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Abstract The graph Laplacian and the graph cut problem are closely re-
lated to Markov random fields, and have many applications in clustering and
image segmentation. The diffuse interface model is widely used for modeling
in material science, and can also be used as a proxy to total variation (TV)
minimization. In [A.L. Bertozzi and A. Flenner, Multiscale Modeling & Sim-
ulation, 10(3):1090 1118, 2012.], an algorithm was developed to generalize
the diffuse interface model to graphs to solve the graph cut problem.

This work analyzes the conditions for the graph diffuse interface algorithm
to converge. Using techniques from numerical PDE and convex optimization,
monotonicity in function value and convergence under an a posteriori con-
dition are shown for a class of schemes under a graph-independent stepsize
condition. We also generalize our results to incorporate spectral truncation,
a common technique used to save computation cost, and also to the case of
multiclass classification. Various numerical experiments are done to compare
theoretical results with practical performance.
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1 Introduction

This paper studies a machine learning algorithm [3] that connects two differ-
ent areas of interest: The graph cut problem and the diffuse interface model.
We give a brief introduction of the two areas and their connections to statis-
tical physics.

The graph cut problem originated in computer science for the purpose of
partitioning nodes on a graph [6]. It is tightly related to statistical physics due
to its connections with Markov random fields (MRF), and spin systems. In
particular, the maximum a posteriori (MAP) estimation of the Ising model
can be formulated in terms of a graph cut problem [17]. The results also
generalizes to multiclass graph cut by extending to the generalized Potts
model [5]. Therefore, efficient solutions to the graph cut problem provide
a means of doing MAP estimations for these types of MRFs, and is com-
putationally more efficient compared to techniques for generic MRFs such
as belief propagation [32, 35]. Graph partitioning is also tightly related to
the study of networks in statistical physics [21, 24, 36]. In [18], Hu et al.
applied methods for solving graph cut problems to perform modularity opti-
mization [16, 25, 36], a technique widely applied for community detection in
networks.

On the other hand, diffuse interface models have been widely used in
mathematical physics to model the free boundary of interfaces [9, 26]. Dif-
fuse interface models are often built around the Ginzburg-Landau functional,
defined as

GL(u) =
ε

2

∫
|∇u|2 +

1

ε

∫
W (u(x))dx. (1)

Evolution by the gradient flow of the Ginzburg-Landau functional has been
used to model the dynamics of two phases in material science. The most
common among them is the Allen-Cahn equation [9], the L2 gradient flow
of the Ginzburg-Landau functional. Another commonly used model is the
Cahn-Hilliard equation [2,8]. The diffuse interface models can often be used
as a proxy for Total Variation (TV) minimization since the Γ -limit of the
Ginzburg-Landau functional is shown to be the TV semi-norm [20].

The key observation linking the two areas above is that the TV semi-norm,
when suitably generalized to weighted graphs, coincides with the graph cut
functional for discrete valued functions on graphs [29]. Hence techniques for
TV minimization can also be applied to solve the graph cut problem. In [3],
Bertozzi et al. generalized the Ginzburg-Landau functional to graphs, and
developed an algorithm based on the Allen-Cahn equation to approximately
solve the graph cut problem. This was made rigorous by the result that the
graph Ginzburg-Landau functional Γ -converges to the graph TV functional
[28]. Following this line of work, a series of new algorithms were developed for
semi-supervised and unsupervised classification problems on weighted graphs
[18, 23], applying techniques for TV minimization to the setting of weighted
graphs.

The reason many PDE models defined on the Euclidean space Rn can
be generalized to discrete graphs is that the graph Laplacian matrix [30]
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shares many connections with the classical Laplacian operator. We recap the
definition of the graph Laplacian and some of its basic properties below.

We consider a weighted graph G with vertices ordered {1, 2, . . . , n}. Each
pair of vertices (i, j) is assigned a weight wij ≥ 0, with wij > 0 representing
an edge connecting i and j, and wij = 0 otherwise. The weights wij form a
weight matrix or adjacency matrix of the graph G. Given a weight matrix
W , one can construct three different kinds of graph Laplacians:

Lu = D −W Unnormalized Laplacian, (2)

Ls = I −D−1/2WD−1/2 Symmetric Laplacian, (3)

Lrw = I −D−1W Random Walk Laplacian, (4)

where D is the diagonal matrix dii =
∑

i wij . Throughout this paper, we
assume that each node i is connected to at least another node, so that dii >
0,∀i and Eq.(3) and Eq.(4) are well-defined.

All three Laplacian matrices are commonly used in graph learning prob-
lems. In particular, the graph Dirichlet energy for the unnormalized graph
Laplacian has the following property as shown in equation (5).

1

2
〈u, Luu〉 =

1

2

∑
ij

wij(u(i)− u(j))2. (5)

Here u is a mapping from the set of nodes {1, . . . , N} to R, identified with
a vector in RN . We use u(i) to denote the value of u on the node i. Similar
to the classical Dirichlet energy, the graph Dirichlet energy penalizes similar
nodes (i.e. pairs such that wij is large) from having different function values,
bringing a notion of “smoothness” for functions defined on the graph. In this
paper, we will mainly focus on the unnormalized Laplacian, and generalize
to the other two cases whenever we can.

This paper studies the discrete graph Allen-Cahn scheme in [3] used for
graph semi-supervised classification. We give a brief introduction of the semi-
supervised learning problem and its relation to the graph Allen-Cahn scheme.
Given a collection of objects indexed by Z = {1, . . . , N} and a set of labels
y(i) ∈ C for each object i, the task of semi-supervised learning is to infer
the labels for all items given only the labels on a subset of objects Z ′ ⊂ Z.
We mainly focus on the case of binary classification, i.e., when |C| = 2,
since the original Ginzburg-Landau model in [3] was designed to handle the
binary case. However, we also generalize modestly to incorporate multiclass
classification in Section 5 as well. Following the convention in [3], the binary
label set C is assumed to be C = {−1, 1}. Next, we introduce the Ginzburg-
Landau energy and the Allen-Cahn equation on graphs. Define the Ginzburg-
Landau energy on graphs by replacing the spatial Laplacian with the graph
Laplacian L.

GL(u) =
ε

2
〈u, Lu〉+

1

ε

∑
i

W (u(i)), (6)

where W is the double-well potential W (x) = 1
4 (x2 − 1)2. Let W (u) =∑

iW (u(i)). The Allen-Cahn equation on graphs is defined as the gradient
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flow of the graph Ginzburg-Landau functional.

ut = −∇GL(u) = −εLu− 1

ε
∇W (u). (7)

The discrete graph Allen-Cahn scheme in [3] is a semi-implicit discretiza-
tion of equation (7). The reason for being semi-implicit is to counter the
ill-conditioning of the graph Laplacian

uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W (uk). (8)

To do graph semi-supervised classification, we add a quadratic fidelity term
1
2

∑
i∈Z′ η(u(i)−y(i))2 to the graph Ginzburg-Landau energy, where y(i) are

the known labels and η is a scalar parameter reflecting the strength of the
fidelity. For our purpose, it is more convenient to adopt a matrix notation of
the fidelity term, namely

F (u) = GL(u) +
1

2
η‖u− y‖2Λ, (9)

where ‖u− y‖2Λ := 〈u− y, Λ(u− y)〉, Λ is a diagonal matrix where Λii = 1 if
i ∈ Z ′ and 0 otherwise. The value u(i) can be interpreted as a continuous label
assignment, and thresholding u(i) > 0 and u(i) < 0 gives a corresponding
partition of the graph. Solving the gradient flow of F (u) via a semi-implicit
discretization, we have:

uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W (uk)− dt ∗ ηΛ(uk − y). (10)

In later sections, we will study the scheme (8) first and then incorporate the
fidelity term in the analysis.

Next, we introduce spectral truncation. Note in each iteration of (8) and
(10), we need to solve a linear system of the form (I + dtL)u = v. In many
applications, the number of nodes N on a graph is huge, and it is too costly
to solve this equation directly. In [3, 23], a strategy proposed was to project
u onto the m eigenvectors of the graph Laplacian with the smallest eigenval-
ues. In practice, spectral truncation gives accurate segmentation results but
is computationally much cheaper. The reason spectral truncation works is
because the first few eigenvectors of the graph Laplacian carry rich geomet-
ric information of the graph. In particular, the second eigenvector, named
the Fiedler vector, approximates the solution to the normalized graph cut
problem [30].

In practice, the selection of the stepsize dt is very important to the per-
formance of the model, but is largely chosen empirically by trial and error
in previous papers. In this paper, we intend to do a thorough and rigorous
analysis on the range of stepsize for the scheme to be well-behaved. Our main
contributions are below:

– We prove that there exists a graph-independent upper bound c such that
for all 0 ≤ dt ≤ c, the schemes (8), (10) are monotone in the Ginzburg-
Landau energy, and that under an a posteriori condition, the sequence
{uk} is convergent.
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– We show that the upper bound c depends linearly on ε, and is inversely
proportional to the fidelity strength η in (10).

– We generalize the results to incorporate spectral truncation and multiclass
classification.

– We conduct a variety of numerical experiments to compare practical per-
formance with theory.

The paper is structured as follows: In Section 2, we prove that the scheme is
bounded via a discrete version of the maximum principle. In Section 3, we
use L2 estimates to prove monotonicity and convergence. In Section 4, we
prove monotonicity and boundedness for spectral truncation under a graph-
dependent stepsize bound dt = O(N−1), and provide an example for the
dependency of dt on the graph size. In section 5, we generalize the results to
multiclass classification. In Section 6, a variety of numerical experiments are
done to compare the theory with practical performance.

We present a list of notations and definitions used throughout the paper.

– L: placeholder variable for any choice of the three definitions of the graph
Laplacian. The exact choice will be specified in the proposition or context
it was referred to.

– Z: the set of nodes of the graph, with cardinality N ; Z ′ the fidelity set,
i.e., the set of nodes where the labels are known.

– u : Z 7→ R, identified with a vector in RN . u(j) denotes the evaluation of
u on node j, and uk denotes the k-th iterate of some numerical scheme.

– W : double-well function, W (x) = 1
4 (x2 − 1)2.

– W (u) =
∑

iW (u(i)): sum of the double-well function on all nodes.
– ∇W (u) = (W ′(u(1)), . . . ,W ′(u(N))): Gradient of W with respect to u.
– y ∈ RN : vector of known labels. y(i) ∈ {−1, 1} denotes the known label

when i ∈ Z ′; y(i) = 0 otherwise.
– Diagonal Map: a (possibly non-linear) map F : RN 7→ RN that satisfies
F(u) = (F1(u(1)), . . . ,FN (u(N))) for u ∈ RN . We call F i : R 7→ R
components of the diagonal map F .

2 Maximum Principle-L∞ Estimates

The main result for this section is the following:

Proposition 1 (A Priori Boundeness) Define uk by the semi-implicit
graph Allen-Cahn scheme

uk+1 − uk

dt
= −εLuk+1 − 1

ε
∇W (uk), (11)

where L is the unnormalized graph Laplacian . If ‖u0‖∞ ≤ 1, and 0 ≤ dt ≤
0.5ε, then ‖uk‖∞ ≤ 1, ∀k ≥ 0.

What is notable is that the stepsize restriction is independent of the graph
size. We also note that the bound on dt depends linearly in ε, and we will
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generalize this dependency to include the fidelity term later in this section.
To prove the proposition, we split the discretization (8) into two parts. vk = uk − dt ∗ 1

ε
∇W (uk),

uk+1 = −dt ∗ (εLuk+1) + vk.
(12)

We will prove that ‖uk+1‖∞ ≤ ‖vk‖∞ for all dt > 0 via the maximum
principle, and show that the stepsize restriction essentially comes from the
first line of (12). For future reference, we denote the first line of (12) as
the forward step since it corresponds to a forward stepping scheme for the
gradient flow and the second line a backward step correspondingly.

2.1 Maximum Principle

The classical maximum principle argument relies on the fact that ∆u(x0) ≥ 0
for x0 a local minimizer. This fact is also true for graphs and is an extension
of the classical maximum principle for finite difference operators [10].

Proposition 2 (Second Order Condition on Graphs) Let u be a func-
tion defined on a graph, and L be either the unnormalized graph Laplacian or
the random walk graph Laplacian . Suppose u achieves a local minimum at a
vertex i, where a local minimum at vertex i is defined as u(i) ≤ u(j),∀wij > 0.
Then we have [Lu](i) ≤ 0.

Proof. For both the random walk and the unnormalized Laplacian, we
have the following:  Lii = −

∑
j 6=i

Lij ,

Lij ≤ 0.

(13)

Let i be a local minimizer. Then

[Lu](i) = Liiu(i) +
∑
j 6=i

Liju(j)

=
∑
j 6=i

Lij(u(j)− u(i)) ≤ 0 �
(14)

Next, we prove a maximum principle for discrete time.

Proposition 3 (Maximum Principle for Discrete Time) For any dt ≥
0, let u be a solution to

u = −dt ∗ (Lu) + v, (15)

where L is either the unnormalized or the random walk Laplacian, then
maxi u(i) ≤ maxiv(i), and mini u(i) ≥ miniv(i). Hence ‖u‖∞ ≤ ‖v‖∞.

Proof Suppose i = arg minj u(j) is any node that attains the minimum for
u. Then since u(i) = dt ∗ (−Lu)(i) + v(i) and (−Lu)(i) ≥ 0 by Proposition
2, we have minj u(j) = u(i) ≥ v(i) ≥ minj v(j). Arguing similarly with the
maximum, we have that ‖u‖∞ ≤ ‖v‖∞.
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2.2 Proof of Boundedness

We show that the stepsize bound for the sequence uk to be bounded depends
only on the forward step of the scheme.

Proposition 4 Let uk be defined by vk = uk − dt ∗Φ(uk),

uk+1 = −dt
σ
∗ Luk+1 + vk.

(16)

where Φ is a diagonal map Φ : (u(1), . . . , u(N)) 7→ (Φ0(u(1)), . . . , ΦN (u(N))),
L is the unnormalized graph Laplacian, and σ some constant greater than 0.
Define the forward map Fdt : u 7→ u−dt∗Φ(u), and denote its components by
F idt. Suppose ∃M > 0 and some constant c(M,Φ) such that ∀0 ≤ dt ≤ c, and
∀i, F idt([−M,M ]) ⊂ [−M,M ]. Then if ‖u0‖∞ ≤ M , we have ‖uk‖∞ ≤ M,
∀k ≥ 0.

Proof Suppose ‖uk‖∞ ≤ M . By induction and our assumption on F idt,
‖vk‖∞ ≤M . By the maximum principle, ‖uk+1‖∞ ≤ ‖vk‖∞ ≤M .

We can now prove Proposition 1 by setting M and Φ in Proposition 4
accordingly, and estimate the bound c(M,Φ).

Proof We set M = 1 and Φ = (W ′, . . . ,W ′), where W is the double-well
function. Note that by replacing dt with dt/ε and setting σ = 1

ε2 in (16), we
recover the original scheme (12). Therefore, we may assume ε = 1, and scale
the bound obtained by ε. The component forward maps F idt are

F idt(x) = x− dtW ′(x) = x− dtx(x2 − 1) := Fdt(x). (17)

The proposition is proved if we show Fdt([−1, 1]) ⊂ [−1, 1] for 0 ≤ dt ≤ 0.5,
which is shown in Lemma (1).

Lemma 1 Define Fdt as in (17). If 0 ≤ dt ≤ 0.5, Fdt([−1, 1]) ⊂ [−1, 1].

Proof For a general M , we can estimate c by solving dt to satisfy (18)
max

x∈[−M,M ]
Fdt(x) ≤M

min
x∈[−M,M ]

Fdt(x) ≥ −M
(18)

Since Fdt is cubic in x, (18) can be solved analytically via brute force calcu-
lation. Setting M = 1 and solving (18) for dt ≥ 0 gives 0 ≤ dt ≤ 0.5.

The choice of the constant M = 1 is natural since the function value
u(i) is ideally close to the binary class labels {−1, 1}. However, if we merely
want to prove boundedness without enforcing ‖uk‖∞ ≤ 1 we can get a larger
stepsize bound by maximizing the bound obtained from (18) with respect to
M , namely,

Lemma 2 For 0 ≤ dt ≤ 2.1, Fdt([−1.4, 1.4]) ⊂ [−1.4, 1.4].

The reason we are computing these constants explicitly is that we will
compare them in Section 6 against results from real applications. For future
reference, the dt ≤ 0.5 bound will be called the “tight bound” where the
dt ≤ 2.1 bound will be called the “loose bound”.
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2.3 Generalizations of the scheme

In this section, we extend the previous result to the case where fidelity is
added, and also to the case for the symmetric graph Laplacian Ls.

We restate the the graph Allen-Cahn scheme with fidelity: vk =uk − dt ∗ (
1

ε
∇W (uk) + ηΛ(uk − y)),

uk+1 =− dt ∗ (εLuk+1) + vk.
(19)

Λ is a diagonal matrix where Λii = 1 if i is in the fidelity set Z ′ and 0
otherwise, and y(i) ∈ {1,−1}, i ∈ Z ′.

Proposition 5 (Graph Allen-Cahn with fidelity) Define uk by (19) and
suppose ‖u0‖∞ ≤ 1. If dt satisfies 0 ≤ dt ≤ 1

2+η ε, we have ‖uk‖∞ ≤ 1 for all

k.

Proof Denote the forward map of (19) by Fdt, i.e., Fdt(uk) = vk. Since Λ is
a diagonal matrix, Fdt is a diagonal map. Note Fdt has only three distinct
component maps which we denote by F idt, i = 1, . . . , 3. Namely, F 0

dt(u) =
u−dt[ 1ε (u2−1)u+η(u−1)], F 1

dt(u) = u−dt[ 1ε (u2−1)u+η(u+1)], F 2
dt(u) =

u − dt[ 1ε (u2 − 1)u]. By solving (18) with M = 1 for Fmdt ,m = 0, . . . , 2 for

non-negative dt, we get 0 ≤ dt ≤ 1
2+η ε.

The case for the symmetric graph Laplacian is a little different. Since
Ls does not satisfy (13), we can no longer apply the arguments of maxi-
mum principle. However, we are still able to prove boundedness under the
assumption that the graph satisfies a certain uniformity condition.

Proposition 6 (Symmetric graph Laplacian) Let di =
∑

j wij be the
degree of node i. Suppose ρ ≤ 4 where ρ is defined below

ρ =
maxi di
mini di

. (20)

Define uk by the semi-implicit scheme (11) where L is set to be the symmetric
Laplacian Ls. Suppose ‖u0‖∞ ≤ 1. If 0 ≤ dt ≤ 0.25ε, we have ‖uk‖∞ ≤ 2,
for all k ≥ 1.

Proof By definition of Ls and Lrw, we have the relation

Ls = D1/2LrwD−1/2 (21)

Substituting (21) to line 2 of (12) with L = Ls, we have

D−1/2uk+1 = −dt ∗ LrwD−1/2uk+1 +D−1/2vk. (22)

We will do a change of variables ũk = αD−1/2uk, and ṽk = αD−1/2vk, where
α = (mini di)

1/2, and write the scheme in terms of ũk. ṽk = ũk − dt ∗ 1

ε
αD−1/2∇W (

1

α
D1/2ũk),

ũk+1 = −εdt ∗ Lrwũk+1 + ṽk.
(23)
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By the definition of α, we have ‖ũ0‖∞ ≤ 1. We will use the same technique as
before to show ‖ũk‖ ≤ 1,∀k. By the maximum principle, ‖ũk+1‖∞ ≤ ‖ṽk‖∞.
Define the forward map Fdt of (23), i.e., Fdt(ũk) = ṽk. Define Gdt(c, x) =
x− dt

c W
′(cx) = x− dt

c x(c2x2 − 1), the components of Fdt are:

ṽk(i) = F idt(ũk(i)) = Gdt/ε(ci, ũ
k(i)), (24)

where ci = ( di
minj dj

)1/2 ∈ [1, 2]. We can prove the theorem if we show F idt
maps [−1, 1] to itself for all i = 1, . . . , N . This is formalized in the next
lemma, whose proof we omit since it involves only brute force calculations.

Lemma 3 For any 0 ≤ dt ≤ 0.25, and some fixed c ∈ [1, 2], Gdt(c, x) as a
function of x maps [−1, 1] to itself.

Finally, since ‖ũk‖ ≤ 1, we have ‖uk‖ ≤ 2 by definition of ũk.

Remark: The condition ρ < M with M = 4 is arbitrary and just chosen to
simplify calculations for dt. The proposition here is weaker than Proposition
1 due to the loss of the maximum principle. We will see this again during the
analysis of spectral truncation in Section 4.

3 Energy method-L2 estimates

In this section, we derive estimates in terms of the L2 norm. Our goal is to
prove that the graph Allen-Cahn scheme is monotone in function value, and
derive convergence results of the sequence {uk}. We will drop the subscript
for 2 norms in this section. Our proof is loosely motivated by the analysis
of convex-concave splitting in [11, 33]. In [11], Eyre proved the following
monotonicity result:

Proposition 7 (Eyre) Let E1, E2 be real valued C1 functions Rn → R,
where E1 is convex and E2 concave.Let E = E1 + E2. Then for any dt > 0,
the semi-implicit scheme

uk+1 = uk − dt∇E1(uk+1)− dt∇E2(uk), (25)

is monotone in E, namely,

E(uk+1) ≤ E(uk), ∀k ≥ 0.

In our proof, we will set E = GL(u), E1 = ε
2 〈u, Lu〉 and E2 = 1

εW (u).
Since E2 is not concave, we will have to generalize Proposition 7 for general
E2. But first, we digress a bit and establish the connection between the
semi-implicit scheme (25) and the proximal gradient method, which simply
assumes E1 to be sub-differentiable. The reason for this generalization is to
have a unified framework for dealing with E1 taking extended real values,
which is the case when we study spectral truncation in Section 4.

The proximal gradient iteration [4] is defined as

uk+1 = ProxdtE1
(uk − dt∇E2(uk)), (26)
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where the Prox operator is defined as Proxγf (x) = arg minu{f(u) + 1
2γ ‖u−

x‖2}. This scheme is in fact equivalent to the semi-implicit scheme (25) when
E1 is differentiable. This is clear from the implicit gradient interpretation of
the proximal map. Namely, if y = Proxγf (x),

y ∈ x− γ∂f(y). (27)

∂f is the subgradient of f , which coincides with the gradient if f is differen-
tiable.

The Prox operator is well-defined if f is a proper closed convex functions
taking extended real values, namely, if the domain of f is non-empty, f is
convex, and the epigraph of f is closed. We prove an energy estimate for the
proximal gradient methods when E2 is a general function.

Proposition 8 (Energy Estimate) Let E = E1 + E2. Suppose E1 is a
proper closed and convex function, and E2 ∈ C2. Define xk+1 by the proximal
gradient scheme xk+1 ∈ xk−dt∂E1(xk+1)−dt∇E2(xk). Suppose M satisfies

M ≥max
ξ∈S
‖∇2E2(ξ)‖, (28)

where S = {ξ|ξ = txk + (1− t)xk+1, t ∈ [0, 1]} is the line segment between xk

and xk+1, we have

E(xk)− E(xk+1) ≥ (
1

dt
− M

2
)‖xk+1 − xk‖2. (29)

Proof

E(xk)− E(xk+1) = E1(xk)− E1(xk+1) + E2(xk)− E2(xk+1)

≥ 〈∂E1(xk+1), xk − xk+1〉+ E2(xk)− E2(xk+1)

= E2(xk)− E2(xk+1)− 〈∇E2(xk), xk − xk+1〉+
1

dt
‖xk+1 − xk‖2

≥ 1

dt
‖xk+1 − xk‖2 − M

2
‖xk+1 − xk‖2.

The second line is by definition of subgradients, and ∂E1(xk+1) could be any
vector in the subgradient set. The third line is by substituting the particu-
lar subgradient ∂E1(xk+1) in the the definition of xk+1. The fourth line is
obtained by one variable Taylor expansion of the function E2 along the line
segment between xk and xk+1.

Next, we apply estimate (8) and the boundedness results in Section 2
to prove that the graph Allen-Cahn scheme is monotone in the Ginzburg-
Landau energy under a graph-independent stepsize.

Proposition 9 (Monotonicity of the Graph Allen-Cahn Scheme) Let
uk be the graph Allen-Cahn scheme with fidelity defined below:

uk+1 = uk − dt ∗ (εLuk+1 +
1

ε
∇W (uk) + ηΛ(uk − y)), (30)
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where L is the unnormalized graph Laplacian. If ‖u0‖∞ ≤ 1, then ∀0 ≤
dt ≤ min( ε

2+η ,
2ε

2+ηε ), the scheme is monotone under the Ginzburg-Landau

energy with fidelity, namely, E(uk) = GL(uk) + η
2‖u

k − y‖2Λ ≥ E(uk+1) =

GL(uk+1) + η
2‖u

k+1 − y‖2Λ. The result holds for symmetric Laplacians if we
add the uniformity condition (20) for the graph.

Proof From Proposition 1, we have ‖uk‖∞ ≤ 1,∀k if 0 ≤ dt ≤ ε
2+η . We

set E2(u) = 1
εW (u) + η

2‖u
k − y‖2Λ, and E1(u) = ε

2 〈u, Lu〉. Since (30) is
equivalent to the proximal gradient scheme with E1 and E2 defined above,
we can apply Proposition 8. Since the L∞ unit ball is convex, line segments
from uk to uk+1 lie in the set {‖u‖∞ ≤ 1}, and we can estimate M by the
inequality below

max
‖u‖∞≤1

‖∇2E2(u)‖2 ≤ max
|x|≤1

|1
ε
W ′′(x) + η| = 2

ε
+ η.

Thus we can set M = 2
ε + η. Let c = min( ε

2+η ,
2
M ) = min( ε

2+η ,
2ε

2+ηε ). We

have ∀0 ≤ dt ≤ c,

E(uk)− E(uk+1) ≥ (
1

dt
− M

2
)‖uk+1 − uk‖2 ≥ 0. (31)

Hence uk is monotone in E. The case for the symmetric Laplacian can be
proved in a similar manner by computing an estimate of max‖ξ‖∞≤2 ‖∇2E2‖.

Next, we discuss the convergence of the iterates {uk}. First, we prove
subsequence convergence of {uk} to a stationary point of E(u). We first need
a lemma on the sequence {uk+1 − uk}.
Lemma 4 Let uk, dt, be as in Proposition 9, then

∑∞
k=0 ‖uk+1−uk‖2 <∞.

Hence lim
k→∞

‖uk+1 − uk‖ = 0.

Proof Summing Equation (31), we have the following

E(u0)− E(un) ≥ (
1

dt
− M

2
)

n−1∑
k=0

‖uk+1 − uk‖2, (32)

holds for all n. Since E(un) ≥ 0 and dt ≤ 2
M , we prove the lemma.

Proposition 10 (Subsequence convergence to stationary point) Let uk, dt,
be as in Proposition 9. Let S be the set of limit points of the set {uk}. Then
∀u∗ ∈ S, u∗ is a critical point of E, i.e., ∇E(u∗) = 0. Hence any convergent
subsequence of uk converges to a stationary point of E.

Proof By definition, uk+1 = uk− dt∇E1(uk+1)− dt∇E2(uk). Hence we have

‖∇E1(uk) +∇E2(uk)‖ ≤ (‖∇E1(uk+1)−∇E1(uk)‖+
1

dt
‖uk+1−uk‖). (33)

Since {uk} is bounded and ∇E1 is continuous, we have lim
k→∞

‖∇E(uk)‖ = 0,

where we use lim
k→∞

‖uk+1 − uk‖ = 0.
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In general, we can not prove that the full sequence {uk} is convergent,
since it is possible for the iterates {uk} to oscillate between several minimum.
However we show that when the set of limit points is finite, we do have
convergence. This is stated in the Lemma 5, which is proved in the Appendix.

Lemma 5 Let uk be a bounded sequence in RN , and lim
k→∞

‖uk+1 − uk‖ = 0.

Let S be the set of limit points of the set {uk|k ≥ 1}. If S has only finitely
many points, then S contains only a single point u∗, and hence lim

k→∞
uk = u∗.

Finally, we provide an easy to check a posteriori condition that guarantees
convergence using the lemma above. The condition states that the iterates
uk must take values reasonably close to the double-well minimum −1 and 1.
Empirically, we have observed that the values of uk are usually around −1
and 1 near convergence, hence the condition is not that restrictive in practice.

Proposition 11 (Convergence with A Posteriori Condition) Let uk, dt, be
as in Proposition 9. Let δ > 0 be any positive number. If for some K, we
have |uk(i)| ≥ 1√

3
+δ, for all k ≥ K and i, then we have lim

k→∞
uk = u∗, where

u∗ is some stationary point of the energy E.

Proof We only need to show that the set of stationary points of E on the
domain D = [ 1√

3
+ δ, 1]N is finite. Computing the Hessian of E, we have

∇2E(u) = εL + 1
ε (3u2 − I) + ηΛ, where u2 is the diagonal matrix whose

entries are u(i)2. Note that ∇2E(u) is positive definite on D since ηΛ and L
are semi-positive definite, and 3u2 − I is positive definite on D. Therefore,
the stationary points of E are isolated on D. Since D is bounded, this implies
the set of stationary points is finite.

4 Analysis on Spectral Truncation

In this section, we generalize the analysis of the previous sections to incorpo-
rate spectral truncation. We establish a bound dt = O(N−1) for monotonicity
and boundedness when the initial condition u0 ∈ Vm where Vm is defined be-
low, and dt = O(N−

3
2 ) for the general case. First of all, we formally define

the spectral truncated graph Allen-Cahn scheme. All conclusions in this sec-
tion hold for both the unnormalized Laplacian and the symmetric Laplacian,
therefore we will not make the distinction and will denote both by L.

Let {φ1, φ2, . . . , φm} be eigenvectors of the graph Laplacian L ordered
by eigenvalues in ascending order, i.e., λ1 ≤ λ2 · · · ≤ λN . Define the m-th
eigenspace as Vm = span{φ1, φ2, . . . , φm}, and Pm as the orthogonal pro-
jection operator onto the space Vm. Then the spectral truncated scheme is
defined as  vk = uk − dt ∗ 1

ε
∇W (uk),

uk+1 = Pm[−dt ∗ (εLuk+1) + vk].
(34)
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Note that in practice, we do not directly solve the linear system on the second
line of (34), but instead express uk+1 directly in terms of the eigenvectors as
in (38). However, writing it in matrix form is notationally more convenient
in the subsequent analysis. We want to apply the energy estimates in Section
3 for spectral truncation. To do this, we first show that spectral truncated
scheme (34) can be expressed as a proximal gradient scheme for some E1 and
E2.

Proposition 12 (Reformulation of Spectral Truncation) The spectral
truncated scheme (34) is equivalent to the proximal gradient scheme (26) with
E1 = ε

2 〈u, Lu〉 + IVm , E2 = 1
εW (u), where IVm is the indicator function of

the m-th eigenspace, i.e.

IVm(u) =

{
0, u ∈ Vm

+∞, else.
(35)

Proof Let v be any vector in RN . Define u, u′ by the spectral projection and
the proximal step respectively, namely,

u = Pm[−dt ∗ (εLu) + v]. (36)

u′ = arg min
y

ε

2
〈y, Ly〉+ IVm(y) +

1

2dt
‖y − v‖2. (37)

We only have to show u = u′. Decomposing (36) in terms of the eigenbasis
{φ1, φ2, . . . , φm}, we have

u =
∑
j≤m

〈v, φj〉
1 + dtελj

φj . (38)

Since IVm is +∞ outside Vm, we have u′ ∈ Vm. Let u′ =
m∑
i=1

c′iφ
i, and

y =
m∑
i=1

ciφ
i then the function in (37) becomes

ε

2
〈y, Ly〉+

1

2dt
‖y − v‖2 =

m∑
i=1

(
ε

2
λic

2
i +

1

2dt
(ci − 〈v, φi〉)2) + C. (39)

And therefore

c′i = arg min
c

ε

2
λic

2 +
1

2dt
(c− 〈v, φi〉)2 =

〈v, φi〉
1 + dtελi

. (40)

Hence we have u = u′.

Since the orthogonal projection Pm is expansive in the L∞ norm, i.e.,
‖Pmu‖∞ ≤ ‖u‖∞ does not always hold, we lose the maximum principle.
However, we show that the energy estimate alone is enough to prove mono-
tonicity and boundedness under a smaller stepsize.
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Proposition 13 Let L be either the symmetric or unnormalized graph Lapla-
cian and ρL = maxi |λi|. Set ε = 1 and define uk by the spectral truncation
scheme (34). Suppose ‖u0‖∞ ≤ 1, and u0 ∈ Vm. Then there exists δ > 0
dependent only on ρL such that ∀0 ≤ dt ≤ δN−1, The sequence {uk} is
bounded and GL(uk+1) ≤ GL(uk), for all k. Here N is the dimension of u,
i.e., number of vertices in the graph.

The choice for ε = 1 is only to avoid complicated dependencies on ε
that obscures the proof. For the next two sections, we will assume ε = 1
throughout. To prove the theorem, we first establish the following lemmas.

Lemma 6 (Inverse Bound) Let M be any positive constant. Set ε = 1 in

the GL functional. If GL(u) ≤M , then ‖u‖22 ≤ N + 2
√
NM , where N is the

dimension of u.

Proof By definition, GL(u) = 1
4

∑
i(u(i)2 − 1)2 + 1

2 〈u, Lu〉 ≤ M . Since
1
2 〈u, Lu〉 ≥ 0, 1

4

∑
i(u(i)2 − 1)2 ≤ M . Then from the Cauchy-Schwarz in-

equality,
∑

i(u(i)2 − 1) ≤ 2
√
NM , and hence ‖u‖22 ≤ N + 2

√
NM .

Lemma 7 Let uk and uk+1 be defined in (34). Then the following inequality
holds:

‖uk+1‖2 ≤ (1 + dt)‖uk‖2 + dt‖uk‖32. (41)

Proof Since L is symmetric semi-positive definite and the orthogonal projec-
tion Pm is non-expansive in the L2 norm, we have ‖uk+1‖2 ≤ ‖vk‖2. Since
vk(i) = uk(i)− dt ∗ [uk(i)(uk(i)2 − 1)], let g(i) = (u(i))3, then

‖vk‖2 ≤ (1 + dt)‖uk‖2 + dt‖g‖2 = (1 + dt)‖uk‖2 + dt‖uk‖36
≤ (1 + dt)‖uk‖2 + dt‖uk‖32.

(42)

Next, we prove the main proposition. The idea is to choose dt small
enough such that monotonicity in GL is satisfied, and then apply Lemma 6
to have a bound on uk.

Proof (Proposition 13.) Let E1(u) = ε
2 〈u, Lu〉 + IVm , E2(u) = 1

εW (u), and
E = E1 + E2 = GL(u) + IVm . By Proposition 12, (34) is equivalent to the
proximal gradient scheme for the splitting E = E1+E2. We also have ∀k ≥ 0,
E(uk) = GL(uk) since uk ∈ Vm. Therefore, we will denote E(uk) and GL(uk)
interchangeably.

We claim that there exists constants δ > 0, independent of N such that
∀0 ≤ dt ≤ δN−1, equation (43) holds for all k.

GL(uk) ≤GL(u0) ≤ C0N,

‖uk‖2 ≤C1

√
N,

(43)

where C0 = (1 + ρL) , and C1 =
√

(1 + 2
√

1 + ρL)N .
We argue by induction. For the case k = 0, since ‖u0‖∞ ≤ 1, we have

‖u0‖2 ≤
√
N < C1

√
N . We also have GL(u0) ≤ ρL‖u0‖22 +

∑
i≤N 1 ≤ C0N ,

since ‖u0‖22 ≤ N .
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Suppose (43) is satisfied for iteration k. We first prove the first line of

(43) for k + 1. Since ‖uk‖2 ≤ C1

√
N, we apply Lemma 7 and get ‖uk+1‖2 ≤

A1

2 (1+dt)N1/2+ A1

2 dtN
3/2 for some A1 independent of N . Therefore, we can

choose δ1 independent of N such that ∀0 ≤ dt ≤ δ1N−1, ‖uk+1‖2 ≤ A1N
1/2.

Next, we apply Proposition 8 and choose dt such that E(uk) ≥ E(uk+1).
Since ‖uk+1‖∞ ≤ ‖uk+1‖2 ≤ A1N

1/2. We can set M in Proposition 8 by the
estimate below:

max
‖ξ‖∞≤A1

√
N
‖∇2(W )(ξ)‖2 ≤ max

|x|≤A1

√
N
|W ′′(x)| = max

|x|≤A1

√
N
|(3x2−1)| ≤ A2N,

where A2 independent of N, and we can set M = A2N . Let δ2 = 2
A2

, and

δ = min(δ1, δ2), we have GL(uk+1) ≤ GL(uk) ≤ C0N for all 0 ≤ dt ≤ δN−1.

To prove the second line of (43), note that since GL(uk+1) ≤ C0N , we can

apply the inverse bound Lemma 6 and get ‖uk+1‖2 ≤ C1

√
N . This completes

the induction step.

In Proposition 13, we assumed the initial condition u0 to be in the sub-
space Vm. This is not generally done in practice, as u0 is usually chosen to
have binary values {−1, 1}. The corollary below gives a monotonicity result
for u0 not in Vm.

Corollary 1 Let uk be defined as in Proposition 13. Let u0 be any vector sat-
isfying ‖u0‖∞ ≤ 1. Then exists δ independent of N such that ∀dt < δN−3/2,
{uk} is bounded and GL(uk) ≤ GL(uk+1) for k ≥ 1.

Proof Since u0 is not in the feasible set Vm, E(u0) = +∞ 6= GL(u0). How-
ever, since u1 ∈ Vm, we can start the induction from k = 1. Since ‖u1‖2 ≤
‖v0‖2 ≤

√
N , we can estimate GL(u1) ≤ ρL‖u1‖22 +

∑N
i=1((u1(i))2 − 1)2 ≤

C0N
2 for some C0 independent of N . By Lemma 6, GL(u) = O(N2) implies

‖u‖2 = O(N3/4), hence we can set the induction as below.

{
GL(uk) ≤C0N

2,

‖uk‖2 ≤C1N
3
4 ,

(44)

and k = 1 is already proved above. To prove (44) for general k, we apply
Lemma 7 and choose 0 ≤ dt ≤ δ1N

−3/2 so that ‖vk‖2 ≤ A1N
3/4. We then

apply Proposition 8 and estimate

max
|x|≤A1≤N3/4

|W ′′(x)| ≤ A2N
3/2 := M,

and set δ2 = 2
A2 . By choosing δ = min(δ1, δ2), we prove monotonicity for

0 ≤ dt ≤ δN−3/2.
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4.1 A Counter Example for Graph-Independent Stepsize Restriction

We proved that the spectral truncated scheme is monotone under stepsize
range 0 ≤ dt ≤ δ = O(N−1). One would hope to achieve a graph-free stepsize
rule as in the case of the original scheme without spectral truncation (8).
However, as we show in our example below, a constant stepsize to guarantee
monotonicity over all graph Laplacians of all sizes is not possible.

Proposition 14 (Graph Size Dependent Stepsize Restriction) Define
uk as in (34), with ε = 1. For any δ > 0 and dt = δN−α, 0 ≤ α < 1, we
can always find an unnormalized graph Laplacian LN×N and some initial
condition ‖u0‖∞ = 1 such that the scheme in (34) with truncation number
m = 2 is not monotone in the Ginzburg-Landau energy.

Remark: α = 0 is the case for graph-independent stepsize. However, this re-
sult is stronger and claims that dt has to be at least O(N−1) for monotonicity
to hold for all graphs.

To prove Proposition 14, we explicitly construct a collection of weighted
graphs that require increasingly small stepsizes to guarantee monotonicity
as the graph size N increases. The graph is defined in Definition 1, and
illustrated in Fig 1. To give the idea behind the construction, we note that the
reason maximum principle fails for spectral truncation is because a general
orthogonal projection P is expansive in the L∞ norm. Namely, for some
vector ‖v‖∞ ≤ 1, we have in the worst case ‖P (v)‖∞ = O(

√
N). Our strategy

is to explicitly construct a graph such that projection operator Pm onto one
of its eigenspaces Vm attains this worst case L∞ norm expansion. This is
made precise in Proposition 15.

Fig. 1: Illustration of counter example graph with N = 7. We index the left most
node by 1 and the right most node by 2, both marked by an “x” in the figure. Starting
from the top left node marked by a circle, we rotate counter clock-wise and assign
odd indices {2k + 1|k ≥ 1} to these nodes. We assign even indices {2k|k ≥ 2} on
the right similarly. We assume there are N nodes marked by circles on each side,
and hence the graph has a total of 2N + 2 nodes.
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Definition 1 (Counter Example Graph)
1. Indexing : We index the nodes as shown in Fig.1. The graph has a total

of 2N + 2 nodes, where N is the number of nodes marked by a circle on
each side.

2. Edge Weights: With reference to Fig.1, we set the weights for the solid
black edges to 10; the solid gray edges 1; and the dashed gray edges to
γ
N , where γ = 2

1−N−1 = 2 + o(1). Writing out the weight matrix, we have

wij =


10, i, j of same parity and 6= 1,2

1, (i, j) = (2k − 1, 2k) or (2k − 1, 2k), k ≥ 2
γ

N
, i = 1, j 6= 2 or j = 1, i 6= 2

(45)

3. Graph Laplacian: We choose L to be the unnormalized graph Laplacian
L = D −W .

Proposition 15 Under the setup above, the second eigenvector of the graph
Laplacian is

φ2 =

(
1

2
,−1

2
,

1

2
√
N
,− 1

2
√
N
, . . . ,

1

2
√
N
,− 1

2
√
N

)
, (46)

and the second eigenvalue λ2 is O(1) with respect to N . Moreover, let u0 =
Sign(φ2) = (1,−1, . . . , 1,−1). Then the projection of u0 onto the subspace

V2 = span{φ1, φ2} satisfies P2(u0) = C
√
Nφ2.

We refer to the Appendix for the proof of this proposition. Next, we give
a proof of Proposition 14. The idea is that after the first two iterations,
|u2(1)| is arbitrarily larger that that of |u1(1)|, and thus the scheme cannot
be monotone in the Ginzburg-Landau energy.

Proof (Proposition 14) Define uk by the spectral truncated scheme (34) with
u0 = Sgn(φ2) and dt = δN−α for some δ > 0 and 0 < α < 1.

Since |u0(j)| = 1,∀j, v0 = u0. Since v0 ⊥ φ1, we have u1 = 〈φ2,v0〉
1+dtλ2

φ2. By

Proposition 15, u1 = C0

√
Nφ2, where C0 is O(1) with respect to N . Next, we

compute v1. Note that |u1(j)| = O(N1/2), j = 1, 2 and |u1(j)| = O(1), j ≥ 3.
By noting that W ′(x) ∼ cx3 asymptotically, we have v1(j) = O(N3/2−α), j =

1, 2, and v1(j) = O(1), j ≥ 3. Since v1 ⊥ φ1, we can write u2 = 〈φ2,v1〉
1+dtλ2

φ2. By

the estimates on v1(j), 〈φ2, v1〉 = O(N3/2−α). Therefore, since λ2 = O(1),
we have u2 = O(N3/2−α)φ2. Since u2(1) is asymptotically larger than u1(1)
with respect to N , we have GL(u2) > GL(u1) for N large, and the scheme
is not monotone in GL for large N .

4.2 Heuristic Explanation for Good Typical Behavior

Despite the pathological behavior of the example given above, the stepsize for
spectral truncation does not depend badly on N in practice. In this section,
we attempt to give a heuristic explanation of this from two viewpoints.
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The first view is to analyze the projection operator Pm in the L∞ norm.
The reason why the maximum principle fails is because Pm is expansive in the
L∞ norm. Namely, for some vector ‖v‖∞ ≤ 1, we have ‖Pm(v)‖∞ = O(

√
N)

in the worst case. However, an easy analysis shows the probability of attaining
such an O(

√
N) bound decays exponentially as N grows large, as shown in a

simplified analysis in Proposition 17 of the Appendix. Thus in practice, it is
very rare that adding Pm would violate the maximum principle “too much”.

The second view is to restrict our attention to data that come from a
random sample. Namely, we assume that our data points xi are sampled
i.i.d. from a probability distribution p. In [31], it is proven under very gen-
eral assumptions that the eigenfunctions, eigenvalues of the symmetric graph
Laplacian converges to continuous limits almost surely. Moreover, the pro-
jection operators Pk converges in various senses (see [31] for details) to their
continuous limits. More recently, results for continuous limits of graph-cut
problems can be found in [27]. Under this set up, we can define the Allen-
Cahn scheme on the continuous domain and discuss its properties on suitable
function spaces. The spectral truncated scheme still would not satisfy the
maximum principle, but at least the estimates involved would be indepen-
dent of the size of the samples xi, which is also the size of the graph.

5 Results for Multiclass Classification

The analysis in previous sections can be carried over in a straight forward
fashion to the multiclass case. Multiclass diffuse interface algorithm on graphs
can be found in [14, 19, 23]. We state some basic notations. Let K be the
number of classes, and N the number of nodes on the graph. We define u
to be a real-valued N ×K matrix, and obtain the classification results with
respect to the matrix u by taking the row-wise maximum. Specifically, the
predicted label of node i will be arg maxj uij . We think of the matrix u as a
vector valued function on the graph, and denote its rows by u(i).

The multiclass Ginzburg-Landau functional is defined as

GL(u) =
ε

2
tr(uLu) +

1

ε

N∑
i=1

W (u(i)). (47)

where ek = (0, 0, . . . , 1, . . . , 0)t, and W is the L2 “multi-well”.

W (x) = (

K∏
k=1

‖x− ek‖22), (48)

In [15], a different well function is defined using the L1 norm instead of
L2. However, the algorithm in [15] uses a subgradient descent followed by a
projection onto the Gibbs simplex. Since the Gibbs simplex itself is already
bounded, this renders the boundedness result trivial, and therefore we will

only prove the results for the L2 well. Define W (u) =
∑N

i=1W (u(i)). We
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minimize GL by the semi-implicit scheme below vk = uk − dt ∗ 1

ε
∇W (uk),

uk+1 = −dt ∗ (εLuk+1) + vk.
(49)

The main proposition we prove is this.

Proposition 16 Let L be the unnormalized graph Laplacian. Suppose u0 ∈
[0, 1]N×K , and define uk by the equation (49). Then ∃c dependent only on K
such that if 0 ≤ dt ≤ c, we have uk ∈ [0, 1]N×K for all k ≥ 0.

Remark: The choice for uk ∈ [0, 1]N×K instead of an L∞ bound is natural in
the multiclass algorithm since we want the final results to have components
close to {0, 1} instead of {−1, 1}.

Proof Suppose uk ∈ [0, 1]N×K . Since line 2 of (49) is decoupled in columns of

uk+1, we can apply maximum principle to each column and have maxij u
k+1
ij ≤

maxij v
k
ij , and minij u

k+1
ij ≥ minij v

k
ij . Hence we only have to show vk ∈

[0, 1]N×K . Since the rows in line 1 of (49) are decoupled, we only have to
show that the forward map maps each row of uk to [0, 1]K for 0 ≤ dt ≤ c.
This is proven in the lemma below.

Lemma 8 Define Fdt : RK → RK as Fdt(x) = x − dt∇W (x). Then ∃ c
dependent only on K such that ∀0 ≤ dt ≤ c, Fdt([0, 1]K) ⊂ [0, 1]K .

Proof Given x ∈ [0, 1]K , we denote components of x by xi. Let y = Fdt(x).
For each i, yi = (1− 2dt

∑
j Gj(x))xi + 2dtGi(x), where Gj(x) =

∏
k 6=j ‖x−

ek‖22. We set 1
2c = maxx∈[0,1]K

∑
j Gj(x). Then ∀0 ≤ dt ≤ c, we have 1 ≥

(1 − 2dt
∑

j Gj(x)) ≥ 0. We then prove yi ∈ [0, 1]. For one direction, since

xi ≥ 0, yi ≥ 2dtGj(x) ≥ 0. In the other direction, yi ≤ 1 − 2dt
∑

j Gj(x) +

2dtGi(x) ≤ 1.

Remark: Using the same argument as in previous sections, we can extend
the result to incorporate fidelity and also prove monotonicity. We omit these
discussions for the sake of brevity.

6 Numerical Results

In this section, we construct a variety of numerical experiments on several
different types of datasets. This helps demonstrate our theory, and also have
some implications on the real world performance of the schemes. In the fol-
lowing subsections, we specify the exact type of graph Laplacian used for
each experiment. For all of the experiments, we initialize u0 randomly from
the uniform distribution on [−1, 1]N .
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6.1 Two Moons

The two moons data set was used by Buhler et al [7] in exploring spectral
clustering with p-Laplacians. It is constructed by sampling from two half
circles of radius one on R2, centered at (0,0) and (1,0.5). Gaussian noise
of standard deviation 0.02 in R100 is then added to the data points. The
weight matrix is constructed using Zelnik-Manor and Perona’s procedure [34].

Namely, we set wij = e−‖xi−xj‖
2/
√
τiτj , where τi is the Mth closest distance

to i. We will consider all three Laplacians Lu, Lrw, and Ls in this section,
and we refer to the figure captions for exactly which type of Laplacian is
used.

In the experiments below, we compute the maximum stepsize dt such that
the scheme satisfies an a posteriori criterion that reflects either the bounded-
ness or the monotonicity of the scheme. Namely, we define the boundedness
criterion as

‖uk‖∞ ≤M, ∀k ≤ MaxIter, (50)

and define the monotonicity criterion as

E(uk) ≤ E(uk+1), ∀k ≤ MaxIter. (51)

We set MaxIter = 500, and use bisection to determine the maximum stepsize
that satisfies the criterion given.

Fig 2 plots the maximum stepsize such that the graph Allen-Cahn scheme
satisfies the boundedness criterion for M = 1, 10, where the graphs are gen-
erated from the two moons dataset with N = 20 : 20 : 2000. No fidelity terms
are added and we set ε = 1. We perform the experiment for both the random
walk Laplacian and the unnormalized Laplacian. We observe empirically that
the stepsizes are independent of graph size N , and also match the tight and
loose bound nicely.

Fig. 2: Maximum stepsize dt that satisfies the boundedness criterion in Eq.(50)
for the Two Moons dataset. Left: M = 1. Right: M = 10. We set ε = 1, and
N = 20 : 20 : 2000. The “tight” and “loose” bound is defined in Lemma 1 and 2.
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Fig.3 plots the maximum stepsize dt such that the graph Allen-Cahn
scheme satisfies the monotonicity criterion. We plot the results for all three
types of Laplacians. On the left, we fix ε = 1, and N is varied from 20 :
20 : 2000. As we can see, the typical maximum stepsize for monotonicity is
between the tight and loose bound. On the right, we fix N = 2000 and vary
ε in the range ε = 0 : 0.02 : 1. We observe empirically the maximum stepsize
dt for the unnormalized Laplacian has an almost linear relation with ε. For
random walk and symmetric Laplacians, the relation is linear for small values
of ε, but deviates as ε is larger.

Fig. 3: Maximum stepsize dt that satisfies the monotonicity criterion in Eq.(51)
for the Two Moons dataset. Left: ε = 1 and N = 20 : 20 : 2000. Right: N = 2000
and ε = 0 : 0.02 : 1.

Fig. 4: Maximum stepsize dt that satisfies the monotonicity criterion in Eq.(51) for
the Two Moons dataset. We set L = Lu, and ε = 1. Left: Spectral truncation versus
full scheme with Neig = 50, N = 20 : 20 : 2000. Right: Varying fidelity strength c
for different percentages of randomly sampled fidelity points. We fix N = 2000, and
c = 0.1 : 0.02 : 3.1.
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Fig.4 (left) plots the maximum stepsize dt that satisfy the monotonicity
criterion for the scheme under spectral truncation. The truncation level is set
at Neig = 50. The results are compared with the original scheme without
spectral truncation, and we see that the maximum stepsizes are roughly in
the same range across all sizes of graphs tested in the experiment. We suspect
that the effects of varying the truncation level Neig may be hard to observe
as suggested in Fig.4 (left), and will most likely depend on the specific data
set and the graph construction parameters. Due to the length of the paper,
we omit discussions of varying the truncation level. Fig.4 (right) plots the
effects of adding a quadratic fidelity term with strength parameter c while
keeping ε = 1 fixed for different percentages of randomly sampled fidelity
points. We observe empirically that the stepsize dt decays as c increases to
a large value, which matches the bound obtained in Proposition 5.

6.2 Two Cows

The purpose of this experiment is to study the effects of Nyström extension
on the maximum stepsize for monotonicity. Nyström extension is a sampling
technique used to approximate eigenvectors without explicitly computing
the graph Laplacian [1, 12, 13]. The technique is very useful since it is often
computationally prohibitive to work with the full graph Laplacian when the
graph size N is large, which is often the case in image processing applications.

The images of the two cows (see Fig.5) are from the Microsoft Database,
and has been used in previous papers for the task of image segmentation [3,
23]. The dimensions of the original image is 312×280. We generate 10 images
with increasinly smaller sizes (312/k)× (280/k), k = 1, . . . 10 by resizing the
original image to the target dimensions. We use a feature window of size 7×7,

and construct a fully connected graph with wij = e−
‖xi−xj‖

2

2σ2 , where σ = 1.
We use the symmetric graph Laplacian for this dataset. The eigenvectors are
constructed using the Nyström extension, the details of which could be found
in [3]. Fig.5 shows two images with k = 1, 5 being segmented under the same
stepsize dt = 2, ε = 4. For fidelity, we select a rectangular area (see blue and
red boxes in Fig.5) of pixels as fidelity, and set the fidelity strength to η = 1.

Fig.6 plots the maximum stepsize for monotonicity versus N−1/2, where
N is the size of the graph which equals to the number of pixels in the image.
To ensure segmentation quality, smaller epsilon had to be chosen for images
of lower resolution. We choose ε = 4 for k ≤ 5 and ε = 2 for k ≥ 5. We plot
the ratio dt

ε versus N−1/2 in Fig.6.

6.3 MNIST

The purpose of this experiment is to study the stepsize bound for the multi-
class graph Allen-Cahn scheme. The MNIST database [22] contains approx-
imately 70000 28 × 28 images of handwritten digits from zero to nine. The
graph is constructed by first projecting each image to the 50 principal compo-
nents obtained through PCA of the entire MNIST dataset. The weights are



23

(a) 256 × 256 (b) 51× 51

(c) Segmentation for 256× 256 (d) Segmentation for 51× 51

Fig. 5: Images of different resolution segmented under dt = 2, ε = 4.

Fig. 6: Maximum Stepsize dt that satisfies the monotonicity criterion in Eq.(51)
for the Two Cows dataset under different image sizes. N is the number of nodes in
the graph, which equals A×B with A,B the height and width of an image. We set
ε = 4 for k ≤ 5 and ε = 2 for k ≥ 5, where k is is the scale of the resizing.

computed using the Zelnik-Manor and Perona’s scaling [34] with 50 nearest
neighbors.

We consider subsets of the MNSIT dataset by choosing a triplet of digits
(e.g. {4, 5, 6}). For each such subset, there are approximately 25000 images,
where each image is a representation of one of the digits in the triplet. We
test the maximum stepsizes that satisfy the monotonicity criterion on several
such subsets as shown in Table 1. We set ε = 1, η = 1, and randomly select
5% of data points as the fidelity set. We also use spectral truncation with
100 eigenvectors to speed up computations. Table 1 shows the maximum
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stepsizes for various choices of digit triplets, and the classification accuracy
for dt = 0.5 . We observe that the maximum dt does not change when the
choice of the triplet varies, and can all achieve a good classification accuracy
under a stepsize close to the maximum stepsize allowed for monotonicity.

Digits {4,6,7} {3,5,8} {1,0,9} {0,6,1} {2,7,1}
Max dt 0.5823 0.5914 0.5716 0.5701 0.5755

Accuracy (dt=0.5) 97.98% 97.58% 96.00% 96.36% 98.22%

Table 1: Maximum stepsize and classification accuracy for MNIST digit triplets. For
each collection of digits, N ≈ 25000. First Row: triplets of digits to be classified.
Second Row: maximum stepsize that satisfies the monotonicity criterion in Eq.(51).
Third Row: accuracy under a fixed dt that is close to the maximum stepsize.

7 Discussion

The graph Allen-Cahn scheme has been used to approximate solutions to the
graph cut problem. This paper studies the range of stepsizes for the graph
Allen-Cahn scheme to converge, in relation with the graph Laplacian and
other parameters. In summary, we obtain graph independent bounds on dt
for which the graph Allen-Cahn scheme is bounded and monotone. More-
over, under a mild a posteriori condition, we show the iterates converge to a
stationary point of the total energy E. We then prove a similar monotonicity
and boundedness result for stepsize 0 ≤ dt ≤ O(N−1) when spectral trun-
cation is applied. We show via an explicit example that the dependency of
the stepsize dt on the number of nodes N is unavoidable in the worst case.
We also extend the results to multiclass Ginzburg-Landau functional using
similar techniques as in the binary case.

There are still some very interesting problems left to be explored. One
interesting theoretical problem is to generalize the results for other well po-
tentials of different asymptotic growth rate. It may also be worthwhile to
explore the dependency of dt on ε for the spectral truncation analysis, which
the paper, for the sake of simplicity, does not address. Another potential
problem is the relationship between the stepsize and the accuracy of the
classification result. So far this analysis does not attempt to characterize
the quality of the extrema reached, but experiments have shown that the
classification accuracy does differ under different choices of stepsize.

8 Appendix

Proof (Lemma 5) Let S = {u∗0, . . . , u∗n} be the set of limit points for the set
{uk|k ≥ 0}. Since S is finite, choose ε such that the epsilon neighborhoods
of the points u∗i do not overlap. Choose N such that for any k ≥ N , we
have‖uk+1−uk‖ < ε

4 . By the definition of a limit point, there exists n′ > n >

N such that un ∈ B(u∗0, ε/2) and un
′ ∈ B(u∗1, ε/2). Since ‖uk+1 − uk‖ < ε

4 ,

∃n < k < n′ such that uk is outside an ε/2 neighborhood of S. Since there
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should be infinitely many such pairs n and n′, there are infinitely many
points outside the ε/2 neighborhood of S, contradicting S being the only
limit points of the set {uk}.

Proof (Proposition 15) Recall that when the graph G is connected, the
eigenspace of the eigenvalue 0 is spanned by the constant vector e = (1, 1, . . . , 1)
[30]. To prove Proposition 15, we first establish a lemma that characterizes
the non-constant eigenvectors of L using symmetries of the graph.

Lemma 9 Let L be the unnormalized graph Laplacian defined in Definition
1. For any positive eigenvalue λ > 0 of L, there exists an eigenvector φ with
eigenvalue λ such that φ is one of the four forms below.

1. (a,−a, b,−b, . . . , b,−b), a 6= 0

2. (a, a,− a
N ,−

a
N , . . . ,−

a
N ,−

a
N ), a =

√
N

2(N+1) .

3. (0, 0, a,−a,− a
N−1 ,

a
N−1 , . . . ,−

a
N−1 ,

a
N−1 ), a =

√
N−1
2N .

4. (0, 0, a, a,− a
N−1 , · · · −

a
N−1 ), a =

√
N−1
2N .

Proof Suppose φ = (a0, ã0, b1, b̃1, . . . , bN , b̃N ) with eigenvalue λ > 0. Since
e = (1, 1, . . . , 1) is an eigenvector of L with eigenvalue 0, we have 〈φ, e〉 = 0,
i.e. ∑

i

φ(i) = 0.

Define the eigenspace of engenvalue λ as Vλ. Since the graph is invariant
under reflection along the middle and symmetric permutations of the nodes
marked with a circle(see Fig.1), Vλ is also invariant under these actions.
Namely, define

R(φ) = (ã0, a0, b̃1, b1, . . . , b̃N , bN ), (52)

σ(φ) = (a0, ã0, bσ(1), b̃σ(1), . . . , bσ(N), b̃σ(N)), (53)

where σ is any permutation of 1, . . . , N , then R(φ) and σ(φ) are also eigen-
vectors of L with eigenvalue λ. Let

ξ0 =
1

N

∑
σ∈C(1,N)

σ(φ) = (a0, ã0, b∗, b̃∗, . . . , b∗, b̃∗),

where C(1, N) is the cyclic permutation group of index 1, . . . N , and b∗ =∑
(bi)/N . Then either ξ0 6= 0 ∈ Vλ, or ξ0 = (0, 0, . . . 0). We discuss each

case seperately. Note that for cases where the potential eigenvector v is al-
ready completely determined, e.g. cases 2-4, we can use the definition of an
eigenvector

Lv = λv (54)

to verify whether the candidate is an eigenvector or not.
Case 1:(ξ0 6= 0) Denote ξ0 = (a, ã, b, b̃, . . . , b, b̃). Define ξ1 = 1

2 (ξ0+R(ξ0)).
By the same reasoning, either ξ1 = 0 or ξ1 6= 0 ∈ Vλ. ξ1 = 0 implies
a = −ã, b = −b̃, and ξ0 is of the form 1. If ξ1 6= 0 ∈ Vλ, ξ1 is of the
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form (a, a, b, b, . . . , b, b). Eliminating b by the equation
∑

i ξ1(i) = 0 and nor-
malizing, ξ1 is of form 2.

Case 2:(ξ0 = 0) Since a0 = 0, ã0 = 0, φ = (0, 0, b1, b̃1, . . . , bN , b̃N ). Since

φ0 6= 0, we can WLOG assume b1 or b̃1 6= 0. Let

ξ1 =
1

N − 1

∑
σ∈C(2,N)

σ(φ) := (0, 0, a, ã, b, b̃, . . . , b, b̃),

where C(2, N) is the cyclic permutation group from 2, . . . , N . ξ1 6= 0 since

b1, b̃1 are not all zero. Let ξ2 = 1
2 (ξ1 + R(ξ1)). If ξ2 = 0, a = −ã, b = −b̃.

Define

ξ3 =
1

N

∑
σ∈C(1,N)

σ(ξ1) = (0, 0,
a+ (N − 1)b

N
,−a+ (N − 1)b

N
, . . . ) (55)

Then ξ3 6= 0 gives ξ3 = (0, 0, a,−a, . . . , a,−a), a = 1√
2N

. However, it’s easy

to check that ξ3 is not an eigenvector via (54). ξ3 = 0 implies ξ1 is of form
3. Finally, ξ2 6= 0 and 〈e, ξ2〉 = 0 gives ξ2 is of form 4.

We continue with the proof of Proposition 15. We will show that for the
particular weights we have chosen, one of the vectors of form 1 in Lemma 9
has the smallest Dirichlet energy 1

2 〈φ,Lφ〉 among all vector of forms 1-4, and
that this vector is indeed an eigenvector of the Laplacian L.

Define γ as in Definition 1. Recall the variational formulation of the second
eigenvector

arg min
u

Dir(u) = 〈u, Lu〉 s.t. 〈u, e〉 = 0, ‖u‖2 = 1. (56)

First, we define χ1 to be the minimizer of (56) under the additional constraint
χ1 = (a,−a, b,−b, . . . , b,−b). Writing in terms of a and b, and using the
relation

〈u, Lu〉 =
∑
ij

wij(u(i)− u(j))2,

we have (56) is equivalent with

min
a,b

F (a, b) =γ(b− a)2 + 2Nb2,

s.t. a2 +Nb2 = 1/2.
(57)

Let k be the Lagrange multiplier, the optimality condition is
a = (1 +

2N

γ
+ kN)b,

b = (1 + k)a,

1/2 = a2 +Nb2

(58)

k2 + (
1

N
+

2

γ
+ 1)k +

2

γ
= 0. (59)
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Solving k for γ = 2
1−N−1 , we have k = ± 1√

N
− 1. k = − 1√

N
− 1 gives a

maximizer and is ruled out, hence k = 1√
N
−1, and a =

√
Nb. By normalizing

χ1, we find χ1 is equal to the vector φ2 defined on (46). We can verify that χ1

satisfies Lχ1 = λχ1, and thus χ1 is an eigenvector. Let χi, i ≥ 2 be the vectors
2-4 in Lemma 9. We show that arg miniDir(χ

i) = 1. Computing the Dirichlet

energy, we have Dir(χ1) = 1 + 1−1/
√
N

1+1/
√
N
< 2, Dir(χ2) = 2 ∗ (1+1/N)2

(1−1/N)2 > 2,

Dir(χ3) = 50 + o(1), Dir(χ4) = 50 + o(1).
This implies χ1 is the eigenvector of L whose eigenvalue λ is the smallest

non-zero eigenvalue of L. Since 0 has only multiplicity one, χ1 is the “second
eigenvector” or L.

Proposition 17 Define the set

M = {u ∈ RN | ‖u‖∞ ≤ 1,max
Pm
‖Pmu‖∞ ≥ C

√
N },

where Pm is any projection operator onto a subspace, and 0 < C < 1. Then
the volume(with respect to the standard L2 metric in RN ) of the set M de-
creases exponentially with respect to the number of dimensions N .

The proposition shows that if u were sampled uniformly from a unit cube,
then the probability of some projection Pm expanding the max norm by a
factor of O(

√
N) is exponentially decreasing.

Fig. 7: Illustration of Proposition 17. S is one of the “caps” that vn resides in. un

and vn have angle less than θ.

Proof Let u ∈M . Then by definition of the set M , ∃ some projection Pm such
that ‖Pmu‖∞ ≥ C

√
N . Define v := Pmu and vn := v

‖v‖2 . Define un := u
‖u‖2 .

Since vn is the projected direction of u, Pmu = 〈u, vn〉vn. Then we have

C
√
N ≤ ‖Pmu‖∞ = 〈u, vn〉‖vn‖∞ = ‖u‖2‖vn‖∞〈un, vn〉.

Since ‖u‖2 ≤
√
N , we have

‖vn‖∞〈un, vn〉 ≥ C. (60)
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Since 〈un, vn〉 ≤ 1, the projected direction vn must be in the set S =
{v | ‖v‖2 = 1, ‖v‖∞ ≥ C}. However, the set S consists of the N “caps” of
a unit sphere (see Fig.7), and hence is exponentially decreasing in volume
with respect to the standard metric on the sphere. On the other hand, since
‖vn‖∞ ≤ 1, by (60) we have 〈un, vn〉 ≥ C, and thus u lies in a cone K(vn)
with angle cos(θ) ≥ C. Hence u ∈

⋃
v∈S
{K(v)}, and since cones K(v) have

volume exponentially decreasing as well, we have V ol(M) is exponentially
decreasing with respect to N .

References

1. Serge Belongie, Charless Fowlkes, Fan Chung, and Jitendra Malik. Spectral
partitioning with indefinite kernels using the Nyström extension. In Computer
Vision ECCV 2002, pages 531–542. Springer, 2002.

2. L Bertini, C Landim, and S Olla. Derivation of Cahn-Hilliard equations from
Ginzburg-Landau models. Journal of Statistical Physics, 88(1-2):365–381, 1997.

3. Andrea L Bertozzi and Arjuna Flenner. Diffuse interface models on graphs
for classification of high dimensional data. Multiscale Modeling & Simulation,
10(3):1090–1118, 2012.

4. Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2009.

5. Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov random fields with
efficient approximations. In Computer vision and pattern recognition, 1998.
Proceedings. 1998 IEEE computer society conference on, pages 648–655. IEEE,
1998.

6. Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on pattern analysis and machine
intelligence, 23(11):1222–1239, 2001.

7. Thomas Bühler and Matthias Hein. Spectral clustering based on the graph
p-Laplacian. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 81–88. ACM, 2009.

8. Martin Burger, Lin He, and Carola-Bibiane Schönlieb. Cahn-Hilliard inpainting
and a generalization for grayvalue images. SIAM Journal on Imaging Sciences,
2(4):1129–1167, 2009.

9. JW Cahn and A Novick-Cohen. Evolution equations for phase separation and
ordering in binary alloys. Journal of statistical physics, 76(3-4):877–909, 1994.

10. Philippe G Ciarlet. Discrete maximum principle for finite-difference operators.
Aequationes mathematicae, 4(3):338–352, 1970.

11. David J Eyre. An unconditionally stable one-step scheme for gradient systems.
(https://www.math.utah.edu/ eyre/research/methods/stable.ps). Unpublished
article, 1998.

12. Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral
grouping using the Nyström method. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 26(2):214–225, 2004.

13. Charless Fowlkes, Serge Belongie, and Jitendra Malik. Efficient spatiotemporal
grouping using the Nyström method. In Computer Vision and Pattern Recog-
nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 1, pages I–231. IEEE, 2001.

14. Cristina Garcia-Cardona, Arjuna Flenner, and Allon G Percus. Multiclass semi-
supervised learning on graphs using Ginzburg-Landau functional minimization.
In Pattern Recognition Applications and Methods, pages 119–135. Springer,
2015.

15. Cristina Garcia-Cardona, Ekaterina Merkurjev, Andrea L Bertozzi, Arjuna
Flenner, and Allon G Percus. Multiclass data segmentation using diffuse in-
terface methods on graphs. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 36(8):1600–1613, 2014.



29

16. Benjamin H Good, Yves-Alexandre de Montjoye, and Aaron Clauset. Perfor-
mance of modularity maximization in practical contexts. Physical Review E,
81(4):046106, 2010.

17. Dorothy M Greig, Bruce T Porteous, and Allan H Seheult. Exact maximum a
posteriori estimation for binary images. Journal of the Royal Statistical Society.
Series B (Methodological), pages 271–279, 1989.

18. Huiyi Hu, Thomas Laurent, Mason A Porter, and Andrea L Bertozzi. A method
based on total variation for network modularity optimization using the MBO
scheme. SIAM Journal on Applied Mathematics, 73(6):2224–2246, 2013.

19. Huiyi Hu, Justin Sunu, and Andrea L Bertozzi. Multi-class graph Mumford-
Shah model for plume detection using the MBO scheme. In Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, pages 209–222.
Springer, 2015.

20. Robert V Kohn and Peter Sternberg. Local minimisers and singular perturba-
tions. Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
111(1-2):69–84, 1989.

21. Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark
graphs for testing community detection algorithms. Physical review E,
78(4):046110, 2008.

22. Yann LeCun and Corinna Cortes. The MNIST database of handwritten digits,
http://yann.lecun.com/exdb/mnist/, 1998.

23. Ekaterina Merkurjev, Tijana Kostic, and Andrea L Bertozzi. An MBO scheme
on graphs for classification and image processing. SIAM Journal on Imaging
Sciences, 6(4):1903–1930, 2013.

24. Mark Newman. The physics of networks. Physics today, 61(11):33–38, 2008.
25. Mark EJ Newman and Michelle Girvan. Finding and evaluating community

structure in networks. Physical review E, 69(2):026113, 2004.
26. Jean E Taylor and John W Cahn. Linking anisotropic sharp and diffuse surface

motion laws via gradient flows. Journal of Statistical Physics, 77(1-2):183–197,
1994.

27. Nicolas Garcia Trillos, Dejan Slepcev, James von Brecht, Thomas Laurent, and
Xavier Bresson. Consistency of Cheeger and Ratio graph cuts. arXiv preprint
arXiv:1411.6590, 2014.

28. Yves Van Gennip, Andrea L Bertozzi, et al. Γ -convergence of graph Ginzburg-
Landau functionals. Advances in Differential Equations, 17(11/12):1115–1180,
2012.

29. Yves van Gennip, Nestor Guillen, Braxton Osting, and Andrea L Bertozzi.
Mean curvature, threshold dynamics, and phase field theory on finite graphs.
Milan Journal of Mathematics, 82(1):3–65, 2014.

30. Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

31. Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of
spectral clustering. The Annals of Statistics, pages 555–586, 2008.

32. Jonathan S Yedidia. Message-passing algorithms for inference and optimiza-
tion. Journal of Statistical Physics, 145(4):860–890, 2011.

33. Alan L Yuille, Anand Rangarajan, and AL Yuille. The concave-convex proce-
dure (CCCP). Advances in neural information processing systems, 2:1033–1040,
2002.

34. Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In Ad-
vances in neural information processing systems, pages 1601–1608, 2004.

35. Pan Zhang. Inference of kinetic Ising model on sparse graphs. Journal of
Statistical Physics, 148(3):502–512, 2012.

36. Yan Zhang, AJ Friend, Amanda L Traud, Mason A Porter, James H Fowler, and
Peter J Mucha. Community structure in congressional cosponsorship networks.
Physica A: Statistical Mechanics and its Applications, 387(7):1705–1712, 2008.


	Introduction
	Maximum Principle-L Estimates
	Energy method-L2 estimates
	Analysis on Spectral Truncation
	Results for Multiclass Classification
	Numerical Results
	Discussion
	Appendix



