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Abstract 

 

Magnetic transmission X-ray microscopy (M-TXM) is used to image domain walls in magnetic 

ring structures formed by a 300 nm wide, 24 nm thick Ni81Fe19 nanowire. Both transverse and 

vortex type domain walls are observed after application of different field sequences. Domain 

walls can be observed by comparing images obtained from opposite field sequences, or else 

domain wall propagation observed by comparing successive images in a particular field 

sequence. This demonstrates the potential use of M-TXM in developing and understanding 

planar magnetic nanowire behavior. 

                                                
* E-mail: d.allwood@sheffield.ac.uk 



Introduction 

 

The geometry of planar magnetic nanowires creates a simple magnetic structure in which 

domain walls across the wire width separate domains oriented along the wire length. Domain 

walls can be propagated using externally applied fields1,2 or electrical current in the nanowires.3-

7
 Furthermore, domain walls can be positioned using geometrical features, e.g. corners

1,6,8,9
 or 

notches, and interact at wire junctions.8,9 This has led to several proposals for using domain 

walls in nanowire networks for memory,10,11 logic,8,9 and sensor12 applications. 

 

There is now a great deal of interest in understanding the nature of domain wall propagation in 

nanowires and domain wall interactions with nanowire features. Several techniques assist in this 

by allowing the nanowire magnetization to be imaged. Magnetic force microscopy (MFM) has 

been used extensively to image the stray field from domain walls in nanowires,6,7,13 although 

great care has to be taken to avoid altering the magnetic state of the nanowires with the 

magnetic tip used in MFM. Scanning electron microscopy with polarization analysis 

(SEMPA)14 and photoelectron emission microscopy (PEEM)15 provide excellent sensitivity to 

surface magnetization but samples must be in vacuum and SEMPA cannot image surfaces when  

magnetic fields are applied to the samples. Lorentz-transmission electron microscopy,16,17 also 

performed in vacuum, requires samples to be on electron-transparent substrates and of a 

minimum thickness (typically 20 nm for Ni81Fe19) but nevertheless can produce excellent 

images of domain wall structure in magnetic nanowires.17 Finally, magnetic transmission X-ray 

microscopy (M-TXM)18,19 can produce in-field magnetization images from samples in air, 

although X-ray-transparent substrates (similar to those in Lorentz TEM) must again be used. 

Magnetic contrast is obtained by X-ray magnetic circular dichroism since the transmission of 

circularly polarized X-rays with an energy close to resonant absorption edges depends strongly 

on the relative orientation between the projection of the sample’s magnetization onto the photon 

propagation direction. 

 



M-TXM has been used to image magnetization processes in isolated elements.18  Recently, M-

TXM was used to observe current-driven propagation of a ‘vortex’ type domain wall in 1 µm 

wide, 80 nm thick nanowires.
20

 Here, we show how M-TXM can be used to observe domain 

walls with vortex or transverse structure propagating in nanowires with dimensions closer to 

those used in proposed applications. 

 

Experimental 

 

Nanowires were patterned on 100 nm thick Si3N4 membranes by standard electron beam 

lithography and lift-off techniques, although ultra-sonic treatment was avoided to prevent 

damage to the membrane. The samples were metalized by thermal evaporation of 24 nm 

Ni81Fe19 using a custom-built evaporator. The sample design consisted of a 4 µm diameter ring 

with a straight wire connected radially to the outer edge of the ring. The straight wire terminates 

in a 180° bend but is not significant for the experiments discussed here. The wire width of the 

circle is 300 nm while the straight wire and 180º bend are 200 nm wide. Figure 1 shows a 

scanning electron micrograph of a complete structure, illustrating the ring, straight wire and 

bend. Figure 1 also defines the x- and y-directions, along which the magnetic fields Hx and Hy 

were applied, respectively. 

 

M-TXM was performed at beamline 6.1.2 operated by the Center for X-ray Optics at the 

Advanced Light Source, in Berkeley CA
21

 using the optical configuration consisting of Fresnel 

zone plates (Fig. 2), which is described in detail elsewhere.
22

 A condenser zone plate (CZP) 

provides a hollow cone illumination of the specimen with circularly polarized X-rays being 

selected by a movable aperture to pick off-orbit bending magnet radiation.  Together with a 12 

µm diameter pinhole the CZP acts as linear monochromator so that X-rays with an energy 

corresponding to the L-edges of either Ni (854eV) or Fe (706eV) can be selected. Magnetic 

fields pointing in two orthogonal directions to the photon propagation direction can be applied 



to the samples, which were mounted at a 30º tilt angle to provide sensitivity to in-plane 

magnetization. A high resolution micro zone plate was used to image the sample’s 

magnetization projection onto a CCD camera. The images were recorded under ambient 

conditions and at various externally applied magnetic fields. In order to increase the magnetic 

contrast and to remove non-magnetic background contributions, difference images were created 

from images obtained under different applied magnetic fields but identical X-ray polarization to 

observe changes in magnetization. The two component images represent the initial (before field 

change) and final (after field change) magnetization states. Here, this procedure provides light 

(dark) contrast for positive (negative) magnetization changes in the x-direction. The maximum 

fields applied to samples were Hx = ± 500 Oe and Hy = ± 100 Oe.  

 

Results and Discussion 

 

Initially, we observed static domain walls in the nanowire ring by applying magnetic fields 

along one axis only. Figure 3(a) is obtained from images at remanence following Hx = +500 Oe 

(initial) and remanence following Hx = –500 Oe (final). Strong contrast is observed at the upper 

and lower sections of the ring due to magnetization reversal. The intensity contrast between the 

two remanent images at the top of the ring structures is 10 %. Less contrast is observed in the 

adjacent ring side sections. This is due to magnetization lying approximately parallel to the ring 

edges and, consequently, having very little component in the x-direction. Interestingly, there is 

also a dark structure on the far right of the ring that shows a transverse domain wall structure of 

width ~ 90 nm. The dark contrast indicates that, in this case, the domain walls at remanence 

have magnetization parallel to the previous applied field direction. However, other images 

indicate that this is not always the case. This can be expected since 500 Oe is below the local 

anisotropy field of the wire structure, so saturation will not be achieved. 

 

Figure 3(b) shows an image obtained from the conditions of remanence after Hx = +500 Oe 

(initial) and during Hx =  –500 Oe (final). Surprisingly, the domain wall contrast is reduced and 



appears to be split. This type of image was highly repeatable. Our explanation for this is that the 

domain wall relaxes to different positions at remanence and when |Hx| = 500 Oe. This could be 

due to a defect in the wire introducing position-dependent potentials on the domain wall 

position. Of the two domain wall positions in Fig. 3(b), the lower position corresponds to the 

domain wall location in Fig. 3(a) while the upper position is reached when Hx = 500 Oe.  

 

Figure 4 shows a sequence of domain wall images that were obtained by applying fields Hx and 

Hy. Initially, fields Hx = 500 Oe, Hy = 0 Oe were applied and then removed to prepare a 

transverse domain wall on the right hand side of the ring, as in Fig. 3. Image I1 recorded this 

state. Fields Hx = 0 Oe, Hy = 30 Oe were then applied and image I2 collected. Figure 4(a) shows 

an image obtained using I1 and I2 as the initial and final states, respectively. The separated light 

and dark contrast regions on the right hand side of the ring indicate that a transverse domain 

wall has propagated 250 nm in the ring wire between the initial and final positions P1 and P2, 

respectively. The magnetization configuration of the initial and final states is shown 

schematically in Fig. 4(b) and (c). As an aid to understanding Fig. 4(a), the schematic diagrams 

show significant magnetization changes in black and unchanged magnetization in gray. Unlike 

in Fig. 3, the initial domain wall magnetization in Fig. 4(a) is opposite to the +x initialization 

field direction. 

 

The applied fields were then changed to Hx = –100 Oe, Hy = 30 Oe and a new image I3 recorded.  

Figure 4(d) shows an image that uses I2 as the new initial state and I3 as the new final state. The 

magnetic configurations of the initial and final states are illustrated schematically in Fig. 4(e) 

and (f). The initial position P1 of the transverse domain wall is again indicated by the light 

contrast region in Fig. 4(d). The dark track above P1 indicates that the wall has propagated to 

position P2 right at the top of the ring. The dark contrast here is now due to a reversal in 

magnetization parallel to the nanowire sides rather than imaging the domain wall itself. 

However, the domain wall structure is still evident at the end of the dark streak at P2. The dark 

contrast at P2 only covers half of the nanowire width, indicating that the domain wall has 



transformed into a vortex structure. This is understood by viewing the change in magnetization 

(black lines) shown in Fig. 4(f); the lower half of the vortex domain wall structure has 

magnetization parallel to the magnetic domain at this position in the initial state. Previous 

modelling23 of field-driven domain wall propagation in wires with a cross-sectional area ~40 % 

of those used here predicted a transformation from a vortex to transverse domain wall 

configuration. The larger cross-sectional area used here is probably responsible for the opposite 

transformation shown in Fig. 4(d). 

 

The applied field was now changed again to Hx = 100 Oe, Hy = 0 Oe and image I4 obtained. The 

image in Fig. 4(g) results from I3 and I4 being used as the initial and final states, respectively, 

with the two configurations being illustrated in Fig. 4(h) and (i). The light contrast regions at P1 

and P2 indicate the initial and final positions of the domain wall, this time propagating ~250 nm 

back towards its original location in Fig. 4(a). The light contrast regions again extend only 

halfway across the nanowire, although on opposite sides of the wire at P1 and P2. This is 

explained by the propagating vortex domain wall structure illustrated in Fig. 4(h) and (i) and 

confirms that Fig. 4(d) shows a vortex wall structure in the final state. The vortex walls in Fig. 

4(g) are 270 nm wide, substantially wider than transverse walls in the same ring structure. 

 

Conclusion 

 

We have shown that transverse and vortex domain walls can be observed in 300 nm wide 

Ni81Fe19 nanowires using magnetic X-ray transmission (M-TXM) microscopy. Domain wall 

propagation is easily identified either using domain or domain wall magnetization, depending 

on the local angle between the wire and the microscope’s sensitivity direction. We have also 

observed a transition in domain wall structure from transverse to vortex. This is significant for 

domain wall technologies that are attempting to control the position of domain walls using 

geometrical features in nanowires since the operation of these is often critically dependent upon 

domain wall structure.  
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Figure Captions 

Figure 1 Scanning electron micrograph of the 24 nm thick Ni81Fe19 structure on a Si:N 

membrane. Also shown are the orthogonal x- and y-directions. 

Figure 2 Schematic of optical arrangement for performing magnetic transmission X-ray 

microscopy at beamline 6.1.2 at the Advanced Light Source, Berkeley, CA. 

Figure 3 Difference magnetic transmission X-ray microscopy images showing 

magnetization changes in the Ni81Fe19 ring and direction of magnetic field Hx. The 

images are obtained from conditions (a) remanence after Hx = +500 Oe (initial) and 

remanence after Hx = –500 Oe (final), and (b) remanence after Hx = +500 Oe 

(initial) and Hx = –500 Oe (final). The insets show magnified and higher contrast 

images of the domain wall regions. 

Figure 4 Difference magnetic transmission X-ray microscopy images and schematic 

diagrams of domain walls in the initial (P1) and final (P2) positions for the 

difference image. Successive images result from applying new field conditions 

compared with the previous image. Initial fields of Hx = Hy = 0 Oe after Hx = 500 

Oe, Hy = 0 Oe were followed by (a) – (c) Hx = 0 Oe, Hy = 30 Oe, (d) – (f) Hx = –

100 Oe, Hy = 30 Oe, (g) – (i) Hx = 100 Oe, Hy = 0 Oe. Also indicated are the 

orthogonal directions in which Hx and Hy were applied. 
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