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NP-Completeness and Approximation Scheme of
Zero-Skew Clock Tree Problem

Abstract: Routing Zero-Skew Clock Tree with
minimum cost is formulized as Path-length Balanced
Tree (PBT) Problem. Various kinds of heuristics have
been proposed. But people don’t know the exact nature
of the problem. We prove PBT problem is NP-
Complete in Manhattan, Euclidean and diagonal plane,
and give an approximation scheme for path-length

delay model with NOU+eIgN) ime to achieve (1+1/c)
OPTIMUM.

1. Introduction

Most VLSIs of today use a global clock signal to
syncronize the circuit. This clock signal is usually
embedded as a tree structure. There are two major
concerns of this tree structure: one is it should take
equal time for the clock signal to propogate from the
source to any of the sinks, since the clock’s purpose is
to syncronize. We call this path-length balance
condition. Noticing that under path-length delay model
the delay is propotional to the geometrical path length
between the source and the sink. While under Elmore
delay or higher order delay model this path-length has
other definitions[1].

The other concern is that this clock signal consume a
huge part of the total power of the circuit, due to its
nature of being the most active part of the circuit, and
its large capacitance[2].

So the problem comes: how to construct a clock tree
with minimum capacitance while satisfying the path-
length balance condition. This problem has been well
studied and various heuristics have been proposed,
among them famous are the H-tree[3], MMM][4], Top-
down Planar Partition[5], Bottom-up Geometric Max-
Matching[6] and Clustering[7]. While the exact nature
of the problem remained open[8][6]. People tend to
believe it’s NP-hard.

In this paper we prove PBT problem is NP-Complete in
Manhattan, Euclidean and diagonal plane(where the
distance between two points d(vy,vp)=Ix{-Xsl+ly;+y5l,

d(vv)=((x1 %) " +(y1-yp)H'?  and  d(vivp)=ix;-

x2I+Iy1—y2I+(\/§-2)Min(IX1-le,lyl-yzl),
Further we give an approximation scheme to achieve

(1+1/c)OPTIMUM in NOU+¢12N) time for PBT problem
with path-length delay model, using Sanjeev Arora’s
method[11][12]. The paper is organized as: section 2
gives the problem formulation, section 3 gives the NP-
Completeness proof, section 4 gives the approximation
scheme, and section 5 gives the conclusion.

respectively).

2. Problem Formulation

Definition 1:

PBT problem:

Instance: a set S of nodes in a metric space , positive
rational number B.

Qestion: Is there a set P of points labeled with levels
such that the embedded PBT has cost < B?

The PBT is constructed by connecting the nodes in set
S to the closest nodes with deep most level in set P, and
connecting the nodes with level i to the closest nodes
with level i-1 in set P. The cost of PBT is the summary
of the costs of all connections, under path-length
balance condition.

To give a mathematical formulation,
TMAX MIN i) ki] y SMAX  MIN i)
u,v)+ d(u,v)<B
pEkaeSﬁCpuePk ,-=1pePiVEPi+1ﬁCP“EP’

MIN
where c, = { Pid(u, v) =d(u, p)}

u|
ve

and P; is a subset of P of points with level i.

3. NP-Completeness Proof

Definition 2:
PBT;, (PBT with < h levels) problem:

Instance: a set S of nodes in a metric space with
distance metric d(), integer h, positive rational number
B.

Qestion: Is there a set P of points in the metric space
with levels < h such that the embedded PBT has cost
<B?
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Lemma 1: PBT}, <, PBT},, ;.

Here the symbol <, denotes polynomial-time reduction.
The lemma says given instance G, an instance G’ can
be constructed in polynomial time such that instance G
has a polynomial-time solution of PBT}, with cost B if

and only if instance G’ has a polynomial-time solution
of PBT},; with cost B’. Hence if a polynomial-time

algorithm for PBT},; problem exists, so does a
polynomial-time algorithm for PBT}, problem .

Proof:
Construct:
G’ can be constructed by having a duplicated graph Gy

in a distance of L away from the original graph G,
where L is large enough such that the distance between
any two points in G and Gy, is larger than the distance

between any two points within G or G4. We constructe
a PBTy,; by constructing PBT}, in G and Gy, then
connecting the root of each PBT), together, and locate a
new root in the middle (Fig.1).

root of PBTy,;

Fig.1 construct a duplicated graph G4 and PBT}
Optimality:
Given L is large enough, since any partition which has
some nodes in G and some nodes in Gy will has
arbitrary large diameter, it’s guaranteed suboptimal. So
the only optimal partition on the first level is to
partition into subsets of G and G;. We can not reduce
the cost by changing the partition on the first level.
We also cannot reduce the cost by moving the root of G
or G4. Moving the root of G by a distance of & will

increase the cost by (Ng -2)8, where N is the number
of nodes in G, since moving will increase the distance
from each node of G to the root of G by 8, and decrease
the distance from the new root to both the root of G and
Gd by 8. Assuming Ng > 2, moving can only make the
cost increased. Cases of N < 2 are trivial.

So the partition on the first level is optimal and the
location of the roots on the first level are optimal. The
optimality of the two PBT}’s guarantee the structures
underneath are optimal. So we conclude the PBTj,; so
constructed is optimal.

Polynomial Reduction Correctness:

Since G and Gy are identical, their PBT}’s are also
identical, and the distance between the roots of each

PBT), is exactly L. Setting B> = B+L, we have G has a
PBT}, of cost B if and only if G’ has a PBT),; of cost
B’.g

PBT, is trivial to solve by locating the root in the
middle of the longest path between nodes. Next we
show PBT, is NP-Complete so for all i>2 PBT; is also
NP-Complete.

Definition 3:

PBT,:

Instance: a set S of nodes in a metric space with
diameter R, positive rational number B.

Qestion: Is there a set P of K subsets C;, such that if r;

is the diameter of partition i, n; is the number of nodes
in partition i, then X; (n;-1)r; + KR<B?
To prove PBT, is NP-Complete, we first need the NP-

Completeness proofs of the following problems, which
are similar but different with the p-center and p-median
problems[9].
Definition 3:
N;-1 Weighted-Sum-Diameters

Problem:

Instance: a set S of nodes in a metric space, positive
integer k, positive rational number B.

Qestion: Is there a k-way partition of set S, such that if
C; is a subset, d; = Max d(u, v)l u&v € C; is the
diameter of subset C;, n; = |C|| is the number of nodes
in subset C;, then X; (ni-1)d; < B ?

Lemma 2: N;-1 WSD K-way Partition Problem in
Manhattan plane is NP-Complete.

Proof:

We prove this by polynomial-time reduction from 3-
Satisfiability [10]. That is, we construct a set of nodes
in Manhattan plane, and solve the 3-SAT problem by
solving the N;-1 WSDKP Problem. Since 3-SAT is NP-
Complete, so is N;-1 WSDKP Problem.

Definition 5:

3-SAT:

Instance: a set U of variables, collection C of clauses
over U, each with exactly 3 literals.

Qestion: Is there an satisfying assignment of U for C ?
Construct & Optimality:

We construct a circuit of nodes representing the truth
assignment of each variable(Fig.2). The number of
nodes in a circuit is noted as S;. S; mod 3 = 0. For nodes

K-way Partition

in the circuit, if v; mod 3 = 1, we have d(v;, vi;1) = 1,
otherwise we have d(v;, v;;1) = b >> 1. Denoting d(i) as

the minimum diameter of 1 nodes in such a circuit, we
have

d(1)=0,d2)=1,d3) =b+l,

d(4) = 2b+1, d(5) = 2b+2, d(6) = 3b+2 ...
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So to partition a circuit of S; nodes into S;/3 subset,
such that ¥; (n;-1)d; is minimum, there are only two
optimum solutions. One is to cluster {v;, v;,1, Vi;2} to
form a subset for each i mod 3 = 1, the other is to
cluster {v;, v;,, v;.1} to form a subset for each i mod 3
= 1. These two partitions correspond to the truth
assignment of the corresponding variable in 3-SAT
problem.

Fig.2 a circuit of nodes in Manhattan plane

(the two partitions represent the true/false

assignment of the correponding variable)
We construct for each clause a "clause structure",
which is formed by a "clause node", and nearby nodes
of three circuits (Fig.3). The distance between a clause
node and the nearest circuit node is b. Our objective is
to partition the whole set of nodes in the plane into
Y. S;/3 subsets. Denoting m(i) as the minimum diameter
of a subset of i nodes including the clause node, we
observe
m(1) =0, m(2) =b, m(3) = b+1,
m(4) = 2b, m(5) = 2b+1, m(6) = 2b+2 ...
It can be verified that to achieve minimum X%; (n;-1)d;,
the partition should take the clause node and 3 nodes in
a circuit into a subset with diameter 2b. This
corresponds to assign at least one of the 3 literals in a
clause to be true.

Fig.3 clause structure in Manhattan plane

(one of the three literals in the clause has to be assigned true
to let the clause node in a cluster with diameter 2b)
Because we are in a rectilinear plane, the circuits have
to cross each other. We need to carefully design the
crossings such that the crossings won’t change the
optimum partitions of each circuit. We let the crossings
take place only at two edges with length b(Fig.4).
Denoting x(i) as the minimum diameter of a subset of i
nodes near this crossing, we see

x(1)=0,x(2) =1,x(3) =b+1,

x(4) =b+2, x(5) =b+2, x(6) =b+2 ...

It can be verified that to achieve the minimum ¥; (n;-
1)d;, the six nodes near the crossing should be
partitioned into two subsets of three nodes. There are
two possible partitions which are essentially
equivalent(Fig.4) since if we get an optimum partition
containing one of the partitions, we can transform it
into another partition, without changing the cost
function and partitions of other nodes. So such a
crossing structure does not impact the partition of each
circuit.

Fig.4 crossing of two circuits in Manhattan plane
(dashed and solid lines give two partitions corresponding to
two different truth assignments, dotted and solid lines give
two equivalent partitions corresponding to one truth
assignment)

In summary, we construct v circuits corresponding to v
variables in 3-SAT problem, m clause structure
corresponding to m clauses in 3-SAT problem, and let
the circuits crossing only at edges with length b. We
then let k = X S;/3, B = 8mb + 3(k-m)(b+1), to solve the

N;-1 WSDKP problem.

Correctness:

If there is an assignment for the 3-SAT problem,then
the corresponding partition over the nodes constructed
as above has the cost of B = 8mb + 3(k-m)(b+1). The
corresponding partition problem is satisfied.

If there is a partition with cost B < 8mb + 3(k-m)(b+1)
for the partition problem, then

1. each circuit is partitioned into subsets of three nodes,
and the crossings do not matter.

2. each clause node is in a subset of diamter 2b with
other three nodes in a circuit, which corresponding to
assign one of the three literals in the clause to be true.
Because such a partition yields a cost of B, and any
deviation of such a partition can only increase the cost
of ¥; (n;-1)d;. So the corresponding 3-SAT problem is
satisfied. Also the reduction is in polynomial time. g
Lemma 3: N;-1 WSD K-way Partition Problem is NP-

Complete in Euclidean plane.
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Proof:

The proof is similar to that in Manhattan plane.
(skipped due to lack of space) g

Lemma 4: N;-1 WSD K-way Partition Problem is NP-
Complete in diagonal plane.

Proof:

(skipped due to lack of space) g

Lemma 5: PBT, is NP-complete in Manhattan |,
Euclidean and diagonal plane.

Proof:

We show N;-1 Weighted-Sum-Diameters K-way
Partition Problem <, PBT,. That is, we show if there is
a polynomial algorithm to solve PBT,, then we can
construct a polynomial algorithm to solve the Nj-1
WSD K-way Partition Problem. Since N;-1 WSD K-
way Partition Problem is NP-complete, so is PBT,.
Construct & Correctness:

Given a MSD K-way Partition Problem of X; D(C;) <
B, construct a PBT, optimization problem of Min(X;
D(C)) + KC). Get k’(C), which corresponds to the
optimum solution of PBT, problem for a fixed C.
k’(C=0) = IVI = N, k’(C=) = 1. So a binary search is
performed to find Cy such that k’(Cy) = K. The binary
search takes O(IgN) time. Setting B’= B + KC,, C =C,,
solve the PBT, Problem of X; D(C;) + KC < B’. Then
the MSD K-way Partition Problem has a solution if and
only if the PBT, problem so contructed has a solution.
The time complexity is O(IgN) times the polynomial
time complexity of PBT, problem, so is also
polynomial. g

Lemma 6: PBT = PBT,, where n = VI

Proof:

Since we allow the intermediate nodes coincident with
each other, a PBT, problem with large enough n has the
same effect as the PBT problem without n constraint.
And n=IVl is large enough. g
Theorem: PBT is NP-complete
Euclidean and diagonal plane.
Proof:

From Lemma 1-6. We have PBT}, <, PBTy,;. Since
PBT, is NP-Complete, so is PBT}, for all h>2. So is
PBT,. Since PBT = PBT,, so PBT is NP-Complete. g

in Manhattan ,

4. Approximation Scheme

Due to the work of Sanjeev Arora and other
people[11][12], many geometric problems including
TSP, k-median and so on have been found to be

approximated in NOU+9) ime to achieve (1+1/c)

OPTIMUM. Applying their method, we find PBT
problem with path-length delay model can be

approximated in NOU+IEN)  time  with (1+1/c)
OPTIMUM.

Their contribution is that they find an (1+lglL/m)
OPTIMUM solution can be found for a subproblem in
any square with edge length L, and m portals on each
edge. Portals are points only at which a approximation
solution (such as a k-median connection) can cross the
square boundary. A dynamic programming scheme is
then implemented.A look-up table is built with each
entry representing the best subproblem solution under
condition of a possible location of the k medians inside
and outside the square. The number of entries T is
greatly reduced by introducing the portals, as T =

k(4m(34m))2. The look-up table is constructed bottom-
up, by enumerating the look-up tables of the 4 children
squares at the lower level. So the time to build each
look-up table with T entries is T3. The number of
squares, hence the number of the look-up tables is
O(NIgN). So the total time is O((ngN)TS). To achieve
(1+1/c)OPTIMUM, let m = clgL. Then the time spent is
NOMLO©, Assuming L is propotional to N, it becomes
NOU+¢).

Fig.5 a geometric problem partitioned into subproblems
An instance of any square in k-median problem has the
following inputs:

1. a nonempty square,

2. the number of medians inside the box, an integer f in
[0.k],

3.If f 0, an assignment "inside" of numbers[1...4m] to
the portals of the box representing the distance to the
closest median inside the box,

4. If f <k, an assignment "closest" of numbers [1...4m]
to the portals of the box representing the distance to the
closest median outside the box.

By enumerating these inputs, we get the number of
entries of the look-up table for this box, which is T =
k(4m(3*M))%.

Applying this method, we get an approximation scheme
for PBT problem with path-length delay model
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similarly. While for an instance of a square in PBT
problem, the inputs are:

1. a nonempty square,

2. the number f; of nodes in set P with level i inside the
box, foreachifrom 1 to the level J of the PBT,

3. If f; 0, an assignment "inside(i)" of numbers[1...4m]
to the portals of the box representing the distance to the
closest node in set P with level i inside the box, for each
i from 1 to the level J of the PBT,

4. If f; < k, an assignment "closest(i)" of numbers
[1...4m] to the portals of the box representing the
distance to the closest node in set P with level i outside
the box, for each i from 1 to the level J of the PBT.

So the number of entries of the look-up table for this

box is T = (f,(4m(3*™))?)’ where f; = O(N), J = O(IgN).
Then the total time spent is (NIgN)T> = NOU+¢lgN),

5. Conclusion

We prove PBT problem in Manhattan, Euclidean and
diagonal plane is NP-complete, reveal the
computational complexity of min cost zero-skew clock
routing tree construction problem. While for path-
length delay model, due to the planary property of the

problem, an approximation scheme with time
complexity of NOU+12N) exigig.
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