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ABSTRACT OF THE THESIS

An Investigation of Traditional and Deep Structure from Motion Methods on a Diverse
Dataset

by

Dewal Gupta

Master of Science in Computer Science

University of California San Diego, 2019

Professor Manmohan Chandraker, Chair

Visual odometry has become an important tool given the new popularity of mobile robotics.

Camera pose estimation is a key part of visual odometry and has traditionally been computed by

hand-engineered algorithms. Given the recent explosion of deep learning, learned networks are

making headway in replacing such algorithms. They have proven to be very successful, and in

certain instances are already better traditional methods like ORB-SLAM. However, such methods

are usually trained and tested on a relatively homogeneous dataset that contains little variation in

lighting, motion, or other cues that can prove challenging. In this work, a novel dataset is curated
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to specifically introduce more realistic and diverse trajectories. This dataset is a combination

of three other datasets: Advio, Aqualoc and Euroc MAV. Using this dataset, it is shown how

traditional methods like ORB-SLAM and DSO still out-perform learned, structure from motion

methods, and certain failure cases are identified as a ways to improve the learned algorithms.

Such a dataset can be used in the future to truly ascertain the strength of a network’s performance.

ix



Chapter 1

Introduction

Accurate visual odometry has historically been a key challenge in computer vision due

to its useful applications in robotics. More recently, mobile robotics have become extremely

popular, finding applications in areas like drones, autonomous vehicles, augmented reality and

more. They are useful for exploring areas that humans physically cannot such as disaster areas or

other planets like Mars. Robots in such environments must be able to understand their position

relative to their environment for navigation without any human input. An integral part of these

robotic systems is the ability to locate themselves using only cameras providing images of their

environment. Though traditional technologies such as GPS, radar, and lidar can aid in this pursuit,

often times scenarios arise where these same technologies become unfeasible. This may be due

to the fact that GPS signals either are not reachable, or the localization error would simply be

too high. Inertial sensors may cause drift that over time becomes unacceptable and useless to

the robot as well [PKK18]. Although visual odometry methods may not be as reliable as using

traditional sensors, another advantage comes down to cost. Cameras are relatively cheap and
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simple to set up whereas accurate sensors such as LIDAR or RADAR may be cost prohibitive.

Even if they were to be used, often times they can introduce other problems such as rolling shutter

and synchronization issues leading to more challenging problems. However, visual odometry can

sometimes be combined with these traditional systems to provide the best of both worlds - the

reliability and robustness of sensors like GPS or IMU, along with the localization accuracy of

visual odometry systems.

Convolutional neural networks (CNNs) have revolutionized computer vision in the past

decade and have enjoyed remarkable success in problems such as object detection, image classifi-

cation, image depth estimation, and more. In the case of visual odometry, however, such models

are only beginning to be built to deal with the end to end problem of tracking ego-motion. CNNs

have performed extremely well at identifying interesting features in images, matching and find

correspondences, estimating depth and even identifying dense, per-pixel motion between two

frames - all important parts of successful, traditional visual odometry algorithms. The poten-

tial for deep learned methods to eventually out-perform non-learned methods is very real, and

certain works have already shown significant progress towards such goals [ZBSL17] [VRS+17]

[DMR18]. However, one class of models has become quite popular: unsupervised and monocular

pose estimation. Though not real time as traditional visual odometry algorithms are, these models

claim to successfully learn camera pose estimation using a monocular set up in an unsupervised

manner. These methods hold a lot of potential due to their lack of reliance on extra sensory data,

ease of setup, and independence from expensive ground truth data.
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1.1 Project Goals

Too many learned models are tested on homogeneous datasets that lack variation in

lighting, exposure and other photometric cues. As a result, it is very likely that such models

over-fit with respect to the aforementioned cues, failing to generalize if any property was found

to be different than the training set. In this work, a highly diverse dataset is carefully curated,

and used to train and test deep learning methods. Their performance is evaluated under the

novel context of this dataset, and the weaknesses and strengths of such models are empirically

investigated. The diverse dataset contains different types of motions, lighting cues, geometries and

textures, and violates assumptions such as the lambertian or rigid motion assertions to different

degrees. Using such a dataset, the goal of this work is to present a solution to training more

generalizable and adaptable deep learning methods.
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Chapter 2

Related Work

2.1 Traditional Methods

2.1.1 Direct Methods

Traditional methods involve non-learned methods using hand-engineered techniques to

conduct visual odometry. Of these methods, there are two major categories: direct and indirect.

Direct methods attempt to directly use sensor values as measurements into a probabilistic model.

This model then aims to predict the camera motion from these measurements, and as a result

tries to optimize the photometric error. Jin et al. [JFS03] are one of the few to propose a direct

method that is sparse as well. Their method relies on an extended Kalman filter and explicitly

models illumination changes in a sequence of frames. Engel et al. [EKC18] built DSO by

using a non-linear optimization framework instead of the Kalman filter. They also explicitly

account for geometric and photometric calibrations necessary for optimal results in a direct
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method. DTAM (Dense Tracking And Mapping) [NLD11] and LSD-SLAM (Large-Scale Direct

SLAM) [ESC14] also use direct formulations, modeling camera motion off of images with no

preprocessing. However, they are both dense methods, using geometry priors to build a dense

3D map of the environment, whereas DSO is a sparse method treating geometric features, such

as keypoints, independent from each other with no notion of neighborhoods. DTAM builds off

its predecessor PTAM (Parallel Tracking And Mapping) [KM07], an indrect method, which

calculates camera motion and maps 3D features in a parallel fashion. DTAM, on the other hand,

is a dense formulation and uses the 3D surface map to help calculate the camera trajectory as well.

However, this is an expensive process and requires a GPU to run in real time. LSD-SLAM helps

circumvent this requirement by simplifying the formulations used by DTAM.

2.1.2 Indirect Methods

Indirect methods use a preprocessing step and extract features from the frame before trying

to build the model. As a result, these models optimize geometric error, relying on correspondences

of key points or flow vectors. These types of models are generally more robust to different camera

models as factors like auto exposure, gamma correction, vignetting. One of the most exemplar

indirect models is PTAM, as previously mentioned, which works by parallelizing 3D mapping

and tracking. It uses FAST corners that are matched making it useful for tracking. Strasdat et

al. confront the challenges of monocular SLAM system by utilizing optical flow estimation and

FAST feature mapping. Another method is ORB-SLAM [MAMT15] which utilizes ORB features

to build its map and track the camera motion. It uses sparse features and can run in real time

without the use of a GPU. Another method, SVO (Semi-direct Visual Odometry) [FPS14], uses
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both direct and indirect formulations to its advantage. Although, no loop closure is performed, it

uses a direct formulation for most frames allowing the method to skip expensive feature extraction.

It does extract features to initialize novel 3D keypoints but only optimizes photometric error for

all other frames.

2.2 Structure from Motion

Structure from motion is has long been a cornerstone in computer vision research in which

models must elucidate the geometric and 3D properties of the scene given frames from different

poses focused on the scenes. Structure from motion relies on accurate keypoint detection and

matching, which are then geometrically verified by estimating the best fundamental matrix to

describe the motion. From there the scenes are reconstructed and bundle optimization is iteratively

applied to minimize any drift errors that would otherwise compound over time [SF16]. However,

such methods rely on accurate correspondences which causes difficulties in sequences containing

texture-less surfaces, occlusions, non-rigid motion, or other similar attributes. In the recent past,

deep learning has attempted to mitigate such affects by focusing on parts of the structure from

motion pipeline. Posenet [KGC15] is one such model as it attempts to directly regress the camera

pose from a given image. The model works by using a deep convolutional neural network to

build features in a high dimensional space using a standard VGG [SZ14] or Resnet [HZRS16]

model. The relationship between these features and the camera pose is treated as a regression

problem. However, many issues with absolute pose regression have been pointed out. Sattler et al.

[SZPLT19] have shown how 3D structure and geometry based methods consistently outperform
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absolute pose regression networks. They also show that regressing poses from image frames is

more similar to image retrieval algorithms than pose estimating algorithms.

2.3 Unsupervised Models

More recently, unsupervised models have come up as way to avoid the building expensive

ground truth data. Garg et al. [GVCR16] used an auto encoder architecture which utilized two

stereo calibrated frames with known camera motion to build intermediate depth maps. These

depth maps were then used to inverse warp the other frame back to the original frame. The

photometric loss was calculated between the warped frame and true frame which then essentially

served as a ground truth signal. However, Godard et al. [GMB17] showed that the photometric

loss on reconstructed images is not an ideal supervision signal, and proposed instead an alternate

approach to learning single-view depth. This approach made use of geometric constraints between

left-right stereo pair images and introduced a novel left-right consistency loss to improve the

quality of depth maps. However, both these methods relied on stereo image pairs with known

camera motions.

Zhou et al. [ZBSL17] and Vijayanarasimha et al. [VRS+17] borrow from structure from

motion by learning to solve for depth and motion together in a monocular setting. Both use

scene geometries and deep networks to build depth maps from single images in an unsupervised

manner. These depth maps are used to inverse warp one frame into another, and a photometric

loss between the frames can help the network learn. As a result, the networks require no ground

truth, although Sfm-Net can optionally make use of it if it exists. One of the biggest challenges
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in these methods is handling non-rigid movement in the sequences, as it can heavily impact

the photometric loss and stop the network from learning. Zhou et al. do not explicitly handle

non-rigid motion and instead use a separate explainability mask, also learned by their network, to

account for it. However, Vijayanarasimhan et al. aim to learn depth, object masks and flow to

explicitly model in frame movement. Mahjourian et al. [MWA18] build a network that instead

utilizes a 3D loss function that make use of the geometry between adjacent frames. The authors

of GeoNet [YS18] go further by introducing a residual flow learning module and enforcing

geometric constraints as a type of consistency check for their supervision signal.

In most works, KITTI [GLSU13] or Cityscapes [COR+16] is the main dataset in which

the models are trained and tested. This is problematic as the camera calibration for these datasets

do not consider factors like gamma-correction, white balancing, or vignetting. Due to the fact

that direct methods do not make use of any intermediary image features, they are most vulnerable

to these uncalibrated parameters [SLZ+19]. The models, unlike non-learned algorithms such as

DSO, do not explicitly account for these factors either. In this work, a more diverse dataset is

used to highlight these issues, and show case major failure cases for the above mentioned models.
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Chapter 3

Methods Employed

The diverse dataset was formed by utilizing existing datasets from various sources and

combining them in a meaningful manner to create a dataset that provided a large variation in

lighting cues, motion, resolution, frame rate, recording device, and other factors for the ideal

training of deep learned models. The goal is to build a large enough dataset for it to become

a standard in training and testing models. The dataset is composed of three different datasets:

Advio [CSRK18], Aqualoc [FMT+18], and Euroc MAV [BNG+16] dataset. All three provide

ground truth pose data measured by IMU sensors. Though Aqualoc does not provide stereo

images, the other two datasets do.

3.1 Diverse Dataset

The Advio dataset contains a trajectory captured by an iPhone, recording at roughly 60

frames per second in a high resolution. The dataset also contains other calibrated measurements
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recorded by the iPhone including accelerometer, gyroscope, magnetometer, and altimeter mea-

surements. The same trajectories were also captured with a Google Tango using a fish-eye lens

which also generated point clouds. Lastly, their set-up utilized a Google Pixel device to capture

another view of the same trajectories to provide stereo images.

The original dataset contains a total of 23 trajectories spanning scenes of a mall, an office

and an outdoor, urban environment. For the purposes of this project, the outdoor portion of the

dataset was discarded. This is simply because there are only two outdoor sequences present in the

entire dataset, and it is of scenes that are remarkably dissimilar to the rest of the dataset which is

primarily indoors.

The Euroc MAV dataset is a relatively well known dataset used by many other researchers

for different tasks. It consists of stereo frames obtained from an aerial drone (a micro aerial

vehicle) along with ground truth IMU measurements and laser scans for true 3D structures and

tracking. The authors run this set up through 11 different trajectories, all of which were utilized

for this work. Five of the trajectories are located in the same room called the machine hall, where

another six trajectories take place in two different vicon rooms which are essentially closed rooms

with artificial features put up.

Lastly, the Aqualoc dataset was collected underwater using a robot and a monochromatic

camera. The seven sequences vary in length but are mostly contain similar lighting and motion

cues. As a result, only four sequences, chosen at random, were used from this dataset. Since

a single sequence is decently long with around 2,000 to 5,000 frames, the inclusion of four

sequences was justified as sufficient. The aqualoc dataset also provides ground truth pose that

was generated by the authors using COLMAP [SF16]. There are also barometric measurements
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provided.

3.2 Network Architectures

Image
Features 3

Conv 1: 7 x 7 
Features 16

Conv 2: 5 x 5 
Features 32

Conv 3: 3 x 3
Features 64

Conv 4: 
3 x 3

Features 128

Conv 5:
3 x 3

Features 256

Conv 6:
3 x 3

Features 256

Conv 7:
3 x 3

Features 256

Conv 8:
1 x 1

Features 6

Explainability
Mask

Pose

Figure 3.1: Network architecture for the pose generating network in Sfm-Learner.

The PoseNet architecture repurposes the GoogLeNet [SLJ+14] design that is slightly

modified from the original by replacing all softmax classifiers with affine regressors. Also, another

fully connected layer is put before the last layer with 2048 features. The authors use this as a local
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feature vector that is investigated further in their experiments. The images are also scaled down

so that the smallest dimension is 256 and then a crop of 224 by 224 pixels is taken at random

during training. During the testing, the crop is still taken but it is always the center crop.

For Sfm-Learner, the network is detailed in Figure 3.1. The figure only shows the network

architecture responsible for generating the pose. The authors use a different network, built off

of DispNet [MIH+16]. The network used for pose is simpler than the one used by PoseNet.

It consists of 8 convolution layers using 3x3 kernels except for the first two layers which use

a 7x7 and 5x5 kernel respectively. The features after convolution 5 are used to generate the

explainability masks by using up-convolutions. The same features are also further convolved

three more times to generate the pose.
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Chapter 4

Experiments and Results

4.1 ORB and DSO
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Figure 4.1: ORB-SLAM and DSO RMSE ATE and RE on all sequences they could be run on.

All sequences were all ran through the classic ORB-SLAM 2 [MAMT15] and DSO

[EKC18] algorithms which provided interesting results. Both algorithms are simple to run,

and require no learned or trained parameters. As a result they perform relatively well despite
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lighting, motion and other key differences in the sequences. None of the image sequences were

photometrically calibrated which is well known to affect the accuracy and robustness of both

ORB-SLAM and DSO [YWGC18]. Sample trajectories are shown in Figure 4.2.

However, these algorithms are not without weaknesses themselves, and one of the major

weaknesses of both algorithms is the case of pure rotational motion. Though both algorithms

work differently, one being a direct formulation and the other indirect, they both fall victim

to feature starvation introduced by pure rotational motion [LAD18]. Both algorithms rely on

mapping keypoints into space in a sparse way which are tracked throughout the trajectory to

determine the camera pose. However, in the case of pure rotational motion, the algorithm fails to

triangulate new keypoints leading to keyframe starvation, and eventually tracking is lost.

Advio’s method of capture exacerbates the problem as well. The iPhone camera provides

a very narrow frame giving very little field of view, so it does not take much rotational motion to

throw off the tracking algorithm. As a result, neither ORB SLAM nor DSO were able to be run

on any of the Advio dataset sequences due to these issues. This is corroborated by the authors, as

they were unable to obtain trajectories from DSO or ORB-SLAM either.

Another source of errors is the photometric calibration or lack thereof. DSO, being a

direct method, relies on brightness constancy assumption which may or may not hold throughout

these sequences. This is another reason the Advio dataset proves to be challenging as the lighting

is not as consistent as the mall scenes especially contain a lot of non-lambertian surfaces that

reflect light into the camera. There is also a lot of glass which can prove to be challenging as well.

Lastly, the dataset contains sequences which have varying levels of people and non-rigid motion

through the scenes which are known to also affect the performance of these algorithms.
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Figure 4.2: Estimated trajectories for ORB-SLAM and DSO on two euroc sequences. The first
three trajectories are from aqualoc while the rest are from Euroc. DSO nor ORB were able to be
run on the Advio dataset.

4.2 PoseNet Experiments

Next, the PoseNet model was examined on the diverse dataset. PoseNet, in a sense,

represents the simplest form of a learned model for determining camera pose due to the fact that

it treats the problem as that of a simple regression. However, it is clearly evident that there are

major issues with such a model. The model performs well on images it has already seen before
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decomposed into the x, y and z axis with red showing the predicted posenet path and the black
representing the actual, ground truth trajectory.
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or very similar images, but fails to provide evenly remotely accurate localization on images of

the same scene from novel poses. This hints at the fact that the model is prone to over-fitting

and fails to generalize to any other sequences. This is evident from the fact that PoseNet makes

no use of any geometric information present in the sequences and simply focuses on regressing

pose from the frame. Though it runs extremely quickly and is trainable with a large dataset, the

results are coarse at best, with localization failing for frames that are outside what the network

has already seen. This can be empirically seen in Figure 4.4 where PoseNet was trained on the

Euroc sequence MH 02 and tested on MH 04. Both sequences take place in the machine hall

room but are just different trajectories. As seen in the figure the model is able to over-fit on the

training dataset really well except for minor fluctuations that are within reasonable bounds of

error. However, examining the MH 04 sequence shows that the network was not able to learn

anything useful as the trajectory does not even follow the general rotations of the ground truth. It

also contains a lot more noise and perturbations that are beyond reasonable.

It is interesting to note that PoseNet, though simple, is most similar to direct methods as

it does not extract any specific features from the frames and rather regresses the pose directly

from the image. This makes it highly susceptible to changes in occlusion, lighting and motion

conditions. To overcome such issues, the dataset would need to compensate as the original

author’s dataset did by providing the same images under different lighting or occlusion conditions.

In this case, this was not possible nor is it reasonable to assume such data will exist, but it is a

major reason why the network did not generalize as well as it could have.

By using the diverse dataset, it becomes apparent that Posenet fails to even generalize

beyond the same dataset. It fails to handle any variations, even differing trajectories in the same
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rooms within the EuroC dataset, highlighting a major flaw. The network is not designed in a

way to generalize well because it fails to make any use of photometric or geometric cues. The

regression model would most likely fail in simple cases such as when exposure times vary by

a large margin. The model would also most likely fail when tested on novel views of the same

scene. Even if the model has been trained on images of nearby poses, it fails to use any geometric

cues to extrapolate the correct pose. This results in larger errors as the test trajectory moves

farther and farther away from the training trajectory. Although training PoseNet on the diverse

dataset does not improve the performance of the method, it is able to highlight major flaws in the

design of the network.

4.3 Sfm-Learner Experiments

4.3.1 Aqualoc Experiments

The Aqualoc dataset is interesting because it is the most consistent and homogeneous of

the diverse datasets. This is simply because all the sequences are underwater with very similar

lighting conditions and features. Although, some sequences do tend to have more feature-friendly

frames than others - something which ends up playing a big role in the performance of the models.

Sfm-Learner performs rather well on sequence 3 - the only sequence it does not see in the

training dataset. The full trajectory has a RMSE of about roughly 1.0 although DSO outperforms

it by a large factor. However, when the actual trajectory is visually examined, pose scaling and

alignment, it is easily observed that Sfm-Learner’s model does a good job approximating the

actual trajectory with a majority of its error coming from the z-axis motion in the beginning and
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Figure 4.5: Top: Aqualoc RMSE ATE and RE on all sequences. Middle and Bottom rows:
5-frame window error distributions for ATE and RE for sequences 3 and 5. Note, the model was
trained on sequence 3 but was tested on sequence 5.
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Figure 4.6: Estimated trajectories for the learner-aq model on two sequences.

end of the trajectory.

However, this is in stark contrast with sequence 5 - a sequence that was actually used in

the training for the model. Despite that, the trajectory learned by the model is very poor and does

not appear to be comparable to the ground truth in any way. At best, it is a course approximation

of the actual trajectory and lacks the significant rotations highlighting a possible lack of awareness

of that rotational motion. This is an interesting failure case because the model performs relatively

well on the test sequence indicating that the network has indeed learned useful information about
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the data.

The failure case in this scenario is probably due to the fact that sequence 5 contains

relatively few features, and the image is very homogeneous in terms of pixel intensity. This is an

issue because of the gradient locality issue that the authors of Sfm-Learner explicitly mention

and aim to overcome. While the network is learning, it is most likely that incorrect warps were

calculated to be optimal despite being incorrect. This resulted in the network getting stuck in a

local minima that results in average trajectories missing even the strongest rotation cues. Due to

the nature of scene, it is highly unlikely that the author’s solution of multi-scale and smoothness

losses is able to overcome these issues.

Another issue present inherently in the dataset images is the natural vignetting due to the

lighting of the ocean floor which is often not able to permeate throughout the entire frame. As a

result, the same pixel locations could have very different pixel intensities which could negatively

affect the warping. This is where DSO holds an advantage as it aims to explicitly model the

photometric properties of the data. Despite its crucial role played in direct methods, Sfm-Learner

has no such modules, learned or non-learned, which leave it to fall victim to poorly calibrated

images.

In the case of Aqualoc, it is noted that the Sfm-Learner is capable of learning such

trajectories, but can as easily fail on sequences that are slightly less than ideal. Despite using a

more diverse dataset to train the model, it does not show any performance or accuracy benefits.

Despite this, the dataset is able to identify areas of critical failure cases. Since the model does not

make use of the ground truth, it shows the network’s inability to learn from difficult sequences.
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4.3.2 Advio Experiments
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Figure 4.7: RMSE ATE and RE for Advio sequences.

The Advio dataset is the most natural dataset used in this project due to the fact that

it is all shot on a hand-held iPhone camera. For the same reason, this makes this dataset also

one of the most challenging. Another reason it is difficult to estimate accurate odometry on

is due to the non-rigid motion present in the scenes of the mall. Two models were trained for

this specific dataset using the Sfm-Learner network: advio-mall (learner-adv-mall) and advio-

indoor (learner-adv-ind), each trained on their respective dataset splits. When examining their

performance in Figure 4.7, some interesting patterns emerge. As expected, advio-mall performs

better on mall scenes (scenes 01-06) generally speaking. The advio-indoor model performs either

on par with the advio-mall model or better on the office sequences. However, it is interesting

to see the advio-mall model, which was not trained on any office room scenes, still perform

comparably well to the advio-indoor model on sequences 15 and 19. The opposite is also true as

advio-indoor model performs as well as the advio-mall model in certain sequences, even beating
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Figure 4.8: 5-frame window error distributions for ATE and RE for sequences 02 and 03.

it in some. This is not expected as there is a larger variation between the mall and office scenes,

and a model trained on just the mall scenes would be expected to outperform one trained on both.

This suggests that there is some level of learning that is not happening where it should.

This is further exaggerated by the learned trajectories where it is highlighted how poorly

some sequences are estimated. Sequence 2 is a good example and despite the advio-mall model

being trained on this sequence, it is still valuable to understand the networks understanding.

Despite there not being any strong rotation in the sequence except one major turn near the end,

both models behave extremely similarly and estimate strong rotational motion. The error is a little

24



biased due to the fact that drift accumulates over time and the trajectory naturally varies between

roughly 50 meters - one of the larger sequences distance wise. As a result, the distribution of

5-window errors can be examined instead.
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Figure 4.9: Estimated trajectories for the learner-indoor and learner-mall models on two
sequences.

In Figure 4.9 it can be seen how the error distributions for most frames are actually quite

similar between the models. This is slightly worrying as it means that when training, the network

was unable to further refine its estimate of the trajectory using the information in the sequence.
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The fact that a model trained on this sequence performs so similarly to a model not trained on

this sequence is a double edged sword. On one hand, it indicates the network is able to learn a

decent representation of the scenes and motions and is able to apply it to unseen sequences with

decent success. On the other hand, the poor estimation of the actual trajectory points to the fact

that the network is failing to properly learn from this sequence. Due to the unsupervised nature of

the model, this indicates that the supervision signal is not strong enough to provide reasonable

estimates - even when that motion is extremely simple.

Another interesting sequence to examine is the mall sequence 03. In this sequence advio-

indoor actually is able to model certain characteristics of the ground truth trajectory. The ground

truth motion is in a circle where the x and y trajectory are sinusoidal and the advio-indoor model

is able to model that motion relatively well. However, this learned behavior is not well reflected

in any error metric due to the fact that the error shows up in the poorly estimated y-axis trajectory.

Though the network is able to decently estimate x and z-axis motion, the y-axis motion is not a

great fit resulting in a higher error.

These errors associated with both sequences 2, 3, and other sequences can be attributed

to a host of factors but is most likely associated with the non-rigid scene motion in the scenes.

Some of the mall scenes contain varying levels of humans walking through the video which at

times are probably quite detrimental to the pose estimation. Despite the author’s claims of having

built an ‘explainability mask’ into the network to account for such motions, it does a poor job

of identifying pedestrians and other sources of non-rigid motion resulting in poorly localized

poses. Another reason this failure can be attributed to the non-rigid motion is due to the fact that

sequences 2 and 6 have the most people in the frames as they are crowded mall scenes.
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Figure 4.10: Depth maps for a random frame in sequence 3. Top row: original frame. Bottom
row: learner-ind (left) and learner-mall (right). Both mistake the escalator for a much closer
object, and the reflected lights for close objects.

Lastly, another major source of error in the mall and office scenes are the non-lambertian

surfaces that are prevalent. These scenes are very well lit and having reflective tiles or large

glass window show-cases make for a very challenging scene in which pixel intensities can easily

change depending on the pose. This can be seen in the poorly generated depth maps that contain

relatively little information about the true depth of the scene (Fig 4.10). These scenes violate one

of the key assumptions of the model, but given that ORB-SLAM and DSO already fail on these

sequences, the model does decently. However, this remains a weak area for all direct methods

and leaves plenty room for improvement.
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The diverse dataset does not help Sfm-Learner learn better representations when trained on

the Advio dataset. However, it is known that the Advio dataset contains challenging trajectories

very similar to real world data. The fact that Sfm-Learner fails to properly learn from this

dataset shows that it was not designed to handle non-rigid motion despite the author’s use of the

explainability mask. Although the original authors explicitly state the model is not able to handle

large occlusions and non-rigid motion, the original experiments are unable to ascertain the drop in

performance given such challenges. Using this dataset, it becomes evident that the model cannot

handle such challenges at all.

4.3.3 EuroC Experiments
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Figure 4.11: RMSE ATE and RE for euroc Sequences

The Euroc MAV dataset is one of the more well known odometry datasets and provides

sequences of three different rooms from the perspective of a drone. These sequences provide

unique motions in all three axis that are only capable by a drone. Four different models were

trained on the four different splits that correspond to the different rooms. Two models were
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Figure 4.12: 5-frame window error distributions for ATE and RE for sequences MH 04 and V1
02.

trained on rooms MH (euroc-mh) and V1 (euroc-v1), another on the combination of the two

(euroc-mh-v1) and lastly, a model was trained on all the rooms (euroc-all).

In the machine hall room (MH), the euroc-mh performs the best or on par with the other

models. This is expected since it is only trained in the MH room and it would be expected to

outperform other models in the room. Again, as expected the euroc-v1 model has the worst

performance in the MH room since it has never seen those rooms before and was not trained on

them. It is interesting to see the trajectories of all the models on sequences 02 and 04 in MH and

how they all are able to capture the rotation and translations of the trajectory to varying degrees
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of success Figure 4.13. Though there are cases of imperfect estimation, eg. in sequence MH 04,

all networks do a relatively good job of staying close to the ground truth.

However, it is more interesting to examine the results of the V1 and V2 rooms. Although

euroc-v1 failed to perform as well on MH rooms, the opposite was not found to be true. Oddly

enough, the euroc-mh model performs just as well as the euroc-v1 and euroc-mh-v1 models on V1

and even V2 sequences. This is another scenario where the model is failing to learn useful pose

and depth cues from the sequence. Also, these sequences don’t suffer from the same catastrophic

rotational motion or photometric issues that the Advio dataset contains, and decent results are

produced by both ORB-SLAM and DSO algorithms. For the V1 and V2 rooms, it is the result

of quick, short motion in all 3 dimensions that makes it difficult for the Sfm-Learner models to

learn accurate depth and pose. Combined with this erratic motion is a problem with the scene

itself. The fact that it is a relatively small, enclosed space with texture-less walls makes creating

accurate depths a challenge as well. As a result, movement relative to the wall might not change

a majority of the depth map causing an inability to learn accurate pose as well. This may be why

the estimated pose is the same for all models whether or not they were trained on this sequence.

The models are unable to learn usable depth maps forcing them to assume there is little or no

motion in particular axes. This can be seen in Figures 4.14 and 4.15. The MH frame is handled

fine by most of the learned models, except for learner-v1 which has never seen any of the MH

sequences before. However, none of the networks are able to produce a cohesive depth map for

the frame from V1.

Another reason might be the varying exposures in the sequence due to the windows in

the room. At times the frames can be very dark as there are no windows in the frame. However,
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whenever a window does pop up, it shines a lot of light and as a result the exposure changes

making everything slightly brighter. As Sfm-Learner is a direct method working to optimize the

photometric loss, this is likely to have a huge impact on the depth and pose estimating capabilities

of the network.

As an aside, it is interesting to note that the error metrics currently employed often times

hide such biases since window errors can overlook such problems. Even the results from the

models on the MH 04 dataset look very similar (Fig 4.12) making it difficult to ascertain the true

performance differences between euroc-v1 and euroc-mh.

Figure 4.14: Depth maps for a random frame in MH 04 sequence. Top row: original frame.
Middle row: learner-mh (left) and learner-v1 (right). Bottom row: learner-mhv1 (left) and
learner-euroc (right).
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Figure 4.15: Depth maps for a random frame in V1 02 sequence. Top row: original frame.
Middle row: learner-mh (left) and learner-v1 (right). Bottom row: learner-mhv1 (left) and
learner-euroc (right). Interestingly, none of the models are able to produce a decent depth map
for the frame.

4.4 Model Comparison

When comparing all the models together, it becomes apparent that traditional methods

such as DSO or ORB-SLAM are able to outperform any learned method if they are able to be

run on the sequence. Looking at tables 4.1 and 4.2, certain observations can be made. Although

DSO and ORB-SLAM outperform both posenet and Sfm-Learner on the aqualoc sequences, the

trajectories are not suitable for the algorithms. Tracking is often lost due to the homogeneous

features, or the lack of features, and the two algorithms become unreliable. Sfm-Learner works,

but works a lot better on certain sequences than others. Aqualoc is an interesting dataset with very

similar looking features which may have resulted in Sfm-Learner failing to learn proper motion
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cues from certain sequences. Also, due to the lighting conditions, the images have vignetting

effects that remain unaccounted for by the model as well. As a result, there will always be some

level of error in the model due its inability to match pixels around the edges.

On the Advio dataset, DSO and ORB-SLAM are both unable to be run due to the strong

rotational motion and limited field of view. Sfm-Learner also struggles on these sequences,

with both models performing similarly highlighting the difficulty the models face when learning.

Despite the different splits for the two models, they learn similar information, but the overall

performance remains lackluster for both models. This is attributable to the presence of non-

lambertian surfaces such as glass, reflective tiles, and bright lights, along with a varying amount

of moving people. These two properties of the dataset make it very demanding for any model

to learn from. However, as per the original goal of this work, including a dataset like Advio

allows for the evaluation of models under difficult circumstances and an opportunity to learn from

challenging features. The fact that Sfm-Learner is unable to properly learn from either training

split indicates a critical flaw in the model that fails to account for certain properties that are often

prevalent in more real-life scenarios.

Lastly, in the EuroC dataset, ORB-SLAM out-performs every model on every sequence.

Again, though Sfm-Learner and Posenet do slightly better on this dataset than they did on Advio,

they are outperformed. The reason for this could be due to the exposure issues present in the

sequences where the lighting affects exposure times in certain frames. This results in some frames

being slightly over or under exposed. Though not as bad for the Machine Room (MH) sequences

since they are indoors with overhead lighting, the Vicon Room (V1 and V2) are notoriously bad.

These rooms are small, enclosed spaces with one window lighting the room. As a result, whenever
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Table 4.1: ATE RMSE on all sequences for all models. A dash indicates the model was not run
or tested on that sequence.

Aqualoc Advio EuroC
model 3 7 3 5 19 MH 02 MH 04 V1 02 V2 02
orbslam - 0.133 - - - 0.494 2.18 0.927 0.844
dso 0.229 - - - - - 2.273 1.142 0.946
posenet - 4.244 - - - - 9.557 - 2.679
learner-aq 1.001 3.88 - - - - - - -
learner-adv-mall - - 8.002 10.022 17.968 - - - -
learner-adv-ind - - 6.551 8.202 17.672 - - - -
learner-euroc-mh - - - - - 2.937 4.209 1.757 2.003
learner-euroc-v1 - - - - - 3.369 5.722 1.76 2.068
learner-euroc-mhv1 - - - - - 2.504 4.446 1.741 2.072
learner-euroc - - - - - 2.711 4.948 1.768 2.052

Table 4.2: Photometric issues present in the test sequences of all 3 datasets used.

Aqualoc Advio EuroC
model 3 7 3 5 19 MH 02 MH 04 V1 02 V2 02
exposure issues 7 7 7 7 7 3 3 3 3

non-lambertian surfaces 7 7 high high low 7 7 7 7

moving objects 7 7 moderate low 7 7 7 7 7

vignetting 3 3 7 7 7 7 7 7 7

the MAV travels near the window, it fails to adjust for the lighting resulting in over-exposed

frames. However, the next frames might then adjust, and produce normal frames adjusted for

the lighting. When the MAV moves away from the window the opposite issue occurs where the

frames can be under-exposed for a small period of time before getting rectified. This can have

devastating effects on direct methods that do not account for such photometric inconsistencies.

Since it is only for a few frames, and not the entire sequence like Advio, the effects are not as

harmful and Sfm-Learner does ok. However, it can be seen from the trajectories and the depth

maps that Sfm-Learner still struggles to learn.
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Chapter 5

Conclusion

5.1 Summary

In this work, the performance of several models, including traditional, non-learned models

and more modern deep learned models are examined under the context of a novel dataset. This

dataset is built out of the existing Advio, Aqualoc and EuroC MAV datasets for the purposes of

introducing more diversity of features and scenarios. Diversity in datasets is critical to ensuring

models are able to properly learn from the right features, and generalize to other scenarios. Both

DSO and ORB-SLAM perform well when they are able to in this dataset. One of the critical flaws

is the loss of tracking when faced with strong rotational motion, and as a result neither model is

able to be run on the Advio dataset. Since these are not learned methods, their weaknesses can

only be hand engineered and, though already known, this dataset reaffirms this major weakness

of traditional visual odometry methods.

As for the learned methods that were tested, PoseNet proved to be too simple of a model
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that was incapable of adapting to different trajectories within even the same room or area. Despite

training it on several sequences, it was unable to generalize beyond the small area it had already

seen. Sfm-Learner, a much larger and more complex network, fared slightly better. However, it

had critical flaws as well, namely the inability to learn under complex lighting or motion scenarios.

This is not a surprise seeing how closely Sfm-Learner is to direct visual odometry methods since

it directly aims to optimize a photometric loss. Yet, unlike DSO, it fails to account for frame

exposure differences, gamma correction or vignetting issues. Though it is able to learn the general

trend of some trajectories, it is observed that Sfm-Learner largely fails to learn poses within a

reasonable error.

Unfortunately, training and testing the models on the diverse dataset does not improve

their performance nor indicate that the models are able to generalize better to differing scenes.

However, these are flaws of the models, not necessarily of the dataset, and by training and testing

on the dataset, it is able to highlight these critical flaws of the models.

5.2 Conclusion

ORB-SLAM and DSO are amazing algorithms that perform extremely well in scenarios

where they can, but unfortunately fail completely when they encounter specific scenarios like

pure camera rotation. Deep learned models using convolutional neural networks can help mitigate

these issues and create more accurate models that are able to generate better depth and camera

poses.

The Sfm-Learner model performs well given the its key assumptions hold, though that
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is very unlikely in most real-world scenarios. It is able to outperform traditional methods in

only the most ideal conditions like KITTI. However, the popularity of this model has created

an entire class of similar monocular, unsupervised models focused on generating depth and

pose through image synthesis. These models all suffer from the same weaknesses of lacking

proper photometric calibration, lacking a strong supervisory signal for learning depth maps and

over-fitting on homogeneous datasets that are then used to claim strong results.

The Sfm-Learner model can be improved however. It needs a better and stronger supervi-

sion signal due to the fact that if depth maps are never accurately learned, then pose estimations

will always suffer. As a result, it may be time to reconsider photometric error as the sole supervi-

sion signal and incorporate geometric loss functions into the model as well. Also, similar to how

DSO explicitly handles photometric calibrations, it would be interesting to see similar, possibly

learned, models to account for these parameters in these networks. This would be extremely

helpful since the loss is based on photometric consistency, and ensuring that warped images do

not face vignetting or exposure issues would result in better and more accurate models.

Many of these models are only trained and tested on the KITTI dataset for pose on

specifically 5 window frames due to the error build up in longer sequences. As a result, it is hard

to truly judge how good these models can behave and to what extent they can generalize. Using

a dataset like the one this project has curated will help these models not only train on a wider

set of problems, but also highlight the limitations of such models. Hopefully, learned models

can eventually make use of this larger and more diverse dataset and learn to adapt to different

scenarios whether they be under the water, in a mall, or even on Mars.
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5.3 Future Direction

Currently, the models were trained and tested on each dataset individually and indepen-

dently. Though not discussed in this work, transfer learning was attempted by training a model on

two or more datasets and testing on the respective sequences. However, this showed no advantage

over training the model on each dataset individually, likely due to the catastrophic forgetting

problem. In the future, to build more robust, learned visual odometry systems, it will be necessary

to overcome such domain adaptation issues and build a model that is able to use transfer learning

to identify camera motion irrespective of the particular scene. This is an avenue to explore in the

near future, as learned models still tend to over-fit to particular scenes and environments. Due to

the diverse nature of the environments present in this dataset, it is an ideal dataset to train and test

novel methods capable of successfully predicting camera motion.
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