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Abstract

Planning and organization of one’s actions are crucial for suc-
cessfully performing everyday activities such as setting the ta-
ble. While existing research has addressed planning for well-
defined tasks and control of already established sequences,
little is known about how such sequences are planned in ill-
defined tasks such as everyday activities. Initial attempts sug-
gest that planning may be opportunistic, based on a number of
environmental factors to minimize cognitive and physical ef-
fort. We address two questions arising from the existing work:
First, to what extent is variation in human everyday activity be-
havior captured by the proposed opportunistic consideration of
environmental factors? We address this questions by employ-
ing machine learning baselines to gauge the proposed models
explanatory scope. Second, to what extent are existing models
of sequence control consistent with opportunistic action orga-
nization? We address this by investigating and discussing the
implications opportunistic planning has for the mechanisms
currently assumed for sequence control.

Keywords: spatial cognition; action sequence organization;
opportunistic planning

Introduction
Planning theory distinguishes between two domains of
problem-solving: well-defined and ill-defined. Well-defined
tasks are characterized by all the necessary information for
problem-solving being clearly specified (initial state, solu-
tion means, and goal state), whereas ill-defined tasks lack
specification in at least one of these areas (Simon, 1973).
While planning and action organization in well-defined tasks
has received considerable attention (see e.g. Newell & Si-
mon, 1972; Morris & Ward, 2005; Botvinick & Plaut, 2004;
Botvinick & Weinstein, 2014; Cooper, Ruh, & Mareschal,
2014; Kachergis, Berends, de Kleijn, & Hommel, 2016), lit-
tle is known about how humans achieve planning and or-
ganization in ill-defined tasks and existing approaches (see
e.g. Jiménez, De La Rosa, Fernández, Fernández, & Borrajo,
2012; Firby, 1987) are often ill-suited for everyday tasks.

In this contribution we shed further light on this issue by
considering everyday activities, as they provide a unique and
instrumental window for investigating the involved cognitive
abilities. For one, everyday activities are ill-defined prob-
lems, as multiple possible solutions exist without defining the
‘legal moves’ allowed to achieve task success, which makes it
computationally intractable to compare all possible solutions.
At the same time, everyday activities are sufficiently circum-
scribed to allow systematic and controlled investigation and,

in fact, several suitable data sets have recently become avail-
able.

Early work suggests that planning in ill-defined domains
such as everyday activities requires an opportunistic ap-
proach (Hayes-Roth & Hayes-Roth, 1979; Patsenko & Alt-
mann, 2010). Specifically, recent modelling work indicates
that problem-solving in everyday tasks follows a stepwise-
optimal strategy (Wenzl & Schultheis, 2020a) and takes
specific spatial constraints, such as distance, relational de-
pendencies between items and dimensionality, into account
(Wenzl & Schultheis, 2020b), while planning only one step
ahead (Wenzl & Schultheis, 2020c). We will refer to this
model as the opportunistic planning model (OPM) hence-
forth. Although the OPM provides important insight into ac-
tion planning and organization in ill-defined domains, it also
raises a number of questions, two of which we address in this
contribution. One aspect that remains unclear from the exist-
ing work is to what extent the OPM captures the regularities
and variations observed in human everyday activity behav-
ior. Furthermore, the implications of the OPM for models of
action sequence control remain to be clarified.

Accordingly, this contribution has two main objectives:
First, by adopting the approach proposed in (Agrawal, Peter-
son, & Griffiths, 2019) we employ machine learning baselines
to more precisely gauge the OPM’s ability to capture aspects
of human behavior and, second, to investigate and discuss im-
plications of the OPM (and the specific qualities of everyday
tasks it indicates) for the applicability of existing models of
action sequence control.

The remainder of this paper is structured as follows: First,
we give an overview of the difference between well- and ill-
defined problem domains and existing models of action se-
quence organization. Subsequently, we evaluate the OPM us-
ing two machine learning models to compare the predictive
power of each approach. We then highlight the implications
of the OPM and its success for existing models of sequential
action control. In closing, we discuss our results and high-
light issues for future research.

Sequential Action Organization
Well- and Ill-Defined Domains of Problem-Solving
Planning theory divides the domain of problem-solving into
two domains: well-defined and ill-defined. Well-defined do-
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mains are characterized by the subject having all the informa-
tion available that is required to solve the problem, i.e., the
initial state, the desired goal state, and the rules or methods to
reach the goal state. Finding a solution can then be described
as searching the state space for a pathway that connects the
start to the goal state. Planning strategies aim to minimize the
extent of the search while providing a good chance of solv-
ing the problem or task successfully (Simon, 1973; Morris &
Ward, 2005, Chap. 2).

Ill-defined problems are characterized by (one ore more)
of the components of the problem space being not fully spec-
ified. In the sense of Simon (1973), any problem or task with
a large base of knowledge potentially relevant to the solu-
tion is ill-defined, as it becomes computationally intractable
to consider all possible solutions.

We argue that everyday activities are ill-defined problems:
In contrast to well-defined problems, where the allowable op-
erations to reach the goal state are explicitly specified, there
are no such constraints for everyday tasks – while one might
argue that the initial state (no items on the table) and the goal
state (required items on the table) are fully specified in a task
such as table setting, the task can be solved with a multitude
of potential solutions, i.e., the solution means are unspecified.
While some everyday activities might require to do related ac-
tions in a specific order (e.g., following a recipe when cook-
ing), this is not true for table setting, where all actions are
unrelated and could thus be performed in an entirely arbitrary
order.

As routine habits are highly optimized and require mini-
mal cognitive effort, there is no clear ‘plan’ detailing which
actions to perform in which order that is formulated before-
hand, but instead, actions that serve the overall goal are cho-
sen based on situational opportunities in each step (Wenzl &
Schultheis, 2020c). We propose that, while people may have
a ‘default plan’ available for highly habitualized actions such
as table setting, planning is still required in a dynamically
changing task environment (e.g., when performing several
different everyday tasks simultaneously) or in a new environ-
ment, since in both cases, the preexisting plan needs to be
adjusted to the new or changing conditions respectively.

Models of Action Sequence Organization
Looking at existing approaches to planning and action organi-
zation reveals that most of them are tailored for well-defined
problems and therefore not suited for ill-defined tasks: Mod-
els of classical planning theory, such as the General Prob-
lem Solver developed by Newell and Simon (1972), define
problem-solving as a systematic search of the problem space
by heuristics such as means-end analysis, which suggests that
problem-solving is a rational, goal-directed, top-down ap-
proach to planning.

In existing models of sequential action organization, such
as the recurrent connectionist approch of Botvinick and Plaut
(2004), the assumption seems to be that the to be controlled
sequence is completely known from the outset, i.e., finding
a task solution consists in specifying the order of a fixed set

of actions. Building on this work, the goal circuit model im-
plements an additional goal system next to the basic habit or
routine system, which allows to perform action sequences in a
flexible, goal-directed manner (Cooper et al., 2014), but while
there is no fixed action set (sugar may or may not have to be
opened dependent on the specific start state), all necessary
subgoals for the action sequence are known in advance. In
the case of hierarchical model-based reinforcement learning,
the start and goal states of the to be solved navigation task
are also fully specified, such that the problem solution is to
find the lowest-cost pathway between both states (Botvinick
& Weinstein, 2014). Similarly, the reinforcement learning
model of Kachergis et al. (2016) provides an (unknown) fixed
action sequence that needs to be learned by the subject, where
the goal state (maximize the score) and the way to reach it
(select the correct target in each timestep) are also fully spec-
ified.

While these models explicitly consider everyday tasks,
they only include well-defined tasks – in ill-defined every-
day tasks it is computationally intractable to choose the best
path from start to goal state. Instead, it is beneficial to imple-
ment a planning strategy that does not try to plan the whole
sequence choosing from a multitude of options, but that fo-
cuses on each step individually. Planning opportunistically
allows changing subsequent decisions based on each interim
decision, taking arising constraints or opportunities into ac-
count (Hayes-Roth & Hayes-Roth, 1979), thereby acting in a
less planful and more situated manner (Patsenko & Altmann,
2010).

Hierarchical task network (HTN) planning in artificial in-
telligence deals with tasks in ill-defined domains by decom-
posing complex tasks into primitive subtasks and compound
tasks, which are in turn decomposed into subtasks until a so-
lution is found (Jiménez et al., 2012). However, HTN plan-
ning requires well-structured domain knowledge about the
specific task, i.e., part of the solution needs to be known in
advance and encoded. This is often unfeasible for real-world
problems, as knowledge about the environment may be par-
tial and goals may be underspecified (see e.g. Georgievski
& Aiello, 2015). As people are able to perform everyday
tasks efficiently even in unknown environments and with-
out specific instructions (‘set the table’ does not specify re-
quired items), it is reasonable to assume that they rely more
on general contextual knowledge (plates are normally stored
in cupboards) than on specific knowledge about a certain en-
vironment. The OPM aims to be applicable also in unknown
environments, which makes it infeasible to encode specific
knowledge into the model itself.

Another way to deal flexibly with arising opportunities and
constraints is to incorporate reactive planning strategies that
continually monitor the world state and choose actions based
on that state. While such a system is very flexible, it limits
the possibility to plan ahead, which may lead to inefficiency
or even dangerous situations, as strategic planning is required
to detect possibly negative future states before they occur
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(Firby, 1987). Reactive planning may therefore be helpful
to monitor task execution during everyday tasks, but would
need to be complemented with some sort of strategic planning
in order to achieve task success without encountering detri-
mental situations. Concerning its opportunistic approach, the
OPM has similarities with affordance theory, as both rely on
the individual making use of opportunities for action provided
by the environment (Gibson, 1979). However, whereas affor-
dances in the original Gibsonian interpretation can be directly
perceived and therefore render mental representations of the
environment unnecessary (see also Chong & Proctor, 2020),
the OPM assumes at least some kind of mental representation
of the spatial environment.

To evaluate how well an opportunistic model can explain
observed human behavior in everyday tasks, we consider the
OPM for table setting (Wenzl & Schultheis, 2020a).

Opportunistic Planning in Table Setting
The Opportunistic Planning Model
Previous modeling work indicates that humans prefer specific
action orderings while setting the table: The next item to be
picked up and taken to the table is assumed to be chosen based
on the current location and the perceived cost of each possible
action, with the lowest-cost action being chosen (Wenzl &
Schultheis, 2020a, 2020c, 2020b).

The OPM takes the influence of the following spatial as-
pects of the task environment on action organization during
table setting into account:

• Distance: minimizing traversed distance,

• relational dependencies: e.g., saucer goes below cup and
should therefore be taken first, so both items have to be
moved to and placed on the table only once, and

• topology (containment): picking up items from, e.g., a
counter top, is considered less effortful than picking up
items stored in a closed cupboard.

The OPM approximates opportunistic planning by deter-
mining the lowest-cost next action for each step from episode
start (no items on the table, subject at starting position) to task
success (all required items on the table and, if specified, in the
target position, subject standing at the table).

Each cost Cp,q is calculated by determining the Eu-
clidean distance between two item locations p(x1,y1,z1) and
q(x2,y2,z2) in a nD representation of the specific environ-
ment, where n is either 1, 2, or 3. This distance is further
qualified by relational dependencies (parameter k) and con-
tainment (parameter c) yielding a weighted cost computed as
given in Eq. 1, where d is the Euclidean distance.

Cp,q = d(p,q)k · c (1)

Consistent with previous research on strong spatial cogni-
tion (Freksa, 2015), relational dependencies are defined as
constraints that favor putting one item on the table earlier
or later in the action sequence, e.g., either because the first

Table 1: Parameter categories for items

Category Items Value range
strong k tray, placemat, table cloth 0.0 < k < 0.9
medium k plate (empty), napkin 0.1 < k < 1.0

food k plate with food
prepared during sequence 1.0 < k < 2.0

no k all other items k = 1.0
c items stored in closed locations 1.0 < c < 2.0

item is supposed to be placed below the second item (saucer
and cup, etc.), the item is used to define the place setting
(placemat, plate), or the item is reserved for the food pre-
pared during the action sequence and can thus only be taken
once preparations are done. As the actions themselves are not
directly related, i.e., there is no fixed order in which specific
actions need to be performed, all actions are considered in-
dividually, without any dependencies on other actions. Con-
tainment indicates whether an item can be accessed directly
or if it is stored in a closed location, such as a cupboard, that
has to be opened first.

The weighted cost for each possible action also depends on
which dimensions are considered when calculating the cost.
Based on previous research indicating a preference for encod-
ing distances in 2D (xy) space (Wenzl & Schultheis, 2020c),
we only consider 2D distances in this analysis.

All parameters are treated as free parameters and are esti-
mated from the data.

Simulation
Given a spatial layout with item coordinates, the task descrip-
tion (required items), and a sequence of current locations,
simulations were conducted as follows: For each predicted
next item, the prior location was taken as the current location,
regardless of whether the corresponding action was a table
setting action. In each step the cost for all next possible ac-
tions was calculated (Eq. 1, p = current location, q = item
location), from which the action with the lowest associated
cost was chosen. If there were multiple actions with the same
associated cost, one action was chosen randomly.

Parameters k and c were estimated by grid search by find-
ing the best-fitting model over all unique sequences of action
orderings. Parameter k was estimated per item category (see
Tab. 1), c was estimated for all objects in closed storage lo-
cations (e.g., cupboard, drawer). For each parameter combi-
nation, model accuracy was evaluated for n = 50 iterations,
considering the median prediction error over all iterations.

Values were tested in the ranges given in Tab. 1, in steps of
0.1. We applied the model on five different data sets, which
are described in the following section.

Data
Of the five data sets we employed, four were collected in lab-
oratory settings and one in a real-world setting. An impor-
tant commonality of all data sets is that setting the table in
a solely habitual way was not possible, because the subjects
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either were in a new environment or performed several ev-
eryday tasks simultaneously. In both cases, action sequence
organization had to be adapted to the changed environment or
conditions.

TUM Kitchen The TUM Kitchen Data Set (Tenorth, Ban-
douch, & Beetz, 2009) contains data from four subjects set-
ting a table in different ways, each time using the same items
in the same lab environment.

EPIC-KITCHENS EPIC-KITCHENS (Damen, D. et al.,
2018) is a large-scale first-person vision data set collected by
32 participants in their native kitchens. Since each partici-
pant recorded their activities in their home kitchen, spatial
environments and items vary between participants.

Household Activities from Virtual Environments (HAVE)
Dataset The HAVE data set (Uhde, Berberich, Ramirez-
Amaro, & Cheng, 2020) was recorded at the Automatica
Trade Fair 2018 and consists of recordings for three scenar-
ios, including 83 instances of table setting in a virtual en-
vironment. Each visitor could record one instance for each
scenario, with each recording being limited to a maximum of
5 minutes. Each scenario was designed inside a 2-by-2-meter
square environment and recorded using HTC Vive systems.
All participants were new to the scenarios and had a brief
adaptation phase before being given the scenario-specific ac-
tivity goal. The virtual environment consisted of a table with
two chairs and a cupboard in which the items were stored (see
Fig. 1). For our analysis, 3 of the 83 sequences had to be dis-
carded, as too few (n < 2) items were on the table in the final
state.1

Figure 1: HAVE virtual environment (left) (Uhde et al.,
2020), EASE-TSD layout (right)

Virtual Reality Dataset The data contains table setting se-
quences in a VR environment from a single participant. The
virtual kitchen consisted of three separate regions (fridge, tray
area, island area, each of which had to be visited at least once.

The participant was asked to set the table for one person
having breakfast. The task was to first assemble all neces-
sary items on the tray and then to carry the items to the table.
The participant was familiar with the kitchen and knew the
location of all required items well. Data from 39 trials was

1Excluded sequences: 79, 146, and 168.

collected. For action orderings we considered the order in
which items were grasped and put on the tray.

EASE Table Setting Dataset (EASE-TSD) EASE-TSD
(Meier, Mason, Porzel, Putze, & Schultz, 2018) is a data set
collecting table setting instances in the context of the Every-
day Science and Engineering (EASE) collaborative research
center. Participants are given the task to ‘set the table’ while
being recorded with a variety of sensors under various condi-
tions (e.g., for a different number of people, different meals,
and different degrees of formalism). Sensors include a mix of
biosignal sensors (such as motion-capture systems) and video
cameras. For the current analysis, we used a small subset of
the recorded data consisting of 67 table setting instances. In
the task, a predefined set of items (plate, spoon, knife, fork,
cup, glass, bowl, bottle) had to be transferred from the source
table to the target table, which was placed at approximately
2.5 meters distance (see Fig. 1). Items had to be transferred
individually, but no other constraints, e.g., the order of items
or a time limit, were specified. The initial location of the
items on the source table as well as the starting position of
the subject were randomized.

Model Evaluation and Performance
Evaluation Method
We evaluated the prediction accuracy of the OPM using a pre-
quential approach (Dawid, 1984). For each step, the OPM
predicted the next action in the sequence (i.e., which item to
pick up next) based on the given parameters and the incorpo-
rated situational knowledge (location of items and subject).
The predicted action was then compared to the observed ac-
tion, resulting in a prediction error of either 0 (predicted =
observed action) or 1 (predicted 6= observed action). This
process was repeated for each sequence until length− 1 for
the observed sequence was reached – as that is the last point
in the sequence where the OPM can choose from at least two
actions –, resulting in a list of prediction errors for each step
in each sequence, which were then accumulated.

To identify the parameter combination achieving the most
accurate prediction, for each individual sequence the me-
dian accumulated error over all iterations was calculated (see
Simulation) and the median error over all sequences was used
to compare the OPM’s performance with different parameter
combinations.

Performance Baselines
Black-box machine learning models provide an estimate of
how much variance in a certain type of behavior can be pre-
dicted. By continuously critiquing an interpretable cognitive
model in regard to these black-box algorithms, it is thus pos-
sible to generate cognitive models that are both interpretable
and accurate (Agrawal et al., 2019).

To evaluate the predictive power of the OPM, we imple-
mented two machine learning models learning patterns from
the data and generating predictions based on these patterns: a)
a compact prediction tree (CPT) (Gueniche, Fournier-Viger,
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Raman, & Tseng, 2015), and b) a recurrent neural network
(RNN) (Gruber & Jockisch, 2020). Both methods are opti-
mized for sequence prediction and are thus able to provide
high prediction accuracy for sequential data.

As we also wanted to test how much of the OPM’s predic-
tion accuracy for behavioral sequences is based on underlying
patterns and how much of is due to the encoded knowledge
about the task environment, the machine learning models re-
ceived just the action sequences as input, without any addi-
tional information. To the extent that the OPM outperforms
the machine learning models, we can then infer that contex-
tual knowledge about the task environment plays an impor-
tant role in correctly prediction human behavior in everyday
tasks.

Both models were trained on the whole data set, i.e., all
action sequences. In each time step, the models were given
the already seen actions to predict the next action; the pre-
dicted next action then being compared to the observed next
action (same as for the model, see Evaluation Method). These
steps were repeated until the observed sequence length was
reached, as they did not get any information about which
actions were expected in the specific sequence and thus al-
ways had multiple options to choose from. The RNN used a
layer of gated recurrent units (GRUs), which outperform long
short-term memory (LSTM) cells for low sample sizes and
are less susceptible to overfitting (Gruber & Jockisch, 2020),
and was trained for 300 epochs.

In contrast to the OPM, the machine learning models only
received the action sequences during training, i.e., they had
no additional contextual information about spatial locations,
containment, or relational dependencies. Predicting the next
action was thus equivalent to predicting the next element in a
sequence solely based on the previously seen elements.

Results
On average, the OPM outperforms both machine learning
models. The best fit is achieved with parameters strong
k = 0.2, mid k = 0.3, food k = 1.6, c = 1.5 and distances
calculated in 2D space (xy) (see Fig. 2). As there were multi-
ple parameter combinations with the same median error (4.0),
the best fit was chosen based on the average prediction error
(4.127 for the best fit).

We compared optimal OPM performance with the machine
learning models’ performance using a Wilcoxon signed-
rank test. Statistical analysis shows that the model per-
forms significantly better than both the neural network (W =
3340.000, p < 0.001) and the compact prediction tree (W =
112.000, p < 0.001).

These results indicate the importance of task context:
While the machine learning models learn patterns strictly
from the observed sequences without any additional informa-
tion, the OPM also gets information about the spatial envi-
ronment (location of items and subject). As the OPM outper-
forms both the RNN and the CPT, it is reasonable to assume
that this additional knowledge about the task environment is
what allows the OPM to make more accurate predictions than

the machine learning models. This provides additional strong
support to the OPM’s assumptions: Human behavior in every-
day tasks follows an opportunistic approach and takes specific
(spatial) factors of the task environment into account.

Differences in prediction accuracy for different sequences
in the OPM’s performance resulted from a combination of
factors: First, in some data sets, spatial environments were
very small, which lead to multiple items having the same or a
very similar spatial location. Second, whenever containment
was given for all or none of the items, this factor became
irrelevant; the same is true for relational dependencies, if only
items without any relational dependencies were seen in the
sequence. Especially in long sequences, and in combination
with the first point, this lead to a number of items having
nearly or exactly the same weighted distance. In these cases
the OPM had to choose the next action randomly, resulting in
a higher possibility of deviating from the observed sequence.
In these cases, other still unknown factors may be relevant for
action selection, which need to be considered in future work.

Implications for Models of Sequential Action
Control

The OPM’s success indicates that problem-solving in ill-
defined domains requires an opportunistic planning strategy.
Previous models of action sequence control, such as planning
a trajectory from start to goal state (Botvinick & Weinstein,
2014), learning a pre-defined sequence of actions by maxi-
mizing the achieved score (Kachergis et al., 2016), or learn-
ing the best action sequence for a known set of actions or
goals (Botvinick & Plaut, 2004; Cooper et al., 2014), have no
mechanisms for opportunistic behavior and are therefore not
suitable for ill-defined domains.

While existing models of action sequence control are ap-
plicable for everyday tasks in which a finite number of solu-
tions exists – i.e., when following a specific cooking recipe,
or making coffee – a problem arises when no such constraints
exist: What is the role of control in a task where no clear vi-
sualization of the plan, i.e., the allowed moves to reach each
next step and the means to compare all solutions exist? If not
the whole sequence is known from the start, but just a more or
less specified goal state as well as the initial state, how can ap-
propriate means to reach this goal state be extracted from an
infinitely large search space? While other approaches, such
as HTN planning, are generally able to deal with problems
in ill-defined domains, they rely on an accurate descriptions
of and knowledge about the planning task, which may not be
given in an underspecified everyday task.

The OPM bridges this gap by implementing a strategy that
relies heavily on the subject’s immediate knowledge about
the environment and implements a computationally tractable
heuristic: The model reacts flexibly to arising opportunities or
constraints in each step, taking knowledge about the (spatial)
environment as well as the human preference to minimize ef-
fort into account while only comparing the possible options
for each next step instead of the whole action sequence.
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Figure 2: Best model simulation compared to RNN & CPT performance

In this regard, opportunistic planning and action sequence
control models consider different cognitive mechanisms:
While existing models of sequential action control focus on
how sequential (routine) action with a finite problem space is
controlled in order to minimize errors such as action slips dur-
ing fixed sequences, opportunistic planning focuses on pref-
erence mechanisms that allow to explain human behavior ob-
served during complex everyday tasks without a fixed set of
actions. The role of action control is therefore less prominent
in opportunistic planning models, such as the OPM, as they
primarily consider how to narrow down the search space from
a multitude of possible solutions.

In order to be suitable for complex everyday tasks with a
large problem space, existing control models would need to
integrate both of these levels by also considering mechanisms
that decrease the number of possible solutions to a fixed set
of actions, allowing to then implement control strategies.

Conclusion and Future Work
The success of the OPM compared to black-box machine
learning models lends support to the idea that situational con-
text knowledge is of high importance to explain human be-
havior: The additional information the OPM has access to (lo-
cation of items and subject) allows it to make more accurate
predictions about human behavior than the black-box models
learning patterns from the behavioral sequences without this
additional knowledge. The importance of context knowledge
may be pertinent for planning and action organization in ill-
defined domains in general.

Regarding previous work on sequential action control, the
OPM provides two important additions: First, it only com-
pares possible solutions for each step to find the best option,

which makes it computationally tractable even in large prob-
lem spaces with a multitude of solutions, and second, consid-
ering the relational dependencies between actions and their
implications concerning the required (cognitive) effort allows
to better represent given constraints in real-world settings.

Future work includes applying the OPM on other every-
day tasks in order to verify its ecological validity as a gen-
erative model that is not specific to the task of table setting.
We also need to consider other potentially influential factors,
which may be able to improve predictive power for the cases
not yet fully explained by the OPM, such as sequences where
spatial distances are very similar and relational dependencies
and containment are only relevant for few or no items (see
Results). Additionally, while modelling relational knowledge
in a very abstract way has been sufficient for this first ap-
proach, modelling may profit from using a more expressive
way to encode relations (see e.g. Gentner, 2010; Freksa,
1991).
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