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Abstract 

There is insufficient knowledge on how environmental and physiological factors affect older 

people’s thermal perceptions. In this paper, we present two data-driven models (a field study 

model and a lab study model) using the algorithm of random forests to predict older people’s 

thermal sensation. These two models were developed from a field study dataset and a lab study 

dataset separately. The field study dataset was collected from 1040 old subjects (70+ years) 

who lived in 19 aged-care homes, which contains multi-dimension factors such as 

environmental parameters, subjects’ demographic information, health condition, 

acclimatization degrees, living habits and thermal perceptions’ votes. The lab study dataset was 

collected from a lab study and contains 18 old subjects’ (65+ years) eight local skin 

temperatures and thermal perceptions’ votes under five thermal environments 

(21/23/26/29/32℃). After the procedure of feature selection, the field study model was 

developed with four environmental variables (air temperature, velocity, CO2 concentration, 

illuminance) plus two human-related variables (health condition and living time in aged-care 

homes) as inputs. It produced an overall accuracy of 56.6%, which was 24.9% higher than that 

of the PMV model. The lab study model was built on five local skin temperatures including 

head, lower arm, upper leg, chest and back temperatures, which demonstrated an overall 

accuracy of 76.7%, 30.1% higher than UC Berkeley thermal sensation model’s accuracy. We 

then interpreted how these inputs distinguish thermal sensations by applying a partial 

dependence analysis. Finally, we proposed two applications of the above models and present 

older people’s seasonally neutral indoor temperature zones. 

 

1. Introduction 
 

Our world is facing great challenge of population aging. Based on the United Nations 

Population Division’s World Population Prospects (2019 version) [1], the percentage of people 

aged 65 or above will rapidly increase from 9.3% in 2020 to 18.9 % in 2070. By the end of 

2070, there will be 1.98 billion older people in this world. Figure 1 demonstrates the global 

aging trend we will face in the next 50 years. For older people, they tend to or have to live in 

aged-care homes or nursing homes due to their poor health conditions, physical disabilities and 

other concerns. According to our previous investigations[2], the older people who live in aged-

care homes spend more than 90% of their daily time staying indoors. So, it is important to 

provide them a healthy and comfortable indoor thermal environment. The current building 

environment standards like ASHRAE 55 [3], European EN15251[4] and Chinese GB/T 50785 

mailto:tjyuhang@163.com
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[5] recommend comfort zones, but they are based on young people’s thermal comfort 

perception which may not suitable for older people. 

 

 
Figure 1 Global aging trends 

 

  Comparing young and older people’s subjective and physiological responses to different 

thermal conditions have been broadly studied. For example, Stevens et al. [6] conducted a series 

of lab studies to measure young people (18-28 years old), mid-age people (40-60 years old) and 

older people’s (above 65 years old) local thermal sensation thresholds. They found that older 

people had higher perception thresholds and less sensitivities to both coldness and warmness 

than young people. Tsuzuki et al. [7] conducted a study with older and young subjects exposed 

to 23/25/27/29/31 ℃ conditions. They found that older people expressed less warm thermal 

sensations than their young counterparts at warm condition of 31℃ and felt colder than what 

PMV (Predicted Mean Vote) predicted in temperatures below 27℃. Schellen et al. [8] compared 

young (22-25years old) and older adults’ (67-73 years old) thermal comfort response to 

moderate temperature step changes. They found older subjects’ thermal sensations were 

generally 0.5 scale units lower than those of young subjects in both warm and cool 

environments. This indicated that older people had different responses to thermal stimuli. 

Novieto[9] reviewed older people’s physiological parameters related to human body 

thermoregulation system. He found that typical older people’s basal metabolic rate (-26.4%), 

cardiac output (-14.4%), and body surface area (-5.0%) decreased than those of typical young 

adults but their percentage of body fat greatly increased by 78.6%. Wang[2] developed an 

adaptive thermal comfort model for older people based on a four-year field study in aged-care 

homes and compared the new model with those in current standards. He found that older 

people’s neutral (or comfortable) temperature is lower in cold environments while higher in 

warm conditions than the models in the current standards. There are also studies which did not 

find significant thermal comfort difference between older and young people. Veronica[10] 

recently reported that they did not find any statistical difference on older and young people’s 

thermal sensation, comfort and acceptability in a climate chamber study in slight cool or slight 

warm environment. Based on the above literature, age difference in thermal comfort may exist 

between young and older people, but more studies are yet to be produced to validate this point.  

Thermal sensation is a subjective response to thermal environment. Having an accurate 

thermal sensation model is essential for predicting occupants’ thermal responses and therefore 

is important for indoor environment design. Among the existing sensation models, the PMV 

model [11] is widely used by standards like ISO 7730[12], ASHRAE 55[3] and EN 15251[4]. 

It can predict occupants’ averaged thermal sensation via six parameters including air 
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temperature, relative humidity, mean radiation temperature, air velocity, metabolic rate and 

cloth insulation. Normally, the comfort zone is defined as the PMV being within -0.5 to +0.5[3]. 

Recently, Cheung[13] compared the actual thermal sensation votes in ASHRAE Database II 

with its corresponding PMV values. They found that the PMV model is not reliable and only 

shows 34% prediction accuracy[13]. Jiao[14] validated the accuracy of the PMV model when 

it was used to predict older people’s thermal sensation in summer. She found that the PMV 

model would overestimate old people’s thermal sensation, and the discrepancy increases as air 

temperature go up.  

In addition to the PMV model, another approach is using physiological data like skin and/or 

core temperatures to derive regression model. Two classic examples are Hui’s [15] and Fiala’s 

[16] thermal sensation models. Their models were developed on local body skin temperatures 

and core temperature. This approach is theoretically reasonable because human brain does not 

directly sense air temperatures, but instead to the signals from thermoreceptors located in skin 

and other organs. Therefore, the skin and core temperatures can largely reflect human body 

thermal status and its corresponding thermal sensations. However, either Hui’s or Fiala’s model 

has its own deficiencies when applying to older people. First, the above models usually require 

many inputs. For example, 16 local skin temperatures are needed in Hui’s model. Second, some 

inputs are difficult to obtain in practice. To run Hui’s[15] or Fiala’s [16] model, users need to 

input a core temperature which is not easy to measure. A common way of using these comfort 

models is to use a human thermoregulation model to obtain predicted core and skin 

temperatures. However, by now, we have not found a suitable thermoregulation model which 

can reflect older people’ physical and physiological characters, and therefore we could not get 

accurately predicted temperatures through existing models.    

To fill in this gap, our goal is to develop two older people’s thermal sensation models to 

predict their thermal responses under different thermal conditions. These two models can be 

applied to two scenarios respectively. The first scenario is when basic environmental 

information and basic human-related information are acquirable. We built this model based on 

our field study data, so we call the first model the field study model in the following context. 

The second scenario is when older people’s local skin temperatures are accessible either by 

measuring or predicting. We developed this model based on our lab study data and consequently, 

we call it the lab study model. A data-driven approach (random forest algorithm) was applied 

to establish these two models. The field study model was built on the data of environmental 

parameters, subjects’ demographic information, health conditions, acclimatization degrees, and 

living habits, which were collected from a large-scale field survey [2]. The lab study model was 

developed with older people’s local skin temperatures collected from lab experiments [17]. The 

prediction accuracies of these two models were assessed and were compared with the PMV [11] 

model and the UCB thermal sensation model[15], respectively. We analyzed selected variables’ 

partial dependence to visualize the interactions between different variables and their thermal 

sensation effects. Finally, we utilized the new models in two real applications: 1) developing 

seasonal characterized older people’s neutral temperature zones, and 2) evaluating the 

feasibility of using only one easily detected skin temperature to predict older people’s thermal 

sensation.  

 

2. Methodology 

2.1 Data collecting  

Data set 1 (field study data) 

Data set 1 were collected from 1040 older persons (33.7% male and 66.3% female) aged 70 

to 97 years old in 19 aged-care homes located at Shanghai through January 2014 to April 

2017[2]. A total of 342, 330 and 368 older subjects were surveyed in winter, summer, and mid-

seasons. The study was carried out in their living rooms, where subjects remained seating during 
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the survey. Their demographic information (age, gender), health condition (self-evaluated 

health status), acclimatization degree (living time in local sites) and living habits (time spent 

on exercise per day and sleeping hours per day) were obtained through a questionnaire-based 

method. Indoor environmental parameters (air temperature, relative humidity, air velocity, 

black-bulb temperature, illuminance, sound level, CO2 concentration) were measured based on 

the protocol in ASHRAE Standard 55[3] and GB50785[5]. Table 1 lists the information of 

equipment that was used in the field study and the lab study. Meanwhile, subjects’ thermal 

sensation votes (TSV) were gathered using a seven-point scale (+3,+2,+1,0,-1,-2,-3 

corresponding to hot, warm, slightly warm, neutral, slightly cool, cool and cold, respectively) 

[3].  

Table 1 Information of equipment 

Measurement Instrument Range Accuracy 

Air temperature 
WSZY-1,Tian Jian Hua Yi, China 

0~+50℃ ±0.1 °C 

Relative humidity 10~90% ±2 % 

Black-bulb temperature TM200, KIMO, France -50~+250℃ ±0.2 ℃ 

Air velocity Air velocity meter 9515, TSI, USA 0~20m/s ±0.025 m/s 

Illuminance ZDS-10F-3D, Xinnuo, China 0-20000lx ≤±(4% reading) 

CO2 concentration Testo 535, TESTO, Germany 0-5000ppm ±(50ppm+2% reading) 

Sound level TES-1350A, TES, Taiwan China 35-130dB ±2 dB 

Skin temperature Pyrobutton-L, OPULUS, USA -40~+85℃ ±0.2 ℃ 

 

Data set 2 (lab study data) 

Data set 2 has 413 data samples collected from a lab study with 18 (9 males and 9 females) 

older people aged 65 to 83 years old [17]. The study was conducted in a climate chamber with 

two rooms (Room A and Room B). Room A was kept at 26℃, while Room B varied its air 

temperature (21℃, 23℃, 29℃, 32℃). Therefore, four temperature step changes were 

conducted between the two rooms (C3:26℃-23℃-26℃, C5:26℃-21℃-26℃, W3:26℃-29℃-

26℃, W6:26℃-32℃-26℃). For each case, every subject first experienced a 30-minute 

preparing period, then a 40-minute in Room A, followed by a 50-minute’s in Room B, and then 

another 50 minutes in Room A. Subjects’ eight local skin temperatures (forehead, left chest, 

left back, left forearm, left hand, left upper leg, left lower leg and left foot) were recorded by 

wireless pyrobuttons with an interval of 1 minute during all the time, and their thermal 

sensations were also surveyed with the seven-point scale at the 1st, 4th, 7th, 10th, 20th, 30th, 

40th minute after each temperature step change. In data analysis, we only used subjects’ skin 

temperatures and corresponding TSV gathered after (and at) the 20th minute when their TSV 

tended to be relatively stable. During the tests, subjects were allowed to read newspaper or 

listen to music or Chinese opera. The experiment would stop whenever subjects reported they 

were not willing to do it anymore. The test protocol has been reviewed and approved by Tongji 

University’s Committee for the Protection of Human Subjects. 

In this paper, we rescaled subjects’ original thermal sensation votes (TSV) from the seven-

point scale to a three-point scale as ‘Cool’(TSV<0), ‘Neutral’(TSV=0) and ‘Warm’(TSV>0). 

That is because we concern on older people’s overall thermal status, but not the degrees of their 

coolness or warmness.  

 

2.2 Data cleaning and balancing  

Figure 2 illustrates the flowchart of data processing, modeling and testing. Missing data 

existed in both data set 1 and data set 2. Instead of replacing missing data with the mean or 

median value of the corresponding variable, we deleted all missing data from the raw dataset. 

In our data sets, we found the numbers of three classes were imbalanced with ‘Neutral’ always 

being the majority. And imbalanced training data set may reduce a model’s prediction 
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performance[18]. Normally, there are three ways to rebalance data, which are down-

sampling(D), balance(B) and over-sampling(O). In short, down-sampling is a way to randomly 

reduce the majorities’ sample sizes to match the number of the least prevalent class. By contrast, 

over-sampling randomly synthesizes the minorities by applying K-Nearest Neighbor (KNN) 

algorithm until their numbers are equal to that of the majority class[18]. While balance is an 

approach that combines over-sampling the minority class and under-sampling the majority class. 

In this study, we used all of the above three methods to rebalance data and then build models 

and further select the model with the highest prediction accuracy.  

 

  
Figure 2 Framework of developing thermal sensation models 

 

2.3 Algorithm of random forests 

A decision tree is a decision tool and is used to divide a specific dataset into smaller datasets 

with descriptive features until one label or response variable being assigned at the end of the 

route. However, a single decision tree sometimes may not make the optimal decision at the final 

node and may be overfitting when a tree is too deep. In order to overcome these drawbacks, the 

concept of random forests was introduced by Breiman[19] in 2001. This algorithm is a useful 

nonparametric statistical method to deal with regression and classification tasks. As the name 

implies, random forests are an ensemble of tree-structured classifiers whose final decisions are 

aggregated and weighted into a final result. To be specific, each tree in the forests gives a vote 

to a task, and the forest takes the classification with the most votes as the final decision. Figure 

3 shows the schematic of random forests. For an individual tree in the forest, the growing 

procedures as follows[19]: 

1) Randomly select around two-third of cases from training dataset with N cases, which is 

called a bootstrap sample and is used to build a tree. The rest data is called Out-of-Bag 

(OOB) data which is used to calculate the prediction error, denoted by errOOB.  
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2) Randomly select m (m<<M) variables (mtry) from the total M variables. The number of 

mtry is related to the correlations between any two trees in the forest and the strength of 

each tree. Consequently, mtry could influence the prediction error.   

3) Extent each tree as large as possible.  

For a classification task, adding each case in OOB data into the tree and get a classification. 

Based on the above descriptions, each case can be classified by about one-third of the total trees. 

In the end, the class with the most votes predicted by all trees is the final output of the forest. 

And the percentage of wrong predictions is errOOB.  

 

 
Figure 3 A schematic of random forests 

 

2.4 Feature selection  

A model’s performance may benefit from removing highly correlated variables[20]. In this 

study, the Pearson correlation coefficients of each two variables were computed. The pairs 

whose absolute coefficients being larger than 0.8 was marked as highly correlated, and only 

one variable of a highly correlated pair remained. Then, we selected qualified variables being 

high-importance and non-redundancy with a three-step method proposed by Genuer in VSURF 

package for R[21], which included the threshold step, the interpretation step and the prediction 

step. Note that this method is also random forests algorithm based and fully data-driven. The 

threshold step includes ranking variables by the variable importance (VI), calculated by 

Equation (1), and eliminating useless variables being failed to decrease the model’s error rate. 

The interpretation step eliminates the variables being failed to decrease the model’s error rate 

by a specific amount (the VI standard deviation of the useless variables). The prediction step is 

trying to minimize the number of variables retained from the previous step as well as maintain 

predictive power. More detailed information can be obtained from Genuer’s papers[21, 22]. 

VI(Xj) =
1

ntree
∑ (errOOBt

𝑗̃
− errOOBt)t  (1) 

Where Xj means a specific variable. errOOBt  is the prediction error for a specific tree 

predictor t. errOOBt
𝑗̃
 means the error rate of a perturbed OOB data after randomly permuting 

the values of Xj. ntree is the number of trees in the forest. In short, VI(Xj) means the average 

change of the prediction error rate after a specific variable being added into the model. The 

higher the value is, the more importance the variable has. 
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2.5 Parameter optimization and cross-validation 

As mentioned above, the number of randomly selected variables (mtry) can influence the 

prediction accuracy of the final results. In this study, we used a grid search to capture the 

optimal mtry together with a 10-fold cross-validation. This method works with four steps. First, 

selecting a specific mtry from all possible values (from 1 to the number of qualified independent 

variables). Second, randomly splitting the entire training data into 10 folds and fitting a model 

with 9 folds and validate the model with the remaining 1 fold. Third, repeating the second step 

and averaging all the possible validating results. That is the final performance metric for the 

model using a specific mtry. Fourth, selecting the model coupling with the optimal mtry that 

shows the best final performance. In this study, the best performance means the highest 

prediction accuracy. 

 

2.6 Evaluation of model performance 

To evaluate the model performance, we used 20% of the data that haven’t been included in 

model development to validate prediction accuracy, as shown in Figure 2. The prediction 

accuracy was assessed by the percentage of correctively predicted cases.  

The predictions of PMV model and UCB thermal sensation model were also calculated for 

comparison. Subjects’ metabolic rates were estimated by ASHRAE Handbook 

Fundamental[23]. In our field study, subjects were always seated and quiet, which corresponds 

to the metabolic level as 1.0 met. However, considering that older people may have a lower 

metabolic rate than what the standard indicated [24-26], we calculated PMV with both 1.0 met 

and 0.8 met. Also, it’s noteworthy that the whole UCB thermal sensation model consists of a 

static term and a dynamic term [27, 28]. In this study, we only calculated the static overall 

thermal sensation because the ambient conditions were relatively stable, and we assumed that 

the subjects’ skin temperatures did not change much during the survey. Further, running UCB 

thermal sensation model requires 16 local skin temperatures (forehead, chest, right upper arm, 

left upper arm, right lower arm, left lower arm, right hand, left hand, left thigh, right thigh, right 

lower leg, left lower leg, right foot, left foot, back, pelvis), but our lab survey data only has 8 

local skin temperatures. So we further assumed symmetrical distributions of skin temperatures 

for left, right, anterior and posterior body parts. In the UCB model, one inevitable setting is 

determining local body parts’ temperature setpoints, which stand for neutral local skin 

temperatures when local thermal sensations are ‘Neutral’. In this study, we used the data 

collected from our lab study to deduce each local body part’s setpoint by selecting and 

averaging all of the subjects’ neutral skin temperatures when both their local and overall thermal 

sensations were ‘Neutral’. The comparisons of the default setpoints in the UCB model and our 

study’s setpoints for older people were listed in Table 2. In addition, because both the PMV 

model and UCB model produce continuous outputs, we rescaled their outputs of predicted 

thermal sensation (PTS) into three categorical classes as ‘Cool’ (PTS<-0.5), ‘Neutral’ (-

0.5≤PTS≤+0.5) and ‘Warm’ (PTS>+0.5). 

Table 2 Setpoints of local body parts 

 Head Chest 
Upper 

arm 

Lower 

arm 
Hand Thigh 

Lower 

leg 
Foot Back Pelvis 

UCB 

model 

defaults 

35.8 35.1 34.2 34.6 34.4 34.3 32.7 33.3 35.3 35.3 

This 

study 
33.8 33.8 32.9 32.9 32.8 33.3 33.1 32.9 33.4 33.4 

 

2.7 Partial dependence  
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To provide insights into the black-box model, partial dependence plots were represented. It 

can provide a simple solution to illustrate the relationship between a specific variable and a 

target class. For a classification problem, the partial dependence function is defined as a logit 

function based Equation 3[29].  

𝑓𝑘(𝑥) = log[𝑝𝑘(𝑥)] −
1

𝐾
∑ log[𝑝𝑘(𝑥)]𝐾

𝑘=1 , k = 1,2, … K (3) 

Where k is the number of target classes. x is the variable for which partial dependence is 

searched. 𝑝𝑘(𝑥) is the probability predicted by a model for the k-th class. As the definition of 

the above equation, a positive and larger log-odds𝑓𝑘(𝑥) means a larger probability for the k-th 

target class to be predicated by the specific value of variable x. In contrast, a negative log-odds 

indicates less possibility for the k-th target class to be predicted by the value[30]. 

 

2.8 Software 

All analysis conducted in this study was based on R language version 3.3.2[31] and the 

platform of RStudio (RStudio, USA). R packages of ‘outliers’[32], ‘VSURF’[33], 

‘smotefamily’[34], ‘caret’[35] were applied to prepare data and build models, while packages 

of ‘pdp’[36], ‘corrplot’[37], ‘ggplot2’[38], ‘rworldmap’[39], ‘mapproj’[40], ‘rgeos’[41] and 

‘viridis’[42] were used for mapping and visualizing associated data.  

 

3. Results and discussion 

3.1 Variable description and selection 

Table 3 Subjects’ anthropometric information 

Dataset 
Age(years) 

Mean±S.D. 

Height(cm) 

Mean±S.D. 

Weight(kg) 

Mean±S.D. 

Field study 83.8±6.0 159.7±8.8 59.4±11.1 

Lab study 67.4±4.4 161.6±7.6 60.7±9.2 

 

Subjects’ anthropometric information is listed in Table 3.Table 4 describes the variables 

collected in data set 1 and data set 2, which includes variables’ categories, units and ranges. 

Except for ‘Self-evaluated health condition’ and ‘Gender’ which are categorical, other variables 

are continuous. Figure 4 displays the distributions of the 16 variables in data set 1 under ‘Cool’, 

‘Neutral’, ‘Warm’ thermal sensation categories and overall of the three, which are 

corresponding to the red area, green area, blue area, and white area with black contour lines in 

the figure. These distributions are presented as the form of either scaled densities for continuous 

variables or histograms for discrete variables. The scaled density is computed by the method of 

smoothed kernel density estimate[43], the higher the scaled density value, the higher frequency 

happened at the observed value. Taking Figure 4(c) as an example, the highest density of air 

temperature under ‘Cool’ occurs at near 13℃, which means that the major votes of cool feelings 

were gathered when the air temperature was around 13℃. The highest density of air 

temperature under ‘Warm’ concentrated at 30℃ temperature. For ‘Neutral’ thermal sensation’s 

profile, it peaks at two temperatures, near 14℃ and 28℃. This indicates that air temperature 

could be a good indicator to forecast older people’s thermal sensation. Following the above 

analysis, the distributions of relative humidity, black-bulb temperature, air velocity, CO2 

concentration, health condition, living time in aged-care homes, cloth insulation, illuminance 

and sleeping hour under three thermal sensations also exhibit different extents of differences, 

as shown in Figure 4.
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Table 4 Descriptions of variables 

Dataset  Categories Variables Units Ranges 

Data set 1 

Demographic 

information 

Age(x1) years 70-97 

Gender(x2) - Male=0; Female=1 

Environmental 

parameters 

Air temperature(x3) ℃ 6.4-32.5 

Relative humidity(x4) % 21.3-83.2 

Black-bulb temperature(x5) ℃ 6.3-32.5 

Air speed(x6) m/s 0.00-0.60 

Illuminance(x7) lux 15.8-879.8 

A-weighted sound level(x8) db 35.53-89.60 

CO2(x9) ppm 281.2-785.2 

Health Condition Self-evaluated health condition(x10) - 
1-Very bad; 2-Bad; 3-Normal; 4-Good; 5- 

Very Good 

Acclimatization 

Time living in Shanghai(x11) years 3-94 

Time living in aged-care home(x12) 
month

s 

0.2-90.0 

Time spent indoor per day(x13) hours 10.5-24.0 

Cloth insulation(x14) clo 0.22-2.34 

Living habits 
Exercise(x15) min 0.0-180 

Sleeping hours per day(x16) hours 3-18 

Data set 2 
Local skin 

temperature 

Head, Chest, Back, Lower arm, Hand, Upper leg, 

Lower leg, Foot 
℃ 

Head:29.64-36.14 

Chest:28.78-36.46 

Back:30.02-35.73 

Lower arm:28.94-35.33 

Hand:25.65-36.39 

Upper leg:27.71-35.19 

Lower leg:28.28-35.39 

Foot:27.34-35.83 
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Figure 4 Distributions of variables in field study data 
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Figure 5 Correlation coefficients of variables in field study data 

 

Figure 5 lists Pearson correlation coefficients of every two variables in data set 1. In the 

figure, blue and red numbers respectively represent positive and negative correlations. Note 

that only those high correlation coefficients are exhibited clearly, while other small values are 

set to be invisible or fade away. That is because we intend to select highly correlated variables 

and ignore other correlations. Black-bulb temperature (Tb) and cloth insulation (CLO) are 

found to be highly correlated with air temperature (Ta), having coefficients of 0.91 and -0.92 

respectively. We therefore excluded Tb and CLO from qualified input variables to avoid linear 

dependence.  

 

 
Figure 6 Variable importance of selected features in field study model  

 

Figure 6 shows the importance of finally selected variables from field study data based on 

the proposed feature selection algorithm. Air temperature is the dominating factor, followed by 

air velocity, illuminance, CO2 concentration, time in aged-care home and self-evaluated health 

condition. 

Figure 7 presents the distributions of eight local skin temperatures in data set 2. The violin 

plots (a combination of box plot and density plot) display the temperature distributions of a 

specific local body part under ‘Cool’, ‘Neutral’ and ‘Warm’ thermal sensations with the red 

dots and the red lines representing the means and the standard deviations. The most frequently 

observed temperature in each category corresponds to the widest part in the violin plot. Taking 
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Figure 7(a) as an example, the distributions of head skin temperature under different thermal 

sensation categories are 32.8℃ under ‘Cool’, 34.3℃ under ‘Neutral’, and 34.7℃ under ‘Warm’. 

As in the field study data analysis, Pearson’s correlation coefficients of every two local skin 

temperatures were computed and presented in Figure 8. Local skin temperatures are positively 

correlated, which is reasonable because the thermal environments in our experiments were 

uniform with no local heating or cooling strategy. For those highly correlated local skin 

temperatures with a coefficient higher than 0.8, we only kept one of them as model input. In 

the end, skin temperatures of head, lower arm, upper leg, chest and back were selected as 

qualified inputs. Figure 9 shows the variable importance of finally selected local skin 

temperatures. Skin temperatures of head and lower arm have relative higher VI (above 0.1) than 

those of upper leg, chest and back.  

 

 
Figure 7 Distributions of local skin temperatures in lab study data 

 

 
Figure 8 Correlation coefficients of variables in lab study data 
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Figure 9 Variable importance of selected features in lab study model 

 

3.2 Model performance 

Table 5 shows the accuracy performance of field study model (Model 1), lab study model 

(Model 2), PMV model and UCB static thermal sensation model. For Model 1 and Model 2, 

we separately evaluated their accuracies by applying raw data set and three rebalanced datasets, 

which were expressed as raw datasets (R), over-sampling datasets (O), balance datasets (B) and 

down-sampling datasets (D). The series of Model 1 and the PMV model are considered as the 

same type models because they are predicted by multiple environmental and human-related 

parameters. While the series of Model 2 and UCB thermal sensation model are categorized as 

the other type because they are all skin temperature-based models.  

Model 1(R) was found to have the highest overall accuracy among the series of Model 1, 

with enhancement of 2.7-6.9%. However, the performance of Model 1(R) was not balanced. It 

sacrificed its accuracy on two minor categories of ‘Cool’ and ‘Warm’ so that enhanced the 

overall accuracy. Model 1(B) produces a much balanced performance on each category (all 

above 55.0%), and it has an overall accuracy of 56.6%. Generally, no matter which data 

balancing strategy was applied, Model 1 always has a better performance on predicting older 

people’s thermal sensation than the PMV model does, with 15.8%-27.6% enhancement on the 

overall prediction accuracy. The PMV model turned out to be strongly biased to cool side 

thermal sensation and, therefore, failed to provide reliable predictions on the other two thermal 

sensation categories, especially on ‘Neutral’ sensation with less than 22% accuracy.    

For the models built on lab study data, Model 2(O) has the highest overall accuracy with the 

overall accuracy as high as 76.7%. The results of UCB static thermal sensation model are 

extremely imbalanced with the accuracy of 78.7% and 84.6% accuracy on ‘Cool’ and ‘Warm’ 

sensations respectively, while the prediction accuracy on ‘Neutral’ is only 3.1%. This strong 

bias comes out because we rescaled UCB model’s predicted thermal sensation (PTS) from 

continuous values ranging within±4 into three discrete votes (Cool: PTS<-0.5; Neutral: -0.5

≤PTS≤+0.5; Warm: PTS>+0.5). There is only 1 scale of PTS in the category of ‘Neutral’, 

while there are 3.5 scales of PTS in ‘Cool’ and ‘Warm’. That is one main reason why UCB 

model performs badly on predicting ‘Neutral’. 

 

Table 5 Performances of different thermal sensation models on testing data 

Data Models 
Optimal 

mtry 
Features 

Accuracy 

Cool Neutral Warm Overall 

Field 

study data 

Model 1(R) 5 Air temperature  

Air velocity  

Illuminance  

Health condition 

CO2 concentration 

Time in aged-care home 

9.5% 83.0% 20.0% 59.3% 

Model 1(O) 2 52.4% 56.4% 50.0% 54.5% 

Model 1(B) 3 57.1% 55.3% 60.0% 56.6% 

Model 1(D) 1 81.0 % 40.4% 70.0% 52.4% 

PMV-1.0 met - Air temperature 76.2% 21.3% 56.7% 36.6% 
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PMV- 0.8 met - 

Black-bulb  

Temperature 

Relative humidity 

Air velocity 

Metabolic rate 

Cloth insulation 

95.2% 14.9% 40.0% 31.7% 

Lab study 

data 

Model 2(R) 2 
5 local skin temperatures: 

forehead, lower arm, upper 

leg, chest, back 

66.7%  78.1%  73.1%  74.0%  

Model 2(O) 1 73.3%  78.1%  76.9%  76.7%  

Model 2(B) 2 73.3%  68.8%  80.8%  74.0%  

Model 2(D) 1 80.0%  56.3%  73.1%  67.1%  

UCB TS model 

(static state) 
- 16 local skin temperatures 73.3% 3.1% 84.6% 46.6% 

*R-Raw data, O-Over-sampling, B-Balance, D-Down-sampling 

 

3.3 Interpretations of selected variables 

Here we would like to further dissect the underlying reasons why the above qualified 

variables were selected to build the field study model and the lab study model. Taking variable 

‘Air temperature (Ta)’ in Model 1(B) and variable ‘Head skin temperature (Thead)’ in Model 

2(O) as two examples, we interpret how these variables affect subjects’ expressions on thermal 

sensation. Figure 10 and 11 show their partial dependence plots. Other variables’ partial 

dependence plots are attached in Appendix A. In these plots, the black lines indicate the 

variation of log probability along with the values of a specific variable, while the blue lines are 

smoothed curves of log probability computed by the method of LOESS (Local Weighted 

Smoothing)[44], the higher the log-odds value, the higher the probability. In Figure 10, the left 

plot shows that the further the air temperature is lower than 20℃, the higher the possibility of 

older people expressing ‘Cool’ thermal sensation would be. The middle and right plots indicate 

that when the air temperature is above 22.5℃, the probabilities of getting ‘Neutral’ and ‘Warm’ 

sensations will greatly increase. Figure 11 suggested that head skin temperature is a good 

predictor to categorize ‘Cool’ and ‘Warm’ when it is lower than 32.5℃ or higher than 33.2℃, 

respectively.  

 

 
Figure 10 Partial dependence plot of air temperature in field study model 
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Figure 11 Partial dependence plot of head temperature in lab study model  

 

Table 6 summarizes the contributors of each category in field study model and lab study 

model based on the results of partial dependence plots (shown in Figure 10, 11 and Appendix 

A). The six variables that contribute to field study model actually can be further classified as 

four categories, basic environmental factors (air temperature, air velocity and illuminance), 

indoor air quality (CO2 concentration), acclimatization (time in aged-care homes) and health 

(self-evaluated health condition).  

To date, many studies have validated the influences of the above basic environmental factors 

on human thermal responses. Air temperature is one of the most widely studied factors in 

thermal comfort field because it is practical to measure and its thermal comfort effects have 

been demonstrated by many previous researches [2-4, 13, 45-51]. In this paper, air temperature 

was also found to be the major contributor of field study model with the highest variable 

importance. And it is also highly correlated with older people’s clothing insulation. That pattern 

is in agree with what Liu[47] found in her study with young people as subjects.  

 

Table 6 Contributors of target thermal sensation in field study model and lab study model 

Model Cool Neutral Warm 

Field 

study 

model 

Air temperature 

 

Air temperature 

Air velocity 

Illuminance 

CO2 concentration 

Time in aged-care home 

Health 

Air temperature 

Air velocity 

Illuminance 

Time in aged-care home 

Health 

Lab 

study 

model 

Head temperature 

Lower arm temperature 

Back temperature 

 

Head temperature 

Lower arm temperature 

Upper leg temperature 

Chest temperature 

Back temperature 

Head temperature 

Lower arm temperature 

Upper leg temperature 

Chest temperature 

Back temperature 

 

Air velocity helps to distinguish ‘Neutral’ and ‘Warm’ in field study model. The highest 

probability for older people to feel ‘Warm’ happened when the air velocity was around 0.25 

m/s. In data set 1, air velocities of 0.25m/s and above were detected in summer and generally 

corresponded to air temperatures of 30℃ or above. Figure A1 in Appendix A shows that when 

air velocity was higher than 0.25m/s, the probability of older people feeling ‘Warm’ in fact 

decreased rather than increased. This indicates the air speed of 0.25m/s may be a boundary 

value. That means when indoor air movement is beyond 0.25m/s, it is very likely for older 

people to adopt adaptive behavior, like using fans or open windows to increase their rooms’ air 

movement and, therefore, to enhance heat dissipation. That also implies only using air 

temperature to predict subjects’ thermal sensation or simply considering the relationship 
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between air temperature and thermal sensation as linear is not adequate. That would overlook 

the potential influences of subjects’ adaptive behaviors on adjusting their thermal sensations.  

Illumination also plays an important role in maintaining older people’s thermal comfort. We 

found that older people were more likely to feel ‘Neutral’ or ‘Warm’ when their surrounding 

illuminance levels were relatively high, which is consistent with previous studies[52, 53] that 

reported the links between illuminance and thermal comfort. Badia[53] found that the brighter 

light (5000lux) elevated subjects’ body temperature during the night time, which may be caused 

by a higher melatonin level stimulated by light. Candas [52] observed that subjects preferred to 

wear more clothing in 70lux than in 700lux, indicating that higher illuminance may make 

subjects feel warmer. 

Indoor air quality is represented by CO2 concentration in this study. Figure A3 in Appendix 

A clearly shows that CO2 concentration helps to distinguish older people’s ‘Neutral’ sensation 

from other two sensation categories. Older people who were exposed to low CO2 concentration 

were more likely to feel ‘Neutral’. That conclusion partially agrees with Zhang’s [54] finding 

that a negative perception of air quality, higher CO2 concentration, may trigger a negative 

thermal response or a feeling of discomfort. 

Acclimatization is one of physiological feedbacks to the local thermal environment and a 

vital component in the thermal adaptation theory [55, 56]. In this study, we took subjects’ living 

time in aged-care homes as an evaluation index of acclimatization. Generally, those who lived 

in an aged-care home for a long time were more likely to feel ‘Neutral’ and ‘Warm’, while this 

index has no effect on ‘Cool’ sensation. This observation matches what Brager and de Dear’s 

finding [55] that acclimatization is more easily to be found for heat exposure than cold exposure 

because ‘adaptation to the cold is primarily behavioral’.  

Self-evaluated health condition used in this study is a comprehensive index, by which 

subjects made self-judgments on their health status. We found subjects who had better health 

conditions (‘Good’ or ‘Very good’) were more likely to feel ‘Neutral’ and ‘Warm’ than those 

who evaluated themselves as ‘Normal’, ‘Bad’ and ‘Very bad’ health condition. Diseases have 

been shown to affect human thermal perceptions. Taking diabetes as an example, diabetes-

related metabolic disorders will affect peripheral nerves and bring neuropathic symptoms, 

which results in decreased sensitivity to the ambient thermal environment [24, 57].  

The connection between skin temperature and human thermal perception has been widely 

studied by many researchers [15, 16, 58-61]. Dai [60] summarized the related studies over the 

last ten years. He found that the statistical regression model is the most common method and 

the number of selected local skin temperatures varied case by case. In our model, the machine 

learning algorithm only selected head, lower arm, upper leg, chest and back skin temperatures 

as inputs. Although it is based on a data-driven approach, the result is coincident with what 

Stevens[6] and Hui[15] found in their physiology studies. As shown in Figure B1 in Appendix 

B, Stevens mapped 20 older people and 20 young people’s 13 local body parts’ cold and warm 

thresholds. Four of the five local body parts (head, lower arm, upper leg and back) selected in 

our model are marked with red rectangles in Figure B1 by Stevens[6], which are proved to be 

highly sensitive to both warmness and coldness. Generally, a high thermal sensitivity 

corresponds to a low thermal threshold. Although Stevens did not test the thermal sensitivity 

on chest, Hui[15] reported that chest is one of three dominant parts (chest, pelvis and back) to 

determine human cold side sensation. All the above literature suggest that the selected input 

skin temperatures and the modeling framework used in this paper are rational and consistent 

with previous findings. 

 

3.4 Application of the proposed models 
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 In this section, we applied the proposed models in real application scenarios. Based on the 

field study model, we would like to present indoor neutral indoor temperature zones of the older 

people who live in aged-care homes.  

Neutral temperature zone is defined as the indoor temperature ranges in which people would 

feel ‘Neutral’ [4, 51]. Here, we used a backward method to deduce neutral zones for older 

people with different health conditions and degrees of acclimatization. It is accomplished by 

fixing the values of independent variables of velocity, CO2 concentration, illuminance at the 

median values in each season and selecting the air temperatures with which the field study 

model would output the predicted thermal sensations as ‘Neutral’. The older people are 

characterized by health conditions (‘Good’ and ‘Bad’) and two types of acclimatization 

(‘Shorter-stay’ and ‘Longer-stay’). Noted that the periods of shorter-stay and longer-stay are 

defined as the first and third quartiles of ‘living time in aged-care homes’ in data set 1, which 

are 6 months and 36 months respectively. Table 7 lists the inputs in three seasons. 

 

Table 7 Inputs of independent variables to calculate neutral temperature zones 

Features Summer Mid-season Winter 

Air velocity(m/s) 0.17 0.01 0.02 

CO2(ppm) 357.1 453.3 495.3 

Illuminance(lux) 185.8 158.2 169.0 

Living time in Aged-care 

homes(months) 
Shorter-stay(6 months), Longer-stay(36 months) 

Health Good-4, Bad-2 

Air temperature range (℃) 25.3-32.5 9.2-27.6 6.4-19.9 

 

Figure 12 illustrates older people’s neutral temperature zones in summer, winter and mid-

season by health conditions and living time in aged-care homes. The numbers shown in the 

figures are upper or lower limits of neutral temperature zones. Generally, older people’s neutral 

temperature zones exhibit discrepancies in three seasons. Their neutral temperature zones are 

narrower in summer than those in the other two seasons. In summer, except for the older people 

being as longer-stay and healthy, other older people have a similar neutral temperature zone 

ranging from 25.3℃ to 28.5℃, while the diversities of neutral temperature zones become larger 

in mid-season and winter. In winter and mid-season, those older people who are longer-stay 

and healthy generally have lower limits of neutral temperature: 11.7℃ in winter and 9.2℃ in 

mid-season. That implies these people have better abilities to adjust themselves to feel neutral 

in relatively cool environments. Besides, those older people who have bad health condition 

show higher upper limits (both above 27.0℃) of neutral temperature than those with good 

health in mid-season, meaning that these people are not as sensitive as healthy older people in 

response to warmness. The above knowledge can help aged-care administrators and nurses to 

identify if a specific type of older people is in or out of thermally neutral zones by measuring 

their indoor air temperatures. As the neutral temperature zones described above have taken 

older people’s thermal adaptations into consideration, Figure 12 can also be a useful reference 

for HVAC engineers to properly design a comfort-based HVAC operation strategy for the 

facilities where the elderly live.  
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Figure 12 Predicted neutral temperature zones for older residents in aged-care homes 

 

The lab study model has a relatively higher prediction accuracy (76.7%) to distinguish older 

people’s thermal sensation than the field study model (56.6%). However, to run the lab study 

model, we need to acquire five local skin temperatures which are actually not easy to be 

measured in the real world. One of the two possible applications of the lab study model is 

combining it with an older people-based thermoregulation model, by which their local skin 

temperatures can be predicted based on surrounding thermal environment and human body 

related factors (body shape, basal metabolic rate, cardiac output and percentage body fat)[4]. 

Some excellent previous studies have been conducted by Stolwijk[62, 63], Tanabe[64], 

Fiala[16], Huizenga[65] to develop numerical human physiology models. However, the 

common problem of the above models is that all of them were developed based on young 

people’s parameters. This constrains these models’ capabilities to accurately predict older 

people’s skin temperatures. Modelling an older people-based thermoregulation model is beyond 

the content of this paper and deserves to be studied in the future. Compared with the above 

approach, a more practical way is to only use forehead skin temperature to predict older 

people’s thermal sensation. That is reasonable because head skin temperature has been 

validated to be as the highest importance, and this area of skin is generally uncovered and can 

be easily detected by an infrared thermometer or camera installed in living rooms. It needs to 

be noted that we did not acquire head skin temperature data via an infrared thermometer or 

camera but we explored the possibility of using a solo head skin temperature in data set 2 to 

predict older people’s thermal sensation. After using the over-sampling method to rebalance 

head skin temperature, we applied the random forests algorithm again to predict older people’s 

thermal sensation. This simplified model’s overall prediction accuracy is 53.4%. Previously, 

Dai[60] also proposed a head skin temperature-based model, using Hui Zhang’s data collected 

from intensive lab studies[15], to predict young people’s thermal sensation by using Gaussian 

support vector machine (SVM) algorithm. Table 8 lists the prediction accuracies of the above 

two models. Dai’s model has much higher prediction accuracies on ‘Cool’, ‘Neutral’ and 

overall sensation than those of our simplified model.  

 

Table 8 Results of using head skin temperature to predict thermal sensation 

Studies Subjects 
Accuracy 

Cool Neutral Warm Overall 
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Our study Older people 60.0% 40.6% 65.4% 53.4% 

Dai[60] Young people 85.3% 82.3% 50.8% 72.8% 

   

The above results indicate that the head skin temperature alone can perform reasonably well 

in predicting older people’s thermal sensation. And the possible reasons that Dai’s model 

produces a much higher overall accuracy than that of our model can be attributed to two 

explanations. The first one is about data. Dai’s data was collected from strong local heating and 

cooling experiments, so their subjects might experience strong cold or hot feelings with relative 

wider skin temperature variations. While our data was collected from stable and uniform 

thermal environments, and subjects’ feelings may not be as strong as theirs. The second 

explanation is that older people’s reducing thermal sensitivity may weaken skin temperatures’ 

indicative effects on their thermal sensations. Older people lose thermal sensitivities to both 

warmness and coldness. Stevens[6] pointed out that older people have increased cold and warm 

thresholds on many local body parts (see as Figure B1 in Appendix B) especially on body 

extremities, like toes and soles, which indicates older people’s thermal sensitivity get 

deteriorated. The underlying mechanisms of their reduced thermal sensitivity were summarized 

and discussed by Slava and André[24], which are related to the changes in the density of sensory 

epidermal nerve fibers and its functional properties.  

3.5 Limitations 

This study has its own limitations, which come from the following sources. 

1) The proposed models, either the field study model or the lab study model, are built based 

on the data collected from Chinese older people who lived in hot summer and cold winter 

climate zone. For those older people who live in different climate zones or countries, or 

with different culture backgrounds, their thermal perceptions may be different from what 

we observed.  

2) All the subjects were keep seated during our experiments, and the influence of metabolic 

rate was not considered.  

3) The field study data was collected from aged-care homes. For those who live in their own 

homes, this model and its results may be not applicable. Also, we avoided doing field 

surveys in raining days so we missed much data with high relative humidity.  

4) We didn’t observe that any subject was sweating even in a 32℃ thermal environment, so 

we didn’t consider the possible effects of sweating on older people’s thermal sensation in 

lab study model.  

5) The neutral temperature zones proposed in this study focus more on older people’s thermal 

comfort but not healthy issues. The relationship and trade-off between health and thermal 

environment deserve to be further discussed.  

 

 

4. Conclusions 
 

In this paper, we proposed two data-driven models with a random forests algorithm to predict 

older people’s thermal sensation in the building environment. The field study model was built 

based on multi-dimension data collected from our large-scale field studies conducted in aged-

care homes, while the lab study model was built based on local skin temperatures recorded from 

our lab studies.   

The six input variables of air temperature, air velocity, CO2 concentration, illuminance, 

health condition and living time in aged-care homes were selected as high-importance features 
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to establish the field study model. After rebalancing the data, the model’s overall prediction 

accuracy could achieve at 56.6%, which is 24.9% higher than the prediction accuracy of the 

PMV model. Five local skin temperatures including head, lower arm, upper leg, chest and back 

skin temperatures were found to be important features in lab study model to predict elderly’s 

thermal state. The combination of the above skin temperatures can produce an overall accuracy 

of 76.7%, which is 30.1% higher than that of UCB thermal sensation model (static). 

Further, we proposed two practical applications of the above two models. By applying the 

field study model, we presented older people’s neutral indoor temperature zones in different 

seasons. Based on the analysis of the lab study model, we derived a simplified model by using 

an easily detected skin temperature, head skin temperature, as the only input, which could 

produce an accuracy of 53.4%. The above applications provided two pathways for the 

architectures, administrators or healthcare providers whose work is related to aged-care homes 

to design a comfortable thermal environment for older residents. They can use the above ways 

to monitor or predict older residents’ thermal sensations. When their thermal sensations are 

found to be cool or warm, further actions, like running heating or cooling system, should be 

applied to their living environment. In the next step, future studies could consider the synergistic 

effects of health and comfort concerns on older people’s indoor thermal environment design 

and operation.  
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Appendix A – Partial dependence plots 
 

 
Figure A1 Partial dependence plot of air velovity in field study model 

 

 
Figure A2 Partial dependence plot of illuminance in field study model 

 

 
Figure A3 Partial dependence plot of CO2 in field study model 
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Figure A4 Partial dependence plot of living time in aged-care homes in field study model 
 

 
Figure A5 Partial dependence plot of health condition in field study model 

 

 
Figure A6 Partial dependence plot of lower arm temperature in lab study model 

 

 
Figure A7 Partial dependence plot of upper leg temperature in lab study model 

 

 
Figure A8 Partial dependence plot of chest temperature in lab study model 
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Figure A9 Partial dependence plot of back temperature in lab study model 

 

Appendix B – Human thermal sensitivity map 

 

Figure B1 Body maps of regional warm (upper bars) and cold (lower bars) thresholds[6] 

 




