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Abstract

Category learning, a fundamental cognitive ability, is signifi-
cantly influenced by variability. In this research, we propose
a model describing how people adjust information search in
self-regulated category learning to the level of category vari-
ability. Participants in the self-regulated category learning task
sampled from two categories until they felt confident in cat-
egorizing novel objects. Our model assumes an influence of
the variability of the focal and counter category on sampling
by considering a within-category and between-category pro-
cesses. In both processes, variability is quantified using an
information-theoretic measure. Within this model, we test if a
between-category process can be better conceptualized as ei-
ther a contrasting or an assimilation process. The comparison
of both processes support a between-category assimilation pro-
cess, where the sample size adjusts to the counter category’s
variability. This novel focus sheds light on between-category
dynamics, providing valuable insights into the mechanisms of
category learning.
Keywords: Category learning; Variability; Self-regulated
learning

Introduction
Learning to categorize objects is a fundamental cognitive
ability that we routinely employ in our daily lives. Is the
tea you are tasting in your cup a black tea or a just a herbal
infusion? Is this statement on an election poster from a left-
wing or right-wing party? Is Picasso’s Guernica a surreal-
ist or cubist painting? One crucial factor shaping category
learning is variability. Numerous studies in traditional cat-
egory learning tasks, where participants categorize objects
via feedback, reveal that high variability among encountered
exemplars (i.e., category members) complicates the forma-
tion of category representations (e.g. Hahn, Bailey, and Elvin
(2005); Rosch, Simpson, and Miller (1976); Homa and Vos-
burgh (1976)). In an ongoing research project (preregistration
at https://osf.io/7u8xg) we extended this research on variabil-
ity in category learning to a self-regulated task. In this task,
participants actively drew category exemplars from two per-
ceptual categories, until they felt ready to categorize novel
probes to the categories in a test phase. In each trial, partici-
pants chose from which category to draw a sample, with this
category designated as the ”focal category” during analysis,
while the other became the ”counter category.” We found that
individuals adapted their learning based on the focal category,
with higher variability leading to extended learning periods.
Additionally, the counter category’s variability significantly
affected the learning process, with higher variability leading

to more drawn samples. This paper aims to deepen our under-
standing of how variability in both the focal and counter cate-
gories influences category learning by proposing a computa-
tional model of the sampling process. Broadly, our model as-
sumes that people stop sampling, when they attain a satisfac-
tory representation of the categories. How fast this category
representation can be formed depends on the category vari-
ability, with higher variability requiring more samples, mod-
eled through an information-theoretic approach. In addition,
we investigate how within-category and between-category
processes can be incorporated within the model comparing
two manifestations of a between-category process. Before
introducing the model, we review literature emphasizing the
importance of variability in evidence accumulation processes
across diverse decision-making models. Then, we highlight
the applications of information-theoretic measures, such as
entropy, in psychological research. Finally we present our
model and validate it using data from an experiment in our
ongoing research project, which we will introduce in detail in
the method section.

Variability in Decision-making Models
Several model frameworks propose that variability shapes
how long individuals search for information when making a
choice. In the models that we briefly review, variability is
incorporated in various forms, including noise, uncertainty,
variance, or volatility, in the evidence accumulation process.
For one, the popular drift-diffusion model framework, applied
to tasks ranging from orientation discrimination to catego-
rization, treats variability as noise originating from an im-
perfect perception of the stimulus that influences the decision
process by modulating the drift rate, i.e. the speed of evidence
accumulation (Ratcliff, Smith, Brown, & McKoon, 2016).
Recently, it has been shown that accounting for value uncer-
tainty separately for the choice options in the drift rate, ac-
counts best for the preferential choice task of Lee and Usher
(2023).

In contrast to drift-diffusion models where accumulated ev-
idence counts towards an option, our focus is on modeling
the cessation of the information search process that precedes
categorization in a self-regulated category learning paradigm.
This mirrors the Decisions from Experience (DfE) paradigm,
where participants sample from two options before making a
choice between them. Interestingly, recent models have been
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devised to explain the point at which individuals cease infor-
mation search in the DfE paradigm, prompting the inclusion
of variability in these models.

For instance, the Choice from Accumulated Samples of
Experience (CHASE) model proposes that both choice and
search behavior can be understood as a sequential sampling
process (Markant, Pleskac, Diederich, Pachur, & Hertwig,
2015). CHASE incorporates option variability through in-
cluding option variance into the drift rate, predicting longer
sampling duration for higher variance options.

Similarly, the model introduced by Srivastava, Müller-
Trede, Schrater, and Vul (2016), which inspired Gonzalez
and Aggarwal (2021) to revise their previous, variability-
unrelated stopping mechanism, emphasizes the changing fo-
cus on variability in DfE models. These models incorporate
volatility, specifically in the evaluation of prediction errors,
in the decision-making process regarding whether to continue
sampling. Substantial changes in the prediction error prompt
the individual to persist in sampling.

Having observed the pivotal role of variability in models of
information search, we now turn to the role of variability in
our current work.

Entropy as an Information-theoretic Measure of
Variability
Departing from previous formalizations, our model employs
entropy as a measure of variability, tailored to the perceptual
nature of our task. Entropy is a concept from information the-
ory and characterizes the amount of unpredictability or disor-
der of a system (Hirsh, Mar, & Peterson, 2012). Compared
to other variability measures, entropy can account for mul-
tiple dimensions and reflects probabilistic processes. It has
been integral to psychological research since the 1950s (e.g.,
Attneave (1954); Miller (1956)) and has found new applica-
tions in recent times, particularly in perception (Bates & Ja-
cobs, 2020), memory (Bates, Lerch, Sims, & Jacobs, 2019),
and categorization (Feldman, 2021). Entropy has also been
a focus in more general models, such as the entropy model
of uncertainty (Hirsh et al., 2012), which establishes a con-
nection between entropy and psychological uncertainty. Ad-
ditionally, there is research directly exploring the strong and
linear relationship between the entropy of visual stimuli and
subjective diversity (Stamps III, 2002). According to these
theories, individuals actively work towards minimizing disor-
der within their immediate environment.

Modelling Self-regulated Category Learning
The self-regulated category learning task described in the in-
troduction requires to determine at which point sufficient ex-
emplars have been sampled to proceed to a categorization
test. Our prior work suggests that both a higher category vari-
ability and a higher counter category variability increase the
number of exemplars that people sample from each category.
Consequently, our model assigns a pivotal role to variability
in category learning. A higher variability within a category,
as quantified by a lower relative entropy, determines how

many samples the participants draw from each category. In
addition, we aim to better understand how between-category
processes shape learning. It is well-established that stimuli
are not evaluated independently of their environment, show-
ing context effects (Tourangeau & Rasinski, 1988). In the
realm of category learning, comparison processes between
categories can be observed when assessing how individuals
adjust their learning schedules (e.g. Lu, Penney, and Kang
(2021)). While established models in category learning like
the prototype model concentrate solely on the focal category
(Posner & Keele, 1968), and other models include a counter
category without explicit emphasis (Nosofsky, 2011; Ashby
& Perrin, 1988), our study explores the role of the counter cat-
egory in the category learning process by explicitly modelling
and comparing two between-category processes: A contrast
processes and an assimilation process.

In perceptual judgment, McKenna (1984) defines contrast
as an increase in the perceived difference between the contex-
tual stimulus and the focal stimulus, while assimilation en-
tails a decrease in this difference, pulling the judgment of the
focal stimulus towards the contextual stimulus. In our task,
both processes offer potential explanations on how the dif-
fering variability level of the counter category influence sam-
pling in the focal category. Perceptually, in both processes,
the differing variability level of the counter category could
influence sampling in the focal category. A contrasting pro-
cess would exacerbate the perception of variability in the fo-
cal category. For instance, a medium variable category would
appear as fairly low variable when sampled next to a high
variable counter category compared to a low variable counter
category. In contrast, an assimilation process would attenuate
differences leading to a medium variable category being per-
ceived as more variable when sampled next to a high than a
low variable counter category.

The variability in both, the within and between-category
processes is formalized and incorporated through an entropy-
related measure. Our approach, utilizing simple, systematic
stimulus material and manipulation, enables the direct appli-
cation of information-theoretic measures at the raw stimulus
level. In the following paragraph, we outline details on the
proposed model for self-regulated category learning.

Model Description

In essence, the model proposes that sampled exemplars play
a role in updating the category representation, taking into ac-
count the uncertainty level associated with a category. This
uncertainty governs the total number of updates needed un-
til an individual acquires a satisfactory representation and
stops sampling. The model comprises three components: (1)
a function determining the decision to stop sampling based
on (2) both within- and between-category processes, which
are influenced by (3) variability formalized as an information-
theoretic measure.
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Decision to Stop Sampling
The cessation of sampling is contingent on a relative entropy
term, denoted as b, encompassing the variability individuals
encounter during the learning process. We integrate b into a
generalized logistic function, wherein it influences tempera-
ture parameter t. If the variability is low, and thus the relative
entropy term b is high, the probability to stop sampling in-
creases more steeply than in conditions with high variability.
The temperature parameter further modulates the steepness
of the curve. Specifically, the probability p(n) with which
an individual stops sampling at a given trial is defined by the
following equation:

p(n) = 1− 1
(1+ eb×t×(n−0))v

(1)

In this function, t is a temperature parameter, n is the trial
number, b is the relative entropy term and v is a parameter
for asymmetric curvature. The temperature parameter t cap-
tures the symmetric curvature of the function to the inflection
point fixed at z = 0, representing the mean sample size. t
thus determines the steepness of the curve and reflects when
people stop sampling. The parameter v for asymmetric curva-
ture allows the function to exhibit different curvatures on the
left and right sides, mirroring observed stopping probabili-
ties in the experiment (compare Figure 3). In our experiment,
the parameter v is selected to capture a sharp rise in sam-
pling probabilities below the mean sample size, while also
representing a gradual leveling off of individuals’ stopping
probabilities above the mean sample size. As t captures the
information when an individual ceases sampling relative to
its mean sample size, t is modulated by the relative entropy
term b, incorporating entropy-related measures to formalize
variability in a within- and a between-category process.

Two Between-category Processes
We propose that both, a within-category process KLA and
a between-category process KLAB, contribute to the general
relative entropy term b that affects the decision to cease sam-
pling. This term b has different manifestations depending on
two theoretical models: the contrast model and the assimila-
tion model.

(1) Contrast model:
The contrast model reflects the hypothesis that differences

of the focal to the counter category are increased. When
a higher variable category is learned with a lower variable
counter category, by contrasting the variability levels, partic-
ipants sample even more from the high variant category, i.e.
increase their sample size. In order to model a later sam-
pling stop, for var(A)> var(B), parameter t is diminished by
adding the between-category process as negative term:

b = KLA +as ×−KLAB (2)

The parameter as determines the strength of the between-
category process for each subject s. Conversely, the compari-
son of a lower variable category to a higher variable category

leads to a smaller sample size, for var(A) < var(B), KLAB is
added with a positive sign:

b = KLA +as ×KLAB (3)

(2) Assimilation model:
In the assimilation model, differences from the focal to the

counter category are decreased. Comparisons from a higher
variable to a lower variable category result in a lower sample
size due to assimilation to the low variability experienced in
the counter category. For var(A) > var(B), KLAB is added
with a positive sign. Conversely, the comparison of a lower
variable category to a higher variable category leads to a
higher sample size, thus for var(A)< var(B), KLAB is added
with a negative sign.

Formalization of Variability in a Within- and
Between-category Process
We were using an information-theoretic measure to model
the uncertainty that participants encountered while learning
about the categories. Within our paradigm, using a dot-
distortion task, category exemplars were derived from a pro-
totype consisting of a random dot pattern with nine dots. Vari-
ability in the category exemplars was introduced by proba-
bilistically moving the prototype’s dots in a random direc-
tion (for a detailed explanation, please refer to the ”Materi-
als” section in the Methodology). Our idea of a within- and
between-category process, uses relative entropy as an infor-
mation measure representing the uncertainty of a state with
respect to another state. In the within-category process ob-
serving the dot in a specific location provides more certainty
about the underlying category prototype compared to an un-
informed uniformly distributed ”baseline” prototype. For the
within- and between-category processes, we utilized relative
entropy or Kullback-Leibler divergence, a measure for the
difference between two probability distributions. We assume
that for within-category variability KLA, individuals reduce
their uncertainty when comparing the probability distribution
of the focal category pA with a distribution pprototype from an
unknown, uniformly distributed prototype:

KLA = pA(x)∗ log(
pA(x)

pprototype(x)
) (4)

While, for between-category variability KLAB, individuals
compare the probability distribution x of the focal category
pA with the distribution of the counter category pB:

KLAB = pA(x)∗ log(
pA(x)
pB(x)

) (5)

We evaluate our model based on data from an experiment
that was part of our previous work. In the subsequent sec-
tions, we initially outline the experimental method and the
modeling approach, followed by reporting behavioral analy-
ses of the experiment and presenting the results of the model-
ing.
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Experiment

Method

The experiment consisted of a self-regulated categorization
task using a dot-distortion paradigm varying the variability of
both categories.
Participants A total of 57 participants (41 female, 14 male,
2 non-binary; Mage = 24.6 years, SDage = 6.0) voluntarily
participated in the study, either for course credit or a pay-
ment of 10 Euro/hour at the University of Bremen. Prior to
the commencement of the experiment, informed consent was
obtained from each participant.
Procedure The experiment was implemented using jsPsych
(De Leeuw, 2015) and conducted in the lab. We utilized a
within-participants design, combining three variability lev-
els for each of the two categories. This resulted in six
conditions with the following combinations of category and
counter-category variability levels: low-low, low-medium,
medium-medium, medium-high, high-high, and low-high.
The six combinations were randomized and this randomized
sequence was repeated three times, resulting in participants
completing a total of three blocks, each comprising six tasks
of a sampling and a test phase. The prototype pair shown in
a task was randomly determined. On average, participants
spent approximately 38 minutes completing the experiment.
During the sampling phase, participants could actively sam-
ple category exemplars from two fictitious categories, labeled
’Lum’ and ’Nof’, by pressing a button with the correspond-
ing category label. Every time participants pressed a button,
an exemplar from the chosen category was revealed. Partic-
ipants were free to switch between categories as many times
as they wished. They were instructed to continue sampling
from categories ’Lum’ and ’Nof’ until they felt confident in
categorizing the exemplars into the fictitious categories. Once
they reached that point, they ended the sampling phase with
a button press and proceeded to the subsequent test phase. In
the test phase, participants indicated the likelihood that the
exemplar belonged to either category for eight novel stimuli
of different variability levels. The fictitious category labels as
well as the prototypes were randomly assigned to the left or
right side of the sampling screen display for each participant.
Material Random dot patterns served as stimuli. Proto-
types for categories A and B were generated from one joint
prototype. This joint prototype was generated initially by
placing nine dots randomly with a minimum distance from
one another. Subsequently, two versions were created by
moving every dot with a defined distance in a random direc-
tion (one from nine possible directions) for prototype A and
in the opposite direction for prototype B. To implement low,
medium, and high variability within a category, we created
exemplars for a category by distorting the prototype, with
each of the nine dots moving with probabilities of pdot = .1,
pdot = .2, and pdot = .3 respectively. Figure 1 illustrates
the variability manipulation. Sixty exemplars were generated

from each prototype, and during the learning phase of the ex-
periment, exemplars were randomly drawn from this pool.

Figure 1: Illustration of the variability manipulation

Note. Shifts from the original black dots (i.e. the prototype)
in the low (green), medium (blue) and high (red) conditions.
The colored dots simulate possible locations of the dot when
moving with a certain probability, i.e. according to the
variability level, for a number of overlapping plotted stimuli.

Each dot can appear in nine possible locations that dif-
fer in the probability that the dot appears in them. The
dot has the highest probability of appearing at the origi-
nal location of the dot (i.e. the location in the prototype),
while the other locations are associated with the condition-
dependent probability that the dot moves to this location
(each divided by the number of possible locations). Specif-
ically, the distribution takes the following form for a vari-
ability condition with pdot = .1, pdot = .2, and pdot = .3:
p = [1 − pdot ,

pdot
8 , pdot

8 , pdot
8 , pdot

8 , pdot
8 , pdot

8 , pdot
8 , pdot

8 ]. Rela-
tive entropy compares the variable category exemplars to an
uniformed ”baseline” prototype, resulting in a high relative
entropy value when the probability of dots moving is low,
and a low relative entropy value when the probability is high
(see the Model Description section).

Model Fitting
To gain a detailed understanding of when people decide to
stop sampling, we applied the model described in the pre-
ceding paragraph. In the model, we fitted parameters hier-
archically, for the asymmetric curvature and the temperature
across conditions (i.e. on group-level) and the parameter as
which determines the strength of the between-category pro-
cess, for each individual. As priors for the asymmetric curva-
ture and the temperature parameter, we chose v∼N(0, 1

52 )[0, ]
and t ∼ N(0.25, 1

0.12 )[0,3]. Further, we estimated the parame-
ter as for each individual with the prior as ∼ N(a, 1

52 )[0, ] and
at the group-level with the prior a ∼ N(0, 1

52 )[0, ]. We fitted
the model with JAGS (Plummer et al., 2003) and the pack-
age r2jags (Su & Yajima, 2021) in R (Version 4.1.2) (R Core
Team, 2021). We ran each model with two chains and 10,000
iterations. All models converged with R̂ < 1.01 for all param-
eters and a lowest effective sample size of ESS = 2200.

In addition, we aimed to compare the models with plausi-
ble alternatives. One such alternative involved fitting a model
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without a between-category process. Furthermore, we imple-
mented all models by formalizing variability solely as raw
probability, specifically the probability of a dot staying in its
location, rather than using the information-theoretic measure.
To facilitate model comparison and identify the best-fitting
model, we used posterior model probabilities. The model se-
lection variable was drawn from a categorical distribution, as-
suming equal probabilities for each model.

Results
Behavioral Analysis
Sample size per category was on average M = 14.22 (Md =
11, SD = 10.75). Due to high inter-individual differences
in the average sample sizes, we report and use standardized
sample sizes for the analyses. We calculated standardized z-
scores for the sample sizes by subtracting the participant’s
mean sample size from the individual sample sizes and di-
vided by the standard deviation in each of the conditions.
Figure 2 illustrates the standardized sample sizes for all vari-
ability levels. Notably, there was a discernible increase in
sample sizes with variability levels, progressing from low
(z = −0.23, SD = 0.83) to medium (z = −0.03, SD = 1.02)
to high (z = 0.25, SD = 1.11) for conditions with equal vari-
ability levels.

Figure 2: Sample size

Note. Plotted are the mean standardized sample sizes for the
focal and counter category’s variability levels. Error bars
denote the standard deviation.

To analyze how category variability affects the length of
information search as measures by sample size, we calculated

a linear mixed model with the following formula:

sample size ∼ category variability * counter category
variability + block + (category variability * counter category

variability || subject) + (1 | prototype pair)

We identified a significant main effect of category vari-
ability, b = 1.19, F(1,54.30) = 7.37, p = .009. Partic-
ipants tended to draw more samples as the variability of
the category increased. Additionally, a significant effect
was observed for the counter-category variability, b = 1.83,
F(1,1620.75) = 18.65, p < .001, indicating that participants
also drew more samples when the non-focal counter cate-
gory exhibited higher variability. However, the interaction
of variability levels did not reach significance (b = 0.92,
F(1,48.89) = 0.47, p = .498). Thus, inferential statistic re-
sults suggest that both, category and counter category have an
impact on sample size.

Modelling Results
The model selection in which we had included the two sug-
gested models with a contrast and an assimilation process, a
model without between-category process and all models with
raw probabilities instead of information-theoretic formaliza-
tion of variability, suggested that the assimilation model with
the information-theoretic formalization described the data
best in all observations. Specifically, for conditions with
differing variability levels, the selection variable favored the
assimilation model with the information-theoretic formaliza-
tion. A comparison of the information-theoretic model with
DIC values further supported the results: DICassimilation =
36316.1, DICcontrast = 37544.7 and for the model without
between-category process, DIC = 37451.7.

In Figure 3 we illustrate the model fit for two conditions.
The orange line depicts the model without the assumption
of a between-category process, but only the variability that
is experienced within the category. From the blue and pur-
ple line, we can infer how the between-category process in-
fluences stopping probability: When a category with a low
variability is learned with a highly variable counter category,
the contrast process predicts earlier and the assimilation pro-
cess predicts later stopping than the model without between-
category process. Vice versa, when a high variable category
is learned with a low variable counter category, the contrast
process assumes later stopping while the assimilation model
assumes earlier stopping, again compared to a model without
between-category process. We can see that the data is bet-
ter described if we assume that a assimilation process takes
place. Specifically, for conditions in which the counter cate-
gory has a higher variability level than the focal category (left
graph), the data is better described by the assimilation model
that assumes later stopping, while for the graph on the right
hand side in which the counter category has a lower variabil-
ity than the focal category, the data is better described by the
assimilation model that assumes earlier stopping.

The fitted parameter as which describes the strength of the
between-category process, varied considerably between indi-
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Figure 3: Model fit

Note. Plotted are the fitted (broken line) and observed (solid line) probabilities to stop sampling for the z-transformed trial
numbers for two of the conditions (low focal category variability/high counter category variability and vice versa). The graph
illustrates fitted values for both the contrast model (blue) and the assimilation model (purple), along with the model without a
between-category process for comparison (orange). Parameter a was set to a = 3.52 in both models, to illustrate the influence
of the between-category process.

viduals, M = 3.52 and SD = 2.40.

Discussion
In this study, we modeled sampling behavior in a novel
self-regulated category learning task. We employed an
information-theoretic measure to represent variability, un-
derscoring the relevance of information theory in perceptual
(learning) processes. Our conceptualization posits that cat-
egory learning involves both within-category and between-
category processes, both driven by variability and jointly
influencing the decision to terminate sampling. For the
between-category process, we explored two potential mech-
anisms: a contrasting process, where category characteristics
are juxtaposed during learning, and an assimilation process,
where learning adapts to the counter category’s characteris-
tics. Our model fitting results revealed that category learn-
ing is not solely influenced by a within-category process; the
between-category process also plays a crucial role. Partici-
pants adjusted their sampling behavior based on the counter
category’s variability, indicating an assimilation between-
category process. The model fitting results are substantiated
by descriptive observations, providing additional insights into
the significant impact of both the category and counter cat-
egory found in our generalized linear mixed model analy-
sis. This assimilation process is clearly illustrated in the ob-
served pattern presented in Figure 2. Specifically, sample
sizes of a low-variable category increased in the presence of a
high-variable counter category, while sample sizes of a high-
variable category decreased in the presence of a low-variable
counter category.

Nevertheless, our model has certain limitations. While fit-
ting the variability term on the temperature parameter of a
generalized logistic function captures sampling stop behav-

ior relative to the mean sample size, it does not account for
other central characteristics of sampling behavior, such as a
shifting mean sample size depending on the condition. The
next version of the model will address this shortcoming. Ad-
ditionally, future research should explore the generalizability
and applicability of an information-theoretic measure in other
category learning tasks that employ different materials.

Despite these limitations, the identification of an assimila-
tion process holds significant implications for understanding
the mechanisms of category learning. It suggests that individ-
uals perceive both categories as part of a unified entity to be
learned, overshadowing contrasting processes that typically
emphasize differences. While previous evidence supports the
idea that comparison processes can enhance category learning
(Kurtz, Boukrina, & Gentner, 2013), and individuals actively
compare categories, particularly when categories are similar
(Lu et al., 2021), there has been limited emphasis on between-
category processes in category learning research. This study
aims to address this gap and shed light on how the counter
category is incorporated into the learning process. The ob-
served assimilation towards the counter category’s variability
not only suggests mutual influence between their character-
istics but also implies a close interconnection between both
categories. This connection suggests that learning may ex-
tend beyond the focal category, encompassing insights about
the broader category context.
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