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‘Abstract

Induced soft gluon bremsstrahlung associated with multiple collisions is cal-
culated via perturbative QCD. We derive the non-\abelian analog of the Landau-
| Pomeranchuk effect that suppresses induced soft radiation with formation times
exceeding the mean free path A. The dependence of the suppression effect on
the SU(N) representation of the jet parton as well as the kmematlc variables is
e\pressed through a radiation formation factor. Unlike in QED the finite con-
tribution from the small z regime in QCD leads to an approximately constant
radiative energy loss per unit length, dE/dz  p?, in the high energy limit that
" is sensitive to the infrared screening scale, pu, of the medium. As a function of -
the dimensionless parameter { = Au?/E, we show furthermore how the energy .
dependence of dE/dz evolves ffbm the above constant for { <« 1 to the more

familiar (Bethe-Heitler) linear dependence for ¢ > 1.
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1 Introduction

Radiative energy loss of ultra-relativistic particles passing through dense matter is
of interest not only because of its many practiéal applications, but also because it
illustrates a characteristic destructive interference phenomenon caused by the finite

formation t_ime[l, 2],
(k) & B/AE(k) ~ 2w[k} ~ 2/wb? 0N

of quanta with large four momentum, k* = (w,k,,k,), emitted at small angles,
0 ~ k,/w, relative to the incident 'pafticle. In effect, 7(k), is the minimal time
needed to resolve the transverse wavepacket of the quanta with, Az, ~ h/k,, from
the -wavepacket.of its high energy (Eo > w) parent. Destructive interference between
radiation amplitudes associated with multiple vc,olli'sionsr can be expected when the
mean free paLth, A, is short compared to the formation time. When T(k) > ), the
emitted quanta cannbt resolve different elastic écattering centers, and the assumption
of independent contributions from each separate scattering in the medium breaké
down. This evffect,‘ first s‘tﬁdied in QED and then in other field theories, is often
referred to as the Landau-Pomeranchuck-Migdal (LPM) effect(1, 2]. -
Inferest in analogous destructive interference phenomena in ﬁon-abelian theories
is connected with_attémpts to understand the weak nuclear dependence of hard QCD
processes and- the use of those dependencies as a probe of the space-time develop-
ment of hadronization. ‘A high energy'quz.trk, or gluon passin»g. through dense (QCD)
matter of course suffers multiple inferact_ions. However, in the Q — oo limit, QCD
factorization theorems[3] apply that show that, as in the QED case, the soft radiation
is emitted only from the external legs[4]. There are a large number of phenomena
such as the very weak nuclear dependence of Drell-Yan yields[5, 6] and the apparent
~ nuclear independence of véry high energy quark fragmentation[7, 8], that confirms |
this basic factorization féature of asymptotic pQCD. As shown in Ref.[5], however,
the assumptions leading to ﬁhe factorization theorem break down for sub-asymptotic

conditions. In the Drell-Yan process, for example, final state interaction corrections



become important for sufficiently large nuclei with, A¥*A%cp > M3y, In deep in-
elastic hadroporduction, nuclear dependence always exits in the zp < 0 regibn and
disappears in the mp.> 0 region only when kR/v — 0, where x ~ 1 GeV/fm[7, 8].

In order to understand such nuclear effects more quantitatively, it is necessary to
study inducéd radiation pa,ttefns‘ associated with multiple collisions in QCD. Rough
: éstima.tes for the magnitude of thefsuppr&ssion of non_—-abeli&h ind’-ﬁ(ﬁ(ﬁd radiation have
been made in [9; 11,12, 13, 10]. The estimates for dE/dz yg;y;igrfh@w@e;; w;aely
ranging from energy indep:enden‘t [10], logarithmic energy dependent[g] to dE / dz < E
[12, 13]. However, a detailed study of the L‘PM effect in QCD has not been performed
to our knowledge in the context of multiple collision theory, taking into account
~ essential ri_ori-abelian features of the problem.. Thé aim of this paper is to initiate
such a study. | | |

While pQCD can serve only as a qualitative guide because the effective cdupling,

g, is small only in extremely dense matter, e.g., a quark-gluon plasma at tempera-

tures T' > T, ~ Agep, it is instructive to explore its consequences in situations where
@pproximations to multiple scattering cén be used to simplify the prob.lem. Additional
motivation for this work is to compare radiatién patterns dﬁe to fnultiple collision
physics in pQCD with those suggested by phenoméhologica.l string models(8, ‘14',. 15]
for high énergy' eA,pA, and AA réacti_ons. We show, for example, that some features
of the induced soft gluon rapidity distributions i.n'pQCD are similar to the hadron
distributions predicted by multi-string Lund type models utilizing string breaking and
~ flip mechanisms[8]. In particular the effective string tenéion, K~ 1 GeV/im in those

models is analogous to constant radiative energy loss due to induced soft radiation in
| the £ < 1 regime in non-abelian multiple collision theory. Furthermore, additivity of
radiation from multiple scatterings is limited to a domai_n a:‘ < kX[ Ey, that Shrinks
as E, increases, just as in string flip models for multiple‘ interactions{8]. However, in
pQCD, unlike in string models, k = dE/dz x u? ~ ¢?T?, is found to be sensitive to
~the i>nfrared screening scale, p, in the medium. Recall that other so called “string
effects” were also found to arise naturélly from interfering pQCD amplitudes for three

jet events in e*e~ [3]. Finally, we note the importance of clarifying radiative energy
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loss mechanisms and interference phenomena associated with formatioﬁ zone physics
for the further development of QCD transport theory and parton cascade models[16].

. Before turning to the non-abelian problem, we recall briefly how the destructive .
interference for induc'ed’ radiation occurs in QED. The Fourier transform of the current
of a classical particle 'undérgoing m collisions at space-time points z!' at which the

four momenta change from pf_; to p! is

Ty = STk = e 3

i=1 1=1

kp; ]_Cpi—l |

The resulting soft bremsstrahlung spectrum is given by

3
d°n,

SSp = Sled(B)P/2@n)) = IR/ 2(2n)°) . 3)

w
€

The sum contains m diagonal terms, where the phase factors drop out, and m(m —1)
off diagonal terms involving phase factors, exp(zk(z; — :v])) Two extreme limits are
obvious. One is the incoherent limit where k(z; — z;) > 1. In this case, the off
diagonal phase factors tend to average to zero. This corresponds to the usual Bethe-
Heitler limit, in which the radiated energy loss, dE/dz = —FE/L,, grows linearly with
energy with L. being the radiation length (the ratio of the mean free path to the
average fraction of the energy radiated per collision). The other extreme lirrlit; is the
one corresponding to k(z; — z;) < 1 for all 7,7. In this case; all the phase factors

are approximately unity, and there is an exact cancellation between adjacent terms

~in eq. (2). Only the radiation from initial and final lines contributes. This is the

so-called the “Factorization limit” since the amplitude for soft radiation factors into
an amplitude for multiple collisions times a curreht element depending only on the
momenta of the external lines entering and leaving the reaction. Because the radiation
intensity in the high Q* = —(p; — p:)? limit increases only as log(Q?), the radiated

energy loss grows only logarithmically with the number, m, of elastic collisions in the

‘medium. Therefore, for a random walk leading to @ x m, the induced radiation

energy loss per collision, dE/ dm « log(m)/m, becomes negligible for large m. In
the general case, between these extreme limits, there is a partial contribution from

intermediate current elements.



The essential parameter controlling this interference effect is the ratio of the for-
mation time (1) to the distance between multiple interactions. For an ultra-relativistic

‘particle propagating in a straight line
k(.’E,; — CCJ') = ‘(w - kZ)L,‘j = L,J/T(k) s (4)

where L;; = z; — z; is'the longitudinal distance (time) between scattering: at'i and

J.. For finite deﬂectl angles, an additional phase; —kj - r;;, appears t 3

on the transverse séi)a,ration of the scattering events. Interference between curren
elements J; and J; occurs only if k(z; -—‘a:j) & 1. This requires 7(k) > L;; and
ky < rij. The interference pattern depends also on the current correlation function,
(Ji(k)J;(—EK)). The LPM effect:in QED often refers to the specific destructive inter-
ference pattern calculated by Migdal using the Fokker-Planck transport equation to
solve for the probability distribution, W(x, p, p), of scattering points and initial and
final momenta. Monte Carlo methods have also been developed [17] to calculate the
development of very high energy cosmic.ray air showers. The interference effect found
in the limit that the scattering medium is much thicker than the radiation length is
that the familiar soft 1/w bremsstrahlung frequency spectrum is transformed into
a 1/y/w form for w < EX/Eppp. Rernarkably,- because the characteristic energy,
Erpp ~ 3 r‘I‘eV ~ 5 ergs, turns out to be so large, this interesting prediction has yet
to be verified quantitatively experimentally[18].

In the following sections, we calculate the induced non-abelian radiation for a
high energy parton passing throﬁgh the random color field produced by a color neu-
tral ensemble of static partons. This idealized system is chosen to minimize the
complications of multiple scattering theory while illuétfating the essential features of
of the non-abelian LPM effect. In section 2, we first calculéte the elastic multiﬁle col-
lision a,rnplitvude for a spinless high energy jet parton belonging to an arbitrary SU(N)
representation. We show how classical multiple collision cascade theory emerges from
pQCD in both the high and low nomentum transfer regions in the limit where the
mean free path is large compared to the range of the Debye screened potentials. In

section 3, we calculate the soft gluon radiation amplitudes in the restricted kinematic
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region range.kl & p. This reétriction limits the applicability of the results to “thin”
pl’asmaé, with the number of mean free paths m not large, or to very small ¢ < 1//m
gluons. The extension of the results to thick plasmas, that would be necessary to make
contact with the Migdal (R = oo, Ey — o0) limif[l], is not considered in .this paper.
The soft eikonal approximations used here are aimed, on the other hand, to the study
of the breakdown of factorization in the opposite limit (Eo =00, R — 00). For high
energy reactions invoIVih_g ,ﬁﬁité:}ﬁucléi,»fhis isin f_act-the‘-‘énly.'p'hy'sically relévant limit
for applications of pQCD in any case. Destructl;;s/é iﬁtérféfencé between the radiation
amplitudes from jet and exchanged gluon lines is showh to limit the transverse mo-
mentum dis‘tributions, and the non-abelian generalization of (2) is derived. In section
4, we introduce and calculate the “radiation formation factor” control]ihg the magni-
tude of the suppression of induced rédiation in pQ.CD. We emphasize the role of (colo_r

algebra on the destructive interference pattern. In séction‘ 5, the radiative energy loés,
.' dE/dz, due fo soft induced radiation is estimated. Finally, a discussion of remaining

open probléms 1s presented in section 6.

2 Multiple Elastlc Scattermg in a Color Neutral
Ensemble

2.1 The Model Potential

Consider the sequential elastic scattering of a high energy (jet) parton in the random
color field produced by an ensemble of m static partons located at x; = (z;,%1;) such
that Zip1 > 2 e;nd (zig1 — z:) > p~', where p is the color screening mass in the
medium. As a simplviﬁend fri'odel of mllll'tiple scattering in a color neutral quark-gluon

plasma, we assume a static Debye screened potential for each target parton:

V@) = g(TPeec= (@ +47) , ()

where T? is a d;-dimensional generator of SU(N ) corresponding to the representation
of the target parton at x;. The initial and final color indices, ¢, ¢, refer to the

target parton are averaged and summed over when computing the ensemble averaged



cross sections. With V* o« T? the ensemble averaged potential vanishes everywhere,

(V,“)oc TrT?# = 0. However, since
TrTPT? = 6.46:;(di/da)Cai. . ) (6)

the diagonal mean square ﬂuc’tua‘tions and the cross sections are finite. Recall that
for SU(N) the second order Casimir, Coi = (N?2 —~1)/2N = Cr Hfdr quarks in. the

n :'a,menta,l (de=N ) representa.tlon whlle Cyu=N= CA for gluons in the adjoint.

(d; _HN2 —-1= dA) representatlon

In this potential, each scattering leads on the average to only a relatively srna,Allb
momentum transfer ¢ = (4}, .2.{, qii) with each component being much less than the
incident énergy, E,. The assumption that the potentialsv are static is approximately
valid in a high temperature plasma, of massless quarks and gluons in the following
sense: As T — oo, the effective couplmg g — 0 (albeit very slowly) The perturbative
Debye screening mass p ~ gT"limits q, R gT. The typlcal thermal energy Ep ~ 3T _of '
the plasma,. constituents is therefore large compared to p. Consequently, the average
~ energy loss pér elastic collision, —q0 ~ —q° qJ_/2ET x ng is ~ g times smaller
than the average transverse momentum transfer.

Because weare interested in relatlvely‘low momentum transfer scatteri.ng (Agep K
q ~ 9T K T) the spin of the partons can be nveglected The jet parton is allowed,
however, to be in an arbitrary d-dimensional xepresentatlon of SU(N) w1th genela- :
tors, T, satlsfylng TeTe = C,14. R )

The Born (color matrix) amplitude to scatter from an incident four momentum

pl to p! in the potential centered at x; is then givev:n>by N
| Mi.(pia.pi—lv), = 2775(1’? - p?—l)Ai(qzt‘)e_i.qi.x" . | | (7
w.he.re Qi ’=-p',- — pi—1, and A; is shorthaﬁd for | |
A.i(q:i) = TGA?(Qi) = —21g BTV (qi) - | _ - (8)

The differential cross section averaged over initial and summed over final colors of

both projectile and target partons reduces to the familiar form for low transverse
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momentum transfers: .

47o?

do;/d¢}; =~ Cimmsr——es
fda, (63 + u?)?

B (9)-
where the color factor is

= %Tr(T“T”)Tr(CI}“T}b) = C2Cyifda . (10)

For SU(3), 2C; gives the usual color factors 4/9,1,9/4 for qq, g, gg scattering respec-
tively. In our notation, the angular dlstnbutlon is given by

dosfd = - TrlAfaI /(e a1y

2.2 Sequential Multiple Scattering

Our main assumption for computing the multiple elastic scattering amplitude is that
the scattering centers are well separated in the sense L; = z;,;—2;, > p~™!. Ina qué.rk-
gluon plasma at very high temperature T, 1/ ~ 1/gT and thé effectivé q9 scatteriné
cross section from eq.(9) is 0 ~ 27a®/u?® ~ ¢*/87T?. Given a Stefan-Boltzmann
density of partons p ~ 5T°, the mean free path is A ~ 5/(¢°T) > d ~ 1/¢T for
g € 1. Hence, L; > d is satisfied at extreme‘temperatures at least.

The dominant Born amplivtude for coincident sequential scattering with target
partons from z to j without radiation is then simply »

d'p;  d'pjs

Mji(Pj,Pi—ll) =/(27r)4_ 2 M;(p;, pi-1)1A(pi-1) - - - iA(pi) Mi(pi, pica) 5 (12)

where A(p) = (p* —m? +1¢)7! is the intermediate jet parton propagator. Amplitudes
involving backscattering -are suppressed at high energies because of the limited mo-
mentum transfer that each potential can impart. Because of the energy delta function
in eq.(7),. the integrations over the intermediate p{ set all of them to Eq and lead to

a conservation factor _
8(51) = 2m6(p} — py_y) - (1)

Therefore,

) .. d3pi d3p _ (D =D 1)
M;i(p;,pi-1) = 6(j7) (27) (27:)316_ (P =Py=) %, Ai(pj — Pj-1)

7



J-1
% H e /2e—{(PE—Pk_1)-Xk Artpr —z.pk_,l) J(14)
k=1 o Pg — Pk + e |

where P, = (E2 —.mz)l/2 ~ Ey, and the product is path ordered from left to right

with decreasing index k. Rearrangiﬁg the phases in terms of the separation vectors
. Rk = Lkéz +rp = Xj:+1 —-»X.k s . (15)

we can write

Mji(ps, pina) = 8(ji)e P9t P XiL(py piy) , (16)

where the reduced amplitude is

’

1-1 d3 i /2 +ipk-Rk
Pk: € €
I, iy Pi— =/ . A; = P A, i — Pi= . 17
5i(Ps» Piz1) ’{E(QW)S’P(?—PEW} i(Pi — Pim1)- - Adp P ) - (17)

Because of the assumed ordering, Ly > 0, and the integréls over p,i can be evaluated
by closing the contour in the upper half plane, settiﬁg the intermediate jet legs on-shell
with _ '

pei = (P2 — pL)"? ~ Po— pl /2P . - (18)
Thé singularities of the Ay at p.x = Po+1i(q?, + #?)"/? can be neglected because they
leave very small residues oc exp(—p L) given the assumed large separation pL; > 1

between scattering centers. Therefore,

N Jj-1 d2 +1pg ’ .
Puik € :
Lii(pj, pic1) “ / {H (2r)? 2P, } A;(p; — Pj-1) - Ai(pi — Pi-1) » (19)
with p,i given by eq.(18). Note that in the high energy limit I;; survives in spite of
the 1/F, residues because A; « Ey due to the vector nature of the coupling. Also

the ordering of the potentials in eq.(14,19) in decreasing order of the index cannot

be permuted in the non-abelian case because of the non-commuting color matrices in

the A;.



From eq.(19) we can derive two interesting limits. One is the éemi-classical (large
angle) cascade limit, and the other is t’hé eikonal (straight line) limit for multiple
small momentum transfer scatterings. The first case illustrates how the transverse
momentum mtegratlons can decouple resulting in a factorized form of the multiple
colhsxon amphtude and is discussed in Appendix A. The second limit is however

physma-lly more‘releva‘-nt' and is considered below . .
2.3 Color Algebra
To make explicit the color algebra we write
Mj; = (aj -+ a) M3 ™ _ - (20)
in a shorthand notation wh¢re
(aj;--ai)-_;'T“J'---Ta‘ : (21)

and we adopt the usual summation convention over repeated indices. For the color

neutral ensemble under consideration

M;;J---a,‘ x (T;‘J)CJC; . (]}M)c.'cf ] | , (22)
Hence,
Qiay al.a’ J a’ J '
(M7 (M7 o I dkTT(T *Tp%) o [T (Bapay Corfda)- - (23)
k=1 k=1t )

Given eq.(23), the color factor associated with the jet parton is given by
.. 1 - i ‘

Cle,g) = 5Tr((ai-- - a5)(a; -+~ a))) = C3 i (24)
as obtained by repeated use of the basic (aa) = C,1, relation. This is simply the
product of the color factors, C,, occurring for each isolated collision as in eq.(10).
Therefore, even though the amplitude eq.(20) does. not factor in color space, the en-
semble averaged coincidence cross section does factor for large angle elastic scattering

in a locally color neutral ensemble as shown in appendix A.
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2.4 Eikonal Limit

For a high energy jet, the coincidence amplitude is dominated by small angle scat-
tering. In this case, we change variables to q; = p; — pi_1 with p,, =~ B ~ E;

approximately fixed, and write the total momentum transfer as

The coincidence amplitude can then reduces to

N

., (2r)?

: S i
Myi(psspit) & 8(ji)a - ai)(—ig)~+12Eo [ {H i -"*“‘*V“%qk)}

x(2m) 62(Q.L_71 ZQU . (26)

Note that the dependence of the phase on the z; can be factored out with

J . .
D Gokzk = (P — Po)zi + (Po = pejca)zi - (27)
k=1 .

This phase is important only for off-shell amplitudes with-pzj # Pyor p,;_1# Po.
To average over the transverse coordinates x;, we employ the frozen targeﬂ ap-

proximation taking the initial and final wavefunction of target parton, k, to be ¢;(x;)

and by q&,; 7(xx) respectively. The amplitude to leave the target in a specific final state

is obtained by replacing the phase factors by transition form factors

Pl LRI Ff(Qk) = /dazkﬁf(xk)e_iq”x"%i(xk) - (28)

After squaring VM]-,-., we must sum over all final states ¢x;. For scattering in a chaotic_‘
or thermal bath we must also average over ar; ensemble of initial ¢;.

A simplification is possible in the high energy limit when the' energy and longitu-
dinal momentum transfers are small, and they can be neglected or replaced by their

average values 1n 6(y¢) and E’} In that case, closure (3°; ¢isdi; = 1) can be dpplied

10
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to the sum over final states. Averaging in addition over initial states with probability:

p(), the average squared amp’litu’de'contains factors such as

Yop(0) > Fiauk) Ffi(—dis) = / dPrpe kU Xep, (x,) = Ti(qur — qli) »
: 7 o |

; (29)
where. pk(xk) P p(z)lq&ko Xk)|2 is the ensemble average den51ty distnbutxon of target

parton k. In’ eq: (29) note that T k(q _|_) is just the Fourier transform of the Glauberi

thickness function o _ .
Tulxux) = [ dz pulzx0) (30

which is.the probability per unit area of finding parton k at a transverse coordinate
X] k- ,_For a broad z distribution, it would appear that we may have violated the
assumed pL > 1 as’s'umpision. However, in the m! different z orderings of the centers,
one of the previously neglected backscaftering ainplitudes becomes domiriant and ~
after reiabelling thevdummy-indices the same result is reéovered. The only essé'ntial
assumption is that the mean free path 1s long compared to the range of the potential. |
With eq.(29), the ensemble averége of the squared amplitiide ishproportional to

{

(IMsi(pis, p)?) o< [ {II (z‘ﬁf‘fzq“T(qik dik)v:k(qg)(v:k(qm*}-
x(2r) 6(Qusi — un (Qui =Y dl) - (31)
. =1

Only diagonal color components survive because of the cdlor'neutrdlity condition
eq.(23). If the transverse coordinates are distributed over a radius, R > u~!, then the
Fourier transform.of the thickniess function will limit the difference, |qix —q' 4| <1/ R.
. Because V'*(q;) varies slowly on a scale 1 /R < u, we can therefore approximate

(VP (a)” = (Vi*(aqw))” in the integrahd. vThev q; integfais result ‘therefore in a

11



multiplicative geometrical factor

/{H d2 : k(q.Lk q_]_k)}(27r) 52(2(Qu qy)) = /deHTk(b (32)

k=1 (2 )2 =2

Wlth the above 31mp]1ﬁcat10n, the ensemble averaged comc1denoe Cross sectlon to

1ally with. partons from 3 to ] ‘.;reduces to
| i G |
doyi/*Quii = [ &b [ T]{auTi(bldor/dai} 6(Qui— > au) - (33)
. : k=1 l=1 : :

This is recognized as the classical Glauber multiple collision limit, with pi(b) =
[ Ti(b)do; being the probability of scattering off center k on a classiéal trajectory at

impact parameter b.
3 Induced Soft Non—Abelian-Radiation *

We turn next to the inelastic amplitudes for induced radiation of a gluon with color

¢ and light cohe momenta and polafiZation
Bo= (wk,, k) = [2P, K2 /:uP+ k]
¢ = (_60,—60,61_) =1{0,2¢, -k, /zP*, €] . (34)

- Light cone‘co.ofdinates are denoted here by square bréckets; kY, k=, k], vwivth k* = .
wkk, = ki/k*. We chose the two physical polarization states for on shell (k* = 0)
. 'gluons to satisfy both ¢k =0 and en = 0 with n* = [0,2,0l],i‘n terms of two
orthonormal € . Thus €® =&, -k, /(w +‘k2). Inl»ight cone coordinates, the incident
'Jet parton has pi = [P*,m?/P+ 0] with Pt ~ 2E;. We focus on the soft limit
defined by z < 1. First we consider the amplitudes for radiation frdm the high energy
parton lines. Then we show that the three gluon Aamlplitudes essentia,lly cut off the
soft dky /ky sp;ectrurn at k; ~ p. Note that the induced bremsstrahlung associated
with a single isolated collision was derived in pQCD in Ref.[19]. Our interest here is

on the induced radiation pattern associated with multiple collisions. -
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3.1 Radiation from Internal Jet linesv

The amplitude to emit a gluon with color ¢ from the jth intermediate jet line during

sequential scattering with target partons from 1 to m is

Mgl(k?pmapo / (2 )4 m1+1(pm’ p; — )
x {iA(p; — k)( 2295PJTC)ZA(I’J)} MJ l(pJaPO) (35)

The 1ntegralsove1 p; rvset their- Values to'Eg because of the 5(1 ]) in MJ q. However,'-"

for all' the subsequent intermediate lines in My, ;4; the energy is shlfted from Ej to

Ey — w, and a new overall energy conservation factor arises
§(m1) o< 6(s0, — Bo+w) - (36)

These shifted energies change the classical momenta in subsequent legs (k > j) to

P, = PR, with
Py = (Bo—w)?=—m)Y?x Py—w/uv, . . (37) -

where vy = Py/ Ey is the speed of the incident parton.

To perform the p,; integral, it is convenient to split the two propagators using

2ep35(p; ~ K)AMp) = £ (s — k) - ,:”Ij“A( p) . (38)

~which is valid for on shell radiation since k* = 0 and ek = 0. The contour integral

over p,; can then be performed as discussed in Appendix B.
With (123, 124) from Appendix B, the radiation amplitude eq. (35) reduces in the

klnematlc region << land ky < pto

2 . - Ly
d°pij 1 iP;Ri-5p7))

Mcj ~ S 1 '—thr_n —iPm-Xm +ipo'X1/

€Di ik ' .
x ( k’;j e+ike; —-k-g%e“kw)Im,m(pm,pj>T°I~,l<pj,po> . (39)
J J

Note the appearance of the phases kz; and kz;, where z% = (t;,%;) and the inter-

action time, t;, is the classical transit time along the path from x; to x; as defined in

13



eq.(121). In addition, the current element in the brackets involves on-shell momenta,

P4, b, defined by
= (Eo, (P = (Pi; +p1;))Y%, P+ puj) (40)

= (Eo— w,(P} - (Py; + p-LJ) ) 112 Pri+Ppj) (41)

Note ﬁnally the order - whlch the color ma.trlx T° ‘appears above

For radiation with <K .u, we can factor out of the inte \a,nd a current elementz |

proportional to eP;/kP;. To see this, note first that for a hlgh energy on-shell parton
with p = [(1 — §)P*,m} /(1 — §)P*,p,] and radiation with kinematics (34),

€] - kJ.
2
k_L

e _, & -(ki-3zp/(1-9))
kp T (ky —zpr/(l —6))?+ 2?m?/(1 — §)?

&

for amy K k_L . (42)

SN

This approximate independence of the current element on p* allows us to factor out
(42) from the integrals for zmy < ki. However, a more general expressidn can
be factored out that is valid also in the high momentum transfer limit. For fixed x;
and Ey — oo, the momenta p% and p} are approximately fixed by geométry to be
P! = Eo(1, R;), and therefore |

p; b _ P ‘ |
~ N — 43
kPJ ka kP; (43)

Since this expression also reduces to (42) when Rj points along the jet direction, the
final factorized form of the amplitude for intermediate line radiation becomes

Mrszjl - ~ gZP ( 1kr, _ e:l»1‘1+1) (am . ~a]~+1ca]~ . .al)M:{,l,...a. ) (44)

In this expression, the j independent phase factor, exp(—iwt,,), was discarded.

We note several points in connection the amplitudes for induced radiation from

the internal jet lines given by eq.(44).

.

1. The approximate factored expression holds both in the large angle cascade limit
considered in Appendix A and straight line (Eikonal) limits of M,,; as long as
r<€1land k; < pu.

14



2. Just as in the QED case, these intermediate line amplitudes vanish for radi-
~ ation with formation length significantly exceeding the separation of adjacent
- scattering centers. In particular, for fixed z = k¥ /Pt ~ w/Ey < 1 the phase

factors cancel in the k; — 0 limit:

M o k(41 — 2;) = wLi(1/vo —cosf) —ky 1y z.Lj/%(k) kl ry; =0,

where T(k) is the formatlon--tlme-.»-

length) from eq (1)

3. Unlike in momentum space, there is no factorization in color space. The color
matrix for the amplitude without radiation is modified by radiat_irig a gluon of

color ¢ after the jth interactiqn by the insertion of a T° matrix:

(am';'aj"'_’ai)ﬁ(am'-'.caj."alv) . .' - . (46)

4. Even for z < 1 the condition leading to the approximate form in (42) breaks

down for very large number of collisions since the random walk in transverse

R momentum space leads to a growing (p3,,) « mu?®. Thusfor large m the above
apprbximation is only valid in a restricted z region |

x<——i<<—— : - (47)

vm vm

5. We must also add the amplitudes for radiation from the initial and final lines
to the above .a,mplitudes for radiation from internal lines: These external line

amplitudes are

MS = Mu(Pm.po — k)(zA(po — k))(— 2296poT°)

CP z T ) A 0]
R g e m M
mi = (1A(Pwn))(—2t9epmT ) My (pm, po)
€Pr ks oy : R '
. R ng eFm (Cam -+ ar )Mo | (48)

where we defined Py = pﬁ, Pt = p# for notational convenience, and we again

discarded the common phase factor, exp(—iwt,,), as in eq.(44).
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The sum of all the amplitudes (44,48) can then be written in a suggestive form

(k pm’pO) ~ _2[6']( )]a;-n a;M:z?mal (pmap0) '7  ) 4 . (49)

where the effective color current element analogous to (2) is

L - tkzy C_PI __._.__6PI—1 gl YL 80)
[e‘l(k)]am a.‘1 - Zgge ' (kpl (a’m ca; - al) kP[_l (am élc al)‘). 1: (50)

[

In the ak;;lian case, thé maﬁrices in (---) are set to unity, and Eqs(49,50) redfuce to
the soft iadiation formulas of QED. In the abelian case the current actually vanishes
as a power of z in the z — 0 limit on account of (42). In the non-abelian case, the
non-commutativity of the generators leads, however, to a non-vanishing current in -
(50) even for z = 0. |

We emphasize that the ap1;10x1mate form of the effective current in eq. (50) is valid
oﬁly in a restricted kinematic domain ,(47)' Gauge invariance requires the absence of
induced radiation a,s.sociavted with collisions without momentum transfer[19], i.e., for
P, = P_;. On the other hand, the contribution from scattering at [ in eq.(SO) is non-
vanishing 1f e, a] # 0. To recover full gauge invariance, of course all the amplitudes
involving three and four gluon " vertices as well must be added to the above result.
However, since the domain of applicability, of eq.(50) shrinks to zero as g, ; — 0, it is
consistent with the gauge invariance requirement in the kinemafic domain indi‘cate.d.'

For the physically most interesting eikonal limit, the effective color current reduces

for zv/m < ki /p <1 to

IRy = 2ig z cleede) . (D)

- The lower bound on the domain of applicability comes from (47) For k, < zu+/7,
the effective current has components in the direci;ions p.; that cannot be factorized
out of the elastic amplitude. We note that (51) éaﬂ also be derived directly from
(35) using the eikonal form (26) for My, ;41 and M, ;. The above derivation has the

advantage that the connection to the familiar abelian case is made more traﬁsparent.

'
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3.2 Radiation from Internal Gluon Lines

In the previous section we concentrated on the amplitudes for induced radiation-
in which the gluon is radiated directly from the fast jet lines without final state
interactions. Here we consider amplitudes involving one or more three or four gluon
vertices in which the gluon scatters with one or more of the target partons before

emerging with kinematics given by (34). In the hi'ghfenéf:gy limit, the amplitiides.

Ai’anlving the four éiﬁbn:\féfti(‘:éé-'can be generallynegle '”b'ecause_l; those vertlces aré
momentum independent and a contact interaction with two widely separated target
partons is small. The amplitudes involving three gluon vertices can be classified by
the number of such vertices and the indices of the scattering centers to which one
of the gluon legs is attached. The simplest of such amplitudes, denoted by G¢,,,
corresponds to a (possibly virtual) gluon emitted by the jet between the z;.; and

zj4+1 with that gluon scattering off the target parton at z;. For 1 < j < m,

“_IJ (:!”)4 (:37(-)4 m,J ”l’j[] p] 37 sV Vg 1 1 ]

where with g; = p; — pj_1 the single three gluon amplitude in the Feynman gauge is

G5(k,pj pi-1) = (=1gTo(pi-1 +p;i)*)(—2A(g5))
X (= foa,ehasnl@ =45 — ks k) AP (g5 + K))eM (k) . (53)

The external field at j in our case is
A" (q) = ¢™2r8(¢")V;” (@)e™ 0™ (54)
and the three gluon tensor is
A (pr, p2,p3) = (P2 — P3)°0" + (s — p1)°g™ + (P — )9 . (55)

The amplitudes with multiple three gluon vertices correspond to multiple final
state interactions of the emitted gluon. Because the centers are assumed to be far
apart, the intermediate gluon lines in those amplitudes are set on shell (by the cor-

responding dp, contour integral). Those amplitudes therefore describe final state
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cascading of the gluon in the medium. In QED these type of amplitudes are re-
placed by higher order Compton like'amplitudes. For gluons, final state cascading
will broaden their final k 1 distribution and induce further gluon showering. However,
for the problem of the energy loss of the incident jet, which is our primary interest
here, the final transverse momentum distribution of the rescattered gluons is not im-

portant. In addition, in the soft Iimit:k'_L < p each triple gluon vertex gives rise to a.

factor O(k, _L/ L) sma,lle""‘ than the correspondmg 1nterna et lme radlatlon amphtude SR
as we show below. We therefore concentrate here only on the amplltudes 1nvolv1ng’
one three gluon vertex given by (52).

As these arnp.litudes only arise in the non-abelian case, we can simplify the deriva-
tion by evaluating (52) in the eikenal limit. As shown in Appendix C, we find in this
limit that | |

, o (g '
Ge, ~ 2m6(p2, — Eo + w)(—ig)™(2Es) / H( Laie g, xuvak(qm))
. k=1 (2 )

)2 _ _m ié,—/r(k)gl'(cuj"ki)a e alla
x(2m)*6(Qu ~ ky ?;-:lq_Lk){Qge (qu; — k1) (am - -[e, a5 1)}

(56)

‘We note that corrections to the effective current element in the {} brackets arise for
large j in the regioh k; < :cpj_j ~ z14/j from terms neglected in the vertex funetion
in eq.(133) of Appendix C. In eq.(56), Q. = P, is the final transverse momentum
of the jet parton. |

Summing these three gluon amplitudes and adding the radiation amplitudeé from
the jet lines in Eqs.(49,51), we obtain the total amplitude for m-fold coincidence

scatterings together with soft radiation in the eikonal limit:

d qLik

) e—t(h.k xJ.kVak qu:))

Mi(k,pm,po) ~ 2r8(py, — Eo + w)(—ig)™ 2Eo)/ H (

x(2r)? (Q.L"k.L"'Zq.Lk {—ZCL Ji, am(k;{ql.i})}
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(57)
.where the effective color current is

a.1 am(k {q-U Z ezz'/T(k (a'm : [C’ ai] . al) ) - (58)

A , /
~and the elementary current elements are

omm(gegesy) @

The following points should be noted in connection with the abeve results:
1. For the case m = 1, eq.(58) reduces to the result derived in [19].

2. For k; < qui, the three gluon amplitudes can be neglected as noted before.

Therefore, in this limit eq.(58) reduces to eq.(51).

3. However, for very small k; < zp,; corrections to eq.(59) arise as can be seen
from eq.(42). In particular, the singularities at k; = 0 is regulated on a scale -

zp, where ,u is the (dynamic) mass of the jet parton.

- 4. The singularity at k; = q;; is a non-abelian feature due to induced radiation
along the direction of the exchanged gluon. It is regulated by the vgluo.n polar-

ization tensor in the medium|[20].

:5. The approximate coloj‘ current is strictly valid only for k; < g and 2 < 1.
However, eq.(59) shows the general cancellation of amplitudes for k; > ¢y,

that limits the induced radiation from an isolated scattering to k. S .
6. For gq;; =0, the current element ; vanishes in accordance with gauge invariance[19].

7. The phase factor in eq.(58) is independent of the transverse coordinates x,; in
the eikonal limit. The transverse phase factors, exp(-ikl -Xy;), associated with.

each isolated collision are spread over the net elastic phase factor exp(—: Sx qus-

X_|_k).'
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8. Finally, corrections to eq.(59) also appear in kinematic domains where either the
radiation formation time, 7(k), or the intermediate jet lifetime, 2w/(q.; —k )?,

is on the order of the mean free path due as shown by eq.(137) in Appendix C.

Eqs.(58,59) are the main result of this paper from which we derive next the non-

abelian LPM '.inter'féren'ce effect in the ‘eikonal limit.

The spectrum of soft induced bremsstrahlung associated with multiple scattering in
a color neutral ensemble eq.(23) can be computed from eq.(58) using steps similar to

those leading from eq.(26) to eq.(33). Analogous to eq.(3), we find that

d3n,, 1 1 ' . 2 :
YTBEE T 2(27 )3 Crd <Tr§ I[fJ(k, {Q+i})1a,...am | > . (60)

Recall that C is the color factor for the coincidence scatteriné cross section wifhout
radiation from eq.(24) with C2 and d being the second order Casimir and dimensioﬁ
* of the SU(N) representation of the jet parton. As in eq.(31) the-aésumptions of
- color neutrality and that the transverse distribution of target .partons is much wider

1 are essential to obtain the above diagonal form in color and Qui labels.

than g5
Note that the squared current involves a sum over repeated color indices, ¢, a;, and
the trace is over the resulting sum of products of color matrices that we consider in
detail below. The average, denoted by large brackets, above is over the transverse
momentum transfers, q,;, and giyeh in our case by

1

a #zdé‘hi -
{(flaw)) =/{Em}f(qh) : (61)
We are mainly intereéted in compd1'ing the induced spectrum for m > 1 to the
radiation spectrum from a single Jisola,ted collision{19]:

By [a,Ca q
= . 62
“ Bk < ? Rk a0/, (62)
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The average in this case is over a single scattering as obtained from eq.(61) by setting
m = 1. The + label on the average indicates that the infrared singularities are regu-
lated in a quark-gluon plasma by the dynamically generated masses of the initial jet
and radiated gluon as discussed in the prévious section. Note that this mechanism

- is different from the regulation of infrared smgularltbles considered in Ref. [19] due to

form factors ansmg in collisions of color smglet hadrons In that case, mterference ‘

the k; =0 and the k L= q n smgularltles In.a, quark- gluon plasma at the per e
bative level the quasi-particles are color non-singlet partons, and the singularities

are regulated By medium polal'ization effectsv[20]. Nevertheless, in both cases similar
expressions arise at the end. |

" With eqs.(60,62), we can define the “radiation or color formation factor”, C,,(k)

via ' .

danm _‘ ‘ ) d3n1
T = Con(k) (63)

The result can be expressed as

k Lom ,
c) = '(31"21)/"'("7) .
| Cr(k) C;"C’Ad; (C,,+21ze;0 e F; (L)) , (64)

in termé of color coefﬁgients,
| Cij = Tr(am - e,ai - aya - qapdean) . '(65-)‘ |
and current correlation functions , | | | |
| Fylk) = G- RGP 5 )
with j; giveh by eq.'(-59). | |
4.1 Color Coeﬂ'icients

The color coeflicients in ed.(65) can be computed by repéated use of basic SU(N)

relations for sums of products of generators:

aa = Cyly , [a,b]a-— —%ﬁb
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aba = (Co—Ca/2b , [a,b[ba] = CaColy . (67)
- The diagonal coefficients can bé seen to be identical to the normalization factor in
eq.(64): |

Ci = Tr(CP~ [c a:|Ci [a,-,-c]) =CPCad . - (68)

The off diagonal j < coefficients are, on the Other»hand',":

Tr(Cy = le,aidasos - 0,04 [ay e - a)
_ C Cm t+]—1(02 _ _C2_A)i--] 1c.2d .
= _7.2(]\— Tg)i_j_I‘Cii/2 , o (69)
where o R -
. _Cl _ [ N?*/(N?*—1) for quarks with C; = Cp (70)
"= 2C, | 1/2 for gluons with C; = Cy4
The radiation formation fa,ctot‘ is therefore
m i—1 o .
Cn(k)=m — ReZZ(l — 1g) I Fyy(k)etlbio/7R) (71)
1= l] 1 » .
For a single isolated scatttering, of courée,
C Ci(k) =1 . (1)

For multiple scattering in the Bethe-Heitler limit, éorresponding to L;; > T(k) the
phase factors average to zero, and the intensity of induced radiation is simply addmve

in the number of scattermgs le.,
Conlk) mm if Ly; > (k) foralli > j . - | (73)

In the dee‘p LPM limit, ~where 7(k) > Li;, the destructive interference pattern summa-
rized by the formation factor depends on the form of the current correlatlon functions.
It is amusing to note that that the negative sign leading to destructive interference in
eq.(71) arises in QCD from the color algebra, eq.(69), in contrast to QED where the
destructive pattern in eq.(2) arises from the opﬁmite sign of contributing momentum

space amplitudes.



4.2 Current Correlation Function

In order to investigate the formal structure of the current correlation function, eq.(66);

PR ki  qui—kg ) (k.L ai; — ko )>
) <(k fas — k) \F " au - ki) /,

~ (LHHED) | N (9

we evaluate

where in terms of the transverse vector, J = (q; — k,)/|qy — ki|?

HOZ) = (o), =i (RS (75)

The approximate independence of the current correlations on the indices, ¢, 7, is only -
valid in a kinematic region ky > zp,; recalling egs.(42). In QED this restriction is
severe because the leading term, €, - k /k%, from eq.(42) cancels, and the photon
spectrum 1s peaked at z ~ 1. In QCD, on the other hand, the radiated energy
fraction, xdn/dzd%k,, is approx1mately mdependent of z from eq.(62). Therefore,
unlike in QED the regime z < 1 is relevant in the case of QCD. We find below that
the induced radiation is indeed limited to z < /\;zz/E'o & 1, and thus the above
approximation is justified. This approximation cannot however be extended outside
the soft eikonal limit. For moderate z < 1 it clearly‘breaks down éspéqially because
p2,; grows approximately linearly with 7 due to multiple scattering. For the general
case,. the exact cur-rent element must be used and the correlation function must be
computed from a solution of a transport equation, as first done’v- by Migdal[1] for QED.
We limit the discussion here to the soft eikonal regime.

The di&gonal correlator, in the same limit is proportional to the invariant gluon

—~

distribution from a single collision:

=12 k.L ' q — ki 2> < qi >
(177 o < kz + lar — k. |? kiIQL—kJ.P
= (I+2H(K) + ki))/k : (76)
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which involves a second function

Hy(k3) = k(|3 ) <_qTTP> . (77)

The approximate correlation function in the soft eikonal limit is therefore independent
of 4,7 and given by | |
1*4;"‘2H + H"" -

Because (|J — ( )/k | ) > 0, note that H2 > H2 and consequently the current
correlation function is bounded:
L] . - .
0<F(k)<1. (79)

The upper bound is approached for k3 < (¢%) ~ p? In that soft region both

H =~ H,; x k? /(q_L)<<1 and
Py~ FO)=1. (30)

The lower bound is approached in the opposite limit, k2 > (¢2), Formally, H =~
—1 —(g3)/k% while Hy ~ 1 + 3(¢?)/k?, and consequently in that limit

F(k) & () /K2 . | ,ﬁ (81)

The exact form interpolating between these limits depends of course on the propef

inclusion of polarization effects in the medium.
4.3 The Factorization Limit
For fixed z'~ w/Ey < 1 and k; — 0, Fi; = 1, and the formation length, T(k) =

zP*/k? becomes much longer than the separation of the scattering centers. In this

case, the phase factors can be set to unity. With the help of

m 1—1

S (=) =2 (- (1= (1= ) (52)

i=1j5=1
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the radiation formatidn factor reduces to

lim Cn(k) = C2 = l(1 — (1 =7r2)™)
0 T2

_ ( 1-1/N*(1-1/(1 — N*)™!) for quarks

o 2(1 —1/2m) for gluons
| - | - (83)
Note also that for a gwen re = Chp /202, Cce approaches 1 / R mdependent of the
number of collisions as m — oo. This is the Factorizatior_l limit, in contrast to the
. ‘additive Befhe-Heitler limit. The saturatier.l-.value depends on the SU(N ) represen-
| tation of the jet parton and causes the C4 factor in eq.(62) to be replaced ‘by 2C,.
Interestingly,v for quarks in the fundamental 1‘epresenita.tionb the destructive interfer-
ence is. so effective fhat for N = 3, the final radiation i-nteneity in the k; < (q1)
region after many collisions is even slightly less, 1/r, = 8/9, than_for-e single isolated
collision. However, for incident gluon jets, the induced 1'adia,tion'approaehes twice
that from a single collision. For exotic hybrid partons ibnk very high dimensional rep-
resentations of SU(N), the suppression effect in fact .disa.pp‘ea,rs altogether for fixed
m as C4/mCy; — 0. This dependence of the LPM effect on the representation of the

parton is a specific non-abelian effect in QCD.

4.4 Ensemble Averaged Formation Factor

- For 0 < k; < p, we can write

m -1 ' :
"—Rey_ Y (1 —ra) (1 = Fy(k)elm0l"0) - (84)

=1 j=1

Cm(w’ k.L)‘= Cr?’z +

]l - T9

. To see an’alyticaﬂy how C,, interpolates between C?° and m as a function ef the i‘atio
of the mean free path to the formation time, we avefege now over the interaction
2 pomts accordmg to hnear Kinetic theory. Because we restrict the discussion here
to the eikonal case, the cornphcatlon due to the full 3D transport evolution can be

neglected. ‘In linear kinetic theory the longltudmal sepa,ratxo_n between successive
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scatterihgs, L = z41 — 2, >is' distribut‘ed simply a_s'
exp(=Li/N)/A , __ (85)

where A = (ogpuvp)~! is the mean free path. Therefore,

Q

(et ( !

where 7(k) = 2xEo k2. . ‘
The sum in eq.(71) can then be performed since in this soft eikonal limit Fj;(k) ~
F(k) = 1 In that case eq.(82) can be used with the replacement

1 —ry e v :

T Ik (87)

1—7‘2

- The resulting radiation formatibg factor reduces to

: _ mF(k) | F(k) (1 =irpx(k)) C1-rm \TN |
Cnlk) = m - 1+ x%(k) + T Re((l—ix(k))2 [1_ (l—irgx(k)) D (88)\

where the dimensionless function controlling the non-abelian LPM effect is

A M G My
T(k)ry  2zreEq  Cyacosh(y)

x(k) = (39)

The last form is in terms of the rapidity, y of the radiated gluon (w = k; coshy).

Note that éq.(88) satisfies all the previous limits considered (m = 1, k; = 0, A = o).
- For moderate large m the term proportional to (1 —ry)™ term cein‘ be neglected,

and the formation factor simplifies to

iy (FR) Y F() (1 (1= 2R
el = 1 1‘+x2(k>>+ el (0 +x(0)? ) 0)

This illustrates clearly how the radiation formation factor interpolate,s'between thé :
T=0 ana T = oo limits as a fun(.;tiori of the dimensionless variable X- _However, 1t
also shows that, through the dependence on the current correlation function, F(k),
the radiation forma.fion factor is actually a functiqh of two dimensionless variables,
x(k) = Afrym and k% /p®. Thus, both the range, p~', as well as the separation, A, of -

the interactions inﬂuences the final interference pattern.
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For quarks, r; = 1, while for gluons r, = 1/2. In the collinear regime, k) < p
regime, F(k) ~ 1, and a further simplification occurs. The radiation formation factors

for incident quarks and gluons reduce then to the following simple “pocket” formulas

L TR Em2

CL(k) O al

Chlk) = = OET VRN +4)\2)'.2” : (91)

While the above interpolation formula for quarks can be extrapolated down to m = 1,
the gluon one only applies for large m because of the extra factor of two radiation in
that case for large m. We emphasize again the restriction zpy/m L ky < p oused in

deriving the above expressions.

5 Induced Soft Radiative Energy Loss

An important application of the radiation formation factor is to the:probrlem of cal-
culation of the radi@tive energy loss per unit length, dE/ dz; for a parton passing
through dense, color .neutra,l matter with a mean free path, A > pu~!. We need
only the incremental increase of the induced radiation going from m to m + 1. For

moderately large m and k) < p
dC [dm = x* (k) /(1 + x*(k)) - (92)

with x(k) given by eq.(89). Increasing m — m + 1, the average increase of the

interaction length is A, and thus from eq.(62,63)

o d . e @1 dz a,Ca zEox*(z, kL)
wiifdz = —— [ d z/ dki | — '
dEop/dz )\dm/ g A l/,;0 z A3 1+ x%(z, kL) 9%

The subscript “soft” is included to emphasize that the eikonal approximation, used

in deriving eq.(92), restricts its applicability to the kinematic region zu/m < k; <
p. The limits on the fractional energy loss are zo ~ k, /E, from kinematics, and

zy ~ ki [/p from the above restriction. Note that we neglect the 1/1/m dependence
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of z, since the Factoriza,tion limit is found to be insensitive to this cutoff, while the
Bethe-Heitler limit must reduce in any case just the sum the_ra‘d'i'a,ti-dn'- from isolated
(m = 1) collisions. |

The kinematic restriction k% < u?, also follows from the destructive interference:
" between three gluon vertex and jet line‘a,-mplit‘udes This point was a.lready empha-

sized in [19] but was missed in ref:(1 3] where the domain of k. 1ntegrat10n was allowed

to extend up to the kmema.tlc lumt-'-'k the*e_rr,(_)_neous :

conclus1on that dE / dz x E(), in v1olat10n'. with the factorlzatlon theorems.

The integral over z can be performed by changing variables to x, with the result

z1 do a2 Eyy? | :
/zo ?1_*_0;(2 =_ /\2131 (tan“‘(/\,zk_,_)—-tan"()qkl(p/,Eo))) ) (94)

where Ay = A/2r,. We see that in the Fy > A,p? limit, the second term is negligilﬁl'e.
Furthermore, since Ay ~ 1/g > 1 is a basi‘c assumption in our multiple collision
analysis, the first term in the brackets is approximately 7 /2.

The integral over &k, isvalso analytic and illustrates how dE/ dz interpolates be-

- tween the Factorization and Bethe-Heitler limits. We find that
dEopi/de = $o,Cop?{L{Aap] — LDop(n/Eo)l} ~ (95)
where the interpolation function is

Lia] = 72r (1+ 1)tan l(a)—-l-] . : -~ (96)

a

Note that for a > 1, L]a] & 1 —-4/(7ra). For a < 1, on the other hand, L[a] ~ 4z/3.
Since, A;u > 1, the first term in the brackets is always close to uhity. However, the
second term depends on the dimensionless ratio, ( = Au?/Ey. This ratio is large in
‘the additive Bethe-Heitler limit and small in the Factorization limit. .

To see how eq.(95) interpolates between those two limits consider first the ap-
proximate Factorization limit. We fix At > 1 and send Ey — oo. In that case, the

second term in eq.(95) can be neglected and
dE o5 /dz ~ %ascg/zz ~ 21a’CyT? - (97)

- 28



where we used g ~ ¢T to estimate theforce range in a quark-gluon plasma at tem-
perature T. The result is thus sensitive to the square of the radiated transverse
morﬂenturn as suggested in [9]. Note that because we are only calculatiﬁg the low
k1 < p contribution, our derivation does not allow us to calculate logarithmic energy
dependent factors as obtained qualitatively in [9). However, up to such logarith-
mic factors eq (97) demonstrates the approximate‘ constant behavior of the i‘nd_uced.'.
radiated- energy loss m the Factonza,tlon hmlt | .

Tn the other extreme hmlt we fix E, and send )\p — 00 so that C >> 1 ThlS is
the dilute limit where the mean free path exceeds the radiation formation length. In
this case the arguments of both terms in eq.(95) are large, and the small difference

leads to

4E0 . E(l (2QSCA)
71';1,2/\2 A

Note that in this limit we recover the linear dependence of dE/dz on the incident

1
dEpi/dz ~ §asCQ,u2. (98)

T

enefgy (modulo, loga,rithrﬁs), as in the Bethe-Heitler formula.

It is interesting to note that in the additive regime the radiated energy loss is
proportional tq Ca, as for.a single scattering via eq.(62), However, in the approximate
FectOI‘ization limit the induced radiated energy loss is proportional to the C; of the
jet parton. This means in practice that gluoﬁs radiate Cy/Cp = 9/4 mere gluons
than quarks for SU(3). Recall, that the energy Iose due to elastic collisions for gluons
is also enhanced relative to quarks by the same C4/CF factor{21]. For comparison,

the energy loss due to elastic collisions from [21] is
v AT 2o N |
dEgfdz = —?;-CgasT log(Eo/masT) . (99)

Therefore, the total dE /dz simply scales with C,. This scaling differs from the quali- |
tative estimates in [9] using the single scattering bremsstre,hlung’c'r.oss sections of [19].
It is interesting to note that both the elastic and radiated energy loss is proportional
to a? and are comparable in magnitude up to uncertain logrithmic factors.

We emphasize that eq.(97) for the radiated energy loss is only an order of magni-

tude estimate because we have not calculated the contribution from the non-factoring
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ky > u domain. In order to improve the estimate, all the multiple three gluon ver-
tex é.‘mplitlid'es added to those computed here. That moderate high: ki regime also
requires a more cereful freafcment of the current correlation function as well as of the
polarization mechanisms that regulate infrared singularities. . A proper treatment of
" the above problems remains an open theoretical challenge

Fmally, we: comment‘on the comparlson of eq (97) to the bound on dF / dz derlved

by Brodsky and 'H ilO] based i’n the unc

carrylng away a fraction z of the 1nc1dent energy, Eo, with a gwen k L, the uncertamty "
in its formation length is 7(k) from eq.(1). The induced energy loss for radiating one

- gluon is therefore bounded by
dE/dz < (:cE/T(k)) (k2)]2 ~ u?/2 . . (100)

Our estimate satisfies this bound because a, < 1 was assumed throughout our per-
turbative analysis. In fact, we may interpret Csa, roughly the prbbability of ra-
didting one gluon with 7(k) < A between multiple collisions. That gluon is radi-
ated in a cylindrical phase space with appfoximate unifofm rapidity density between

0 <y < log(pA/r;) and limited k; < p.

6 Summary and Discussion

In this paper, we initiated a study of multiple collision theory in pQCD concentrating
~ on the eikonal limit. We calculated elastic and inelastic multiple collision amplitudes
for a high energy parton propagating though a “plasma” of static target partons.
We showed that the assumption of color neutrality was vital to recover the classical
parton cascade ,picture_iﬁ both large and small angle scattering. Our main simplifying
assumption was that the mean free path (A ~ 1/¢2T) in the target was large compared
to the range of the interactions (07! ~ 1/gT). In particular, we showed how the
classical Glauber scattering cross section eq.(33) emerges after ensemble averaging.
The main focus of the paper was to derive eq.(57), which shows how the sum of
the induced gluon radiation am.plit,udes can be expressed as a convolution of elastic

multiple scattering amplitudes and an effective color current, eq.(58). This result was
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derived for the $oft radiation (z < Lar_xd ki < p) reé;ime. The limitations of the
approximations leading to that result' were also carefully analyzed. We showed that
‘the triple gluon diagrams can be neglected in the soft limit but are important to cut-
off the k, distributions on the scale z. Only when ki — 0 can the effective current
" be pulled out of the multiple collision iﬁtegral, and the radiation amplitude factored
in momentum space as in"eq-(-'49)‘ There is never a factorization of amplitudes in
color space “However, the color neutra.hty condltlon, eq (23) greatly snnphﬁes the’ .
ensemble average of the squa,red amphtude In addition, the off dlagonal contrlbutlons _
in momentum space from ng oK {a.:})Je oy (K {qh}) drop out, as shown below
eq.(31), if the transverse width of the target is large cémpared to the interéction
range. Under these condit‘ions, it was poséible to calculate the induced radiation
spectrum from eq. (60) ’ |

We deﬁned the radiation formation fact01 eq.(64), as the ratio of the induced
radiation spectrum to the spectrum from an isolated collision. That factor measures
the suppression of induced radiation with formation length, T‘(k) > ), and reveals
the non-abelian analog of the LPM effect. The novel role of the color algebra that
leads to this destructive interference pattern in QCD was shown in Eqgs. (69,71). We
showed how this factor‘interpola.tes bet.ween the saturated Factorizaﬁion limit and the
additive Bethe-Heitler limit. A compact “pocket” formula for the formation factor
was derived in eq.(91).illustrating the essential features of that interpolation.

" Finally, we applied the formation factor to éstimate the contribution of soft in;
duced gluon radiation to the energy loss per unit length, eq. (95). The result in thé
- Factorization limit, eq. 97) was shown to be consistent with the unceltamty prin-
ciple bound of [10] with a numerical coefﬁcnent Cyas, that had a simple physical
mterpreta,tlon as the number of induced gluons 1ad1ated in the limited phase space
with rapidity between zero and log (X/ry) and with k; < p. Up to un-calculated
- logarithmic factors the radlatlve energy loss was found to be comparable to the elas-
tic energy loss[21]. We also showed how the linear energy dependence of dE/dz is
recovered in the opposite (Bethe-Heitler) limit when A > E 1.

Naturally, many problems need further study. Especially important will be to ex-
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fend the derivation of radiative cross sections to the moderate k; > u regime to cove;.
the non-factorizable “semi-hard” regime fof induced radiation. We concentrated on
the soft reglme here to simplify our task. The “semi-hard” regime is however also
complicated by the necessxty of havmg to consider in detall the polarization effects
that regulate q; = k, smgula_fmtlles_ and also the necessity of computing the current.
correlation functions discussed in sééti‘éh'-?i.?; The open theoretical QUestioﬁ in this

contiection is to what extent if 4

be constructed that correctly 'éifimiat'eé’thé many sub't1e,iﬁte-rfeféﬁééﬁﬁﬁéﬁaméha of

pQCD in the multiple collision domain.
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| Appendix A: Large Angle Elastic Cascade Limit

We consider here the elastic coincidence scattering in the special idealized case that
the coordinates x; are fixed and the energy is large to see how the classical billiard

ball formula emerges. We rewrite the phases in eq.(19) as

L

pr-Ri ~ Pr-Ri— oo(pus — Pui)® (101)
with Pr = PoRy/Ri and
P,y = Pry/Ri= FPryk/Ly . ' (102)

Note that piy - rix = 2pis - Pii(Le/2P) and RoLy =~ Py - Ry — P} (Ly/2F).
Substituting eq.(101) into eq.(19) and shifting the p; integration, we find that

j—1 d2 —"z_lllré'pik
N . pJ_ke k
- Li(pj,pic1) = et /{E Gr)? 2R }Aj(Qj — Pij-1)
-1 ,
X {H A(Qi+pu— p_L(l—l)')} , (103)
I=1 : )

where the intermediate classical momentum transfers, denoted by
Qr=P,—P,, forick<j, | (104)

have dominantly transverse components. The endpoint momentum transfers are given

Qi =p;,—P;_,and Q;, =P, - Pi-1, and the 'ex.ternal phase is

j=1 j -
$ii=> P -Ri=> Q- x+ip; X; —iPi-1-Xiz1 . (105)
=1

I=1
A simplification occurs in the high energy when the x; are fixed because the Q.

increase linearly with Eo, while the transverse momentum integrals are limited by

1/2

the oscillating phase factors to p <(Po/Ly)'?. Hence Q,; > p.s for high enoughi
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energies, and we can expand the potentials around Q. This is equivalent to the
stationary phase approximation. The region of validity of that approximation-can be

clarified by writing -
Q_Lk = Poy(riw/Le —rik_q/Lxoq) = PovAl'Lk/Lk __— _ (106)

The condxtlon that Q Lk >> (Po / Lk)l/ 2 is thus equlvalent to. requlrlng that the trans-
verse momentum transfer be large enough to resolve the: transverse separatlon of the -

scattermg centers

Qui-Ar > h . | ' (107)

For fized r 1 this condition is always satisfied for sufficiently large energies, and thus

the stationary phase integrals can then be evaluated using 3

PPy irrpp _ L L (108)

27rzP S L

In this limit Mj; reduces to the simple factorized form .

_ ' -1 | _
Mji(psypica) ~ 8(30)et 0 A;(Qy) T] {e/2eH ¥ A(Qu)/ (47 Re)} -(109)
k=1 : ) . )

Note again that in the non-Abelian case the matrix ordering from j to i is essential.
After squaring and int‘egrating over the magnitude of the final momentum, aver-
"aging over initial colors and summing over final, the above factorized form leads via

eq:(11) to the classical billiard ball formula

.k:i-l-l
We ernphasize that color neutrality of the medium and large transverse momentum

: transfers are essentlal to recover-this simple cascade hm)t in which the direction of

all 1ntermed1ate momenta are fixed by geometry.
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Appendix B: Derivation of Eq.(39)

Technical details of the derivation of the radiation amplitude from intermediate jet
lines are given here. The integra.tion over p,; in eq.(35) can be expressed as a sum of

~ two terms using eq.(38). The term containihg\the-A(pj_-— k) propagator leads to \

@rFBZI= (B - K Fie

igh(m)e-nncrie |

e(pi — k) ; |
X k(p]‘ — k) Im.J+1(Pmap_7 )TCI]'I(p]?pO) e (11 )

The term containing the A(pj) propagator leads to

M = ighmt)e e |
q = Tigblml)eminine (2r) PZ—pl +1e
€p; . ‘ ‘ ‘
x““kpj. m.i+1(Pms P; — K)Tel;1(pjs Po) - (112)
i v

In Mj; the contour integral over P.j sets p; — k on shell with

p:; = k.+P,—(py —ki)?/2P,
& Fo—(pyj — k1) /2Po+ (ks —w/v) (113)

while in M it sets pyj*on shell with p,; = F _ p_2Lj/2Po. In both cases the residue
of the propagator can be well approximated by 1/2F, in the high energy limit when
r < 1. However, it is essential to keep track of the difference, VPO — Pw' = w/vo ir_1

computing the phases. The phase in the integrand of M} is given by
pi"Rj—k- X1 = (p;—kKR; —k-x;

= Pj-R]'-—'-é—]—;o-

(pJ_J' - kJ_ - P_Lj)z —ij/vo -k- X; (114)
‘Note that the replacement wl; /vJ — wR;/v; above is valid either when r,; ~ d' < L;
or Py — oo The phase in M is, on the other-hand,

pi-Rj—k-x11=P; R, - '2"1;_0(P.lj —P) =k X (115)
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Shifting the p,; integration to py; + ky + Pyj and py; +Pjin Mc‘; respectively,

o . . Ppi; 1. —imdip2
M:; ~ ga(ml)e_;pm.xme+tpo-)€1/ (25:-;; Q_Ee'Pj‘g'Je Tp%pil
% (ZII’)J —i(wR;fvj+k- x,)) g +1(Pin )T Li(p;,po) » '(116)
J

d2le bR, minknd,

SO +'_p6._Xl/
Mo golmi)e ‘ (2r)? 25

6]) -1 r
x(kpf. ‘“‘“*)Im,m(pm,pj—k)fCIj,l(pj,po) SO
J .

Note that in M, the on-shell p; and p; are given by Eqs.(40,41). Therefore both the

ci
off-shell amplitude I,,, j+1(pm,p; — k) and the on-shell amplitude I, ;41(pm, ;) in the
integrands above are evaluated with the same shifted incident energy, Eo — w, and
approximately the same shifted incident longitudinal momentum, P, &~ Py — w/vy.

‘The energy shift of I, ;41 above leads in the high energy limit to a phase shift of
those amplitudes relative to the ca,sé without radiation. To see this, note from eq.(17)
that

m—1 d3pk ei’ll’/2e+ipk'Rk :
Im j+1(Pm, pi—k) =/ 11 (27)3 P2 — p? + ie Am(Pm—Pm-1) J+1(p1+1'—p1+k) :

k=j5+1
(118)
The contour integrals over the p,; then fix the phases to be
Pk ij ~ P,Li- pik (Li/2P,)+ pik - Tik
~ Py R — —(pJ.k ~Pus)? —wRi /v . (11‘9)

2P,
Therefore, there is an additional phase shift wL;/vo ~ wRy/ve for each intermediate
line. This phase shift has a simple physical interpretation. Noting that the classical

transit time between centers at x; and x4, is
Aty &~ Ri/vo | o (120)
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the additional phase shift is due to the time delay of a wavefront propagating with a

frequency reduced by w. Defining the classical interaction time at center, k, as

k-1 ’ .
tp = ZAf,‘ ; ' (121)
i=1 :

 with t; = 0, the net extra phase can be factored out from eq.(118) as

+f Al Gr)? Dy

Lo cLg o .
mel Ppy e T ParPu

A e iwltm=ty41) g i

X Am(Pm = Pm-1) -+ Ajs1(Pis1 — P + k), (122)

‘
where ¢ ;11 is the phase without radiation giveh via eq.(105). In eq.(122) we agai‘n
used the condition z < 1 in replacing the residue 1/P, by 1/ Fs.

| Note that the longitudinal momentum transfer in all the potential is still small
since all the intermediate longitudiné.l momentJa are shifted by approximately k,. 'If
in addition to z < 1 , we consider radiation with &, <« ,u,. then the arguments of all
the potentials inside the integrénd can be approximated by thc_)sé in eq.(19). Only

the extra w dependent phase must be kept. Therefor_e, in this soft limit
L jv1(pmyp; — k) = e_iw(tm_t”l)fm.jﬂ(Pm,Pj) ) ' (123)

where the right hand side is to be evaluated ignoring the soft radiation via eq.(19).

Similarly, it follows that for soft radiation

Im i1 (Pms B3) 2 €4 L s (P 23) - (124)
involving the same phase shift as in eq.(123). Combining these results We obtain
eq.(39).
Appendix C: Derivation of Eq.(56)

The details of the derivation of the radiation amplitudes involving one three gluon

vertex are given here. From eq.(26)

' Mj—l,l(Pj—l,PO). = 271—6(1)?_1 _ EO)(aj_l - al)(__Z'g)j—l(2E0)e-—i(Pz(j—1)—Po)zg_—n
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-1

j;l d2q ;i -X a '
J TI(Gbem sy (@) (2n)6(pagson — 32 aud)

k=1 k=1

(125)

[T (G mevzt () @n6(pin — pis— 3 )
k=741 k=341
(126)

We have utilized above that P.0 = Py =~ Eg and thé.t the energy of internal lines £ < j
- is Fo, while for k > j it is Eg — w with p,x = P, = Py — w/vp on those lines. Note
that the amplitude M,, j4+; differs from the case of no radiation eq.(?ﬁ) by only a 2
dependent phase obtained by replacing Py with F, in eq.(27). In the eikonal limit

eq.(53) can be expressed as

Gh = 27“5(1’? - P?—l + w)lc, aj](—ig)(Q_Eo)e"i(””"’Z(J-U*'k‘)zi

d2q | —1 . xrQj . . oo
X / ——(zﬂ_‘l)';e qJ-»J XJ.JVJ- (ClJ_j_)(Qﬂ')?(S(q_Lj —_ (p_L]- —Pi(y-1) + k.L))

—-ZF(IC, p]";pj—l) :
X . , 127
[w2 — (P2 — Pz(j—l))v2 - (qu; —ky)? ( )

where we used —iT, foaje = [c,a;] and note that the vertex function is

L(k,pjspj—1) = 4Eo(p; — pi-1)e(k) + dwp;e(k)
—(pi + Pic1)(ps — pim1 + 2k)E (k) (128)
Inserting these expressions into eq.(52), the integrals over the p?_l,p? variables -
give rise again to an overall S(ml)‘fac.tor eq.(36). and set p}_, = Fg and p? = E, =
Eo — w. Then as in eq.(111) we integrate the contour over p,; and p,(;_1) keeping

only the residues at the poles of the pfopagators since L; > d. Because of the three
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propagators involved, A(p;)A(p; — pj—1)A(pj-1), those integrals give rise to three
contributions corresponding to forward scattering with two of the three internal lines
‘set on shell. A fourth contribution corresponding to backscattering of the gluon near

Z.:

; is suppressed in the kinematic range Ey > w > maxz(ky,qy;) of interest here.

The klnematlc variables of the three forward amplitudes after- the.'contour mtegratxon

..(.qJ-J”‘ kJ_,) , with

are then as. follows In case-1,. pJ = p,_1 =0, (pJ Pi- Y

.p pJ.(J 1 —"’ q.LJ

Pi-1 = (Eo, Eo _pi(j—l)/2E0’ pl(j-l))
p; = (Fo—w, Eo—w—Pij/2Eo,Plj) . (129)

In case 2, (p; — pj—1)? = p’_, =0, p? = —(qu,; — k,)?/z, and

pi-1 = (Eo, Eo — pt(j_1)/2E0, P1(j-1))
pi = (Eo—w, Eo—w+(qu; —ki)?/2w,py;) . (130)

‘Finally, in case 3 (p; — 19,"_1)2 =p? =0, p:, = (qu; - ki)?/z, and

\ .
Pi-1 = (Lo, Eo —(au; —ki)?/2w,py(i-1) ,
pi = (Eo—w, Ep—w-— Pij/QEo,Plj) - ‘ (131)

We assume that w? > (q.; — ki )% It is remarkable that the residue of the product
of propagators is approximately same up to a sign in all three case with

. o 1 . o

with + for cases 1 and 2 and — for case 3. Also the vertex factor turns out to be

approximately the same in all three cases
[~ —4Fe - (qu; — ki) . (13

For a jet parton with mass, yu, the singularity in eq.(132) at q.; = k, is automatically

regulated as in eq.(42) by

las; — kil = (lau; — ko +2%%)7" o (134)
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In higher order, the inclusion of the gluon proper self energy tensor in the medium
would replace this infrared regulator by the effective dyn.amic mass of the gluons.
Only the z dependent phase,

' ¢z = —(Pw - pzj)zj+1 - (pz.’i — Pz(5-1) + kz)zj - (Pz(j—l) - Po)Zj-_l ? .. (135)

_ is found to be case dependent. Eﬁr_aluélting.with eq.(129,130,131), we find that

: {0 case 1
¢=(w—k)z; +3 Lj/7; case 2
~Lj_1/7;  case3

o o)
~where 7; = 2w/(qu; — k. )? is the lifetime of the virtual jet line in cases 2 and 3,
~and L; = z;;1 — z; is the longitudinal distance between adjacent scattering centers.
Together with the relative signs in eq.(132), the phase factors in the three cases sum
to | ' _
eio—k)zs (1 | ¢ililTi _ emilinlny = gnlr ) fo (k) (137)
We therefore find a new interference form factor, f; , that involves the separation
distances between adjacent centers and the lifetirﬁe of the virtual jet state, 7;. For
~well sepérated centers, in the sense that the mean freé path A = ((zi+1 —z)) > iy
‘the extra phases in f; average to zero and f; =~ 1. Also m the éxtrer'ne Qppoéite
limit, A € 7;, extra terms tend to cancel again leading to f; = 1. In particular, for

ki =qu, fj=1 Asa rough form illustrating these limits,

fi(k) ~ 1+ 2isin(A(qu; — k1 )?/2w) . | . (138)

In the general case, f; # 1 reflects the effects of final state cascading of the emitted
g_luon. Another important limit is ¢; = 0 or k; > qu.'_ In this limit, 7; = 7(k) =

1/(w — k), and f; reduces to

Frl g el il - (139)
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For radiation with formatioxi time much less or much longer than the mear'l'free path,
fi = 1. Therefore, except in the restricted kinematic domain where 7; or r(%) is on
the order of the mean free path, this extra interference effect can be néglécted, and

fi can be set to unity. Combining these results, we obtain eq.(56).

-
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