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4
o SYMMETRIC REGULARIZATION,
o REDUCTION AND BLOW-UP OF
- THE PLANAR THREE-BODY PROBLEM
8 RICHARD MOECKEL AND RICHARD MONTGOMERY

9
o We carry out a sequence of coordinate changes for the planar three-body
m problem, which successively eliminate the translation and rotation symme-
2 tries, regularize all three double collision singularities and blow-up the triple
3 collision. Parametrizing the configurations by the three relative position
14 vectors maintains the symmetry among the masses and simplifies the regu-
15 larization of binary collisions. Using size and shape coordinates facilitates
16 the reduction by rotations and the blow-up of triple collision while empha-
17 sizing the role of the shape sphere. By using homogeneous coordinates to
18 describe Hamiltonian systems whose configurations spaces are spheres or
10 projective spaces, we are able to take a modern, global approach to these
20 familiar problems. We also show how to obtain the reduced and regularized
o1 differential equations in several convenient local coordinates systems.
2
3 1. Introduction and history

o5 The three-body problem of Newton has symmetries and singularities. The reduction

.6 brocess eliminates symmetries thereby reducing the number of degrees of freedom.
>, The Levi-Civita regularization eliminates binary collision singularities by a nonin-
g vertible coordinate change together with a time reparametrization. The McGehee
5o blow-up eliminates the triple collision singularity by an ingenious polar coordi-
5 hate change and another time reparametrization. Each process has been applied
5, individually and in various combinations to the three-body problem, many times.

3, Inthis paper we apply all three processes globally and systematically, with no
33 one body singled out in the various transformations. The end result is a complete
5, flow on a five-dimensional manifold with boundary. We focus attention on the
55 geometry of the various spaces and maps appearing along the way. At the heart
56 Of this paper is a beautiful degree-4 octahedral covering map of the shape sphere,
5, branched over the binary collision points (see Figure 4 on page 151). This map

3 Research supported by NSF grant DMS-1208908.
9 MSC2010: primary 37NO0S, 70F07, 70G45; secondary 53A20, 53CXX.

40  Keywords: celestial mechanics, three-body problem, regularization.
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102 RICHARD MOECKEL AND RICHARD MONTGOMERY

first appears in the work of Lemaitre [1954; 1964]. One of our goals is to give a
modern, geometrical approach to this regularizing map.

The reduction procedure for the three body problem dates back to Lagrange
[1772] who found elegant differential equations for 10 translation and rotation
invariant variables, including the squares of the lengths of the three sides of the
triangle formed by the bodies. These equations are valid for the three-body problem
in any dimension. The variables of Lagrange also have the advantage of maintaining
the symmetry among the masses. On the other hand, for the planar problem they are
subject to 3 nonlinear constraints in addition to the energy and angular momentum
integrals. Moreover, we do not know a way to regularize the binary collision
singularities in Lagrange’s equations. For a modern introduction to Lagrange’s
equations; see [Albouy and Chenciner 1998; Albouy 2004; Chenciner 2011].

Jacobi eliminates the translation symmetry by the familiar device of fixing the
center of mass at the origin and introducing Jacobi coordinates [1843]. The elimi-
nation of rotations is achieved by introducing some angular variable (or variables
in the spatial case) to describe the overall rotation of the triangle together with
some complementary, rotation-invariant variables. This method, which is the basis
for much of the later work on the three-body problem, has some disadvantages.
First, the Jacobi coordinates break the symmetry among the masses, making it
much more difficult to regularize all three binary collisions at once. Second, for
topological reasons, there is no way to choose an angular variable suitable for a
global reduction that includes the binary collision configurations, namely, the map
from the normalized configuration space to the shape sphere is a Hopf fibration, a
nontrivial circle bundle. If we delete the binary collision points, the bundle becomes
trivial but this deletion is not conducive to subsequent regularization.

Murnaghan [1936] derived a symmetrical Hamiltonian for the planar three-body
problem in terms of the lengths of the sides and an angular variable representing the
overall rotation of the triangle with respect to an inertial coordinate system. Then
he obtains a reduced system by ignoring the angular variable. Van Kampen and
Wintner [1937] carry out a similar reduction for the spatial three-body problem.
While these reductions avoid breaking the symmetry, they are still subject to the
problem about the use of angular variables in a nontrivial bundle. In addition, using
the side lengths as variables leads to differential equations that are not smooth at
the collinear configurations (a problem seemingly avoided somehow by Lagrange).

Lemaitre [1954] introduced a symmetrical approach to reduction and regular-
ization of binary collisions leading to the octahedral branched covering map of
the sphere mentioned above. After using Euler angles to reduce by rotations, he
introduces a size variable and two shape variables, which can be viewed as spherical
coordinates on the shape sphere which we use below. The regularization of binary
collisions is done in the shape variables by means of the octahedral covering map.

which — that (when
introducing a defining clause)
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PLANAR THREE-BODY PROBLEM 103

1 The use of Euler angles limits the validity of the reduction step of Lemaitre’s work
, and the derivations are based on rather heavy trigonometric computations. But much
3 of this paper can be viewed as a modern, global way to arrive at his covering map.
4, In this endeavor we have the advantage of the modern theory of reduction of
5 Hamiltonian systems with symmetry. Smale [1970] describes the reduction process
¢ for the three-body problem as the formation of a quotient manifold with a reduced
7 Hamiltonian flow. Meyer [1973] and Marsden and Weinstein [1974] formalized the
g reduction procedure into what is now called “symplectic reduction theory”. Fixing
o the integrals of motion determines invariant manifolds in phase space. The quotient
10 spaces of these invariant manifolds are the reduced phase spaces and the flows
11 induced on them are again Hamiltonian with respect to an appropriate symplectic
1o structure and a reduced Hamiltonian function.

13 The regularization procedure goes back to Levi-Civita [1920], who showed how
14 to regularize binary collisions in perturbed planar Kepler problems by using the
15 complex squaring map (a branched double covering of the complex plane). It is
16 easy to adapt his method to regularize one of the binary collisions in the three-body
17 problem, but regularizing all three requires more ingenuity. Lemaitre’s regularizing
15 map behaves like the complex squaring map at each of the binary collision points
10 on the shape sphere. Another approach to simultaneous regularization (without
20 reduction) was introduced by Waldvogel [1972], who used a quadratic mapping
21 of the translation-reduced configuration space C>. We use a similar quadratic
»> mapping applied to certain homogeneous shape variables below. Heggie [1974]
»3 found an elegant, symmetrical way to regularize all of the binary collisions for the
242 N-body problem. In the planar case, his method is to apply separate Levi-Civita
25 transformations to each of the difference vectors ¢; — g;. We apply this same
26 idea below, but to the homogeneous shape variables, where it is found to induce
27 Lemaitre’s octahedral covering.

28 Triple collision acts like an essential singularity in the three-body problem.
20 McGehee [1974] showed how an extension of spherical coordinates, together with
30 a time reparametrization, yields a flow with no singularities at triple collision.
31 This “McGehee blow-up™ has the effect of replacing the triple collision point by a
32 manifold called the collision manifold. Relative to the new parametrization, it takes
33 forever to reach triple collision, whereas the Newtonian time to triple collision is
34 finite. The flow on the triple collision manifold governs the behavior of near-triple

35 collision solutions. One aspect of the blow-up procedure is the use of separate size

36 and shape coordinates to describe the configuration of the bodies. As shown below,

37 such a splitting also facilitates the global reduction by rotations.

38 Several authors have combined blow-up of triple collision with reduction and/or
39 regularization of binary collision. Waldvogel [1982] reduced and regularized the

40 flow on the zero-angular-momentum triple collision manifold. The first part of his
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paper combines Murnaghan’s reduction procedure with some formulas of Lemaitre
> to obtain a reduced and regularized Hamiltonian for the zero-angular momentum
3 three-body problem. Binary collisions are not regularized on the nonzero angular
~, momentum levels. However, it is known that triple collisions can only occur when
5 the angular momentum is zero. After restricting to the zero angular momentum
¢ manifold, Waldvogel blows up the triple collision to get reduced, regularized and
~, blown-up differential equations. Simé and Susin [1991] used these coordinates in
g their study of the dynamics on the collision manifold. These coordinates are very
o much in the spirit of this paper but do not achieve a full reduction, regularization
10 and blow-up due to the restriction to zero angular momentum.

11 The present paper draws on all these sources. We begin with some symplectic
1o reduction theory. Turning to the three-body problem, we eliminate translation
13 symmetry by introducing the three difference vectors Q;; = g; — g; as coordinates.
12 Since these are linearly dependent, some effort is needed to justify the change of
15 coordinates. Next we introduce a size variable and associated spherical coordinates and an — and
16 Xij. One novelty of our approach is that we use homogeneous coordinates to
17 describe points on spheres. Instead of constraining the spherical coordinates to have
15 a fixed norm, we only ask them to avoid the origin and then we find differential
10 equations for them that are invariant under scaling.

-0  Once this point of view is adopted, it is relatively easy to carry out a global
»; reduction by rotations. Using complex coordinates, the combined action of scaling
> and rotation is just scaling by a complex number. Quotienting by complex scaling,
-5 we end up with a complex projective space, in fact with CP'. Of course, as real
>» manifolds, CP! ~ §2, and this is our version of the shape sphere. We finally obtain
-5 a global reduction of the planar three-body problem with a six-dimensional reduced
s phase space, the cotangent bundle of Rt x §2.

o7  Turning to regularization, we use simultaneous Levi-Civita transformations
s of the homogeneous variables X;; to regularize all three binary collisions. This
-9 regularizing map is applied to both the rotation-reduced and unreduced problems. In
30 the reduced case we get a reduced and regularized system on the cotangent bundle
51 of R* x §2, which is related to the unregularized version by Lemaitre’s map.

3 Finally we show how McGehee’s blow-up procedure can be applied to the various
33 Hamiltonians we have found.

— 2. Symplectic reduction

38 In this section we recall some results about the reduction of a Hamiltonian system

301/ 39 with symmetry. In addition we show how to tell when two symmetric Hamiltonian
27— .
40 systems lead to equivalent reduced systems.
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1 First we describe the basic symplectic reduction theory of Meyer [1973] and
27, Marsden and Weinstein [1974] in the case of a system with symmetry. Suppose
3 (M, w) is a symplectic manifold and G is a Lie group which acts on M as a group
4 of symplectic diffeomorphisms. Let J : M — g* be the momentum map, where g*
"5 is the dual of the Lie algebra of G. If we fix a momentum value . € g* and suppose
"5 that the action of G maps the level set J~! (1) into itself, the quotient space itself. The — itself, the

1l

P, =J"'(w/G

is called the reduced phase space.

If the group action is free and proper, then this space is a smooth manifold. There
is an induced symplectic form w, on P, which is obtained as follows. First, for
X € M, restrict w(x) to the tangent spaces 1, J ~I(w). The resulting two-form has
a kernel, which is precisely the tangent space to the group orbit through x. This
implies that there is an induced two-form on the quotient vector space that is the
— tangent space to the quotient manifold.
~— Nowif H: M — R is a G-invariant Hamiltonian then the corresponding Hamil-
" tonian flow has J ~I(u) as an invariant set and G-orbits map to G-orbits under

® the flow. Hence there is a well-defined quotient flow on J~!()/G. There is also

4 reduced Hamiltonian H, : P, — R and the reduction theorem states that the

201/2£ quotient flow on (P, w,) is the Hamiltonian flow of the reduced Hamiltonian.
2 Now suppose we have two such Hamiltonian systems with symmetry. For
2= 1, 2, there will be symplectic manifolds (M;, w;), symmetry groups G; and

23
— momentum maps J;. If we fix momentum values w;, we get reduced phase spaces
> P, = Jl._1 (ni)/ G; with symplectic forms w,,,. Suppose H; : M; — R are G;-invariant
®_ Hamiltonians and let H,, : P — R be the corresponding reduced Hamiltonians.

% We want to give a concrete way to check that the two reduced Hamiltonian flows

7T are equivalent.

2 Suppose we have a smooth map F : Jl_l(m) — Jz_l(,uz) that maps G -orbits

% into G»-orbits; that is, F' is equivariant. Then F induces a smooth map of quotient i.e. — thatis

30 . A . . g
— manifolds F : P — P,. We will call F partially symplectic if it preserves the changed here and below
31 . . .

— restrictions of the symplectic forms, that is,

32

33 * —
- Fr (@2l j140) = @1l jo14-

*_ Tt follows that £ : (P1, wu,) = (P2, w,,) is symplectic. Hence F is a local diffeo-
% morphism, even if F itself is locally neither injective nor surjective. Then the usual

3" theory of symplectic maps applied to F gives:
38

e I~ S O I S B
a(Hd | W|IN |+~ |O|lO ||~

=
(o))

£ Theorem 1. Suppose F : Jfl (1) — J;l (w2) is a partially symplectic, equivariant

391/
zg map and that the restrictions of the Hamiltonians are related by Hy = Hy o F. Then
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106 RICHARD MOECKEL AND RICHARD MONTGOMERY

1 F:P—> Pyisa symplectic, local diffeomorphism of the reduced phase spaces,
o which takes orbits of the reduced Hamiltonian flow of H,, to those of H,,,.

> Definition 2. A partially symplectic, equivariant map G : Jy ) — Jfl(ul)
_* such that F o G =id (mod G;) and G o F =id (mod G1) (so that these maps take

_> group orbits into group orbits) will be called a pseudoinverse for F.

A partial inverse G for F induces a bona fide inverse G for F, which exhibits
an equivalence between the two reduced Hamiltonian flows.

As a special case, suppose the two Hamiltonians are both defined on the same
1o space and have the same symmetry group. If their restrictions to J () agree
1, then they will lead to the same reduced system. The identity map will provide the
1, required partially symplectic map. We will call two such Hamiltonians equivalent.
15 Equivalent Hamiltonians may produce different flows on J ~I(w) but the quotient
1. flows will agree.
1= The following theorems about the symplectic reduction of a cotangent bundle
6 M= T*X will be used later. (See [Abraham and Marsden 1978, Theorem 4.3.3]
1, for a version of these theorems.) Suppose G acts freely on the configuration space
1s X and that the G-action on M is the canonical lift of this base action. Suppose that
1o the orbit space B for the G action on X is a manifold and the projection v : X — B

-~ a submersion.

21 Theorem 3. Under the above assumptions, the reduced space Py of T*X at u =0
22 g isomorphic to T* B with its canonical symplectic structure wp.

[ef=]~ ]

23
o The theorem can be proved as a special case of Theorem 1. Because 7 is onto,
o dmy : Ty X — Tr(x)B is an onto linear map for each x € X. Consequently the dual

o Map dm}: T;‘( nB— T} X is injective. In the next paragraph we will show that the

5, image of this dual is J —10),:
(1) im(dn*) = J710), :=J 1 0)NT*X.

29

30 It follows that we can invert d7r* on the fiber J —10), C TrX. Define

% F:J7'0) > T*B; F(x, p) = ((x), dn*"" (p)).

33 One verifies that F' is a partially symplectic map relative to G acting on J ~1(0), and
34 the trivial group acting on 7" B. A particularly easy way to see the partially symplec-
35 tic nature of F is to introduce local bundle coordinates X D 7 N U)ZUxG. (X
36 is covered by sets of this nature.) In bundle coordinates 7 (x, g) = x, and so Tj; X =
37 T*U x G x g*. We write elements of T*X over U as (b, P; g, u),be U, P €T, U,
38 g e G, peg”. Inthese coordinates J (b, P; g, ) = i, so that the general element
30 of J7!'(0)y can be written (b, Py, g,0) and F(b, Py, g,0) = (b, P,). We have

40 wx =dxNdP+dgAdup and, wp =dx Ad P, where we hope the meaning of these

‘Was Definition 1. We have
renumbered all results in one
sequence to make them easier
to find. (If Lemma 1 comes
after Theorem 4 etc., the only
way for the reader on paper to
find a reference is to leaf
through the whole article.)

‘Was Theorem 2
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1 symbolic expressions is obvious. It follows immediately that F*wp = wx|;-1(p)
~, which is the claimed partially symplectic nature of F'. Theorem 3 follows.
'3 We explain why (1) holds, and in the process gain some understanding of the
~, momentum map. The group action is a map G x X — X which, when differentiated
5 withrespect to g € G at the identity, yields the “infinitesimal action” o : gx X — TX.
¢ For each frozen x, the map o, : g — T, X is linear and, because G acts freely,
, injective. As we vary x, o forms a vector bundle map, part of an exact sequence of
g vector bundle maps over X:

1/,

0 gxX 271X *TB

=
o |© | ©

_
[

where 7*TB = {(x, V); x € X, V € Ty (B} is the pull-back of TB over B by the
12 map  : X — B. (Exactness of the sequence follows by differentiating the statement
13 that the fibers of 7 are the G-orbits.) Dualizing, we get

J
N

14
— 0« g"xX <« T"X «— a*T"*B.
15 o* dn*

1% The momentum map for the G-action on T*X is m; oo*, where 7y : g* x X — g*

" s the projection onto the first factor. In other words,
18

19 J(X,P)=U;<P~

201/23 It follows from the exactness of the dual sequence that im(dx)) = ker(o;'), which

2L s precisely (1).

2 1In order to identify the reduction of M = T*X at a nonzero value, u # 0, we

2 introduce a connection I" for the bundle G — X — B. The curvature of the

**_connection I' is a g-valued two-form €2 on B, which we may pull-back to 7*B via

*_ the canonical projection tp : T*B — B. Then - Q is a scalar-valued two-form
26
~ on B.

27
55 Theorem 4. Under the same assumptions as above on G, the reduced space Py, of Was Theorem 3

29

30 We only present the proof in the case G = § !, whose Lie algebra we identify
31 with R in the usual way. Then a connection is a G-invariant one-form on 7*X that
32 satisfies the normalization property J(x, I'(x)) = 1. Its curvature €2 is defined by
33 dI' = 7*Q. We define the momentum shift map

34 _ _

- ©, IO = TN, Dux. p) =, p+ul @),

g which adds uI" pointwise to each covector. The fiber-linearity of J shows that ®,
37 does indeed map J ~1(0) onto J~'(w). (The inverse of ®,, subtracts uI'.) The
38 map is G-equivariant since I" is G-invariant. Thus ®, induces a G-equivariant
39 diffeomorphism J~!(0)/G — J~!(11)/G. We have already identified /= (0)/G

40 with T*B. However, @, is not partially symplectic, so we cannot directly apply

T*X at  is isomorphic to T* B with the twisted symplectic structure wp — Tyt - Q2.

391/,
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1 Theorem 1. To understand and quantify this failure, let ® = P dQ denote the canon-
> ical one-form on 7*X. Compute ®7 ® = © + 7y I". Taking the exterior derivative,
3 using wx = —d®, we find that @} wy = wx — utym* 2. This equation implies that
", if we shift the canonical two-form on J~!(0) by subtracting utym*2 then d, is a
"5 partially symplectic map between J~!(0) and J~!(u). Theorem 4 follows.

3. Reduction by translations

Y To formulate the Newtonian planar three-body problem, it is convenient to use the
o complex plane, where we identify (x, y) € R? with x 4+ iy € C.

—  Letgi, q2, g3 € C be the positions of the three bodies and let ¢ = (¢1, 2, g3) € C>.
o We will adopt the Hamiltonian point of view, where the conjugate momentum
~~ variables p; are covectors rather than vectors. If we identify a covector (a, b) € R**
W with a +ib € C, then we have momentum variables

" pi€C*~C and p=(pi, p2, p3) € C*.

16

17 The planar three-body problem is the Hamiltonian system on the phase space
15 (C3\ A) x C** with Hamiltonian

19

o H(q, p) = Ko(p) = U(g),

— 2 2 2

a1 I% _ [p1l | 2l | 3l ’

22 (2) O(P) 2m1 + 2m2 + ZM3

o mym msm m-om
g U(q) _ 112 3mi 2ms3 ’
24 lg1 —q21 gz —q1l g2 — g3l

2> where A ={q : q; = q; for some i # j}, the singular set. From now on, we will
26 ot explicitly mention that the singular set must be deleted from the domains of the
27 various Hamiltonians we construct.

28 The Newtonian potential is invariant under the group G = C acting by translation
29 on the position vectors and leaving the momenta fixed. The momentum map is
30 given by

% Pot=p1+p2+p3eCh

33 By fixing a value of this integral and passing to the quotient space, one obtains
34 a reduced Hamiltonian system. A simple and familiar way to accomplish this
35 reduction is to assume pyr = 0 and then fix the center of mass at the origin:
36 myq1 +maqr +m3q3 =0.

37 However, we will now describe an alternative method for eliminating the transla-
38 tion symmetry, which will make it easier to regularize double collisions later on.
39 This approach is a variation on the one used in [Heggie 1974]. We will view it as

40 an application of Theorem 1.

reworded to avoid break in
formula
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1 3.1. Relative coordinates. Introduce relative position variables Q1», Q31, Q23 € C
~, and corresponding momentum variables Pj;, P31, Po3 € C*. The relative coordinates
5 are related to the positions variables ¢; by a linear map Q = Lg

4
?(3) L:C—C, Qu=q1—q, 0O0a1=q¢—q, 0x3=q—qgs.

1/,

E The dual map, which describes the pull-back of the relative momenta P;; to p space,
7 is given by

8

FRORAH vl p1=Pi— P31, pr=Py3—Pn, p3=P— Py
i We naturally have Q;; = —Q;; and consequently P;; = — P;; so that (4) can be
™ written pi = X P;j, a form which extends to the N-body problem.

2 The linear map L is neither one-to-one nor onto. Its kernel,

13

14 kerL ={g:q = (c, ¢, ¢) for some ¢ € R*> = C},

16 1s the subspace of translation symmetries in g-space. So its image
— W=imL={Q: Qi+ 03+ Q023=0}

19 is isomorphic to the quotient space of C? by translations. W is a complex subspace
201,20 of C* with complex dimension two, or real dimension 4. We can define a map in
21 the other direction, g = LY(0):
22
_ m2Q1—m303; _m30x3—m Q.  miQ31 —maQ3

23 (5) LT: ¢ . Qo= . Q3 ,
o m m m

g where m = my +ms +ms. LT maps C3 onto
26

27 W =im L' = {q : mi1g1 +mags +m3q3 = 0},

% the zero-center of mass subspace, and it is easy to check that the restrictions L |~

29 .
2 and L7 |y are inverses.

% For the dual map, we find that the kernel is generated by translations in P-

31
~_ momentum space

32

33 kerL* ={P: P = (c,c, c) for some ¢ € C*}

34

35

. V=imL*={p:pi+p2+p.=0}.

37
g The map L™ : C¥* — C3*

39
— mapy —mip2 mips —mj3pj m3py —mjyp3
w0 (6) LT*: Plz=u, P31=u, P23=—p P

— m m m

while the image is the zero-momentum subspace

391/,
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, maps C** onto

11—
2 C“/'/=iI1’1L.}‘*={P11713P12—|-I’l’12P31—f—l’l’l1P23 =0},
3
4 and the restrictions L* |4+ and L™ |y are inverses.
s Define a relative coordinate Hamiltonian on the (Q, P) phase space C* x C** by
— Hw1(Q, P) = K(P) = U(Q),
— Pip—Ps|* | |P—Pil® | |P31— Pyl
ENG K(P)=K0(L*P)=| 122 5117 4 [P3—Piof” | |Ps1—Ps|”
9 mj 2my 2ms3
i mimy msm| mams
U(Q)= + :
= 1012l 1031l Q2]
11
— so that
3(8) H(q,L*P)= Hwi(Lg, P).
14
15 The kinetic energy can be written
16 _(L L)I _ 1y _ L
i nip mp n my
) K(P)=LPTBP, with B=| ——1I (L i)l Ly,
19 nmi ms3 m ms3
1 1 1 1
20 g 1y (— —)1
201/, | my ms3 m2+m3 .

21
2> where I denotes the 2 x 2 identity matrix.

z 32 Equivalence to the translation-reduced three-body problem. We will now
. show that the reduction of the Hamiltonian system with Hamiltonian H(Q, P)
o by translations in momentum space is equivalent to the reduction of the three-body
- Hamiltonian H by translations in configuration space.

55 Theorem 5. W x C3* is invariant under the Hamiltonian flow of He1(Q, P). The Was Theorem 4
29 restricted flow is invariant under translations in momentum space and it induces a

30 quotient flow, which is conjugate to the zero total momentum flow of the three-body

31 problem reduced by translations.

32 The proof will be an application of Theorem 1. First we describe how the relevant
33

33 symplectic structures look in complex coordinates. If Q € C? and P € C* it is
3% convenient to define a Hermitian variant of the natural evaluation pairing:

35 ~ _ ~

36 (10) (P, Q) = P12Q12+ P31 Q31 + P»3023.
37 As aresult, if Qjk=xjk+iyjxand Pjy =aj, +ibj;, we get
38

»
o an

re(P, Q) =appxn2+bpyn+---,
im(P, Q) =apyi2 —bpxip+---.

391/,
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1 Thus the real part of the complex pairing agrees with the usual real pairing and,

1 — . . . . .
1/2 > as a bonus, the imaginary part is —u, where p is the angular momentum. With

5 this convention, the canonical one-forms on (g, p)-space and (Q, P)-space can be

, written

o (12) 0 =re(p,dq) =re(p1dqi + p2dqz + p3dqs)

6 - - _

- O =re(P,dQ) =re(P12d Q12+ P31d Q31 + P3d 023).

E Proof of Theorem 5. For the three-body problem we have the phase space
9

0 M =C°xC™ ={(g, p)},

™ with the standard symplectic structure. The Hamiltonian H (g, p) is invariant under
12 . .

— the action of the group G| = C acting by

13

14 c-(qg,p)=(q1+c,q2+c,q3+c, p1, p2, p3), ceC.

15

16 We fix the momentum level p = 0 and obtain a quotient Hamiltonian flow.

17 For the Hamiltonian H.,., the phase space is M, = C3 x C* = {(Q, P)} with
1s the standard symplectic structure. Hy.(Q, P) is invariant under the action of the
19 group G =C* actingon by c-(Q, P)=(Q12, Q31, 023, Pia+c, P31+c, Px3+o0),

50 ¢ € C*. The momentum map is Qior = Q12+ 031 + Q23 and we fix the momentum

1/, .. . . .
20°/2 51 level Qi =0 giving a second quotient Hamiltonian flow.

I To see that these two quotient flows are equivalent we apply Theorem 1. Define

3 F(g.p)=(Lq,L™p),  G©,P)="Q,L*P).

g Then, F : {pwor = 0} = {Qwt = 0} and G : {Qior = 0} = {pwot = 0}. Moreover,
26 GoF(q,p)=c-(q, p), where —c = %(mlql +myqy + m3gs) € C is the center of
27 mass. Similarly, F' o G(q, p) =c-(Q, P), where

28

1
29 —c= E(M3P12+m2P31+m1P23) e C*.

30
5, Inother words Go F =id (mod G1) and F o G =id (mod G»).

5,  Itremains to verify that F and G are partially symplectic. Consider the canonical
53 one-forms (12). From (3) and (6). We find, for example F* Pjp = (myp1 —m | p2)/m
and F*d Q> = dq) — dq,. After a bit of algebra we get

34

35

6 F*@:H—re(

37
55 Restricting to {pir = 0} shows that F is partially symplectic. Similarly,

Drot(midqy +madgr + m3ch3)>
m

39
39—

- G — 6 — re((m3 P1a +ma P31 +mi Py3)(d Q12 +d Q31 +d Q023))

— m
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1 which we restrict to { Qo = 0} to see that G is also partially symplectic. We have

~, shown that F and G are pseudoinverses in the sense of Definition 2. According
53 to (8) these pseudoinverses intertwine H and H.. The hypotheses of Theorem 1
, have been verified, completing the proof. O
5
e Hamilton’s equations for the Hamiltonian He (Q, P) are simply
e O =BP,
8
1(13) P:UQZ_(mlminz’m3m31Q31’m2m§,Q23)’
10 "2 31 3
11

— where r;; = |Q;;|. (Note that here and in all of the differential equations below,
2 partial derivatives like U are calculated by simply calculating the corresponding
2 real partial derivatives and converting the resulting real vector or covector to complex
" notation; no complex differentiations are involved.) Differential equations for the

o three-body problem reduced by translations are obtained by restricting Q to W.

— Then Q remains in W under the flow. Moreover, covectors P, P’, which are initially
. equivalent under translation remain so.

" Since the symmetry group C* acts only on the momenta P;;, the reduced phase
% space is the eight-dimensional space W' x (C¥*/C*) ~ W x im L* =W x . This
2 Then Ply € W* and two covectors P, P’ € C3* have the same restriction to W if
2z they differ by an element of ker L*; that is, if they are equivalent under the symmetry
= group.

—  So far we have not really accomplished any “reduction” since there are still

25 . . .
— twelve (Q, P) variables. Essentially, we have traded the constraint
26

2 Pot=p1+p2+p3=0
28

29 and the translation symmetry in g for the constraint Qo = Q12+ Q31+ Q23 =0 and
30 translation symmetry in P. We will see below that the use of the Q;; is advantageous
31 for regularizing double collisions. A genuine reduction of dimension can be easily
32 achieved by introducing a basis for W. Moreover, this can be accomplished in
33 several ways as we will see in Section 3.4 below. But one virtue of (7) is that it
34 avoids making a choice of parametrization and thereby preserves the symmetry of

35 the problem under permutations of the masses.
36

37 3.3. Mass metrics and the kinetic energy. The potential energy U(Q) of (7) is
38 particularly simple, but the kinetic energy K (P) seems less natural. In this section
39 we will see that it is related by duality to a Hermitian metric which will play an
40 important role later on.

= can be identified with the cotangent bundle 7*W =W x W™ as follows. Let P € C*.

hypothesis — hypotheses (to
agree with “have”)
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1 Define a Hermitian mass metric on C by
11—

) (V. W) = L (mymy VW + V3 Ws1 + Vs Wa3)
3 s = 1M Vip Wiz —m3nty Vs W3l +— mams Vo3 Wo3).
The corresponding norm is given by

1
(15) 10 = Z(mlm2|Q12|2 +m3m 1| Q311* +mams| Q231%).

The mass norm

r=01=v{(0Q,0)

0 provides a natural measure of the size of a configuration Q = (Q12, O31, 023) € C3.
™ In particular, r = 0 represent triple collision. There is a dual mass metric on C3*
2 given by

13

[ fe |~ o fo]s]

* (16) (P, R) =m<
15

1_ R 1_ R31 1_ Ra3
12 31 2
+ + 3 )
minmy m3m| mams

T
—_ with squared norm
17

s P22 P32 | Pxs)?
w7 |P|2=m<| 121 +| 31 +| 23] )
19 mimy ms3mi nmoms

20l /zﬂ Note: Altogether we have three interpretations of (-, - ) depending on whether the
21 arguments are two vectors (14), two covectors (16), or a vector and a covector, (10).
22 All three pairings are Hermitian, being complex-linear in the second argument and begin — being
2 antilinear in the first.
2% Introduce the notation Wy = W \ 0 (and a similar notation for any vector space).
2 If Q € Wy then it is easy to check that the vectors Q, N, T form a Hermitian-

2% orthogonal complex basis for Tp C? with respect to the Hermitian mass metric,

2" where

28

2 0 = (Q12, 031, 023), N = (m3,mp, my),
30 (18) T — Q31_Q23 Q23_@ @_@
i o my nmi ’ n ms ’ ns myp '

32

4 @ isaradial vector and N, T are, respectively, normal and tangent to W. Clearly

— {Q, T} is a basis for W.

34

- The next lemma shows the relationship between the kinetic energy and the dual

o of the mass metric.

i Remark on terminology. A nondegenerate quadratic form on a vector space, or
38 on the fibers of a vector bundle, determines uniquely a quadratic form on the dual
39 vector space, or on the fibers of the dual vector bundle. We refer to this dual

301/> : . .
40 quadratic form as either the “cometric” or the “dual norm”.



PROOFS - PAGE NUMBERS ARE TEMPORARY

114 RICHARD MOECKEL AND RICHARD MONTGOMERY

; Lemma 6. The kinetic energy satisfies

11—
2 P 2
3 (19) K(P)——%|< |’|Q2>|

4
s where |P| is the dual mass norm and where myy - C> — C3 is orthogonal projection
6 onto W with respect to the mass metric.

(P, T)|?
T2

(P, N)I?
3PP = 3= = 5Imi PP,

1
+§ |N|2

7 Moreover, K (P) can be characterized as one-half of the unique translation-
8 invariant quadratic form on T5033 representing the dual of the restriction of the which represents —
o mass normto ToW. representing

10 . .
— Proof. A direct computation shows that
11

12
2
|P|

KR NP PP n | P23 — Pio|? 4 | P31 — P3|
13 |N|? 2m 2my 2ms

—2K(P).

14 _ .
— On the other hand, dual norms, or cometrics, can be characterized by the property removed quotes around
15 . ‘o . < ”»”

— that for any orthogonal basis {Q, N, T}, cometrics

16

17 ., UP.O) |(P.N)* [(P.T)P

18 |PI"= 2 >+ 2

18 10| IN| IT|

19 Hence

20 (P, N> |(P,Q))> |(P,T)?
201/ — 2K(P)=|P) - = ,

*a1 (B)=1P1" =" yp of TP

22

. and this is also the formula for | P o 79y |2.

o If we view T, W as the quotient space of T C? under momentum translations,

o then any norm on T5°W is represented by a unique translation-invariant quadratic
5 form on Té C3. In particular, this applies to the dual norm of the restriction of the
5, mass norm to ToW'. Since {Q, T} is an orthogonal basis for TpW" with respect to

s the mass metric, this “lift” of the dual norm will be given by

29 (P, Q) n (P, T)?
o 102 IT|?
31

3o 3.4. Parametrizing “W. Let ey = (a12, a31, az3), ex = (b12, b31, by3) € W be any

33 complex basis for W. The corresponding coordinate map is

B sWCC, fELE)=Ee+Ee or Qi =E&aj+Ebi,

35

=2K(P). (]

g where £ = (&, &) € C? are the new coordinates.

37 Extend f to amap F : T*C* — W x C* by letting P € C** be any solution
38 to the equations (P, e1) = 11, (P, e2) = 12, where .= (1, m2) € C?* is the dual
39 momentum to & and N is the normal vector to W from (18). Any two solutions will

391/ . . . . .
22 differ by a momentum translation, which will not affect the computations below.
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1 This definition makes F partially symplectic, where the symplectic structure on
", T*C? derives from the canonical one-form

0 =re(n, &) =re(n1 &1 +n262).

To find the new Hamiltonian, note that the pull-back of the Hermitian mass
metric is

(€, &) =ETGg',  with G:E; gﬂ gij = lei e)).

o]~ folo]s]e]

o0 Clearly this can be viewed as the pull-back of the restriction of the mass metric to
o W. The dual of this metric is

z <77, 77/> = %_-TGE/7 with G_l = l |: 8§22 _g21] . g = det G.
13 81812 &

1t follows from Lemma 6 and the fact that the momenta also transform as pull-backs

> that the kinetic energy will be one-half of the dual norm.

16 The Hamiltonian becomes

17
1 (20) HE =37 G 'n-U®),

19
~~ where

20 mims mms3  MmMoms
21 U= + + , pij =1Qijl = laij& + b;;&|.

—_ P12 P31 023
22

53 Example 7 (heliocentric coordinates). One can form such a parametrization of W
52 by choosing one of the masses, say m, to play the role of the origin. Set Q1 = —§j,
o5 Q31 =462, Q23 =& — & sothat &, & € C are the coordinates of m;, mj relative
o6 tomy. The corresponding basis for W e; = (—1,0, 1), e2 = (0, 1, —1), and the

5, momenta 1; = (P, ¢;) satisfy ny = P»3 — P12, n2 = P31 — P»3. For example, we

o can choose Py = —n1, P31 =12, P23 = 0. Substituting into Hreq gives the familiar
5o Hamiltonian

£ HE. ) = 71+ 2| n Im> Il _mumy  myms - mams

31 2m 2my  2m3 &1 1621 51— &2

2 Example 8 (Jacobi coordinates). Alternatively one can introduce Jacobi coordinates
3 &1, & by setting

34

m;

{ OQrn=-&, 03=&6&E+wn&, On=-&E+vé, vi=——"-
mi+my

36

37 This corresponds to the orthogonal basis ¢; = (—1, v, v1), e2 = (0, 1, —1), and we
35 have mass metric

39 nr 0 . mym (m1 +mo)m
- 1 1112 1 2)Mms3
G= , with = ——", p=—7—-—-.
40 |:0 ,uz] : mp 4+ my 2 m

Inserted “with”
(similar change made below)
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; The momenta Satisfy N1 = — P1o+ vy P31 + vy Py3, Ny = P31 — Pp3, and for an inverse
> we could choose Pj; =0, P31 =n1 +vin2, Po3 =11 — van,. From (20) we get the
53 equally familiar Hamiltonian

o ml> el mima myms3 moms3
HE,n) = + - - - )
2u1 0 22 €11 &2 +v261] &2 —vi&il

4. Spherical-homogeneous coordinates

7 The Hamiltonian H.(Q, P) of (7), representing the translation-reduced planar
— three-body problem, has further symmetries. The potential function U (Q) is
o —— symmetric under simultaneous rotation of the Q;; in C and is also homogeneous of
o degree —1 with respect to scaling. In this section we exploit the scaling symmetry
. by converting the system to spherical coordinates. This will be useful later when
L, we blow-up the triple collision singularity.

o We use the mass norm r = |Q| as a measure of the size of a configuration
— Q0 =(012,031,023) € C’. In particular, r = O represent triple collision. For

16
— Q¢€ (C3 we want to define a spherical variable X € §° to describe the normalized

; conﬁguratlon However, instead of using the unit sphere $°> = {X € C*: |[X| =1}
L, e will view the sphere as the quotient space of C3 under scaling by positive real
o numbers. This gives a convenient way to work globally on S°. We will take a similar
— approach when working with the complex projective space CP? in the next section.
— LetM= T*(Eg o~ C3 x C** with the standard symplectic structure. Let G = R*

22
— be the group of positive real numbers and let G acton M by k- (X, Y) = (kX, Y /k),

— where X € CS, Y € C*, k > 0. We will use the notation [X], [X, Y] to denote
; equivalence classes under scaling. In other words, two vectors X, X' € ([33 are
o equivalent, denoted X’ ~ X, if X’ =k X for some k > 0. Similarly (X', Y') ~ (X, Y)
— if X’ =kX,Y =Y/k for some k > 0.

27

o The momentum map for this group action is given by S(X, Y) =re(Y, X), where

o the angle bracket denotes the Hermitian evaluation pairing (10). Fixing this scaling-

5, momentum to be re(Y, X) = 0 and passing to the quotient space we get a reduced

o symplectic manifold, which can be identified with the cotangent bundle 7*$7. This

- is a special case of cotangent bundle reduction at zero momentum, as described in

= Theorem 3. Introduce the notation

34 TopC = 57'(0) = {(X. Y) € T*Cj : re(Y, X) = 0}.

35

o Then we have TphC?/RY >~ T*85.

37

38
39 Definition 9. If r = |Q| and [X] = [Q], we say that (r, X) € R x C3 are spherical-

We are going to pass from the relative configuration variable Q € (Eg to a size
variable r and a homogeneous variable X € <D3

391/, —

40 homogeneous coordinates for the configuration Q € <D3

reworded to avoid sentence
starting with lowercase letter
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1 X will be defined only up to a positive real factor and will be viewed as rep-
~, resenting a point of §°. We can use Q itself as a homogeneous representative
5 of the corresponding point in $°. Hence we define a spherical-homogeneous
, coordinate map

% f:Ch—R"xC} r=|0|, X=0.

7 Extend f(Q) toamap F(Q, P), F: T*Cy — TRt x T;E)h@ by setting
8

— P P

D Iy pr:re< ,Q>’ y—p_ ,2Q>Q*.

10 10| 10|

' Here p, € R*, Y € C** are the conjugate momentum variables to r, X and Q* is the
2 dual covector to Q with respect to the mass metric. By definition, this means the
13 unique covector in C** such that (Q*, V) = (Q, V), where the first angle bracket

4 is the evaluation pairing and the second is the mass metric. We find
15

6 1
@ Q" = —(mimy Q2. mim3Q31. mym3Qa3) € C*.
17

18 A pseudoinverse G(r, pr, X, Y), G : T*R* x T;;h

19

C— T*Cg to F is given by

= X oo X
20 (22 G: =2 p="""x*yZly
o (22) =1x Xt T

22 We have G o F =id and
23
o FoG(r, pr, X,Y) = (r, pr kX, Y/k), where k =

25

5 Hence foG =id mod R".

7 To check that F, G are partially symplectic, compute the pull-backs of the

o8 canonical one-forms

2 (23) 0= p,dr+re(YindX >+ Y31 dX31 + Yo3 dX23)
30

31 and © from (12). We find G*6 = © while F*® =6 + - - -, where the omitted terms

32 are divisible by re(Y, X). Hence the maps preserve the restricted symplectic forms

33 as required.

34 The spherical-homogeneous Hamiltonian is Hspy = Hyej o G. Using the formula
35 for Q in (22), the potential U (Q) becomes Ugpy (r, X) = (1/r)V (X), where

L
|X1

36

57 (24) V<X)=|X|U<X)=|X|<
38

mimy  msmj mzl’l’lg)
X2l X3l X3l )

30 Note that V is invariant with respect to scaling of X so it determines a well-defined
2/ . . . . .
40 function, V : S5 — R, which we will sometimes write as V ([X]).
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1 The kinetic energy is Kspn = K (P), where P is given by (22). It follows from
Lemma 6 that the two terms in (22) are orthogonal with respect to the quadratic
form K. To see this, note that they are orthogonal with respect to the dual mass
metric since (Y, X*) = (¥, X) = 0. Since X € W we have

(Yomy, X omy) = (Yomy, mywX) = (Y, X) =0,

so X* oy and Y o 7y are still orthogonal. Evaluating K separately on the two
terms of (22), we find
1X|*
(25) Ko =5p; + —K(Y)

\O\@M*Mw\#\w\w

_

11 and so the spherical-homogeneous Hamiltonian is

12

= 2

B (26) Hopn(r, pr, X, Y) = 2Pr+uK(Y)——V([X])

14

15 Theorem 10. The Hamiltonian flow of Hsgph on T*RT x T*Cg has invariant sub-
16 manifold {re(Y, X) = 0} and the quotient of the restricted flow by the scaling
17 symmetry is equivalent to the Hamiltonian flow of Hy| on T*Cg. This submanifold
18 contains a codimension 2 invariant submanifold {re(Y, X) =0, X124+ X3+ X23 =0}
19 for which the quotient of the restricted flow by the symmetry of scaling and trans-
20 lations of the Y;; is conjugate to the flow of the zero total momentum three-body

21 problem reduced by translations.

2z Proof. For the first part we apply Theorem 1 with M| = T*Cg, M, =T*R" x T*Cg
“ and symmetry groups G| = {id} and G, = R*. The momentum level is
24

25 S(X,Y)=re(Y, X)=0.

g It was shown above that the maps F, G between T*Cg and S~'(0) are partially
o symplectic pseudoinverses.

o For the second part we change the groups to be G; = C* and G is a semidirect
o product of the scaling group R and the momentum translation group C* with group
. multiplication (ka, ¢2) - (k1, ¢1) = (koky, ¢1/ ko +c2), where (k;, ¢;) € RT x C*. The
. momentum levels are {Q ¢ = 0} and { Xt = 0, re(Y, X) = 0}, respectively, and
. these are fixed by the actions of the groups. The maps F, G restrict to maps between
w these level sets and the restrictions are partially symplectic pseudoinverses. U

35 If we use the formula K (Y) = %Y TBY, with B from (9), we find that Hamilton’s
36 equations for Hyp are

37 . . 2XPKY) 1

o F=pr pr=—" 73— —5VX&)
) e

40 X:%BY Y:lDV(X)—ZK—gY)X.
— r r r

changed comma to “and”

‘Was Theorem 5

added “that”
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1 The quotient space of T*R™ x T:}‘)h(ES mentioned in Theorem 10 is diffeomorphic
5 to T*RT x T*S> (by simply thinking of X, Y as homogeneous coordinates for

3 [X,Y] € T*S’). The quotient space of T*R™ x TS’;h’oWCg is diffeomorphic to
4 T*RY x T*S(W), where S(W) =WnN $° is diffeomorphic to $3. Hence the reduced
5 space is eight-dimensional as before. The reduced flow is just the translation-reduced
6 three-body problem in spherical coordinates.

7 At this point, instead of reducing the number of dimensions, we have actually
8 increased it from twelve to fourteen. The value of the present formulation lies in the
9 fact that it has been put in a form where double collisions can be easily regularized
10 and the triple collision easily blown-up without destroying the symmetry among
11 the masses. As in the previous section, one could explicitly realize the reduction
12 to eight dimensions by parametrizing the subspace W. However we will not do
13 this here.

1

15 5. Reduction by rotations: the shape sphere

16
1, Next we form the quotient by rotations. Since we are using complex coordinates,

g the combined action of scaling Q by a real factor r > 0 and rotating Q by an angle

1o 0 isrepresented by Q +— kQ, where k = rel’ € Co=C\ 0, the space of nonzero

o complex numbers. A point in the resulting quotient space represents the size and
shape of a configuration.

21

2 s51. Projective-homogeneous coordinates. As before we will measure the size by
2= |@|. To represent the shape, we project Q € Cg to the quotient of Cg by the
% action of Cy. This quotient space is the complex projective plane P(C?) = CP?.
o Homogeneous coordinates will provide a way to work globally on the projective
~ plane, just as they did for the sphere S° in the last section. For X € (Cg let [X] € CP?
- denote the corresponding element of the projective plane, that is, the equivalence
— class of X under the relation that X ~ Q if X = kQ for some k € C, k # 0. (Thus

29 . _ . .
o the square bracket will now mean a projective point rather than a spherical one.)

£ Definition 11. (r, X) are a pair of projective-homogeneous coordinates for Q € @8
32 if r =|Q] and [X] =[Q] € CP°.

33

" X is defined only up to a nonzero complex factor. We can take X = Q itself to
55 define the projective-homogeneous coordinate map

o f:C— R xC3, r=10, X=0.

37

38 Remark. Despite the fact that spherical-homogeneous coordinates and projective-
39 homogeneous coordinates are both denoted (r, X), there are differences between
40 the two coordinate systems. Spherical-homogeneous coordinates represent points
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1 in ([3(3) ~ R* x $3, whereas projective-homogeneous coordinates represent points in
*, the quotient space (C3)/S' ~ R* x CP?.
3 If we include the origin and form the quotient space under rotations we have
", C3/S' =Cone(CP?), the cone over CIP?, where the cone point corresponds to total
5 collision 0 € C3. For any topological space X, we can form the space Cone(X)
"¢ which has a distinguished cone point * and Cone(X) \ * = R* x X. In this case,
7 the cone is not a smooth manifold.

% The equivalence class [X] = [Q] € CP? represents the shape of a three-body

2 configuration only if Q € W. Restricting to such Q we get [Q] € P(W'), where

19 P(W) is the projective space of the subspace W C C3. Since W is a two-dimensional
o complex subspace, P(W) is a projective line, that is, P(W) ~ CP' ~ §2. P(W)
12 .

—= will be called the shape sphere.

13 . .. . .. . .
—> Any function on our original configuration space that is invariant under translation,

™ rotation, and scaling induces a function on the shape sphere, the most important

® example being our homogenized potential

16

17 V(X) = |X|IUX) : PW — R.

18

19

20 (X,Y) e T*Cy ~C} x C*
21

We will also use homogeneous momentum variables. A pair

22 will represent a point of T*CP?. Let G = C be the group of nonzero complex num-
23 bers and let G acton T*CDS by k-(X,Y)=(kX, Y/k). We will use the notation [X, Y]
24 to denote equivalence classes under scaling. In other words, (X', Y') ~ (X, Y) if
25 X' =kX, Y =Y /k for some nonzero k € C. The momentum map for this group
26 action is given by the Hermitian evaluation pairing o (X, Y) = (Y, X) € C. The real
27 part of the complex number o (X, Y) is the real scaling-momentum S(X, Y) (which
28 we want to be zero as in the last section). On the other hand, from (11) we see that
20 imo (X, Y) = —ip, where u is the angular momentum.

30 If we fix the complex scaling-momentum to be (¥, X) = 0 and pass to the
31 quotient space, then as in Theorem 3 we get a reduced symplectic manifold, which
32 is naturally identified with the cotangent bundle T*CIP? with its natural symplectic
33 structure. Introduce the notation

- T:CP=0"'0)={(X,Y) e T*C} : (¥, X) =0).

35 pr ’ 0 ’

36 Then we have
- T%C?/Co = T*CP?.
g If, on the other hand, we fix the complex scaling-momentum to be (¥, X) = —iu

40 and pass to the quotient space we still get a reduced symplectic manifold, which

typese “Cone” upright



1/,

201/,

391/,

PROOFS - PAGE NUMBERS ARE TEMPORARY

PLANAR THREE-BODY PROBLEM 121

. can be identified with the cotangent bundle T*CP? but with a twisted symplectic
~, structure, as described in Theorem 4. More about this below.
3 To getasystem equivalent to the reduced three-body problem we will also need to
~, include the radial variables. Restrict X to W and quotient by the action of the group
"5 C of translations in Y-momentum space. Let M = T*R* x T*Cg with coordinates
6 (r,pr, X, Y)andlet G =Cy x C act by

L (k’ C)'(rv pra Xa Y):(r’ prkaa C(Y/lg))9 Wlth C'Y:(Y12+C, Y31+Ca Y23+C)
8

o Fixing the momentum level J (X, Y) = (0 (X, Y), X o) =(—iu,0) € C? and passing
10 to the quotient space gives the reduced phase space

7 P={(r,pr X, Y): (Y, X) = —ip, X124 X31 + X23 =0}/G

13 of real dimension dim P = 14 — 4 — 4 = 6 as expected. In fact we have

% P~ T*R* x T*P(W) ~ T*R* x T*S2.

16 We still need to find the reduced Hamiltonian and show that the reduced Hamil-

17 tonian system is equivalent to the reduced three-body problem. This is easy to do
18 starting from the spherical Hamiltonian in the last section. Indeed, the passage
19 from the spherical-homogeneous variables (r, p,, X,Y) € T*RT x T*Cg to the
20 corresponding projective-homogeneous ones is just given by the identity map. The
21 new feature here is that the symmetry group is enlarged from R* x C* >~ R* x C
22 to Cp x C. Then we have the following extension of Theorem 10:

% Theorem 12. The Hamiltonian flow of Hgp on T*RT x T*(Dg has an invariant set
> \here (Y, X) = —iu. The quotient of the restricted flow by the complex scaling
® symmetry is equivalent to the Hamiltonian flow of H on T*Cg/Sl. There is

*_ another invariant set where (Y, X)=—ipand X124+ X314+ X23 =0 and the quotient

7 of the restricted flow by the complex scaling symmetry and by translations of the Y;;

28 . .
— is conjugate to the flow of the three-body problem with zero total momentum and
29 . .

— angular momentum |, reduced by translations and rotations.

30

31 Proof. The maps F and G as in the proof of Theorem 10 restrict to maps of the
5, angular momentum levels. They are still partially symplectic pseudoinverses. [

33 The next step is to use a momentum shift map to pull-back the problem to the

34 zero-angular-momentum level. This expresses all of the reduced problems on the
35 same phase space and makes the role of the angular momentum constant explicit. Let
3L(ZS) q)u(r» pr,X7 Z):(r7 pr,X, Y)a Y:Z"I_MF(X)» F(X)=W9

38

30 Where

1
40 X" = a(nﬂszlz, m3mi X31, mom3Xo3) € C**.

acting — act

‘Was Theorem 6
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. Note that ®,, : J=1(0,0) — J~1(—iu, 0), since if (Z, X) = 0 we have

2 X* X*
4
“, Composing Hgp with @, we get a Hamiltonian
. o o1 X 1
;7 (29) H,(r, pr, X, Z)=§(pr+ >+—K(Z)——V([X])
8
"5 To verify this we need to show that the kinetic energy can be written
0 (2, 12, IXE
RE) KM=§(p,+ >+—K(Z>

— This decomposition follows from an orthogonality argument based on Lemma 6.
e Namely, the vectors i X and Z are orthogonal with respect to the mass metric and
; the first one lies in W'. Then, as in the last section, Lemma 6 shows that they are

— orthogonal with respect to the quadratic form K and so K (Y) =K (uI'(X))+ K (Z).
— K(,uF(X)) gives ,u -term in K.

; Equation (30) gives a decomp0s1ti0n of the kinetic energy into radial and angular

1o parts and a third term which can be viewed as the kinetic energy due to changes in the

o shape of the configuration. Some authors call this decomposition of kinetic energy,

20/ 2~ or the consequent orthogonal decomposition of velocities the “Saari decomposition”.

391/,

5 (See [Saari 1984].) In the next subsection we show how this last shape term can be

—— understood in terms of the Fubini—Study metric on the shape sphere.

2% 5.2. Fubini-Study metrics and the shape kinetic energy. Using a complex orthog-
> onal basis, we give a simple decomposition of the dual mass metric, which leads to

ﬂ deeper insights into the kinetic energy decomposition (30). Since the shape sphere

i has complex dimension one, there are some very simple formulas for the shape
“° term of this decomposition.

3 To describe the Fubini—Study metric (also called the Kéahler metric), let ¥

3% denote any complex vector space and let (V, W) be any Hermitian metric on . If

3L X €V =\0 then the corresponding Fubini-Study metric on Tx" is

32

o (V. W)X, X) = (V. X)(X. W)
2 (31) (V. W)rs = .
» mT XX

g As a bilinear form on Tx', the Fubini—Study “metric” is degenerate with kernel
36 the complex line spanned by the vector X. But it induces a bona fide Hermitian
37 metric on the projective space P(7).

38 To see this, let  : Vo — P(V') denote the projection map: 7 (X) = [X]. The
39 tangentmap Tn : TV — TP(), Tn(X, V) = ([X], Dr(X)V) has the property
40 that Tn(X,V)=Tn (X', V') if and only if X" =kX and V' =kV +[X for some
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1 complex numbers k # 0, [. So it is natural to view the tangent bundle T[P(7") as the
~, set of equivalence classes [ X, V] of pairs (X, V) € ¥y x V under this equivalence
5 relation. It is easy to check that the formula for (-, - )ps is invariant under this
, equivalence relation and so it gives a well-defined Hermitian metric on P(7"). The
5 real part re(V, W)gs gives a Riemannian metric on P(7') and the imaginary part
s gives a two-form called the Fubini—Study form, which will be important later

Qps(V, W) =im(V, W)gs.

Starting with the mass metric on % = C3, we get a Fubini-Study metric on
CP2. However, because of Lemma 6, we will be interested in its restriction to
11 the two-dimensional complex subspace W' C €3, which we denote by (-, - ) s 9,
12 which induces a Hermitian metric on the shape sphere P(W).

13 Our goal is to show that the shape kinetic energy is the cometric dual to this Fubini—
14 Study metric on P(W). (By a “cometric” on a manifold X we mean the fiberwise
15 quadratic form on 7*X that is dual to a Riemannian metric on X.) To this end we
16 will need to describe cometrics on projective space in homogeneous coordinates. We
17 continue to identify 7*CP? with the quotient space of Tp*;([33 ={(X,2)e Cg x C3*
18 (Z, X) = 0} under the complex scaling symmetry. In the same spirit, the cotangent

19 bundle T*P(W) is the quotient space (a symplectic reduced space)
20

21 T*P(W) ~ (T5,4C3)/Co x C,

=
o | | | N

22
2 where
23

24

2> and where the group Cy x C represents the scaling symmetry and the momentum

26 translation in Z-space. We refer to (X, Z) as homogeneous coordinates on P(W).
27 The restriction of Z € C** to W representing a covector in Tix,P(W). Expressed in
28 homogeneous coordinates a cometric on P (W) is a function of the form Q(X, Z)
2% which is quadratic in Z and invariant under the Cy x C action.

T Co={(X.Z) €W x C*: (Z, X) =0, X #0)

30
31 Theorem 13. The Fubini—Study cometric |Z|§ s at [X] € PW is related to the

30 kinetic energy (formula (19)) by

33

34

{ Proof. Substitute (X, Z) for (Q, P) in formula (19). Use (Z, X) = 0 to get
36 K(Z)=(1/2|T|*)(Z, T). The vector field T (X) appearing in that formula is tangent
37 to W and orthogonal to X, hence fits the hypothesis of Lemma 14 immediately

38 below. The lemma asserts that we have
39

40 1Z[Fs0r = HZ, e(X))*,  with e(X) =

NZGsr = IXIPK(Z).

| X

———T(X). O
IT(X)| 0

classes of — classes

‘Was Theorem 7

moved “with” clause for better
layout
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1 Lemma 14. Let T (X), X € Wy be a nonzero complex vector field tangent to W
~» and normal to X with respect to the Hermitian metric mass metric. Then

X
X =17

is a unit tangent vector field on Wo with respect to the pulled back Fubini—Study

1Y/,

T(X)

metric (-, - )rs.w. Moreover

V,e(X X), W . ~
32 (V. W = CREDT i vow ewyex = TP,
9
10 gnd the pulled-back cometric is given by the quadratic form
11

o (33) |\ Z|Fsaw = UZ, eQO),  with Z € Ty,

o |~ [ofo]a]e|

.

2 Proof. Since T (X) is orthogonal to X, (31) gives |T|% = |T1*/|X|* and so e(X) is

¥ a Fubini-Study unit vector at X.

¥ The tangent space Tx W has complex dimension two and {X, e(X)} is a basis. If
1% we expand V e TxW as

17

5 (V, X) (V, T(X))

18 V= X+ T(X)
10 | X |2 1T (X)|?

S0l /zg and similarly for W, then since X is in the kernel of (-, - )rs we get

21

— (V, TONT(X), W) _ (V, e(X)){e(X), W)
22 (V. Wipsaw =(V, W)gs = = ,
- XPITX)P X[

54 as claimed.

o5 Observe that if E, (-, -) is a one-dimensional complex Hermitian vector space
-6 With unit vector e then the cometric on E* is given by the quadratic form

2 ZelE — |(Z, e’
28

29 From this observation the last formula of the lemma follows. |

3% Remark. The manifold P(W), being a two-sphere, admits no nonvanishing vector
3! field. So how did we just construct a unit vector field e(X) to this two-sphere?
32 We did not! The gadget ¢(X) is a unit section of the pull-back f*TP (W) of this
33 tangent bundle by the homogenization map f : W — P(W) that sends X — [X].

3% This pull-back bundle can be viewed as a subbundle of T°W'y, and hence e(X) is a

3% vector field on W.

36
= Using the vector field T (X) of formula (19) (with X substituted for Q), we

37
obtain the Fubini—Study unit tangent vector

38

301/,20 e(X) = [mimoms (X311 X2z X3 X2 X2 X
40 m my my m; m3 m3z mp )
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1 From this expression we get simple formulas for the Fubini—Study metric and

~, two-form on W

%(34) ('»')FS,W=%5®0} QFS,”W=%1HI5®U,

% where the complex-valued one-form o is given by any of the following formulas
7 (35) o=(e,dX)=X3dX 1, — X1pdX3

= =X1dXy3— Xp3dXi2=Xp3dX31 — X31dXo3.

% For example, the second formula for o is obtained by eliminating X»3, d X»3 from
11 (e, dX) using the equations X3 = — X1 — X3; and d X3 = —d X1 — d X3;. Note

1> that the formulas for o are independent of the masses. This implies that the Fubini—
13 Study metrics for different masses are all conformal to one another.
14 Similarly we get a formula for the dual norm and the shape kinetic energy:

15 2
» mla(Z)|
15 (36) IXPK(Z) =51 Zlpsw=5—
17

1 Wwhere a(Z) is given by any of the following formulas:

2mymoms’

19 1
0 B a= Z(m1m2X12(223—231)+m3m1X31(212—223)+m2m3xz3(z31—le))
2 X (Z3s1—Zw)  |XP(Zin—Z)  |X[P(Zys— Z31)

22 = = =
. X3 X31 X1z

24 Our identification of the shape kinetic energy with the Fubini—Study cometric
25 gives an alternative formula for the reduced Hamiltonian on Tp*r([33

26 D)

P 1 2, M 1 2 1
27 (38) H,(r,pr, X, Z) =5 Pr+r—2 +ﬁ|z|ps,w—;V(X),
28

29 where |Z |% 5.y 18 the Fubini—Study cometric on W.

30

31 5.3. Induced symplectic structure and the reduced differential equations. Using
32 the momentum shift map, we have pulled back the Hamiltonian to the reduced
33 Hamiltonian H,, defined on the zero-angular momentum level T*R* x TxC?, where

34

5 TnC’ ={(X.2) e T*C* :(Z, X) = 0}.

3° However, as described in Theorem 4, there is also an induced symplectic structure

37 on this set which different from the restriction of the standard one. The pull-back

38 of the canonical one-form @ under the momentum shift map (28) is

L im(X*, dX) = © + 10

9
a0 ®*0 = p, dr +1e(Z,dX
40 u0 = prdr +re( >+|X|
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1 with
- . (X dX) . (X,dX)
2 Or=im————=im————,
o 1 X 1 X

3
Z where we changed the evaluation pairing to the mass metric in the second equation.
5 The modified symplectic form will be €2;, = Q2 — 1 d®;, where we find

6

— (dX,dX)|X|* - (dX, X)(X,dX)
"y X

(39) d@l =2im = ZQ%S,

% where Qg is the Fubini—Study two-form determined by the mass metric on C3 (as
10 opposed to its restriction to W as in Section 5.2). Geometrically, Q¢ represents
11 the curvature of the circle bundle §° — CP?.

12 Once we have 2, we calculate Hamilton’s differential equations using the

13 defining equation for Hamiltonian vector fields:
14

15 (40) , pr, X, 2) 1Q, = dH,.

*® The interior product with the standard form gives the usual result:
17

18 (F, pro X, Z) U= —p,dr +F dp, —re(Z,dX) +re(X, dZ).

19
5 Since Qpg involves only dX, it can be viewed as a two-form on C 3 instead of on

5, Dhase space. Moreover, it only affects the differential equations for 7. Hamilton’s
5, equations read:

2 @41) i=H,,., pr=-Hur, X=H,z, Z=-H,x—2uH, 7 Q.
24
25 where H), is given by (29). The term involving the Fubini—Study metric will be

26 called the curvature term, T, = —2uH,, 7 1 Q.

2" Lemma 15. IfXeWand(Z, X)=0, then the vector H,, 7 isinW and (X, H,, 7) =

28 0. In fact
29

30
— (42) Hyz7=——7F—ecW,
31 r
32 where e(X) is as in Lemma 14.
33 The curvature term T!,., is equivalent under the translation symmetry in C>* to
34
P 2u
35 (43) Teww=——F51Z.
r

36

37 Proof. From (29) we have H,, 7 = (|X|>/r?) DK (Z). Note that since Z € C**, we
38 have DK (Z): C* — R. By duality we can view DK (Z) as a vector in C>. Let
30 X €W. Since X = H,, 7 and W is invariant, we must have H,, 7 e W. If (Z, X) =0

40 then an orthogonality argument as above shows K(Z + X*) = K(Z) + K(X*),



PROOFS - PAGE NUMBERS ARE TEMPORARY

PLANAR THREE-BODY PROBLEM 127

1 which implies, since K is a quadratic form, that DK (Z)(X*) = (DK (Z), X) =0,
il 27, asrequired.
3 In Section 5.2 we showed that in the subspace {Z : (Z, X) = 0} we have
o IXIPK(Z) = %l(Z, e)|%. In fact, we will see that the Z-derivatives of these two

5 functions also agree:

5 (44 |X|°’DK(Z) = (Z, e)e.
7

s To see that (44) indeed holds, note that differentiation along the subspace shows
"o that they must agree when evaluated on any §Z with (§Z, X) = 0. On the other
10 hand, both sides vanish on the complementary covector Z' = X*. Note that the right
11 hand side was calculated, as always, by converting to real variables, finding the real
12 derivative and then converting back to a complex vector. Equivalently, we expand

13 1 2_ 1 2 =
T sHZ+38Z,e)|"=5(Z,e)|"+1e(6Z,{Z,e)e)+---

15 for all §Z, showing that the vector in question is the complex representative of the
16 real vector derivative.

17 To show the equivalence of T/, and T,y we will show that they agree when

E restricted to W. The argument can be based on a kind of Fubini—Study duality.

19 Namely, if V € W we will show that

2 1

21 (45) (Huz, Virs= —(Z, V).

22

>3 which means that rZHM, 7 is a dual vector to Z with respect to the Fubini—Study
24 metric on W. To see this note that (44) gives

25 T

- 1 ((Z,e)e, V) (Z,e)le, V)
5 V = —= =

zj Huz. VIFs = 57— 1xp r?|X|?

,s On the other hand any V € W is a linear combination

2 v (X, V)X+(€, V)
= e.
o | X2 le|?

31
- Since e is a Fubini—Study unit vector, we have |e| = | X| and so

201/,

33 1 (Z,e){e, V) (Z,e){e, V)
= —(Z, V)= =
Sl EAA r2lef? r2| X

% and (45) holds. From this we can calculate that for any V e W

36

37 / . 2u . 2u .
— Tcurv(v) = _ZM 1m<Hu,Z, V)FS = _r_2 1m<Z, V) = _r_2 I‘C(lz, V).
38

30 Thus that Ty and Teyry agree as real-valued one-forms on W' as claimed. Replacing This means — Thus (for better
10 layout)

40 T/, by Teur introduces only an irrelevant translation of the momentum Z. [

391/,
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1 Taking this lemma into account we finally get Hamilton’s equations for the

~, reduced Hamiltonian in the form
2 2

) . W HIXIT2K(Z) 1

r:pr, pr: 3 _ﬁV(X)v
5 (46) 5 '

. |X] -1 2K (Z) 2.

X=—DK((Z), Z=-DV(X)-— X-==iZ.

r? r r? r?

Applying Theorem 1 to the momentum shift map and remembering Theorem 12,
we have:

2 Theorem 16. The Hamiltonian flow of H, on T*R* x T*Cg has an invariant set
o T*R* x Tp*rC3, where (Z, X) =0 with symplectic structure given by the restriction of
o the standard form minus 214 Q2ps. The quotient of the restricted flow by the complex
v scaling symmetry is equivalent to the Hamiltonian flow of H on T*Cg /S, There is
o another invariant set T*R™ x TpiWC3, where (Z,X)=0and Xp+ X311+ X3 =0
o and the quotient of the restricted flow by the complex scaling symmetry and by
o translations of the Z;; is conjugate to the flow of the three-body problem with zero
. total momentum and angular momentum [u, reduced by translations and rotations.

19 This Hamiltonian system represents the reduced three-body problem in a way
20 which is convenient for regularization of binary collisions and blow-up of triple
21 collision. However, the phase space is still fourteen-dimensional. Next we describe
22 how to find lower-dimensional representations of the reduced three-body problem

23 by parametrizing the shape sphere in various ways.

24

x5 5.4, Parametrizing the shape sphere. The shape sphere is the projective space
2 P(W). As in Section 3.4, choosing a complex basis {e], e;} for W gives a map
o fiC2=W, X = f(£). By viewing X € W and £ € C? as homogeneous coordinates
28 we get an induced parametrization of the shape sphere f; : CP! - P(W).

20 The formulas of Section 3.4 (with (Q, P) replaced by (X, Z)) allow us to find
30 the reduced Hamiltonian for any such basis. If

31

12 e; = (a2, a1, ax), er = (b12, b31,b23) €W,

z% then we have, as before, X;; =& a;; +& b;j and 1y = (Y, e1), 12 = (¥, e2). We

o define a Hermitian mass metric and dual mass metric for &, 5 to be the pull-backs

. of the metrics for X, Y. The squared norms are

2 _fT 2 _ =T, —1
S EI"=86"GE, Inl"=n G 'n,
38
39 where G is the matrix with entries G;; = (e;, ¢;), and these squared norms represent
40 the mass metric and cometric on W'

‘Was Theorem 8
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1 The relation between the cometric and kinetic energy yields the Hamiltonian
2 5 (see (29), (30) and Theorem 13):

3 2 21012
= W EPImPY 1
. @D Hy(r, pr,s,n>=%(p3+r—2+ 5 )= V@,

where the shape potential is

myms  mams
+

mims
V(é)—lfl( +
P12 P31 023

), pij =1Xij| = laij&1 + b;jé|.

=
ol | |N O |O

To make the map F of Section 3.4 be partially symplectic we need to alter the
1, standard symplectic form in (&, n)-space by subtracting 24 F*Qpq. Pulling back
1> the Fubini-Study metric (-, - )gs by f gives the Fubini-Study metric in & space
13 _ (d§.d8) (8. §) — (dE. §) (€. d§)

e (s )Fs

1 B (£.8)2
% With the help of (34) one can show

17

8
- (-, )Fs = Ep oo ® 00, Wwhere og =§&1dé —&dE;, g =detG.
18
19 The Fubini-Study two-form is the imaginary part.
201,22 Since oy is independent of the choice of basis, the Fubini-Study metrics for vari-
21 ous choices of basis are all conformal to one another. If we choose an orthonormal

22 basis the metrics are Euclidean. The Fubini-Study metric for a general basis is

23 related to the Euclidean one by
2

25 ( S—K(é) FSCHCv

26 .
~—— where the conformal factor is
27

» _ el
") € =5,

; where [£[2,. = |& > + |6/

—  The curvature term can be calculated directly from the definition H,, ,, _|Q2gs and
* we find

33 2/}(4 .

a4 Teuy = _r_2 .

B o )

o Hamilton’s equations in T*R™ x T,;C” are

37 2 2 2
3T ) . mEHIE I 1
38 r = pr, Pr = 7"3 __ZV(S)’
3 (49)
301/, HE In|? 2M

20 é——G— ——DV(&)——G& —in.
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There are still 10 variables but the invariant set 7*R* x T;;Cz with (n, &) =01s

> eight-dimensional and we have a complex scaling symmetry. The introduction of
an affine coordinate on the projective line yields a full /ocal reduction to 6 variables.

For example, consider those points [§] = [&], &] € CP' with & #0. If p is any
nonzero constant complex number then every such point has a unique representative
of the form [&1, &] = [p, z], z=x + iy € C, thus parametrizing almost all of the
shape sphere by a single complex variable z, the affine coordinate. Of course the
roles of &1, & could be reversed to parametrize the subset with & # 0.

If ¢ = o +if € C* denotes the momentum vector dual to z then the unique
extension of f(z) =(p, z) to a partially symplectic map T*C — Tp*;(I:2 ={(n, &) =0}
is defined by & = p, & =z, n1 = —z¢/p, n2 = {. One computes the mass metric is

E@)* = gnlpl* + galzl* +2re(pg122)

and the cometric is

E@1P1g1?

i =
glpl?

, with g =det (Gij).
This gives a Hamiltonian system with 3 degrees of freedom:

2 41012
L o H# E@I 1
(50) Hu(r,Pr,x,y,Ol,,B)ZE(Pr'i‘r—z'f'w - V@),

2
where

mimy mims mams .
V(z) = |$(z)|< + + ) with p;; =l|a;; + b;;z|.
P12 P31 £23

The Fubini—Study form is

dx nd
imdz @dz = S04

Qps = —5 0 £
FERGE RERGE

. 2
The curvature term is just Teyry = ——I;Li;“, as usual.
r

Example 17 (projective Jacobi coordinates). As a first example, consider using
Jacobi coordinates as in Section 3.4, only this time applied to the homogeneous
variables X, Z. As before, the basis which defines the Jacobi coordinates is the
orthogonal basis e; = (—1, vy, v1), e2 = (0, 1, —1). We have

X = (=61, 6+mé, S+, §=(—Xn, X3 —1n2Xn),

Z = (0, m +vimz, n1 —v2m2), n=(=Zia+v2Z31 +viZ23, Z31 — Z13),

where, as usual, Z is nonunique.

almost — almost all
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The Hamiltonian is (47), where the shape potential is

Vi) = ISI(

mimy mims3 moms3
+ + .
&1 &> 4+ v261] |§2—v1$1|>

The mass matrix G = diag(u, n2) has determinant g = | up = mymyms/m and
associated norm and conorm

ml> | Inl
L
231 2%
Hamilton’s equations with the curvature term are given by (49).
If we introduce affine variables by setting £, = p, & = z as above and if we

11 choose p = +/Jt2/1t1 the mass norm reduces to |£]2 = po(1 +x2 4+ y?) and we get

12 the affine Jacobi Hamiltonian
13

1% = mil&1]* + pal&)*  and

-
[Blefe]~]ofo]s]e]n]-

_

2 2 2N2(#12
— pno A +x"+y9)7IL| 1
1i Hu(r,Pr,x,yaa,,B)Z%(p3+r_2+ rz _;V(X,)’)
15
16 Hamilton’s equations with the curvature term are
. 1 1
18 F=pr Pr=? 0427+ + )] = 5V E),
19
. T S 0 S (G P S o
2 X=—7f7 —a y=—5>—"0Fh
21 (51) r r
2 1 2 2 22 4 a2 2u
2 &=V, y) — S (1 +22+ )@ + fHx + =5 B,
r r r

23

on | 2 21
- B=-Vyx.y) = S(1+x>+ )+ By — o
25 r r r

26 Example 18 (equilateral coordinates). In projective Jacobi coordinates (§1, &), the

27 binary collision points by2, b13, by are located at the projective points
28

o [1, 01, [1, =v2], [1, 1] € CP'

30 while the equilateral triangle configurations (the Lagrange points) are at
31

- _ 3 _ 3
2 [1.£.]€CP', where Zizuﬂ:ii:w A
3 2(mq +my) 2 2 2

342 Using a Mobius transformation, we can put three points anywhere we like on
35 the shape sphere, CP!. Remarkably, it turns out that if we put the binary collisions

36 at the third roots of unity

%(52) (€1, &1=[1,11,[1,0],[1,&] € CP'  with w = J(=1+iv/3),

39 then the equilateral points are automatically moved to the north and south poles

40 [1,0], [0, 1]. These coordinates were introduced in [Moeckel et al. 2012].
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1 These coordinates are obtained by choosing the basis

11—
= o=, 0,0), e=-t=1,-b —0)
3
Z for W'. The coordinate change map is X =& e; + & ey or
5 — -
o Xp=§1—&, X3=wé—ws, Xiz=wé —ows,
Z and indeed takes the roots of unity (52) to the binary collisions. Setting &, = 0, we
8 see that | X 12| = |X32| = |X23| corresponding to an equilateral triangle, with the
9 same result if £, = 0. Thus the coordinate change map sends the poles & = [1, 0],
10

[0, 1] to the equilateral triangles.
11 The mutual distances (of the homogeneous variables) p;; = |X;;| that appear in

12 the shape potential are very simple:
13

_

- supplied missing left bar in last
1 pi2=16—&I, p3 =16 —wk|, p3 =6 —wél equation

15 The mass metric can also be written in terms of these
16

2 1 2 2 2
17 1§ = Z(mﬂnzpu + m3myp3, +mom3p53).

18
1o Itis represented by the matrix G with entries g;; = (e1, e2):
201/220 mimy + msmy +moms mimy + msmi @ + moms @

5, 811=gn= - s 81=gn=— - ,

22 .

— and determinant g = det G = 3mmym3/m.
23 . L

—  The inverse transformation is given by
24

25 E1=1(X12+dX31+wX23), &=—1(X12+0X31 +dX23),

26

P and the momenta satisfy ny = Z, + @Z31 + wZy3, Ny = —Z1p — wZ31 — 0 Z73.

. Choosing affine variables by setting §; = z, & = 1, we get the Hamiltonian

~ (50) with

30 2 1 2 2 — 12
= E@N:=Ewmmk—ll+mwnk—w|+mw%k—wﬂ-

32 The complexity of mass norm is perhaps outweighed by the fact that the potential

33 is given by the wonderful expression
34

» Vi(z) =1§(2)] (

36

37 The advantage of these coordinates is that they provide the homogenized potential
38V with “radial monotonicity””. Let E = x(d/0x) + y(d/dy) be the radial vector
39 field in the z plane, where z =x +iy. Then E[V] > 0for0 < |z| <1, E[V] <O for
40 |z|>0,and E[V]=0if and only if |z| =1 or z = 0. (See Proposition 4 of [Moeckel

mimy  mim3  moms3 )
lz—1 lz— ol |z—a|)

391/,
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_ 1 etal. 2012]) This monotonicity was the key ingredient to the main theorem of
/27" [Montgomery 2002].

3 . . ..
— 5.5. Making the shape sphere round. Instead of using projective or local affine

4 . . . .
— coordinates, one can map the shape sphere to the unit sphere in R>. First we do

5 . . . . .
— this homogeneously, then restrict to the unit sphere to get another version with 6
— degrees of freedom. Let & = (§1, &) € C? be coordinates associated with some

7 . .
S choice Of basis ey, ez for W. » 3 . _ - changed both instances of £ to
—  Consider the Hopf map 4 : C- — R given by w; = 2re£1&, wy, = 2im&1&;, &, asbelow

2 2 . . . Is this what you mean?

— w3 = |&1|° — |&2|*. Using the Euclidean metric for w we get

11 lw|* = wi + w3 +wi = [£]2,. = (& 12+ 6157

2 It follows that 201E117 = |w| + w3, 2|67 = |w| — w3, 2615 = w; +iws.
T We will need formulas for p;; = |X;;| = |a;;&1 + b;;jé2| in the variables w;.
o We have

15 (53) pf = laij|*€1 P +1bij P16 *+2 re (€162 bi))

17 — . —

s = 5 (laij P+10i; 1) [wl 5 (jaij 1= 10i; | yws+re (@i bip) w1 —im (@i b wa.
19 Then the mass metric will be given by

201/, 22 54 2_ 1 2 2 2
2 (54) 1] —m(m1m2P12+m3mlP31+m2m3,023)'

22 If we let oy, ap, a3 be dual momentum variables, we can extend the Hopf map &

23 to a partially symplectic map F : Tp*rC2 — Ts’ghR3 by defining its (pseudo) inverse:
24

25 n=ooDh:=Dh'a.

% To find the reduced Hamiltonian in w coordinates we will exploit the fact that the
*"_ Euclidean metric transforms nicely. Recall that the shape kinetic energy is the dual
2 of the Fubini—Study metric and that the latter is related conformally to the Euclidean
*_ metric with conformal factor « !, where « is given by (48). In other words, since

. we are restricting to (n, &) = 0 we have
31

2 2 —1 2 2
32 |§| |77| =K |$|euc|n|euc‘

33 . . .

— One can verify that the Euclidean norms transform under the Hopf map in such a
34

— way that

35

2 2 2 12
. 1€ 1uc 1MGue = 41wl la|”,

E where we are using the Euclidean norm on R?, R**. Hence the reduced Hamiltonian
38 on the sphere is given by

39
3912 — 1( 2, 1 4wlla) 1
40 Hu(r,Pr»W,Ol)=§<Pr+r—2+W —;V(w),
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. where |w|? = w% + w% + w% and |a|? = a% —I—ag —|—a§ and where the shape potential

11/27 is given by

V(w) = |&(w)| <"“1"2“ +

msmy  mom
3y m2 3)
P31 023
with the p;; and |§| as in (53) and (54).
The Fubini—Study form becomes a multiple « /4 of the Euclidean solid angle
form

Qps = 4|K |3 (w1 dwy Adws + wr dwy Adwy + w3 dwy Adws).
w

-
Slefe|~|ofo]s]w]

E This leads to the curvature term
12

T _ap

13 curv = 5 & X W,
= |w|r

14

15 where w x a denotes the cross product in R3.
16 The differential equations are

17

— . L AwPal? 1 . 4w]?
8 r=pr Pr=5(H +T —r—zv(f), w:Fa’
19 (55)
20 . o> Awl*|af? 21

201/, — a=-DV(w)— 5~ W 55 Kw S0 X W.
21 r Kr K°r lw|r

22

. From Theorem 1, if we restrict to T*R™ x T:I‘,th3 = {{a, w)eyc = 0} and quotient

v by the scaling action of R™, we get a reduced system equivalent to the reduced
o three-body problem. But (o, w)eye = O implies that |w| is constant under the
o flow. Hence we have a six-dimensional invariant submanifold given by |w| =

- 1, {0, w)eue = O representing the reduced three-body problem. The reduced phase

S, Space is T*R* x T*S? and the shape sphere is represented by the standard unit

— sphere.
29 p

o To get to six dimensions with no constraints one could parametrize the sphere
e with two variables. If this is done with stereographic projection, the result is similar the similar — similar
. to the affine coordinate reduction of Section 5.4. On the other hand one could also
— use spherical coordinates 6, ¢. However, both of these are just local coordinates

33
w while the system above is global, albeit constrained.

g Example 19 (Jacobi coordinates on S?). If we choose an orthonormal basis for W
36 then we get the conformal factor ¥ = 1 and the resulting Hamiltonian will have a
37 simpler shape kinetic energy. For example, we could normalize the Jacobi basis of
38 Example 17 to

39

391/, — , 1 /

40 ey =——(—1,v,v), e =—(0 L, =D).
40 1 T 2

e
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1 The coordinates &; are replaced by ./i; & in all of the formulas. We get rather
> complicated homogeneous mutual distances

3

N 2120ty = pa(lw] + ws),

N 21203 = (Mav3 + uD)|w] + (1213 — 1) w3 + 2va /L1 2 Wi,

6 2u1i2033 = (2vi + ) |w] + (Uavi — w1 ws — 2v1 /1 2 Wy
7

. In the equal mass case with m; = 1 and |w| = 1, however, we get

9 V3 /3

o Ph=lwltws  p = lwl+wi - qws, = |w| = TTwy — gws.

1 On the other hand the Hamiltonian is

12

)

2 2 2
1 w4 wl o 1
Hu(rapr»w,a)=§([7r2+r—2+r—2 —;V(UJ),

14

15 where the norms are Euclidean.

16
o Example 20 (equilateral coordinates on S?). If we use the basis of Example 18

18

19

3 3
o Ph=lwl—w p§1=|w|+§w1—§wz p§3=|w|+%w1+§wz.

2! Collinear shapes form the equator w3 = 0 with the binary collisions placed at the
2 roots of unity.
23 On the other hand we have a formidable conformal factor

24

ol =

- 2 2 2 :
26 (m1m2p12+m3m1p31 +m2m3/023)2

2" 1In the equal mass case (m; = 1) we see k = 1.
28

29 5.6. Visualizing the shape sphere. Having reduced the planar three-body problem
30 by using size and shape coordinates, we will pause to have a closer look at the
31 shape sphere and the shape potential.

32 Using the spherical variables w = (wy, w2, w3) we can visualize the shape sphere
33 as the round unit sphere in R3. The equilateral basis of Example 20 puts the binary
34 collisions at the third roots of unity on the equator and the Lagrange equilateral
35 configurations at the poles. Figure 1 shows some of the level curves of V for two
36 choices of the masses. In addition to the binary collisions shapes where V' — oo,
37 there are three saddle points at the Eulerian central configurations. The Lagrange
38 points are always minima of V.

39 If we use stereographic projection to map the sphere to the complex plane, we get

e1 =, w,), e =—e; = (-1, —o, —w), we get simple mutual distances

/2

3m1m2m3m(w% + w% + w%)

[2— . . .
Zg the affine coordinate representation of Example 18. Figure 2 shows affine contour
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1o—
2
3
"
5
6
7
8
9 Figure 1. Contour plot of the shape potential on the unit sphere
10 w% + w% + w% = 1 in the equal mass case (left) and for masses
11 my; =1, my =2, mz =10 (right).

2
201/,

|

S T S T S S S Y S M | s P T T R R
24 -15 -1.0 0.5 0.0 0.5 1.0 15 -15 -10 -0.5 0.0 0.5 1.0 L5

P T S S S S

25 Figure 2. Contour plot of the shape potential on the complex plane

26 in the equal mass case (left) and for masses m; =1, mp, =2, m3 =10 as a — as (since noun is in the
27 (right). These plots can be viewed as a stereographic projections plura])

28 of those in Figure 1.

— plots for the same two choices of the masses. Now the collinear shapes are on the
— real axis.

" 6. Levi-Civita regularization
4

g In this section, we describe a way to simultaneously regularize all 3 binary collision
36 using 3 separate Levi-Civita transformations. This approach to simultaneous regu-
37 larization was introduced by Heggie [1974]. There are two versions depending on
38 whether the variables Q;; or the homogeneous variables X;; are used. The former
39 approach was used by Heggie; we will take the latter. We begin with a review of

301/ SN L
Zﬂ Levi-Civita regularization for the Kepler problem.



1/,

201/,

391/,

PROOFS - PAGE NUMBERS ARE TEMPORARY
PLANAR THREE-BODY PROBLEM 137

1 Levi-Civita showed how to regularize the two-body problem, which is to say, the
~, Kepler problem. Let g € C denote the position of a planet going around an infinitely

massive sun placed at the origin. After a normalization, the Kepler Hamiltonian is
%| pl> —a/|g|. Levi-Civita’s transformation is the map

> 22=q

together with the induced map on momenta

77'—>2—Z =p

and the time rescaling

=R e
N || OO |0 |IN O[O0 |~ |W]|N

d d
—_— =t —.
dt dt

13

14 To understand the map on momenta, make the substitution ¢ = z? in the expression
15 (p, dz) for the canonical one-form. We have (p, dq) = (p,2zdz) = (2zp, dz),
16 which shows that if n =2z p then (n, dz) = (p, dg). This computation shows that
17 themap (n, z) = (p, g) with p=(1/(22))n,q = z%is a2:1 canonical transformation
18 away from the origin. Observe that r = |z|?. Thus in terms of the new variables
19

5 H_l ||2 o
— 2 7 1z|2 )"

21

22 Time rescaling is equivalent to rescaling the Hamiltonian vector field. This

g rescaling can be implemented using the following “Poincaré trick”. If Xy is
24 the Hamiltonian vector field for H, and if & is a value of H, then fXy is the
25 Hamiltonian vector field for the Hamiltonian H = f(H — h) provided we restrict
26 ourselves to the level set {H = h}. We take f =r = |z|> and compute that

27 ~

. H=3(nl* = hizl* - ),

29 which is the Hamiltonian for a harmonic oscillator when 4 < 0.
30

£ 6.1. Simultaneous regularization. Let (r, X) denote either the spherical-homo-
32 geneous or projective-homogeneous coordinates. To simultaneously regularize
33 all three double collisions we perform a Levi-Civita transformation on each of
34 the homogeneous complex variables X;;. Thus, we introduce three new complex
35 variables z;; = —z;; and set X;; = z;‘; Define a regularizing map f : Cg — Cg by
36

2 2 2
37 X = f(z12, 231, 223) = (2725 231> 223)-

* The preimage of the subspace W' is the quadratic cone
9

40 6: z 423 +23;=0.
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1 Wehave f:%9— Wy. Every X € W has 8 preimages under f, except for the three

/ >, binary collision points (X;; = 0 some ij), which each have 4 preimages. (Since

'3 X #0, at most one of the X;; or z;; can vanish at a time on W or 6,.)

2 Since f is homogeneous, it induces maps fiph : $> — §° and Jpr: CP? — CP?.

5 In this case we also view z;; as homogenous spherical or projective coordinates.

¢ These restrict to regularizing maps fipn : S(€) — S(W) and fy : P(€) — P(W),

; where, as above, S(-) and P(-) denote quotient spaces under real and complex

g scaling, respectively.

9 The mutual distances become

o i
— (50 pij = |Xijl = |zijl
11

1» and the mass norm is

= mm2+mm 2+mm2
I(57) |X(Z)|2=|f(z)|2= 1"M2015 1Mm303; 2 3,023.

my+my+m3

15 . .. .
— We will use the standard Hermitian inner product, denoted (( -, - )), on z-space so
16

17 (58) 121> = lz12* + |z31 * + 1z231> = p12 + p31 + p23.

% Let n;; be the conjugate momenta to z;; and let Y;; the homogenous momenta

— conjugate to X;;. We extend f to amap (r, p,, X,Y) = F(r, p,, z, ) by setting
201/5— 1

- Yij = 5=—nij-

2 2zij

23 Then F restricts to maps

24

o TRYXTHC - TRY X T5,C0 and T'RY x T;C° — T*RY x T,,C,

26 where in (z, n)-variables we have the constraints re(n, z) = O for the sphere and
27 (n, z) = 0 for the projective plane. We continue to denote these restricted maps by
28 the letter F.

29 The action of ¢ € C by translation of the momenta Y;; to Y;; + ¢ pulls-back under
30 F to translation of n;; by 2cz;;, that is, to the action

% ¢-(r, pryz,m) = (r, pro 2, 0 +2¢2).

33 The momentum map for this pulled back action is y = z%z —i—z%l —i—z%S. Of course we
34 will be interested in the level set y = 0. We will call this the z-translation symmetry
35 of 7.

36
— 6.1.1. Geometry of € and the regularized shape sphere. 1t is interesting to investi-

37 ! . . .
. gate the algebraic surface 6 in more detail. If we write the complex vector z € C?
—asz=a+ib, wherea =rez and b =imz € R>, then

391/, — . .

40 24723, +25=0 ifandonlyif |a>=b|*, a-b=0.
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1 This means a, b are real, orthogonal vectors of equal length

If we define a third vector ¢ = a x b we get an orthogonal frame in R> and the matrix

aip by cra/s
(59) A(Z)=; az1 b3 c31/s | € SO(3).
axs bz c23/s

10 The mapping A(z) induces a diffeomorphism between the quotient space S(€)
11 of 6p by positive real scalings to SO(3) and hence, as is well-known, to the real
1, projective space RP(3) (and to the unit tangent bundle to S?).

3 The projective curve [P(‘6) turns out to be diffeomorphic to the two-sphere S>
12 and, accordingly, we will call it the regularized shape sphere. One way to see this
15 1S to note that P(6€) ~ S(6€)/S I'is the quotient of S(%) under rotations. It is easy
7o to see that action the rotation group on z rotates the vectors a, b € R* above in their
17 own plane and leaves ¢ = a x b invariant. It follows that the map z — ¢/|c| induces
s a diffeomorphism P (%) ~ §2.

10 In the sections below, we will apply the regularizing map to obtain several
5o regularized Hamiltonians for the three-body problem. Starting with spherical-
»,; homogenous variables leads to a regularized system not reduced by rotations while
»» the projective-homogenous variables lead to a Hamiltonian system which is both
»; regularized and reduced. In addition we will consider several ways to parametrize
5, the cone € to obtain lower-dimensional systems. Theorem 1 can be applied to show
-5 the equivalence of the Hamiltonian systems below, but we will omit most of the
56 details.

= 6.2. Spherical regularization. First we will find the regularized Hamiltonian in

o spherical-homogeneous coordinates. This gives a regularization of binary colli-
o sions without reducing by the rotational symmetry. Let (r, X) be the spherical-
e homogeneous coordinates of Section 4. The spherical Hamiltonian is

= H, X, Y)=1p2 |X|2KY Lyx
- sph (7, Prs X, )—jpr+r_2 ()—; (X).

* Using the formula analogous to the one in (7) for K (¥) and applying the regularizing
>® map gives
36

37 X@P( |ml 72| |773)2
“(60)  Hypn(r, pryz,m) =2 p2+ + +
38 P 20 r? 8mipi2p31  8mapiaprz  8m3p3ip23
39
- 1 miym msm m-m

( 1my | mamy 3>’

40 s
— r\ pi2 P31 023
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1 Where
- 6D mi=maz -0z, T2 =103212 — 112223, T3 = 1131223 — 1123231
% Next we rescale time using the Poincaré trick. One choice of time-rescaling
5 factor is 2122312237 = p12031p23. But since X, z are homogeneous coordinates, a
_® degree-zero homogeneous function such as

7
o P12P31P23 P12P31023
8 (62) T= s = .

5 (P12 + p31 + p23) Izl

10 seems more appropriate. Note that by the arithmetic-geometric mean inequality we

1 have0 <7t < 21—7 In Section 6.3 we will choose a different time rescaling function A.

12 The rescaled solution with energy Hg,n = h become the zero-energy solutions
B Hsph(r, Dry 2, M) = T(Hsph —h):

14
15 T p? IX(z)|2<|m|2pz3 212 031 |n3|2p12) 1

= (63) Hgpn = —-W() —hr,
5 03 Hon=—=7F T35 T, Sy 8ms S W@ —he

17

. where the regularized shape potential W is

19 |X ()]
2 (64) W(z) = W(mlmzmlﬁm +mim3pi2p23 + mam3p12031).

21

> Note that since z is a homogeneous variable representing [z] € $°, we have z # 0.

»; For a homogeneous coordinate representing a binary collision we will have exactly
-4 one of the variables z;; =0 and ||z|| > 0. Thus H is nonsingular at these points and
55 the binary collisions are regularized.

*_ Theorem 21. The Hamiltonian flow of I:Ispl1 on T*R* x T*(DS has an invariant
% submanifold T*R* x T2, C3 defined by re(y, z) = 0 and 23, + 23, + 22, = 0. The
— quotient of the restricted flow by scaling and by translation of n by 7 represents
29 . . . ..

— the zero total momentum three-body problem with regularized binary collisions,

30 . .
— reduced by translations (but not by rotations).
31

32 The quotient space of Ts;h,%([:?) by these symmetries can be identified with
33 T*S(€) >~ T*RP(3). The regularizing map induces an 8-to-1 branched covering
34 map feph : S(€) — S(W), that is, an 8-to-1 branched covering RP3 — S3. The
35 map is a diffeomorphism except where (exactly) one of the z;; =0 and X;; =0. To
36 describe the branching behavior, note that in the two-dimensional complex subspace
37 W, the set where X1 = 0 is a complex line which corresponds to a circle § Uin the
38 sphere S(W'). The preimage of this circle will be 2 circles in the projective space
39 S§(€). Altogether, the map is branched over 3 circles, each circle having preimage
40 2 circles in the projective space RP3.

removed “and”

removed “of” after “solutions”;
is this what you mean?

‘Was Theorem 9
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1 6.2.1. Quadratic parametrization of 6. Instead of writing Hamilton’s equations
27, for ﬁsph, we will describe a parametrization of the cone 6 that leads to a lower-
3 dimensional system of equations. There is nice 2-to-1 parametrization by quadratic
. polynomials which is related to the double covers of RP* by 3, of SO(3) by the
5 unit quaternions, and of SO(3) by SU(2).

Define a 2-to-1 mapping g : C2 — € c C? by

. ~ 2, .2 22
(65) g: zi2=2x1x2, 1=x7+Xx3, 223=1I(x]—x3),

efe|~]o]

10 where x1, x, € C. This can be seen as a variant of a map used by Waldvogel [1972]
11 in his regularization of the planar problem. But here we are applying the idea to
12 the homogeneous variables X, which makes it easier to blow-up triple collision
13 later on.

14 By homogeneity, there is an induced map gsph - $3 — S(). The induced map is
15 given by the same formula except that x, z now denote homogenous coordinates for
16 the points of $3, §°. (This double covering map gives another way to see that S(6)
17 is diffeomorphic to the real projective space RP>.) The map &sph can be motivated
15 in several ways. First, after omitting the factors of i, it resembles the formulas for
19 parametrizing Pythagorean triples. Next, write x; = u; —iuy, x; = u3 +iug and
20 define the unit quaternion u = u +i uy + j uz +k u4. Then the familiar conjugation
>1 map v — uvii, where v is an imaginary quaternion, defines a rotation R(x) on the
2 three-dimensional space of v’s. Up to a permutation of the columns, R(x) = A(z),
23 the matrix of (59), and hence the conjugation map defines a map x > z. As a

24 variation on this construction, define the unitary x-dependent matrix

25

% U= [ M xz] e SUQ).
27 —X2 X1

28

2

20 Then the adjoint representation v — U (x)vU (x)~! on su(2) ~ R? produces the
30 same rotation R(x).

31 The composition f o gspn of the regularizing map and the quadratic parametriza-
32 tion gives a 16-to-1 branched cover S3 > 83, which becomes 8-to-1 over the
33 binary collisions. Each binary collision is represented by a circle in the range which
34 has 2 preimage circles for a total of 6 branching circles in the domain. Using
35 stereographic projection, it is possible to get some idea of the behavior of this
36 remarkable, regularizing map. Figure 3 shows the projection of the three-sphere.
37 The three transparent surfaces are tori representing the collinear configurations
38 with a given ordering of the bodies along the line. These intersect in 6 circles
39 representing the binary collisions. The figure shows thin tubes around each of
40 these circles.

used Fraktur instead of italics
for Lie algebra
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2
3
n
5
6
7
8
9
10
1
12
13
14
15
16
17
18
19
20
2
2
23
on Figure 3. Stereographic projection of $* showing the preimage
2 under the regularizing map of the collinear configurations and small
% tubes around the binary collision circles.
% To extend g to a partially symplectic map G : T*R* x T*C* — T*R* x € x C**
2 We transform the momenta 7, y so that y = nDf(z) or
30 —2ixy —2ix
3t [vi y2]=[m2 n31 m23]| 281 2%
32 —2ix; 2ixs

% The value of 7 is not uniquely determined but any two solutions will yield equivalent

3 o
— covectors and the same transformed Hamiltonian. For example, we could take
35

36 i

- n2 =0, n31=}1<¥+¥>, ’723:_<¥—¥>.

1 X1 X2 4 X1 X2

% G restricts to G : T*Rt x Ts’i‘)h(ﬁ2 — T*RT* x Ts;h,%@*’ where
39—

- Ts?)h([:2 = {(X, y) :re(y, x) = 0} and T;;h’(gC% = {(z, r]) 17€%, re(n’ Z) — 0}‘



PROOFS - PAGE NUMBERS ARE TEMPORARY

PLANAR THREE-BODY PROBLEM 143

1 The regularized spherical Hamiltonian becomes

11—
2 2 2 712 12 712
— ~ T X(x T T kg 1
3 (66) Ay = Py |2( )12(| 7o mlepest w3l plz)——W(x)—hr,
Y 2 2| x|| 256m 256m; 256m; r
5 T = yi1X2 + yaxi, Ty = y1X2 — yaXi, Ty = y1X] — yaXa,
o P12 = [2x1221, P31 = |xf +x3 17, P23 = |xi — x31%,
7
' Izl = 2l1x[1* = p12 + p31 + p23,
9 2 m1m2p122 +m1m3/0321 +m2m3/0§3
o X ()] = .

my+my+mj3

_

1
1> Note that H is invariant under the scaling symmetry (x, y) — (kx,k~'y), k > 0.

15 The corresponding Hamiltonian system on the ten-dimensional space 7*(R* x C?)
14 can be reduced to the expected eight dimensions by restricting to the invariant set

E T*RT x T:;)h([)z and then passing to the quotient space under scaling.

16
1, 6.3. Projective regularization. Next we will get a regularized version of the re-

g duced three-body problem. Let (r, X) be the projective-homogeneous coordinates

1o of Section 5. For a fixed angular momentum, we have the reduced Hamiltonian

N * M+ * 3
2 on T*R prr(D
201/, —

21

u? | X |2 1
22 H X. 7)=L( p2 K(Z “VIX
lL(rv prv 9 ) 2 pr }"2 r2 ( ) r ([ ])

23

24 After making the Levi-Civita transformations, fixing an energy and changing time-

25 scale by the factor T from (62) we obtain a regularized reduced Hamiltonian
26

767y B Pr T NXQP (ImPex | ImalPon | sl
28 2 2rr  r?|z|® 8m 8my 8ms

29
— where the various quantities appearing in the formula are given by (56), (57), (58),

o (61) and (64). The only difference between the spherical and projective Hamiltonians
— is the term involving ;2. We also impose the extra constraint im(, z) = 0 and there
— will be extra curvature terms in the differential equations.

" To find the curvature terms we need to pull-back the Fubini—Study form under
o the regularizing map X = f(z), X;; = lej The Fubini-Study metric on z-space is

)—EW(S)—M,
;

¢ derived from the standard Hermitian metric on C? by a formula analogous to (31).
5, We can express its restriction to ‘€ in terms of a tangent vector field as we did in

53 Lemma 14. The analogous formula to (32) is

39
391/25 (68) (v, W»FS,‘G _ (V,e){e, W)

D Ve Wend.
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E where e(z) is a Fubini—Study unit vector field tangent to ¢ and normal to z. For
v/ 27, example, observe that if z € 6y = % \ O then the vectors z, Z, T form a Hermitian-

5 orthogonal complex basis for 7.C3, where

4 - - - - - _ -
— (69) T =z x 7 =1(231223 — 223231, 223212 — 212223» 212231 — 231212)-
5

¢ Hence we can take ” ”

— z

7 =(zx2)/lzll

e ||T||

e This gives

10 TR

= (70) (- Drse=——7"

i [zl

12 where X is given by any of the formulas removed “following”
13

— 7xZz,dz zll(z12dz31 — z31 dz12

(71 5 ( ) _ izl )

15 Izl 723

6 _zll(z23dzi2 —zi2dz23)  lIzll(z31dz23 — 223dz31)
17 731 212

18 For example, the first version is just ¥ = (e, dz)) and the second is obtained by
19 eliminating 73, dzp3 using the equations

20 2 2 2
20Y/2— 53 =—2]p—23; and zp3dz23 = —z12dz12 — 231dZ31.
21

22 Using these formulas, we find that the pull-back of the Fubini—Study metric on
23 W is a conformal multiple of the Fubini—Study metric on €.

2% Lemma 22. The pull-back of the Fubini-Study metric on W is given by
25

2% D s =A@ (- - D Frses

2" where the conformal factor is

28

2 (72) A= Amimams propsipalizl® _ Ammimams(pia + p31 + p23) pr2p31p23
30 m|X (2)|* (mimap?y + mimsp3, +momsp3;)>

3 and where pij = |z,j|

32
45 Proof: Equation (34) shows that we need to compute the pullback f*o, where o is

3. given by (35). Using the first formula for o gives

35 f*o =2z0,231dz31 — 223,212 d 231 = 2212231223 5.

36

. Hence

2a mimoms _ mim

BN rsw = fO® fro Wlml 3117|223’ E @ 2.

301/ 39 m|X(2)]
Zg Now use (57), (58) and (70) to get the formula in the proposition. O
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1 Similarly we can pull-back the Fubini—Study cometric on W and compare it with

il 27, the Fubini—Study cometric on 6. The formula analogous to (33) is

S\ (2
2 _ {1,z < 2)| % 3
|© = —||Z||2 , ne Tz’pr(ﬁ .

3

4 (73) 115 = 1(n, e)

5

‘6 This is a degenerate quadratic form, invariant under z-translation of 7, which
7

8

9

represents the Fubini—Study cometric on €.
The next lemma relates this to the pull-back of the Fubini—-Study cometric on W
and hence, to the shape kinetic energy.

% Lemma 23. The pull-back of the Fubini—Study cometric on W is

2 -1 2
2 F*||-||FS’0W=)» ”'”FS,%;’
13

14 where A is given by (72). Hence the shape kinetic energy in regularized coordi-

15 nates is

— V(2
e L gl = A2 X 21
17 2 P R

r Proof. Equation (36) shows that we need to compute the pullback F*«, where « is
1 . . .
P given by (37). Using the second formula for o gives
201/2i
2 - -
21 231" . (131212 — N12231)223
Fra=

22 |X |2 2712231223

23

5, and there are two similar equations from the third and fourth formulas. Adding

o these gives
e ey - XQP

27 ||Z||2

28 Therefore,
29

(n,2Xx2).

30 2 m|X (@2)|*|(n, z x 7)|? m|X (2)|* 2

— F ”77”FS,°W= i 2”77”FS,<6~
31 4mimamspr2pz1023llzlI* 4mimamspi2p3i 03|zl

2 Comparing with the formula for A completes the proof. ]

33
34 It follows from the lemma that we have an equivalent reduced, regularized
35 Hamiltonian

36

2 2 2
— ~ pE TH Tinllpse 1
37 H,=—" — ——-W()—hr.
- " 2 2r2  2x()r?2  r ©)
301/ 39 Some simplification is obtained by choosing the degree-zero homogeneous function
Nl

40 ) as our time rescaling function instead of the function t of (62), that is, by setting
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1 T = X. This gives the reduced, regularized Hamiltonian

2 - W= D] [
3 (74 H, = r :
e 2 22 2r?
- Ap: Aau? lmzxZ)F 1

= — —W(E) —hhA,
2 2r2 2r2||z||% r )

— lW(é‘-) —hx
r

where the new regularized shape potential is

(75) W =
10 4/mmimoms(pi2+p31+ p23) (M1M2p31 P23 +mim3pi2p23+mams3p12031)
(mimapiy+mim3p3, +mam3p33)3/2

The factor of A in the Fubini-Study two-form and the factor of A~! in the
— shape kinetic energy cancel out in the interior product defining the curvature term.
— Remembering the timescale factor A we find that the curvature term is

16 22U

— (76) Teurv = _I’_2 i,
18 which is added to the right hand side (that is to —3 H/dz) of the Hamilton’s equation

19 for .
20

5; Theorem 24. The Hamiltonian flow of I:IM on T*R* x T*Cg has an invariant set
> T*RT x Tp”;%(lf, where (1, z) =0 and 2%2 —l—z%l +z§3 = 0 with symplectic structure

53 given by the restriction of the standard form minus 2ulQrs. The quotient of the
. Testricted flow by the complex scaling symmetry and by z-translations of n) represents
55 the three-body problem with zero total momentum and angular momentum v, with
5 Tegularized binary collisions, reduced by translations and rotations.

27 The regularized, reduced Hamiltonian FIM, together with the curvature term gives

28 a system of differential equations on the fourteen-dimensional space T*(R* x C?)

29 with variables (r, p,, z, n). The six-dimensional quotient space of T*R™* x Tp*;’%@
39 is diffeomorphic to T*R™ x T*P(%). Instead of writing these fourteen-dimensional

3! differential equations, we will describe several ways to parametrize the regularized

32 shape sphere P (%) to arrive at lower-dimensional systems of equations.

33

32 6.3.1. Quadratic parametrization of the regularized shape sphere. We can parame-
5 trize € using the same quadratic map g : C*> — % C C? as in Section 6.2.1:

36 . 2 2 . 2 2
— 212 =2ix1X2, 231 =X +x3, 223 =10(x] —X3).
37

g Since g is homogeneous with respect to complex scaling, it induces a map g :
39 CP! — P (%) from the projective line onto P(%). Although g and the induced

40 map gsph of $3 in Section 6.2.1 are both 2-to-1, the extra quotienting makes gpra

‘Was Theorem 10

rearranged for better layout
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; diffeomorphism. This shows again that P (%6) is diffeomorphic to the two-sphere.

il 27, The same partially symplectic extension

3

s G:T*R* x T*C* - T*R" x 6 x C**

% restricts to a map G : T*R* x T*C* — T*R" x Tp";’(@(ﬁ, where

7

€= (@0 =0} and Ty C ={Gm:ze@ (1.2)=0).
2 If we use (74) together with the formula (73) for the dual Fubini—Study metric,
19 we obtain, after some simplification, the reduced, regularized Hamiltonian

11

i - apr o ym—xpl 1

o H, = 4 — —W(x) —hA,

5 (77) R - P V&)

2 2, 22 2 22
il p12 = 12x1x2|7,  p31 =Ix{ +x3|7,  p23 =Ix] —x3|°,

15

E where W (x) is still given by (75) and A(x) by (72) but with the p;; replaced by the
17 given expressions in terms of x.

18 We have the complex constraint (y, x) = 0 and the system is invariant under
19 complex scaling symmetry (x, y) — (kx,y /k), k € Co. Applying the constraint
20 and passing to the quotient space reduces the dimension from 10 to 6. As usual,
21 Hamilton’s differential equations will have a curvature term

22 2

03 ur .
23 Teury = -5
24 r

25 added to the y equation.
26

27 6.3.2. Dynamics in regularized affine coordinates. As in Section 5.4 we can use
-5 affine local coordinates on CP'. Every projective point [x1, x3] € CP! with x 1#£0
29 has a representative of the form [x1, xo] =[1, z] =[1, x +iy], where x, y € R. The

30 appropriate momentum substitution is y; = —z¢, y» = ¢, where { =a +iff € C* is

31 a momentum vector dual to z.

32 We get a Hamiltonian system with 6 degrees of freedom:

33
3 ~ 202 ol (14x24vD2(a2+-82) 1
w (78) i p; w o (I4+x4+y9) (a+B )——W(x,y)—h)»,
. " 2 2r2 4r2 r

56 pr2 =424y, par = (1+x2 =y +4x%y%, poy = (1—x>+y%) 2 +dx?y?

37

. The Fubini—-Study form becomes

201/,

391/23 dx Ady

Qps = - 2OY
20 B 022122
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1 Hamilton’s equations with the curvature term are

11/27
2 1 1
B P=ape pr=a +x2 )02 + )+ aul] - W&,
4
o . (0+xP+yH? o (a2 +y?)?
R N A R
? (79) ) 1 p;% MZ (1+x2+y2)(a2+132)x 2)\.#,3
- G=-W,—A| L += —h|— + ,
8 r 2 2r? r? r?
9 2 2 2 2 2 2
2 .1 1 21
- ﬁ:_Wy_ky&Jru__h_(er +y)@ +B7)y po
— r 2 2r? r2 r2

_

1

12 6.3.3. Dynamics in regularized spherical coordinates. Instead of using projective
13 or local affine coordinates, one can map the regularized shape sphere to the unit
14 sphere in R3. A particularly elegant way to do this is to use the diffeomorphism
15 between % and SO(3) described in Section 6.1.1.

16 Given z € 6 we write z = a + ib, where a, b € R3, and define ¢ = a x b € R3.
17 We saw that the matrix

18

19

20

21

22 is in SO(3), where s> = |z|?/2 = |a|*> = |b|* = |c|.

23 We will work homogeneously and define a map g : ¢ — R>,
24

25 g(2) = c=re(z) x im(z).

26
- By homogeneity, there is an induced map g : P(6) — § (R%) ~ 82, where we

app by cra/s
A(z) =— | a3 b3 c31/s

201/, axs by c23/s

28

29

30

31
32 lc|? — ¢,

2 2 2 1]
33 pij = lzijl :aij—i_bij:T’

view z and ¢ as homogeneous coordinates with respect to complex and positive real
scaling respectively.

The orthogonality of the matrix A(z) can be used to derive some useful formulas.
Since the rows as well as the columns are unit vectors, we find

34
35 which gives the beautiful formulas

36

7 (80)  pn

38

2 2 ) )

_ 3ty _ Cptey _ ey

=== p3] = ———=, Py = ———=,
|c] |c] |c|

g for the homogeneous mutual distances. Similar formulas were given in [Lemaitre
40 1964].

391/,
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1 Next, consider the quantity

lc] lc] |l

— These last formulas allow us to write down local inverses for g,;. Namely, consider
9

— the map hyp : R — C3,

10

11—
2 — . .
G =ana + b1ob31 +i(ainbz1 — az1bi2) = (a2, b12) - (az1, b31) +ico3.
4 Using the orthogonality of the rows we can express this entirely in terms of c.
5 We find
6 _ C12C3] . _ c23C12 | . - c31C23 .
212831 = +ic3, 223212 =— +ic3y, 231223 = — +icia.
8

11 hi2(c) = |clz12(z12, 231, 223) = |c(Z12212, 212231, 212223)

12 2 2 . .
= = (31 + ¢33, —c12031 +ilclcas, —crac23 — ifclear).
13

12 If z12 #0, then h2(c) represents the same projective point in P(€) as z does so
15 hi12(c) give a local inverse for the projective map gp;. There are similar partial
16 inverses h3y, hp3.

17 To find the regularized, reduced Hamiltonian system, we need to convert the
15 Fubini—Study metric and its dual norm (that is, cometric) to c-coordinates. The
10 spherical analogue of the Fubini—Study metric is the spherical metric

201,20 (o = lc|?(dc, dc) — (de, c){c, dc) _le x dc|?
z o ER B
22

23 where we are using the Euclidean inner product on R3. We will see that

24 - 2
2 21{(z x z, dz))|
2 g dph =20 Nrse =
o Izl

57 To see this, note that z x 7 = —2ia x b = —2ic. Hence

28

% i . _
2 dc:i(dzxz+zxdz).

0 This, together with the fact that {(z, z)) = 0 on %€ leads, after some algebra, to the

* pull-back formula. Correspondingly, the Euclidean solid angle form pulls back to
> twice the Fubini-Study form, hence

33

A
34 AQfpsc = g*m(cl dcy ANdes+cpdey ANdey 4+ czdey Adep).
C

35

3% Let y € R* be a dual momentum vector to ¢ € R3. From the spherical scaling,

37 we will have y - ¢ = 0. If we split the momentum vector 1 into real and imaginary
% parts, n = u + iv, then the momenta transform via

3

391/, — . u-c v-C
40 u=bxy, v=—-axy, withy=—-——sa—-—0>.
— lc] |c|
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; From this we find that the dual spherical norm

2
— [y lspn = 1y x ¢l = eIy
A corresponds to %ll . ||% 5@ S0 we get the reduced, regularized Hamiltonian
5 .
6 2 2 21,12
— ~ _Ap; Aps elflyl” 1
H,=—" ——W(c) —ha,
% 81) n=T T oa 2 e

2 2 2 2 2 2
P12 =C31 €3, P31 =Cip 03, P23 =CPp 03

19 Here we have used the homogeneity of the formulas to redefine p;; to eliminate the

11 factors of |c|. The curvature term is
12

2 2uUA
B (82) Teurv = ) Y Xc.
14 elr

® 64. Visualizing the regularized shape sphere — Lemaitre’s conformal map. The
al map of projective curves f, : P(€) — P(W), induced by the squaring map, can be
2 visualized as a map of the two-sphere into itself. Indeed this is the point of view
* taken by Lemaitre [1964], but he arrived at it in a rather different way.

¥ The map is a four-to-one branched covering map with octahedral symmetry (see
2 Figure 4). The map is generically four-to-one except at the binary collision points,
% wWhere it is two-to-one. In the figure, each octant of the regularized sphere maps
10 one or the other hemisphere of the unregularized sphere. Thus, for example,
% the north pole of the unregularized sphere (representing a Lagrangian, equilateral
* central configuration) has four preimages, which lie in alternate octants. Each
® binary collision point on the equator of the unregularized shape sphere has two
nl preimages, which lie on a coordinate axes of the regularized sphere.

~—— Using affine coordinates, it is possible to express the regularizing map as a
l map of the complex plane. For example, let u = x5 /x|, where (x1, x») are the
2 parameters of Section 6.3.1. Choose a basis for W' so that the coordinates (£, &)
0 satisfy &1 = X120, & = Xo3 — X31 and let v = &, /&,. Then it is easy to check that
% the regularizing map X;; = Zl‘zj is given by the degree-four rational map

3 v= 1@t +u?).

34

g The three-dimensional sphere of Figure 3 is just the preimage of the regularized
36 two-sphere sphere in Figure 4 under a Hopf-map. Each point of the two-sphere
37 determines a circle in the three-sphere. The three large tori in Figure 3 are the
38 preimages of the collinear circles in the two-sphere (where the coordinate planes
39 cut the sphere). The six tubes in Figure 3 are the preimages of small circles around

40 the binary collision points (where the coordinate axes cut the sphere).

displayed to avoid loose page
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Figure 4. The regularizing map is a four-to-one branched cover
of the two-sphere with octahedral symmetry. Each octant of the
regularized shape sphere (left) maps onto a hemisphere of the

unregularized shape sphere (right). The planes represent collinear
configurations. The figure also shows level curves of the unregu-
larized shape potential and their preimages in the equal mass case.

7. Blowing up triple collision
19

20 Our systematic use of the radial coordinate r together with the homogeneous

201/, —

391/

21 coordinates used to describe the shape make it easy to implement McGehee’s
2> method for blowing-up total collision. We need only rescale momenta and change
23 the timescale. The changes can be made before or after reduction. The changes
24 are noncanonical, so destroy the Hamiltonian character of the equations. We will
-5 describe the general method for the rotation-reduced and unreduced cases and then
26 make some comments on the results of applying it to some of the Hamiltonians

o7 described above.

% 7.1. Before reduction. Consider a Hamiltonian of the general form

0 83 H( P X, Y) = iB(X)(Y, Y)— %V(X) +[3AX) p? — C(X)]
31

32 when expanded in powers of r. This covers the rotation-unreduced Hamiltonian
33 Hgpp, of Section 4 and the corresponding regularized Hamiltonians Hsph (r, pryz,m)
34 and I:ISph(r, pr, X, y) of Section 6.2 (after changing the names of the variables).
35 For the unregularized Hamiltonian Hg,, we have A(X) = 1, C(X) = 0, while for
g the regularized Hamiltonians ﬁsph we have A(X) = 7(X), C(X) =ht(X). The
37 quantity B(X)(Y, Y) represents the nonradial part of the Kinetic energy. It is a
38 quadratic form in ¥, which we represent by a symmetric matrix B(X) depending on
39 X. The dependence of B on X must also be quadratic since H must be homogeneous
Zﬂ of degree 0 with respect to the scaling (X, Y) — (kX, (1/k)Y).
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1 Let f(r) be a positive, real-valued function. We will introduce a new timescale
! /27 such that "= f(r)". The usual choice is McGehee’s scaling factor f;(r) = r3/2 but
5 we will also consider f>(r) = (r/(r + 1))3/2, which has better behavior for large r.
, (With the first choice, solutions can reach r = oo in finite time.) For any such f(r), 1stchoice — first choice,
5 we replace (p,, Y) by rescaled momentum variables
6
— (84) v:f(r)l?r’ a:f(r)Y'

r r2

8
"5 The shape variable X remains the same. When we make these substitutions of inde-

1o bpendent and dependent variables in the Hamilton’s differential equations resulting
1, from (83), we get

2 r' = A(X)vr,

1

14 v/:%(1+r(lnv)r)A(X)vz—l—B(X)(oz, a)—v(r)V(X)

15 (85)

— X' =B(X)a, _

16 combined 3 summands to
17 ’ 1 2 avoid having to break equation
. o =—3((1—=r(Inv))A(X)va+Ax v>+ By (o, @)) +v(r) Vx +rv(r)Cx,

18
1o where v(r) = f(r)?/r> and the subscripts denote differentiation. For McGehee’s removed 2nd “where” to avoid

0 scaling £(r) = fi(r)=r3/? wehave v(r) =1, (Inv), =0 and the equations simplify bad line break
20%/ %,1 considerably. For f>(r) we have v(r) = (1 + r)~3 and both v and (Inv), are still
2> smooth all the way down to r = 0.

o3 Writing the energy equations Hgyn = h or FISph = 0 in terms of the rescaled

-4 Mmomenta gives
- (86) LAV + LB(X) (@, @) = v(r) V (X) = rv(n)C(X).

2" For example if we use the r3/? rescaling with Hgpn, we have use —> we use

28

20 A=1,  BX)=IXBo, C=0, VX =IXY

30

31

32

33

vy R v' =307 — X Bo(e., @) + V(X),

35 X' =|X*Boer, o =—3va— Bo(er, )X + Vy,
36

37 with the energy relation %vz + %BO(X)(a, a)—V(X)=rh.

38 The regularized equations arising from Flsph are considerably more complicated
39 due to the B(X) terms (or rather the B(z) or B(x) terms). Instead of writing them

40 explicitly, we will just make some observations about them. Consider, for example,

mi, m;
9
| Xl

i<j

where By is the constant symmetric matrix (9). We get the blown-up differential
equations

391/,
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" Flsph(r, pr, X, y) from (66). B(x) will be a complicated, 4 x 4 real matrix arising
v/ 27, from the second term in (66). The phase space before blow-up is
3
> T*RY x T*C? ~ (0, 00) x R x C? x C.
° In addition to the energy relation I:Isph =0, we have re(y, x) = 0 and the scaling
o symmetry by positive real numbers so there is an induced flow on an quotient

" manifold of real dimension 7. After blow-up we have variables
8

9 (r,v,x,a)e[O,oo)x[Rx(szCz,

10

11 where we have extended the flow to the collision manifold where r = 0, which
12 is an invariant set for the differential equations. We have a real-analytic vector
13 field on this manifold-with-boundary. Imposing the constraints and passing to the
14 quotient under scaling gives a real-analytic vector field on a seven-dimensional
15 manifold-with-boundary representing the planar three-body problem on a fixed
16 energy manifold, with all binary collisions regularized and with triple collision
17 blown-up. Note in particular that the regularization of binary collisions passes
15 smoothly to the boundary.

19 We claim that if the timescale factor f(r) = f>(r) = (r/(r +1))*/? is used, then
20%% the differential equations define a complete flow on [0, 00) x R x C? x C? and hence
21 the induced seven-dimensional flow is complete. Since the differential equations
22 are smooth, the only obstruction to completeness would be orbits that become
23 unbounded in finite time. It is well-known that, with the usual timescale, such orbits
24 do not exist for the three-body problem. It follows that if we use only bounded
25 time-rescaling factors, the same will hold for the modified differential equations.
26 McGehee’s factor 3/ is unbounded and it is possible for orbits to escape in finite
27 time. Indeed, there are solutions of the three body problem for which (1) = O(t)
28 as t — oo with respect to the usual time-scale and these will reach infinity in finite
20 rescaled time. The factor f>, while producing less elegant differential equations,
30 eliminates this problem.

31
3 1.2. After reduction. The rotation-reduced Hamiltonians H,, and their many regu-

33 larized forms FIM have the general form
30 (87)

1 1
® Hu(rpr X, 2) = 55 BX)(Z, 2) + AX)W’] = -V () +[3AX) p] = C(X)]
36
i (after changing the names of the variables). The only new term here, when compared
38 to the Hamiltonian of Section 7.1, is the quadratic term in the angular momentum .
39 We have a momentum constraint (Z, X) = 0 and there will be a curvature term, ey,

391/ . . . . . . .
zg added to the Z equation. As in Section 7.1, for the unregularized Hamiltonians H,,, the — for the
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; we have
1/ — 2:“
2 AX) =1, C(X) =0, Teuy = ——iZ,
r
3
4 while for the regularized Hamiltonians H,,, we have
5
e 2uM
= A(X) = A(X), C(X) = hr(X), Toury = == 771 2.
7

8 As in the last section, the variables X, Z can denote either homogeneous coordinates
9 on the cotangent bundle of projective space, before or after Levi-Civita transfor-
10 mation, or they can be local holomorphic coordinates on the cotangent bundle of
11 the shape sphere or of the regularized shape sphere P(€) (see the examples below).
12 Our computations immediately below hold for all these cases.

13 We rescale time and the momenta as in (84) with Z replacing Y. We must also
14 rescale angular momentum according to

15

E (88) i = f(rz)'u'

17 r

18 Then energy equations H, = h or H 1 = 0 become

19

. 5 (89) %A(X)(v2 + 0%+ %B(X)(oz, a)—v(@r)V(X)=rv(r)C(X),
: /2£ where
2 e
Z(90) V=3,
24 r-

» sothatv=1for f=r3?andv=(14+r)"3for f = f,.

2% In order to express the differential equations succinctly, let

27

28 K =3A0 0 + %) + 5 BX)(a. )

29

5 denote the blown-up kinetic energy and let

o ¢(r) = —3(1—r(nv),).

32
33 Then the equations of motion are
34

. r' = A(X)vr, V=) AXWE+2K —v(r)V,

36 (92) 7 =¢(r)AX)vit, X' = B(X)a,

Z% o =¢(r)A(X)va — Ky A v(r)Vx +rv(r)Cx + Teury
391/2£ where

40 Teurv = —2ippe  or —=2ipt(X)a
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, for the unregularized and regularized cases, respectively. We remark that the v’

, equation can also be written
= v' = (¢ + DAV + BX)(@, @) + AR —v(r)V (X).
4
E In these equations, we are regarding [z as a new variable subject, by definition, to
~6 the constraint
7 ~
SC) NN
E where u is the old angular momentum constant. This point of view is necessary to
10 make the curvature term smooth at » = 0.

_

11 Asin Section 7.1, all functions of r extend smoothly to r = 0. If we start with
12 one of the regularized Hamiltonians H,,, then for the resulting differential equations,
13 all binary collisions have been regularized and the triple collision blown-up. We
14 obtain a flow on a manifold-with-boundary of dimension 5 after fixing u, setting
15 FI/L = 0, imposing the constraint on /i, the constraints that X € € and (Z, X) =0
16 and passing to the quotient under complex scaling. Binary collisions are regularized
17 for all values of  and if the time rescaling is done using f>(r), the flows on these
18 manifolds will be complete.

19 Itis well-known that triple collisions are possible in the three-body problem only
20 when p = 0. In this case, (93) shows that either ;& = 0 or » = 0. Both of these

201/, —

391/,

21 submanifolds are invariant sets for the dynamical system. The five-dimensional
22 manifold-with-boundary with the above constraints and with fi = O represents the
23 closure of zero-angular-momentum three-body problem. The four-dimensional
24 manifold where &t = r = 0 forms the boundary. Even though orbit with & # 0
25 cannot have r — 0, the part of the collision manifold {r = 0} where & # O is
26 relevant for studying low-angular-momentum orbits passing close to triple collision
27 [Moeckel 1984; 1989].

28 We will now present a couple of versions of the regularized, reduced and blown-
29 up differential equations for the three-body problem.

30
. Example 25 (the blown-up regularized affine equations). In Section 6.3.2, we used
o affine local coordinates on the regularized shape sphere to obtain a regularized

= Hamiltonian H (z, ¢) with 6 degrees of freedom. (We wrote z=x +iy, { =a+if

37 in Section 6.3.2.) Comparing with the general form (87) we have

35 AX) = M2), B(X)(Z,Z) =31 +1z)* ¢ )%,

* C(X) = hi(z), V(X)=W().

37

g Recall that A and W are given by the formulas (72) and (75) with pj» = 4|z|?,
39 p31 = |1 +2%% p23 = |1 — 2%|%. As per the preceding subsection, we continue

40 to write the rescaled momentum variable as o (thus o = (f/ r2)0), trusting that

low-angular momentum —
low-angular-momentum
changed for consistency with
“zero-angular-momentum”
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1 there will be no confusing with the previous use of «. The rescaled kinetic energy

~, satisfies
2K =2 + 230+ S+ [z 1%
Then the regularized, blown-up equations read:
r' = r)vr, v = ¢ (Mr()v? +2K —v(r)W(2),
(94) i'=¢mr@ui, =31+’

o =¢(r)A(2)va — I%Z +v(@)W, +rv(r)ht,(z2) — 2ipAr(2)c.

The possibilities for v(r), ¢ (r) are described in the previous subsection, in equations
(90), OD).
We have 7 variables, (7, v, it, z, @) € [0, 00) X R x R x C x C. The constraints are

R R e
Wi N +H|O|lO || N O |0 | ]|Ww

@A)+ e v (W @) =rv)A@h and Vri=y/v(r) p.

E Example 26 (the blown-up regularized spherical equations). In Section 6.3.3, we
16 used spherical-homogeneous variables ¢ = (¢, ¢2, ¢3) to give a global representation
17 of the regularized shape sphere. We found a regularized Hamiltonian

18 ~

; HM(F’ ¢, Pr, 7/)

20 Comparing with the general form (87), we have

oA =M0, BOOZ 2)=2cllyP, COO=hi©), VX)=W().

g A and W are given by the usual formulas with
24

2 2 2 2 2 2
2 P12 = €31 + €33, P31 = C1p + €23, P23 = Cip + €35

£ With o = (f/r?)y, the rescaled kinetic energy satisfies 2K = Av2+ A2 +2c|? |a|?.

27 Then the regularized, blown-up equations read:
28

o r = x(c)vr, vV =g (A’ +2K —v(r)W(c),
0 (95) B =¢@rEvi, =2l
31 o = ¢(rIMC)va — Ko+ vWe +rv(r)hie(c) + 2Ha x c.

32

33 We have 9 variables, (r, v, i, ¢, @) € [0, 00) Xx R x R x [Rg x R3. However, (c, @)
34 are homogeneous variables. They satisfy (o, ¢) = 0 and the equations are invariant
35 under the real scaling (¢, o) — (kc, (1/k)a). Taking this into account, we have an
36 induced system on the seven-dimensional quotient space [0, 00) X R x R x T*§2.

37 The energy and angular momentum constraints are

= %) SMOW + %) + e [ = v W () = rv(r)A(c)h

40 and \/r it = /v(r) u, giving a subvariety of dimension 5.
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1 A nice alternative to the quotient construction is just to observe that (o, ¢) =
~» 0 implies that |c| is invariant under the differential equations (95). Instead of

"3 quotienting by the scaling symmetry, we can simply restrict ¢ to the unit sphere.

~, Let
5
o M) = v, e, ) el =1, =0, /rjt = y/v(r) i, (96) holds}.
" Then M(h, 1) is a five-dimensional submanifold (or subvariety when u = 0) of
2 [0,00) x Rx R x [Rig x R3, which is invariant under (95). The flow on (%, 1)
 globally represents the planar three-body problem reduced by translations and

% rotations, with all binary collisions regularized and with triple collision blown-up.
11

2 8. Summary

13

14 In Section 2 we recall the theory of symplectic reduction by an Abelian group G of
5 a cotangent bundle 7*X of some configuration space X. The theory asserts that
16 the reduced space is the manifold 7*(X /G) — the cotangent bundle of the quotient
17 space X/G. There is a twist: the symplectic structure of this cotangent bundle is
18 typically not the standard one. Reduction depends on selecting a value 1 of the
19 “angular momentum” and the symplectic structure on 7*(X/G) depends linearly
20 on u, becoming the standard one only when p = 0. In Sections 3, 4, and 5 we
2 apply this reduction theory to the non-Abelian group G of orientation-preserving
2 similarities acting on the phase space T*C? of the configuration space C? of the
23 planar three-body problem. In order to apply the theory we break the group up into
24 its three Abelian parts: translations, scalings, and rotations. Reduction by these
25 three subgroups make up the next three sections: Section 3 (translations), Section 4
% (scalings), and Section 5 (rotations).

27 In Section 3 we use the linear map

28

w L:C—=C, L1, q.9)=(q —q,9—q,93—q1) = (Q12, 023, Q31)

30 _ . . . .
. to form the quotient of C* by translations. The image of L realizes the quotient of
. C3 by translations. This image is the two-dimensional complex subspace W C C3

. consisting of those Q’s that satisfy the “triangle closure” relation

Sl Q12+ 03+ 031 =0.

35

g In Sections 4 and 5, we form the quotient of the ‘W' = im(L) from Section 3 by
37 the group of scalings (Section 4) and the group of rotations (Section 5). These two
38 groups combine to form the Abelian group C* of nonzero complex numbers acting
39 by scalar multiplication on the C3 of Q; ;’s, and hence on its subspace im(L). To

40 form the quotient we must subtract out the triple collision point 0 € W' C C3 obtaining

L’s image — The image of L
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1 Wo :=W\{0}. We then implement the well-known fact that W >~ Cg /C* = CP! =
~, 8% = shape sphere.
"3 Three-body dynamics does depend on overall size so we cannot possibly get a
~, reduced dynamics on T*CP!. Instead we use the reduction by scale in Section 4
5 as a tool for coherently separating the size variable r from the shape variables X;;.
¢ Together the r, X;; form the “projective-homogeneous” coordinates of Section 5.
", In Section 6.1 we introduce the Levi-Civita regularizing map f : C3 — C3 to
g regularize all three binary collisions. The map sends z;; to X;; = lej The map is C*-
o equivariant and so induces the following commutative diagram, which summarizes

10 the paper:

— 3 Levi-Civita f (Section 6.1)

2 C c?

13

1 Section 3
— f restricted

n €\ {0} WA\ {0}

16

- o7) LC* l@*, Sections 4, 5
g P(6) Lemaitre PO = CI]:"l

19

- |

21 regularized shape sphere shape sphere

22
23 The space ¢ = {z%2 + Z%s + z%l = 0} is an affine cone and is the pullback of
24 W ={Q12 + Q23 + Q31 = 0} by the regularizing map f. The downward arrows
25 are the standard projections used in defining projective space.

26 To obtain the phase spaces of the paper, take the cotangent bundles 7* X of each
27 space X in the diagram (97), and cross with the space 7*(0, 00) = (0, 00) x R,
28 which encodes the radial variable r and its momentum p,. For angular momentum
29 nonzero, the twist referred to in the first paragraph of this summary arises as the
30 pull-back of the Fubini-Study form on CP!, or of its Levi-Civita pull-back.

31 The separation into radial (r, p,) and shape T*X variables begun in Section 4
32 allows us to make the final McGehee blow-up rescalings of time and momenta in
33 Section 7. We end with a dynamical system, which is regular through all binary
34 collisions and whose flow is complete.

35 We will close the paper with some pictures illustrating how the size and shape
36 variables can help to visualize the behavior of orbits of the planar three-body
37 problem. The figure-eight orbit of [Chenciner and Montgomery 2000] features
38 three equal masses moving on a single curve in the plane, as shown in the top image
39 of Figure 5. The other two images show how the size and shape of the triangle
40 formed by the bodies varies using unregularized and regularized shape variables.

italicized f on horizontal
arrows

removed parenthese around
(r, pr) and T*X

three-equal — three equal
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g Figure 5. The famous figure-eight orbit of three equal masses. As
15 the three bodies chase one another on the figure-eight curve in the
1o plane, the size and shape vary as shown in the top right picture. edited last 3 lines of caption
0 The behavior seems much simpler in the regularized covering space
201/ 2 (bottom).
2

23 The shape spheres are represented by the unit sphere in R3. The size and shape
24 are treated as spherical coordinates with the radial variable in R> representing size
25 r+1 (so the unit spheres represent triple collision). For the figure-eight orbit, the
26 size is nearly constant while the shape almost follows a level curve of the shape
27 potential. The behavior of the regularized shape is surprisingly simple with the
28 orbit close to a great circle on the sphere.

29
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