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Purpose: We present three-dimensional adiabatic inversion recovery prepared ultrashort echo time Cones (3D
IR-UTE-Cones) imaging of cortical bone in the hip of healthy volunteers using a clinical 3T scanner.
Methods: A 3D IR-UTE-Cones sequence, based on a short pulse excitation followed by a 3D Cones trajectory, with
a nominal TE of 32 μs,was employed for high contrastmorphological imaging of cortical bone in the hip of heathy
volunteers. Signals from soft tissues such as muscle andmarrow fat were suppressed via adiabatic inversion and
signal nulling. T2⁎ value of the cortical bone was also calculated based on 3D IR-UTE-Cones acquisitions with a se-
ries of TEs ranging from 0.032 to 0.8 ms. A total of four healthy volunteers were recruited for this study. Average
T2⁎ values and the standard deviation for four regions of interests (ROIs) at the greater trochanter, the femoral
neck, the femoral head and the lesser trochanter were calculated.
Results: The 3D IR-UTE-Cones sequence provided efficient suppression of soft tissues with excellent image con-
trast for cortical bone visualization in all volunteer hips. Exponential single component decay was observed for
all ROIs, with averaged T2⁎ values ranging from 0.33 to 0.45 ms, largely consistent with previously reported T2⁎

values of cortical bone in the tibial midshaft.
Conclusions: The 3D IR-UTE-Cones sequence allows in vivo volumetric imaging and quantitative T2⁎measurement
of cortical bone in the hip using a clinical 3T scanner.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The femoroacetabular joint is a key skeletal element that provides a
great deal of mobility and stability. Large loads are exerted on the hip
during daily activities, such as walking or running, where forces can ex-
ceed five times body weight [1]. Unfortunately fractures can occur, and
hip fractures are among the most frequent and devastating of all frac-
tures, particularly in women and the elderly [2,3]. The mortality rate
within the first year after a hip fracture may reach up to 30%, which is
considerably higher than the mortality rate of breast cancer [4–10].

Hip fractures occur where the applied load is higher than the bone
strength [11]. Cortical bone is an important contributor to overall
bone strength [12]. Cortical bone strength and toughness, or simply
the fracture resistance, can be decreased dramatically bymicrostructur-
al changes such as reductions in thickness and density, or increases in
porosity [13,14]. In vivo evaluation of cortical bone microstructure has
been of great interest in both the orthopedic and radiologic communi-
ties [12,15,16]. Many research teams have attempted to quantify bone
at San Diego, Department of
microstructure and assess the predictive value of various measures in
determining fracture risk [17,18].

Magnetic resonance (MR) imaging is a non-invasive imagingmodal-
ity that can be used to evaluate cortical bone. However, the current, clin-
ically available MR sequences are not able to image cortical bone
because the signal from the cortical bone decays rapidly. Therefore,
the cortical bone in the clinical images usually appears black (pure sig-
nal void). Ultrashort echo time (UTE) techniques can acquire the rapidly
decaying MR signal from cortical bone. In recent years, a variety of UTE
techniques have been developed to image cortical bone [19–24]. Almost
all the UTE techniques have focused on cortical bone in the tibial
midshaft, with a few examples showing success in imaging the femur
and the forearm [25]. Direct MR imaging of cortical bone in the hip
with inversion recovery UTE (IR-UTE) technique has not yet been
performed.

MR imaging of the cortical bone in the hip has traditionally been
fraught with challenges. The main technical difficulties in this area
are: 1) the thin cortex, 2) inefficient coils, 3) requirement for robust
suppression of surrounding soft tissues to generate high contrast, and
4) long scan time. Also, the thin cortex requires high resolution, which
in turn leads to limited signal-to-noise ratio (SNR). The SNR require-
ment can be moderated by utilizing efficient coils contoured for the
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Fig. 1. The 3D UTE-Cones sequence employs a short rectangular pulse for signal excitation, followed by a 3D Cones trajectory (B) to allow time-efficient sampling with a minimal TE of 32
μs. The 3DUTE-Cones sequence combinedwith an adiabatic inversion recovery preparation pulse (3D IR-UTE-Cones) can invert and null the signal from long T2⁎ components, including fat
and muscle, allowing the cortical bone to be selectively imaged (C). In (C), the dashed curve line and the red solid line represent the long T2⁎ components and the short T2⁎ components,
respectively. The dotted line illustrates that after time TI the signal from the long T2⁎ components is nulled (reaching zero) while a significant amount of signal from the short T2⁎

components remains.
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structure of interest, however, there are no commercially available coils
for dedicated hip imaging. In addition, to create high contrast images,
cortical bone signal must be preserved while undesired components
are suppressed. This includes fat in the marrow and extramedullary lo-
cations as well as surrounding long T2 structures such as muscle.

In this study,we report the use of three-dimensional adiabatic inver-
sion recovery prepared UTEwith Cones sampling (3D IR-UTE-Cones) to
directly image and quantify cortical bone in the hip in vivo at 3 T.

2. Methods

2.1. Pulse sequence

The 3D UTE-Cones sequence is shown in Fig. 1A. The 3D UTE-Cones
sequence employs a hard RF pulse for non-selective excitation, and cen-
ter-out 3D spiral trajectories for k-space sampling [26], as shown in Fig.
1B. It also employs short readout times, which in combination with the
centric trajectory, allows for signal acquisition from the rapidly
decaying tissue components. The 3D UTE-Cones sequence is more
time-efficient than radial trajectories in covering 3D k-space [26]. Also,
the 3D UTE-Cones sequence resolves the sensitivity of the 2D UTE se-
quences to eddy currents by employing a hard RF pulse instead of a
half RF pulse for signal excitation. Moreover, the 3D UTE-Cones se-
quence allows for anisotropic fields of view (FOVs) and spatial resolu-
tion (higher in-plane resolution with thicker slices), resulting in vastly
reduced scan times. By using the 3D UTE-Cones sequence, 3D volumet-
ric UTE imaging can be obtained in an SNR efficient way.

When followed by an adiabatic inversion recovery preparation
pulse, the 3D UTE-Cones sequence can be utilized to acquire signal
from cortical bone with high contrast [27,28]. This is done by inverting
the longitudinal magnetization of the long T2 signal components (i.e.,
muscle and bone marrow fat) while saturating the signal from cortical
bone [27–31]. The Cones acquisition starts after an inversion time (TI)
delay, which is used to null the long T2⁎ components while permitting
detection of recovered cortical bone signal (Fig. 1C).
Fig. 2. (A) The 3D IR-UTE-Cones sequence provides excellent image contrast for cortical bone in t
(34-year-oldman); (B) Four representative ROIs are defined for T2⁎ analysis, including the greate
and the lesser trochanter (ROI4). The approximate locations of the selected ROIs are shown in
2.2. T2⁎ measurement with 3D IR-UTE-Cones

The steady-state 3D IR-UTE-Cones signal can be calculated as fol-
lows:

MIR
xy TI; TEð Þ ¼ MIR

0 e−
TE
T2 þ noise; ð1Þ

Eq. (1) describes that T2⁎ of cortical bone can be measured by mono ex-
ponentialfitting of the acquired IR-UTE images at different TEs. It should
be noted that TR/TI combination should be able to null the signal from
the long T2 components in the bone marrow and muscle.

2.3. MRI protocol

The 3D IR-UTE-Cones sequence was implemented on a 3 T scanner
(Signa HDx, GE Healthcare, Milwaukee, WI) [27]. The sequence has a
minimal TE of 32 μs and allows anisotropic field of view and spatial res-
olution for fast volumetric imaging. An adiabatic inversion pulse (dura-
tion = 8.64 ms) was used for robust inversion and suppression of the
longitudinal magnetizations of long T2 water and fat. Four healthy vol-
unteers (28, 31, 34, and 43 years old, male) were scanned by using a
torso phased-array coil. The following scan parameters were used: TR
= 116.7 ms, TI = 50 ms, four TEs (0.032, 0.2, 0.4, and 0.8 ms), BW =
250 kHz, FOV = 340 × 340 mm2, slice thickness = 3 mm, matrix =
128 × 128, flip angle = 18°, acquired voxel size = 2.6 × 2.6 × 3 mm3,
and scan time= 4.5 min for each dataset. T2⁎was quantified with a sin-
gle-component decay fitting of themulti-echo 3D IR-UTE-Cones images.

2.4. Data analysis

The code for the analysis was written in MATLAB (The MathWorks,
Massachusetts) and was executed on the DICOM images obtained by
the aforementioned protocols in the experimental setup section. The
program allowed for the delineation of regions of interest (ROIs) on
hehip obtainedwith TR=116.7ms, TI=50ms andTE=0.032ms for a healthy volunteer
r trochanter (ROI1), the lateral aspect of the femoral neck (ROI2), the femoral head (ROI3),
the figure with different colors.

Image of Fig. 2


Fig. 3. 3D IR-UTE-Cones images of the right hip in a healthy volunteer at TEs=0.032ms, 0.2ms, 0.4ms and 0.8ms from left to right, respectively. Excellent contrast for the cortical bone in
the hip can be achieved.
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the UTE images. Four ROIs were drawn in the proximal femur for T2⁎
analysis. As shown in Fig. 2, ROIs included the greater trochanter
(ROI1), the lateral aspect of the femoral neck (ROI2), the femoral head
(ROI3), and the lesser trochanter (ROI4). The average intensity of voxels
within the ROIs was used for subsequent curve fitting. In addition, T2⁎ of
the cortical bone were calculated using Eq. (1).

3. Results

Fig. 2 shows a representative image of the hip of a 34-year-old
healthy volunteer imaged with the 3D IR-UTE-Cones sequence. Cortical
bone in the greater trochanter, the femoral neck, and the femoral head,
as well as lesser trochanter is depicted with excellent image contrast.
Muscle and marrow fat about the hip, which typically have far higher
signal than that of cortical bone, were efficiently suppressed by the adi-
abatic inversion pulse. SNR for cortical bone in the femoral head is rela-
tively low due to the thin structure and limited coil sensitivity from the
clinical torso phased array coil.

Cortical bone in the hip at four different TEs of 0.032, 0.2, 0.4 and
0.8 ms is shown in Fig. 3. As can be seen, excellent contrast can be
achieved by using the 3D IR-UTE-Cones sequence with rapid decay of
signal. Fig. 4 shows representative signal decay curves for the greater
trochanter, the femoral neck, the femoral head, and the lesser
Fig. 4. Representative T2⁎ curves for ROIs 1 through 4 at TEs = 0.032 ms, 0.2 ms, 0.4 ms and 0.8
signal in the ROI and the fitted curves, respectively. As TE values increase, the amount of signa
trochanter in a 34-year-oldmale volunteer. Excellent single-component
exponential decay was observed for all the ROIs, with a short T2⁎ of 0.41
± 0.11 ms for the greater trochanter, 0.33 ± 0.08 ms for the femoral
neck, 0.34 ± 0.05 ms for the femoral head, and 0.33 ± 0.04 ms for the
lesser trochanter.

Table 1 summarizes the mean and standard deviation for T2⁎ values
for the greater trochanter, the femoral neck, the femoral head, and the
lesser trochanter, respectively, between the four volunteers. The aver-
age T2⁎ values ranged from 0.33 to 0.45 ms, and were largely consistent
with previously reported T2⁎ values of boundwater in the tibialmidshaft.

4. Discussion

In this study, a directMR-based imaging technique, based on IR-UTE
technique, for cortical bone in the hip was reported for the first time in
vivo. Although direct imaging of cortical bone has previously been pre-
sented at different locations such as themidshaft of the tibia [28,32–34],
direct imaging of the hip is considered of higher clinical significance
since fractures at this location are more devastating [3]. In addition, im-
aging at this location is considered more technically challenging.

Preliminary results from this study have shown that the cortical
bone in the hip can be imaged using the 3D IR-UTE-Cones sequence
(Fig. 3). The adiabatic inversion pulse provides robust suppression of
ms. The star points and the dashed lines in the figures represent the normalized average
l from the cortical bone decreases.

Image of Fig. 3
Image of Fig. 4


Table 1
Average T2⁎ values (ms) and the standard deviation for four healthy volunteers. The T2⁎

values were calculated at the four ROIs on the right and left side for each subject. ROIs 1
through 4 were defined at the greater trochanter (ROI1), the femoral neck (ROI2), the
femoral head (ROI3), and the lesser trochanter (ROI4), respectively.

Cortical bone in different sites of the hip

Greater
trochanter

Femoral
neck

Femoral
head

Lesser
trochanter

T2⁎ in ms (mean ± std) 0.40 ± 0.05 0.38 ± 0.04 0.37 ± 0.04 0.38 ± 0.03
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long T2 signal. Despite long T2 muscle and fat containing distinct T1
values, both can be adequately suppressed with the single IR pulse,
resulting in a high contrast, selective imaging technique for cortical
bone. T2⁎ can then be estimated via single-component fitting of the 3D
IR-UTE-Cones acquisitions with a series of TEs (Fig. 4).

Using the 3D IR-UTE-Cones technique, cortical bonemay be visualized
with high contrast and T2⁎maybequantified, providing a singlemethod to
measure thickness and estimate porosity, respectively. Cortical bone
thickness and porosity are both considered key elements for fracture
risk [12,15–18]. Specifically, cortical bone thinning and increasing poros-
ity are important features for fracture initiation and propagation [15,16].
Different image processing techniques [35,36] can be used for accurate
thickness calculation and to pinpoint thin and weak cortical bone
locations.

TheUTE and IR-UTE sequences can potentially evaluate cortical poros-
ity (porewater content) and organicmatrix (boundwater content) in the
hip [27,33,37–41]. Previous studies employing the UTE sequence have
shown that both bound water (short T2⁎ component) and pore water
(long T2⁎ component) in cortical bone can be quantified using a bi-compo-
nent T2⁎ analysis technique [18,25–28].Moreover, T2⁎decay time for bound
water in cortical bone canbemeasuredwith the IR-UTE techniqueby sup-
pressing the signal from the pore water and then using a single compo-
nent analysis of the remaining signal [27,29,38]. A single component
decay pattern of the cortical bone in the hip suggests that the 3D IR-
UTE-Cones signal is likely from bound water.

One limitation of the 3D IR-UTE-Cones technique is that it requires
an adiabatic inversion pulse, which can increase the specific absorption
ratio (SAR). This problem can bemoderated byusing lowerflip angles at
a cost of sub-optimal contrast, or longer TR at a cost of longer scan time.
Another limitation is that UTE with an inversion pulse requires a wide
spectral profile to cover both water and fat peaks for robust inversion.
Also, the 3D IR-UTE-Cones sequence requires more time to cover k-
space compared to 2D UTE imaging techniques. However, the 3D IR-
UTE-Cones sequence is less prone to partial volume effects.

Further optimization of the imaging protocol, including in-plane res-
olution, slice thickness and scan time will be performed in future stud-
ies. In addition to further optimization techniques, 3D IR-UTE-Cones
sequence should be employed in multiple cohorts. These future studies
will help in defining the limitations and thresholds for direct MR imag-
ing of cortical bone.

5. Conclusion

Our pilot study has demonstrated the feasibility of selective MR im-
aging of cortical bone in the hip using the 3D IR-UTE-Cones technique.
Long-T2 species (e.g., fat in bone marrow and muscle) were robustly
suppressed, providing high image contrast for the cortical bone in clin-
ically compatible imaging times.
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