any given day, Bti; 
therefore:  
 

Eq. D-17: otiotiptiptiti KrKrB   

 
Substituting Equation D-16 into Equation D-17, we have: 
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Now, given that we know the prices, we can solve for Kpti: 
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Eq. D-19: 
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We can then substitute this result into Equation D-17 to calculate Koti. That is:  
 

Eq. D-20: 
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The estimated expenditure shares would follow immediately.  
 
Based on these estimated expenditure shares, we can now calculate these “own-Allen” partial 
elasticities of substitution69 from the expenditure shares and the “cross-Allen: partial elasticity of 
substitution. In the case of two goods, it these are equivalent to the elasticity of substitution given 
in Equation D-13. As Berndt (1991) demonstrates, when own-Allen elasticities are multiplied by 
expenditure shares, one has expressions for the compensated own-price elasticities of demand—
the percentage change in the demand for peak or off-peak electricity resulting from percentage 
changes in their own prices that will leave a customer’s utility unchanged. The elasticities are Epp 
= wp σpp and Eoo = wo σoo, respectively.  
 
Furthermore, compensated cross-price elasticities (the percentage change in peak [off-peak] 
demand resulting from a percentage change in the off-peak [peak] price) are similarly given by: 
Epo = ESo σpo and Eop = ESp σop, respectively. Because these compensated price elasticities must 
satisfy the adding of conditions to ensure homogeneity of demand, we also know that ESp σpp + 
ESo σpo = 0 and ESp σop + ESo σoo= 0. Therefore, we can solve for σpp = -(ESo/ESp) σpo and σoo = -
(ESp/ESo) σpo. By calculating the own-Allen elasticities in this way, one can also ensure the 
internal consistency of the empirical results. 

10.5 The Generalized Leontief Model 
As suggested previously, the use of the generalized Leontief (GL) regression models to estimate 
these changes in load (measured by elasticities of substitution) allows us to control for each 
customer’s typical load profile and for the effects of weather. These customer-specific 

                                                 
69 The Allen partial elasticity measures the degree to which the demand for factor j changes as the price of factor i 
changes (Allen 1938, pp. 508–09). If ij > 0 and the price of factor i increases, the use of factor j increases—taking 
part in the replacement of factor i in production. The two factors are said to be competitive. If ij < 0, the two factors 
are complements, as the price of one rises, the demands for both fall. 
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regressions, based on the GL demand model, provide estimates of the elasticities of substitution 
that differ by day.70 
 
This is an attractive feature of the model, and it is exploited by estimating customer-specific 
regressions—particularly for the subset of customers identified as responders. The daily 
estimates of the elasticities of substitution can then be used in a second-stage, meta-analysis of 
the sub-set of customers identified as responders. The strategy is to pool the data for all 
responders. Before discussing this meta-analysis, it is essential to develop the GL model; this is 
accomplished in a straightforward fashion using a two-commodity specification of the GL 
model.71 

10.5.1 The Two-Commodity Model for Peak and Off-Peak Electricity Demand 
 
If we define Pp and Po as the prices of peak and off-peak electricity, respectively, and ESp and 
ESo as the shares of electricity expenditure in peak and off-peak periods, respectively, the two-
commodity homothetic GL indirect utility function and budget shares for electricity can be 
written as follows: 
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70 This section is based largely on the development of the GL model by R. Boisvert that is found in the evaluation of 
the ComEd CAP program (EPRI 1023644, Appendix A). 
71 This issue is discussed by Boisvert et al. (2007). Their discussion is repeated here for completeness. Effectively, 
they begin by suggesting that there were several other second-order flexible forms that might have been used in this 
empirical specification. One such commonly used flexible form, the translog (TL) model (Boisvert 1982 and 
Chambers 1988), would have avoided estimating any equations that are nonlinear in the parameters. The TL model 
relies on estimating a set of electricity cost-share equations that are linear in the model parameters and does not 
require observations on the electricity aggregate. Although this TL form was particularly easy to estimate, it was not 
pursued. Caves and Christensen (1980 a, b) point out that the TL model does not perform well when substitution 
elasticities are likely to be small or when there are likely to be small shares or large relative differences among 
shares. Patrick and Wolak (2001) found this to be problematic in an application of customer demand for electricity 
under real-time pricing. 
Patrick and Wolak (2001) argue that the GL model is superior to the TL model because it has a fixed-coefficient 
Leontief technology as a limiting case, and therefore, it can reflect rather modest substitution possibilities. They also 
note that if one imposes global concavity, all inputs in the GL model must be substitutes. To circumvent these 
difficulties, Patrick and Wolak (2001) and Taylor et al. (2005) employ a generalized McFadden (GM) cost function 
that is “…second-order flexible, yet suited to capture small positive and negative elasticities of substitution between 
electricity demands across load periods within a day” (Patrick and Wolak 2001, p. 27). Since our empirical model 
specifies only two demand periods, any model in which global concavity is either assumed, or imposed, requires that 
the inputs be substitutes. Therefore, the primary issue that led to their selection of the GM model is of no concern in 
our application of the GL model. 
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Eq. D-23: 
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The budget share equations are homogeneous of degree zero in γpp, γpo, and γoo.

72 Therefore, 
without loss of generality, we can adopt the normalization of γpp +2γpo + γoo = 1.  
For the two-commodity homothetic GL model, Caves and Christensen (1980a) show that the 
elasticity of substitution between peak and off-peak electricity can be written as: 
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By examining Eq. D-24, it is clear that for any given set of parameters (either assumed or 
estimated from data), the elasticity of substitution is a function of both the estimated parameters 
of the function and the prices. Furthermore, σ, ESp, and ESo can all be nonnegative only if γpo is 
nonnegative.73 
 
There is no restriction, however, on the signs of γpp and γoo.

74
 

 
In the extreme case in which γpo = 0, the elasticity of substitution is zero. The null hypothesis that 
the elasticity of substitution between peak and off-peak electricity consumption is zero is 
therefore conveniently tested using the GL demand model. 

10.5.2 The Estimating Equations 

 

                                                 
72 Homogeneity of degree zero means that budget shares do not change if all prices and expenditures change in the 
same proportion. 
73 This is sufficient for the indirect utility function to satisfy the monotonicity requirement; that is, ∂V/∂pi < 0 for all 
i.  
74 We must also test that the quasi-convexity requirement on V is met at each data point. This is equivalent to the 
requirement that the matrix of Allen partial elasticities of substitution be negative semi-definite (Berndt 1991). The 
cross-Allen partial elasticities of substitution are symmetric: σpo = σop. To perform the test for quasi-convexity, 
however, we must also calculate the own-Allen elasticities of substitution, σpp and σoo, so that we have the complete 
matrix of Allen elasticities.  
To reiterate, for the two-goods case, one can calculate these own-Allen partial elasticities from the expenditure 
shares and the cross-Allen partial elasticity of substitution. One can first recall from Berndt (1991) that when these 
own-Allen elasticities are multiplied by expenditure shares, one has expressions for the compensated own-price 
elasticities of demand—the percentage change in the demand for peak or off-peak electricity resulting from 
percentage changes in their own prices that will leave a customer’s utility unchanged; the elasticities are Epp = wp σpp 
and Eoo = wo σoo, respectively. Furthermore, compensated cross-price elasticities (the percentage change in peak 
[off-peak] demand resulting from a percentage change in the off-peak [peak] price) are similarly given by Epo = ESo 
σpo and Eop = ESp σop, respectively. Because these compensated price elasticities must satisfy the adding of conditions 
to ensure homogeneity of demand, we also know that ESp σpp + ESo σpo = 0 and ESp σop + ESo σoo= 0. Therefore, we 
can solve for σpp = -(ESo/ESp) σpo and σoo = -(ESp/ESo) σpo. By calculating the own-Allen elasticities in this way, one 
can also ensure the internal consistency of the empirical results. 
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To estimate the elasticities of substitution in Eq. D-24, we must have estimates of the parameters 
of the indirect utility function in Eq. D-21. It cannot be estimated directly because we have no 
data for customers’ utility levels V. Because we can derive the electricity expenditure share 
equations from Eq. D-21, we can obtain estimates of the parameters of V by estimating the share 
Eq. D-22 and Eq. D-23. However, a strategy for doing this is not completely straightforward. To 
estimate the share equations directly would require a nonlinear systems estimator that applies 
cross-equation constraints on every parameter. It is necessary to impose the normalization on the 
parameters by adding a constraint in which γpp +2γpo + γoo = 1.  
 
As an alternative, we can simplify the estimation by first forming an equation for the ratio of 
expenditure shares. Because the denominators of these share equations are identical, we are left 
with a single equation that is simpler than either Eq. D-22 or Eq. D-23:  
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This is still an equation that is nonlinear in the parameters, but the estimation is reduced to that 
of a single equation in which only symmetry need be imposed on the coefficient γpo. It is still 
necessary to impose the normalization on the parameters by adding a constraint in which γpp 
+2γpo + γoo = 1. Furthermore, past experience (for example, Boisvert et al. 2007, Braithwait 2000, 
and Caves and Christensen 1984 a, b) suggests that the estimation is facilitated by transforming 
the equation into logarithms, as follows: 
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where u is a stochastic error term. 

10.5.3 An Empirical Specification  
 
To conduct the estimation, we must first use the customers’ hourly data on electricity prices and 
usage to create observations of peak and off-peak expenditure shares and average prices (perhaps 
weighted by hourly usage). This will create one observation per customer per day. By letting the 
observations for the tth day be denoted by the subscript t, we have for each customer in each 
treatment group the following equation:  

Eq. D-27:       totptpootoootptpoptppotpt uPPPPPPESES   lnlnln  

To normalize the coefficients, this equation would be estimated subject to the following 
constraints—the latter of which is required by Young’s Theorem (which states that under certain 
conditions second derivatives are symmetric): 
 
Eq. D-27a: γpp +2γpo + γoo = 1, γop = γpo 
 
Because of the large numbers of customers in each treatment and of daily observations per 
customer, we estimate the model for each customer in each treatment. In this way, customer-
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level effects are reflected in the daily estimates of the elasticities of substitution. Tests of the 
differences in the elasticities of substitution by treatment or by customer characteristic will be 
conducted in a second regression analysis. In this analysis, the daily estimates of the elasticities 
of substitution by customer will be pooled across customers and treatments. These pooled 
estimates will be regressed against peak to off-peak price ratios, variables controlling for 
individual customer characteristics, and dummy variables to control for the rate treatment effects. 
This strategy is similar to that employed by Boisvert et al. (2007) and Taylor and Schwarz 
(1990). The exact specification of this regression will depend on the nature of customer-specific 
data available through the survey responses or other sources of data. It is possible and 
appropriate to reflect differences in daily weather conditions in the regressions for individual 
customers. By including two additional variables, Boisvert et al. (2007) control for the effects of 
weather. The first, CDt, measures cooling degrees, and it enters as an intercept shifter—
controlling for differences in peak to off-peak usage as temperature changes. Variable Ht takes 
on the binary values of unity for hot days and zero otherwise, where a hot day is defined as one 
in which a heat index is above 85oF (29oC). Assuming that two weather-related variables such as 
these are included, the estimating equations become:  
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We also need the following: 
 
Eq. D-28a: γpp +2γpo + γoo = 1  
Eq. D-28b: hp = ho 
Eq. D-28c: γop = γpo 

10.5.4 Estimating the Daily Elasticities of Substitution  
 
Once Equation D-28 is estimated, the parameter estimates are used to calculate the daily 
elasticities of substitution between peak and off-peak electricity use. As is evident from Equation 
D-24, we must first calculate predicted values for the peak and off-peak expenditure shares. In 
the standard formulation of the GL model, one could simply substitute the estimated parameters 
into Equations D-22 and D-23. However, once the weather variables have been introduced into 
the model, one must calculate the predicted value for ESpt directly from Equation D-28 in the 
following way.  
 
We can substitute the estimated parameters (denoted by “^”) directly into Equation D-28:   
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Taking the anti-log of Equation D-29, we have:  
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Eq. D-30: 
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Because the two expenditure shares sum to unity,  

Eq. D-31: 1
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we can solve Eq. D-31 for the off-peak expenditure share and substitute the result into Eq. D-30. 
After some rearranging, we have:  
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Solving this equation for the predicted peak expenditure share, we have: 
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In the standard GL model (without the weather variables), we know that the underlying utility 
function is globally quasi-convex if all of the γ parameters are strictly positive. In this case, we 
are guaranteed that this peak expenditure share is between zero and unity. By including the 
weather variables, it is clear that the peak expenditure share—and therefore the off-peak 
expenditure share—will differ by hot and cool days and by the number of cooling degrees, 
depending on their values for these days. Furthermore, we are guaranteed that this peak 
expenditure share is between zero and unity if the terms hp Ht and ho Ht and parameters are 
positive as well.  
 
If these two terms are negative, their absolute values must be smaller than the corresponding 
positive expressions in Eq. D-33 in the numerators and denominators of that equation to 
guarantee that the shares are positive and add to unity. Because of the complexity added to the 
model by the inclusion of these weather variables, we must evaluate the principal minors of the 
matrix of Allen75 partial elasticities of substitution to determine whether the underlying utility 

                                                 
75 Again recall that the Allen partial elasticity measures the degree to which the demand for good j changes as the 
price of good i changes (Allen 1938, pp. 508–09). If ij > 0 and the price of good i increases, the use of good j 
increases—taking part in the replacement of factor i in production. The two factors are said to be competitive. If, ij 
< 0, the two factors are complements: as the price of one rises, the demands for both fall.  
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function is quasi-convex at every data point. In all cases, it is necessary for γpo > 0, but this need 
not necessarily be the case for γpp or γoo. 
 
Finally, these estimated relationships can be substituted into the expressions for the daily Allen 
elasticity of substitution between peak and off-peak electricity consumption:  

 

Eq. D-34: 
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From Eq. D-33, it is evident that the two weather variables affect the size of the peak expenditure 
share. In turn, the size of the elasticity of substitution is also a function of this share because of 
the term:  
 

Eq. D-35: 
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It follows immediately that one can also calculate internally consistent estimates of the own 
Allen elasticities of substitution that are needed to check the quasi-convexity requirement on V at 
each data point: 
 

Eq. D-36: 
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Eq. D-37: 
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To check the quasi-convexity requirement on V at each data point, we need to check that (Berndt 
1991): 
 

Eq. D-38: 0
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10.6 The Meta-Analyses 
 
As suggested above, the use of the GL regression models to estimate these changes in load 
(measured by elasticities of substitution) allows for us to control for each customer’s typical load 
profile and for the effects of weather. These customer-specific regressions, based on the GL 
demand model, provide estimates of the elasticities of substitution that differ by day.  
 
This is an attractive feature of the model, and it is exploited by estimating customer-specific 
regressions. The daily estimates of the elasticities of substitution can then be used in a second-
stage meta-analysis—the strategy is to pool the data for all customers. Using this pooled data set, 
a regression is estimated that has these daily elasticities of substitution as left-hand side 
variables; the independent variables include those designed to explain these differences in the 
daily elasticities of substitution.76 Because the effects of weather are already accounted for in the 
GL specification, the other factors would include premise circumstances (some would be 
available for all customers), enabling technologies, and customer demographics.77 An important 
part of this analysis is to include the daily ratio of peak to off-peak prices as an explanatory 
variable. By including this variable, we are able to determine whether—after controlling for all 
other factors—the elasticities of substitution are in fact affected by the price level. That is, are 
customers more price responsive as the peak to off-peak price ratio rises? These variables are 
specified in the second regression model as intercept and/or slope shifters to account for the 
interaction among the characteristics. Because differences in weather are already accounted for 
in the model, we can ignore it for the specification of this equation. The equation for the meta-
analysis, written in its most general form, is:78 
 
Eq. D-39: 
ு௧ߪ ൌ ߙ ൅ ௣௧ݎଵ൫ߚ ⁄௢௧ݎ ൯ ൅ ∑ ௝ு൯௝ିଵݐ݊݁݉ݐܽ݁ݎܶ	݁ݐ௝൫ܴܽߚ ൅ ∑ ௞ுሻݐ݊݁݉ݐܽ݁ݎܶ	݊݋݅ݐܽܿݑ݀ܧ	ݎ݋	݁ܿ݅ݒ݁ܦ௞ሺߚ ൅௞ିଵ

∑ ௠ுሻ௠ିଵܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܥ	ݎ݁݉݋ݐݏݑܥ௞ሺߚ ൅ ∑ ௡ுሻܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܥ݁ݏ݅݉݁ݎ௡ሺܲߚ ൅ ௧௡ିଵߝ   
 
where σHt is the elasticity of substitution for customer H on day t and ൫ݎ௣௧ ⁄௢௧ݎ ൯ is the ratio of peak 
to off-peak price on day t. There are assumed to be J rate treatments, K device or education 
treatments, M customer characteristics, and N premise characteristics. The effects of these factors 
on the individual customers’ elasticities of substitution are captured by individual (0, 1) variables 
                                                 
76 This strategy for analyzing these types of results is similar to that used by Taylor and Schwarz (1990); they 
estimated a GL model of household demand response. They pooled estimates of the parameters from the GL model 
for each cross section in their data. Using each set of estimated parameters as the dependent variable in a regression 
model, they determined the extent to which the parameter estimates are affected by weather and a customer’s prior 
experience in a TOU program.  
77 The ability to include customer demographics depends on the availability of data from survey respondents as well 
as the response rates for customers. 
78 A similar strategy was used by Boisvert et al. (2007) in a study of large industrial and commercial customers. The 
specification of that model was as follows: 
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where [ p
pt,f

 / p
0t,f 

] = ratio of peak to off-peak electricity prices on day t for firm f; Man = 1 for manufacturing firms, 0 
otherwise; Govt/Ed = 1 for government/education firms, 0 otherwise; PW = 1 for public works firms, 0 otherwise; 
C&R = 1 for commercial and retail firms, 0 otherwise; %MaxDt,f

 = % peak use on day t as a percentage of maximum 
demand (of the summer) for firm f; and utf = a random error term.   
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for each of the factors. To avoid singularities in the regression equation, one of the categories in 
each group is dropped, so that the coefficient α is the intercept for the reference customer whose 
factors correspond to those that are dropped from the regression.  
 
The regression specified in Eq. D-39 accounts for many factors that could affect a customer’s 
willingness to shift load, as measured by the elasticity of substitution. However, in its 
specification, one of the explanatory variables is the ratio of peak to off-peak prices. These price 
ratios will differ daily if the rate treatment is an RTP; in this case, the specification in Eq. D-39 
may be appropriate. However, these price ratios will differ only on an event day if the rate 
treatment is a CPP but the background rate is a flat rate or a TOU. Therefore, in these cases there 
is no reason to test for the effect of daily price ratios on the elasticities of substitution. In these 
cases we may, however, wish to test some important hypotheses about the effects of rate, device, 
and education treatments as well as the customer or premise characteristics on the average 
elasticities of substitution for each customer. In this case, we can estimate an alternative model. 
This second model involves pooling data for the average estimated elasticities of substitution 
across customers and regressing the average elasticities of substitution on individual rate 
treatment, device, and educational treatments as well as customer and premise characteristics. In 
general form, the model would be: 
 
Eq. D-40: 
ு஺ߪ ൌ ߙ ൅ ∑ ௝ு൯௝ିଵݐ݊݁݉ݐܽ݁ݎܶ	݁ݐ௝൫ܴܽߚ ൅ ∑ ௞ுሻݐ݊݁݉ݐܽ݁ݎܶ	݊݋݅ݐܽܿݑ݀ܧ	ݎ݋	݁ܿ݅ݒ݁ܦ௞ሺߚ ൅௞ିଵ

∑ ௠ுሻ௠ିଵܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܥ	ݎ݁݉݋ݐݏݑܥ௠ሺߚ ൅ ∑ ௡ுሻܿ݅ݐݏ݅ݎ݁ݐܿܽݎ݄ܽܥ݁ݏ݅݉݁ݎ௡ሺܲߚ ൅ ௡ିଵߝ  
 
where σHA is the average daily elasticity of substitution for customer H. Again, there are assumed 
to be J rate treatments, K device or education treatments, M customer characteristics, and N 
premise characteristics. The effects of these factors on the individual customers’ average 
elasticities of substitution are captured by individual (0, 1) variables for each of the factors. To 
avoid singularities in the regression equation, one of the categories in each group is dropped, so 
that the coefficient α is the intercept for the reference customer whose factors correspond to 
those that are dropped from the regression. 
 




