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Constraints on exotic spin-dependent interactions between electrons from helium
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(Dated: August 23, 2016)

Agreement between theoretical calculations of atomic structure and spectroscopic measurements is
used to constrain possible contribution of exotic spin-dependent interactions between electrons to the
energy differences between states in helium-4. In particular, constraints on dipole-dipole interactions
associated with the exchange of pseudoscalar bosons (such as axions or axion-like particles, ALPs)
with masses 10−2 eV . m . 104 eV are improved by a factor of ∼ 100. The first atomic-scale
constraints on several exotic velocity-dependent dipole-dipole interactions are established as well.

PACS numbers: 31.15.aj, 31.30.-i, 12.60.-i

Heretofore undiscovered spin-dependent interactions
[1, 2] naturally arise in theories predicting new bosons
such as axions [3–7], familons [8, 9], majorons [10, 11], ar-
ions [12], new spin-0 or spin-1 gravitons [13–16], Kaluza-
Klein zero modes in string theory [17], paraphotons [18],
and new Z ′ bosons [19]. Such new bosons are connected
to possible explanations of the nature of dark matter [20],
dark energy [21, 22], the strong-CP problem [1], and the
hierarchy problem [23].

The most commonly employed framework for the pur-
pose of comparing different experimental searches for ex-
otic spin-dependent interactions is that introduced in
Ref. [1] to describe long-range spin-dependent poten-
tials associated with the axion and extended in Ref. [2]
to encompass long-range potentials associated with any
generic spin-0 or spin-1 boson. The spin-dependent po-
tentials enumerated in Ref. [2] are characterized by di-
mensionless coupling constants that specify the strength
of the interaction between various particles and a char-
acteristic range λ for the interaction associated with the
reduced Compton wavelength of the new boson of mass
m0, λ = ~/(m0c) where ~ is the reduced Planck con-
stant and c is the speed of light. Depending on the
nature of the new interaction, different particles will
have different coupling constants. In the present work
we study dipole-dipole interactions between electrons at
the atomic scale through investigation of the electronic
structure of helium-4. The most stringent constraints on
exotic dipole-dipole interactions between electrons have
been established by torsion-pendulum experiments [24–
26] at the laboratory scale (λ & 1 cm) and by measure-
ments on trapped ions [27] at the micron scale (10 µm .

∗Electronic address: filip.ficek@student.uj.edu.pl

λ . 1 m). The only existing constraints on exotic dipole-
dipole interactions between electrons at the atomic scale
come from positronium spectroscopy [27, 28, 43], which
carries a caveat that CPT invariance must be implicity
assumed in order to translate the constraint to electrons
[27].

Spectroscopic measurements of helium have been a
popular research topic for several decades [30–34]. These
investigations enable determination of energy-level struc-
ture of the element with a good precision. In particular,
Feng et al. recently [30] determined the frequency of the
23P1 → 23P2 transition with an uncertainty of 0.36 kHz
(1-σ level) while, measurements of the 23S1 → 23P0,1,2

transitions, performed by Pastor et al., measured the fre-
quency with uncertainty of ∼ 2 kHz [31].

Worse precision has so far been obtained for theoreti-
cal calculations of the helium energy structure. To date,
the most precise theoretical calculations have been per-
formed by Pachucki and Yerokhin [35, 36], who used per-
turbation theory to calculate the helium fine-structure
splittings in a perturbation theory up to the meα

7 or-
der (in relativistic units), where me is the electron mass
and α is the fine-structure constant. This enabled cal-
culations of 23P0,1,2 level splittings with uncertainty of
∼2 kHz [35]. At the same time, the energy differences
between the 23S1 and 23P0,1,2 levels were calculated to
the meα

6 order, enabling determination of the transition
frequencies with uncertainties of ∼3.0 MHz [36].

In the context of comparison of experimental results
and theoretical calculations, it is noteworthy that in
quantum systems, e.g., atoms, a subtle systematic ef-
fect, arising from quantum interference of a given tran-
sition with off-resonance excitations, can affect positions
of measured spectral lines [37–40]. As reported in Ref.
[40], this effect causes the shift of the helium 23P1 → 23P2

transition frequency by 10 kHz. Since this is larger than

ar
X

iv
:1

60
8.

05
77

9v
1 

 [
ph

ys
ic

s.
at

om
-p

h]
  2

0 
A

ug
 2

01
6

mailto:filip.ficek@student.uj.edu.pl


2

the uncertainty of experimental data and theoretical cal-
culations, in our considerations of helium fine structure,
we use the value of the transition frequency reported
in Ref. [30], where this effect was taken into account.
On the other hand, the theoretical uncertainties of the
23S1 → 23P0,1,2 transition frequencies are so large that
the interference effect can be neglected.

In this work, we determine limits on the coupling con-
stants for various exotic interactions between electron
spins from their possible effect on transition energies. By
comparing the experimental and theoretical results, we
extract a maximal possible energy contribution ∆E that
may come from exotic interactions at the 90% confidence
level (see Appendix A for details of how ∆E is deter-
mined).

Table I presents the contemporary theoretical and ex-

perimental energy values for various 4He transitions used
in our calculations of limits on exotic spin-dependent in-
teractions.

In Ref. [2], Dobrescu and Mocioiu introduced 16 in-
dependent scalar spin-spin interactions. They were con-
structed as a linearly independent, rotationally-invariant
scalars (details are explained in Appendix B). For stud-
ies of exotic spin couplings using 4He, only those poten-
tials invariant under permutation of identical fermions,
spatial inversion, and time reversal are relevant. These
three conditions ensure a non-zero result of calculations
of exotic-field-induced shifts of energy levels in first-order
perturbation theory. There are four potentials that sat-
isfy these requirements. In the position representation
they have the form

V2 =
ge2g

e
2

4π~c
~c (s1 · s2)

e−r12/λ

r12
, (1)

V3 =
ge3g

e
3

4π~c
~3

4m2
ec

[
s1 · s2

(
1

λr212
+

1

r312

)
− (s1 · e12) (s2 · e12)

(
1

λ2r12
+

3

λr212
+

3

r312

)]
e−r12/λ, (2)

V4 =
ge4g

e
4

4π~c
i~3

4m2
ec

(s1 + s2) ·
[
(∇1 −∇2)× r12,

(
1

r312
+

1

λr212

)
e−r12/λ

]
+

, (3)

V8 =
ge8g

e
8

4π~c
~3

4m2
ec

[
s1 · (∇1 −∇2),

[
s2 · (∇1 −∇2),

e−r12/λ

r12

]
+

]
+

, (4)

where gei g
e
i /(4π~c) is the dimensionless coupling constant

of the i-th interaction between the electrons (this is the
notation of Refs. [1, 2, 27, 41], where ge refers to the
coupling of an electron to the exotic boson), r12 is the
distance between the electrons, e12 = r12/r12 is the unit
vector in the direction from the first electron to the sec-
ond electron, ∇1 and ∇2 are vector differential operators
in position space for the first and second particle respec-
tively, and s1, s2 are spins of the interacting electrons.
By [·, ·]+ we denote an anticommutator.

These potentials are results of the exchange of exotic
bosons [2, 42, 43]: scalar (V4), pseudoscalar (V3), vector
(V3), and axial-vector (V2, V3, V8).

Note that the velocity-dependent potentials (3, 4) have
here different forms than in Ref. [2] and other papers
considering non-static exotic interactions [44]. This dif-
ference comes from the fact, that the velocity-dependent
potentials in Refs. [2, 44] are in fact presented in a
,,mixed” representation (not a position representation,
as stated). We discuss this further in the Appendix B.

The strength of any hypothetical exotic spin-
dependent interactions between two electrons is orders
of magnitude smaller than their electromagnetic interac-
tion. Based on this fact, high precision is not required in
calculation of the perturbation due to the exotic effects

and it is enough to calculate the exotic contributions to
first order in perturbation theory. For these calculations,
approximate wave functions of electrons in helium may
be assumed. Here, we use the electron wave functions of
the n = 2 state of orthohelium (S = 1), obtained with
the variational method (see, for example, Ref. [45]). In
Table II one can find the ionization energies calculated
with these wave functions εth compared with the exper-
imental values εexp. The difference between them is just
several percent which suggests that these functions can
be safely used in our calculations.

The spatial electron wave function for the He 23S0

state is given by [45]

ψS = CS
[
e−Z

S
i r1−Z

S
a r2/2

(
ZSa r2

2
− 1

)
−

−e−Z
S
i r2−Z

S
a r1/2

(
ZSa r1

2
− 1

)]
, (5)

where the ZSa , Z
S
i , C

S values are given in Table II and
r1, r2 are in Bohr radii. The spatial electron wave func-
tion is antisymmetric with respect to the 1↔ 2 electron
exchange, so the spin wave function must be symmetric
(as we may expect for orthohelium) and the total spin
is S = 1. Since the 23S0 state is only used to constrain
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TABLE I: Comparison of theoretical (QED-based) and experimental transition energies values between various helium states.

Theoretical Experimental Difference ∆E

23P1 − 23P2 2 291 178.9(1.7) kHz [35] 2 291 177.69(36) kHz [30] 1.2(1.7) kHz 4.6 kHz

23P0 − 23P2 31 908 131.2(1.8) kHz [35] 31 908 131.25(30) kHz [32] 0.1(1.8) kHz 3.2 kHz

23P0 − 23P1 29 616 952.3(1.7) kHz [35] 29 616 951.66(70) kHz [33] 0.6(1.8) kHz 3.7 kHz

23P0 − 23S1 276 764 094.7(3.0) MHz [36] 276 764 094.7073(21) MHz [31] 0.0(3.0) MHz

23P1 − 23S1 276 734 477.7(3.0) MHz [36] 276 734 477.7525(20) MHz [31] 0.1(3.0) MHz

23P2 − 23S1 276 732 186.1(2.9) MHz [36] 276 732 186.621(15) MHz [31] 0.5(2.9) MHz

TABLE II: Values of constants in the wave functions and
ionization energies (in Rydbergs).

Zi Za C εth εexp

23S 2.01 1.53 0.43247 0.334 0.350

23P 1.99 1.09 0.097969 0.262 0.266

the V2 potential, where the electron spins appear in the
formula via the s1 · s2 term, we do not have to consider
explicitly the spin part of the wave function as for ortho-
helium

s1 · s2|ψS〉 =
1

2
(S2 − s21 − s22)|ψS〉 =

1

4
|ψS〉. (6)

The spatial components of the 23P -state wave func-
tions are approximated by [45]

ΨP
1 = −CP (F (r1, r2) sin θ1e

iφ1 − F (r2, r1) sin θ2e
iφ2),

ΨP
0 =

√
2CP (F (r1, r2) cos θ1 − F (r2, r1) cos θ2),

ΨP
−1 = CP (F (r1, r2) sin θ1e

−iφ1 − F (r2, r1) sin θ2e
−iφ2),

(7)

where

F (r1, r2) = r1e
−ZP

a r1/2−Z
P
i r2 , (8)

where the ZPa , Z
P
i , C

P values are given in Table II. We
associate these antisymmetric wave functions with sym-
metric spin functions using the Clebsch-Gordan coeffi-
cients coming from addition of angular momenta L = 1
and S = 1. In the following sections we will be perform-
ing calculations using wave functions |ψPJ,mJ

〉

|ΨP
2,2〉 = ΨP

1 | ↑↑〉, (9)

|ΨP
2,1〉 =

√
1

2
ΨP

0 | ↑↑〉+
1

2
ΨP

1 (| ↑↓〉+ | ↓↑〉) , (10)

where | ↑↓〉 = |ms1 = 1/2;ms2 = −1/2〉 and ms1,2 are the

magnetic quantum numbers of the 1st and 2nd electron,
respectively.

For every considered potential Vi we can estimate an
associated energy shift between states |ψa〉 and |ψb〉 using
first-order perturbation theory and the approximate wave
functions listed above:

∆Uab,i(m0) = 〈ψa|Vi(m0)|ψa〉 − 〈ψb|Vi(m0)|ψb〉, (11)

where Vi(m0) is a potential Vi divided by the dimension-
less constant gei g

e
i /(4π~c). Values for ∆Uab,i were calcu-

lated by numerical integration for several m0 values and
then an interpolation was performed in order to obtain
a continuous function ∆Uab,i(m0). For potentials V3, V4,
and V8 curves describing the constraints on gei g

e
i /(4π~c)

were obtained for different values of m0 by substituting
the appropriate ∆E (the one connected with 23P1−23P2

transition) from Table I into the relation:

gei g
e
i

4π~c
(m0) ≤ ∆E

∆Uab,i(m0)
. (12)

For m0 & 3000 eV the Compton wavelength of the
mediating boson is shorter than the average interparticle
separation between electrons in the helium atom. Be-
cause of that, the transition frequency becomes insensi-
tive to the considered potentials for m0 & 3000 eV as
seen in the parameter exclusion plots.

The results for the V3 potential are presented in Fig. 1.
The other results in this Figure come from Ref. [27]. It
can be seen that comparison between theory and experi-
ment for helium fine structure yields the best constraints
in the considered mass range (two orders of magnitude
more stringent than the previous ones).

In order to calculate constraints for the V4 potential
we use its reduced form. As shown in Appendix B, the
potential (3) can be written as V4 = S · [p12×r12, f(r)]+,
where r and p denote respectively the differences be-
tween position and momentum operators for the elec-
trons, and f(r) is the spatial part of the potential with
appropriate constants. One can write p12 = −i~∇r12 ,
and then ∇r12f(r12) = e12∂r12f(r12). We see that when
gradient in the commutator operates on f(r) we get
−i(e12 × e12)∂r12f(r12) = 0. We conclude, that V4 may
be written as
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V4 = S · [p12 × r12, f(r12)]+ = 2f(r12)S · (p12 × r12) = −2f(r12)S · (r12 × p12) , (13)

where we have used the fact that (p12 × r12)i = εijkp
j
12r

k
12 = εijkr

k
12p

j
12 = −(r12 × p12)i. The expectation value of

this operator, needed for Eq. (11), can be obtained using reduced matrix elements. For state |JMSL〉 = |JM11〉 we
have

〈JM11|V4|JM11〉 = −

{
J 1 1

1 1 1

}
〈S‖S‖S〉S=1〈L‖f(r12)r12 × p12‖L〉L=1 =

J(J + 1)− 4

2
√

6
〈1‖f(r12)r12 × p12‖1〉,

(14)

where we have introduced the 6j symbols [46, 47] and used the fact that 〈S‖S‖S〉 =
√
S(S + 1)(2S + 1). Calculating

the remaining reduced matrix element yields:

〈JM11|V4|JM11〉 =
1

2
(J(J + 1)− 4)〈L|f̃(r12) (1−D12 −D21) |L〉L=1, (15)

where

Djk = irj sin θj

[
sin(φj − φk)

(
sin θk

∂

∂rk
+

cos θk
rk

∂

∂θk

)
− cos(φj − φk)

1

rk sin θk

∂

∂φk

]
(16)

0.01 0.10 1 10 100 1000 104
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10-7

10-5

0.001

0.100

Mass (eV)

g
3e
g
3e

4
π
ℏ
c

FIG. 1: Constraints (at the 90% confidence level) on the di-
mensionless coupling constant ge3g

e
3/(4π~c) as a function of

the boson mass. The dotted line and dark gray fill shows
the constraint for electrons from Ref. [27]. The dashed line
and light gray fill show the constraint derived from analy-
sis of positronium, also discussed in [27]. The solid line and
medium gray fill shows the constraint from a comparison be-
tween theory and experiment for the 23P2 ↔ 23P1 transition
frequency in He.

and |L = 1〉 is a state represented by the first wave func-
tion in Eq. (7).

We use this reduced form of V4 to numerically ob-
tain ∆Uab,i(m0) function and finally get gei g

e
i /4π~c(m0)

sketched in Fig. 2.

The results for the V8 potential are presented in Fig.
3. Constraints for V8 electron coupling constant were ob-
tained earlier using geoelectron experiments [44], which
considered boson masses less than 10−10 eV, yielding con-
straints ge8g

e
8/(4π~c) . 10−36 in the massless limit.

The analysis for the V2 potential differs somewhat from
that carried out for the other potentials. Spin operators

0.01 0.10 1 10 100 1000 104

10-11

10-9

10-7

10-5

Mass (eV)

g
4e
g
4e

4
π
ℏ
c

FIG. 2: Constraints (at the 90% confidence level) on the di-
mensionless coupling constant ge4g

e
4/(4π~c) as a function of

the boson mass coming from a comparison between theory
and experiment for the 23P2 ↔ 23P1 transition frequency in
He.

in the V2 potential are of the form s1 · s2 so for orthohe-
lium wave functions |ψ〉 we have s1 · s2|ψ〉 = 1

4 |ψ〉. This
means that the analysis for this case is based on evalua-
tion of the 〈ψ| exp(−r12/λ)/r12|ψ〉 matrix elements.

The V2 potential does not split energy levels of different
J and the same L and S, but only shifts each such level
by the same amount. This means that in order for such
an energy shift to be experimentally observable we need
another reference state outside the fine-structure mani-
fold. For this purpose, based on the available experimen-
tal data and theoretical calculations, a natural choice is
a comparison between the 23S1 and 23P states. The fact
that the V2 potential does not remove J degeneracy im-
plies that the 23S1 − 23PJ comparison does not depend
on the particular choice of |J,mJ〉. Therefore we use all
the values of differences between experimental and theo-
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0.01 0.10 1 10 100 1000 104

10-11

10-9

10-7

10-5
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c

FIG. 3: Constraints (at the 90% confidence level) on the di-
mensionless coupling constant ge8g

e
8/(4π~c) as a function of

the boson mass coming from a comparison between theory
and experiment for the 23P2 ↔ 23P1 transition frequency in
He.

0.01 0.10 1 10 100 1000 104
10-20

10-17

10-14

10-11

10-8

Mass (eV)

g
2e
g
2e

4
π
ℏ
c

FIG. 4: Constraints (at the 90% confidence level) on the di-
mensionless coupling constant ge2g

e
2/(4π~c) as a function of

the boson mass. The dotted line and dark gray fill shows
the constraint for electrons from Ref. [27]. The dashed line
and light gray fill show the constraint derived from analy-
sis of positronium, also discussed in [27]. The solid line and
medium gray fill shows the constraint from a comparison be-
tween theory and experiment for the 23S1 ↔ 23P transition
frequency in He.

retical transition energies between states 23S−23P from
Table I. Treating these differences as ∆E from formula
(12) we get a function gei g

e
i /(4π~c)(m0) for every transi-

tion, along with the uncertainty. We calculate weighted
mean of these with its uncertainty, and take a sum of
this mean and a doubled uncertainty as the limit. The
results are presented in Fig. 4. The obtained constraints
are worse than the ones obtained using positronium atom
[27], but we note that positronium constrains the inter-
action between positrons and electrons which can only be
directly compared with the electron-electron interaction
under the assumption of CPT invariance.

In conclusion, by comparing the results of precision
spectroscopic measurements in 4He with theoretical cal-
culations of the corresponding energy intervals, we estab-
lish constraints on possible exotic interactions that could
arise due to the exchange of bosonic fields, as introduced
in the theoretical framework of Refs. [1, 2]. We pointed
out an inconsistency of the operator definitions in Ref.

[2] and perform the analysis with the corrected opera-
tors. We improve constraints on the strength of some of
the exotic interactions by two orders of magnitude and
constrain others for the first time.

We expect He spectroscopy to become an even more
sensitive probe of exotic electron-electron interactions as
atomic theory and experiment become more precise.
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Appendix A: Analysis of the experimental and
theoretical data

For fine-structure transitions, where we use only one
value, our method is as follows: we define ∆E =
max{|µ + L|, |µ − L|}, where µ is the mean difference
between theoretical and experimental transition energies
and L is determined in such a way that

0.9 =

∫ +L

−L

1√
2πσ

e−(x−µ)
2/(2σ2)dx, (A1)

where σ is the resultant uncertainty, originating from the-
oretical (σth) and experimental (σexp) uncertainties com-
bined in quadrature, σ2 = σ2

th + σ2
exp. This method was

used for the potentials V3, V4, and V8.

Apart from these calculations, we have also performed
for these potentials an analysis similar to the one per-
formed for potential V2 – we have used differences be-
tween theoretical and experimental transition values for
all three transistions to calculate weighted mean of
ge2g

e
2/(4π~c). Constraints obtained this way are twice

more stringent as the ones plotted on Figs. 1-3. In spite
of this fact we do not use them, as they include a sys-
tematic error due to the shifts from a distant neighboring
resonance described in the paper.
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FIG. 5: Graph of an interaction between two electrons me-
diated by a light boson.

Appendix B: Potentials in position representation

Here we will show the way Eqs. (1-4) were derived and
explain why they differ from their counterparts from [2].

Let us consider an interaction between two electrons
mediated by a light boson. A corresponding Feynman
diagram is shown in Fig. 5, where p1,i and p1,f are
initial and final momenta of the first electron (p2,i and
p2,f are analogously initial and final momentum of the
second electron), and q is the momentum of the light
interacting boson. We may describe this interaction in
the center of mass frame using just two vectors

P = 1
2

(
p1,f + p1,i

)
, (B1)

q = p1,f − p1,i. (B2)

In their paper [2] Dobrescu and Mocioiu construct 16
independent, rotationally invariant scalars consisting of
the vectors P,q, s1, s2, where s1, s2 are the spin of the
first and second electron, respectively. These scalars are
operators in momentum representation (momentum op-
erators are multiplication operators). Due to the focus
of this paper, we will consider four of them that are spin-
dependent, symmetric with respect to a permutation of
identical fermions, and invariant under spatial inversion
and time reversal. In natural units (c = ~ = 1) they have
the form

O2 = s1 · s2, (B3)

O3 =
1

m2
e

(s1 · q) (s2 · q) , (B4)

O4 =
i

2m2
e

(s1 + s2) · (P× q) , (B5)

O8 =
1

m2
e

(s1 ·P) (s2 ·P) , (B6)

where me is an electron mass. Note that it is iq, rather
than q - that is a Hermitian operator, and is why the O4

operator in Eq.(B5), which is linear in q, is imaginary.
In Sec. 3 of Ref. [2] these operators are converted

into potentials by making a Fourier transform from q

to r12 = r1 − r2 (we introduce here a slightly different
notation than the original one). Note that this is a mixed
representation as the authors still keep v = P/me as a
variable, rather than an operator (see Eq. (3.2) in Ref.
[2]). In the coordinate (or position) representation all
expressions which include v should be written in terms
of an operator v̂, which is related to the gradient.

Let us consider a potential of the form PV (r12):

〈ψf (r1, r2)|PV (r12)|ψi(r1, r2)〉
= 1

2 〈ψf (r1, r2)|p1,fV (r12) + V (r12)p1,i|ψi(r1, r2)〉
= 1

2 〈ψf (r1, r2)|p̂1V (r12) + V (r12)p̂1|ψi(r1, r2)〉
= 1

2

〈
ψf (r1, r2)

∣∣[p̂1, V (r12)]+
∣∣ψi(r1, r2)

〉
, (B7)

where |ψi(r1, r2)〉 and |ψf (r1, r2)〉 are the initial and final
states of the considered system, respectively, and p̂1 is
the momentum operator of the first electron. This step
introducing the anticommutator was ommitted in Ref. [2]
resulting in mixed representation of non-static potentials,
where v is a variable rather than an operator.

Having this in mind, we perform the Fourier transform
in order to go from the momentum representation to the
position representation:

Vi(r12,p12) = −
∫

d3q

(2π)3
eiqr12P(q2)Oi(q,P), (B8)

where P(q2) is a propagator. We are interested in
Lorentz invariant exotic interactions communicated by
a single boson with mass m0, which implies a propagator
of the form [2, 48]

P(q2) = − 1

q2 +m2
0

, (B9)

where m0 is the intermediate boson mass. Useful for-
mulae for these Fourier transforms may be found in Ap-
pendix B of Ref. [2].

As an example we will derive the position–
representation form of the V4 potential (3). We be-
gin with the momentum–representation form in natural
units, Eq. (B5). By performing Fourier transform we
obtain

Ṽ4 =

∫
d3q

(2π)3
eiqr12

O4

q2 +m2
0

(B10)

=
i

2m2
e

(s1 + s2) ·
(
P×

∫
d3q

(2π)3
eiqr12

q

q2 +m2
0

)
= − 1

8πm2
e

(s1 + s2) ·
(
P× r12

r312

)
(1 +m0r12) e−m0r12 .

Now let us apply similar reasoning as in case of Eq. (B7),
but for the operator P× r12V (r12). The j-th component
of this operator matrix element will be (using the Ein-
stein summation convention):
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(〈ψf (r1, r2)|P× r12V (r12)|ψi(r1, r2)〉)j =
(
1
2 〈ψf (r1, r2)|(p1,f + p1,i)× (r12V (r12))|ψi(r1, r2)〉

)
j

= 1
2εjkl〈ψf (r1, r2)|(pk1,f + pk1,i)r

l
12V (r12)|ψi(r1, r2)〉 = 1

2εjkl
〈
ψf (r1, r2)

∣∣(pk1rl12V (r12) + V (r12)rl12p
k
1

)∣∣ψi(r1, r2)
〉

= 1
2εjkl

〈
ψf (r1, r2)

∣∣(pk1rl12V (r12) + V (r12)pk1r
l
12

)∣∣ψi(r1, r2)
〉

= 1
2εjkl〈ψf (r1, r2)|

[
pk1r

l
12, V (r12)

]
+
|ψi(r1, r2)〉

= 1
2 〈ψf (r1, r2)| [(p1 × r12)j , V (r12)]+ |ψi(r1, r2)〉,

where we have used the fact that εjklr
kpl = εjklp

lrk +
iεjklδ

kl = εjklp
lrk. These calculations were performed in

the center of mass frame of the two particles. In atomic
physics we use the center of mass frame of an atom. We
can convert our equations to it by substituting p1 →
p1 − 1

2 (p1 + p2) = 1
2 (p1 − p2) = 1

2p12. When we put
results of these calculations into Eq. (B10), we get

Ṽ4 = − 1

16πm2
e

(s1 + s2)·
[
p12 × r12,

1 +m0r12
r312

e−m0r12

]
+

.

This potential is what we used to calculate the contribu-
tion of the V4 interaction to the He energy levels. The last

remaining steps are introducing the coupling constant,
writing momenta as a differential operators, and inserting
physical constants: c, ~,me, and the reduced Compton
wavelength of the interaction boson λ = ~/m0c. These
steps result in Eq. (3).

There is one remark to be noted. The framework in-
troduced to deal with exotic potentials by Dobrescu and
Mocioiu in [2] works only in the low-mass limit of the in-
teracting boson. However, as we are interested in bosons
with atomic-scale Compton wavelength, we can safely
treat this framework as accurate.
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