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Abstract

For a variety of reasons, distributed applications often must be implemented using exist-
ing conventional programming languages and operating systems. Creating new high perfor-
mance distributed applications without high-level support from the programming language
or operating system requires that the mechanism of distribution be selected early in the de-
sign stage, reducing the flexibility and/or efficiency of the design and subsequent imple-
mentation. Adding distribution to existing applications can result in an inordinate amount
of reengineering due to the complexity and heterogeneity of interapplication communication
mechanisms and their interfaces.

‘ This paper describes a new architecture for high performance distributed applications
and a supporting framework. This architecture applies object-oriented design and imple-
‘mentation techniques to build a framework for platform-independent distributed application
specification and implementation using existing programming languages and operating sys-
tems. It utilizes an efficient and extensible layering architecture that allows new abstract
data types, new protocols, and new interprocess communication mechanisms to be added as
they become necessary. ' '

- *This material is based upon work supported by the National Science Foundation under Grant No. NCR-
8907909. This research is also in part supported by University of California MICRO program.




1 Introduction

There has been considerable research in the areas of both distributed operating systems[1, 2, 3, 4,
5, 6], as well as programming languages for distributed application development[7, 8,9, 10, 11].
However, distributed applications must often be implemented using existing conventional pro-
gramming languages and operating systems. Conventional languages are and will be used to
accommodate the “dusty deck” of existing source code, as well as to utilize the experience of
programmers accustomed to working in these languages. Conventional operating systems are
and will be used where there is no single distributed operating system for every entity in a partic-
ular installation (e.g., a network management application that must communicate with dedicated
routing hardware, a distributed database application that must communicate with hosts running
a variety of operating systems). It is the current and continued presence of these environments
that motivates this work. .

Developing high performance distributed applications using conventional programming lan-
guages and operating systems is a non-trivial task due to the complexity and heterogeneity of
interapplication communication mechanisms and their interfaces. Adding distribution to exist-
ing applications can result in an inordinate amount of reengineering due to the lack of high-level
support for distribution in most traditional environments. Creating new distributed applications
requires the mechanism of distribution be selected very early in the design stage to avoid this
reengineering effort. This causes the distribution mechanisms to either be (a) tightly coupled
with the entire application (which makes changing the mechanism very difficult), or (b) loosely
coupled via abstract interfaces (requiring explicit calls to initiate and support distribution and
reducing efficiency due to additional function calls and data copying).

To simplify the task of implementing high performance distributed applications, we are propos-
ing a two-level approach to the implementation and design of distributed applications. Each of
these two levels applies object-oriented design principles to provide a framework for transparent
object distribution.

o Level 1: Communication Substrate Dependent — By creating a uniform abstract interface to
distribution/communication services (e.g., sockets[12], RPC[13], XTI{14], ADAPTIVE[15],
SNMP[16], various local and remote IPC and shared memory mechanisms), exactly one
interface to distributional services is necessary. This allows distribution mechanisms to
be selected late in the design process, as well as lessening the development effort when
applications must be ported to a new operating environment. Level 1 represents the com-
munication infrastructure of the framework.

o Level 2: Communication Substrate Independent — By providing a family of fundamental
base classes that are capable of encoding themselves in a platform-independent manner,
migrating instances of these classes over diverse platforms requires no additional effort.
The substrate independent level is capable not only of explicitly importing and exporting
objects, but is also capable of hiding the distributed nature of an object by using techniques
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referred to as distributed instantiation and remote delegation. This allows an object to
appear to exist on a local host, but any accesses to it are transparently delegated to the
remote host where the object actually resides. Level 2 provides the paradigm for distributed
object management. ' '

We combine these two levels of abstraction to create a framework for high performance dis-
tributed application design and implementation. We are implementing and experimenting with
this framework using the C++ programming language, which was chosen as the implementation
language for its efficiency, its compatibility with the large body of existing C language code, and
its support for object-oriented programming.

2 Design Goals

The framework described in Section 3 is designed to satisfy the following goals:

Basic Encoding Rule Independence and Transparency: Due to variances in processor ar-
chitectures, operating systems, programming languages and their compilers, data (objects) that
must be transported to a foreign host must be encoded into a format that all communicating par-
ties can recognize. Under the OSI Reference Model[17], this task is the responsibility of Layer
6, the Presentation Layer. Presentation protocols are traditionally implemented using a data def-

* inition language for humans to specify the data formats to be exchanged. These data definitions

are then compiled according to a set of basic encoding rules (BER) that specify the exact binary
representation of each data type. For maximum flexibility, our framework allows Presentation
Layer services to be transparently selected either for compatibility with existing applications
(e.g., ASN.1[18] for compatibility with OSI applications) or for the best match to new applica-
tions (e.g., XDR with Multimedia extensions for bandwidth/processing intensive applications).
A single object can be transported using multiple encoding schemes, with the correct one for
a given end-to-end association selected automatically via strong typing and function/operator
overloading. This allows a communicating entity to maintain a single internal data format that is
most efficient for local processing, while using ASN.1 to communicate information to network
management applications and a more efficient format for more time-critical communications.

Object/Task Location Independence and Transparency: The emergence of distributed ob-
ject management systems and languages[19, 8, 20, 21] has shown that using a distributed object-
oriented paradigm is a powerful and expressive way to design and implement distributed applica-
tions. Our framework seeks to provide distributed object management facilities by augmenting
objects with the necessary member functions to transparently or explicitly designate the loca-
tion of data members and the constituent operations performed. The actual location of various
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application objects can be transparently selected by the application designer to match the com-
munication characteristics of the application. Object location can be explicitly designated either
at the time of object instantiation, or during the object’s lifetime via a single member function.
Finer-grain control of object location and migration can be specified by designating member
functions or data members for remote invocation/instantiation, allowing the application designer
to distribute a single object across multiple locations.

Communication Substrate Independence and Transparency: There is presently a very large
number of communication substrates available to the distributed system designer (e.g., TCP[22],
OSI-TP4[23], VMTP[24], NETBLT[25], XTP[26], etc.), with new protocols on the horizon (e.g.,
Bellcore’s TP++, OSI HSTP). Each of these protocols provides varying levels of performance
and types of service. To take advantage of advances in network technology, it is essential that
applications sufficiently insulate themselves from idiosyncrasies of a given substrate without un-
duly reducing efficiency. Our framework seeks to decouple object transmission/reception from
the underlying communication subsystem. This allows the same code to be used portably across
many different communication subsystems without regard to the selected substrate. The frame-
work provides a minimal yet functional base interface to basic communication services, while
allowing access to substrate-specific features, functions and formats in an efficient yet isolatable

~ manner.

Efficient yet Robust “Higher Layer” Protocol Services: By designing the layering architec-
ture for both transparency and efficiency, protocol layers which were previously considered bot-
tlenecks in distributed applications can now be used in high performance systems. Studies have
shown that presentation layer processing is a major bottleneck in network performance[27, 28],
due to both the complexity of the processing involved and the additional data movement incurred
from translating data between formats. Our framework addresses both of these issues:

1. Complexity — The fundamental data types used in a presentation protocol are hand-coded
and inlined to yield a highly efficient translation. Additionally, every built-in data type
has a hand-tuned type conversion operator to allow efficient processing of built-in types.
As composite data types are directly composed of the fundamental or built-in types, their
translations are efficient as well. However, implementors are free to experiment with and
hand-tune a given composite object’s encoding and/or decoding. '

2. Redundant Data Copying — The entire “data path” of the framework is designed to al-

~ low conversion-on-copy operations, scatter-read/gather-write, memory-mapped I/O, and
“pipelining” of protocol processing operations. Additionally, we are experimenting with
alternatives to the traditional socket interface to further reduce the need for copying.



Streamlined Development Process: Conventional systems require the designer to maintain
a data description in a language other than the language being used to develop the application.
Our framework allows designers and implementors to specify objects directly in the implemen-
tation language (e.g., C++), without requiring an additional preprocessor or stub compiler. The
fundamental data types and formats are precisely defined within the framework specification.
This allows formats to be expressed unambiguously, while allowmg the development cycle to be
streamlined by using rapid prototyping techniques.

Medium Independence and Transparency: The class libraries used to encode data objects
can easily be combined with the exiting C++ 1iostream' class libraries currently being stan-
dardized by ANSL This allows objects to be stored in a platform-independent format with no
additional implementation effort. It also allows persistent objects to be “played out” over a
communication channel by an application that is unaware of the underlying format simply by
transmitting the contents of a file.

3 | Framework Components

Figure 1 shows the layering model used in our architecture. The Data Transport and Media
Convergence layers correspond to the Communication Substrate Dependent level, as shown in
Figure 2. The following is a description of each layer. The Presentation and Distribution layers
correspond to the Communication Substrate Independent level, as shown in Figure 3.

- 3.1 Data Transport Layer

The Data Transport Layer provides the basic local and remote interprocess communication chan- -

nel. This layer represents both the IPC mechanisms and their constituent Application Program-
matic Interfaces (APIs). It is assumed that each underlying IPC mechanism provides either (1)
a basic duplex data stream with either connection-oriented or connectionless semantics or (2) a
shared memory interface with support for mapping a memory segment into and out of an address
space.

Network Subsystems: The remote interprocess communication substrate. The basic connection-

oriented network service is expected to provide an error-free, in-order delivery of bytes (i.e.,
TCP[22] or equivalent). The basic connectionless network service is expected to simply provide
a best effort delivery of datagrams (i.e., UDP[29] or equivalent). Additionally, more diverse
classes of network services can also be supported in this model. For example, ADAPTIVE[15]

'The iostream library is the C++ analog to the C programming language’s stdio library. However, it offers
the advantages of being type-safe and extensible to encompass new data types and I/O devices
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Figure 1: Layering Model

provides a multi-stream transport substrate that can be flexibly and adaptlvely configured to pro-
vide diverse grades of service to multimedia applications.

The Network Subsystem Layer also includes the APIs to network services, that allow user-
space applications to access data transport operations in a protocol independent manner. Several
network APIs supported include the BSD sockets, System V TLI, POSIX XTI, ADAPTIVE API,
x-kernel[30], NetBIOS[31], and the WINSOCK(][32] library. Each of the interfaces provides both
communication operations (e.g., open, close, send, recv) and addressing/naming serv1ces (e.g.,
address formats, name resolution).

3.2 Media Convergence Layer

The Media Convergence Layer provides a consistent, buffered interface to Data Transport ser-
vices. It provides a basic data source/sink interface for higher layer subsystems, and uses the
underlying Data Transport services to drain or replenish its internal buffering layer.

SAP Layer: The collection of uniform Service Access Points (SAPs) that provide a consistent
interface to diverse interapplication communication services. Each SAP provides an impedance
match between the native API provided by a given communication substrate and the basic com-
munication service abstraction required by higher layer subsystems. There are two primary
classes of SAPs, those based on duplex communication channels and those based on shared
memory. SAPs based on duplex channels are required to support read, write, and connection
management operations. SAPs based on shared memory must support basic attachment and
detachment operations. Both classes of SAP must support a SAPAddress that can represent a
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Data
Transport

communications endpoint for a given communication mechanism. This separation of addressing
from basic communication operations allows a given communication mechanism (e.g., TCP) to
utilize several possible API’s (e.g., sockets, XTI) and still maintain a single abstract SAPAddress
format, thus decoupling the mechanism from the APIL The uniformity of the SAP abstraction
decouples the Communication Substrate from higher layer client subsystems. SAPs currently
provided include socketSAP, TLISAP, ADAPTIVESAP, SHMSAP (Shared Memory via mmap).
SAPAddresses include TCPAddress, UDPAddress, UNIXDSAddress (UNIX Domain Sockets),
ADAPTIVEAddress, and SHM Address.

buf Layer: The collection of transparent buffer managers that provide an efficient buffering
scheme to the SAPs provided above. The buf? layer is necessary to reduce the number of sys-
tem calls needed to send a composite object (i.e., an object with multiple data members) and to
minimize the amount of redundant data copying. The buf Layer is based on and is interoperable
with the C++ iostream library[33, 34], which provides two sets of abstractions:

1. streambuf — the abstraction for a consumer/producer of bytes. To extend the iostream li-
brary to include a new I/O device or interface, one need only supply a streambuf interface
to the device, and combine it with four specific classes via inheritance to allow existing
classes to read and write to it automatically. The iostream library that accompanies the
AT&T distribution of C++ provides streambuf interfaces to files and in-core memory.

*Identifiers containing buf and stream are in lowercase to remain consistent with the C+++ iostream capitalization
convention.
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2. iostream — the abstraction for formatted insertion and extraction of objects into/from a

stream. The base classes ostream and istream each provide the insertion (output) and ex-

- traction (input) operators (<< and >> respectively) for each of the built-in data types

supported by the language (e.g., char, int, float). istreams and ostreams must be combined

with a streambuf to provide a usable stream (e.g., istream + filebuf =

that extracts objects from a file). iostreams are not only extensible with respect to the

devices they can support, but also with respect to the types of objects they can insert or

extract. User-created data types (classes) can define their own input and output operations
by overloading the insertion and extraction operators to support the new data type.

-

Each available communication subsystem has a corresponding SAP and buf that accesses its
services (e.g., socketbuf, tlibuf, adaptivesap, shmbuf). These bufs can then be combined with
the standard istream and ostream classes to provide a formatted 1/0 channel, or with a new stream
class (described below) to provide an encoded 1/O channel.

3.3 Presentation Layer

The Presentation Layer is responsible for resolving differences in data representations be-
tween heterogeneous host architectures. It accomplishes this by translating local internal data
formats into an external format that can 1nterpreted by the remote entity. It typically accom-

plishes this via one of two means:

1. Explicit Typing — each data object is “tagged” with a type identifier field that specifies the
data type of the object in transit. It can then be followed by a length field that indicates the

7
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remaining number of octets (or fundamental data units). These two fields ére then followed
by the actual data octets. This is known as a T-L-V scheme (“Tag-Length-Value”) and is
used as the basis for the Basic Encoding Rules of OSI ASN.1. This approach is in contrast
to:

2. Implicit Typing — it is assumed that the receiver of the data is aware of exactly what type
of data object is coming, therefore the tag field is redundant at best. This is the approach
taken by XDR, a protocol that is designed to take advantage of regular data alignment and
hardware-dictated formats.

[35] contains a comparison of three well known presentation protocols (XDR, ASN.1, and Apollo
NDR). The authors resolve that T-L-V encodings are more general and potentially more band-
width efficient, yet can be more complex to process, while fixed-format encodings such as XDR
are more efficient to process, only slightly less efficient with respect to bandwidth, and can pro-
vide T-L-V functionality if necessary.

stream Layer: The stream layer is used to bind the various coding schemes listed below to
an I/O channel (via its corresponding buf). For a given encoding scheme Z, an izstream and
ozstream are implemented, providing at least the basic insertion or extraction operators for the
built-in data types. Additionally, insertion or extraction operators will be provided for the corre-
sponding GEncode class hierarchy that defines the basic data types used by the encoding scheme.
In addition to providing the capability to statically bind an encoding scheme (stream) to an I/O
device (buf), stream manipulators® are provided to allow encoding schemes to be switched on
the fly. By inserting (or extracting) a z_on manipulator into a stream, the previous format-
ting/encoding scheme is suspended and replaced with the z encoding. Inserting (or extracting) a
z_of f manipulator restores the original formatting/encoding scheme.

GEncode/XDR: GEncode/XDR is a class library of primitive base classes which correspond
directly with the standard eXternal Data Representation (XDR)[36], as shown in Figure 4. This
provides a set of Basic Encoding Rules that allow objects to be shared across diverse host plat-
forms. For each built-in data type (e.g., char, int, double) a type-conversion operator is provided
to convert between language/compiler dependent types and formats to their corresponding GEn-
code/XDR base class. By leveraging off of C++ type management mechanisms, the presence of
the GEncode layer can be completely transparent to the application programmer. GEncode also
supports collection classes (e.g., Lists, Dictionaries, Sets), C++ references, and pointers.

*Manipulators are “functions” that can be inserted or extracted into/from a stream. Inserting/extracting a manip-
ulator has the effect of calling the manipulator’s corresponding function with the target stream as the function’s first
argument. Manipulators allow otherwise complex encoding/formatting expressions to be written as a simple series
of insertions/extractions.



GEncode/XDR Name Representation C++ Data Type
Signedinteger 32bit 2's Comp. (Big Endian) char,short,int,long
Unsignedinteger 32bit unsigned (Big Endian) u_char,u_short,u_int,u_long
Enumeration 32bit 2's Comp. (Big Endian) enum

Boolean 32bit 2's Comp. (Big Endian) int

FloatingPoint |EEE 32b FP (1s/8e/23m) float

DPFloatingPoint |EEE 64b FP (1s/11e/52m) double, [long double]
FixedLengthOpaqueData Arbitrary Data (zero padded) any opaque range of bytes
VariableLengthOpaqueData 4B Len + Data (zero padded) any opaque range of bytes
CharacterString 4B Len + Ascii String (zero padded) char*

FixedLengthArray n * element representation Tn)

VariableLengthArray 4B Len + n * element representation  T[n]

DiscriminatedUnion 4B Tag + Anon. Union long + union

Figure 4: GEncode/XDR Fundamental Base Classes

GEncode/ASN.1: An OSI Abstract Syntax Notation.1 version of GEncode/XDR. GEncode/ASN.1
is more complex than GEncode/XDR, as it has to address overflow issues (i.e., reading an 8 octet
integer into a 4 octet Long). Also, it is difficult to.directly support the ASN.1 notion of Set using
only C++ constructs. ‘

GEncode/MAX: A set of primitive base classes that represent Multimedia Activity eXten-
sions. These classes allow multimedia objects and basic application activities to be represented

N in a host platform independent manner. The Multimedia eXtensions we are currently implement-
ing include support for

e 8KHz, 8 bit y-law PCM audio
e 44.1KHz 16 bit linear PCM audio

44.1KHz 16 bit linear PCM audio (multi-channgl)

Indexed and Direct Color Pixmaps

JPEG Still Image

e MPEG Motion Image

The Activity eXtensions we are currently investigating include non-blocking and asynchronous
| remote procedure calls, C++ pointer-to-member-function semantics, and language-independent
procedure name binding.

3.4 Distribution Layer

From the Presentation layer down, the support for distribution consists primarily of efficient
. mechanisms for copying objects to and from heterogeneous systems. The Distribution layer is the
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layer that creates an infrastructure for transparently migrating objects without explicit initiation
from the programmer. The application programmer can simply specify the location where the
object should be located (if desired) and can then access the object as if it were located in the
local address space. The Distribution layer consists of the following 2 sublayers:

Location Management Layer: The Location Management layer orchestrates the migration of
objects based on both explicit (i.e., the object’s ex1stOn member function is explicitly invoked)
and implicit (i.e., a member function declared as remote is invoked) events. Object locations are
managed through the use of:

o Distributed Instantiation — a technique where by overloading the language’s new and
delete operators, objects can be instantiated on remote hosts simply by passing an ad-
ditional argument to the new operator. '

e Object Directory Service — a distributed directory service from which application entities
can capture a capability for an object based on an object identifier tuple.

Remote Delegation Layer: The Remote Delegation layer manages and execution of applica-
tion object’s member functions and arbitrates multiple accesses to a single object. By using a
technique called remote delegation, an object’s member functions are automatically invoked on
the proper host system without programmer intervention.

4 Conclusions

We have presented a new architecture for the design and implementation of high performance
distributed applications. We are currently experimenting with, conformance testing, and bench-
marking our initial prototype implementation based on XDR, TCP/sockets, mmap shared mem-
ory, and ADAPTIVE, while implementing additional bufs and GEncode/ASN.1. The initial
implementation has provided an expressive environment for specifying and implementing dis-
tributed applications.
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