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ABSTRACT OF THE DISSERTATION

Topics in Transformation-based Statistical Methods

by

Liang Wang

Doctor of Philosophy in Mathematics

University of California, San Diego, 2015

Professor Dimitris Politis, Chair

This thesis is concerned with transformation-based statistical methods in

different three areas. For problem of nonparametric regression, the transformed-

based technique is called Model-free bootstrap method; for density nonpara-

metric estimation we propose transformed flat-top series estimator; for Bayesian

hypothesis testing, we employ a parametric transformation to help in evaluat-

ing the system upgrade of glucose monitoring device.

First, we establish the theory of the asymptotic validity of Model-free

method on construction of confidence interval under specified assumptions.

The spirit of Model-free method is transforming non-i.i.d. data to i.i.d data and

then bootstrapping the new i.i.d. data. We also conduct simulations to check the

xii



finite sample properties of Model-free estimators, compared to regular normal

approximation and local bootstrap method.

Next, we address the problem of nonparametric estimation of a smooth

univariate density on compact support. If the density function has compact

support and is non-zero at either boundary, regular kernel estimator will be

seriously biased. A lot of bias correction methods were proposed to improve

the bias on the boundary. In this chapter we propose the transformed flat-top

series estimator, which keeps the same bias order as existing methods at bound-

ary, and improves the bias in the interior region of the support to higher order.

Theoretical analysis and simulations are provided, and the results are generally

better than corresponding results of many other kernel density estimator with

boundary correction.

At last we propose modified Bayesian hypothesis method that can be

assessed by type I&II errors and an alternative assessment of standard Bayesian

hypothesis testing method, particularly suited to situations where modifications

are made to continuous glucose monitoring (CGM) systems already approved.

A parametric transformation of observations is the key to test the validation of

this system upgrade. Simulations are conducted to assess the risks and benefits

of the approach, which show that by careful planning and analysis prospective

study sizes can be reduced and better decisions can be made on the effectiveness

and safety of the modified systems.
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Chapter 1

Asymptotic Validity of Bootstrap

Confidence Intervals in

Nonparametric Regression without

an Additive Model

1.1 Introduction

Consider the regression data {(Yi, Xi)}, i = 1, . . . , n which are i.i.d. pairs.

For simplicity, we suppose that Xi is univariate and random with density func-

tion f (x), but the method works in the same way with multivariate Xi. Then

the regular nonparametric regression with an additive model is:

Yi = m(Xi) + σ · εi, i = 1, . . . , n

or more generally

Yi = m(Xi) + σ(Xi) · εi, i = 1, . . . , n (1.1.1)

Where εi’s are i.i.d. random variables with mean 0 and variance 1. m(x) =

E(Y|X = x) is the target of interest, and σ2(x) = Var(Y|X = x). In this chapter,

1
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we employ Nadaraya-Watson (N-W) kernel estimator [1]:

m̂n,h(x) =
∑n

i=1 YiK
(

Xi−x
h

)
∑n

i=1 K
(

Xi−x
h

) (1.1.2)

N-W kernel estimator dates back to 1964, and its theories were developed in

the following decades, see [2, 3, 4, 5]. The conditional cumulative distribution

function (CDF) and quantile estimator based on N-W estimator and their the-

ories were studied by Li&Racine [6] and Qu&Yoon [7]. Since Efron [8] pro-

posed bootstrap resampling method in 1979 (or see review [9]), many resam-

pling methods on nonparametric regression problem were developed. Hardle

and Bowman [10] proposed residual bootstrap method, Hall introduce Pivotal

bootstrap method [11]. All these methods are very powerful on additive model.

On the other side, a non-additive model violates (1.1.1), one special example is

Yi = m(Xi) + σ(Xi) · e(Xi, εi), i = 1, . . . , n (1.1.3)

Where E[e(x, ε)|X = x] = 0, Var[e(x, ε)|X = x] = 1, more importantly, e(x, ε) is

not additive function (neither is log[e(x, ε)]). See the non-additive model used

in section 1.7. In 1991, local bootstrap designed for heteroscedastic model, was

first presented by Shi [12], based on Priestley&Chao Estimator [13], which is

consistent but not proved. Since then, more general local bootstrap method was

also developed on time series problem, see [14, 15, 16]. In 2010, Politis proposed

Model-free bootstraping method [17], and developed by Sperlich [18], Politis

[19, 20, 21], Pan and Politis [22]. Model-free bootstrap method has been ap-

plied in nonparametric regression problem without an additive model for con-

fidence interval and in time series for predictive interval. Since local bootstrap

and Model-free bootstrap are both suitable for non-additive model problem but

lack of theoretical support, this chapter provides theoretical analysis, and com-

pares the two methods in simulation. We also reveal the connection between

these two methods under specified assumptions. In the followings, we intro-

duce the spirit of local bootstrap and model free method briefly; more details

can be found in section 1.3 and section 1.4. Let m(x) be E(Y|x) and m̂(x) be

N-W estimator.
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(i) Local bootstrap: Instead of resampling data i.i.d. as other bootstrap method,

local bootstrap resamples data independently but non-identically. More

specifically, we estimate the conditional probability mass function (p.m.f.)

of Y|x based on N-W estimator first, and then in each cycle of bootstrap,

resample one of Yi’s at different Xi by the p.m.f. estimator. Denote the

bootstrap data at Xi by Y∗i

(ii) Model free: The idea of model free is that we transform the non-i.i.d. data

to i.i.d. data first, and then do the resampling i.i.d.. More particularly, by

probability integral transform theory, we can transform each observation

Yi to uniform [0, 1] random variable Ui, and then Ui’s are i.i.d. random

variables. After we obtain bootstrap datasets U?
i from resampling Ui’s,

use quantile function of Y|x to transform U?
i ’s back, and denote this final

bootstrap data at different Xi by Y?
i .

(iii) Construct bootstrap estimation m̂∗(x) by bootstrap data {Y∗i }n
1 (or {Y?

i }n
i=1)

and {Xi}n
i=1. Iterate the whole procedure B (e.g. 1000) times, then the dis-

tribution of m̂∗(x) is the estimator of distribution of m̂(x), which leads to

confidence interval.

The rest chapter is organized as followed: In section 1.2, we address all the as-

sumptions for the theoretical analysis in this chapter and some previous work

on N-W estimator. section 1.3 and 1.4 introduce local bootstrap and model free

bootstrap more specifically and necessary lemmas for final proof. Main results

and theorems are presented in section 1.5. In section 1.6 we discuss the details

of parameter setup, the choice of transformed function and selection of band-

width. Some simulation results are presented in section 1.7. All the proofs are

in Appendix.

1.2 Assumptions

This chapter is motivated to prove validity of Model-free method for both

additive model and non-additive model. Recall N-W estimator (1.1.2), and f (x)
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is density function of X1, . . . , Xn, m(x) = E(Y|X = x), let fY|X(y|x) be the con-

ditional density function of Y given X = x, D(y|x) is the conditional CDF of Y

given X = x. Now we address the following assumptions:

Assumption(i). {Xi, Yi}, i = 1, . . . , n are i.i.d pairs.

Assumption(ii). f (x) and m(x) are both twice differentiable, and their

the derivative functions all satisfy the Lipschitz condition |g(x)− g(y)| ≤ C|x−
y| for some C > 0. (where g(·) = m′′or f ′′). Moreover, σ2(x) = Var(Yi|Xi = x)

is a continuous function.

Assumption(iii). n→ ∞, h→ 0, nh→ ∞.

Assumption(iv). The Kernel function K(·) is symmetric, bounded, Lips-

chitz continuous, twice differentiable function, and satisfies K(x) ≥ 0,
∫

K(x)dx =

1,
∫

x2K(x)dx < ∞. Let the Lipschitz constant be C1.

Assumption(v). E
(
|Y|3|X = x

)
< ∞. fY|X(y|x) is twice differentiable

with respect to x. Moreover, there exists B1(y) > 0, B2(y) > 0, that ∂ f (y|x)
∂x ≤

B1(y),
∂2 f (y|x)

∂x2 ≤ B2(y), and
∫

Bi(y)dy < ∞, i = 1, 2

Assumption(vi). Var
(
|Yi|3|Xi = x

)
< ∞, where g(·) is the same function

in assumption (v).

Assumption(vii). infx∈S f (x) ≥ δ > 0, where S is a compact subset of R

that excludes the boundary of the support of X. And D(y|x) is twice differen-

tiable with respect to both y and x in S .

Assumption(viii). The support of X is the compact set S in assumption

(vii).

Assumption(ix).nh = o(n
4
5 ) ( or h = o(n−

1
5 )).

Li and Racine [5] proved the following theorems under assumptions (i)-(iv):

E[m̂n,h(x)] = m(x) + h2Bs(x) + O(h3) (1.2.1)

Var[m̂n,h(x)] =
1

nh
κσ2(x)

f (x)
+ O

( h
n

)
(1.2.2)

√
nh(m̂n,h(x)−m(x)− h2Bs(x)) d→ N

(
0,

κσ2(x)
f (x)

)
(1.2.3)
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Where

Bs(x) =
κ2

2
2 f ′(x)m′(x) + f (x)m′′(x)

f (x)
(1.2.4)

Here κ2 =
∫

v2K(v)dv, κ =
∫

K2(v)dv. Notice again that this theorem is valid

for i.i.d pairs, which implies for both additive model (1.1.1) and non-additive

model (1.1.3).

Remark 1.2.1. For the proof of bootstrap of i.i.d. pairs of data in the following

sections, we need slightly stronger assumption than assumption (ii) for Y|X =

x, i.e. not only m(x) = E(Y|X = x) and σ2(x) = Var(Y|X = x), but also the

smoothness of fY|X(y|x) with respect to x. Therefore the assumption(v) is very

necessary.

Remark 1.2.2. McMurry and Politis [23] proposed infinite order kernel method

for nonparametric regression. Unfortunately, flat-top kernel function violates

the assumption (iv) and is not theoretical analyzed in this chapter.

1.3 Local Bootstrap

Shi [12] proposed local bootstrap in 1991 and assumed xi’s are design

points in [0, 1]. In this chapter, we discuss more general situation that Xi are

random with N-W estimator. The procedure of local bootstrap is as following:

(i) For each observation Xi, we have estimator of p.m.f.:

ĜXi :

Y1 Y2 · · · Yn

w1i w2i · · · wni

 (1.3.1)

Where wji =
K
(

Xj−Xi
h

)
∑n

l=1 K
(

Xl−Xi
h

) for i, j = 1, 2, · · · , n, so ∑j wji = 1.

(ii) At each Xi, we resample Y∗i from distribution ĜXi .
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(iii) Compute bootstrap kernel estimator:

m̂∗n,h(x) =
∑n

i=1 Y∗i K
(

Xi−x
h

)
∑n

i=1 K
(

Xi−x
h

) (1.3.2)

Shi did not discuss the properties of m̂∗n,h(x), which is addressed in section 1.5.

To obtain further properties, the following lemma is needed:

Lemma 1.3.1. Under assumptions (i)-(v),

EXi,Yi

[
g(Yi)Kl

(Xi − x
h

)]
= h

{
A(x)E[g(Y)|X = x] + O(h2)

}
(1.3.3)

where g(·) is a continuous function, in this chapter, g(x) = xk or g(x) = |x|k, k =

1, 2, 3, A(x) = fX(x)
∫

Kl(u)du, and l is a fixed number, fX(x) is density function of

X1, . . . , Xn. Also, EXi,Yi denote the joint expectation of (Xi.Yi).

Notice i is removed because all (Xi, Yi) are integrated, it implies O(h2)

here is not related to i anymore. This lemma also works for Y∗|X = x, that

is under the same assumptions, with K(·) needs to be twice differentiable in

assumption(iv):

EXi,Y∗i

[
g(Y∗i )K

l
(Xi − x

h

)]
= h

{
A(x)E[g(Y∗)|X = x] + O(h2)

}
(1.3.4)

Lemma 1.3.1 also leads to the following preliminary result:

Theorem 1.3.2. Under the assumptions (i)-(vi) we have:

|E∗[g(Y∗)|X = x]− E[g(Y)|X = x]| = Op

(
h2 +

1√
nh

)
(1.3.5)

where g(·) is the same continuous function in lemma 1.3.1.

This theorem is essentially a more general version of theorem 3.2 in Shi

[12] for Priestley&Chao Estimator [13], and it holds for Nadaraya-Waston esti-

mator with non-additive model here.
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1.4 Model free

Remember that the spirit of Model free is transforming non-i.i.d. data

to i.i.d. data. For both additive and non-additive regression models, the key

is probability integral transform theorem. More specifically, if the conditional

distribution function Dx(·) of Y is

Dx(y) = P(Y ≤ y|X = x) (1.4.1)

In this chapter, Dx(y) is assumed to be absolutely continuous w.r.t y, then Dx(Y)

follows Uniform [0, 1]. However, since the true conditional distribution Dx(y)

is unknown, so Politis [17] introduced the kernel estimators of conditional CDF:

D̂x(y) =
∑n

i=1 1{Yi≤y}K
(

Xi−x
h

)
∑n

i=1 K
(

Xi−x
h

) (1.4.2)

D̂x(y) has some good properties which have already been showed by Li and

Racine [5]. Nevertheless, it has a lot of discontinuities, makes itself unqualified

as an estimator in this chapter. To solve this issue, Politis [17] used an alternative

option, the smooth kernel estimator of conditional CDF:

D̃x(y) =
∑n

i=1 Λ
(

Yi−y
h0

)
K
(

Xi−x
h

)
∑n

i=1 K
(

Xi−x
h

) (1.4.3)

Where Λ(·) is an absolutely continuous and strictly increasing CDF over its

support. We also define:

D̂−1
x (u) = min

i=1,...,n
{Yi : u ≤ D̂x(Yi)} (1.4.4)

and

D̃−1
x (u) = inf

y
{y : u ≤ D̃x(y)} (1.4.5)

What are the transform-back functions. Politis recommended to use D̂−1
X (·) in

[19] and D̃−1
x (·) in [17], which will be discussed below in section 1.6, but notice

that all the proofs of this chapter are built on D̂−1
x (·). In this section, we denote

model free bootstrap data by Y?, and local bootstrap data by Y∗. Politis [17]

proposed 3 ways to generate Model free bootstrap data Y?
1 , · · · , Y?

n :
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Method 1. Get transformed data U1, · · · , Un by computing Ui = D̃Xi(Yi). Then

re-sample randomly from the transformed data U1, · · · , Un to get

bootstrap pseudo-data u?
1 , · · · , u?

n. Finally Y?
i = D̂−1

xi
(u?

i ).

Method 2. Generate bootstrap pseudo-data u?
1 , · · · , u?

n i.i.d. from Uniform(0,1)

distribution, then Y?
i = D̂−1

xi
(u?

i ).

Method 3. Let D̃(t)
x denote the estimator D̃x(·) as computed from the delete-

Xt, Yt dataset, i.e., {(Yi, Xi, i = 1, . . . , t− 1, t + 1, . . . , n}. Now let

u(t)
t = D̃(t)

xt (Yt) for t = 1, . . . , n

And we will sample randomly from predictive u-data U(1)
1 , . . . , U(n)

n

to create bootstrap pseudo-data u?
1 , . . . , u?

n, which leads to Y?
i = D̂−1

xi
(u?

i ).

Remark 1.4.1. In the rest of paper, we follow the same notation given by Politis

[24], and denote method 1 as Model-free (MF), method 2 as Limit Model-free

(LMF), method 3 as Predictive Model-free (PMF). In addition, at Xi, if D̂−1
x (·) is

applied to transform u?
i to bootstrap data Y?

i , which is a discrete step function,

then it implies we resample Y?
i from Yi from a p.m.f. ĤXi . This function ĤXi

assigns different weights to Y1, . . . , Yn.

Let x f is the point of interest, recall N-W estimator m̂n,h(x f ) (1.1.2), and denote

m̌n,h(x f ) the estimator proposed by Politis [17].

m̌n,h(x f ) =
1
n

n

∑
i=1

D̂−1
x f

(ui)

Notice that

m̂n,h(x f ) =
∫

yD̂x f (y)dy =
∫ 1

0
D̂−1

x f
(u)du

=
∑n

i=1 YiK
(

Xi−x
h

)
∑n

i=1 K
(

Xi−x
h

)
It implies m̌n,h(x f ) and m̂n,h(x f ) are consistent with large sample size. Then the

resampling algorithm for Model-free confidence intervals for m(x f ) is:
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(a) Pick one Model-free method from MF, LMF and PMF, and obtain bootstrap

data u?
1 , . . . , u?

n and Y?
1 , · · · , Y?

n

(b) Based on the pseudo data {(Y?
i , xi), i = 1, . . . , n}, re-estimate the conditional

CDF Dx(·); Denote the bootstrap estimates by D̂?
x(·) and D̃?

x(·).

(c) Calculate a replicate of the bootstrap confidence interval root: m̂n,h(x f ) −
m̂?

n,h(x f ), or m̌n,h(x f )− m̌?
n,h(x f ), where

m̂?
n,h(x f ) =

∑n
i=1 Y?

i K
(

Xi−x
h

)
∑n

i=1 K
(

Xi−x
h

) (1.4.6)

and

m̌?
n,h(x f ) =

1
n

n

∑
i=1

D̂?−1
x f

(u?
i ) (1.4.7)

(d) Steps (a)-(c) in the above are repeated B times, and the B bootstrap root repli-

cates are collected in the form of an empirical distribution with α-quantile

denoted by q(α).

(e) Then, the Model-free (1− α)100% equal-tailed confidence interval for m(x f )

is

[m̂n,h(x f ) + q(α/2), m̂n,h(x f ) + q(1− α/2)]

The following lemmas and theorems reveal MF, LMF and PMF method has the

rate of convergence to true m(x) in probability same as local bootstrap.

Theorem 1.4.2. LMF resampling method and local bootstrap resampling method are

equivalent. More specifically, at Xi, recall ĜXi (1.3.1) for locall bootstrap and ĤXi

introduce in Remark 1.4.1. Then for LMF, ĤXi = ĜXi .

Notice that this theorem only shows LMF and local bootstrap has equiv-

alent re-sampling method. But if the statistic are different, see (1.4.6) and (1.4.7),

the result will have finite sample difference. Such difference will be relieved

with a large sample size.
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Lemma 1.4.3. In method 1, under assumptions (i)-(vi), if If we claim U1, · · · , Un are

random observations from Unif(0,1), then a similar result as Lemma 1.3.2 holds, that

is:

|E?[g(Y?)|X = x]− E[g(Y)|X = x]| = Op

(
h2 +

1√
nh

)
(1.4.8)

where g(·) is the same continuous function in lemma 1.3.1.

The lemma above can be easily derived from lemma 1.4.2.

Lemma 1.4.4. Under assumptions (i)-(viii), we have:

sup
x∈S
|D̃x(y)− Dx(y)| = O

(
h2

0 + h2 +
[ ln(n)

nh

] 1
2
)

a.s.

Where Dx(·) is the real conditional CDF of Y, and S is a compact set.

Then, Polya Theorem could guarantee us that:

Corollary 1.4.5. Under assumptions (i)-(viii), we have:

sup
x∈S

sup
y
|D̂x(y)− Dx(y)| = o(1) a.s.

Remark 1.4.6. Notice the above corollary holds for both MF and PMF. It helps

our main theorems to support both of them.

Lemma 1.4.7. Let fn : R2n → R, Zn is 2n dimensional random vector and its range

is a subspace of R2n. If we know that as n→ ∞

| fn(Zn)−U| → 0 a.s.

where U is a random variable, then

|gn[Zn, fn(Zn)]− gn(Zn, U)| → 0 a.s.

as n→ ∞, where gn is a continuous function of both two arguments.

Theorem 1.4.8. If we use method 2, under assumptions (i)-(viii):

|E?[g(Y?)|X = x]− E[g(Y)|X = x]| = Op

(
h2 +

1√
nh

)
where g(·) is the same continuous function in lemma 1.3.1.
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Remark 1.4.9. Some proofs are inspired by [4, 25, 26, 27]. The theorems above are

the keys to prove the convergence of all three Model-free methods in the next

section, by setting local bootstrap as a transition in the middle, which is also

helpful to understand the connection between local bootstrap and model free

methods. If we use D̃x(y) instead, it can be seen as a generalized smooth local

bootstrap.

1.5 Main Result

From now on, denote:

K̃
(Xi − x

h

)
=

K
(

Xi−x
h

)
1

nh ∑n
j=1 K

(
Xj−x

h

) =
K
(

Xi−x
h

)
f̂X(x)

=
K
(

Xi−x
h

)
fX(x) + op(1)

(1.5.1)

Where fX(x) is the density function of X1, . . . , Xn and f̂X(x) is its kernel estima-

tor.

f̂X(x) =
1

nh

n

∑
j=1

K
(Xj − x

h

)
Therefore K̃

(
Xi−x

h

)
is bounded and satisfy all the condition of K in probability.

So (1.1.2) can be written as:

m̂n,h(x) =
1

nh

n

∑
i=1

YiK̃
(Xi − x

h

)
(1.5.2)

And Lemma 1.3.1 can be easily extended.

Lemma 1.5.1.

EXi,Yi

[
g(Yi)K̃l

(Xi − x
h

)]
= h

{
Ã(x)E[g(Y)|X = x] + O(h2)

}
(1.5.3)

where g(·) is the same function in lemma 1.3.1, Ã(x) = fX(x)
∫

K̃l(u)du, and l is a

fixed number.

As with lemma 1.3.1, this one also works for Y∗i and Y?, i = 1, . . . , n. For

simply describing the following theorems, we denote both of local bootstrap

and model-free bootstrap by Y∗i . Then under assumptions (i)-(viii), we can have

the following theorems for both local bootstrap and model free bootstrap:
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Theorem 1.5.2.

|E∗[m̂∗n,h(x)]− m̂n,h(x)| = Op(h2) (1.5.4)

Theorem 1.5.3.

nh|Var∗[m̂∗n,h(x)]−Var[m̂n,h(x)]| = Op

(
h2 +

1√
nh

)
(1.5.5)

Finally, by Lyapunov CLT, we can get:

Theorem 1.5.4. For any fixed x,

√
nh(m̂∗n,h(x)− E[m̂∗n,h(x)]) d→ N

(
0,

κσ2(x)
f (x)

)
(1.5.6)

Recall 1.2.1, and by Theorem 1.5.4, we have:

sup
u

∣∣∣P(√nh(m̂∗n,h(x)− E∗m̂∗n,h(x)) ≤ u)− P(
√

nh(m̂n,h(x)− Em̂n,h(x)) ≤ u)
∣∣∣ p.→ 0

It is difficult to estimate h2Bs(x), see (1.2.4), thus we can employ under smooth-

ing method, that means under assumptions (ix), we have

sup
u

∣∣∣P(√nh(m̂∗n,h(x)− E∗m̂∗n,h(x)) ≤ u)− P(
√

nh(m̂n,h(x)−mn,h(x)) ≤ u)
∣∣∣ p.→ 0

Then obtain equal-tailed (1− α)100% bootstrap confidence interval:

[m̂n,h(x) + q∗(α/2), m̂n,h(x) + q∗(1− α/2)]

where q∗(α) denote the α-quantile of empirical distribution function of m̂n,h(x)−
m̂∗n,h(x).

1.6 Setup of Parameters

1.6.1 The Transform and Transform-back Functions

In this section, we discuss the selection of between step and smooth k-

ernel estimation of conditional CDF of Y. Politis used the smooth kernel esti-

mator in [17, 19], i.e. D̃x(·), see (1.4.3). On the other hand, however, the step



13

estimation, D̂x(·), see (1.4.3), makes the transformed data unnatural and too

equidistant in application.

Another important issue is the selection of inverse transform function,

i.e. either resampling from transformed data or directly from uniform[0, 1], af-

ter obtaining u∗i ’s, we need to transform them back to bootstrap data Y∗|x. This

chapter only shows the validity when we use the discrete inverse function (1.4.4)

D̂−1
x (·). Then the question arises if we use a smooth inverse transformed func-

tion, i.e. D̃−1
x (·). In fact, as D̃x(·) shares the same good properties as D̂x(·), it

is supposed to be valid. In addition, the differences between D̃−1
x (·) and D̂x(c)̇

are similar to the situation when Efron [8] proposed bootstrap in the beginning,

he discussed resampling from regular empirical distribution function and from

a kernel distribution estimation. The reason is, if we suppose u∗i are uniformly

from [0, 1], then D̂−1
x (u∗i ) is equivalent to a random variable from D̂x(·), so does

D̃x(u∗i ). Efron [8] discussed them by comparing the MSE of
∫

g(x)dF̂(x) and∫
g(x)dF̃(x) see [28]. Similarly, define:

g(Ê|X = x) =
∫

g(y)dD̂x(y)

g(Ẽ|X = x) =
∫

g(y)dD̃x(y)

If we assume x1, . . . , xn are deterministic, and do some simple computation, can

obtain:

MSE
[

g(Ẽ|X = x)
]
= MSE

[
g(Ê|X = x)

]
+

h2
0 ·

∑n
i=1
{∫

g(yi)g′′(yi)dDxi(yi)
}

K
(

xi−x
h

)
∑n

i=1 K
(

xi−x
h

) + O(h4
0)

This means, the second term on the left side, let us call it 4, determine which

MSE is greater. For example, if 4 > 0, then finally we think D̂−1
x (·) is better.

However, 4 is difficult to estimate, but at least we can see, if g(·) is identical

function, then

MSE
[

g(Ẽ)
]
= MSE

[
g(Ẽ)

]
= O(h4

0)

Consequently their difference is trivial. The same problem was also discussed

by Li and Racine [5, 6].
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1.6.2 Selection of Bandwidth

Since the smooth kernel estimation of conditional CDF is involved, see

lemma 1.4.4, we have to select two different bandwidths, h and h0. For ĥ, we are

using the same cross validation method in [17], and it has good performances.

For h0, [17] used function bw.nrd0() which is a fast bandwidth selection for

density estimation and available in R. Nevertheless, according to Li and Racine

[5], h0 = O(n−
2
5 ) and h = O(n−

1
5 ) by minimizing weighted IMSE. Another

cross validation for h0 does not guarantee to reach the correct order but increase

the complexity, thus we suggest the same method in Pan and Politis [22], that

simply use ĥ0 = ĥ2. In the application, we find that both two selections of h0

work well, and actually give very close outputs. The work on bandwidth h and

especially h0 requires further study.

1.7 Simulation

1.7.1 Additive Model

The additive model in the simulation is (1.1.1), with m(x) = sin(x),

σ(x) = 1/2, and errors εi i.i.d N(0,1) or two sided exponential (Laplace) rescaled

to unit variance. Neverthess, σ(x) is not used and estimated from the data. For

each model, sample size n = 100, and totally 500 datasets are created with de-

sign points x1, . . . , xn with equal grid on [0, 2π]. All the kernel functions for

N-W estimator, D̂x(·) and D̃x(·) are a normal kernel in R.

Yi = sin(xi) +
1
2

εi, i = 1, . . . , n

where εi i.i.d. follows N(0, 1) or laplace distribution with variance 1. In each cell

of the following tables, first line gives estimated coverage probability, second

line gives mean of length of confidence interval, third line gives standard error

of length. ”Norm” denote normal approximation by (1.2.3). ”MB” and ”PRMB”

are two different model-based bootstrap methods proposed by Politis [19]. ”LB”

stands for local bootstrap. For LMF, MF, PMF, we use statistics (1.4.7). For LMF

using N-W, we use (1.4.6). All the intervals have confidence level 90%.
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• The standard error of the reported coverage probability levels over the 500

replications is
√

0.1× 0.9/500 ≈ 0.013

• Since the true model is m(x) = sin(x), this simulation has some symmetry

that helps us to adjust the CVRs. To elaborate, note that for any x ∈ [0, π], we

have |m(x)| = |m(2π− x)|, and the same symmetry holds for the derivatives of

m(x) as well due to the sinusoidal structure. Recall (1.2.1), since x1, . . . , xn are

design points, it is easy to see the bias term totally depends on second deriva-

tive of m(x). Due to the symmetry, m̂n,h(x) at all the symmetric pairs of point are

supposed to have exactly same limit distribution, and hence the same expected

CVRs in all methods. All the pairs of point have very nice symmetry, excep-

t in the normal error case m(x) visually is always greater at x = 0.15π than

x = 1.85π. However, more simulations on 4 more 500 replication show that

such trend is random, this issue is more likely caused by datasets themselves.

Back to adjusting CVRs by symmetry, it is recommended by Politis [19] to take

the average as final estimated CVR. For normal error case table 1 at x = 0.15π

and x = 1.85π, the CVR would be better estimated by the average of 0.842 and

0.796, i.e. 0.819.

• Theorem 1.4.2, the equivalence between the local bootstrap and LMF is ver-

ified in the simulation. Notice that only LMF using (1.4.6) will produce the

very similar result as local bootstrap. Finite sample difference exists when us-

ing (1.4.7), and can be reduced with larger sample size.

• Since CDF of laplace distribution violate assumption(vii), and is not continu-

ously differentiable at 0, lemma 1.4.4 might fail or the convergence has a slower

rate, thus the u1, . . . , un calculated from (Xi, Yi), i = 1, . . . , n are not uniformly

distributed very well, see Fig 1.1. This is one possible reason MF and PMF have

serious over-coverage problem for laplace error.

• All the methods appears to have issue that CVR has peak at x = π and valley

at x = π/2 and x = 3π/2. As mentioned above, m̂n,h(x) has different bias at

different points, see (1.2.1). But in the simulation we use global bandwidth, and

finally lead to different CVR at different points. A further study on local band-

width selection might be pursued in the future. In addition, at some points, the
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over coverage could be explain by ”bias-leakage” in Politis [17] and [19].

Figure 1.1: QQ plots for all three models

1.7.2 Non-additive Model

In this subsection we recall non-additive model (1.1.3). For easy compar-

ison to section 1.7.1, we use the following model:

Yi = sin(xi) +
1
2

εxi , i = 1, . . . , n

where xi ∈ [0, 2π], εx = cxZ+(1−cx)W√
c2

x+(1−cx)2
, and cx = x/2π, Z ∼ N(0, 1) independent

of W that will be distributed as 1
2 χ2

2 − 1. Thus εx has mean 0 and variance 1.

E(Y|X = x) = sin(x) and Var(Y|X = x) = 1/4, x1 . . . , xn are design points

equally spaced on [0, 2π, with sample size n = 100. However, εx has skewness

depending on x that violating i.i.d. assumption. The result is presented in table
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Table 1.1: Simulation Result for i.i.d. Normal Error

x f /pi = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

Norm

0.842

0.3852

0.002

0.826

0.3723

0.002

0.768

0.3711

0.002

0.824

0.3710

0.002

0.886

0.3710

0.002

0.822

0.3711

0.002

0.796

0.3711

0.002

0.850

0.3723

0.002

0.796

0.3852

0.002

MB

0.790

0.3865

0.004

0.752

0.3523

0.003

0.740

0.3392

0.004

0.764

0.3598

0.003

0.840

0.3835

0.003

0.778

0.3621

0.003

0.760

0.3377

0.004

0.782

0.3498

0.003

0.752

0.3793

0.004

PRMB

0.856

0.4657

0.006

0.832

0.4255

0.007

0.808

0.4134

0.008

0.844

0.4341

0.006

0.886

0.4621

0.006

0.850

0.4346

0.006

0.838

0.4104

0.007

0.854

0.4224

0.006

0.826

0.4580

0.006

LB

0.846

0.4403

0.004

0.816

0.4036

0.004

0.800

0.3853

0.004

0.830

0.4129

0.004

0.886

0.4405

0.003

0.840

0.4133

0.003

0.832

0.3866

0.004

0.824

0.4015

0.004

0.812

0.4336

0.004

LMF

using

N-W

0.846

0.4398

0.004

0.808

0.4023

0.004

0.804

0.3871

0.004

0.818

0.4118

0.004

0.884

0.4382

0.003

0.824

0.4126

0.003

0.818

0.3851

0.004

0.836

0.3985

0.004

0.816

0.4330

0.004

LMF

0.880

0.5244

0.004

0.844

0.4907

0.004

0.864

0.4706

0.004

0.868

0.5118

0.004

0.880

0.5498

0.003

0.870

0.5115

0.003

0.866

0.4679

0.004

0.852

0.4851

0.004

0.842

0.5146

0.004

MF

0.862

0.4579

0.003

0.836

0.4287

0.003

0.828

0.4147

0.003

0.848

0.4408

0.003

0.888

0.4698

0.003

0.852

0.4420

0.003

0.840

0.4123

0.003

0.842

0.4248

0.003

0.826

0.4494

0.003

PMF

0.928

0.5482

0.005

0.898

0.5152

0.005

0.904

0.5005

0.005

0.926

0.5310

0.005

0.936

0.5613

0.005

0.936

0.5319

0.004

0.916

0.5006

0.005

0.910

0.5122

0.005

0.894

0.5412

0.005
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Table 1.2: Simulation Result for i.i.d. Laplace Error

x f /pi = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

Norm

0.846

0.3820

0.002

0.792

0.3701

0.002

0.816

0.3691

0.002

0.858

0.3690

0.002

0.884

0.3691

0.002

0.856

0.3691

0.002

0.814

0.3690

0.002

0.846

0.3700

0.002

0.854

0.3820

0.002

MB

0.788

0.3648

0.004

0.740

0.3454

0.004

0.756

0.3307

0.004

0.808

0.3545

0.003

0.826

0.3761

0.003

0.824

0.3535

0.003

0.760

0.3210

0.003

0.750

0.3355

0.004

0.818

0.3627

0.004

PRMB

0.870

0.4555

0.006

0.834

0.4322

0.006

0.864

0.4119

0.005

0.894

0.4414

0.005

0.924

0.4679

0.005

0.894

0.4394

0.006

0.846

0.4006

0.006

0.850

0.4185

0.006

0.904

0.4513

0.006

LB

0.866

0.4242

0.005

0.790

0.4008

0.004

0.828

0.3830

0.004

0.850

0.4108

0.003

0.908

0.4373

0.004

0.870

0.4066

0.004

0.832

0.3733

0.004

0.818

0.3904

0.004

0.880

0.4188

0.004

LMF

using

N-W

0.866

0.4210

0.004

0.798

0.3975

0.004

0.838

0.3819

0.004

0.868

0.4079

0.003

0.914

0.4333

0.004

0.878

0.4072

0.004

0.828

0.3691

0.004

0.826

0.3865

0.004

0.884

0.4180

0.004

LMF

0.900

0.5053

0.005

0.890

0.4879

0.005

0.924

0.4648

0.005

0.932

0.5100

0.004

0.934

0.5476

0.004

0.922

0.5072

0.004

0.908

0.4546

0.004

0.898

0.4746

0.004

0.896

0.5022

0.005

MF

0.868

0.4119

0.003

0.806

0.3932

0.003

0.848

0.3765

0.003

0.890

0.4078

0.003

0.910

0.4404

0.003

0.876

0.4064

0.003

0.836

0.3703

0.003

0.862

0.3869

0.003

0.872

0.4124

0.003

PMF

0.946

0.5172

0.004

0.914

0.4962

0.005

0.914

0.4808

0.004

0.940

0.5161

0.004

0.964

0.5499

0.004

0.952

0.5147

0.004

0.922

0.4737

0.004

0.928

0.4909

0.005

0.946

0.5157

0.004
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Table 1.3: Simulation Result for i.i.d. Non-additive Error

x f /pi = 0.15 0.3 0.5 0.75 1 1.25 1.5 1.7 1.85

Norm

0.836

0.3824

0.002

0.834

0.3700

0.002

0.780

0.3689

0.002

0.848

0.3688

0.002

0.876

0.3689

0.002

0.804

0.3688

0.002

0.762

0.3688

0.002

0.838

0.3700

0.002

0.814

0.3824

0.002

MB

0.746

0.3593

0.005

0.720

0.3342

0.004

0.736

0.3146

0.004

0.754

0.3530

0.004

0.796

0.3810

0.004

0.772

0.3511

0.004

0.718

0.3287

0.004

0.756

0.3418

0.003

0.768

0.3697

0.003

PRMB

0.808

0.4822

0.009

0.798

0.4463

0.009

0.806

0.4205

0.009

0.850

0.4722

0.009

0.884

0.5061

0.010

0.872

0.4393

0.008

0.822

0.4393

0.009

0.846

0.4567

0.009

0.850

0.4908

0.009

LB

0.800

0.4175

0.006

0.782

0.3885

0.005

0.806

0.3697

0.005

0.836

0.4098

0.005

0.872

0.4422

0.005

0.834

0.4102

0.004

0.778

0.3814

0.004

0.810

0.4006

0.004

0.804

0.4332

0.004

LMF

using

N-W

0.798

0.4185

0.006

0.780

0.3891

0.005

0.796

0.3671

0.005

0.824

0.4114

0.005

0.870

0.4425

0.005

0.844

0.4074

0.003

0.760

0.3832

0.004

0.810

0.3997

0.004

0.820

0.4335

0.004

LMF

0.822

0.4977

0.007

0.790

0.4713

0.005

0.782

0.4448

0.005

0.858

0.5090

0.006

0.890

0.5548

0.005

0.876

0.5056

0.004

0.832

0.4639

0.005

0.848

0.4854

0.004

0.828

0.5130

0.004

MF

0.794

0.4074

0.004

0.796

0.3851

0.003

0.784

0.3690

0.003

0.824

0.4028

0.003

0.868

0.4394

0.003

0.844

0.4108

0.003

0.772

0.3830

0.003

0.822

0.3983

0.003

0.804

0.4210

0.003

PMF

0.870

0.5167

0.007

0.888

0.4897

0.006

0.876

0.4688

0.005

0.902

0.5265

0.006

0.938

0.5509

0.005

0.930

0.5181

0.005

0.880

0.4821

0.006

0.894

0.4971

0.005

0.886

0.5214

0.005
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1.3. We could observe that PMF seems the best method although over coverage

take place x = π and x = 1.25π.

1.8 Appendix: Proof

Proof of lemma 1.3.1.

EXi,Yi

[
g(Yi)Kl

(Xi − x
h

)]
=
∫ ∫

g(yi)Kl(
xi − x

h
) fXi,Yi(xi, yi)dxidyi

= h
∫ ∫

g(yi)Kl(ui) fXi,Yi(x + uih, yi)duidyi

= h
∫ ∫

g(yi)Kl(ui)
[

fXi,Yi(x, yi) +
∂ fXi,Yi(x, yi)uih

∂x
+

1
2

∂2 fXi,Yi(x, yi)u2
i h2

∂x2

]
duidyi

= h

{ ∫
Kl(ui)dui

∫
g(yi) fXi,Yi(x, yi)dyi + h

∫
uiKl(ui)dui

∫
g(yi)

∂ fXi,Yi(x, yi)

∂x
dyi

+
h2

2

∫
u2

i Kl(ui)dui

∫
g(yi)

∂2 fXi,Yi(x, yi)

∂x2 dyi + O(h3)

}

= h

{ ∫
Kl(ui)dui

∫
g(yi) fYi|Xi

(yi|x) fXi(x)dyi +
h2

2

∫
u2

i Kl(ui)dui

∫
g(yi)

∂2 fXi,Yi(x, yi)

∂x2 dyi + O(h3)

}

= h

{
fX(x)

∫
Kl(u)du · E[g(Y)|X = x] +

h2

2

∫
u2Kl(u)du

∫
g(y)

∂2

∂x2 fX,Y(x, y)dy + O(h3)

}
= h

{
A(x) · E[g(Y)|X = x] + O(h2)

}
where A(x) = fX(x)

∫
Kl(u)du. And O(h2) is not related to i anymore, so they

have the common bound.

Proof of theorem 1.3.2.

By definition of Big O notation in probability, we just need to show:

E∗[g(Y∗)|X = x]− E[g(Y)|X = x] = Op

(
h2 +

1√
nh

)
First, by the definition of local bootstrap algorithm,

E∗[g(Y∗)|X = x] =
∑n

i=1 g(Yi)K
(

Xi−x
h

)
∑n

i=1 K
(

Xi−x
h

)
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=
1

f̂X(x)
· 1

nh

n

∑
i=1

g(Yi)K
(Xi − x

h

)
=

1
fX(x) + op(1)

· 1
nh

n

∑
i=1

g(Yi)K
(Xi − x

h

)
By lemma 1.3.1, we have:

EX,Y

[ 1
nh

n

∑
i=1

g(Yi)K
(Xi − x

h

)]
=

1
nh

n

∑
i=1

EXi,Yi

[
g(Yi)Kl

(Xi − x
h

)]
=

1
nh

n

∑
i=1

h
{

fX(x)
∫

K(u)du · E[g(Y)|X = x] + O(h2)
}

= fX(x) · E[g(Y)|X = x] + O(h2)

As {(Xi, Yi}n
i=1 are independent and under assumption (v), we also have

VarX,Y

[ 1
nh

n

∑
i=1

g(Yi)K
(Xi − x

h

)]
=

1
(nh)2

n

∑
i=1

Var
[

g(Yi)K
(Xi − x

h

)]
=

1
(nh)2

n

∑
i=1

{
E
[

g(Yi)K
(Xi − x

h

)]2
−
(

E
[

g(Yi)K
(Xi − x

h

)])2
}

=
1

(nh)2

n

∑
i=1

(
h
{

fX(x)
∫

K2(u)du · E[g2(Y)|X = x] + O(h2)
}

− h2
{

fX(x)
∫

K(u)du · E[g(Y)|X = x] + O(h2)
}2
)

=
1

nh

[ ∫
K2(u)du fX(x)E[g2(Y)|X = x] + O(h2)

]
− 1

n

[
fX(x)E[g(Y)|X = x] + O(h2)

]2

= O
( 1

nh

)
By Markov’s Inequality, it is easy to get

1
nh

n

∑
i=1

g(Yi)K
(Xi − x

h

)
− fX(x)E[g(Yi)] = Op

(
h2 +

1√
nh

)
Finally, we get:

E∗[g(Y)|x]− E[g(Y)|x]

=
1

fX(x) + op(1)
· 1

nh

n

∑
i=1

g(Yi)K
(Xi − x

h

)
− E[g(Y)|x]

=
1

fX(x) + op(1)
·
[

1
nh

n

∑
i=1

g(Yi)K
(Xi − x

h

)
− [ fX(x) + op(1)]E[g(Y)|x]

]
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=
Op(h2 + 1/

√
nh)− op(1)E[g(Y)|x]

fX(x) + op(1)

= Op

(
h2 +

1√
nh

)

Proof of theorem 1.4.2.

Recall 1.3.1. We already know that, in local bootstrap, we use Ĝxi to gen-

erate Y∗i . To show the equivalence, we will prove there exists another kind of

distribution function Ĥxi to generate Y?
i , and Ĝxi = Ĥxi .

Ĥxi :

Y1 Y2 · · · Yn

w̃1i w̃2i · · · w̃ni


The reason we can define such a function for model free, is that no matter what

u∗i we get from Uniform(0,1), by the transformed function D̂−1
x (·), Y? will be

always one point from {Y1, · · · , Yn}. Thus for each Yj ,there is a probability we

choose it as Y?
i . For each i, j, we define Y−j = maxk=1,...,n{Yk, Yk < Yj}. Then, we

have:

w̃ij = P(Y?
i = Yj)

= P(D̂−1
xi

(u∗i ) = Yj)

= P(1{∃k,Yk<Yj} · D̂xi(Y
−
j ) < u∗i ≤ D̂xi(Yj))

=
∑n

t=1 1{Yt≤Yj}K
(

Xi−Xt
h

)
∑n

t=1 K
(

Xi−Xt
h

) − 1{∃k,Yk<Yj} ·
∑n

t=1 1{Yt≤Y−j }
K
(

Xi−Xt
h

)
∑n

t=1 K
(

Xi−Xt
h

)
=

K
(

Xi−Xj
h

)
∑n

t=1 K
(

Xi−Xt
h

)

Proof of lemma 1.4.3.
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Recall that we suppose each ui, i = 1 · · · , n is uniformly distributed.

then, by the algorithm of Model free method 2,

E?[g(Y?)|X = x] =
1
n

n

∑
i=1

g[D̂−1
x (ui)]

Then, consider

|E?[g(Y?)|x]− E[g(Y)|x]| ≤ |E?[g(Y?)|x]− E∗[g(Y∗)|x]|+ |E∗[g(Y∗)|x]− E[g(Y)|x]|
(1.8.1)

Let E∗ denote expectation in local bootstrap world, and E? denote expec-

tation in model free bootstrap world. For the right side of inequality above, the

second term is proved in theorem 1.3.2. For the first term, by theorem 1.4.2, we

know E∗[g(Y∗)|X = x] = Eug[D̂−1
x (u)], where u comes from uniform[0,1] dis-

tribution. Let random vector U = (u1, . . . , un), independent from u. Then we

have:

E{E?[g(Y?)|x]− E∗[g(Y∗)|x]} = EX,Y,U

[ 1
n

n

∑
i=1

g[D̂−1
x (ui)]− Eug[D̂−1

x (u)]
]

= EX,Y

{
EU

[ 1
n

n

∑
i=1

g[D̂−1
x (ui)

∣∣∣X, Y]
]
− Eug

[
D̂−1

x (u)
∣∣∣X, Y

]}
= 0 (1.8.2)

Then consider the variance:

VarX,Y,U
{

E?[g(Y?)|X = x]− E∗[g(Y∗)|X = x]
}

= EX,Y,U

{
E?[g(Y?)|X = x]− E∗[g(Y∗)|X = x]

}2

= EX,Y

(
EU
{

E?[g(Y?)|X = x]− E∗[g(Y∗)|X = x]
∣∣X, Y

}2
)

= EX,Y

(
EU

{ 1
n

n

∑
i=1

g[D̂−1
x (ui)]− Eug[D̂−1

x (u)]
∣∣∣X, Y

}2)
= EX,Y

(
VarU

{ 1
n

n

∑
i=1

g[D̂−1
x (ui)]

∣∣∣X, Y
})

= EX,Y

( 1
n2

n

∑
i=1

VarU
{

g[D̂−1
x (ui)]

∣∣X, Y
})

=
1
n

EX,Y

(
Var∗[g(Y∗)|X = x]

)
=

1
n

EX,Y

(
E∗[g(Y∗)|X = x]2 −

{
E∗[g(Y∗)|X = x]

}2
)
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For the second term, in theorem 1.3.2, we already show that

E∗[g(Y∗)|X = x]− E[g(Y)|X = x] = Op

(
h2 +

1√
nh

)
and

VarX,Y

(
E∗[g(Y∗)|X = x]

)
= O

( 1
nh

)
which implies

EX,Y

(
E∗[g(Y∗)|X = x]

)2
= VarX,Y

(
E∗[g(Y∗)|X = x]

)
+
[
EX,Y

(
E∗[g(Y∗)|X = x]

)]2

is bounded. Then let us see the first term:

EX,Y

{
E∗[g(Y∗)|X = x]2

}
= EX,Y

{ 1
nh

n

∑
i=1

g2(Yi)K̃
(Xi − x

h

)}
=

1
nh

n

∑
i=1

EX,Y

{
g2(Yi)K̃

(Xi − x
h

)}
=

1
nh

n

∑
i=1

h
{

fX(x)
∫

K̃(u)du · E[g2(Y)|X = x] + O(h2)
}

by lemma 1.5.1

= Ã(x)E[g2(Y)|X = x] + O(h2)

< ∞

Thus VarX,Y,U
{

E?[g(Y?)|X = x]− E∗[g(Y∗)|X = x]
}
= O(1/n). This and 1.8.2,

Chebyshev inequality, and the definition of big O in probability notation leads

to:

E?[g(Y?)|X = x]− E∗[g(Y∗)|X = x] = Op

( 1√
n

)
Recall 1.8.1, we have:

|E?[g(Y?)|X = x]− E[g(Y)|X = x]| = Op

( 1√
n

)
+ Op

(
h2 +

1√
nh

)
= Op

(
h2 +

1√
nh

)
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Proof of lemma 1.4.4.

Let d̂(x) = 1
nh ∑n

i=1 Λ
(

Yi−y
h0

)
K
(

Xi−x
h

)
, then we write:

sup
x∈S
|D̃x(y)− Dx(y)| = sup

x∈S

∣∣∣∣∣ d̂(x)
f̂ (x)

− Dx(y)

∣∣∣∣∣
≤

supx∈S

∣∣∣d̂(x)− E
(
d̂(x)

)
+ E

(
d̂(x)

)
− Dx(y) f̂ (x)

∣∣∣
infx∈S | f̂ (x)|

≤
supx∈S

∣∣∣d̂(x)− E
(
d̂(x)

)∣∣∣
infx∈S | f̂ (x)|

+
supx∈S

∣∣∣E(d̂(x)
)
− Dx(y) f̂ (x)

∣∣∣
infx∈S | f̂ (x)|

Where f̂ (x) = 1
nh ∑n

i=1 K
(

Xi−x
h

)
. By assumption (ii) and thm 1.4 from [5], i.e

supx∈S | f̂ (x)− f (x)| a.s.→ 0, for large sufficiently enough n we can find another

δ′ s.t. infx∈S f̂ (x) ≥ δ′ > 0. And for the second term, by theorem 6.2 in Li and

Racine [5], we have:{
E
[
d̂(x)

]
− Dx(y) f̂ (x)

}
=

h2
0

2

∫
u2K(u)du · ∂2Dx(y)

∂y2 f (x) +
h2

2

∫
u2K(u)du

[∂2Dx(y)
∂x2 f (x)

+ 2
∂ f (x)

∂x
· ∂Dx(y)

∂x

]
+ o(h2

0 + h2)

= O(h2
0 + h2)

By assumption (vii), ∂2Dx(y)
∂y2 and supx∈S

[
∂Dx(y)

∂x f (x) + 2∂ f (x)
∂x ·

∂Dx(y)
∂x

]
is bound-

ed, which implies

sup
x∈S

∣∣∣E(d̂(x)
)
− Dx(y) f̂ (x)

∣∣∣ = O(h2
0 + h2)

Then just need to show

sup
x∈S

∣∣∣d̂(x)− E
(
d̂(x)

)∣∣∣ = O
([ ln(n)

nh

] 1
2
)

a.s. (1.8.3)

As S is compact, it can be covered by a finite number Ln of interval {Ik}n
1 with

length ln, and Ln = constant/ln. We write:

sup
x∈S

∣∣∣d̂(x)− E
(
d̂(x)

)∣∣∣ = max
1≤k≤Ln

sup
x∈S ⋂ Ik

|d̂(x)− E
(
d̂(x)

)
|



26

≤ max
1≤k≤Ln

sup
x∈S ⋂ Ik

|d̂(x)− d̂(xk,n)|

+ max
1≤k≤Ln

|d̂(xk,n)− E[d̂(xk,n)]|

+ max
1≤k≤Ln

sup
x∈S ⋂ Ik

|E[d̂(xk,n)]− E[d̂(x)]|

= Q1 + Q2 + Q3

For Q2, the sup can be ignored because it only concern xk,n but not x, and xk,n is

the central point of the interval Ik. We will show Q1 and Q3 in the last part, just

consider Q2 first. To show Q2 = O(ηn) a.s., by Borel-Cantelli Lemma, we just

need to show
∞

∑
n=1

P[Q2 > ηn] < ∞

Let Wn(x) = d̂(x)− E[d̂(x)] = ∑i Zn,i. where

Zn,i =
1

nh

{
Λ
(Yi − y

h0

)
K
(Xi − x

h

)
− E

[
Λ
(Yi − y

h0

)
K
(Xi − x

h

)]}
For any ηn > 0, we have

P[Q2 > ηn] = P[ max
1≤k≤Ln

|Wn(xk,n)| > ηn]

≤
Ln

∑
k=1

P[|Wn(xk,n)| > ηn]

≤ Ln sup
x∈S

P[|Wn(x)| > ηn]

Since K(·) is bounded, let its supremum is A1, moreover, Λ(·) is a CDF and so

|Λ(·) ≤ 1|, thus we have Zn,i ≤ 2A1
nh . Define λn = (nh ln(n))

1
2 , then λn|Zn,i| ≤

2A1

[
ln(n)

nh

] 1
2
. Then we can choose sufficiently large n such that λn|Zn,i| ≤ 1

2 for

all i = 1, 2, · · · , n. Now use inequality

exp(x) ≤ 1 + x + x2 as |x| ≤ 1
2

and

1 + x ≤ exp(x) as x ≥ 0

We have:

E[exp(±λnZn,i)] ≤ 1 + E[±λnZn,i] + E[λ2
n|Z2

n,i|] ≤ exp(E[λ2
n|Z2

n,i|]) a.s.
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By the Markov inequality, (a > 0)

P[X > c] ≤ E[exp(Xa)]
exp(ac)

(1.8.4)

Thus,

P[|Wn(x)| > η] = P
[∣∣∣ n

∑
i=1

Zn,i

∣∣∣ > η
]

= P
[ n

∑
i=1

Zn,i > η
]
+ P

[
−

n

∑
i=1

Zn,i > η
]

≤ E[exp(λn ∑n
i=1 Zn,i)] + E[exp(−λn ∑n

i=1 Zn,i)]

exp(λnη)

≤ 2 exp(−λnη)
n

∏
i=1

[
exp

(
λ2

nEZ2
n,i

)]
≤ 2 exp(−λnη)

[
exp

(A2λ2
n

nh

)]
Where we use

EZ2
n,i =

1
(nh)2 Var

[
Λ
(Yi − y

h0

)
K
(Xi − x

h

)]
≤ 1

n2h2 E
[
Λ
(Yi − y

h0

)
K
(Xi − x

h

)]2

≤ 1
n2h2

∫
K2
(xi − x

h

)
fX(xi)dxi

=
1

n2h

∫
K2(u)) fX(x + uh)du

=
1

n2h

∫
K2(u))

[
fX(x) +

∂ fX(x)uh
∂x

+ O(h2)
]
du

=
1

n2h

{
fX(x)

∫
K2(u)du + h

∂ fX(x)
∂x

∫
uK2(u)du + O(h2)

}
=

f (x)
∫

K2(u)du
n2h

[1 + O(h2)]

≤ A2

n2h

As f (x) is bounded, and
∫

uK2(u)du = 0 since K is symmetric. Because A2 is

independent of x, we get

sup
x∈S

P[|Wn(x)| > ηn] ≤ 2 exp
(
− λnηn +

A2λ2
n

nh

)
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And let λn = [(nh) ln(n)]
1
2 and ηn = C4 ln(n)/λn = C4[ln(n)/(nh)]

1
2 , where C4

is positive. Choosing large enough C4, we get(
− λnη +

A2λ2
n

nh

)
= (−C4 + A2) ln n = α ln n

where α = (−C4 + A2) is negative, and it can be small enough (by the choice of

C4) so that:

∞

∑
n=1

P[Q2 > ηn] ≤
∞

∑
n=1

sup
x∈S

P[|Wn(x)| > ηn] ≤
∞

∑
n=1

Ln

nα
< ∞

by choosing Ln =
√

n
h3 ln n . Thus, based on all the above and Borel-Cantelli

Lemma, we know that,

Q2 = O
([ ln(n)

nh

] 1
2
)

a.s.

Now consider Q1 and Q3. By the Lipschitz condition on K(·), we know that

sup
S ⋂ Ik

∣∣∣Λ(Yi − y
h0

)
K
(Xi − x

h

)
−Λ

(Yi − y
h0

)
K
(Xi − xk,n

h

)∣∣∣ ≤ C1

h
sup
S ⋂ Ik

||x− xk,n||

≤ C1ln
h

By using the same choice of Ln above, we have ln = constant ·
√

h3 ln n
n , and

|Q1| ≤
C1ln
h2 = O

([ ln(n)
nh

] 1
2
)

a.s.

And by exactly same arugement, we can also show

|Q3| = O
([ ln(n)

nh

] 1
2
)

a.s.

Thus, finally, we get

sup
x∈S
|D̃x(y)− Dx(y)| = O

(
h2

0 + h2 +
[ ln(n)

nh

] 1
2
)

a.s.



29

Proof of Lemma 1.4.7.

By the property of continuity of gn(·), we know that if | fn(Zn)−U| → 0

as n→ ∞, then |gn[Zn, fn(Zn)]− gn(Zn, U)| → 0 as n→ ∞. It implies

1 ≥ P
(

lim
n→∞

[gn(Zn, fn(Zn))− gn(Zn, U)] = 0
)
≥ P

(
lim

n→∞
[ fn(Zn)−U] = 0

)
= 1

Consequently as n→ ∞

|gn(Zn, fn(Zn))− gn(Zn, U)| → 0 a.s.

Proof of Theorem 1.4.8.

First, by Probability Integral Transform theorem, we have

E[g(Y)|X = x] = E{g[D−1
x (U)]}

The first expectation is with respect to Y|x, the expectation on the right side is

with respect to r.v. U, that follows uniform [0,1]. By Law of Large Number, we

have

E{g[D−1
x (U)]} = 1

n

n

∑
i=1

g[D−1
x (Ui)] + op

(
1√
n

)
where Ui follows Unif[0,1] i.i.d. On the other hand, by the algorithm of model

free and Lemma 1.4.7, we know that

E?[g(Y?)|X = x] =
1
n

n

∑
i=1

g
(

D̃−1
x [D̃xi(Yi)]

)
=

1
n

n

∑
i=1

g
(

D̃−1
x [Dxi(Yi)]

)
a.s.

Then, to show the theorem, we just need to prove∣∣∣∣∣ 1n n

∑
i=1

g
(

D̃−1
x [Dxi(Yi)]

)
− 1

n

n

∑
i=1

g[D−1
x (Ui)]

∣∣∣∣∣ = Op

(
h2 +

1√
nh

)
Notice that ∣∣∣∣∣ 1n n

∑
i=1

g
(

D̃−1
x [Dxi(Yi)]

)
− 1

n

n

∑
i=1

g[D−1
x (Ui)]

∣∣∣∣∣
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≤
∣∣∣∣∣ 1n n

∑
i=1

g
(

D̃−1
x [Dxi(Yi)]

)
− 1

n

n

∑
i=1

g
(

D−1
x [Dxi(Yi)]

)∣∣∣∣∣
+

∣∣∣∣∣ 1n n

∑
i=1

g
(

D−1
x [Dxi(Yi)]

)
− 1

n

n

∑
i=1

g[D−1
x (Ui)]

∣∣∣∣∣ (1.8.5)

Dxi(Yi) essentially follows uniform[0,1] by Probability Integral Transform The-

orem. Thus the second term is op

(
1√
n

)
by Law of Large Number. The first term

is however, complicated since D̃−1
x (·) includes Xi, Yi. But it is straightforward if

we can show

sup
xi,yi

∣∣∣g (D̃−1,i
x [Dxi(yi)]

)
− g

(
D−1

x [Dxi(yi)]
)∣∣∣ = Op

(
h2 +

1√
nh

)
where D̃−1,i

x (·) denote the same function D̃−1
x (·) but with variables xi, yi instead

of random variables Xi, Yi. However, the equality above might fail because

Dxi(yi) can reach 0 or 1, which leads D̃−1
x (·) and D−1

x (·) to infinity. Fortunately,

we just study these functions in probability, which implies Y|X = x, and Dx(Y)

are both bounded in probability. ∀ε > 0, ∃Mε, s.t.

P(|Y|X = x| > Mε) < ε

For the same ε, there also exists M̃ε > 0, such that

P
(

Dx(Y) < 1− M̃ε and Dx(Y) > M̃ε

)
< ε

Here notice that Mε, M̃ε does not depend on i. Now we consider to prove

sup
xi;yi∈[1−M̃ε,M̃ε]

∣∣∣g (D̃−1,i
x [Dxi(yi)]

)
− g

(
D−1

x [Dxi(yi)]
)∣∣∣ = Op

(
h2 +

1√
nh

)
Since the function inside is continuous, we can attain the maximum. Denote the

maximizer by x(n)0 , y(n)0 , and let u(n)
0 = D

x(n)0
(y(n)0 ), then

sup
xi;yi∈[1−M̃ε,M̃ε]

∣∣∣g (D̃−1,i
x [Dxi(yi)]

)
− g

(
D−1

x [Dxi(yi)]
)∣∣∣

=
∣∣∣g (D̃−1,i,0

x (u(n)
0 )
)
− g

(
D−1

x (u(n)
0 )
)∣∣∣ (1.8.6)
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Let sn = D−1
x (u(n)

0 ), s̃n = D̃−1,i,0
x (u(n)

0 ), t̃n = D̃i,0
x (sn). where D̃−1,i,0

x (·) and D̃i,0
x (·)

denote the same function D̃−1
x (·) and D̃x(·) but with maximizer x(n)0 , y(n)0 instead

of random variables Xi, Yi. By the definition of sn, s̃n, t̃n, we have

u(n)
0 = Dx(sn) = D̃i,0

x (s̃n)

sn = D−1
x (u(n)

0 ) = D̃−1,i,0
x (t̃n)

Then we go back the right side of equation (1.8.6). In the following procedures,

we are using the tricks D−1
x (u(n)

0 ) = D̃−1,i,0
x (t̃n), u(n)

0 = Dx(sn), t̃n = D̃i,0
x (sn),∣∣∣g (D̃−1,i,0

x (u(n)
0 )
)
− g

(
D−1

x (u(n)
0 )
)∣∣∣ = ∣∣∣g (D̃−1,i,0

x (u(n)
0 )
)
− g

(
D̃−1,i,0

x (t̃n)
)∣∣∣

Since g(x) = xk or g(x) = |x|k, k = 1, 2, 3, let h(x) = xk only, then∣∣∣g (D̃−1,i,0
x (u(n)

0 )
)
− g

(
D−1

x (u(n)
0 )
)∣∣∣ = ∣∣∣g (D̃−1,i,0

x (u(n)
0 )
)
− g

(
D̃−1,i,0

x (t̃n)
)∣∣∣

≤
∣∣∣h (D̃−1,i,0

x (u(n)
0 )
)
− h

(
D̃−1,i,0

x (t̃n)
)∣∣∣

=
h′
(

D̃−1,i,0
x (cn)

)
D̃
′i,0
x [D̃−1,i,0

x (cn)]

∣∣∣u(n)
0 − t̃n

∣∣∣
=

h′
(

D̃−1,i,0
x (cn)

)
D̃
′i,0
x [D̃−1,i,0

x (cn)]

∣∣∣D̃i,0
x (sn)− Dx(sn)

∣∣∣
The third line is derived by mean value theorem. First we consider the equation∣∣∣D̃i,0

x (sn)− Dx(sn)
∣∣∣∣∣∣D̃i,0

x (sn)− Dx(sn)
∣∣∣ ≤ ∣∣∣D̃i,0

x (sn)− D̃x(sn)
∣∣∣+ ∣∣∣D̃x(sn)− Dx(sn)

∣∣∣
On the right side, the second term is shown by Q. Li and J.S. Racine [5] in theo-

rem 6.2, that ∣∣∣D̃x(sn)− Dx(sn)
∣∣∣ = Op

(
h2 +

1√
nh

)
Thus, we only need to concern the first term

∣∣∣D̃i,0
x (sn)− D̃x(sn)

∣∣∣. Actually their

difference is very minor

D̃i,0
x (x) =

∑n
j 6=i Λ

(
Yj−y

h0

)
K
(

Xj−x
h

)
∑n

j 6=i K
(

Xj−x
h

)
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=
∑n

j=1 Λ
(

Yj−y
h0

)
K
(

Xj−x
h

)
+ Λ

(
yi−y

h0

)
K
(

yi−x
h

)
−Λ

(
Yi−y

h0

)
K
(

Xi−x
h

)
∑n

j=1 K
(

Xj−x
h

)
+ K

(
xi−x

h

)
− K

(
Xi−x

h

)
Let

an =
n

∑
j=1

Λ
(Yj − y

h0

)
K
(Xj − x

h

)
, δa,i = Λ

(yi − y
h0

)
K
(yi − x

h

)
,4a,i = Λ

(Yi − y
h0

)
K
(Xi − x

h

)

bn =
n

∑
j=1

K
(Xj − x

h

)
, δb,i = K

(xi − x
h

)
,4b,i = K

(Xi − x
h

)
Then

D̃i,0
x (y) =

an + δa,i −4a,i

bn + δb,i −4b,i

=
an

bn

1− 4a,i−δa,i
an

1− 4b,i−δb,i
bn


=

an

bn

(
1− 4a,i − δa,i

an

)(
1 +
4b,i − δb,i

bn
+

[4b,i − δb,i

bn

]2

+ o
[4b,i − δb,i

bn

]2
)

=
an

bn
+ Op

(
1
n

)
= D̃x(y) + Op

(
1
n

)
Above all, we have that∣∣∣D̃i,0

x (sn)− Dx(sn)
∣∣∣ = Op

(
h2 +

1√
nh

)
It also imples ∣∣∣u(n)

0 − t̃n

∣∣∣ = Op

(
h2 +

1√
nh

)
We know that u(n)

0 is bounded in probability. With a large enough n, t̃n is also

bounded in probability. And cn is a value between u(n)
0 and t̃n, and also bounded

in probability. This leads to
h′(D̃−1,i,0

x (cn))
D̃
′ i,0
x [D̃−1,i,0

x (cn)]
is bounded in probability. Thus

sup
xi;yi∈[1−M̃ε,M̃ε]

∣∣∣g (D̃−1,i
x [Dxi(yi)]

)
− g

(
D−1

x [Dxi(yi)]
)∣∣∣ = Op

(
h2 +

1√
nh

)
Now we go back to (1.8.5), it is very straightforward to see our target equation

holds

|E?[g(Y?)|X = x]− E[g(Y)|X = x]| = Op

(
h2 +

1√
nh

)
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Proof of Theorem 1.5.2.

Recall lemma 1.5.1, we have:

E∗m̂∗n,h(x) =
1

nh

n

∑
i=1

E∗
[
Y∗i K

(Xi − x
h

)]
=

1
nh

n

∑
i=1

[
h

fX(x)
fX(x) + op(1)

∫
K(u)duE∗(Y∗|X = x) + O(h2)

]
=

fX(x)
fX(x) + op(1)

E∗(Y∗|X = x) + O(h2)

= m̂n,h(x) + O(h2) in probability

which implies |E∗m̂∗n,h(x)− m̂n,h(x)| = Op(h2)

Proof of Theorem 1.5.3.

nh
∣∣∣Var∗[m̂∗n,h(x)]−Var[m̂n,h(x)]

∣∣∣
= nh

∣∣∣ 1
(nh)2

n

∑
i=1

Var∗
[
Y∗i K̃

(Xi − x
h

)]
− 1

(nh)2

N

∑
i=1

Var
[
YiK̃
(Xi − x

h

)]∣∣∣
≤ 1

nh

n

∑
i=1

∣∣∣E∗[Y∗i K̃
(Xi − x

h

)]2
−
(

E∗
[
Y∗i K̃

(Xi − x
h

)])2
− E

[
YiK̃
(Xi − x

h

)]2

+
(

E
[
YiK̃
(Xi − x

h

)])2∣∣∣
≤ 1

nh

n

∑
i=1

∣∣∣E∗[Y∗i K̃
(Xi − x

h

)]2
− E

[
YiK̃
(Xi − x

h

)]2∣∣∣
+

1
nh

n

∑
i=1

∣∣∣(E∗
[
Y∗i K̃

(Xi − x
h

)])2
−
(

E
[
YiK̃
(Xi − x

h

)])2∣∣∣
=

1
nh

n

∑
i=1

h
∣∣∣ fX(x)

∫
K̃2(u)du · (E∗(Y∗2|X = x)− E(Y2|X = x)) + O(h2)

∣∣∣+
1

nh

n

∑
i=1

∣∣∣(E∗
[
Y∗i K̃

(Xi − x
h

)]
+ E

[
YiK̃
(Xi − x

h

)])(
E∗
[
Y∗i K̃

(Xi − x
h

)]
− E

[
YiK̃
(Xi − x

h

)])∣∣∣
≤ fX(x)

∫
K̃2(u)du · |E∗(Y∗2|X = x)− E(Y2|X = x)|+ O(h2) +

1
nh

n

∑
i=1

∣∣∣h[ fX(x)
∫

K̃(u)du

· (E∗(Y∗||x) + E(Y|x)) + O(h2)
]
· h
[

fX(x)
∫

K̃(u)du · (E∗(Y∗|x)− E(Y|x)) + O(h2)
]∣∣∣

≤ fX(x)
∫

K̃2(u)du · |E∗(Y∗2||x)− E(Y2|x)|+ h
(

fX(x)
∫

K̃(u)du
)2
|E∗(Y∗|x)+

E(Y|x)| · |E∗(Y∗|x)− E(Y|x)|

Here notice that

|E∗(Y∗|x)|+ E(Y|x)| ≤ |E∗(Y∗|x)|+ |E(Y|x)|
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≤ |E(Y|x)|+ |E∗(Y∗|x)− E(Y|x)|+ |E(Y|x)|

< ∞

Thus, recall theorem 1.3.2&1.4.8, we can easily get:

nh
∣∣∣Var∗[m̂∗n,h(x)]−Var[m̂n,h(x)]

∣∣∣ = Op

(
h2 +

1√
nh

)

Proof of Theorem 1.5.4.

Define u∗i = 1
nhY∗i K̃

(
Xi−x

h

)
and ui =

1
nhYiK̃

(
Xi−x

h

)
. Then we have m̂∗n,h(x) =

∑n
i=1 u∗i , m̂n,h(x) = ∑n

i=1 ui. Also, let

S∗2n =
n

∑
i=1

Var∗(u∗i ) = Var∗[m̂∗n,h(x)], S2
n =

n

∑
i=1

Var(ui) = Var[m̂n,h(x)]

Our goal is to show

√
nh(m̂∗n,h(x)− E[m̂∗n,h(x)]) d→ N

(
0,

κσ2(x)
f (x)

)

which is equivalent to

√
nh

n

∑
i=1

(u∗i − E∗u∗i )
d→ N

(
0,

κσ2(x)
f (x)

)

It is easy to see that {u∗i } are independent but not identical, thus we can use

Lyapunov Central Limit Theorem to show the above equation. Actually, we

only need to show Lyapunov Condition

∑n
i=1 E∗|u∗i − E∗u∗i |3

S∗3n

p.→ 0

First, recall 1.2.2 and theorem 1.5.3, we have:

S∗3n ≤ |S∗3n − S3
n|+ S3

n = op(1) + S3
n

p.→ 1

(nh)
3
2

κσ2(x)
fX(x)

Simply, we just need

S∗3n = Op

( 1

(nh)
3
2

)
(1.8.7)
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E∗|u∗i − E∗u∗i |3

=
1

(nh)3 E∗
∣∣∣Y∗i K̃

(Xi − x
h

)
− E∗

[
Y∗i K̃

(Xi − x
h

)]∣∣∣3
≤ 1

(nh)3

{
E∗
∣∣∣Y∗i K̃

(Xi − x
h

)∣∣∣3 + 3
∣∣∣E∗[Y∗i K̃

(Xi − x
h

)]∣∣∣ · E∗[Y∗i K̃
(Xi − x

h

)]2

+ 3
(

E∗
[
Y∗i K̃

(Xi − x
h

)])2
· E∗
∣∣∣Y∗i K̃

(Xi − x
h

)∣∣∣+ ∣∣∣E∗[Y∗i K̃
(Xi − x

h

)]∣∣∣3}

≤ 1
(nh)3

{
hÃ3(x)E∗|Y∗|x|3 + 3h2Ã1(x)Ã2(x)|E∗(Y|x)∗| · E∗(Y∗2|x)+

3h3Ã3
1(x)(E∗(Y∗|x)2 · E∗|Y∗|x|+ h3Ã3

1|E∗(Y∗|x)|3 + O(h2)
}

= O
( 1

n3h2

)
in probability

= Op

( 1
n3h2

)
Here we use E∗|Y∗|x|k ≤

∣∣∣E∗|Y∗|x|k − E|Y|x|k
∣∣∣+ E|Y|x|k < ∞.

n

∑
i=1

E∗|u∗i − E∗u∗i |3 = Op

( 1
(nh)2

)
Recall 1.8.7, we have

∑n
i=1 E∗|u∗i − E∗u∗i |3

S∗3n
= Op

( 1√
nh

)
By Lyapunov Central Limit Theorem, we have

m̂∗n,h(x)− E∗[m̂∗n,h(x)]√
Var∗[m̂∗n,h(x)]

=
∑n

i=1(u
∗
i − E∗u∗i )
S∗n

d→ N(0, 1)

With the result of theorem 1.5.3, Var∗[m̂∗n,h(x)]
p.→ Var[m̂n,h(x)] → 1

nh
κσ2(x)
fX(x) , we

can finally get

√
nh(m̂∗n,h(x)− E[m̂∗n,h(x)]) d→ N

(
0,

κσ2(x)
f (x)

)
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Chapter 2

Bias Reduction by Transformed

Flat-top Series Estimator of Density

on Compact Support

2.1 Introduction

Suppose observed sample X1, . . . , Xn follows univariate density distri-

bution fX(x) with compact support, without loss of generality, let fX(x) has

support [0, 1]. The standard kernel density estimator is

f̂X(x) =
1

nh

n

∑
i=1

K
(

x− Xi

h

)
(2.1.1)

where K(·) is a kernel function, that usually is symmetric and satisfies
∫

K(x)dx =

1. h is the bandwidth. It is well known that such density kernel estimators suffer

boundary effects since the kernel function will place positive weight outside of

the bounded support. A numerous methods have been developed in the litera-

ture to reduce the boundary bias problem. Schuster [29], Silverman [30], Cline

and Hart [31] considered the reflection method, which will reduce the boundary

bias to O(h2) when the derivative of density at boundary is zero, otherwise the

boundary effect is still slight improved with bias O(h). The boundary kernel

method, usually taken different kernel gives up symmetry property at points in

37
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boundary region, was proposed and discussed by the following authors, Gasser

and Muller [32], Gasser, Muller and Mammitzsch [33], Jones [34], Muller [35],

Zhang and Karunamuni [36]. The local linear method is more general and fast

implemented without many assumptions on density, was developed by Cheng

et al. [37], Cheng [38], Zhang and Karunamuni [39]. The pseudo-data method,

that generates pseudo-data by linear interpolation of order statistics to estimate

density function with original data together, was proposed by Cowling and Hall

[40].

The transformation method, also employed in this chapter, was first pro-

posed and discussed by Wand, Marron and Ruppert [41], and then further de-

veloped by Wen and Wu [42]. Hall and Park [43] presented ”empirical transla-

tion correction” method. The beta kernel estimator, that uses the beta density

as kernel function was first proposed by Chen [44]. Jones and Henderson [45]

discussed a Gaussian copula based estimator. Zhang et al. [46] combined the

pseudo-data, transformation and reflection methods. Marron and Ruppert [47]

combined transformation and reflection methods.

In this chapter, we proposed to combine the transformation method and

flat-top series method. Politis and Romano [48] first proposed flat-top kernel

spectral density estimator. Later Politis and Romano [49] extended flat-top k-

ernel to multivariate density estimation and discovered this kind of kernel has

infinite order property. After that, Politis proposed flat-top series estimator of

the density with compact support [50] in 2000 and proposed adaptive band-

width choice method for spectral density and probability density function with

flat-top kernel [51] in 2003. Moreover, flat-top kernel method was further de-

veloped in [23, 52, 53] and discussed in [54, 55]. More details of flat-top kernel

estimator and flat-top series estimator are introduced in section 2.2.

The rest of this section briefly introduces the spirit of transformed method

in nonparametric density problem. Denote the transform function by g(·) that

is a fixed one to one and monotonically increasing function, suppose random

variable X follows the density fX(x), let Y = g(X), then,

fX(x) = fY[g(x)]g′(x)
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If a density estimator f̂Y based on {Yi = g(Xi)}n
i=1, then the transformed esti-

mator is:

f̂X(x) = f̂Y[g(x)]g′(x) (2.1.2)

If g(x) is smooth, we have supx∈[0,1] g′(x) ≤ M for some positive value M,∣∣∣E[ f̂X(x)]− fX(x)
∣∣∣ = ∣∣∣E [ f̂Y[g(x)]g′(x)

]
− fY[g(x)]g′(x)

∣∣∣
≤ M ·

∣∣∣E( f̂Y[g(x)]
)
− fY[g(x)]

∣∣∣ (2.1.3)

Similarly, we also have

Var
[

f̂X(x)
]
≤ M2 ·Var

[
f̂Y[g(x)]

]
(2.1.4)

Marron and Ruppert [47] intended to construct a function g(·) that satisfies

f ′Y(0) = 0, and then used reflection method to obtain boundary bias order

O(h2). This chapter constructs g(·) that satisfies some other conditions and then

uses flat-top series estimator. The rest of the text is organized as follows: Sec-

tion 2.2 introduces the infinite order flat-top kernel estimator and flat-top series

estimator, along with some theorems. Section 2.3 presents the transformed flat-

top series estimator and shows the higher order bias in the interior region. The

selection of parameters and applications are discussed in section 2.4 and 2.5.

Section 2.6 conducts simulation study and final comments are given in section

2.7.

2.2 Flat-top Estimator

2.2.1 Review of Flat-top Kernel Density Estimator

For regular kernel estimator (2.1.1) of density on R,. we call a kernel

function K(·) has q order, if K(·) has finite moments up to qth order, and mo-

ments of order up to q− 1 equal to zero. Suppose a density function fX(x) has

up to r continuous and bounded derivative, then it is known that

Bias
[

f̂X(x)
]
= E f̂X(x)− fX(x) = c f ,K(x)hk + o(hk)
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where k = min(q, r) and c f ,K(x) is a bounded function depending on K(·), f

and f ′. Since regular positive kernel functions are usually density functions

themselves and satisfy symmetry, they always have up to second order, and

consequently the bias is always O(h2). In order to get a better bias order O(hk),

where k ≥ 2, the idea of choosing a kernel of higher order q is developed and

even dates back to Parzen [56] and Bartlett [57]. More references on high-order

kernels includes: [30, 33, 58, 59, 60, 61, 62, 63, 64, 65].

However, high order kernel method needs very complicated technique to

estimate the smoothness of density and hard to select bandwidth. On the other

side, infinity order flat-top kernel results in a bias of order O(hr) no matter how

large is r. In addition Politis [51] proposed several simpler bandwidth selection

methods for flat-top kernel than the ones for high order kernels. In the following

definitions, we denote Ω(·) as flat-top kernel function instead of K(·).

Definition 2.2.1. Let c be a positive value, the kernel Ωc is said to be a member

of the general family of univariate flat-top kernels of infinite order if

Ωc(x) =
1

2π

∫
ωc(s)e−isxds

where the Fourier transform ωc(s) satisfies the following properties:

(i) ωc(s) = 1 for all |s| ≤ c;

(ii)
∫
|ωc(s)|2ds < ∞;

(iii) ωc(s) = ωc(−s) for any s ∈ R.

The above 3 properties will guarantee the infinite order, a finite variance

and Ωc(x) is real valued. In this chapter, c is a positive value less than 1, and

ωc(s) =


1, |s| ≤ c

ηω(s), c < |s| ≤ 1

0, |s| > 1

(2.2.1)

ηω(s) here determines the shape. Like regular kernel estimator, with a band-

width h, we define

Λc(x) =
1
h

Ωc

(x
h

)
and λc(s) =

∫
Λc(x)eisxdx = ωc(hs)
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Denote φX(s) =
∫

eisx fX(x)dx the characteristic function, and let the sample

characteristic function be φ̂X(s) = 1
n ∑i eisXi , then flat-top kernel estimator of

fX(x) is

f̂X(x) =
1
n

n

∑
i=1

Λc(x− Xi) =
1

2π

∫
λc(s)φ̂X(s)e−isxds (2.2.2)

Theorem 2.2.2 (Politis and Romano [49]). If there is an r > 0, such that∫
|s|r|φX(s)|ds < ∞ (2.2.3)

Assume that n → ∞, and let h ∼ An−1/(2r+1), for some constant A > 0, it follows

that

sup
x∈R

Bias
[

f̂X(x)
]
= o(hr)

and

sup
x∈R

MSE
[

f̂X(x)
]
= O

(
n−

2r
2r+1

)
Here condition (2.2.3) implies that fX(x) has up to r bounded and con-

tinuous derivatives.

2.2.2 Flat-top Series Density Estimator

Now suppose fX(x) is very smooth density function on [0, 1], and f̃X(x)

is periodic function with period 1 that is the extension of fX(x) on the whole

real line. Let the characteristic function here be φX(s) =
∫ 1

0 eisx fX(x)dx, and

the sample characteristic function still be φ̂X(s) = 1
n ∑i eisXi , recall Fourier series

formula:

f̃X(x) = ∑
s∈Z

e−i2πsxφX(s)

and (2.2.2): The definition of flat-top series estimator in Politis [50] is:

f̂X(x) = ∑
s∈Z

λc(s)e−i2πsxφ̂X(s) (2.2.4)

This estimator is also a periodic function with period 1 on the whole real line,

but we only need the part on interval [0, 1]. Then we have the following theo-

rems:
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Theorem 2.2.3. If fX(x) is continuous and differentiable density function defined

[0, 1], 0 < | fX(1)− fX(0)| < ∞, and f (1)X ∈ L1[0, 1], then

sup
x∈[0,1]

Var
[

f̂X(x)
]
= O

[
1

nh
log
(

1
h

)]
(2.2.5)

According to the proof in appendix, we can also obtain the following

corollary:

Corollary 2.2.4. If fX(x) is continuously differentiable density function defined [0, 1],

| fX(1)− fX(0)| = 0, 0 < | f (1)X (1)− f (1)X (0)| < ∞ but is finite, both of f (1)X , f (2)X ∈
L1[0, 1], then

sup
x∈[0,1]

Var
[

f̂X(x)
]
= O

(
1

nh

)
(2.2.6)

Theorem 2.2.5 (Politis [50]). If there exists r > 0, such that

∑
s∈Z

|s|rφX(s) < ∞ (2.2.7)

let h ∼ An−1/(2r+1) from some constant A > 0, it follows that

sup
x∈[0,1]

Bias
[

f̂X(x)
]
= o(hr)

and

sup
x∈[0,1]

MSE
[

f̂X(x)
]
= O

(
n−

2r
2r+1

)
(2.2.8)

Notice the condition (2.2.7) here implies f̃X has r bounded and continu-

ous derivatives, more particularly, it means fX has r bounded and continuous

derivatives

fX(0) = fX(1), f (1)X (0) = f (1)X (1), f (2)X (0) = f (2)X (1), . . . , f (r)X (0) = f (r)X (1),

Actually, this condition is too strong. If we consider rectangular flat-top func-

tion, more specifically, ωc(s) with c = 1 and ηω = 0, we could relax the condi-

tion as follows:
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Theorem 2.2.6. Let fX(x) denote the density function on [0, 1] and f̃X(x) be the pe-

riodic extension of fX(x). If f̃X(x) has (r − 1)th bounded and continuous derivative

(r ≥ 1), and f̃ (r)X (x) is continuous except the jump discontinuities at x ∈ Z. More

specifically, f (r)(x) is continuous on [0, 1], but 0 < | f (r)X (0)− f (r)X (1)| < ∞. More-

over, f (r+1)
X (x) is continuous on [0, 1]. Then for h ∼ An−1/(2r+1), we still have result

(2.2.8) and bias

sup
x∈[0,1]

Bias
[

f̂X(x)
]
= O(hr)

Proof is provided in appendix.

2.3 Transformation-based Flat-top Series Estimator

Although theorem 2.2.5 and theorem 2.2.6 guarantee very good proper-

ties of flat-top series estimator, the conditions are too strong. In many situations,

density fX would not satisfy the condition that its periodic extension f̃X has up

to rth bounded and continuous derivative. In this section, we will assume,

Condition 2.3.1. fX is rth continuously differentiable and bounded on [0, 1] (r ≥ 2),

but fX(0) 6= fX(1).

This implies f̃X is discontinuous.

2.3.1 Parametric Transform Function

In this chapter, the transform function is estimated from a parametric

family containing a ”target” transformation such that density function satisfies

fY(0) = fY(1), where Y is the transformed random variable, and density func-

tion fX satisfies Condition 2.3.1. Nevertheless, the proof of theorem 2.2.6 in

appendix shows that if f (1)Y (0) 6= f (1)Y (1), then the bias of flat-top series estima-

tor has order at most O(h) universally. Thus, we need to modify the ”target”

transformation to be:

fY(0) = fY(1); f (1)Y (0) = f (1)Y (1) (2.3.1)
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Let Θ ⊂ Rk and G = {gθ, θ ∈ Θ} be a parametric family of transformations

with domain [0, 1]. Then we need the following condition throughout:

Condition 2.3.2. Each gθ ∈ G is three times continuously differentiable with respect

to x and has a strictly positive derivative from [0, 1] to [0, 1]. Derivatives at 0 and 1 are

one sided. And there exists a K > 0, s.t.

max
j=0,1,2,3

{ sup
x∈[0,1]

|g(j)
θ (x)− g(j)

θ0
(x)|} ≤ K||θ − θ0|| (2.3.2)

where derivatives of gθ are with respect to x but not θ, and || · || denotes the Euclidean

norm on Rk.

One example of this condition is satisfied, is any polynomial with coeffi-

cients as linear functions of θ. As (2.1.2) in section 2.1, but since g is no longer

fixed, write fY(·; g) in stead of fY, flat-top series estimator f̂Y(·; g) instead of f̂Y,

characteristic function φY(·; g) instead of φY, and φ̂Y(·; g) instead of φ̂Y, then we

formally define the transformed flat-top series estimator is

f̂X(x; g) = f̂Y[g(x); g]g′(x) (2.3.3)

Where g ∈ G. Now assume Yθ0 = gθ0(X) satisfies (2.3.1), for simplicity, denote

Yθ0 by Y0, and gθ0 by g0. We shall be concerned that θn is the estimator of θ0

based on {Xi}n
i=1. Let Yθn = gθn(X), similarly as above, let Yn denote Yθn , and

gn denote gθn . The actual transformed flat-top series estimator is

f̂X(x; gn) = f̂Yn [gn(x); gn]g′n(x)

= f̂Y[g(x); g]
∣∣
g=gn

g′n(x) (2.3.4)

Where

f̂Yn [gn(x); gn] = ∑
s∈Z

λc(s)e−i2πsgn(x)φ̂Yn(s; gn) (2.3.5)

As in Marron and Ruppert [47], we let the expectation of flat-top series estimator

of fYn given gn be:

E f̂Yn(y; gn) =
[
E f̂Y(y; g)

] ∣∣∣
g=gn
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= E

[
∑

s∈Z

λc(s)φ̂Y(s; g)ei2πsy

] ∣∣∣∣∣
g=gn

= ∑
s∈Z

λc(s)φYn(s; gn)ei2πsy (2.3.6)

which is a sort of modified partial sum of Fourier series, where φYn(·; gn) is the

characteristic function of Yn.

Theorem 2.3.3. Suppose Condition 2.3.1 holds with r = 2, θ0 ∈ Θ, and Condition

2.3.2 holds. Define G4n = {gn : ||θn − θ0|| ≤ 4n and θn ∈ Θ}. Let 4n = 1
log 1/h ,

where h = h(n)→ 0 as n→ ∞ for some function h(·), then for any gn ∈ G4n

sup
y∈[0,1]

∣∣∣ f̂Yn(y; gn)− E f̂Yn(y; gn)
∣∣∣ = o

(
1√
nh

)
(2.3.7)

Notice that if ||θn− θ0|| = op(4n), then P
(

gn ∈ G4n

)
→ 1, so by theorem

2.3.3,

sup
y∈[0,1]

∣∣∣ f̂Yn(y; gn)− E f̂Yn(y; gn)
∣∣∣ = op

(
1√
nh

)
(2.3.8)

Suppose θn → θ0 at rate q(n) where q(n) → 0 as n → ∞ for some function

q(·), then Yn does not really satisfies (2.3.1). By Condition 2.3.2, it is very easy to

show that

| fYn(1; gn)− fYn(0; gn)| = O[q(n)], | f ′Yn
(1; gn)− f ′Yn

(0; gn)| = O[q(n)] (2.3.9)

Similarly, if θn → θ0 in probability at rate q(n), then

| fYn(1; gn)− fYn(0; gn)| = Op[q(n)], | f ′Yn
(1; gn)− f ′Yn

(0; gn)| = Op[q(n)]

(2.3.10)

By definition 2.2.1, (2.3.6) can be seen as a modified partial sum of Fourier se-

ries. Although Gibbs Phenomenon will be caused by (2.3.9), it is well known

that the difference between the true function and partial sum of Fourier series

is bounded by the size of the jump of discontinuity at discontinuous points, in

another word, the difference between E f̂Yn(y; gn) and fYn(y; gn) at 0 and 1, is

also bounded by | fYn(1; gn)− fYn(0; gn)| = q(n), see Lemma 2.3.7. This implies
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flat-top series estimator f̂Yn(y; gn) always has the order of bias q(n), actually

the same rate as θn → θ0, at boundary points. Fortunately, we are able to im-

prove the bias to higher order in the interior of the support. Before introducing

the order of bias, recalling (2.2.1), we first introduce the following theorems to

understand the performance of transformation-based flat-top series estimator

when c = 1.

2.3.2 Rectangular Flat-top Function

ω(s) =

1, |s| ≤ 1

0, |s| > 1

and λc(s) = ωc(hs), it implies

E f̂Yn(y; gn) = ∑
s≤1/h

φYn(s)e
i2πsy = SNh f̃Yn(y; gn) (2.3.11)

the modified partial sum of Fourier series now becomes regular partial sum

of Fourier series, and Nh = b1/hc, here f̃Yn(y; gn) is the periodic extension of

fYn(y; gn). The following lemmas are showing the bias at boundary points:

Lemma 2.3.4. Define

φ0(x) =
1
2

(
1
2
− x
)

, 0 ≤ x ≤ 1

Where φ(x) is periodic extension function of φ0(x). Let φn(x) is the nth partial sum of

Fourier sereis:

φn(x) =
n

∑
k=1

sin(2kπx)
2kπ

For any x /∈ Z, i.e. x is away from the discontinuity of φ(x), we have

|φ(x)− φn(x)| = O
(

1
n

)
Remark 2.3.5. Notice that if x ∈ [a, b] where [a, b] is an interval away from dis-

continuity, then we can also have:

sup
x∈[a,b]

|φ(x)− φn(x)| = O
(

1
n

)
(2.3.12)
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Remark 2.3.6. If f (x) is discontinuous at a point a, then we can define a continu-

ous function

f ∗(x) = f (x)− 2[ f (a+)− f (a−)]φ(x− a)

Clearly f ∗(a) = f (a+)+ f (a−)
2 and f ∗(x) is now continuous, very helpful for show-

ing the next lemma. The reason we construct f ∗(x) by φ(x) instead of by a step

function is that φn(x) has a better form and more convenient for the proof.

Lemma 2.3.7 (Theorem F, E. Hewitt [66]). Let f be a real-valued periodic function

on the real line R with period 1, and suppose that f and its derivative f ′ are both

continuous except for a finite number of finite jump discontinuities in the interval [0,1].

let Sn f (x) be the nth partial sum of the Fourier series of the function f , computed at

the point x. Let a be a point of discontinuity of f . The distance between overshoot and

undershoot of Gibbs Phenomenon at point a is at most 2
π Si(π)| f (a+)− f (a−)|, where

Si(x) =
∫ x

0
sin(t)

t dt.

Remark 2.3.8. Recall (2.3.11), that the expectation of rectangular flat-top series

estimator is Fourier series. Lemma 2.3.7 essentially tells us, for any 0 < a ≤ b <

1:

sup
y∈[0,a)

⋃
(b,1]

∣∣∣E f̂Yn(y; gn)− fYn(y; gn)
∣∣∣ ≤ 2

π
Si(π)| f̃Yn(0

+; gn)− f̃Yn(0
−; gn)|

=
2
π

Si(π)| fYn(1; gn)− fYn(0; gn)|

With (2.3.10), then we have the following theorem:

Theorem 2.3.9. If fX(x) is continuously differentiable function on [0, 1], and θn −
θ0 = Op(hi), i = 1, 2, then for any 0 < a ≤ b < 1:

sup
y∈[0,a)

⋃
(b,1]

∣∣∣E f̂Yn(y; gn)− fYn(y; gn)
∣∣∣ = Op(hi), i = 1, 2

Lemma 2.3.10. Let f be a real valued function on the [0, 1]. f̃ is periodic extension

of f . If f̃ (x) is continuous (i.e. f (0) = f (1)), f̃ (1)(x) is continuous except jump

discontinuities at x ∈ Z, in another word, f (1)(x) is continuous on [0, 1], but 0 <

| f (1)(0)− f (1)(1)| < ∞. Moreover, f (2) and f (3) is continuous on [0, 1]. Then

sup
x∈[0,1]

|Sn f (x)− f (x)| ≤ K1

n
| f (1)(1)− f (1)(0)|+ O

(
1
n2

)
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Notice all the above lemmas and theorems are discussing the rectangular

flat-top series estimator for transformed random variable Yn. Recall (2.3.4), the

following theorem is back to random variable X:

Theorem 2.3.11. Assume Condition 2.3.1 and Condition 2.3.2 hold, h = An−1/5, if

θn = θ0 + Op(h), then for any 0 < a ≤ b < 1, the transformed rectangular flat-top

series density estimator converges to true density function:

sup
x∈[a,b]

∣∣∣ f̂X(x; gn)− fX(x)
∣∣∣ = Op

(
1√
nh

+ h2
)
= Op

(
n−2/5

)
Remark 2.3.12. Although we only need θn = θ0 + Op(h) in the theorem above,

to get bias order O(h2) in any closed interval inside [0, 1], by theorem 2.3.9, the

bias order at boundary is still O(h). Thus we ought to employ θn such that

θn = θ0 + Op(h2) to obtain:

sup
x∈[0,1]

∣∣∣ f̂X(x; gn)− fX(x)
∣∣∣ = Op

(
1√
nh

+ h2
)
= Op

(
n−2/5

)
If h = An−1/5.

2.3.3 Infinitely Differentiable Flat-top Function

Recall (2.2.1), λc(s) = ωc(hs) and (2.3.6) with c < 1 and some function

ηω, the mean of flat-top series estimator is a modified partial sum of Fourier

series. In fact, it is well known that when the function is discontinuous, reg-

ular nth partial sum of Fourier series has bad convergent properties caused by

Gibbs Phenomenon, that not only failure of convergence at discontinuity, but

also slow global convergent rate O(1/n). This is essentially caused by discon-

tinuity of ωc(s). This section introduces the situation when ωc(s) is infinitely

differentiable, first see the definition of ηω (see McMurry and Politis, 2004),

ηω(s) = exp
(

−b
(|s| − 1)2 exp

[
−b

(|s| − c)2

])
(2.3.13)

Where b > 0 and c < |s| < 1. c determines the width of region that flat-top

function is 1, and b allows us to alter the shape of ηω. The selection of these 2
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parameters are discussed later. Apparently function ηω is able to connect the

region where ω(s) is 0 and the region ω(s) is 1 in a manner such that ω(s)

is infinitely differentiable for all s, even including where |s| = c and |s| = 1.

Remember again the mean of flat-top series estimator is a modified partial sum

of Fourier series, and see the following lemma:

Lemma 2.3.13 (Theorem 3.4, Gottlieb and Shu [67]). Let f be piecewise Cr+1 func-

tion with one point of discontinuity ξ, and y is one point in [0, 1] away from ξ.

f ω
n (y) = ∑

s∈Z

ωc

( s
n

)
cn( f )ei2πsy

Where cn( f ) is the coefficient of Fourier series.

| f (y)− f ω
n (y)| ≤ C · K( f )

nrd(y)r +
C|| f ||L2[0,1]

nr+1/2 (2.3.14)

where C is some constant, d(y) = mink=−1,0,1 |y− ξ + k|, and

K( f ) =
r

∑
l=0

d(y)l
[

f (l)(ξ+)− f (l)(ξ−)
] ∫ ∞

−∞

∣∣∣G(r+1−l)
l (η)

∣∣∣ dη

Where Gl(η) =
ωc(η)−1

ηl .

Notice
∫ ∞
−∞ |G

(r+1−l)
l (η)|dη < ∞ because ωc(η)− 1 = 0 here when |η| ≤

c. This lemma shows that convergence rate of this modified partial sum of Fouri-

er series is O(n−r) when y is away from discontinuity ξ.

Remark 2.3.14. One amazing property of such modified partial sum of Fourier

series, by definition of K( f ), is that its convergent rate O(n−r) is not influenced

by the continuity of f (l)(·) at ξ. It implies when practitioners transform the

random variable, it does not have to satisfy (2.3.1). More specifically, suppose

ξ = 0 and discussing f̃Yn(·; gn), the convergent rate O(N−r
h ) of bias remains,

even when f̃Yn(·; gn) and f̃ (1)Yn
(·; gn) are discontinuous at 0, or in another word,

even when | f (i)Yn
(1; gn)− f (i)Yn

(0; gn)| 6= 0 where i = 0, 1. Thus the bias of the point

away from discontinuity always has order O(N−r
h ) = O(hr). But for the points

around discontinuity, it is easy to show that Lemma 2.3.7 and Theorem 2.3.9 still

apply for infinitely differentiable flat-top function, and therefore we still suggest
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to employ an estimator θn = θ0 + Op(h2) so that the bias at boundary has order

Op(h2).

Remark 2.3.15. The definition of K( f ) implies the lemma does not work for the

density function which is infinite at boundary, or any order derivative is infinite

at boundary.

Theorem 2.3.16. Assume Condition 2.3.2 holds, fX(x) is the density function on [0, 1]

and fX(0) 6= fX(1). Moreover, fX(x) is rth continuously differentiable and bounded

function on [0, 1]. If θn = θ0 + Op(h2), then for any x ∈ (0, 1), the transformed

infinitely differentiable flat-top series estimator converges:

f̂X(x; gn) = fX(x) + Op

(
1√
nh

+ hr
)

for x = 0, 1

f̂X(x; gn) = fX(x) + Op

(
1√
nh

+ h2
)

In the following sections, we are more interested in the higher order bias

and therefore mainly discuss the transformed infinitely differentiable flat-top

series estimator.

2.4 Selection of Parameters

2.4.1 Selection of b and c

Recall infinite differentiable flat top function ηω 2.3.13, which is first in-

troduced by McMurry and Politis [23], See Fig.2.1 Where they advised a small

value of c is preferred, because large c will make ηω more rectangular and thus

undesirable. We find large b has the same problem. ηω is supposed to corre-

spond to a kernel with very large side lobes, similar to those of the Dirichlet

kernel. As a result, in application we advise to pick b = 1/4 and c = 0.05.

2.4.2 Selection of Bandwidth h

The problem of the bandwidth selection in the whole compact support

needs further study. The first question arises by theorem 2.3.16, that is the bias
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Figure 2.1: ηω(s) with c = 0.05 and different b

orders at boundary area and interior area are different if r > 2. If a global

bandwidth h1 = An−1/(2r+1) is selected, where A1 is a constant, then in the

interior area we have

f̂X(x; gn)− fX(x) = O
(

n−
r

2r+1

)
But in the boundary area,

f̂X(x; gn)− fX(x) = O
(

n−
2

2r+1

)
Which is worse than the other boundary correction kernel estimator with band-

width h2 = A2n−1/5, where A2 is a constant:

f̂X(x)− fX(x) = O
(

n−
2
5

)
On the other hand, if we select two different bandwidths for interior region and

boundary region, then discontinuity issue takes place at the border of these two

regions. In application, we recommend to employ h2 that optimize ||θn − θ0||,
see condition 2.3.2. Thus,

f̂X(x; gn)− fX(x) = O
(

n−
2
5

)
, x = 0, 1
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In the interior area, that [h2, 1 − h2] is advisable, if we select a bandwidth h2

different from h1, then define a local bandwidth h = h(t), such that

h(t) =


h1, t = 0, 1

h2, h1 ≤ t ≤ 1− h1

γh(t), 0 < t < h1, or 1− h1 < t < 1

Where γh(t) makes h(t) be continuous function. γh(t) as a linear function is

suggested in this chapter, and can be smoother if necessary. Selection of the

bandwidth h1 in the interior region is an open question. As in Politis [51], we can

make a practical recommendation. In fact, as the trick applied in the proof, the

inverse of bandwidth of flat-top series estimator performs as a threshold in the

frequency domain. If the extension of density function, f̃X(x) is very smooth,

the characteristic function, as the basis of frequency domain, φX(s) will decay

very fast and be negligible when |s| > 1
h . The bandwidth thus should be chosen

so that the characteristic function at low frequency to pass without disturbed,

while damping out the characteristic function at high frequency. With this in

mind, according to Politis [51], we propose the following rule of thumb.

1. Pick h2 to minimize ||θn − θ0||, obtain transform function gn(·) and trans-

formed observation Yn = gn(X);

2. Let ρ(s) = φYn(s)/φYn(0), and ρ̂(s) = φ̂Yn(s)/φ̂Yn(s). Let m̂ be the smallest

positive real number such that |ρ̂(m̂ + s)| < 2
√

log n/n, for all s ∈ (0, Kn),

where Kn is a positive nondecreasing real-valued function of n such that

Kn = o(log n), Then h1 = 1/(2m̂).

3. Estimate fYn(·; gn) by (2.3.5) with infinite differentiable flat-top function

and local bandwidth h(t). Finally get estimator of fX(·) by (2.3.4).

Unfortunately, the adaptive bandwidth choice method might not always be the

most appropriate for flat-top series transformed flat-top series estimator when

the density function is not smooth enough. Moreover, the periodic extension of

estimated transformed function fYn(y; gn) is not really continuous, and thus its
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characteristic function might not always decay fast. Thus we present to estimate

bandwidth by least square cross validation, to minimize∫ 1

0
[ f̂Yn(y; gn)− fYn(y; gn)]

2dy =
∫ 1

0
f̂ 2
Yn
(y; gn)dy− 2

∫ 1

0
f̂Yn(y; gn) fYn(y)dy

+
∫ 1

0
f 2
Yn
(y; gn)dy

The last term on the right is independent from h. The first term is easy to com-

pute because this integral is on closed interval [0, 1]. We will use leave-one-out

method to estimate the second term:∫ 1

0
f̂Yn(y; gn) fYn(y; gn)dy ≈ 1

n

n

∑
i=1

f̂−i
Yn
(yi; gn)

where f̂−i
Yn

is the flat-top series estimator without observation yi.

2.5 Application

2.5.1 Polynomial Transformation

In this section, we propose polynomial function as transformation with

the asymptotical properties discussed in the previous section. Since we mainly

discuss estimator with infinite differentiable flat-top function, by lemma 2.3.13

the transformation target is just

fY(0) = fY(1)

Let Y0 = g0(X) be the desired transformation random variable. Since g0 is one

to one function from [0, 1] to [0, 1], we also have X = g−1
0 (Y). Then by theorem

for derivative of inverse function:

fY0(y) =
fX[g−1

0 (y)]
g′0[g

−1
0 (y)]

(2.5.1)

which implies

fY0(0) =
fX(0)
g′0(0)

fY0(1) =
fX(1)
g′0(1)
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Remark 2.5.1. If fX(0) > fX(1) = 0, then we need g′0(0) to be 0 or g′0(1) to be

infinite, so that the equation above holds. In addition, the rate of g′0(t) → 0 as

t→ 0 is also very important. Thus the situation fX(0) > fX(1) = 0 is discussed

in next subsection. The following discussion are all based on assumption fX(0)

and fX(1) both positive.

A polynomial function and its coefficients will be selected by estimating

fX(0), fX(1). In fact, we need to solve all the following equations:

g0(0) = 0

g0(1) = 1

g′0(x) ≥ 0, 0 ≤ x ≤ 1

fY0(0) = fY0(1)

If considering quadratic polynomial g0(x) = ax2 + bx, g0(0) = 0 is satisfied.

We need a + b = 1 to make g0(1) = 1 holds. In addition, since fX(x) is always

non-negative, derived by the last equation, we have

fX(0)
b

=
fX(0)
g′0(0)

=
fX(1)
g′0(1)

=
fX(1)

2a + b

And

a =
fX(1)− fX(0)
fX(1) + fX(0)

b =
2 fX(0)

fX(1) + fX(0)

By some simple analysis, g′0(x) ≥ 0 always holds for x ∈ [0, 1], no matter

fX(0) > fX(1) or fX(0) < fX(1). It implies quadratic polynomial g0 always

guarantees the above equation has valid solution. It is easy to see that if

f̂X(0) = fX(0) + Op(h2)

f̂X(0) = fX(1) + Op(h2)

and let gn(x) = anx2 + bn, where

an =
f̂X(1)− f̂X(0)
f̂X(1) + f̂X(0)

bn =
2 f̂X(0)

f̂X(1) + f̂X(0)

Then gn(x) = g0(x) +Op(h2) for any fixed x. In this chapter, the simple bound-

ary correction method by Jones [34], available in R package evmix, is applied
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to estimate fX(0) and fX(1). This method is essentially equivalent to the kernel

weighted local linear fitting at the boundary, thus implemented fast and is able

to provide very accurate estimate at boundaries among many existing methods.

2.5.2 Algorithm

Notice that the polynomial transform method only works for the situa-

tion fX(0) and fX(1) are different and positive. If one of them is zero, then any

polynomial transform method is invalid. Politis [68] addressed a nonparamet-

ric hypothesis testing method, that could test whether a density distribution has

zero value at point of interest. Thus, we propose the following procedures and

modified methods if the assumption fX(0) 6= fX(1) > 0 is violated:

(1) Testing hypothesis:

H1
0 : fX(0) = 0; H1

1 : fX(0) > 0

H2
0 : fX(1) = 0; H2

1 : fX(1) > 0

H3
0 : fX(0) = fX(1); H3

1 : fX(0) 6= fX(1)

The last hypothesis is feasible based on the theorems provided in Jones [34].

Apparently, if we reject all the three null hypothesis, then the transformed

flat-top series estimator discussed in previous sections can be applied di-

rectly.

(2) Fail to reject both H1
0 and H2

0 :

Then we assume fX(0) = fX(1) = 0, and therefore transformation is not

necessary. Infinite differentiable flat-top series estimator could be applied

directly. Notice that flat-top series estimator behave similar to other higher

order kernel density estimator and might produce negative value, thus a

final step to re-normalize the density estimator is required.

(3) Reject both H1
0 and H2

0 , but fail to reject H3
0 :

Then we assume fX(0) = fX(1) > 0, and infinite differentiable flat-top se-

ries estimator could be directly applied. Notice that it might produce nega-
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tive value as well, and therefore re-normalization is required after obtaining

the density estimate.

(4) Reject only one of H1
0 and H2

0 :

Without loss of generality, here we assume fX(1) > fX(0) = 0. The polyno-

mial transformation introduced previously does not work and needs to be

modified. Let Z = Xk, where k > 1 is an integer, and first start with k = 2.

Now we need to test again hypothesis H4
0 : fZ(0) = 0. Increase k one by one

if we keep failing to reject this null hypothesis. Suppose null hypothesis H4
0

is finally rejected when k = k0, and also reject H5
0 : fZ(0) = fZ(1). quadratic

polynomial transformed flat-top series estimator could be now applied on

datasets {Zi}n
i=1, i.e. Yn = gn(Z), and

f̂Z(z; gn) = f̂Yn [gn(z); gn] · g′n(z)

Since Z = Xk0 is strictly increasing function on X ∈ [0, 1], the final estimator

of fX(x) is

f̂X(x; gn, k0) = f̂Z(xk0 ; gn, k0) · k0xk0−1

If fX(0) > fX(1) = 0 holds, then let Z = (1− X)k0 , which is a decreasing

function on [0, 1], thus the true density function is

fX(x) = − fZ[(1− x)k0 ; gn, k0] · [(1− x)k0 ]′

And

f̂X(x; gn, k0) = f̂Z[(1− x)k0 ; gn, k0] · k0(1− x)k0−1
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Figure 2.2: Different Algorithms

Remark 2.5.2. The last modified polynomial algorithm is essentially using a high-

er order polynomial instead of quadratic polynomial as transform function. As-

sume fX(1) > fX(0) = 0 and recall (2.5.1), if k = k0, then

fZ(z) =
fX(z1/k0)

k0z(1−k0)/k0

One problem might arise when z(1−k0)/k0 decay faster than fX(z1/k0) as z → 0,

i.e.
z(1−k0)/k0

fX(z1/k0)
= o(1)

Which implies fZ(z) → ∞ as z → 0. In our simulation, the estimator still

performs good if in this situation, but is not theoretically supported and might

not have higher order of bias anymore.
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The following plots are some simulation examples of six selected density func-

tion, each one of them include five repetitions. More details are introduced in

the section of simulation.

2.6 Simulation

In this section, and Figure 2.2, we estimate six different selected densities

below. In this table, Beta(·, ·) is the Beta density distribution, Beta[a,b](·, ·) de-

notes the corresponding Beta density function rescaled to interval [a, b]. ”Trun-

cated” means the original density function is truncated to interval [0, 1]. We

investigate the finite sample performance of original flat-top series estimator

and transformed flat-top series estimator using Monte Carlo method.

Table 2.1: 6 Densities in the Simulations

# Density Description

1 Beta(4,4) fX(0) = fX(1) = 0

2 1
2Beta(1,1)+1

2Beta[1/4,3/4](4, 4) fX(0) = fX(1) > 0

3 Truncated N
(

0, 1
4

)
fX(0) > fX(1) > 0

4 Beta(1,3) fX(0) > fX(1) = 0

5 Truncated N
(
−1, 1

4

)
fX(0) > fX(1) ≈ 0

6 1
2Beta[0,1/2](4, 4) + 1

2Beta[1/2,1](4, 4) Bimodal Distribution

We also compare them to first beta kernel estimator of Chen [44] (denoted by

f̂Beta), the Gaussian copula based estimator of Jones and Henderson [45] (denot-

ed by f̂copula), transformed kernel estimator of Wand et. al. [41] (denoted by

f̂TKE) and modified transformed kernel estimator of Wen and Wu [42] (denoted

by f̂MTKE). All these estimators have similar spirit to the transformed estimator

since they all use locally varying kernel functions. For flat-top series estimator

(2.2.4) or (2.3.5), the bandwidth is selected by cross-validation ( f̂CV) and adap-

tive bandwidth choice method ( f̂abc). For TKE and MTKE we use plug-in band-

width by Wen and Wu [42]. For beta kernel and Gaussian copula we use rule of
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thumb bandwidth by Jones and Henderson [45].

For each distribution, we conduct simulations with sample size n = 100

and replicate them 1000 times. Since TKE and MTKE always explode seriously

at 0 and 1, we evaluate average mean integrated square errors of estimators on

an equally spaced grid on [0.001, 0.999] with an increment 0.001. The simulation

results are listed in Table 2.2, and all the values have been multiplied by 1000 to

be better readable. For each density, the minimum Average MISE is highlighted

in bold font.

The simulation results are very consistent to the theoretical analysis. A-

mong all the estimators, flat-top estimators provide best AMISE for four out of

six densities when n = 100. All these 4 densities are either satisfied fX(0) =

fX(1) or fX(0) 6= fX(1) > 0. In these 4 densities, adaptive bandwidth is pow-

erful same as in the other literature of flat-top based estimator. However, the

derivative of density 2 is continuous up to order 2, and limited adaptive band-

width method as we mentioned previously, also see Politis [51]. Although cross-

validation performs stable, it might not be able provide h = A1n−1/5 and is

implemented much slower.

It is not surprising beta kernel estimator provides the best performance

in density 4 which is a beta density function. Flat-top and beta kernel give very

close AMISE in density 5. The reason that flat-top estimator fails to be the best

in density 4 and 5, is that the modified algorithm in section 2.5.2 is not really

theoretically supported, and the success of the choice of k0 introduced in section

2.5.2 might rise some problems.

2.7 Conclusion

A transformed flat-top series estimator is proposed for density function

in compact support. This method is developed from boundary correction method,

transformed method and flat-top series estimator. We also establish the theoret-

ical properties and show its higher order of bias in the interior region of the sup-

port. We use adaptive bandwidth choice and cross-validation as for bandwidth
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Table 2.2: Simulation Result with Sample Zize n = 100

Average MISE (Std. Dev.) ×10−3

Methods Density 1 Density 2 Density 3 Density4 Density 5 Density 6

f̂Beta
61.92

(32.30)

82.10

(41.89)

23.59

(18.77)

20.28

(16.41)

42.72

(35.80)

193.07

(33.59)

f̂copula
38.05

(25.04)

92.05

(45.20)

34.33

(22.81)

57.19

(34.12)

108.38

(74.55)

140.04

(31.22)

f̂TKE
42.65

(27.23)

98.38

(48.47)

60.67

(41.01)

85.31

(67.13)

121.21

(97.87)

158.00

(39.61)

f̂MTKE
30.67

(24.85)

93.42

(40.36)

35.96

(43.38)

46.01

(26.30)

101.29

(51.72)

93.65

(76.74)

f̂CV
41.25

(65.74)

74.95

(70.59)

27.49

(43.58)

51.41

(73.75)

59.40

(104.77)

60.46

(60.53)

f̂abc
18.68

(17.98)

124.69

(85.08)

17.66

(21.30)

39.27

(41.33)

45.99

(57.76)

53.83

(86.02)

selection and present their performance in the simulation, and compare them

to four other popular estimators for density with compact support. In summa-

ry, infinite differentiable flat-top series estimator and transformed flat-top series

estimator have the best AMISE among many other methods, for densities with

same values or positive values at two boundaries, and not perform good for

densities with zero at only one boundary. Development of the proposed estima-

tors on density with a pole or infinite derivative, and extension to multivariate

density problem will be pursued in our future work.

2.8 Appendix

Proof of Theorem 2.2.3.

First, denote f̃X the periodic extension function of fX. The Fourier series
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coefficient of f̃X is∣∣cn( f̃X)
∣∣ = ∣∣∣∣∫ 1

0
fX(x)e−i2πnxdx

∣∣∣∣ (2.8.1)

=

∣∣∣∣− 1
i2πn

[
fX(1)− fX(0)−

∫ 1

0
f (1)X (x)e−i2πnxdx

]∣∣∣∣
≤ 1

2π|n|

[
| fX(1)− fX(0)|+ || f

(1)
X ||L1[0,1]

]
=

M1

|n|

where M1 = 1
2π

[
| fX(1)− fX(0)|+ || f

(1)
X ||L1[0,1]

]
. Because X1, . . . , Xn i.i.d. fol-

low density function fX, and recall the definition of λc(s), we have

Var
[

f̂X(x)
]
= Var

[
∑

s∈Z

λc(s)e−i2πsxφ̂X(s)

]

≤ Var

 ∑
|s|≤Nh

e−i2πsx

(
1
n

n

∑
k=1

ei2πsXk

)
= Var

 1
n

n

∑
k=1

∑
|s|≤Nh

e−i2πs(x−Xk)


=

1
n

Var

 ∑
|s|≤Nh

e−i2πs(x−X1)


=

1
n

 ∑
|s|≤Nh

Var
[
e−2πs(x−X1)

]
+ ∑

s,t:s 6=t,|s|,|t|≤Nh

Cov
[
e−i2πs(x−X1), e−2πt(x−X1)

]
(2.8.2)

Where Nh = b1/hc. For the first term in the last line,

Var
[
e−i2πs(x−X1)

]
=
∣∣∣e−i2πsx

∣∣∣2 Var
[
e−i2πsX1

]
= Var

[
e−i2πsX1

]
= E

([(
e−i2πsX1

)
− E

(
e−i2πsX1

)]
[(e−i2πsX1)− E (e−i2πsX1)]

)
= E

([(
e−i2πsX1

)
− E

(
e−i2πsX1

)] [(
ei2πsX1

)
− E

(
ei2πsX1

)])
= E

(
e−i2πsX1ei2πsX1

)
− E

(
e−i2πsX1

)
E
(

ei2πsX1
)

≤ 1 + |cs f̃X|2 (2.8.3)

≤ 1 +
M2

1
s2

For the second term,
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Cov
[
e−i2πs(x−X1), e−2πt(x−X1)

]
= E

([(
e−i2πsX1

)
− E

(
e−i2πsX1

)]
[(e−i2πtX1)− E (e−i2πtX1)]

)
= E

([(
e−i2πsX1

)
− E

(
e−i2πsX1

)] [(
ei2πtX1

)
− E

(
ei2πtX1

)])
= E

(
e−i2πsX1ei2πtX1

)
− E

(
e−i2πsX1

)
E
(

ei2πtX1
)

≤ E
[
e−i2π(s−t)X1

]
+ |cs f̃X||ct f̃X|

≤ |cs−t f̃X|+
M2

1
|st| (2.8.4)

≤ M1

|s− t| +
M2

1
|st|

Combine them, we have

Var
[

f̂X(x)
]
≤ 1

n

 ∑
|s|≤Nh

(
1 +

M2
1

s2

)
+ ∑

s,t:s 6=t,|s|,|t|≤Nh

(
M1

|s− t| +
M2

1
|st|

) (2.8.5)

=
1
n

O(Nh) + ∑
|s|≤Nh

M2
1

s2 + ∑
s,t:s 6=t,|s|,|t|≤Nh

M2
1
|st| + ∑

s,t:s 6=t,|s|,|t|≤Nh

M1

|s− t|


=

1
n

O(Nh) + M2
1

 ∑
|s|≤Nh

1
|s|

2

+ ∑
s,t:s 6=t,|s|,|t|≤Nh

M1

|s− t|


=

1
n

[
O(Nh) + O

[
(log Nh)

2
]
+ O (Nh log Nh)

]
The last step is derived by integral test of series. Notice all the three terms here

are independent from x, thus

sup
x∈[0,1]

Var
[

f̂X(x)
]
= O

(
Nh log Nh

n

)
= O

[
1

nh
log
(

1
h

)]

Proof of Corollary 2.2.4.

Recall (2.8.1) in the previous proof, if | fX(1)− fX(0)| = 0, and | f (1)X (1)−
f (1)X (0)| is finite,∣∣cn( f̃X)

∣∣ = ∣∣∣∣∫ 1

0
fX(x)e−i2πnxdx

∣∣∣∣
=

∣∣∣∣− 1
i2πn

[
−
∫ 1

0
f (1)X (x)e−i2πnxdx

]∣∣∣∣
=

∣∣∣∣− 1
(i2πn)2

[
f (1)X (1)− f (1)X (0)−

∫ 1

0
f (2)X (x)e−i2πnxdx

]∣∣∣∣
≤ 1

(2π)2n2

[
| f (1)X (1)− f (1)X (0)|+ || f (2)X ||L1[0,1]

]
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=
M2

n2

where M2 = 1
(2π)2

[
| f (1)X (1)− f (1)X (0)|+ || f (2)X ||L1[0,1]

]
. Instead of (2.8.3) and

(2.8.4), we have

Var
[
e−i2πs(x−X1)

]
≤ 1 + |cs f̃X|2 ≤ 1 +

M2
2

s4

and

Cov
[
e−i2πs(x−X1), e−2πt(x−X1)

]
≤ |cs−t f̃X|+ |cs f̃X||ct f̃X| ≤

M2

(s− t)2 +
M2

2
s2t2

Recall (2.8.2),

Var
[

f̂X(x)
]
≤ 1

n

 ∑
|s|≤Nh

(
1 +

M2
2

s4

)
+ ∑

s,t:s 6=t,|s|,|t|≤Nh

(
M2

(s− t)2 +
M2

2
s2t2

)
=

1
n

O(Nh) + ∑
|s|≤Nh

M2
2

s4 + ∑
s,t:s 6=t,|s|,|t|≤Nh

M2
2

s2t2 + ∑
s,t:s 6=t,|s|,|t|≤Nh

M2

(s− t)2


=

1
n

O(Nh) + M2
2

 ∑
|s|≤Nh

1
s2

2

+ ∑
s,t:s 6=t,|s|,|t|≤Nh

M2

(s− t)2


=

1
n
[O(Nh) + O(1) + O(Nh)]

= O
(

1
nh

)

Proof of Theorem 2.2.6.

Because we have

ω(s) =

1, |s| ≤ 1

0, |s| > 1

and λ(s) = ω(hs), it implies

E
[

f̂X(x)
]
= ∑

s≤1/h
φX(s)ei2πsx = SNh f̃X(x)

which is partial sum of Fourier series, and Nh = b1/hc. Since f̃X(x) ∈ Cr−1,

consider the nth Fourier coefficient cn( f̃X) (is essentially characteristic function,
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by replacing s by −s). Use integration by parts,

cn( f̃X) =
∫ 1

0
fX(x)e−i2πnxdx

= − 1
i2πn

[
fX(1)− fX(0)−

∫ 1

0
f (1)X (x)e−i2πnxdx

]
=

1
i2πn

∫ 1

0
f (1)X (x)e−i2πnxdx

= − 1
(i2πn)2

[
f (1)X (1)− f (1)X (0)−

∫ 1

0
f (2)X (x)e−i2πnxdx

]
=

1
(i2πn)2

∫ 1

0
f (2)X (x)e−i2πnxdx

. . .

= − 1
(i2πn)r

[
f (r−1)
X (1)− f (r−1)

X (0)
]
+

1
(i2πn)r

∫ 1

0
f (r)X (x)e−i2πnxdx

(2.8.6)

= − 1
(i2πn)r+1

[
f (r)X (1)− f (r)X (0)−

∫ 1

0
f (r+1)
X (x)e−i2πnxdx

]
If n ≤ n′ < ∞, by inequalities of Schwarz and Bessel,

|Sn f̃X(x)− Sn′ f̃X(x)| ≤ ∑
|k|>n
|ck( f̃X)|

= ∑
|k|>n

∣∣∣∣− 1
(i2πk)r+1

∣∣∣∣ ∣∣∣∣ f (r)X (1)− f (r)X (0)−
∫ 1

0
f (r+1)
X (x)e−i2πnxdx

∣∣∣∣
≤ 1

(2π)r+1

( ∣∣∣ f (r)X (1)− f (r)X (0)
∣∣∣ ∑
|k|>n

1
kr+1 + ∑

|k|>n

ck( f̃ (r+1)
X )

kr+1

)

≤ 1
(2π)r+1

(
1
nr |Cr| ·

∣∣∣ f (r)X (1)− f (r)X (0)
∣∣∣+
 ∑
|k|>n
|ck( f̃ (r+1)

X )|2
1/2

·

 ∑
|k|>n

1
k2(r+1)

1/2)
(2.8.7)

≤ 1
(2π)r+1

(
O
(

1
nr

)
+

C′r
nr+1/2 || f

(r+1)
X ||L2[0,1]

)

= O
(

1
nr

)
Cr and C′r are constants only depend on r. Note that O

(
1
nr

)
here is independent

from x. Under the conditions of fX, it is well known that partial sum of Fourier



65

series will converge to f̃X pointwise. Thus, let n′ → ∞, we have

sup
x∈[0,1]

|Sn f̃X(x)− f̃X(x)| = O
(

1
nr

)
Recall that Nh = b1/hc,

sup
x∈[0,1]

∣∣∣E [ f̂X(x)
]
− fX(x)

∣∣∣ = sup
x∈[0,1]

|SNh f̃X(x)− f̃X(x)|

= O
(

1
Nr

h

)
= O (hr)

Recall corollary 2.2.4, so for MSE, we still have (2.2.8).

Proof of Theorem 2.3.3.

By Condition 2.3.1 and Condition 2.3.2, and (2.3.9), it is easy to see fYn(y; gn)

is also 2nd continuously differentiable and bounded on [0, 1], and

| fYn(1; gn)− fYn(0; gn)| = O(4n) = o
(

1
log 1/h

)
Recall (2.8.1),

|cn( f̃Yn)| =
1

2π|n|

[
| fYn(1; gn)− fYn(0; gn)|+ || f (1)Yn

||L1[0,1]

]
≤ 1

2π|n| · o
(

1
log 1/h

)
+

1
(2π)2n2

[
| f (1)Yn

(1; gn)− f (1)Yn
(0; gn)|+ || f (2)Yn

||L1[0,1]

]
= o

(
1

n log 1/h

)
Recall (2.3.6), similarly let the variance of flat-top series estimator of fYn given

gn be:

Var f̂Yn(y; gn) =
[
Var f̂Y(y; g)

] ∣∣∣
g=gn

Then by exactly same calculation of (2.8.2), (2.8.3), (2.8.4) and (2.8.5), we have:

sup
y∈[0,1]

Var
[

f̂Yn(y; gn)
]
≤ 1

n

[
O(Nh) + o

(
[log Nh]

2

[log 1/h]2

)
+ o

(
Nh log Nh
log 1/h

)]
= o

(
Nh
n

)
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= o
(

1
nh

)
It leads us to

sup
y∈[0,1]

∣∣∣ f̂Yn(y; gn)− E f̂Yn(y; gn)
∣∣∣ = o

(
1√
nh

)

Proof of Lemma 2.3.4.

First, for φn(x), x ∈ [0, 1]

φn(x) =
∫ x

0
φ′n(t)dt

=
∫ x

0

n

∑
k=1

cos(2kπt)dt

=
∫ x

0

sin[(2n + 1)πt]
2 sin(πt)

− 1
2

dt

=
∫ x

0

(
sin[(2n + 1)πt]

2 sin(πt)
− sin[(2n + 1)πt]

2πt
+

sin[(2n + 1)πt]
2πt

)
dt− x

2

=
∫ x

0
sin[(2n + 1)πt]

[
1

2 sin(πt)
− 1

2πt

]
dt +

∫ x

0

sin[(2n + 1)πt]
2πt

dt− x
2

Then for x ∈ [0, 1],

|φn(x)− φ(x)| =
∣∣∣∣φn(x)−

(
1
4
− x

2

)∣∣∣∣
≤
∣∣∣∣∫ x

0
sin[(2n + 1)πt]

[
1

2 sin(πt)
− 1

2πt

]
dt
∣∣∣∣+ ∣∣∣∣∫ x

0

sin[(2n + 1)πt]
2πt

dt− 1
4

∣∣∣∣
(2.8.8)

Since it is well known that ∣∣∣∣∫ A

0

sin(x)
x

dx− π

2

∣∣∣∣ ≤ 2
A

Then for the second term of (2.8.8), we have∣∣∣∣∫ x

0

sin[(2n + 1)πt]
2πt

dt− 1
4

∣∣∣∣ = ∣∣∣∣∫ (2n+1)πx

0

sin(u)
2πu

du− 1
4

∣∣∣∣ with u = (2n + 1)πt

=
1

2π

∣∣∣∣∫ (2n+1)πx

0

sin(u)
u

du− π

2

∣∣∣∣
≤ 1

(2n + 1)πx
(2.8.9)
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For the first term of (2.8.8), let

κ(t) =
1

2 sin(πt)
− 1

2πt

=
1
2

[
1

sin(u)
− 1

u

]
=

1
2

λ(u)

where u = πt runs from 0 to x. Since sin(u) < u for u > 0, λ(u) is positive:

λ(u) =
u− sin(u)

u sin(u)

we find for all u > 0 that,

1− 1
2

u2 < cos(u)

u− 1
6

u3 < sin(u)

cos(u) < 1− 1
2

u2 +
1
24

u4

It follows

lim
u→0

λ(u) = 0

and

λ′(u) =
sin2(u)− u2 cos(u)

u2 sin2(u)

>
(u− 1

6 u3)2 − u2(1− 1
2 u2 + 1

24 u4)

u2 sin2(u)

=
1
6 u4 − 1

72 u6

u2 sin2(u)

> 0

if 0 < u < 2
√

3. Since u = πt ≤ πx < π < 2
√

3, λ′(u) > 0 for 0 < u ≤ πx.

Therefore, λ(·) is strictly increasing in [0, πx]. Then we have shown that κ(t) is

increasing in [0, x] and has limit zero at zero. Now apply the second mean value

theorem for integrals to the first term of (2.8.8), there is a number ξ such that

0 < ξ < x, we have:∣∣∣∣∫ x

0
sin[(2n + 1)πt]

[
1

2 sin(πt)
− 1

2πt

]
dt
∣∣∣∣
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=

∣∣∣∣κ(0) ∫ ξ

0
sin[(2n + 1)πt]dt + κ(x)

∫ x

ξ
sin[(2n + 1)πt]dt

∣∣∣∣
=

∣∣∣∣12
(

1
sin(πx)

− 1
πx

) ∫ x

ξ
sin[(2n + 1)πt]dt

∣∣∣∣
≤
∣∣∣∣12
(

1
sin(πx)

− 1
πx

)
2

2n + 1

∣∣∣∣
(2.8.10)

Then combine (2.8.8), (2.8.90 and (2.8.10), we obtain:

|φn(x)− φ(x)| = O
(

1
n

)
For any x ∈ (0, 1).

Proof of Lemma 2.3.10.

Under the conditions of f (x), by the same method of (2.8.6), we have:

cn( f̃ ) = − 1
(i2πn)2

[
f (1)(1)− f (1)(0)

]
+

1
(i2πn)2

∫ 1

0
f (2)(x)e−i2πnxdx

=
1

(2πn)2

[
f (1)(1)− f (1)(0)

]
− 1

(i2πn)3

[
f (2)(1)− f (2)(0)

]
+

1
(i2πn)3

∫ 1

0
f (3)(x)e−i2πnxdx

Then by exactly the same method of (2.8.7), we have:

|Sn f̃ (x)− Sn′ f̃ (x)| ≤ 1
(2π)2

C1

n
| f (1)(1)− f (1)(0)|+ 1

(2π)3

(C2

n2 | f
(2)(1)− f (2)(0)|

+
C3

n2+1/2 || f
(3)||L2[0,1]

)
=

K1

n
| f (1)(1)− f (1)(0)|+ O

(
1
n2

)
Note that K1 and O

(
1

n2

)
here are all independent from x. Under the condition

of f (x), it is well known that partial sum of Fourier series will converge to f̃

pointwise. Thus let n′ → ∞, we have

sup
x∈[0,1]

|Sn f (x)− f (x)| ≤ K1

n
| f (1)(1)− f (1)(0)|+ O

(
1
n2

)
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Proof of Theorem 2.3.11.

Since |θn − θ0| → 0 in probability, it is obviously sup |gn(x)− g0(x)| → 0

in probability. That implies, for any ε > 0, there exists N large enough that

for all n > N, [gN(a), gN(b)] ⊂ [g0(a) − ε, g0(b) + ε] in probability. Let a′ =

g0(a)− ε, b′ = g0(b) + ε, and without loss of generality, let n in the following

proof is larger than N.

sup
x∈[a,b]

∣∣∣ f̂X(x; gn)− fX(x)
∣∣∣

= sup
x∈[a,b]

∣∣∣ f̂Yn [gn(x); gn]g′n(x)− fYn [gn(x); gn]g′n(x)
∣∣∣

≤ sup
x∈[a,b]

( ∣∣∣ f̂Yn [gn(x); gn]g′n(x)− E f̂Yn [gn(x); gn] · g′n(x)
∣∣∣

+
∣∣∣E f̂Yn [gn(x); gn] · g′n(x)− fYn [gn(x); gn]g′n(x)

∣∣∣ )

≤ M sup
x∈[a,b]

( ∣∣∣ f̂Yn [gn(x); gn]− E f̂Yn [gn(x); gn]
∣∣∣+ ∣∣∣E f̂Yn [gn(x); gn]− fYn [gn(x); gn]

∣∣∣ )

= M sup
y∈[gn(a),gn(b)]

( ∣∣∣ f̂Yn(y; gn)− E f̂Yn(y; gn)
∣∣∣+ ∣∣∣E f̂Yn(y; gn)− fYn(y; gn)

∣∣∣ )

≤ M sup
y∈[a′,b′]

( ∣∣∣ f̂Yn(y; gn)− E f̂Yn(y; gn)
∣∣∣+ ∣∣∣E f̂Yn(y; gn)− fYn(y; gn)

∣∣∣ ) (2.8.11)

For the first term, by theorem 2.3.3, it is op

(
1√
nh

)
. For the second term, recall

(2.3.11), let

f̃ ∗Yn
(y; gn) = f̃Yn(y; gn)− 2[ fYn(1; gn)− fYn(0; gn)]φ(y)

and

SNh f̃Yn(y; gn) = S∗Nh
f̃ ∗Yn

(y; gn) + 2 [ fYn(1; gn)− fYn(0; gn)] · φNh(y)

Combine them, by Lemma 2.3.4 and Lemma 2.3.10:
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sup
y∈[a′b′]

∣∣SNh f̃Yn(y; gn)− f̃Yn(y; gn)
∣∣

= sup
y∈[a′b′]

∣∣∣S∗Nh
f̃ ∗Yn

(y; gn) + [ fYn(1; gn)− fYn(0; gn)] · φNh(y)− f̃ ∗Yn
(y; gn)− [ fYn(1; gn)− fYn(0; gn)] · φ(y)

∣∣∣
≤
∣∣∣S∗Nh

f̃ ∗Yn
(y; gn)− f̃ ∗Yn

(y)
∣∣∣+ | fYn(1; gn)− fYn(0; gn)| · sup

y∈[a′b′]

∣∣φNh(y)− φ(y)
∣∣

≤
∣∣∣∣∣K1

Nh
| f (1)Yn

(1; gn)− f (1)Yn
(0; gn)|+ O

(
1

N2
h

)∣∣∣∣∣+ | fYn(1; gn)− fYn(0; gn)| ·O
(

1
Nh

)
= Op(h2)

Put the term 1 and term 2 together, and go back to (2.8.11), we obtain:

sup
x∈[a,b]

∣∣∣ f̂X(x; gn)− fX(x)
∣∣∣ = Op

(
h2 +

1√
nh

)
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Chapter 3

Bayesian Method for Validation of

Continuous Glucose Monitoring

System Upgrade

3.1 Introduction

3.1.1 Continuous Glucose Monitoring (CGM)

Continuous Glucose Monitoring (CGM) Systems have had significant

impact on the management of Type-1 diabetes over the last few years [69, 70].

CGM devices measure interstitial glucose continuously (providing glucose esti-

mates about every 5 minutes) and display current and past glucose values and

their trend to users to assist their diabetes management, adjunctive to their use

of blood glucose meters. Currently there are two CGM devices approved for

market in the US. Although differences exist in how they are designed, both of

these devices use a glucose sensitive sensor inserted in the subcutaneous tissue

that produces a current proportional to the interstitial fluid glucose concentra-

tion. Proprietary algorithms translate this current signal into glucose values

after calibration with blood glucose measurements entered by a user. Accura-

cy of CGM devices depends on both the sensor probe and the algorithm that

translates the sensor signal into glucose values.

71
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CGM devices are classified as Class III medical devices in the USA and

require Pre-market Approval (PMA) from the Food and Drug Adminstration

(FDA) before they can be marketed under a prescription. Part of this approval

process is validating the safety and effectiveness of the device in a clinical study

where the device accuracy is compared with reference blood glucose measure-

ments (e.g., from venous blood measured using Yellow Springs Instrument, Yel-

low Springs, OH) taken during an in-clinic monitoring session. In these studies,

accuracy is measured over the period of use of the device (e.g. seven day use

for Dexcom Gen 4 PLATINUM devices) and over the range of glucose spanning

40-400 mg/dL. An additional requirement of these validation studies is to eval-

uate the accuracy of the system at both very low and very high plasma glucose

conditions (per ISO 15197). To achieve this, study volunteers are subjected to

glucose excursions such that they spend a minimum required amount of time

at these low and high glucose states, while their plasma glucose is monitored

using BG meters and the YSI instrument (venous blood) in a clinical research

center.

CGM accuracy is measured by its closeness to the YSI measurements,

i.e. the proportion (or percentage) of CGM measurements that are within 20%

of YSI measurements if BG > 100 mg/dL or within 20 mg/dL for BG ≤ 100

mg/dL. This performance metric is often referred to as %20/20. YSI measure-

ments are obtained by sampling venous blood once every 15 minutes. For the

purpose of associating a YSI glucose value with a sensor glucose reading, the

first CGM sensor reading immediately after the reference YSI value and within

5 minutes of obtaining the reference sample is currently matched with the YSI

value. These corresponding results between CGM and YSI of matched pairs are

then evaluated by %20/20. The accuracy of currently marketed Dexcom Gen 4

PLATINUM CGM system (with Software 505) is reported as %20/20 of 93.8% So

far, traditional (Frequentist) statistical experimental design and methods using

hypothesis testing were used to demonstrate that these systems have the mini-

mum accuracy required in a clinical study so that they may be marketed in place

of previous generation devices. Every time a change is made to the system, a
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large clinical study is conducted to fully evaluate the system, each time assum-

ing nothing is known about the system. Given the incremental evolution of the

CGM systems over their previous generations, assuming each system as com-

pletely unknown is unwarranted and can result in potential delays in providing

technologies that can significantly improve quality of life to the CGM users. In

this chapter, we are proposing a modified Bayesian method of validation [F-

DA Guidance] which is able to be assessed by type I& II errors, that can help

designing a least burdensome way to complete system validation without im-

pacting effectiveness or safety. In addition we are also proposing Bayesian type

I&II errors as alternative method of assessing other classical Bayesian methods

of validation.

3.1.2 Bayesian Approach

Even though Bayesian Statistics have been in existence for over 300 years,

Bayesian methods have only recently become popular because of improvements

in computational techniques and availability of high performance computing

facilities. Ashby [71] noted that Bayesian methods would be most used in new

and rapidly developing areas, where flexibility and innovation are required.

The key difference between Frequentist statistics and Bayesian statistic-

s is that Frequentist methods assume the parameter of interest is fixed but the

value is unknown or uncertain, and sampling methods are used to estimate the

parameter; Bayesian statistics considers all parameters as random or uncertain

and uses probabilities to describe them informed by prior knowledge about the

distribution of the parameter. For example, if one needs to make inferences on a

parameter θ, Bayesian statistics starts with a prior probability distribution of θ,

defined as π(θ), collects data X that has likelihood function model with param-

eter θ, denoted by f (X|θ). Once data are collected, π(θ), the prior probability

distribution of θ is updated to a posterior distribution π(θ|X), which may be

calculated using Bayes Theorem as:

π(θ|X) ∝ f (X|θ)π(θ)
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Inferences are then made by the posterior distribution π(θ|X). Thus, the pri-

mary difference between Bayesian method and Frequentist approach for eval-

uation of the system performance is in the use of prior knowledge about the

system. For the Frequentist approach, nothing is assumed about the system

performance and the system performance is evaluated based on whether ev-

idence from new data supports or refutes a hypothesis. On the contrary, the

Bayesian approach starts with prior knowledge of the system and then uses ob-

servations from new data to modify this prior knowledge. Prior knowledge of

the system may be based on previous studies using this system or from in-vitro

or pre-clinical studies of the system. Once new observations are made using

the system, prior knowledge of the system is updated using the newly gener-

ated data to obtain posterior distributions of the parameters in question. All

decisions are then made on the posterior knowledge, as it includes both prior

knowledge and observed new data.

Because of this reliance on prior knowledge of the system, prior informa-

tion used takes the center stage in any Bayesian analysis. Thus the first step in

conducting Bayesian analysis is establishing the appropriateness of using any

existing data as representative of planned future use. This is specifically re-

ferred to as exchangeability [72]. Selecting how much weight to give prior in-

formation also plays an important role in the outcome of the analysis. In order

to use Bayesian methods, FDA guidance [72] specifically asks for assessing the

risks associated with misusing or inappropriately using prior information. On

the other hand, if used appropriately, prior information could lead to smaller

clinical studies for system validation.

3.1.3 Motivation and FDA’s Guidance

In 2010 FDA released ”Guidance for the use of Bayesian Statistics in Med-

ical Device Clinical Trials (February 5, 2010)” to promote the use of Bayesian s-

tatistical methods for medical device approvals. This guidance provides a clear

process to follow for using Bayesian methods for medical device validation. The

guidance establishes the minimum requirements and simulations that have to
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be conducted to minimize risk to users. The steps involved in this analysis are

as follows:

1. Defining the primary clinical outcome or performance metrics;

2. Identifying and establishing basis for prior information (including exchange-

ability);

3. Defining hypotheses and decision rules;

4. Defining clinical study, data requirements, and success criteria;

5. Conducting simulations for minimizing Type I errors, including sensitivi-

ty analyses on any assumptions made to finalize minimum sample size;

6. Defining the statistical parameters for post-study analysis methods (prior

distributions for analysis and decision rules).

Application of Bayesian methods for approval of devices is particularly suitable

when improvements are made to devices that are already being used. For exam-

ple, the FDA recently granted approval of an Investigational Device Exemption

(IDE) Supplement to conduct an additional clinical trial utilizing the lead device

product for the global wound care market, the dermaPACE device, in the treat-

ment of diabetic foot ulcers(Sanuwave, NCT01824407). In this study, Bayesian

analysis was used where previous device performance data was included as

prior evidence of device safety and effectiveness.

The use of prior device data to support safety and effectiveness is plausi-

ble when the primary device and its interface to the body do not change, which

satisfies the exchangeability requirement. By incorporating prior positive infor-

mation (i.e. the prior distribution believes the treatment is better than control

or placebo), the study required fewer subjects than would otherwise be the case

while still ensuring adequate statistical power. Other examples of the use of

these methods also exist [73, 74].

In this chapter, Bayesian analysis is applied to validate software (algo-

rithm) updates to an existing CGM system. In this case, the sensor used to
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measure glucose and its interface with the tissue are unchanged, justifying ex-

changeability and the use of Bayesian approach. The only change to the system

is how the sensor signal is converted to glucose by software. Knowledge of ex-

pected changes in software and impact on estimated glucose values constituted

the prior information. This was generated using post processing of existing raw

sensor signals using the new software. Using Bayesian techniques described

in [72, 75] is a small clinical study may then be designed to collect prospective

information on the performance of the new software update so that prior infor-

mation can be combined with new clinical study to form posterior information.

Inferences on safety and effectiveness of the new system may then be made us-

ing the posterior distributions.

To summarize, in the Bayesian approach one is borrowing strength from

existing knowledge of the system, adding to this existing knowledge by con-

ducting a clinical study and then making inferences on the combined pool of

data. Because of use of data from past studies, the prospective study sample

size is reduced.

Effective Study Size = Borrowed Size + New Clinical Study Size

Because the new clinical study size may be small, one of the risks of Bayesian

analysis is too much reliance on prior information, which may mask the true

behavior of the system. This is referred to as the prior being too strong, which

might result in inaccurate inferences in cases where exchangeability consider-

ations are not straightforward. The FDA specifically asks for detailed analysis

on the impact of prior information on analysis outcome. They recommend us-

ing Frequentist techniques such as Type I and Type II errors to avoid incorrect

conclusions being drawn from Bayesian analysis.

• Type I Error: Type I error is defined as the incorrect rejection of the nul-

l hypothesis. For the purpose of this analysis Type I error translates to

the probability that the new system is actually no better than the curren-

t system, but is incorrectly inferred to be better. This error is evaluated

by assuming the true performance of the new system is same as the cur-
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rent system and then evaluating the probability of inferring that the new

system is better.

• Type II Error: Type II error is defined as the failure to reject null hypothe-

sis. For the purpose of this analysis Type II error translates to the proba-

bility that the new system is actually better than the current system, but is

incorrectly inferred to be equivalent or worse. This error is evaluated by

assuming the true performance of new system is better and then evaluat-

ing the probability of inferring that the new system is worse.

In fact, several authors worked on the Bayesian method for sample size deter-

mination, see [76, 77, 78, 79, 80, 81, 82]. Unfortunately, none of them evaluate

Type I&II error rate. The reason is that the classical Bayesian decision theory

will lead to high Frequentist Type I error rate. The difficulty in application of

Frequentist Type I&II error analysis to Bayesian methods arises because of the

conflict between the strength of the prior information and one of those two er-

rors, and the different perspectives on parameters between Frequentist method

and Bayesian method.

Berry et al. [83] proposed Indifferent Zone Method which could control

Type I error in an ideal level with Bayesian method. However, this method

defines six decision zones rather than two decisions in Frequentist’s method,

and produces many no-decisions in our simulation to avoid the occurrence of

Type I error. Gelman et al. [84] proposed Type S error. Although Bayesian

method has excellent performance along with Type S error, it also has the same

problem that makes numerous no-decisions to avoid high error rate.

We present alternative approaches to evaluate type I&II errors: In sec-

tion 2 the mathematical model based on logit transformation of system update

of CGM is introduced. In section 3, a modified Bayesian approach is adapted

for Frequentist type I&II errors, that addresses the validation of safety and ef-

fectiveness of the system when small changes are made to an already approved

system, for which a large knowledge base exists including its in-field use. This

method leverages existing knowledge of a CGM system in order to reduce the

complexity of the clinical study process, without impacting the assessment of
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safety and effectiveness. Section 4 proposes the definition and performance of

Bayesian Type I&II errors, that is the assessment of classical Bayesian hypothe-

sis testing method with same perspective of Frequentist type I&II errors. Section

5 presents some discussions and conclusions.

3.2 Model of System Upgrade of CGM

3.2.1 Transformation and Performance Metrics

As noted before, CGM system performance is evaluated using the pro-

portion of the CGM glucose values that are close to time matched YSI glucose

values, i.e., the %20/20 metric. The goal of the analysis is to demonstrate sta-

tistically that the new system results in better performance than the old system.

For the purpose of this analysis, let p0 be the %20/20 of the current system and

p1 be the %20/20 of the new system. Then the odds of good performance for

each system are defined as:

O0 =
p0

1− p0
and O1 =

p1

1− p1

Thus we may define Odds Ratio (OR) that provides a relative improvement of

the performance of the new system when compared with the current system as:

OR =
O1

O0

If the performance of the new system is identical to the old system, we expect

the OR to have a value of 1. Because of variability of performance across indi-

viduals, OR takes a distribution centered at 1. In practice, it is common to work

with log(OR) instead of with OR directly, since log(OR) is approximately nor-

mally distributed and allows easier calculation of measures such as confidence

intervals and also arriving at the posterior distribution because of the closed-

form solutions (i.e., using conjugate distributions). Notice that log(OR) here is

essentially a logit transformation.

Recall that we are validating the software algorithm update to an exist-

ing system, which means in the experiment, the current and the new systems
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are used by the same subjects providing the same sensor signals. In order to

demonstrate that the new system is safe and effective by posterior distribution,

ideally we expect to see a posterior distribution of the log(OR) is to the right side

of zero in a log odds ratio plot, as shown in Figure 3.1, that visually supports

new system is better.

Figure 3.1: Example of Posterior distribution of Log Odds Ration

3.2.2 Data Model

In order to calculate %20/20 of old and new systems (p0 & p1), observed

data (denoted by X0 and X1, that respectively are to corresponding number of

%20/20 time matched YSI glucose values) are modeled as a binomial distribu-

tion.

X0 ∼ Bin(n, p0), X1 ∼ Bin(n, p1) (3.2.1)

where n is the number of matched CGM-YSI pairs. In this exercise, we are com-

paring two algorithms operating on the same sensor signal. Each subject carry

one sensor probe and consequently, X0 and X1 are highly correlated because
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they are calculated by two different algorithms but with same sensor signal. Let

us suppose the correlation of each matched pair from the same subject at the

same time is ρ, and denote

p̂0 =
X0

n
, p̂1 =

X1

n
, log(ÔR) = log

(
p̂1

1− p̂1
/

p̂0

1− p̂0

)
and ρ̂ be the sample correlation. Then by multi-dimensional central limit theo-

rem, we have

log(ÔR)| log(OR) ∼ N(log(OR), s2) (3.2.2)

where

s2 =
1

np̂1(1− p̂1)
+

1
np̂0(1− p̂0)

+
2ρ̂

n
√

p̂0(1− p̂0) p̂1(1− p̂1)

In the previous section, we explained that in practice the prior of log(OR) usu-

ally is assumed to follow normal distribution. Now suppose the prior of log

Odds Ratio is

log(OR) ∼ N(µ, σ2) (3.2.3)

The posterior distribution of log Odds Ratio is

log(OR)| log(ÔR) ∼ N

 µ
σ2 +

log(ÔR)
s2

1
σ2 +

1
s2

,
1

1
σ2 +

1
s2

 (3.2.4)

In this chapter, for simplicity we only employ a conjugate prior distribution.

For other forms of prior distribution, MCMC1 method could be applied. Be-

fore discussing on the definition of decision rule, we need to look into the prior

distribution selection first.

3.2.3 Prior Distribution of Log Odds Ratio

One of the primary differences between Bayesian method and Frequen-

tist method statistical analysis is the utilization of prior knowledge. Frequen-

1Markov Chain Monte Carlo, is an algorithm to simulate a complicated posterior distribution
without conjugate prior distribution.



81

tist approach always assumes the parameter we are interested is fixed and un-

known. On the other hand, Bayesian approach uses a prior distribution to de-

scribe the variability of the unknown parameter. Prior distribution could be of

two types, informative prior and non-informative prior. Informative prior in-

cludes skeptic prior (i.e. we believe equivalence or inferiority of the new system

when compared to the old system) and enthusiastic prior (i.e. we believe the

new system is superior to the old system). Non-informative prior usually refers

to a vague/diffuse prior (for example, N(0, 104)) and a flat prior (for instance,

uniform distribution).

Assumptions made regarding prior distributions have significant impact

on the posterior distribution and the analysis outcome. The risk of using a pri-

or distribution that is too informative is that prospective data may be ignored.

On the other hand, using too little prior information usually gives us a result

similar to the Frequentist approach. While there is no unique way to determine

the correct prior, many methods have been developed to assess the impact of

prior that help in determining the right distribution (see [72, 83, 85, 86]). FDA

Guidance recommends conducting a sensitivity analysis on the prior distribu-

tion and using a prior distribution that does not result in the new system meet-

ing the success criteria without a clinical study. That means if making statistical

inference based on prior distribution, we will always reject the hypothesis that

the new system is better. This requirement will guarantee very low Type I error,

and allows for any new clinical data to modify the prior appropriately so that

accurate inferences may be made on the posterior distributions.

Sensitivity analysis on the strength of the prior distribution is also very

necessary and included in our chapter. The prior distribution could be treated

as extra data points and its strength could be explained as the sample size of

those extra data points. This borrowed sample size is recommended no larger

than some proportion of sample size of new clinical dataset, and can be adjusted

by varying the variance or precision of the prior distribution. In this chapter,

recall (3.2.4), if we employ non-informative prior distribution N(0, 104), and use

the posterior distribution of existing data as prior distribution for new clinical
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study, then this new prior distribution has variance approximately 1
s2 = K

n , i.e.

be inversely proportional to the borrowed sample size.

3.3 Classical Assessment: Type I&II Errors

3.3.1 Hypothesis and Decision Rule

We are interested in the hypothesis

H0 : New system is same as or worse than old system.

versus (3.3.1)

H1 : New system is better than the old system.

A simple decision rule to test superiority may be

H0 : log(OR) ≤ 0 vs. H1 : log(OR) > 0 (3.3.2)

Using classical Bayesian decision theory, a decision rule may be

Reject H0 if P(H0|data) < P(H1|data) (3.3.3)

i.e. P [log(OR) ≤ 0|data] < P [log(OR) > 0|data]

When H0 is true, Frequentist approach considers the probability P[Reject H0| log(OR) =

0] because

Type I error = P(Reject H0|H0 is true)

= P(Reject H0| log(OR) ≤ 0) (3.3.4)

≤ P(Reject H0| log(OR) = 0)

Thus they can obtain a Type I error less than 5% by making

P[Reject H0| log(OR) = 0] = 5%

Then Type I error of (3.3.3) is

P
(

P [log(OR) ≤ 0|data] < P [log(OR) > 0|data]
∣∣∣truth is log(OR) = 0

)
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⇔ P
(

E [log(OR)|data] < 0
∣∣∣truth is log(OR) = 0

)
This decision rule, however, may not be appropriate for Frequentist Type I&II

error because, when the true log(OR)=0, the mean of posterior distribution,

E [log(OR)|data] is 50% less than 0 and 50% greater than 0. Consequently, this

decision rule makes Type I error rate large, converging to 50% as sample size

increases. Some other classical Bayesian methods, like bayes factor and poste-

rior p-value, also fail to work with Frequentist type I&II errors as very similar

reasons.

A small modification of the decision rule would help to alleviate this

issue:

Reject H0 if π(0|data) < π(c0|data)

where c0 represent the value of log(OR) that new system is better. Compared

to previous decision rule, we consider posterior density function instead of cu-

mulative distribution function. Since our posterior distribution is still a normal

distribution and thus is symmetric, this decision rule is also equivalent to

Reject H0 if E[log(OR)|data] >
c0

2
or

Reject H0 if E[log(OR)| log(ÔR)] >
c0

2

The selection of c0 needs to be very carefully considered. Frequentist method

sets a value to be alternative hypothesis for the calculation of power, and that

value may be chosen based on experience or prior knowledge of how the new

system performs. We recommend selecting the same value for c0. A small c0

is essentially a low criterion and might cause risk of high type I error. On the

contrary, if c0 is too large, we might fail to reject H0 even if almost all the weight

of posterior distribution is positive (e.g., when 95% of the posterior distribution

is greater than zero but the mean is less than c0
2 ), that leads to high type II error.
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3.3.2 Selection of Prior Distribution

In the simulation study of this chapter, we constructed prior distribu-

tion based on a large dataset obtained from Dexcom Gen 4 PLATINUM piv-

otal study. As noted in section 3.2.2, %20/20 of two algorithms are calculated

based on same sensor signal, and the observations therefore follow two binomi-

al distributions and are strongly correlated. This dataset contained two column-

s of glucose values, each pair of them was observed from exactly same subject

at same time, and each column had 13461 matched pairs, and data outside of

[40, 400] was excluded in this analysis. Recall p0 is the %20/20 of old algorithm,

p1 is the %20/20 of new algorithm, then the sample proportion and sample cor-

relation estimated from this study are p0 = 0.8156, p1 = 0.8560, ρ = 0.69, and

the estimate of log(OR) was 0.2956.

With the information above, recall (3.2.3), we employed normal distribu-

tion as enthusiastic prior distribution with mean µ = 0.2956
2 according to FDA

criterion, that would not reject H0 without extra data, and skeptic prior distri-

bution with mean µ = 0, and reference prior distribution N(0, 104). For the

variance, we compared the performances when σ2 are 0.1, 0.2, 0.5, and 1, of

skeptic and enthusiastic prior distribution. By previous analysis, σ2 = 0.1 is ap-

proximately equivalent to 200 extra data, σ2 = 0.2 is approximately equivalent

to 100 extra data, σ2 = 0.5 is approximately equivalent to 40 extra data, and

σ2 = 1 implies about 20 extra data.

In summary, the skeptic prior distributions were

N(0, 0.1), N(0, 0.2), N(0, 0.5), N(0, 1)

The enthusiastic prior distributions were

N
(

0.2956
2

, 0.1
)

, N
(

0.2956
2

, 0.2
)

, N
(

0.2956
2

, 0.5
)

, N
(

0.2956
2

, 1
)

And the reference prior distribution was N(0, 104).



3.3.3 Study Design

Our simulation is based on the model (3.2.1), and we tried to generate

data exactly same as the dataset from Dexcom Gen 4 PLATINUM pivotal study.

Thus the parameters in (3.2.1) were p0 = 0.8156, p1 = 0.8560, ρ = 0.69, and

log(OR) was 0.2956. Consequently, we set c0 = 0.2956 as our decision rule. For

comparison, we also chose the paired t-test as the Frequentist method which

could test the difference of two parameters taking account of high correlation.

For the simulation procedure, please see the following flow chart:

Pick a prior

(Skeptic or

Enthusiastic)

Pick a study model

(Bivariate binomial)

Generate data

(Size=N)

Compute posterior

distribution

Decision making
Type I

errors

End Simulation

Reach to 5%

no, increase N

In this analysis we assume that adjacent matched pairs are mutually in-

dependent and the sample size is up to 1000. In reality, this may not be true

since glucose signal has high autocorrelation over short periods, and matched-

pairs and %20/20 separated in time by 15-20 minutes are highly correlated [87].

Based on our analysis of CGM data, this correlation becomes insignificant for

glucose values separated by more than about 30 minutes. Accordingly, a cor-

rection factor of 3 supported by power analysis is used for the final sample size

numbers shown in the figures. Consequently, all the sample size in the follow-

ing plots are already multiplied by this correction factor. Notice the equivalent
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sizes of extra data from prior distribution analyzed above are supposed to be

multiplied by the same factor.

Figure 3.2: Prior N(0, 0.1), N(0.1405, 0.1), N(0.104)

Figure 3.3: Prior N(0, 0.2), N(0.1405, 0.2), N(0.104)

Figures 3.2-3.5 show the approximate type I&II errors, estimated by Monte

Carlo method, and are plotted as the study sample size increases. The decision
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Figure 3.4: Prior N(0, 0.5), N(0.1405, 0.5), N(0.104)

Figure 3.5: Prior N(0, 1), N(0.1405, 1), N(0.104)

rule of T-test was designed to achieve a fixed Type I error rate and the analysis is

conducted to find the minimum sample size that results in pre-determined type

II error rate (e.g. 10%). On the other hand, the decision rule of Bayesian method

made type I & II errors decease at the same time as the sample size increases,

which is also the reason that reference prior method is not visually same as T-

test. Thus if n1 is the minimal sample size for required type I error, and n2 is the
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minimal sample size for desired type II error, we recommend that the minimal

sample size should be n = max(n1, n2). Nevertheless, if practitioner are very

confident that new system is extremely better and pursue smaller sample size,

then they could select skeptic prior distribution, get better type I error and risk

higher type II error.

3.3.4 Post Study Analysis

In this section we compared our modified Bayesian method and Frequen-

tist method with real data from Gen 4 PLATINUM pivotal study, where the

statistical conclusion is the new algorithm is significantly better than the old al-

gorithm. In this study, for sample size n, we randomly sampled n data points

from the whole pool, and mean of enthusiastic prior distribution θ1 were based

on rest of them, the reference prior distribution, skeptic prior distribution and

variance of enthusiastic prior distribution were still same as previous section.

Sample size n increased from 100 to 3000. The simulation was run 1000 times

and the proportion of right decision (i.e. reject H0) was estimated.

Figure 3.6: Prior N(0, 0.1), N(θ1, 0.1), N(0.104)
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Figure 3.7: Prior N(0, 0.2), N(θ1, 0.2), N(0.104)

Figure 3.8: Prior N(0, 0.5), N(θ1, 0.5), N(0.104)
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Figure 3.9: Prior N(0, 1), N(θ1, 1), N(0.104)

3.3.5 Sensitivity Analysis

In the study design, as the sample size increased to very large, all these

four methods were consistent even if the prior distributions were informative,

that is because prior distribution is down-weighted in front of a large prospec-

tive dataset. But different prior distributions still made significant difference

when we only had a small sample. We can see skeptic prior distribution gave

the best type I error rate, while enthusiastic prior distribution gave outstanding

type II error.

From the figure 3.6-3.9, it is clear that the modified Bayesian method with

enthusiastic prior distribution always performed better than t-test on making

the correct decision. This is reasonable because enthusiastic prior distribution

believed the truth. The ability making the right decision of T-test improved

with sample size, and was almost same as the Bayesian method with reference

prior distribution. But the skeptic prior distribution was not as effective at re-

ducing the sample size as the others, and showed the risk of using wrong prior

distribution. Reference prior is a compromise between enthusiastic and skeptic
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priors, but still performs better than T-test when sample size is small. Modified

Bayesian method could be helpful for reducing sample size significantly, but

requires significant amount of pre-study analysis and simulation to thoroughly

assess the impact of prior and in choosing the correct decision rules, i.e. choice

of c0. Our recommendation is to use a skeptic prior distribution to pass FDA’s

criterion with very small sample size if the product is extremely good, or to

use a weak enthusiastic prior supported by evidence of how software changes

impact data and simulations. These simulation and sensitivity analyses on all

critical parameters would significantly mitigate the risk of Type I errors, while

keeping the sample size low.

3.4 New Assessment: Bayesian Type I&II Errors

In the previous section, we successfully assessed a modified Bayesian

method by Frequentist type I&II errors, but it did not make full use of the pos-

terior distribution and Bayesian framework. As we analyzed in section 3.2.1,

Frequentist method calculates type I&II errors only at two fixed points. For

the modified Bayesian method to work, we had to only utilize the information

of posterior distribution at the same two points. In this section, we propose

Bayesian type I&II errors, that are able to assess classical Bayesian method by

considering the probability of wrong decision under different hypothesises.

3.4.1 Bayesian Hypothesis Testing

In general, the classical hypothesis testing usually has the form:

H0 : θ ∈ Θ0; versus H1 : θ ∈ Θ1

Recall (3.3.1) (3.3.2), for simplicity, we consider the problem:

H0 : θ ≤ 0; versus H1 : θ > 0 (3.4.1)

where θ is log(OR). Frequentist method compute type I error under H0 is true,

in fact, recall (3.3.4), they only consider its upper bound P(Reject H0|θ ≤ 0)
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because

P(Reject H0|θ ≤ 0) ≤ P(Reject H0|θ = 0)

Similarly, for type II error or power, Frequentist analysis uses fixed θ1 > 0 (for

example, θ1 = 0.5 and assume θ = θ1) as the alternative hypothesis, instead of

the true alternative hypothesis H1 : θ > 0. Essentially, although the hypothesis

testing considers two different areas, Frequentist method only focuses on two

fixed points within these regions. Suppose now we keep computing the Fre-

quentist type I error, with the truth θ = 0, but make inference based on a prior

distribution and posterior distribution that θ extends the whole real line, then it

might result in inaccurate outcomes.

On the contrary, hypothesis testing in the Bayesian paradigm requires

specifying distributions on θ under each hypothesis, i.e.

H0 : θ ≤ 0, θ follows distribution p0(θ)

versus

H1 : θ > 0, θ follows distribution p1(θ)

where

p0(θ)

≥ 0, θ ≤ 0

= 0, θ > 0
, p1(θ)

= 0, θ ≤ 0

≥ 0, θ > 0
(3.4.2)

Inference is still made based on posterior distributions. Consider Type I error,

suppose we use π(θ) as prior distribution in analysis, x|θ is the data from the

specifying model, θ follows distribution p0(·), and the posterior distribution is

π(θ|x). One classical Bayesian decision rule is using the posterior confidence

interval, that we will reject H0 only when the left sided posterior confidence

interval is completely positive, or:

Reject H0 when
∫ 0

−∞
π(θ|x)dθ < 5% (3.4.3)

The Frequentist type I error rate is

P(Reject H0|H0 is true) = P[Reject H0|θ follows distribution p0(θ)]
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We will find that type I error rate is not a fixed value but essentially a function of

random variable θ. To eliminate the uncertainty of θ, Bayesian method usually

integrates θ over its own distribution. With same spirit, we define Bayesian type

I error rate:

P(Bayesian Type I error) =
∫

P(Reject H0|θ)p0(θ)dθ (3.4.4)

Bayesian type II error has similar definition but integrated by p1(θ). This kind of

type I error rate is essentially averaging the Frequentist type I error over distri-

bution p0(θ). Unlike only focusing on 2 fixed points in Frequentist Type I error,

Bayesian type I&II errors could take account of all possible value of θ under

each hypothesis.

3.4.2 The True Distributions, p0(·) and p1(·)

Bayesian method sometimes formulated hypothesis question (3.4.1) as a

model selection problem [88], where we compare the model:

M1 : f (x|θ), p0(θ) = k0π(θ)1{(−∞,0]}(θ)

and

M2 : f (x|θ), p1(θ) = k1π(θ)1{(0,∞)}(θ)

Where f (x|θ) is the density function of observation X given θ, π(θ is the prior

distribution of θ, and k0, k1 are normalized constants. In another word, p0(θ)

and p1(θ0) are the truncated density function of π(θ) under (∞, 0] and (0, ∞).

p0(θ) = π(θ|θ ≤ 0) =
π(θ)∫ 0

−∞ π(θ)dθ

and

p1(θ) = π(θ|θ > 0) =
π(θ)∫ ∞

0 π(θ)dθ

It implied the true distribution was totally dependent on prior distribution.

Therefore, for the selection of prior distribution, It is not acceptable to employ

a weak prior distribution or non-informative prior distribution. It could not
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be the posterior distribution obtained by the whole dataset from Gen 4 Pivotal

study neither, because such prior was too strong and would violate FDA’s cri-

terion (product could not pass the testing based on prior distribution without

extra data). In fact, such posterior distribution asymptotically converged to a

very small positive neighbourhood of the true parameter.

The true distribution and prior distribution need to be carefully analyzed

and supported by evidence. In this chapter, our source of prior information was

Gen 4 Pivotal study and concluded new algorithm is significantly better, thus

skeptic prior distribution is also inappropriate. As a result, our prior distribu-

tion was enthusiastic prior distribution, with mean µ = 0.2956, and variance

0.18 ≤ σ2 ≤ 0.5. 0.18 was chosen for always failing to reject H0 without extra

data by decision rule (3.4.3), 0.5 was picked to maintain the strength of prior

distribution.

3.4.3 Study Design

In this section, we followed a very similar procedure as section 3.3.3, and

estimated Bayesian type I&II errors (3.4.4) by Monte Carlo method.

Figure 3.10: Truncated Normal as the true distribution

Take Bayesian type I error as example, first, we select prior distribution π(θ) and
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true distribution p0(θ), p1(θ), then generated 500 samples of θ from distribution

p0(θ), and for each different θ we generated 500 datasets to estimate Frequentist

type I error as in section 3.2.5 with decision rule (3.4.3). Then we average all

the Frequentist type I error over those 500 samples of θ to obtain the Bayesian

type I error. For the prior distribution, we used enthusiastic prior distributions

N(0.2956, 0.2), N(0.2956, 0.35), N(0.2956, 0.5). As noted in the previous section,

they truncated distributions were the true distributions corresponding to differ-

ent situation.

Recall section 3.3.3, T-test with Frequentist type I&II errors had 90% type

II error when sample size increased to around 450. However, the Bayesian type

I error rate (except enthusiastic prior N(0.2956, 0.2)) was almost 0 around 450,

and Bayesian type II error was also much lower than 10%, where Frequentist

type I error of T-test is still 5%. Note that posterior confidence interval as de-

cision rule performed bad with Frequentist type I&II errors, but was nicely as-

sessed by Bayesian type I&II errors. This new assessment also reflected the

advantage of Bayesian method when using a correct prior distribution.

3.4.4 Post Study Analysis

With the exactly same procedure as section 3.3.4, we compared the pro-

portion of right decision of Bayesian method (3.4.3) to paired T-test, see the

following plot. Notice this proportion was neither Frequentist type error nor

Bayesian type error, and therefore was more objective. It was apparently all

three Bayesian methods (3.4.3) had much better performance. They were the

best except the modified Bayesian method with enthusiastic prior distribution,

that however had high risk of worse Frequentist type I error.
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Figure 3.11: Proportion of right decisions

3.4.5 Sensitivity Analysis

Although the enthusiastic prior N(0.2956, 0.2) had excellent Bayesian type

II error that slightly better than the other priors, its Bayesian type I error was

much worse and not recommended even considering to the benefit from Bayesian

type II error. According to the previous analysis, we also did not favor a weak

prior distribution. Thus, the strength of prior is neither too strong nor too weak.

We recommend determining the acceptable weakest prior distribution first, and

the acceptable strongest prior distribution that not violates FDA requirement,

then the prior distribution around middle with evidence supported might be a

good option.

3.5 Conclusions

Even though Bayesian methods have existed for more than a century,

only recently have they been used extensively in the medical fields. Use of these

methods for CGM, and the Bayesian type I&II errors of these methods have not
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been presented before. The approach presented in this chapter follows many

papers on the use of Bayesian methods and FDA guidance on using Bayesian

statistics.

As noted in the FDA guidance, exchangeability and choice of prior dis-

tribution are two critical aspects of Bayesian analysis. Because strength of prior

distribution plays an important role in the outcome of the analysis, FDA guid-

ance recommends using Type I&II errors to evaluate its impact. In this chap-

ter a modified Bayesian method evaluated by Type I & II errors are presented

with emphasis on decision rules using Odds ratios. Some Bayesian statistician-

s [83] suggested using enthusiastic prior in the design phase of the study but

non-informative prior distribution in the real application in the analysis phase.

Based on the analysis of our modified Bayesian method that was conducted, it

was found that choice of prior is essentially a tradeoff between Type I and Type

II errors. FDA prefers skeptic prior distribution, which assumes the treatment

has no difference from the control, because it essentially produces the lowest

Type I error rate. However, using a skeptic prior results in lower power, which

means we can not pass the criteria (determined by FDA) unless the new sys-

tem is significantly superior to the old system. On the other hand, enthusiastic

prior is equivalent to adding more data points that assume new system is bet-

ter, which helps with a smaller study, but with a higher Type I error risk. The

analysis also highlighted the importance of the decision rule used for rejecting

or accepting the hypothesis. An appropriate choice depends on prior data and

knowledge of changes made to the system. This is where exchangeability be-

comes the key factor. The application presented here, i.e., software update on

exist system, is an ideal choice for using Bayesian approach because demon-

strating exchangeability is significantly easier. The primary advantage of using

this method is reducing the clinical study size so that key improvements are

made available to the CGM users with clinical validations that are cheaper and

least burdensome, while preserving the safety and effectiveness.

In addition to methods described in the FDA guidance, we also proposed

Bayesian type I&II errors as alternative methods of assessing the decision rules.
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We believe these methods based on classical Bayesian theory are more suitable

for Bayesian analysis than Frequentist Type I and Type II errors, because hy-

pothesis testing uses random parameters as opposed to fixed parameters. More

importantly, they are able to assess two class decision problem nicely without

producing too many no-decisions? Our future work will focus on further as-

sessing these and other classical Bayesian methods, such as Bayes factor [89]

and posterior p-value [90, 91, 92]. More discussion and work on the selection of

true distribution p0(θ) and p1(θ) is also necessary and need to be developed.

3.6 Acknowledgements

Chapter 3, is currently being prepared for the following paper prepared

for future submission for publication: Bayesian Method for Validation of Con-

tinuous Glucose Monitoring System Upgrade. Liang Wang; Naresh Bhavaraju.

The dissertation author was the primary investigator and author of this materi-

al.



Bibliography

[1] E.A. Nadaraya. On estimating regression. Teor. Veroyatnost. i Primenen.,
9(1):157–159, 1964.

[2] L.P. Devroye. The uniform convergence of the nadaraya-watson regression
function estimate. The Canadian Journal of Statistics, 6(2):179–191, 1978.

[3] E. Kong, O. Linton, and Y. Xia. Uniform bahadur representation for local
polynomial estimates of m-regression and its application to the additive
model. Econometric Theory, 26(5):1529–1564, 2010.

[4] E. Masry. Multivariate local polynomial regression for time series: Uniform
strong consistency and rates. J. Time Series Analysis, 17(6):571–599, 1996.

[5] Q. Li and J.S. Racine. Nonparametric Econometrics. Princeton University
Press, 2007.

[6] Q. Li and J.S. Racine. Nonparametric estimation of conditional cdf and
quantile functions with mixed categorical and continuous data. Journal of
Business and Economic Statistics, 26:423–434, 2008.

[7] Z. Qu and J. Yoon. Nonparametric estimation and inference on conditional
quantile processes. Journal of Econometrics, 185(1):1–19, 2015.

[8] B. Efron. Bootstrap methods: Another look at the jacknife. The Annals of
Statistics, 7(1):1–26, 1979.

[9] D.N. Politis. Computer-intensive methods in statistical analysis. IEEE Sin-
gal Proc. Mag., pages 39–55, 1998.

[10] W. Hardle and A.W. Bowman. Bootstrapping in nonparametric regression:
Local adaptive smoothing and confidence bands. Journal of the American
Statistical Association, 83(401):102–110, 1988.

[11] P. Hall. On bootstrap confidence intervals in nonparametric regression. The
Annals of Statistics, 20(2):695–711, 1992.

99



100

[12] S.G. Shi. Local bootstrap. Ann. Inst. Statist. Math., 43(4):667–676, 1991.

[13] M.B. Priestley and M.T. Chao. Non-parametric function fitting. Journal of
the Royal Statistical Society, 34(3):385–392, 1972.

[14] Efstathios Paparoditis and Dimitris N. Politis. The local bootstrap for ker-
nel estimators under general dependence conditions. Annals of the Institute
of Statistical Mathematics, 52(1):139–159, 2000.

[15] A. Dowla, E. Paparoditis, and D.N. Politis. Local block bootstrap inference
for trending time series. Metrika, 76(6):733–764, 2013.

[16] E. Paparoditis and D.N. Politis. The local bootstrap for periodogram statis-
tics. Journal of Time Series Analysis, 20(2):193–222, 1999.

[17] D.N. Politis. Model-free model-fitting and predictive distributions. TEST,
22(2):183–221, 2013.

[18] Stefan Sperlich. Comments on: Model-free model-fitting and predictive
distributions. TEST, 22(2):227–233, 2013.

[19] D.N. Politis. Bootstrap confidence intervals in nonparametric regression
without an additive model. In Topics in NonParametric Statistics: Proceedings
of the First Conference of the International Society for NonParametric Statistics,
pages 271–282, New York, USA, 2014. Springer.

[20] Dimitris N. Politis. Model-free prediction with application to functional
data analysis. In Contributions in Infinite-Dimensional Statistics and Related
Topics, pages 221–226, Bologna, 2014. Societa Editrice Esculapio.

[21] Dimitris N. Politis. Model-free vs. model-based volatility prediction. J.
Financial Econometrics, 5(3):358–389, 2007.

[22] Li Pan and Dimitris N. Politis. Model-free bootstrap for markov processes.
In Proceedings of the 60th World Statistics Congress–ISI2015, pages 26–31, Rio
de Janeiro, Brazil, 2015.

[23] Timothy L. McMurry and Dimitris N. Politis. Nonparametric regression
with infinite order flat-top kernels. Journal of Nonparametric Statistics, 16(3-
4):549–562, 2004.

[24] Dimitris N. Politis. Model-Free Prediction and Regression: A Transformation-
based Approach to Inference. Springer, New York (to appear).

[25] O. Hossjer and D. Ruppert. Asymptotics for the transformation kernel den-
sity estimator. The Annals of Statistics, 23(4):1198–1222, 1995.



101

[26] D. Ruppert and D.B.H. Cline. Bias reduction in kernel density estimation
by smoothed empirical transformations. The Annals of Statistics, 22(1):185–
210, 1994.

[27] D.N. Politis and J.P. Ramano. On subsampling estimators with un-
kown rate of convergence. Journal of the American Statistical Association,
94(446):569–579, 1999.

[28] Jun Shao and Dongsheng Tu. The Jackknife and Bootstrap. Springer, 1995.

[29] Eugene F. Schuster. Incorporating support constraints into nonparametric
estimators of densities. Communications in Statistics - Theory and Methods,
14(5):1123–1136, 1985.

[30] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London, 1986.

[31] Daren B.H. Cline and Jeffery D. Hart. Kernel estimation of densities with
discontinuities or discontinuous derivatives. Statistics, 22(1), 1991.

[32] Theo Gasser and Hans-Georg Muller. Kernel estimation of regression func-
tions. In Th. Gasser and Rosenblatt M., editors, Smoothing Techniques for
Curve Estimation, lecture Notes in Mathematics, pages 23–68. Springer Berlin
Heidelberg, 1979.

[33] T. Gasser, H-G Muller, and V. Mammitzsch. Kernels for nonparametric
curve estimation. Journal of the Royal Statistical Society. Series B, 47(2):238–
252, 1985.

[34] M.C. Jones. Simple boundary correction for kernel density estimation. S-
tatistics and Computing, 3(3):135–146, 1993.

[35] Hans-Georg Muller. Smooth optimum kernel estimators near endpoints.
Biometrika, 78(3):521–530, 1991.

[36] Shunpu Zhang and Rohana J. Karunamuni. Smooth optimum kernel es-
timators near endpoints. Journal of Nonparametric Statistics, 12(2):197–221,
2000.

[37] Ming-Yen Cheng, Jianqing Fan, and J.S. Marron. On authomatic boundary
corrections. The Annals of Statistics, 25(4):1691–1708, 1997.

[38] Ming-Yen Cheng. Boundary aware estimators of integrated density deriva-
tive products. Journal of the Royal Statistical Society, Series B, 59(1):191–203,
1997.



102

[39] Shunpu Zhang and Rohana J. Karunamuni. On kernel density estimation
near endpoints. Journal of Statistical Planning and Inference, 70(2):301–316,
1998.

[40] Ann Cowling and Peter Hall. On pseudodata methods for removing
boundary effects in kernel density estimation. Journal of the Royal Statis-
tical Society. Series B, 58(3):551–563, 1996.

[41] M.P. Wand, Marron J.S., and D. Ruppert. Transformations in density esti-
mation. Journal of the American Statistical Association, 86(414):343–353, 1991.

[42] Kuangyu Wen and Ximing Wu. An improved transformation-based kernel
estimator of densities on the unit interval. to appear in Journal of the American
Statistical Association, 2014.

[43] Peter Hall and Byeong U. Park. New methods for bias correction at end-
points and boundaries. The Annals of Statistics, 30(5):1460–1479, 2002.

[44] Songxi Chen. Beta kernel estimators for density function. Computational
Statistics and Data Analysis, 31(2):131–145, 1999.

[45] M.C. Jones and D.A. Henderson. Kernel-type density estimation on the
unit interval. Biometrika, 94(4):977–984, 2007.

[46] S. Zhang, R.J. Karunamuni, and Jones M.C. An improved estimator of the
density function at the boundary. Journal of the American Statistical Associa-
tion, 94(448):1231–1241, 1999.

[47] J.S. Marron and D. Ruppert. Transformations to reduce boundary bias in
kernel density estimation. Journal of the Royal Statistical Society. Series B,
56(4):653–671, 1994.

[48] Dimitris N. Politis and Joseph P. Romano. On flat-top kernel spectral densi-
ty estimators for homogeneous random fields. Journal of Statistical Planning
and Inference, 51(1):41–53, 1996.

[49] Dimitris N. Politis and Joseph P. Romano. Multivariate density estimation
with general flat-top kernels of infinite order. Journal of Multivariate Analy-
sis, 68(1):1–25, 1999.

[50] Dimitris N. Politis. On nonparametric function estimation with infinite-
order flat-top kernels. In Ch. A. Charalambides, Markos V. Koutras, and
N. Balakrishnan, editors, Probability and Statistical Models with Applications,
chapter 30. Chapman and Hall, 2000.

[51] N. Politis, Dimitris. Adaptive bandwidth choice. Journal of Nonparametric
Statistics, 15(4-5):517–533, 2003.



103

[52] Arthur Berg and Dimitris N. Politis. Higher-order polyspectral estimation
with flat-top lag-windows. Annals of the Institute of Statistical Mathematics,
61(2):477–498, 2009.

[53] Dimitris N. Politis, Vasiliev V.A., and P.F. Tarassenko. Adaptive estima-
tion of density function derivative. In Proceedings of the Third International
Workshop on Applied Methods of Statistical Analysis—Nonparametric Approach,
Novosibirsk, Russia, 2015.

[54] Bruce E. Hansen. Exact mean integrated squared error of higher order
kernel estimators. Econometric Theory, 21(6):1031–1057, 2005.

[55] Ivan A. Canay. Simultaneous selection and weighting of moments in gmm
using a trapezoidal kernel. Journal of Econometrics, 156(2):284–303, 2010.

[56] Emanuel Parzen. On estimation of a probability density function and its
mode. Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

[57] M.S. Bartlett. Statistical estimation of density functions. The Indian Journal
of Statistics, Series A, 25(3):245–254, 1963.

[58] Theophilos Cacoullos. Estimation of a multivariate density. Annals of the
Institute of Statistical Mathematics, 18(1):179–189, 1966.

[59] Luc Devroye. A Course in Density Estimation. Birkhauser Boston.

[60] Boris L. Granovsky and Muller. Optimal kernel methods: A unifying vari-
ational principle. International Statistical Review, 59(3):373–388, 1991.

[61] M.C. Jones. On higher order kernels. Journal of Nonparametric Statistics,
5(2):215–221, 1995.

[62] M.C. Jones and P.J. Foster. Generalized jackknifing and higher order ker-
nels. Journal of Nonparametric Statistics, 3(3):81–94, 1993.

[63] J.S. Marron. Visual understanding of higher-order kernels. Journal of Com-
putational and Graphical Statistics, 3(4):447–458, 1994.

[64] J.S. Marron and M.P. Wand. Exact mean integrated squared error. The
Annals of Statistics, 20(2):712–736, 1992.

[65] Elizbar A. Nadaraya. Nonparametric Estimation of Probability Densities and
Regression Curves.

[66] Edwin Hewitt and Robert E. Hewitt. The gibbs-wilbraham phenomenon:
An episode in fourier analysis. Archive for History of Exact Sciences,
21(2):129–160, 1979.



104

[67] David Gottlieb and Chi-wang Shu. On the gibbs phenomenon and its res-
olution. SIAM Rev., 39(4):644–668, 1997.

[68] E. Paparoditis and D.N. Politis. On the behavior of nonparametric density
and spectral density estima tors at zero points of their support. to appear in
Journal of Time Series Analysis, 2015.

[69] Roy W. Beck. The effect of continuous glucose monitoring in well-
controlled type 1 diabetes. Diabetes Care, 32(8):1378–1383, 2009.

[70] Arturo Garcia, Anna Leigh Rack-Gomer, Naresh C. Bhavaraju, Haripriyan
Hampapuram, Apurv Kamath, Thomas Peyser, Andrea Facchinetti, Chiara
Zecchin, Giovanni Sparacino, and Claudio Cobelli. Dexcom g4ap: An ad-
vanced continuous glucose monitor for the artificial pancreas. J Diabetes Sci
Technol, 7(6):1436–1445, 2013.

[71] Deborah Ashby. Bayesian statistics in medicine: A 25 year review. Statist.
Med., 25:3589–3631, 2006.

[72] Food and Drug Administration. Guidance for the use of bayesian statis-
tics in medical device clinical trials. U.S. Department of Health and Human
Services, Food and Drug Administration and Center for Devices and Radiological
Health, 2010.

[73] Gene Pennollo and Laura Thompson. Experience with reviewing bayesian
medical device trials. Journal of Biopharmaceutical Statistics, 18:81–115, 2008.

[74] Brian P. Hobbs and Carlin Bradley P. Practical bayesian design and analysis
for drug and device clinical trials. Journal of Biopharmaceutical Statistics,
18:54–80, 2008.

[75] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Ve-
htari, and Donald B. Rubin. Bayesian Data Analysis. Chapman and Hal-
l/CRC, 2nd edition, 2004.

[76] Lurdes Y.T. Inoue, Donald A. Berry, and Giovanni Parmigiani. Relationship
between bayesian and frequentist sample size determination. The American
Statistician, 59(1):79–87, 2005.

[77] Lawrence Joseph, David B. Wolfson, and Roxane Du Berger. Sample size
calculation for binomial proportions via highest posterior density intervals.
The Statistician, 44(2):143–154, 1995.

[78] Athanassios Katsis and Blaza Toman. Bayesian sample size calculations for
binomial experiments. Journal of Statistical Planning and Inference, 81:349–
362, 1999.



105

[79] Dennis V. Lindley. The choice of sample size. The Statistician, 46(2):129–138,
1997.

[80] Valeria Sambucini. Sample size determination for inference on the odds
ratio. Journal of the Italian Statistical Society, 9(1-3):219–243, 2000.

[81] Andrew D Moore and Lawrence Joseph. Sample size considerations for
superiority trials in systemic lupus erythematosus (sle). Lupus, 8(8):612–
619, 1999.

[82] Lawrence Joseph, David B. Wolfson, and Roxane Du Berger. Some com-
ments on bayesian sample size determination. The Statistician, 44(2):167–
171, 1995.

[83] Scott M. Berry, Bradley P. Carlin, J.Jack Lee, and Peter Muller. Bayesian
Adaptive Methods for Clinical Trials. CRC Press, 2011.

[84] Andrew Gelman and Francis Tuerlinckx. Type s error rates for classical
and bayesian single and multiple comparison procedures. Computational
Statistics, 15(3):373–390, 2000.

[85] Robert E. Kass and Larry Wasserman. The selection of prior distributions
by formal rules. Journal of the American Statistical Association, 91(435):1343–
1370, 1996.

[86] Valen E. Johnson and David Rossell. On the use of non-local prior densities
in bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B,
72(2):143–170, 2010.

[87] Troy Bremer and David A. Gough. Is blood glucose predictable from pre-
vious values? Diabetes, 48(3):445–451, 1999.

[88] Elias Moreno. Objective bayesian methods for one-sided testing. Test,
14(1):181–198, 2005.

[89] Robert E. Kass and Adrian E. Raftery. Bayes factors. Journal of the American
Statistical Association, 90(430):773–795, 1995.

[90] Andrew Gelman, Xiao-Li Meng, and Hal Stern. Posterior predictive assess-
ment of model fitness via realized discrepancies. Statistica Sinica, 6:733–807,
1996.

[91] Andrew Gelman. Understanding posterior p-value. Electronic Journal of
Statistics.

[92] Gunnhildur H. Steinbakk and Geir O. Storvik. Posterior preditive p-values
in bayeisan hierarchical models. Scandinavian Journal of Statistics, 36(2):320–
336, 2009.



106

[93] P. Hall and J. Horowitz. A simple bootstrap method for constructing non-
parametric confidence bands for functions. Ann. Statist., 41(4):1693–2262,
2013.




