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MR molecular imaging of brain cancer metabolism using
hyperpolarized 3C magnetic resonance spectroscopy

Chloé Najac! and Sabrina M. Ronenl ¥
1Department of Radiology and Biomedical Imaging, University of California San Francisco, San
Francisco, CA, USA

Abstract

Metabolic reprogramming is an important hallmark of cancer. Alterations in many metabolic
pathways support the requirement for cellular building blocks that are essential for cancer cell
proliferation. This metabolic reprogramming can be imaged using magnetic resonance
spectroscopy (MRS). IH MRS can inform on alterations in the steady-state levels of cellular
metabolites, but the emergence of hyperpolarized 13C MRS has now also enabled imaging of
metabolic fluxes in real-time, providing a new method for tumor detection and monitoring of
therapeutic response. In the case of glioma, preclinical cell and animal studies have shown that the
hyperpolarized 13C MRS metabolic imaging signature is specific to tumor type and can distinguish
between mutant IDH1 glioma and primary glioblastoma. Here, we review these findings, first
describing the main metabolic pathways that are altered in the different glioma subtypes, and then
reporting on the use of hyperpolarized 13C MRS and MR spectroscopic imaging (MRSI) to probe
these pathways. We show that the future translation of this hyperpolarized 13C MRS molecular
metabolic imaging method to the clinic promises to improve the noninvasive detection,
characterization, and response-monitoring of brain tumors resulting in improved patient diagnosis
and clinical management.
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Introduction

Gliomas are the most common type of brain tumor, representing 80% of all diagnosed
malignant central nervous system tumors in the United-States 1. They are classified into
three categories — astrocytoma, oligodendroglioma and glioblastoma — and four World
Health Organization grades — | to 1V — based on clinical and pathological criteria 12, Grade |
tumors are typically benign. Grade 11 tumors are referred to as low-grade in contrast to
grades I11 and 1V tumors that are considered higher-grade. Glioblastoma (GBM) is a grade
IV glioma that accounts for more than 50% of all diagnosed gliomas 1. It is the most
aggressive type of glioma and is associated with a very poor prognosis with a median
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survival time of 15 months 1. 90% of all GBM develop rapidly de novoand are referred to as
primary GBM. The rest progress from grade Il or 111 astrocytoma and are referred to as
secondary or upgraded GBM 34, Oligodendroglioma tumors present only as grade 11 or Il
and do not evolve to secondary GBM. Grades Il and 111 astrocytoma and oligodendroglioma
have a relatively better prognosis than GBM 2. Current standard of care for brain tumors is a
combination of treatments that depends on tumor type and grade and includes surgical
resection, radiation therapy and chemotherapy, with immunotherapy and targeted therapies
presenting new therapeutic approaches.

Independent of their histology or prognosis, oligodendroglioma, astrocytoma and secondary
GBM differ significantly in their genetic and epigenetic signatures from primary GBM.
Primary GBM are driven by multiple genetic alterations such as loss of the phosphatase and
tensin homolog (PTEN) gene, amplification or mutation of the epidermal growth factor
receptor (EGFR), and increased signaling via the phosphatidylinositol-3-kinase (P13K)/Akt
pathway 2. In contrast, 70-90% of grade I1/111 glioma and secondary GBM harbor a
mutation in the cytosolic isocitrate dehydrogenase 1 gene (IDH1) 6-9. This recently
discovered mutation, identified as a single amino acid substitution at arginine 132 69, is one
of the earliest genetic events in low-grade tumors, and has been shown to drive tumor
development. All mutations are heterozygous leading to the retention of the wild-type form
of the isocitrate dehydrogenase enzyme, responsible for the conversion of isocitrate to alpha-
ketoglutarate (a-KG). However, mutant IDH1 inhibits the wild-type form and establishes a
new function converting a-KG to 2-hydroxyglutarate (2-HG). Production of elevated levels
of 2-HG leads to epigenetic alterations which, in turn, lead to the development of
oligodendroglioma and astrocytoma tumors 10, In addition to the IDH1 mutation, over 70%
of grade 11/111 astrocytomas and oligodendrogliomas have a mutation in the TP53 tumor
suppressor gene and a co-deletion of chromosome arms 1p/19q respectively 211,

Magnetic resonance imaging (MRI) is the main imaging modality used to diagnose and
grade brain tumors. In the clinic, T1-weighted imaging pre- and post-injection of
gadolinium, T2-weighted imaging, fluid-attenuated inversion recovery imaging, diffusion-
weighted imaging and dynamic susceptibility-weighted contrast-enhanced imaging are the
most commonly used MRI methods 12-14, However, although they provide crucial
information on the structure and perfusion of the tumor as well as the integrity of the blood-
brain barrier (BBB), these methods do not provide metabolic information on the lesions. 1H
magnetic resonance spectroscopy (MRS) /in vivo or in biopsy samples allows probing
steady-state metabolite levels, and several studies have demonstrated the potential of 1H
MRS to differentiate tumors from normal brain and non-neoplastic lesions 131519, Tumors
are usually associated with high levels of choline-containing metabolites (comprised of
choline, phosphocholine (PC) and glycerophosphocholine (GPC)) and low levels of N-
acetyl-aspartate as well as an increase in lactate level in high-grade tumors 1317, Recently,
using 1H MRS, the oncometabolite 2-HG produced by mutant IDH1 was detected /7 vivo in
glioma patients harboring the IDH1 mutation 20-23 as well as ex vivo in glioma

biopsies 2425- 13C MRS can provide additional information in the study of brain tumor
metabolism by monitoring metabolic fluxes 26, However, 13C MRS studies have been more
challenging due to the significantly lower intrinsic sensitivity of the technique. The natural
abundance of 13C is only 1.1% and its gyromagnetic ratio, y13c=10.705 MHz/T, is ~ 4 times
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lower than y1. As a result, even when using 13C-labeled compounds long acquisition times
are required limiting the application of this method for patient studies. The emergence of
hyperpolarized 13C MRS has opened a range of new possibilities for novel metabolic
imaging studies that are translatable to the clinic and can serve to characterize brain tumors
and their response to therapy 27-30,

Here, we will first describe the main metabolic pathways that are altered in brain cancers.
We will focus primarily on the pathways that have been investigated using

hyperpolarized 13C MRS. Then, we will briefly describe the principles of

hyperpolarized 13C MRS and discuss the main agents developed to monitor the metabolism
of brain tumor cells. Tables 1 and 2 and Figure 1 summarize the 13C-labeled probes that
have been hyperpolarized using the DNP technique and applied to the study of metabolic
reprogramming in cell models and /7 vivo preclinical models of brain tumors.

reprogramming in brain tumors

Cancer cells have the ability to adapt their metabolism to enhance survival. Most notably,
they alter their glucose metabolism, up-regulating glucose uptake to produce elevated lactate
levels even under aerobic condition 31:32, This phenomenon is known as the “Warburg
effect”, and was first described by Otto Warburg in 1926 31, Elevated glucose uptake and
glycolytic activity serve to acidify the environment, promoting metastasis 33, and to generate
the building-blocks necessary to support rapid cell proliferation and tumor survival, such as
nucleotides, amino acids and lipids 34:35. Importantly, and contrary to Warburg’s initial
hypothesis, the glycolytic switch does not result from defective mitochondria but from
metabolic reprograming that has recently been recognized as one of the ten hallmarks of
cancer 36, This metabolic reprogramming depends upon the activation of several oncogenic
signaling pathways, proto-oncogenes and tumor suppressors 32. As mentioned above, the
activated pathways vary significantly between brain tumor subtypes resulting in metabolic
reprogramming that is also unique.

In the case of primary GBM, the PI3K/AKkt pathway is activated in more than 88% of

cases 237, The increased activity of this pathway is associated with tumor progression and
resistance to cancer therapies 38. At the same time, activation of the PI3K/Akt pathway leads
to an increase in glucose transporter expression and up-regulation of glycolysis 32, It also
promotes lipid synthesis facilitating conversion of mitochondrial citrate to acetyl-coA by
activating the expression of the enzyme citrate lyase 32. Downstream of PI3K/Akt,
mammalian target of rapamycin complex 1 (MTORC1) facilitates anabolic processes
including protein synthesis and lipid synthesis, and limits autophagy 32. mTORC1 also
regulates the activity of hypoxia-inducible factor-1 alpha (HIF-1a), a major player in
mitochondrial metabolism 32, Stabilization of HIF-1a in cancer cells drives the expression
of pyruvate dehydrogenase kinase 1 (PDK1) that leads to phosphorylation and inhibition of
pyruvate dehydrogenase activity (PDH). Inhibition of PDH, in turn, blocks the entry of
pyruvate into the tricarboxylic acid (TCA) cycle and therefore limits glucose-dependent
TCA metabolism 32. Another key role of HIF-1a in cancer cells is to up-regulate
monocarboxylate transporters (MCTs) 39. Over-expression of MCTs is crucial to help
maintain the hyper-glycolytic and acid-resistant phenotypes 49, Whereas MCT1 and MCT2
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have a high-affinity for the influx of pyruvate, MCT4 is mostly associated with the export of
lactate protecting the intracellular environment from acidification while reducing the
extracellular pH 4. Thus, although lactate production can vary significantly amongst brain
tumors, GBM typically exhibit elevated lactate levels 314142, The PI3K-Akt pathway and
HIF-1a also modulate choline metabolism in GBM. Similar to other cancers 43 PC, which is
generated by choline phosphorylation via choline kinase and is the precursor of the main
membrane phospholipid phosphatidylcholine (PtdCho), is significantly increased in

GBM #4. This reflects the requirement of proliferating cancer cells for membrane synthesis,
and the interplay between choline metabolism and oncogenic processes 434°, Finally, a large
proportion of GBM over-express the oncogenic transcription factor Myc, which also impacts
mitochondrial metabolism 4647, Myc stimulates glutamine uptake and glutamine
mitochondrial utilization by increasing the expression of glutaminase, the enzyme that
converts glutamine to glutamate 324849, Recent studies also reported an increase in acetate
uptake and conversion to acetyl-CoA correlating with up-regulation of acetyl-CoA synthase
enzyme 2 in GBM 50-52,

As mentioned above, primary GBM differ genetically from mutant IDH1-driven low-grade
gliomas (astrocytoma and oligodendroglioma) and secondary GBM. As a result, the
metabolic reprogramming of these tumors is also different. Similarly to primary GBM, low-
grade gliomas have been characterized by an elevated total choline pool. However, more
recent studies looking at events specifically associated with the IDH1 mutation, have
demonstrated that GPC levels are elevated in these cells and that PC levels are reduced
compared to wild-type IDH1 cells 4453-55_ The link to mutant IDH1 remains to be
determined. Other metabolic alterations detected in mutant IDH1 gliomas have been directly
linked to elevated 2-HG levels. It has been shown that accumulation of 2-HG leads to
hypermethylation of the branched chain amino acid transferase (BCAT) 1 promoter reducing
the activity of the enzyme responsible for the conversion of a-KG to glutamate 6. The
IDH1 mutation also leads to the hypermethylation and consequently silencing of lactate
dehydrogenase A (LDHA), the enzyme that converts pyruvate to lactate 42. Additionally,
reduced expression of MCT1 and MCT4 is observed in mutant IDH tumors 4257, We also
recently observed a reduction in PDH activity that was associated with increased PDK3
expression downstream of HIF-1a stabilization by 2-HG %8, Finally, as a result of the
reduced activity of wild-type IDH1, and the increased activity of NADPH-dependent mutant
IDH1, levels of NADPH are also diminished in mutant IDH1 glioma cells as are the levels of
glutathione (GSH), leading to elevated levels of reactive oxygen species (ROS) 2.

Hyperpolarized 13C MRS: imaging brain tumor status

The emergence of hyperpolarized 13C MRS enables monitoring of metabolic pathways and
their alterations in a non-invasive and non-ionizing manner. Molecules containing NMR-
visible nuclei, such as 13C or 1°N, can be hyperpolarized using dissolution dynamic nuclear
polarization (DNP). The dissolution DNP method allows hyperpolarization and dissolution
of 13C-labeled compounds resulting in an increase in their signal-to-noise ratio (SNR) by
10,000 to 50,000-fold as compared to thermal equilibrium 27:30:60_ To achieve this, the
labeled compound, mixed with a free radical, is placed at low temperature (<2K) and at high
magnetic field (~3-5T). Microwave irradiation then saturates the electron spin resonance
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and polarization is transferred from the radical electron to the labeled nucleus 27:2. This
leads to an increase in polarization from parts per million to 10-50%. However, a limitation
of hyperpolarized agents is their lifetime, or the longitudinal T1 relaxation time of the
polarized carbons, which determines how fast the polarization is lost after dissolution.
Relaxation times are typically less than a minute. A meaningful brain study therefore
requires rapid dissolution and injection of the hyperpolarized agents, as well as rapid
transport across the BBB and a fast metabolic rate. In addition, a rapid data acquisition
strategy is required with minimal excitation of the injected hyperpolarized labeled
compound and optimal excitation of the downstream metabolic products, as each excitation
results in an accelerated and non-renewable decay of the hyperpolarization 39:61-65 This has
led to a trade-off between spatial resolution and acquisition time 30. In spite of these
challenges, several hyperpolarized 13C agents as well as novel imaging methods have been
developed over the past decade to specifically image metabolism including the
aforementioned metabolic pathways that are reprogrammed in brain tumors (see Figure 1
and Tables 1 and 2).

Pyruvate at the “cross-roads” of several metabolic pathways

[1-13C]-pyruvate is the poster-child of hyperpolarized 13C probes. It has a relatively long T1
(~67s at 3T), a high polarization level (up to 40%) 56, and is also highly biologically
relevant. Pyruvate is the end product of glucose degradation and at the intersection of several
metabolic pathways that are altered in brain tumors. As mentioned previously, GBMs are
characterized by their up-regulation of aerobic glycolysis (also known as the “Warburg”
effect) 31 via increased expression of LDHA, the enzyme that converts pyruvate into lactate,
and decreased activity of PDH, the enzyme responsible for pyruvate flux into the TCA cycle.
In contrast, in low-grade mutant IDH1 tumors, LDHA is silenced 42. Hyperpolarized
[1-13C]-pyruvate can be used to monitor LDHA and PDH status by monitoring the
production of [1-13C]-lactate and [*3C]-bicarbonate respectively (Figure 1). During the past
decade there has also been a growing interest in using hyperpolarized [2-13C]-pyruvate to
monitor TCA cycle flux by probing for [5-13C]-glutamate formation simultaneously with the
production of [2-13C]-lactate (Figure 1). Similarly to [1-13C]-pyruvate, [2-13C]-pyruvate
fulfills the technical requirements for hyperpolarized studies (T1~40s at 3T and polarization
level up to 27%) 30. However, its use in the study of brain tumors in vivo, as well as other
organs, has been limited due to the relatively low SNR of [5-13C]-glutamate and the
requirement for a wide spectral window compared to studies with [1-13C]-pyruvate (~24ppm
between [2-13C]-pyruvate and [5-13C]-glutamate or 136ppm between [2-13C]-pyruvate and
[2-13C]-lactate compared to only ~12 ppm between [1-13C]-pyruvate and [1-13C]-lactate) 3.

[1-13C]-pyruvate

Different acquisition strategies have been developed and used to monitor the metabolic
conversion of [1-13C]-pyruvate as previously reviewed in detail 20, Briefly, dynamic data
sets from live cells have been obtained by acquiring sequential spectra using a pulse-acquire
sequence with a low flip angle 57:67-89. /1 vivo animal brain tumor studies have been
performed using either dynamic or single time point 2D chemical shift imaging (CSI) with
low flip angle 7971, An alternate approach used is single time point 2D MR spectroscopic
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imaging using a double spin echo RF pulse with variable flip angles 7273 (see Tables 1 and
2.

Elevated hyperpolarized [1-13C]-lactate production following the injection of hyperpolarized
[1-13C]-pyruvate was detected in several preclinical orthotopic GBM models compared to
normal brain 87:70.72-74 | contrast, in a low-grade IDH1 mutant orthotopic tumor model
where LDHA is silenced 42, very low production of hyperpolarized [1-13C]-lactate was
observed 9. Other studies showed a decreased level of hyperpolarized [13C]-bicarbonate
production as a result of decrease PDH activity in a preclinical GBM model 74. Additionally,
in a recent study, hyperpolarized [1-13C]-pyruvate was used as an imaging marker to
monitor decreased expression of MCT1 (responsible primarily for pyruvate cellular influx)
and MCT4 (responsible primarily for lactate cellular efflux) in immortalized normal human
astrocytes (NHAS) harboring the IDH1 mutation as compared to the IDH1 wild-type

NHAs 57,

Response to treatment was also studied using hyperpolarized [1-13C]-pyruvate in GBM. A
decrease in hyperpolarized [1-13C]-lactate/[1-13C]-pyruvate ratio was correlated with a drop
in LDHA expression and HIF-1a activity in response to Everolimus, a first-generation
mTOR inhibitor, and in response to LY294002, a PI3K inhibitor, in GS-2 GBM cells 37:67
and in a GS-2 rat orthotopic tumor model 3. A similar observation was made following
treatment with Voxtalisib, a second-generation dual PI3K/mTOR inhibitor in GS-2 and U87
GBM models in mice 0. In response to treatment with Temozolomide (TMZ), the current
standard of care for GBM, a decrease in pyruvate kinase M2 (PKM2) in orthotopic U87 and
GS-2 GBM models in rats also led to a decrease in hyperpolarized [1-13C]-lactate
production 797576 1mportantly, a drop in hyperpolarized [1-13C]-lactate production in all
these models was an early event that occurred prior to tumor shrinkage and was associated
with increased animal survival. Recently, treatment with dichloroacetate (DCA), a PDH
activator, resulted in a drop in hyperpolarized [1-13C]-lactate/[13C]-bicarbonate ratio in rat
C6 GBM 4. The [1-13C]-lactate/[1-13C]-pyruvate ratio was also used as an index of
response to radiotherapy in C6 GBM 71, Finally, one study reported the potential of
hyperpolarized [1-13C]-pyruvate to evaluate response to the histone deacetylase inhibitor
SAHA in a GBM cell model (GBM14), and, more importantly, to serve as a biomarker of
acquired resistance to treatment 8. In contrast, in mutant IDH1 tumors, recent studies in our
lab demonstrate that response to TMZ-treatment and tumor shrinkage did not lead to a
detectable drop in hyperpolarized [1-13C]-lactate production ©°.

[2-13C]-pyruvate

Recently, one study reported the first application of hyperpolarized [2-13C]-pyruvate in a rat
C6 GBM model 7. Using a volumetric spiral chemical shift imaging method, reduced
hyperpolarized [5-13C]-glutamate and increased [2-13C]-lactate were observed compared to
normal brain. Upon DCA injection, these changes were reversed. Similarly, in models of
mutant IDH1 cells, lower hyperpolarized [5-13C]-glutamate production following [2-13C]-
pyruvate injection was observed in two genetically engineered cell models (U87 and NHAS)
expressing the IDH1 mutation as compared to cells expressing wild-type IDH1 associated
with a HIF-1a-mediated decrease in PDH activity °8. In the same study, treatment with
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DCA also resulted in an increase in hyperpolarized [5-13C]-glutamate. This points to one
metabolic event that is similar in primary GBM and mutant IDH1 glioma cells.

Specific biomarker of IDH1 mutation: hyperpolarized [1-13C]-alpha

ketoglutarate

As mentioned previously, the IDH1 mutation leads to elevated levels of 2-HG production.
Monitoring IDH1 mutational status using hyperpolarized 13C MRS is therefore of great
value. Recently, following the optimization of [1-13C]-a-KG as an hyperpolarized agent
with sufficiently long T1 and adequate polarization (T1~52s at 3T and polarization
level~16% 30:78) our group showed the accumulation of [1-13C]-2-HG (Figure 1) both /n
vitro and in an orthotopic preclinical model engineered to express mutant IDH1 78,
Additionally, a drop in the conversion of [1-13C]-a-KG to [1-13C]-glutamate (Figure 1) was
also detected in the same orthotopic glioma model and was correlated with a drop in the
activity and expression of several enzymes (BCAT1, AST1/2, GDH1/2) that catalyze the a-
KG to glutamate conversion, associated with their 2-HG-induced promoter methylation and
silencing 7°. /n vivo detection of [1-13C]-a-KG conversion was possible thanks to a recently
developed hyperpolarized 13C acquisition scheme that combines the use of a multiband
spectral-spatial RF pulse sequence to optimize substrate and products excitations with a
variable flip angle strategy 62.

Other promising hyperpolarized probes

Other promising probes have been developed for the study of metabolism in physiological
condition in vitroand in vivo28:30.80 These have not yet been applied to brain tumor
studies, but could be of interest (Figure 1).

[1-13C]-ethyl pyruvate

In hyperpolarized studies, time is a limiting factor. The faster the hyperpolarized agent can
be delivered to the site of interest, the higher the SNR and chances of observing metabolic
conversion. In studies of normal brain or low-grade glioma, where the BBB is not broken,
agents must diffuse rapidly through the BBB. To respond to this constraint, Hurd et al.
showed the advantage of using hyperpolarized [1-13C]-ethyl pyruvate (T1~45s at 3T and
polarization level~28-35%), an analog of hyperpolarized [1-13C]-pyruvate that diffuses
faster through the BBB 81. This agent could potentially provide a better reading of tumor
glycolysis. However, the requirement for an extra metabolic step, namely the conversion of
ethyl pyruvate into pyruvate, prior to its subsequent metabolism, could limit the expected
advantage of this probe.

[U-13C]-alpha-ketobutyrate

Another analog of pyruvate, alpha-ketobutyrate (a-KB), is also reduced by LDH but has a
higher specificity towards LDHB, the enzyme that is typically responsible for the conversion
of lactate into pyruvate (as opposed to pyruvate which has a higher specificity for

LDHA) 82, The conversion of hyperpolarized [U-13C]-a-KB (T1~52s at 3T and polarization
level~10%) into [U-13C]-a-hydroxybutyrate was observed in the liver, heart and kidney of a
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normal rat 82, LDHB is highly expressed in the brain; therefore following changes in LDHB
could be of great interest, particularly in low-grade tumors expressing the IDH1 mutation
and wherein LDHA is silenced 42,

[1-13C]-acetate

Acetate is a specific biomarker of glial metabolism as it is solely taken up by astrocytes. As
such, several thermal studies of 13C-labeled acetate demonstrated the value of this
metabolite in the study of normal brain metabolism 83.84, Additionally, the importance of
acetate as a source to fuel tumor cells has recently been demonstrated in several

studies 59-52, In the normal brain, the conversion of [1-13C]-acetate or [1,2-13C]-acetate
(T1~40s at 9.4T and polarization level~9-17%) into [5-13C]-a-KG or [4,5-13C]-a-KG
respectively was successfully detected using direct or polarization transfer detection
techniques 8586, However, studies in tumors have not been performed to date.

[1-13C]-dihydroascorbate

Redox balance in the tumor is correlated with aggressiveness and resistance to

treatment 2987, Redox reactions involve multiple agents, including glutathione, thioredoxin,
NADPH, dehydroascorbic acid (DHA) and vitamin C, that are all implicated in controlling
the level of ROS. Hyperpolarized [1-13C]-DHA has now been reported as a probe for
imaging redox status (T1~57s at 3T and polarization level~6-8%) 889, The detection of the
conversion of hyperpolarized [1-13C]-DHA into [1-13C]-vitamin C in normal rat brain as
well as the modulation of this reaction in a model of prostate cancer illustrated the potential
of this agent 88, DHA is transported into cells through the glucose transporter %0, making it a
good candidate for /7 vivo brain studies and particularly interesting for the study of mutant
IDH1 tumors wherein redox status is likely altered.

[5-13C]-glutamine
[5-13C]-glutamine is of interest in brain cancer metabolism due to the aforementioned
importance of Myc in high-grade GBM. However, studies of the conversion of
hyperpolarized [5-13C]-glutamine into [5-13C]-glutamate have been limited due to the short
T1 of this substrate (T1~8s at 3T and polarization level~28%), the rapid degradation of
glutamine into glutamate, which is also the metabolic product of interest, and the apparently
slow uptake of glutamine by cells 91-94_ Currently, three studies performed on hepatoma
cells and prostate cancer cells, and one /in vivo study performed in a rat model of liver
cancer, reported the use of hyperpolarized glutamine 91-94 but no other studies have been
successful in using this compound.

[13C]-bicarbonate

As aforementioned, acidification of the extracellular environment plays an important role in
tumor development. Rapid exchange between bicarbonate and carbon dioxide depends upon
pH. Therefore, monitoring the fate of hyperpolarized [*3C]-bicarbonate allows mapping of
the extracellular pH (pHe) and studies in murine lymphoma ° or prostate cancer % models
reported the use of hyperpolarized [13C]-bicarbonate (T1~10s at 9.4T and polarization
level~16%) to image pHe. More recently, a new pH probe, [1-13C]-1,2-glycerol carbonate
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was developed and was used in a prostate cancer model 97. These probes could therefore be
used to monitor pH in brain tumors, where the extracellular pH is likely acidic in GBM, but
likely not in the case of mutant IDH-driven tumors that have silence LDH-A and reduced
lactate production 4269,

[1,4-13C,]-fumarate

Increased permeability of necrotic cell plasma membrane within the tumor facilitates the
entry of fumarate within necrotic cells or release of the fumarase enzyme within the tumor
microenvironment, resulting in increased conversion of fumarate, an intermediate of the
TCA cycle, into malate. In contrast, in normal cells where the integrity of the plasma
membrane has not been compromised, the entry of fumarate is limited over the lifetime of
the hyperpolarized probe. Hyperpolarized [1,4-13C,]-fumarate (T1~24s at 9.4T and
polarization level~26-35%) has been used to monitor treatment response /17 vivo in an
implanted EL-4 murine lymphoma 98:99 and human breast adenocarcinoma 199, To date, no
studies of hyperpolarized [1,4-13C,]-fumarate have reported in brain tumors. However, in
the case of GBM, where the entry of fumarate is facilitated by the disruption of the BBB,
hyperpolarized [1,4-13C,]-fumarate could potentially detect cell death.

[2-13C, 1,2-2H,]-choline chloride

Monitoring choline metabolism in high- and low-grade gliomas is of significant interest due
to their abnormal choline metabolism. A recent study showed that [2-13C, 1,2-2H4]-choline
chloride can be hyperpolarized, fulfills the technical requirements for hyperpolarized studies
(T1~60s at 7T and polarization level~28-35%) and its conversion into [2-13C, 1,2-2H,]-
acetylcholine can be detected in an /n vitro acetyltransferase enzyme experiment 101,102/,
vivo, distribution of the hyperpolarized substrate was observed in the inferior vena cava,
heart, aorta and kidneys 103, However, metabolism into PC has not been reported to date in
cells or in vivo.

Hyperpolarized [13C]-urea: beyond metabolism, probing brain tumor

perfusion

In addition to tumor metabolism, measuring tumor vascularity and perfusion provide crucial
information to monitor tumor evolution and response to treatment. Hyperpolarized [13C]-
urea has been well studied in the context of prostate, liver and kidney cancers 104-106,
However, permeability of brain tissue to urea is very low limiting its application to the study
of brain perfusion 107, Recently, two novel hyperpolarized agents were developed, [13C]-
hydroxymethyl cyclopropane (HMCP) and [13C]-t-butanol, with the latest diffusing freely
into normal brain tissue 107, In a recent study, [}3C]-HMCP was used to investigate tumor
perfusion in an orthotopic human glioblastoma model (G55 MG) 108, The strong correlation
between hyperpolarized findings, conventional perfusion imaging and level of vascular
staining detected by immuhistochemistry illustrates the potential of this new agent.
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Conclusion

Over the past decade, studies using the dissolution DNP method combined with 13C MRS
have demonstrated the potential of this technique to change the future of brain cancer
diagnosis. By enhancing the signal from 13C-labeled compounds, this new metabolic
imaging approach enables probing in real-time, non-invasively, and in a non-ionizing
manner, major metabolic pathways and their reprogramming in cancer. So far, several agents
have been developed to target different pathways and monitor response to therapies, and
more will likely emerge in the years to come. Importantly, the potential of this technique is
not limited to the study of brain tumors but is applicable to many other cancers and
diseases 0. Finally, the recent first-in-human study performed on prostate cancer patient 2°
as well as the beginning of a clinical trial in brain tumor patients at the University of
California, San Francisco, confirms the potential of this technique for translation to the
clinic.
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