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ABSTRACT OF THE DISSERTATION
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This thesis examines model selection for clustered data. Such data are often

modeled using random effects. Conditional Akaike information, when cluster specific

inference is desired, was proposed in Vaida and Blanchard (2005) and used to derive

a corresponding model selection criterion under linear mixed models. We extend the

approach to general and generalized linear mixed models. Exact calculations are not

available outside linear mixed models so we resort to asymptotic approximations.

We show that under general linear mixed models with correlated errors, the num-

ber of effective degrees of freedom is equal to the trace of the usual ‘hat’ matrix plus

the number of parameters in the error covariance matrix. Using it one can define a
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crude version of the conditional AIC (cAIC), which is known to be inaccurate due to the

estimation of unknown variance parameters. We show however, that a simple ‘rule-of-

thumb’ correction performs nearly as well as an asymptotically unbiased cAIC counting

for the unknown parameters, one which is difficult to compute without specific pro-

gramming for each case of the error correlation structure. For generalized linear mixed

models, we consider a bootstrap method in addition to the rule-of-thumb.

Finally, we investigate non-parametric estimation of a mean when data are clus-

tered. We consider smoothing via splines with either L1 or L2 penalization. These mod-

els may be written as penalized general linear mixed models, thus allowing the use of

existing software. We apply our methods to functional MRI time courses from multiple

subjects.
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Chapter 1

Conditional Akaike Information Under

Generalized Linear Mixed Models

1.1 Introduction

Mixed effects models have been widely used to analyze clustered data, which

arise in applications such as longitudinal studies, familial studies, and multi-center clin-

ical trials. The focus of inference under such models can be on the population parame-

ters, such as the fixed regression effects, the variance parameters, or on the cluster level

parameters, often represented by the random effects themselves. As an example of the

latter, in a multi-center clinical trial where the treatment effect is found to be heteroge-

neous among the trial centers, it is of scientific interest to estimate the treatment effects

from individual centers, and to investigate the cause of the treatment differences. Other

examples of cluster level focus occur in ecology, small-area estimation, and animal hus-

bandry.

Specifically, assume that the data consist of outcomes from m clusters, with ni
observations in cluster i, i = 1, . . . ,m. Within a cluster the outcomes are dependent,

but conditional on the cluster-specific d × 1 vector of random effects bi, the outcomes

yij are independent and follow a generalized linear mixed model with mean

µij = E(yij | β, bi) = g−1(β>xij + b>i zij), (1.1)

where xij and zij are the covariate vectors for the fixed effects β and the random effects

1
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bi of cluster i, bi ∼ p(bi), and g is the link function. For cluster level inference, any future

prediction takes place in the same clusters as the observed data, and the random effects

for these clusters are held constant [66]. More specifically, let y0 be independently

replicated outcomes from the same conditional distribution as the original data y given

the same random effects b. Here y, y0 and b are random vectors consisting of elements

yij , y0
ij and bi, respectively. For model selection purposes [66] defined the conditional

Akaike information,

cAI = −2E(y,b)Ey0|b[l{y0 | β̂(y), b̂(y)}], (1.2)

where l(· | ·) is the conditional log-likelihood given the random effects, and β̂(y), b̂(y)

are estimators of β and b based on the data y, for example, the maximum likelihood

and the empirical Bayes estimators. The expectations are taken with respect to the true

model generating the data. They proceeded to show that for the linear mixed model with

known variance components, an unbiased estimator of (2.3) is

cAIC = −2l{y | β̂(y), b̂(y)}+ 2ρ , (1.3)

where the bias correction factor ρ is the effective degrees of freedom of the linear mixed

model of [33] and [76]. Expression (2.4) is referred to as the conditional Akaike Infor-

mation criterion. [66] and [48] give formulas for ρ in the more general case of unknown

variance parameters in finite samples. The theory of the Akaike information criterion

and its basis in model prediction are well understood in the literature, see, e.g., [1, 49, 7].

In [15], the conditional Akaike information and its criterion under generalized linear and

proportional hazards mixed models are developed; we reproduce the results for general-

ized linear mixed models. Here, exact calculation is not available outside normal linear

mixed models, and asymptotic approximations are necessary.

Generalized linear mixed models have been studied for the past two decades.

For recent monographs see [37, 52, 64].

From a different perspective and not specifically for clustered data, the issue of

focus of model selection was addressed in [11] and [32]. For an overview of the Akaike

information criterion see the recent monographs of [7] and [12].
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1.2 Alternative estimation using the bootstrap

The bootstrap has been used in the estimation of prediction errors [16, 17, 72]

and for Akaike-type criteria [61], and has shown less bias in finite samples [8, 55, 59].

Our proposed estimate is

cAICb = −2l(y | β̂, b̂) + 2ρb. (1.4)

The correction factor ρb is given by

ρb = E∗{l(y∗ | β̂∗, b̂∗)− l(y | β̂∗, b̂∗)}, (1.5)

where E∗ denotes the bootstrap expectation, i.e. average over the bootstrap datasets; the

bootstrap datasets y∗ are obtained by resampling first the clusters, then the observations

within cluster, and (β̂∗, b̂∗) = (β̂(y∗), b̂(y∗)). For each cluster in y∗, the data y from the

same cluster is used in calculating ρb. For applications with extremely small clusters,

where some clusters have only one observation, resampling within the clusters might

be infeasible. In this case parametric or model-based bootstrap can be used, where the

bootstrap data are generated under a fitted large model, with estimated fixed and random

effects. The formula (1.5) is derived similarly to [73], but adjusted to our conditional

setting.

1.3 Generalized Linear Mixed Models

Consider the model given by (1.1). To set the notation, write

D−1 = −∂2 log p(b)/∂b∂b′, where p(b) =
∏m

i=1 p(bi) is the distribution of the inde-

pendent random effects; when bi ∼ N(0,Σ), D = var(b) = diagm(Σ), the block-

diagonal matrix with m blocks equal to Σ. Let Xi and Zi be the matrices with rows

x>ij and z>ij , and let X = stack(X1, . . . , Xm) and Z = diag(Z1, . . . , Zm) be the N × p
and N × q model matrices, where p , d and q = md are the lengths of β, bi and b,

N = n1 + · · · + nm, and the stack function stacks matrices on top of each other. Fur-

ther, let wi = (wi1, . . . , wini
)> be the vector of weights given by wij = [var(yij |

bi){g′(µij)}2]−1, and W = diag(w1, . . . , wm). The usual estimator for β is the maxi-
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mizer of the marginal likelihood, L(β) =
∫

exp{lJ(y, b | β)} db, where

lJ(y, b | β) = l(y | β, b) + log p(b) (1.6)

is the joint log-likelihood. Alternatively, (β, b) are estimated jointly as the maximizer

of the joint log-likelihood lJ . The joint log-likelihood (1.6) and its maximizer (β̂, b̂)

have been variously justified. [4], [71] and [67] show that under suitable conditions

β̂ is a first-order Laplace approximation to the maximum likelihood estimator. Given

the fixed effects, the joint likelihood is proportional to the posterior distribution of the

random effects, maximized by b̂ [38]. [44] call (1.6) the hierarchical log-likelihood, and

consider it as a basis of inference; see also [45]. In the smoothing literature lJ is seen

as a penalized log-likelihood [see, e.g., 68]. The variance matrix Σ that is suppressed in

p(b) is estimated by maximum likelihood or residual maximum likelihood [4].

Let U = (X,Z) and θ = stack(β, b), so that Uθ = Xβ + Zb. Let sJ = ∂lJ/∂θ

be the score function for the joint log-likelihood. Standard derivations show that

G = var{sJ(y) | θ} = U>WU, (1.7)

Ω = E{sJ(y)s>J (y) | θ} = E{−∂2lJ(y)/∂θ∂θ> | θ} = U>WU + diag(0, D−1).(1.8)

Further, let

ρ = tr(GΩ−1) = tr[U>WU {U>WU + diag(0, D−1)}−1]. (1.9)

For the linear mixed model, W = I . In this case ρ is the effective degrees of freedom of

[33], as well as the correction factor for cAIC (2.4) in Theorem 1 of [66]. [51] use a form

similar to ρ as the effective degrees of freedom for the generalized linear mixed models.

The following main result shows that ρ is asymptotically the relevant correction factor

for the cAIC (2.4).

Theorem 1. Assume that the data y are generated from the generalized linear mixed

model (1.1). Let β̂ be the maximum likelihood estimator, and b̂ the maximizer of the

joint likelihood given β̂ and the maximum likelihood estimate of Σ. Under conditions

A1-A11 given in Section 1.7, an asymptotically unbiased estimator of the conditional

Akaike information (2.3) is given by the cAIC (2.4), with ρ = tr(GΩ−1) as in (1.9). That

is, E(cAIC) = cAI + o(1) for large m and ni’s.

In addition, the effective degrees of freedom ρ satisfies p ≤ ρ ≤ p+ q.
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The proofs for this and for the following results are given in Section 1.7.

In practice, W is computed at θ = θ̂. Using formulas for explicit computation

of the inverse matrix in (1.9) [29, p.99] we get

ρ = (p+ q)− tr[{Z>WZ − Z>WX(X>WX)−1X>WZ +D−1}−1D−1]. (1.10)

Formulas (1.7) and (1.8) are a form of the Bartlett identities for the joint likeli-

hood. The more general form is given below.

Proposition 1 (Bartlett identities for joint or penalized likelihood). Assume that the data

y have log-likelihood l(y | θ), satisfying the standard regularity conditions which ensure

differentiation with respect to parameter θ under the integral sign, as well as the first

two Bartlett identities: E{s(y | θ)} = 0 and E{−l̈(y | θ)} = E{s(y | θ)s(y | θ)>},
where s and l̈ denote the first two derivatives of l with respect to θ. Further, assume that

p(θ) is a non-negative function of θ not depending on y, twice differentiable with respect

to θ and with continuous second derivatives. Let lJ(y | θ) = l(y | θ) + log p(θ). Let sJ

and l̈J be the first two derivatives of lJ . Then lJ satisfies the modified Bartlett identities:

E(sJ | θ) = ∂ log p(θ)/∂θ,

var(sJ | θ) = var(s | θ),

E(−l̈J | θ) = E(−l̈ | θ)− ∂2 log p(θ)/∂θ∂θ> = var(sJ | θ)− ∂2 log p(θ)/∂θ∂θ>.

In particular, if θ = (β, b) and p(θ) = p(b) is the N(0, D) density, then ∂ log p(θ)/∂θ =

Aθ and −∂ log p(θ)/∂θ∂θ> = A = diag(0, D−1).

The proof follows directly from the definition of lJ and the Bartlett identities for

l.

1.4 Simulations

We carried out a simulation experiment to evaluate the proposed criteria under

the generalized linear mixed models. The emphasis is two-fold: on the criteria as es-

timators of the underlying Akaike information as well as on their success in selecting

the correct model. We computed the conditional Akaike information by simulation, and
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its criteria with correction factors ρ and ρb, The results are reported in Table 1.1. The

numbers of fixed and random effects in each model are indicated as a pair at the top of

each column; for example, (2,1) indicates that two fixed effects and one random effect

are included in the model. The true model is indicated in bold. In each case we used a

combination of small and large numbers of clusters m and observations within cluster

ni. We used two model selection rules: (1) the rule of two in which one selects the

smallest model whose criterion value is within 2 of the minimum criterion value; or (2)

select the model with the minimum criterion value. The rule of two acknowledges the

variation in a criterion as an estimate of the underlying information, so that for models

with close criterion values there is not enough evidence for a preference; in this situation

a parsimony principle is applied. The estimation used the lme4 package in R.

Table 1.1 reports the simulation under a log-link Poisson generalized linear

mixed model. Overall cAIC provides a good estimate of cAI, within the statistical error

range. In the first scenario of 10 clusters of 5 observations each, although the average of

cAIC is minimized at the larger model (3,3), it is not significantly different from that of

the true model (3,2). The rule of two chooses the correct model most often, and chooses

the larger model (3.3) between 8% and 30% of the cases. Note, however, that the models

(3,2) and (3,3) are very close to each other based on the cAI, to start with. The nonpara-

metric bootstrap works well when the cluster sizes are reasonably large, e.g. ni ≥ 10,

and when the model is not too far from the truth. While the true model is (3,2), under

model (2,1) cAICb is typically more than twice the standard error away from cAI except

when ni = 40. Such inaccuracy seems to be attributable to the model fitting procedure

by lmer and the high probability of duplicated data with small cluster resampling in

the bootstrap.

In generating Table 1.1, we used a nested bootstrap in which we resample clus-

ters, then resample observations within those resampled clusters. In addition, we also

considered an alternative bootstrap approach in which clusters are not resampled. This

approach is motivated by the rationale that the estimation of the inner expectation, con-

ditional on the cluster-specific data and random effects (y, b), is crucial for estimating

cAI. This alternative approach averages the estimated risk for each cluster, while the

cAI is the expected risk over the distribution of the data including the distribution of the
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clusters. Table 1.2 here appears to have more discrepancy from Table 1.1 in the paper,

especially in the number of times the true model is selected. We think that it is caused

by the PQL option used in the lmer function here, as compared to the Laplace option

used previously.

1.5 Case Study: the Skin Cancer Prevention Study

The Skin Cancer Prevention Study was a randomized, double-blinded, placebo-

controlled clinical trial of non-melanoma skin cancer prevention in high risk subjects

[24, 23]; 1805 subjects were randomized to either 50mg of beta-carotene daily or placebo,

for up to five years. The dataset consisted of the m = 1683 subjects with complete co-

variate information, with N = 7081 observations. We fitted Poisson mixed models with

log link for the main outcome, the number of new skin cancers yij for subject i in year j.

The covariates included skin type and gender as binary variables, and age at entry and

number of skin cancers at entry as continuous variables. The year of follow-up was ei-

ther omitted, or included a linear or quadratic effect. In some models a subject-specific

year effect was fitted. All models included a subject-specific random intercept. The

treatment effect was proven not significant in earlier analyses and was not included. The

results in Table 1.3 show that the random year effect should not be included in the model;

the three models with the year omitted, in linear, or quadratic form yield comparable

conditional Akaike criteria and cannot be distinguished. On parsimony grounds, the

model without year effect can be chosen. To determine whether the difference of condi-

tional Akaike information between model was significant, a 95% confidence interval of

this difference was computed by bootstrap for each pair of the models. The 95% confi-

dence intervals for this difference were as follows: (5,1) versus (6,1) = (−2.19, 18.55);

(6,1) versus (7,1) = (−1.96, 22.54); (5,1) versus (7,1) = (−3.74, 28.61). This analy-

sis confirms that the three models cannot be ranked on conditional Akaike information

criterion alone, and that the simpler (5,1) model may be chosen.
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1.6 Discussion

The analytic derivation and resampling method used in this paper follow a gen-

eral approach that can be applied to other models, such as nonlinear mixed models.

More importantly, the results apply to general distributions for the random effects, al-

though in practice the normal distribution is often used. Our setting is of independent

clusters. This is not the most general model for random effects. Much of the theory

applies to the general setting. However, care is needed in establishing the asymptotic

results, since they require adequate convergence for the random effects.

For generalized linear hierarchical models with only random intercepts, the ρ in

(1.9) turns out to be equal to the effective degrees of freedom obtained in [51] equa-

tion (11), using their quasi-exact method; such a connection was in fact conjectured in

their paper. In addition [63] gave an approximation to their Bayesian measure of model

complexity, which is the same as (1.9). See also Ruppert et al. (2003, chapters 8 and

11). In the case of linear mixed models, [14] show that the part of ρ due to the random

effects can be interpreted as the ratio of the random effects variance to the total vari-

ance. Our derivation provides a theoretical basis both for the information criteria and

for the model degrees of freedom under generalized linear, that is, as an approximately

unbiased estimate of the cAI defined in (2.3).

Although the bootstrap has been applied to risk estimation and has been shown to

have good finite sample performance for independent and identically distributed data, in

our investigation it did not substantially out-perform the analytic approximation. This

may be because the cluster sizes are typically not large, and the resampling is done

within the clusters. Given the wide range of possible implementations allowed by the

bootstrap, further improvements are possible, and the topic deserves further exploration.

As an alternative to the bootstrap, the numeric methods of [48] may be extended to our

setting for evaluating ρ.

[22] recently established the asymptotic equivalence of cross-validation and AIC

under linear mixed-models. It is argued that leave-one-cluster-out cross-validation is

asymptotically equivalent to marginal AIC and leave-one-observation-out cross- valida-

tion is asymptotically equivalent to cAIC. In our simulations we used a nested bootstrap

in which we resample clusters, then resample observations within those resampled clus-
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ters. We also considered an alternative bootstrap approach in which clusters are not

resampled, which was generally less effective at selecting the true model and unbiased

estimation of cAI.

One limitation of the Akaike information is that it is model-inconsistent. That

is, even in large samples it can select a wrong model with non-zero probability which is

usually too large in dimension. This is the case when there is a fixed true model. It is now

understood [60] that for linear model selection, various procedures, including the Akaike

information criterion and the Bayesian information criterion, fall into three classes: valid

if there exist fixed-dimension correct models, valid if no fixed-dimension correct model

exists, or a compromise of the above two. Our work here on the conditional Akaike

information, adjusted to mixed models, does not address these issues. When the more

classical case is concerned where there is a fixed true model, a possible remedy is to

include considerations of parsimony. One would choose the smaller model, unless the

larger one has an Akaike information criterion that is significantly better. In another

recent paper, [25] present a theorem suggesting that cAIC is almost surely biased in favor

of models with additional random effects. Our simulations suggest, however, that cAIC

does not always favor larger models, which should help allay concern. Our proposed

rule of two also offers some protection against large model bias.

1.7 Proofs

Setup and conditions for Theorem 1

We assume the following. Given the number of clusters m, let θm = stack(β,

b1, . . . , bm), and let θ = stack(β, b1, b2, . . .) be the corresponding infinite-dimensional

parameter as m increases; θm contains the first m+ 1 elements, or p+ q components, of

θ. The true value of θ is θ0, with first m+ 1 elements θ0m = stack(β0, b01, . . . , b0m). For

fixed m and cluster size n = n1 = . . . = nm, the data y is generated from model (1.1),

with parameter θm = θm0. Further, θm is estimated by θ̂nm, the maximizer of the joint

likelihood lJ(y | θm). Note that N = mn.

[53] partitions β into β = (β1, β2), where the covariates xij1 of β1 do not have

random effects, and the covariates xij2 of β2 have random effects, i.e., xij2 = zij . [53]
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shows that the maximum likelihood estimates of these two components have different

rates of convergence as m,n → ∞. For simplicity we will assume that β = β1; the

more general case follows with straightforward modifications.

In the following, unless explicitly stated, all expectations are conditional on θ,

and therefore on the random effects b. Let ∆(θm) = −E{lJ(θm; y)}, and ∆̂(θm) =

−lJ(θm; y). We do not include indices m,n for ∆ and ∆̂ unless necessary. Let ∆′, ∆′′

denote the derivative and the Hessian of ∆ with respect to θ, with a similar notation for

∆̂. Write lJ =
∑m

i=1 lJi, where lJi is the component for the ith cluster. From (1.8) we

have that ∆′′ = U>WU + diag(0, D−1). Let ∆′′ββ , ∆′′βbi , ∆′′bibj be the corresponding

matrix blocks from the Hessian matrix ∆′′, and similarly for ∆̂′′. We assume that the

following conditions hold:

A1. The true parameter θ0 is unique, and is in the interior of a convex closed bounded

set Θ ⊂ R∞ equipped with the sup norm.

A2. The fixed effects component β̂ of θmn satisfies β̂ → β0 almost surely as m,n →
∞.

A3. The random effects components b̂1, . . . , b̂m of θmn satisfy maxi=1,...,m ||b̂i−b0i|| →
0 almost surely as m,n→∞.

A4. For any m,n, the first and second derivatives ∆′, ∆̂′ and ∆′′, ∆̂′′ exist, and are

continuous on Θ.

A5. The ratio n/m→∞.

A6. As m,n → ∞, {∆̂ββ(θ)′′ − ∆ββ(θ)′′}/N ,
∑m

i=1{∆̂bibi(θ)
′′ − ∆bibi(θ)

′′}/n, and∑m
i=1{∆̂βbi(θ)

′′ − ∆βbi(θ)
′′}/(nm1/2) converge almost surely to 0 uniformly on

Θ.

A7. As m,n → ∞, N1/2(β̂ − β0) → N(0, v1) in distribution, and N ||β̂ − β0||22 is

uniformly integrable.

A8. As n → ∞, n1/2(b̂i − bi0) → N(0, vbi) in distribution uniformly over i, and

n||b̂i − b0i||22 is uniformly integrable for all i.
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A9. The quantity ∆̂′′ββ/N is bounded for all θ, m and n, and limm,n→∞ ∆̂′′ββ/N is

positive definite.

A10. The quantity ∆̂′′bibi/n is bounded for all θ,m and n, and limn→∞ ∆̂′′bibi/n is positive

definite.

A11. The quantity
∑m

i=1 ∆̂′′βbi/(nm
1/2) is bounded for all θ, m and n.

Under the generalized linear mixed model the distributional convergences in A7 and A8

are established in Nie [53], under conditions A9-11 and some additional conditions that

are discussed in details in [53]; they can be interpreted as non-collinearity among the

covariates under the mixed model, for example. The uniform integrability conditions in

A7 and A8, and the boundedness conditions in A9-11 are for the uniform integrability

of Rnm which leads to E(Rnm) = o(1) in the proof below; these are not always easy

to establish in general. However conditions A9-11 can be directly verified under spe-

cific models such as the generalized linear mixed model, since the derivatives can be

explicitly calculated.

of Theorem 1. A second order Taylor expansion of ∆̂ yields

∆̂(θ̂nm) = ∆̂(θ0m) + (θ̂nm − θ0m)>∆̂′(θ0m) +
1

2
(θ̂nm − θ0m)>∆̂′′(θ̄nm)(θ̂nm − θ0m)

= ∆̂(θ0m)− 1

2
(θ̂nm − θ0m)>∆′′(θ0m)(θ̂nm − θ0m) +Rnm, (1.11)

where

Rnm = (θ̂nm − θ0m)>{∆̂′′(θ̄nm) + ∆′′(θ0m)− 2∆̂′′(θ̃nm)}(θ̂nm − θ0m)/2,

θ̄nm, θ̃nm are measureable functions such that ||θ̄nm−θ0m|| ≤ ||θ̂nm−θ0m|| almost surely,

||θ̃nm − θ0m|| ≤ ||θ̂nm − θ0m|| almost surely, and ∆̂′(θ0m) = −∆̂′′(θ̃nm)(θ̂nm − θ0m).

Write Q̂nm(θ) = (θ̂nm−θ0m)>∆̂′′(θ)(θ̂nm−θ0m),Qnm(θ) = (θ̂nm−θ0m)>∆′′(θ)(θ̂nm−
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θ0m). Then Rnm = {Q̂(θ̄nm) +Q(θ0m)− 2Q̂(θ̃nm)}/2. We have that

Q̂nm(θ) =


β̂ − β0

b̂1 − b01

...

b̂m − b0m


>

∂2lJ
∂β∂β>

∂2lJ1

∂β∂b′1
. . . ∂2lJm

∂β∂b′m
∂2lJ1

∂b1∂β>
∂2lJ1

∂b1∂b′1
0

... . . . ...
∂2lJm

∂bm∂β> 0 . . . ∂2lJm

∂bm∂b′m




β̂ − β0

b̂1 − b01

...

b̂m − b0m


= (β̂ − β0)>∆̂′′ββ(β̂ − β0) + 2(β̂ − β0)>

m∑
i=1

∆̂′′βbi(b̂i − b0i)

+
m∑
i=1

(b̂i − b0i)
>∆̂′′bibi(b̂i − b0i),

with an analogous formula for Qnm(θ). Under the above conditions A2, A3, A6-A8 it

is seen that Rnm = op(1). In addition, conditions A7-A11 imply that E(Rnm) = o(1).

Now, take expectations conditional on b on both sides of equation (1.11):

E(∆̂(θ̂nm)) = E{∆̂(θ0m)} − 1

2
E{(θ̂nm − θ0m)>∆′′(θ0m)(θ̂nm − θ0m)}+ E(Rnm)

= ∆(θ0m)− 1

2
tr(Ω var(θ̂nm)) + o(1).

In a similar manner we can show thatE(∆(θ̂nm)) = ∆(θ0m)+1
2
tr{Ω var(θ̂nm)}+

o(1). Replacing ∆(θ0m) in the last two equations above we get that

E{∆(θ̂nm)} = E{∆̂(θ̂mn)} − tr{Ω var(θ̂nm)}+ o(1).

Finally, it can be seen that tr{Ω var(θ̂nm)} = tr(GΩ−1) + o(1) = ρ + o(1). After the

simplification of log p(b̂) terms, and taking expectations over b, we get that

−2E(y,b)Ey0|b[l{y0 | θ̂(y)}] = −2Ey[l{y | θ̂(y)}] + 2ρ+ o(1).

Now we show p ≤ ρ ≤ p + q. The semi-positive definite matrix W admits

a square root, so we can write Z1 = W 1/2Z, X1 = W 1/2X . In formula (1.10) we

have Z>WZ − Z>WX(X>WX)−1X>WZ = Z>1 (I − P )Z1 = Z>2 Z2, where P =

X1(X>1 X1)−1X>1 and therefore I−P are both projection matrices, and Z2 = (I−P )Z1.

Then ρ = p+ q − tr{(Z>2 Z2 +D−1)−1D−1} = p+ q − tr{(Iq + Z>3 Z3)−1} = p+ q −∑q
i=1(1 + ui)

−1, where Z3 = Z2D
1/2, and 0 ≤ u1 ≤ . . . ≤ uq are the eigenvalues of

Z>3 Z3. It follows that p ≤ ρ ≤ p+ q.
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Table 1.1: Comparison of model selection procedures based on simulations from a Pois-
son generalized linear mixed model with log link. Data are generated from model (3,2):
covariates x1, x2, x3 are independent Bernoulli (0.5), β = (1, 1, 1)>, z1 = x1, z2 = x2,
and bi ∼ N(0, 0.25I2). Model (2,1) includes x1, x2 and z1; model (3,1) includes also x3,
and (3,3) includes also z2 and z3 = x3. Average over 100 simulations are reported for
cAI, cAIC, cAICb with 400 bootstrap samples, and −2l(y | β̂, b̂); a/b gives the number
of times out of 100 a model was chosen using the rule of two (a) or simple minimum
(b).

(fixed, random) (2,1) (3,1) (3,2) (3,3)
m = 10, ni = 5
cAI 318 (3.8) 244 (1.9) 230 (1.1) 232 (1.1)

0/0 9/2 89/74 2/24
cAIC 321 (4.4) 244 (2.1) 229 (1.3) 227 (1.8)

0/0 14/10 73/65 13/25
cAICb 369 (7.1) 252 (3.0) 235 (2.3) 242 (3.7)

0/0 17/14 72/66 11/20
−2pl(y | β̂, b̂) 302 (4.4) 224 (2.1) 203 (1.2) 200 (1.2)
m = 10, ni = 10
cAI 674 (7.0) 494 (3.7) 448 (1.6) 450 (1.6)

0/0 0/0 99/85 1/15
cAIC 675 (7.7) 495 (4.1) 447 (2.4) 448 (3.7)

0/0 5/5 84/72 11/23
cAICb 746 (9.7) 509 (5.0) 450 (2.8) 454 (3.0)

0/0 3/2 86/83 11/15
−2pl(y | β̂, b̂) 654 (7.7) 473 (4.1) 414 (2.2) 411 (2.2)
m = 10, ni = 40
cAI 2732 (28.1) 1929 (14.3) 1727 ( 6.1) 1729 ( 6.1)

0/0 0/0 100/97 0/3
cAIC 2733 (29.0) 1933 (14.7) 1730 ( 6.9) 1741 (13.6)

0/0 0/0 92/83 8/17
cAICb 2810 (31.0) 1943 (15.2) 1729 ( 7.0) 1733 ( 7.0)

0/0 0/0 95/89 5/11
−2pl(y | β̂, b̂) 2711 (29.0) 1909 (14.7) 1691 ( 6.9) 1688 ( 6.8)
m = 50, ni = 5
cAI 1612 (8.1) 1240 (4.9) 1137 (2.4) 1140 (2.4)

0/0 0/0 100/98 0/2
cAIC 1606 (10.0) 1238 ( 5.5) 1135 ( 2.8) 1135 ( 3.5)

0/0 0/0 70/60 30/40
cAICb 1821 (14.2) 1276 ( 7.3) 1131 ( 3.8) 1137 ( 3.8)

0/0 0/0 85/80 15/20
−2pl(y | β̂, b̂) 1519 (10.0) 1151 ( 5.4) 1001 ( 2.7) 996 ( 2.5)
m = 50, ni = 10
cAI 3352 (14.9) 2475 ( 9.1) 2219 ( 3.6) 2221 ( 3.6)

0/0 0/0 100/96 0/4
cAIC 3354 (17.3) 2479 (10.7) 2218 ( 4.5) 2222 ( 6.3)

0/0 0/0 79/69 21/31
cAICb 3670 (20.8) 2535 (12.9) 2210 ( 5.5) 2225 ( 5.6)

0/0 0/0 99/99 1/1
−2pl(y | β̂, b̂) 3258 (17.3) 2382 (10.7) 2052 ( 4.4) 2046 ( 4.2)
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Table 1.2: Comparison of model selection procedures based on simulations from a
Poisson mixed model with log link. We enumerate the candidate models according the
number of fixed and random effects included. Data is generated from model (3,2) with
three independent Bernoulli (p = 0.5) fixed effect covariates x1, x2, x3, and two random
effect covariates z1 = x1, z2 = x2. The fixed effect is β = (1, 1, 1)T and the random
effects are bi ∼ N(0, 0.25I2). Model (2,1) includes x1, x2 and z1 = x1; model (3,1)
includes x1, x2, x3 and z1 = x1; and (3,3) includes x1, x2, x3 and z1 = x1, z2 = x2, z3 =
x3. Average (SE) over 100 simulations are reported for cAI, cAIC, cAICb from 400
bootstrap samples, and −2l(y | β̂, b̂). Below each average and SE are a/b: the number
of times the model was chosen using the rule of two (a) or simple minimum (b).

(fixed, random) (2,1) (3,1) (3,2) (3,3)
m = 10, ni = 5
cAI 345.5 (8.1) 241.8 (2.1) 229.6 (1.2) 237.5 (1.6)

0/0 28/4 70/77 2/19
cAIC 349.2 (8.9) 242.1 (2.3) 227.2(1.5) 236.5 (2.1)

0/0 13/1 77/73 10/26
cAICb 403.1 (11.5) 256.3 (3.3) 246.4 (2.8) 309.8 (3.3)

0/0 33/32 66/67 1/1
−2l(y | β̂, b̂) 337.1(9.1) 223.8 (2.2) 202.4 (1.7) 215.6 (2.3)
m = 10, ni = 10
cAI 704.5 (10.9) 481.0 (2.9) 444.5 (1.8) 446.2 (1.9)

0/0 0/0 86/65 14/35
cAIC 707.9 (12.1) 482.4 (3.2) 443.3 (2.1) 440.9 (2.0)

0/0 2/0 59/23 39/77
cAICb 779.3 (15.6) 495.5 (3.9) 449.5 (2.5) 457.6 (2.7)

0/0 3/3 86/85 11/12
−2l(y | β̂, b̂) 692.8 (12.2) 461.3 (3.2) 411.0 (2.2) 407.4 (2.2)
m = 10, ni = 40
cAI 2973.0 (44.5) 1924.9 (11.1) 1728.5 (5.6) 1730.3 (5.2)

0/0 0/0 81/70 19/30
cAIC 2967.5 (45.1) 1919.0 (11.3) 1724.0 (5.1) 1722.0 (3.6)

0/0 0/0 67/27 33/73
cAICb 3062.0 (48.5) 1929.8 (11.8) 1722.8 (5.7) 1728.1 (5.7)

0/0 0/0 94/88 6/12
−2l(y | β̂, b̂) 2947.2 (45.1) 1895.6 (11.3) 1684.7 (5.5) 1682.0 (5.5)
m = 50, ni = 5
cAI 1760.0 (28.0) 1233.6 (7.5) 1138.4 (3.8) 1139.6 (3.9)

0/0 0/0 73/60 27/40
cAIC 1755.5 (30.6) 1230.6 (8.3) 1134.6 (4.6) 1133.4 (4.6)

0/0 0/0 77/28 23/72
cAICb 1979.0 (40.6) 1272.7 (11.4) 1138.2 (6.6) 1166.5 (6.6)

0/0 0/0 97/97 3/3
−2l(y | β̂, b̂) 1697.4 (22.7) 1151.2 (6.4) 998.8 (3.4) 992.3 (3.6)
m = 50, ni = 10
cAI 3637.5 (46.6) 2458.4 (11.2) 2212.7 (4.5) 2214.9 (4.4)

0/0 0/0 77/61 23/39
cAIC 3658.1 (45.6) 2467.5 (11.9) 2216.6 (5.4) 2214.8 (5.5)

0/0 0/0 76/33 24/67
cAICb 3990.6 (57.1) 2526.1 (14.7) 2219.0 (6.5) 2251.5 (7.2)

0/0 0/0 98/97 2/3
−2l(y | β̂, b̂) 3585.6 (35.4) 2375.8 (9.9) 2051.1 (4.8) 2045.9 (5.0)
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Table 1.3: Skin cancer prevention study. Estimates of fixed effects (SE) and variance
components, and cAIC from 5 Poisson mixed models differing in the fixed and random
effects for year of follow-up. Age and number of skin cancers at baseline are continuous.
The best models, marked with a *, cannot be ranked based on cAIC.

(fixed, random) (5,1) (6,1) (7,1) (6,2) (7,2)
Estimates of β
Intercept −4.28 −4.35 −4.18 −4.79 −5.36

(0.37) (0.37) (0.39) (0.50) (0.54)
Age (years) 0.02 0.02 0.02 0.02 0.02

(0.01) (0.01) (0.01) (0.01) (0.01)
Skin that burns 0.33 0.33 0.33 0.33 0.32

(0.10) (0.12) (0.11) (0.14) (0.15)
Male gender 0.63 0.63 0.63 0.69 0.70

(0.12) (0.12) (0.12) (0.16) (0.17)
Baseline cancers 0.18 0.18 0.18 0.19 0.19

(0.01) (0.01) (0.01) (0.02) (0.02)
Year – 0.02 -0.13 -0.03 0.38

– (0.02) (0.08) (0.04) (0.11)
Year2 – – 0.03 – -0.08

– – (0.01) – (0.02)
Estimates of σ2

Intercept 2.37 2.38 2.39 9.97 13.12
Year – – – 0.85 1.22

−2l(y | β̂, b̂) 6072.10 6068.57 6063.50 4942.28 4825.32
cAIC 7824.69∗ 7824.28∗ 7823.13∗ 8023.39 8038.86



Chapter 2

Effective Degrees of Freedom and Its

Application to Conditional AIC for

General Linear Mixed Models with

Correlated Error Structures

2.1 Introduction

The general linear mixed model is a useful approach [13] to analyzing a wide va-

riety of data structures in the applications of statistics, including longitudinal or repeated

measures data, growth and dose-response curves, clustered or nested data, and multivari-

ate data. While model fitting and parameter estimation is now broadly available in major

statistical softwares, methods for model comparison and selection under mixed-effects

models have only received attention very recently. Model complexity is an important re-

lated concept, often captured by the number of degrees of freedom. For complex models

such as in the presence of mixed effects, this has commonly been referred to as the ef-

fective degrees of freedom, reflecting the fact that it is not straightforward to count the

number of parameters as the number of degrees of freedom.

Although the number of degrees of freedom can be defined geometrically both

under classical linear regression models, and under some richly parametrized models as

17
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in [33], a more general definition seems to be related to the concept of Akaike infor-

mation. The Akaike information is defined using the expected predictive log-likelihood

given the estimated parameters. Since the population expectation is unknown, it is ap-

proximated by the corresponding observed data log-likelihood, plus a bias correction

term. For the classical AIC [2], this bias correction is given by the number of unknown

parameters. For more complex models such as in the presence of random effects, and

when the conditional Akaike information (cAI) is of interest, the bias correction has

been given by the effective degrees of freedom, which coincides with the trace of the

so-called hat matrix under the mixed models [66, 15].

The mixed models considered in the literature typically assume independently

and identically distributed (i.i.d.) errors. In this paper we consider the general linear

mixed models, where the errors are not i.i.d., and model complexity should count for

the complex error covariance structures. We prove a simple expression for the effective

degrees of freedom, which is the trace of the hat matrix plus the number of parameters in

the error covariance. Although some related work has been done as summarized below,

this simple expression has not been known in the literature to the best of our knowledge.

The number of effective degrees of freedom typically involves unknown parame-

ters. In practice for the purposes of model selection, the unknown parameters have to be

replaced by their estimates. Using such a plug-in estimate one can define a crude version

of the conditional AIC (cAIC), which is not guaranteed to be consistent or asymptoti-

cally unbiased for the cAI. For linear mixed model with i.i.d. errors, [48] proposed data

perturbation [76], and [26] derived a complex expression assuming known variance,

to obtain a cAIC that is asymptotically unbiased for the cAI. For general linear mixed

models with correlated errors, [42] used an asymptotic expansion of the parameter es-

timates, and their formulas must be explicitly derived for each model in question via

differentiation of the error covariance matrix with respect to the parameters.
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2.2 cAIC for General Linear Mixed Model

2.2.1 Model and notation

Suppose that data y = (y>1 , y
>
2 , . . . , y

>
m)> follow a general linear mixed model:

yi = Xiβ + Zibi + εi (2.1)

for i = 1 . . .m, where Xi is a ni × p matrix of covariates for the fixed effects, Zi is a

ni × q matrix of covariates for the random effects, β is a p × 1 vector of fixed effects,

bi is a q × 1 vector of random effects with distribution N(0, D), εi is a ni × 1 vector

with distribution N(0, Vi(α)), and the covariance Vi(α) is known up to a r × 1 vector

of parameters α. In the following we will also refer to each i value as a cluster, and

let N =
∑m

i=1 ni. We can express the model in the larger matrix form by defining

X = (X>1 , X
>
2 , . . . , X

>
m)>, Z = diag(Z1, Z2, . . . , Zm), b = (b>1 , b

>
2 , . . . , b

>
m)>, and

ε = (ε>1 , ε
>
2 , . . . , ε

>
m)>. Then y = Xβ + Zb+ ε.

Given α and D, β and b are typically estimated by the best linear unbiased es-

timator (BLUE) and the best linear unbiased predictor (BLUP), respectively. Both esti-

mators are linear in y so the predicted y can be expressed as ŷ = Hy, with trace

tr(H) = tr

[X>W−1X X>W−1Z

Z>W−1X Z>W−1Z + Σ

]−1 [
X>W−1X X>W−1Z

Z>W−1X Z>W−1Z

] , (2.2)

Σ = diag(D−1, . . . , D−1) and W = diag(V1, . . . , Vm). H is often called the “hat” ma-

trix. In practice the variance parameters are typically estimated by maximum likelihood

(ML) or restricted maximum likelihood (REML); in this case, ŷ is no longer a linear

function of y.

For our subsequent purposes denote θ = (β>, α>, b>)>, and the density of b by

p(b) where we suppress the variance parameters of b. The conditional log-likelihood of

y given the random effects is

lc(y|b) = −N
2

log(2π)− 1

2

m∑
i=1

{log |Vi(α)|

+(yi −Xiβ − Zibi)> Vi(α)−1 (yi −Xiβ − Zibi)},
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where | · | denotes the determinant of a matrix. The joint log-likelihood of y and b is

lJ(θ) = lc(y|b)+log p(b), which can sometimes be viewed as a penalized log-likelihood;

see for example [4].

2.2.2 Effective degrees of freedom and cAI

The conditional Akaike information (cAI) was originally defined in [66] as

cAI = −2Ey,bEy0|blc(y
0|b; θ̂(y)), (2.3)

where y0 is an independent replicate of y from the distribution of y given b, and θ̂ is an

estimator of θ. This definition of the Akaike information focuses on prediction given the

random effects, or clusters. In other words, we are interested in predicting the outcome

of a new observation for an existing cluster. As a contrast, the classical AIC using the

marginal observed data log-likelihood under (2.1) is applicable when we are interested

in predicting the outcome of a new observation for a new cluster.

Note that the modeling assumption of the covariance structure D of the random

effects does not enter into the conditional log-likelihood (2.3) used in the definition

of cAI. On the other hand, the variance parameters α of the error terms are explicitly

counted for in the conditional likelihood. In this way the two sets of variance parameters

are treated very differently. The focus of cAI is on the estimation of the random effects

themselves, and their covariance structure becomes secondary in our view, although it

does affect the overall modeling assumption and hence the parameter estimates. This

distinction between the two sets of variance parameters also reflects the distinction be-

tween the idea of a marginal Akaike information versus that of a conditional Akaike

information [66].

The Akaike information is typically approximated by the observed −2lc(y|b; θ̂)
plus a bias correction term. When Vi = σ2I where σ2 is known,−2lc(y|b; θ̂)+2tr(H) is

unbiased for cAI, where θ̂ is the maximum likelihood estimate of θ and tr(H) is given in

(2.2) [66]. In the following (mostly for technical reasons) we consider θ̂ as maximizes

the joint log-likelihood lJ(θ), which under suitable conditions is a first-order Laplace

approximation to the maximum likelihood estimator [4, 71, 67].
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Theorem 2. Under Conditions B1-B11 in the Appendix,

−2lc(y|b; θ̂) + 2{tr(H) + r} (2.4)

is asymptotically unbiased for cAI under the general linear mixed model (2.1), where

r = dim(α) is the number of unknown parameters in the error covariance matrix. That

is, the expectation of (2.4) with respect to the joint distribution of y and b equals cAI +

o(1) for large m and ni’s.

The proof of the theorem is given in the Appendix. We refer to {tr(H) + r} as

the effective degrees of freedom under model (2.1). Intuitively this should fall within

the range of two extremes: the number of fixed effects plus the number of error variance

parameters, which corresponds to zero variances of the random effects, and the sum of

these two plus the number of random effects, corresponding to infinite variances of the

random effects [33]. Where it lies within the range reflects the amount of shrinkage in

the estimation of the random effects.

We note that the previously mentioned results of [42] were derived via direct

computation of expectations under the linear mixed model. It is curious to note that

their degrees of freedom was only the tr(H) part of ours, while the additional r cannot

be obviously identified in their other term hc.

2.2.3 Conditional AIC

It is apparent from (2.2) that tr(H) involves the variance parameters α and those

in D, which are unknown in practice. In the following we let

cAIC = −2lc(y|b; θ̂) + 2[tr{H(α̂, D̂)}+ r], (2.5)

where α̂ and D̂ are estimates of α and D, respectively. Even though each element of

H may be estimated consistently, because the dimension of H is on the order of the

sample size, tr{H(α̂, D̂)} may have error greater than op(1). In the next section we will

compare cAIC with the proposed asymptotic correction of [42] through simulations.

In addition to the original AIC, the corrected AIC or, AICc, was derived for

variable selection in linear regression and order selection in autoregressive processes
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by [35] when the sample sizes are small. It was later extended for smoothing param-

eter selection by [34]. Although no general theoretical results exist beyond the initial

parametric linear and autoregressive cases, studies have shown that AICc has impressive

finite-sample properties [7, 31, 43, 46, 9]. Following previous proposals for AICc, we

also consider the following criterion under model (2.1):

cAICc = −2lc(y|b; θ̂) +
2N [tr{H(α̂, D̂)}+ r]

N − tr{H(α̂, D̂)} − r − 1
. (2.6)

2.3 Simulations

In this section we describe the simulation experiments conducted to study cAIC,

cAICc, and cAICk from [42]. The purposes of these simulations are to examine the

accuracy of the criteria as estimates of cAI, as well as their performances in model

selection. We considered various sample sizes, from m = 10 to 75 clusters, each con-

taining n = 10 to 25 observations. For display purposes only m = 10 and n = 25 are

given in the tables; other results are available upon request. One hundred data sets were

generated for each case.

For each candidate model, we can approximate the ‘true’ cAI using definition

(2.3) by taking the inner expectation over 100 “new” values of y0 drawn from the same

model as the original data, albeit with a new ε. This alone does not give the population

quantity cAI, but instead is the approximate risk for each simulated data set. The average

of the above over the 100 simulations gives the approximate cAI. In the tables the

performance of cAIC, cAICc and cAICk were measured in two ways: by comparing their

means (standard error) over 100 simulations to the approximate cAI, and by counting

the number of times each model was chosen by a given criterion. A model was chosen

in two different ways which is expressed in the format ‘-,-’: the first count is the number

of times out of 100 that a model had the minimum value of the criterion among all the

models, and the second is the number of times out of 100 that a model was chosen by

the ‘rule-of-the-thumb: choose the smaller model if the difference in criterion is less

than 2’ [7, p.131]. If two models were not nested, the ’smaller’ model was taken to be

the one with the smaller estimated effective degrees of freedom, tr(H) + r. This ‘rule-

of-the-thumb’ reflected a preference towards parsimonious modeling, as well as took



23

into account the statistical variation in the computed criteria [15]. When there were no

random effects, the classical AIC was used for both cAIC and cAICk, while cAICc was

the corrected AIC of [35].

We first considered the six models in Table 2.1, with Model 4 being the true

model. For the results in Tables 2.2 to 2.4 the models are in the orders of 1 - 6, but are

described in the column names using the format ‘(p, q, r)’. This format helps to visualize

the dimensions and nestedness of the models; among the models, those with the same

total number of parameters p+ q+ r are not nested within each other. Data were gener-

ated under Model 4, which was (2.1) with a random intercept, Xij = (1, xi, tj)
T where

xi was drawn from Uniform (1.5, 3.5), and tj = log j. We set β = (1, 1, 1)′. The random

intercept bi and errors εi were independently drawn from N(0, 0.25) and N(0, 0.05R),

respectively, where R was a AR(1) correlation matrix with the correlation parameter ρ

as given in the table. Finally for Tables 2.5 to 2.10 we focused more extensively on dif-

ferent error correlation structures, which was also the case for our application example

below. Data were generated as yij = 1 + 4xj + bixj + εij , where xj = j, bi ∼ N(0, 4),

and εi = (εi1, . . . , εin)′ ∼ N(0, 2R) where R was a AR(1) correlation matrix as before.

The effective degrees of freedom under both models are around 13; in fact exactly 13

under the second model since the covariates are fixed. They fall within the range of 5-15

under the first model, and 4-14 under the second, the ranges obtained by counting the

number of fixed effects plus the error variance parameters, with or without the number of

random effects. The fact that they are close to the upper bounds reflects relatively little

shrinkage in estimating the random effects, perhaps given the reasonably large cluster

sizes.

From the tables we see that as estimates of the population quantity cAI, under the

true models cAICc tends to be the most accurate when the error correlation is weak, and

cAICk becomes the most accurate when the correlation is strong. When the models are

wrong, there is no theory to support any of them to be a good estimate of cAI, and indeed

in the simulations their values can be quite far from cAI. In terms of model selection,

cAICk performs the best in selecting the true model. Note that ρ = 0.1 makes the AR(1)

structure close to independent, as reflected in the tables difficulty for any criterion to

distinguish between the two error structures with these moderate sample sizes. As noted
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in [26], cAIC has a tendency to select additional random effects, which is the case here

for model (3,2,2). This also appears to be the case for cAICc. It is curious, however, that

this is also the case for the simulated cAI which is the approximate risk as discussed

above, and which does not involve tr(H) with the estimated α and D. cAICk selects

(3,2,2) sometimes, but much less frequently than the others.

It is important to note that with the ‘rule-of-the-thumb’, cAIC and cAICc perform

nearly as well as cAICk. This is important because cAIC and cAICc are much easier

to compute and readily available after fitting the mixed models. On the other hand,

cAICk requires additional programming and we had to do it specifically for each model

considered. Our attempt to implement an R package using a general method (symbolic

differentiation) without specifically programming for each case, ran into the prohibitive

problem of intense computation with only moderate cluster sizes (and the corresponding

sizes of error covariance matrices).

While data not shown, we note reduced performance of all three criteria when

the sample sizes are smaller, especially when the cluster size n is small. In fact when

n = 10 for example, cAICk can perform slightly worse than cAIC and cAICc in model

selection. The reason that the larger cluster sizes are advantageous is because the condi-

tional likelihood involves estimated b’s, which are more accurately estimated when the

clusters are larger.

2.4 An Example

[50] analyzed a data set on the effect of two drugs on forced expiratory vol-

ume (FEV). In the study, 72 subjects were randomly assigned to one of three treatment

groups: drug A, drug B, or a placebo. The maximum amount of breath exhaled in 1

second, FEV1, was measured at the beginning of the trial and each hour afterwards for

8 hours. A summary of the data is plotted in Figure 2.1, which indicates an approx-

imately linear trend of FEV1 over time. Figure 2.2 contains the scatter plots of the

measurements against each other at different hours, which shows that the FEV1 values

closer in time are more correlated than those farther away. The data set is available at

http://www.uvm.edu/ abh/stat295/datasets/.
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We consider three general linear mixed models for the data. Each model had

the same eight fixed effects including intercept, baseline FEV1, treatment, hour, and

treatment by hour interaction. A random intercept is also included in each model. Here

we consider different error structures for the three models: independent, AR(1) and an

AR(2). Table 2.11 shows the parameter estimates and cAIC, cAICc and cAICk under

each of the three error structures. In the table τ is the standard deviation of the random

intercept, and σ is the error standard deviation. Under the AR(1) structure the single cor-

relation parameter is denoted by ρ1, and under AR(2) the two correlation parameters are

denoted by ρ1 and ρ2, i.e. εij = ρ1εi,j−1 +ρ2εi,j−2 +eij , where the eij’s are i.i.dN(0, σ2).

It is seen that both cAIC and cAICc have clearly selected the model with AR(1) error

structure, with the ‘rule-of-the-thumb’ or not. cAICk also selects the AR(1) model, al-

though its value under AR(1) is only slightly lower than under independence. Notice

that a test of significance, however, would have concluded that ρ2 is significantly differ-

ent from zero. An interpretation of this might be that if we are interested in predicting

individual FEV1 outcomes over time, the AR(1) model would do a better job.

2.5 Discussion

Measures of model complexity was discussed in [63], both in the classical sense

and in the Bayesian context. Using bias correction for the (conditional) Akaike infor-

mation to define the effective degrees of freedom, is the same as their approach using

‘excess of true over the estimated residual information’. The number of effective de-

grees of freedom was derived this way in [66], as a theoretical justification to that of

[33] under linear mixed models with known error variance. Under the general linear

mixed models in this paper, because estimation of the error covariance parameters is

involved, the theoretical development is asymptotic, and parallels that of our previous

work [15]. In contrast, [66] and [25] involved mostly finite-sample matrix algebra under

i.i.d. errors with known variances.

The AIC is commonly used for model selection in practice. It is well-known

that AIC can be inconsistent in selecting the true model if the model dimensions are

fixed [60]; further discussion on this can also be found in the literature, see for example
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[74, 75]. For cAIC both the model dimension and corresponding sample sizes are more

complex. We expect that some of characteristics of the classical AIC might carry over,

and this is certainly an area for future research.

Proof of Theorem

Given the number of clusters m, let θm = (β>, α>, b>1 , . . . , b
>
m)>, and let θ =

(β>, α>, b>1 , b
>
2 , . . .)

> be the corresponding infinite-dimensional parameter; θm contains

the firstm+2 elements of θ. The “true” value of θ is θ0, with firstm+2 elements θ0m =

(β>0 , α
>
0 , b

>
01, . . . , b

>
0m)>. Suppose data y is generated from the model with parameter

θm = θ0m. For ease of notation we assume n1 = ... = nm = n, so that N = mn. We

will also denote Vi = V . For the proof and conditions below, θ̂nm maximizes the joint

likelihood lJ(θm). Condition B5, however, can be used to establish that approximate

likelihood methods such as θ̂ here is asymptotically equivalent to the MLE [67, 53], so

that the theoretical results hold when MLE is used in calculating the cAIC.

Let ∆(θm) = −E{lJ(θm)}, and ∆̂(θm) = −lJ(θm). [53] distinguishes the

components of β between those without a corresponding random effect, β(1), and those

with a corresponding random effect, β(2), because the maximum likelihood estimate of

the two sets of components have different rates of convergence: 1/
√
N for the former

and 1/
√
m for the latter. For ease of description let us assume that β = β(1) in the

following. Denote φ = (β, α). Let ∆′′ββ , ∆′′βαk
, ∆′′αk,αs

, ∆′′αk,bi
, ∆′′αk,bi

, ∆′′βbi , ∆′′bibj ,

etc. be the corresponding matrix blocks from the Hessian matrix ∆′′, with a similar

notation for ∆̂′′.

We assume that the following conditions hold:

B1. θ0 is unique, and is in the interior of a convex closed bounded set Θ ⊂ R∞

equipped with the sup norm, eigenvalues of V (α0) are bounded away from 0.

B2. β̂ → β0 almost surely (a.s.) and α̂→ α0 a.s. as m,n→∞

B3. maxi=1,...,m ‖b̂i − b0i‖2
2 → 0 almost surely as m,n→∞.

B4. For anym,n, the first and second derivatives ∆′, ∆̂′ and ∆′′, ∆̂′′ exist, and ∆̂′′ and

∆′′ are continuous on Θ.
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B5. n/m→∞.

B6. (∆̂−∆)/N , (∆̂′−∆′)/N and (∆̂′′−∆′′)/N converge almost surely to 0 uniformly

on Θ as m,n→∞.

B7.
√
N(φ̂− φ)→ N(0, vφ) in distribution for some positive definite matrix vφ.

B8.
√
n(b̂i − bi0) → N(0, vbi) in distribution for some positive definite matrix vbi,

uniformly over i.

B9. limm,n→∞∆′′φφ/N is positive definite.

B10. limn→∞∆′′bibi/n is positive definite. In addition, (b̂i−bi)>∆̂′′bibi(b̂i−bi) = Op(1/m)

as m→∞.

B11. The remainder term as described below is uniformly integrable.

A discussion of similar conditions can be found in our previous work [15].

Proof of Theorem 1

Inspiration: Linhart and Zucchini (1986) give a set of conditions under which

∆(θ0) ≈ E∆̂(θ̂) + tr
(
Ω−1G

)
/2,

where ∆̂(θ) is a general discrepancy measure whose expectation is given by ∆. We

extended this result to general linear mixed models by

• changing to an∞ dimensional parameter space.

• stating a new set of conditions.

• computing tr (Ω−1G).

Let θ = (βT , bT , σT )T , ∆(θ) = −E{lJ(θ; y)}, and ∆̂(θ) = −lJ(θ; y) where lJ(θ; y) =

log f(y|θ) + log p(b). Our proof follows the lines of [15], which is a technical extension

of the approach described in [49] to the ‘estimation’ (prediction) of the random effects
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b, whose dimension q × m grows with the number of clusters m. The proof itself is

mainly on consistency, i.e. convergence in probability, and the asymptotic unbiasedness

follows under the condition of uniform integrability.

Similar to the proof in [15], we can show that

−2E{lc(y0; θ̂(y))} = −2E{lc(y; θ̂(y)}+ 2tr(Ω−1G) + o(1), (2.7)

where G = var{∂lJ(θ)/∂θ}, and Ω = E{−∂2lJ(θ)/∂θ∂θT}. The main idea of the

proof lies in recognizing the difference between the joint log-likelihood and conditional

log-likelihood being the log-density of b, and the fact that since the future new data y0 is

sampled using the same b as the original data y, the log-density term is a constant in the

calculation of Ey0|b. The rest of the proof of (2.7) follows the general outline of [49],

albeit with conditions above for the mixed-effects model.

Taylor Expansion of ∆̂ about θ:

∆̂(θ̂nm) = ∆̂(θ0m) + (θ̂nm − θ0m)′∆̂′(θ0m) +
1

2
(θ̂nm − θ0m)′∆̂′′(θ̄nm)(θ̂nm − θ0m)

= ∆̂(θ0m)− 1

2
(θ̂nm − θ0m)′∆′′(θ0m)(θ̂nm − θ0m) +Rnm,

where Rnm = (θ̂nm − θ0m)′{∆̂′′(θ̄nm) + ∆′′(θ0m)− 2∆̂′′(θ̃nm)}(θ̂nm − θ0m)/2.

Now, take expectations (conditional on b) on both sides:

E(∆̂(θ̂nm)) = E{∆̂(θ0m)} − 1

2
E{(θ̂nm − θ0m)′∆′′(θ0m)(θ̂nm − θ0m)}+ E(Rnm)

= ∆(θ0m)− 1

2
tr(Ω · var(θ̂nm)) + o(1),

if Rnm = op(1) and is uniformly integrable. In a similar manner, we can show that

E(∆(θ̂nm)) = ∆(θ0m) +
1

2
tr(Ω · var(θ̂nm)) + o(1).

Replacing ∆(θ0m) in the last two equations, we arrive at

E(∆(θ̂nm)) = E(∆̂(θ̂mn))− tr(Ω · var(θ̂nm)) + o(1).

Write

Rnm = (θ̂nm − θ0m)′{∆̂′′(θ̄nm) + ∆′′(θ0m)− 2∆̂′′(θ̃nm)}(θ̂nm − θ0m)/2

= {Q̂(θ̄nm) +Q(θ0m)− 2Q̂(θ̃nm)}/2.
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where Q̂nm(θ) is

β̂ − β0

α̂− α0

b̂1 − b01

...

b̂m − b0m



T 

∆̂′′ββ ∆̂′′βα ∆̂′′βb1 . . . ∆̂′′βbm

∆̂′′αβ ∆̂′′αα ∆̂′′αb1 · · · ∆̂′′αbm

∆̂′′b1β ∆̂′′b1α ∆̂′′b1b1 · · · 0
... . . . ...

∆̂′′bmβ ∆̂′′bmα 0 · · · ∆̂′′bmbm





β̂ − β0

α̂− α0

b̂1 − b01

...

b̂m − b0m


.

Multiply each term in Rnm by the appropriate factor: Rnm =
√
N(β̂ − β0)[{∆̂′′

β̄β̄
+

∆′′β0β0 − 2∆̂′′
β̃β̃
}/N ]

√
N(β̂ − β0) + . . .

The rest of the proof of Theorem 2 involves explicitly computing tr(Ω−1G). Note

that

−2lJ (θ) = mn log 2π +m log |V |+
m∑
i=1

(yi −Xiβ − Zibi)> V −1 (yi −Xiβ − Zibi)

+mq log 2π +m log |D|+
m∑
i=1

b>i D
−1bi.

We have

∆̂′β = −
m∑
i=1

(yi −Xiβ − Zibi)>V −1Xi,

∆̂′αk
= −m

2
· tr
(
V −1 ∂V

∂αk

)
+

1

2

m∑
i=1

(yi −Xiβ − Zibi)> V −1 ∂V

∂αk
V −1 (yi −Xiβ − Zibi) ,

∆̂′bi = −(yi −Xiβ − Zibi)> V −1Zi + biD
−1,

and, using the matrix notation of Section 2.1,

∆̂′′ =


X>W−1X X>W−1MαW

−1e X>W−1Z

e>W−1MαW
−1X Mαα e>W−1MαW

−1Z

Z>W−1X Z>W−1MαW
−1e Z>W−1Z + Σ


where ei = yi −Xiβ − Zibi, e = (e>1 , . . . , e

>
m)>, Mα = diag(∂V /∂α1, . . . , ∂V /∂αr),
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and the elements of Mαα are

{Mαα}ks = −m
2

tr
(
−V −1 ∂V

∂αs
V −1 ∂V

∂αk
+ V −1 ∂2V

∂αs∂αk
V −1

)
+

m∑
i=1

e>i

[
−V −1 ∂V

∂αs
V −1 ∂V

∂αk
V −1 − V −1 ∂V

∂αk
V −1 ∂V

∂αs
V −1

]
ei

+
m∑
i=1

e>i

[
V −1 ∂2V

∂αs∂αk
V −1

]
ei.

Using the fact thatE(ei) = 0 and formulas from McCulloch, Searle and Neuhaus (2008)

for expectation of Mαα, we have

Ω = E
(

∆̂′′
)

=


X>W−1X 0 X>W−1Z

0 E(Mαα) 0

Z>W−1X 0 Z>W−1Z + Σ

 ,
G = var

(
∆̂′
)

=


X>W−1X 0 X>W−1Z

0 E(Mαα) 0

Z>W−1X 0 Z>W−1Z

 ,
where {E(Mαα)}ks = −tr(V −1 · ∂V /∂αk · V −1 · ∂V ∂αs)/2. From the above we see

that tr (Ω−1G) = tr (H) + r.
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Table 2.1: Models used in simulation Tables 2.2 to 2.4. Model 4 is the true model that
generated the data.

Model Fixed effects Random effects Error structure
1 1, x 1 AR(1)
2 1, x, t - AR(1)
3 1, x, t 1 i.i.d.
4 1, x, t 1 AR(1)
5 1, x, t 1, t i.i.d.
6 1, x, t 1, t AR(1)

2.6 Acknowledgements

The contents of Chapter 2 have been reproduced from the submitted manuscript

of “Effective Degrees of Freedom and Its Application to Conditional AIC for General

Linear Mixed Models with Correlated Error Structures” by Rosanna Overholser and

Ronghui Xu. Additional simulation results have been added.
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Table 2.2: Simulation Results for m=10, n=25. The models correspond to those in
Table 2.1; the format ‘(p, q, r)’ denotes the numbers of fixed and random effects, and
the number of parameters in the error variance. (3,1,2) is the true model, and ρ is the
correlation parameter under the AR(1) error. Every second row shows the number of
times out of 100 a model is selected by the minimum of a criterion, and by the ‘rule-of-
the-thumb of difference of 2’; see the text for more details.

quantity (2,1,2) (3,0,2) (3,1,1) (3,1,2) (3,2,1) (3,2,2)
ρ = 0.1

-2lc 220.9(1.9) 91.3(2.7) -54.9(2.3) -55.9(2.3) -57.6(2.2) -57.7(2.3)
0 0 0 21 54 25

cAI 225.2(0.2) 97.1(1.6) -23.1(0.7) -26.4(0.7) -22.4(0.7) -26.3(0.7)
0, 0 0, 0 9, 12 42, 62 9, 7 40, 19

cAIC 228.9(1.9) 101.3(2.7) -29.1(2.3) -28.2(2.3) -30.1(2.3) -28.8(2.3)
0, 0 0, 0 32, 82 10, 5 53, 13 5, 0

cAICc 229.0(1.9) 101.5(2.7) -27.6(2.3) -26.4(2.3) -28.4(2.3) -26.8(2.3)
0, 0 0, 0 44, 84 9, 5 43, 11 4, 0

cAICk 288.2(1.4) 101.3(2.7) -28.7(2.3) -27.2(2.3) -26.3(2.3) -24.2(2.3)
0, 0 0, 0 77, 88 11, 6 12, 6 0, 0

ρ = 0.4
-2lc 159.1(1.7) 1.0(2.5) -69.8(2.5) -96.7(2.1) -82.3(2.7) -99.5(2.3)

0 0 0 23 3 74
cAI 162.9(0.2) 7.3(1.1) -9.2(1.5) -66.3(0.9) -1.9(1.9) -65.0(1.0)

0, 0 0, 0 0, 0 55, 81 0, 0 45, 19
cAIC 167.1(1.7) 11.0(2.5) -44.0(2.5) -69.2(2.1) -50.3(2.6) -70.3(2.2)

0, 0 0, 0 0, 0 39, 81 1, 1 60, 18
cAICc 167.3(1.7) 11.2(2.5) -42.5(2.5) -67.4(2.1) -47.9(2.6) -68.3(2.2)

0, 0 0, 0 0, 0 45, 86 0, 1 55, 13
cAICk 265.5(1.6) 11.0(2.5) -43.6(2.5) -67.6(2.1) -47.0(2.6) -65.3(2.2)

0, 0 0, 0 0, 0 86, 93 0, 1 14, 6
ρ = 0.7

-2lc 77.5(1.3) -153.7(2.3) -112.8(3.1) -214.7(2.2) -149.1(3.2) -218.8(2.2)
0 0 0 22 0 78

cAI 76.8(0.1) -150.7(0.7) 42.3(3.5) -183.9(0.9) 85.5(4.9) -181.8(1.1)
0, 0 1, 1 0, 0 56, 81 0, 0 43, 18

cAIC 85.5(1.3) -143.7(2.3) -87.0(3.1) -187.6(2.2) -111.7(3.1) -189.5(2.2)
0, 0 0, 0 0, 0 23, 74 0, 0 77, 26

cAICc 85.7(1.3) -143.4(2.3) -85.4(3.1) -185.9(2.2) -108.4(3.1) -187.5(2.2)
0, 0 0, 0 0, 0 25, 76 0, 0 75, 24

cAICk 283.3(2.7) -143.7(2.3) -86.4(3.2) -184.8(2.2) -108.6(3.2) -183.2(2.2)
0, 0 0, 0 0, 0 78, 85 0, 0 22, 15

ρ = 0.9
-2lc -5.7(1.1) -418.5(2.4) -230.2(5.6) -450.6(2.9) -318.3(5.0) -458.1(2.9)

0 0 0 24 0 76
cAI -5.0(0.1) -408.3(0.7) 339.1(17.7) -413.8(2.2) 643.3(26.1) -411.3(2.6)

0, 0 15, 19 0, 0 50, 58 0, 0 35, 23
cAIC 2.3(1.1) -408.5(2.4) -204.3(5.6) -426.8(2.7) -277.3(5.0) -430.5(2.7)

0, 0 1, 2 0, 0 25, 65 0, 0 74, 33
cAICc 2.5(1.1) -408.3(2.4) -202.8(5.6) -425.5(2.6) -273.4(5.0) -428.7(2.7)

0, 0 1, 3 0, 0 26, 64 0, 0 73, 33
cAICk 390.9(5.2) -408.5(2.4) -203.8(5.6) -399.9(6.7) -275.0(4.9) -415.7(3.2)

0, 0 18, 24 0, 0 61, 59 0, 0 21, 17
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Table 2.3: Simulation Results for m=20, n=25.The models correspond to those in Table
2.1; the format ‘(p, q, r)’ denotes the numbers of fixed and random effects, and the
number of parameters in the error variance. (3,1,2) is the true model, and ρ is the
correlation parameter under the AR(1) error. Every second row shows the number of
times out of 100 a model is selected by the minimum of a criterion, and by the ‘rule-of-
the-thumb of difference of 2’; see the text for more details.

quantity (2,1,2) (3,0,2) (3,1,1) (3,1,2) (3,2,1) (3,2,2)
ρ = 0.1

-2lc 451.1(2.8) 200.6(3.9) -100.6(3.1) -101.9(3.1) -107.2(3.1) -105.3(3.1)
0 0 0 5 79 16

cAI 449.1(0.2) 198.2(1.7) -52.0(0.8) -59.1(0.8) -49.6(1.0) -58.4(0.8)
0, 0 0, 0 4, 4 53, 75 3, 3 40, 18

cAIC 459.1(2.8) 210.6(3.9) -54.9(3.1) -54.3(3.1) -56.9(3.1) -55.3(3.1)
0, 0 0, 0 25, 68 5, 8 57, 22 13, 2

cAICc 459.2(2.8) 210.7(3.9) -52.7(3.1) -51.9(3.1) -54.1(3.1) -52.5(3.1)
0, 0 0, 0 35, 78 7, 9 48, 11 10, 2

cAICk 517.3(2.4) 210.6(3.9) -54.6(3.1) -53.4(3.1) -53.3(3.1) -50.7(3.1)
0, 0 0, 0 72, 84 15, 6 11, 8 2, 2

ρ = 0.4
-2lc 327.9(2.5) 20.5(3.5) -128.6(3.7) -182.5(3.3) -157.9(3.8) -186.9(3.3)

0 0 0 20 1 79
cAI 324.6(0.2) 20.3(1.3) -27.0(1.6) -138.6(0.8) -12.0(1.9) -136.8(0.8)

0, 0 0, 0 0, 0 60, 79 0, 0 40, 21
cAIC 335.9(2.5) 30.5(3.5) -82.9(3.7) -135.2(3.3) -96.1(3.7) -136.6(3.2)

0, 0 0, 0 0, 0 32, 80 0, 0 68, 20
cAICc 336.0(2.5) 30.6(3.5) -80.7(3.7) -132.8(3.3) -91.9(3.7) -133.8(3.2)

0, 0 0, 0 0, 0 37, 83 0, 0 63, 17
cAICk 434.7(2.0) 30.5(3.5) -82.5(3.7) -133.7(3.3) -92.9(3.7) -131.6(3.2)

0, 0 0, 0 0, 0 84, 89 0, 0 16, 11
ρ = 0.7

-2lc 154.7(2.2) -301.1(3.0) -197.2(5.0) -420.1(3.0) -281.1(5.2) -426.2(3.3)
0 0 0 23 0 77

cAI 153.1(0.2) -301.3(1.0) 68.9(4.6) -377.2(0.9) 165.1(7.0) -373.6(1.3)
0, 0 0, 0 0, 0 58, 84 0, 0 42, 16

cAIC 162.7(2.2) -291.1(3.0) -151.5(5.0) -373.8(3.0) -208.1(5.1) -376.0(3.1)
0, 0 0, 0 0, 0 30, 73 0, 0 70, 27

cAICc 162.8(2.2) -291.0(3.0) -149.2(5.0) -371.5(3.0) -202.2(5.1) -373.2(3.1)
0, 0 0, 0 0, 0 33, 76 0, 0 67, 24

cAICk 359.3(2.3) -291.1(3.0) -151.1(5.0) -370.9(3.0) -205.6(5.1) -369.5(3.1)
0, 0 0, 0 0, 0 79, 87 0, 0 21, 13
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Table 2.4: Simulation Results for m=20, n=50. The models correspond to those in
Table 2.1; the format ‘(p, q, r)’ denotes the numbers of fixed and random effects, and
the number of parameters in the error variance. (3,1,2) is the true model, and ρ is the
correlation parameter under the AR(1) error. Every second row shows the number of
times out of 100 a model is selected by the minimum of a criterion, and by the ‘rule-of-
the-thumb of difference of 2’; see the text for more details.

quantity (2,1,2) (3,0,2) (3,1,1) (3,1,2) (3,2,1) (3,2,2)
ρ = 0.1

-2lc 687.3(4.0) 364.9(6.2) -183.2(4.9) -189.0(4.9) -190.4(4.9) -192.7(4.9)
0 0 0 11 32 57

cAI 688.3(0.3) 366.6(3.2) -129.5(1.0) -143.1(0.9) -127.6(1.0) -142.1(0.9)
0, 0 0, 0 1, 1 55, 61 0, 0 44, 38

cAIC 695.3(4.0) 374.9(6.2) -137.4(4.9) -141.2(4.9) -139.4(4.9) -142.2(4.9)
0, 0 0, 0 5, 31 32, 53 17, 12 46, 4

cAICc 695.3(4.0) 375.0(6.2) -136.3(4.9) -140.0(4.9) -137.9(4.9) -140.8(4.9)
0, 0 0, 0 7, 32 33, 53 16, 11 44, 4

cAICk 735.2(3.8) 374.9(6.2) -137.2(4.9) -140.7(4.9) -135.9(4.9) -138.2(4.9)
0, 0 0, 0 15, 37 72, 54 8, 7 5, 2

ρ = 0.4
-2lc 380.5(4.3) 6.0(5.4) -203.1(5.7) -345.8(5.1) -234.2(5.8) -349.3(5.1)

0 0 0 14 0 86
cAI 379.1(0.3) 4.6(2.3) -102.9(1.6) -303.1(0.8) -88.1(2.1) -302.3(0.8)

0, 0 0, 0 0, 0 55, 74 0, 0 45, 26
cAIC 388.5(4.3) 16.0(5.4) -157.3(5.7) -298.2(5.1) -171.3(5.7) -299.1(5.1)

0, 0 0, 0 0, 0 47, 84 0, 0 53, 16
cAICc 388.5(4.3) 16.1(5.4) -156.2(5.7) -297.0(5.1) -169.1(5.7) -297.8(5.1)

0, 0 0, 0 0, 0 51, 84 0, 0 49, 16
cAICk 462.5(3.8) 16.0(5.4) -157.1(5.7) -297.4(5.1) -168.3(5.7) -294.8(5.1)

0, 0 0, 0 0, 0 90, 93 0, 0 10, 7
ρ = 0.7

-2lc -84.4(3.7) -657.4(4.4) -291.1(6.8) -845.5(4.4) -374.0(7.7) -850.5(4.4)
0 0 0 18 0 82

cAI -82.2(0.3) -650.3(1.2) -25.5(3.9) -794.1(0.8) 46.6(6.0) -792.2(0.9)
0, 0 0, 0 0, 0 60, 76 0, 0 40, 24

cAIC -76.4(3.7) -647.4(4.4) -245.2(6.8) -798.3(4.4) -301.2(7.6) -799.9(4.4)
0, 0 0, 0 0, 0 33, 76 0, 0 67, 24

cAICc -76.3(3.7) -647.3(4.4) -244.1(6.8) -797.2(4.4) -298.4(7.5) -798.5(4.4)
0, 0 0, 0 0, 0 34, 76 0, 0 66, 24

cAICk 113.1(3.1) -647.4(4.4) -245.0(6.8) -796.9(4.4) -298.9(7.6) -795.0(4.4)
0, 0 0, 0 0, 0 79, 88 0, 0 21, 12
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Figure 2.1: Spaghetti plot (left) and group means (right) for the FEV data: solid - drug
A, dashed - drug B, dotted - placebo.
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Figure 2.2: Scatter plot of FEV1 over 8 hours
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Table 2.5: Simulation results comparing different error correlation structures, for m=10,
n=10. AR(1) is the true model, and ρ is the AR correlation parameter. Every second row
shows the number of times out of 100 a model is selected by the minimum of a criterion,
and by the ‘rule-of-the-thumb of difference of 2’; see the text for more details.

quant. iid ar1 ar2 comp sym
ρ = 0.1

-2lc 337.1(1.6) 337.3(1.6) 335.5(1.7) 339.2(1.7)
27 11 60 2

cAI 367.9(0.7) 366.6(0.7) 370.0(1.0) 368.4(0.7)
14, 43 50, 40 19, 1 17, 16

cAIC 361.0(1.6) 363.2(1.6) 363.4(1.7) 365.2(1.7)
80, 91 5, 1 15, 8 0, 0

cAICc 364.6(1.6) 367.4(1.6) 368.4(1.7) 369.4(1.7)
84, 93 5, 1 11, 6 0, 0

cAICk 363.7(1.6) 369.1(1.6) 373.1(1.7) 435.9(3.5)
95, 100 1, 0 4, 0 0, 0

ρ = 0.4
-2lc 327.3(1.5) 323.5(1.4) 320.7(1.4) 331.1(1.6)

9 26 65 0
cAI 383.9(1.4) 354.3(1.2) 359.6(1.6) 375.2(1.4)

0, 0 68, 88 30, 9 2, 3
cAIC 351.2(1.5) 349.4(1.4) 348.6(1.4) 357.0(1.6)

28, 45 28, 24 43, 29 1, 2
cAICc 354.8(1.5) 353.6(1.4) 353.5(1.4) 361.2(1.6)

33, 52 31, 23 35, 24 1, 1
cAICk 353.9(1.5) 356.5(1.4) 359.3(1.4) 386.5(3.0)

69, 79 15, 11 15, 9 1, 1
ρ = 0.7

-2lc 299.8(2.2) 277.7(1.6) 276.2(1.7) 292.4(1.9)
0 39 59 2

cAI 432.3(3.9) 310.5(1.2) 314.6(1.8) 384.8(2.7)
0, 0 70, 91 30, 9 0, 0

cAIC 323.8(2.2) 303.6(1.6) 304.1(1.7) 318.3(1.9)
0, 0 71, 82 26, 16 3, 2

cAICc 327.4(2.2) 307.8(1.6) 309.0(1.7) 322.5(1.9)
0, 0 78, 84 18, 14 4, 2

cAICk 326.5(2.2) 312.9(1.6) 316.9(1.7) 326.7(1.8)
2, 6 74, 72 15, 10 9, 12
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Table 2.6: Simulation results comparing different error correlation structures, for m=25,
n=10. AR(1) is the true model, and ρ is the AR correlation parameter. Every second row
shows the number of times out of 100 a model is selected by the minimum of a criterion,
and by the ‘rule-of-the-thumb of difference of 2’; see the text for more details.

quant. iid ar1 ar2 comp sym
ρ = 0.1

-2lc 847.0(2.7) 849.3(2.7) 848.0(2.8) 855.6(2.9)
66 4 28 2

cAI 916.2(1.0) 909.4(1.0) 911.7(1.1) 914.5(1.1)
2, 5 49, 61 30, 5 19, 29

cAIC 900.9(2.7) 905.2(2.7) 905.9(2.8) 911.5(2.9)
90, 91 0, 0 10, 9 0, 0

cAICc 907.7(2.7) 912.5(2.7) 913.8(2.8) 918.8(2.9)
91, 93 0, 0 9, 7 0, 0

cAICk 903.6(2.7) 911.1(2.7) 915.8(2.8) 966.7(3.5)
96, 98 0, 0 4, 2 0, 0

ρ = 0.4
-2lc 824.9(2.9) 815.4(2.6) 813.6(2.6) 836.9(2.8)

6 33 61 0
cAI 945.7(2.0) 873.8(1.1) 876.3(1.3) 928.4(2.2)

0, 0 65, 89 35, 11 0, 0
cAIC 878.9(2.9) 871.3(2.6) 871.5(2.6) 892.7(2.8)

16, 24 43, 51 41, 25 0, 0
cAICc 885.7(2.9) 878.6(2.6) 879.4(2.6) 900.0(2.8)

16, 25 48, 55 36, 20 0, 0
cAICk 881.6(2.9) 878.4(2.6) 882.4(2.6) 910.9(2.8)

40, 49 46, 40 14, 11 0, 0
ρ = 0.7

-2lc 767.5(3.4) 707.4(2.5) 705.1(2.5) 745.9(3.0)
0 41 58 1

cAI 1050.9(6.1) 764.0(1.6) 767.7(1.7) 946.3(4.4)
0, 0 68, 88 32, 12 0, 0

cAIC 821.4(3.4) 763.2(2.5) 762.8(2.5) 801.7(3.0)
0, 0 59, 70 40, 29 1, 1

cAICc 828.2(3.4) 770.5(2.5) 770.7(2.5) 809.0(3.0)
0, 0 65, 76 34, 23 1, 1

cAICk 824.1(3.4) 772.8(2.5) 776.0(2.5) 808.5(3.0)
0, 0 77, 81 21, 16 2, 3
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Table 2.7: Simulation results comparing different error correlation structures, for m=75,
n=10. AR(1) is the true model, and ρ is the AR correlation parameter. Every second row
shows the number of times out of 100 a model is selected by the minimum of a criterion,
and by the ‘rule-of-the-thumb of difference of 2’; see the text for more details.

quant. iid ar1 ar2 comp sym
ρ = 0.1

-2lc 2557.3(4.1) 2564.9(4.1) 2562.4(4.2) 2582.5(4.6)
77 2 21 0

cAI 2741.8(1.7) 2721.1(1.6) 2724.5(1.8) 2728.6(1.5)
0, 1 50, 52 33, 26 17, 21

cAIC 2711.1(4.1) 2720.7(4.1) 2720.2(4.2) 2738.2(4.6)
86, 92 1, 1 13, 7 0, 0

cAICc 2728.9(4.1) 2739.0(4.1) 2739.0(4.2) 2756.5(4.6)
89, 95 1, 0 10, 5 0, 0

cAICk 2711.1(4.1) 2720.7(4.1) 2720.2(4.2) 2760.3(5.0)
86, 92 1, 1 13, 7 0, 0

ρ = 0.4
-2lc 2476.9(4.9) 2448.5(4.4) 2447.3(4.4) 2521.0(4.7)

1 44 55 0
cAI 2836.1(3.5) 2612.5(1.8) 2614.3(1.9) 2768.2(3.0)

0, 0 55, 70 45, 30 0, 0
cAIC 2630.7(4.9) 2604.1(4.4) 2604.9(4.4) 2676.6(4.7)

1, 2 62, 71 37, 27 0, 0
cAICc 2648.5(4.9) 2622.3(4.4) 2623.7(4.4) 2694.8(4.7)

1, 2 63, 73 36, 25 0, 0
cAICk 2633.4(4.9) 2611.2(4.4) 2616.0(4.4) 2688.0(4.7)

4, 4 74, 79 22, 17 0, 0
ρ = 0.7

-2lc 2485.3(4.7) 2456.1(4.2) 2454.5(4.4) 2529.1(4.7)
0 48 52 0

cAI 2828.3(3.0) 2610.1(1.5) 2612.6(1.8) 2766.9(3.4)
0, 0 52, 70 48, 30 0, 0

cAIC 2639.1(4.7) 2611.7(4.2) 2612.1(4.4) 2684.6(4.7)
0, 1 54, 67 46, 32 0, 0

cAICc 2656.9(4.7) 2630.0(4.2) 2630.9(4.4) 2702.8(4.7)
0, 1 56, 69 44, 30 0, 0

cAICk 2641.8(4.7) 2618.8(4.2) 2623.2(4.4) 2696.4(4.6)
2, 5 77, 83 21, 12 0, 0
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Table 2.8: Simulation results comparing different error correlation structures, for m=10,
n=25. AR(1) is the true model, and ρ is the AR correlation parameter. Every second row
shows the number of times out of 100 a model is selected by the minimum of a criterion,
and by the ‘rule-of-the-thumb of difference of 2’; see the text for more details.

quant. iid ar1 ar2 comp sym
ρ = 0.1

-2lc 867.9(2.6) 867.1(2.6) 866.1(2.5) 870.4(2.6)
22 26 52 0

cAI 897.3(0.7) 893.9(0.6) 895.1(0.7) 897.5(0.7)
3, 14 62, 73 28, 0 7, 13

cAIC 891.9(2.6) 893.1(2.6) 894.1(2.5) 896.4(2.6)
76, 89 15, 6 9, 5 0, 0

cAICc 893.2(2.6) 894.6(2.6) 895.9(2.5) 897.9(2.6)
80, 92 11, 5 9, 3 0, 0

cAICk 894.1(2.6) 897.8(2.6) 901.4(2.6) 949.3(3.7)
96, 98 4, 2 0, 0 0, 0

ρ = 0.4
-2lc 852.5(2.7) 824.9(2.2) 823.8(2.2) 855.7(2.7)

0 42 58 0
cAI 911.5(1.3) 855.3(0.8) 856.9(0.9) 903.5(1.4)

0, 0 62, 96 38, 4 0, 0
cAIC 876.5(2.7) 850.9(2.2) 851.8(2.2) 881.7(2.7)

0, 1 79, 93 21, 6 0, 0
cAICc 877.8(2.7) 852.4(2.2) 853.6(2.2) 883.3(2.7)

0, 1 81, 94 19, 5 0, 0
cAICk 878.7(2.7) 856.0(2.2) 859.5(2.2) 905.3(3.3)

1, 2 94, 93 5, 5 0, 0
ρ = 0.7

-2lc 818.8(3.7) 704.1(2.2) 703.3(2.2) 804.5(3.4)
0 44 56 0

cAI 958.5(3.6) 736.8(0.8) 737.9(1.0) 916.5(2.5)
0, 0 57, 93 43, 7 0, 0

cAIC 842.8(3.7) 730.1(2.2) 731.3(2.2) 830.5(3.4)
0, 0 84, 93 16, 7 0, 0

cAICc 844.1(3.7) 731.7(2.2) 733.1(2.2) 832.0(3.4)
0, 0 86, 95 14, 5 0, 0

cAICk 845.0(3.7) 736.5(2.2) 740.4(2.3) 838.2(3.6)
0, 0 95, 97 5, 3 0, 0
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Table 2.9: Simulation results comparing different error correlation structures, for m=20,
n=25. AR(1) is the true model, and ρ is the AR correlation parameter. Every second row
shows the number of times out of 100 a model is selected by the minimum of a criterion,
and by the ‘rule-of-the-thumb of difference of 2’; see the text for more details.

quant. iid ar1 ar2 comp sym
ρ = 0.1

-2lc 1731.8(3.2) 1730.6(3.2) 1729.1(3.2) 1737.3(3.2)
18 26 54 2

cAI 1790.3(0.8) 1782.8(0.8) 1784.7(0.9) 1789.8(1.0)
1, 4 50, 82 39, 1 10, 13

cAIC 1775.8(3.2) 1776.6(3.2) 1777.1(3.2) 1783.3(3.2)
60, 82 16, 10 24, 8 0, 0

cAICc 1778.0(3.2) 1778.9(3.2) 1779.6(3.2) 1785.6(3.2)
63, 82 17, 10 20, 8 0, 0

cAICk 1778.1(3.2) 1781.2(3.2) 1784.4(3.2) 1834.6(4.0)
87, 94 9, 4 4, 2 0, 0

ρ = 0.4
-2lc 1722.1(3.6) 1661.2(3.1) 1660.0(3.1) 1731.4(3.7)

0 44 56 0
cAI 1814.5(1.7) 1704.2(0.8) 1705.6(0.8) 1800.0(1.7)

0, 0 62, 95 38, 5 0, 0
cAIC 1766.1(3.6) 1707.2(3.1) 1708.0(3.1) 1777.4(3.7)

0, 0 72, 89 28, 11 0, 0
cAICc 1768.2(3.6) 1709.5(3.1) 1710.6(3.1) 1779.7(3.7)

0, 0 74, 90 26, 10 0, 0
cAICk 1768.3(3.6) 1712.4(3.1) 1715.8(3.1) 1794.0(3.8)

0, 0 91, 95 9, 5 0, 0
ρ = 0.7

-2lc 1651.2(4.7) 1418.4(2.9) 1417.3(2.9) 1617.3(4.4)
0 45 55 0

cAI 1902.3(4.5) 1467.6(1.0) 1469.1(1.1) 1841.8(4.4)
0, 0 64, 94 36, 6 0, 0

cAIC 1695.2(4.7) 1464.4(2.9) 1465.3(2.9) 1663.2(4.4)
0, 0 71, 85 29, 15 0, 0

cAICc 1697.3(4.7) 1466.7(2.9) 1467.8(2.9) 1665.6(4.4)
0, 0 72, 85 28, 15 0, 0

cAICk 1697.5(4.7) 1470.8(2.9) 1474.4(2.9) 1669.2(4.4)
0, 0 86, 98 14, 2 0, 0
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Table 2.10: Simulation results comparing different error correlation structures, for
m=20, n=50. AR(1) is the true model, and ρ is the AR correlation parameter. Every
second row shows the number of times out of 100 a model is selected by the minimum
of a criterion, and by the ‘rule-of-the-thumb of difference of 2’; see the text for more
details.

quant. iid ar1 ar2 comp sym
ρ = 0.1

-2lc 3508.7(4.7) 3502.3(4.6) 3501.0(4.6) 3514.1(4.7)
1 41 58 0

cAI 3558.1(0.8) 3544.8(0.7) 3546.2(0.8) 3556.8(0.8)
0, 0 59, 99 40, 0 1, 1

cAIC 3552.7(4.7) 3548.3(4.6) 3549.0(4.6) 3560.1(4.7)
21, 28 55, 61 24, 11 0, 0

cAICc 3553.8(4.7) 3549.4(4.6) 3550.2(4.6) 3561.2(4.7)
21, 30 55, 59 24, 11 0, 0

cAICk 3552.7(4.7) 3548.3(4.6) 3549.0(4.6) 3587.9(5.4)
21, 28 55, 61 24, 11 0, 0

ρ = 0.4
-2lc 3490.8(5.8) 3342.6(4.8) 3341.5(4.8) 3499.9(5.8)

0 38 62 0
cAI 3581.3(1.5) 3383.5(0.8) 3384.7(0.8) 3566.1(1.7)

0, 0 65, 100 35, 0 0, 0
cAIC 3534.8(5.8) 3388.6(4.8) 3389.5(4.8) 3545.9(5.8)

0, 0 80, 94 20, 6 0, 0
cAICc 3535.8(5.8) 3389.7(4.8) 3390.7(4.8) 3547.0(5.8)

0, 0 80, 94 20, 6 0, 0
cAICk 3536.9(5.8) 3393.1(4.8) 3396.3(4.8) 3560.5(5.9)

0, 0 94, 96 6, 4 0, 0
ρ = 0.7

-2lc 3413.9(7.5) 2853.2(4.2) 2852.2(4.2) 3383.3(7.5)
0 37 63 0

cAI 3661.6(4.9) 2896.0(1.0) 2897.1(1.0) 3594.9(4.2)
0, 0 68, 99 32, 1 0, 0

cAIC 3457.9(7.5) 2899.2(4.2) 2900.2(4.2) 3429.3(7.5)
0, 0 80, 91 20, 9 0, 0

cAICc 3458.9(7.5) 2900.4(4.2) 2901.5(4.2) 3430.4(7.5)
0, 0 82, 91 18, 9 0, 0

cAICk 3460.0(7.5) 2904.4(4.2) 2907.7(4.2) 3435.4(7.5)
0, 0 91, 99 9, 1 0, 0
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Table 2.11: Parameters estimates (standard errors) and model selection for the FEV1

data under three different error structures.

Parameters Independent AR(1) AR(2)
Intercept 0.515 (0.284) 0.514 (0.285) 0.516 (0.284)
Baseline FEV1 0.903 (0.101) 0.895 (0.100) 0.892 (0.100)
Hour -0.018 (0.008) -0.016 (0.012) -0.015 (0.012)
Treatment A 0.603 (0.140) 0.633 (0.149) 0.656 (0.152)
Treatment B 0.943 (0.140) 0.926 (0.149) 0.927 (0.152)
Hour : treatment A -0.071 (0.011) -0.073 (0.016) -0.075 (0.018)
Hour : treatment B -0.097 (0.011) -0.090 (0.016) -0.089 (0.018)
τ (random intercept) 0.454 (0.044) 0.429 (0.048) 0.390 (0.067)
σ (error SD) 0.253 (0.008) 0.292 (0.019) 0.341 (0.052)
ρ1 – 0.546 (0.051) 0.544 (0.008)
ρ2 – – 0.184 (0.063)

cAIC 130.1 125.8 178.2
cAICc 153.4 149.4 201.1
cAICk 130.8 130.5 171.9



Chapter 3

A Comparison of Smoothing Via L1

and L2 Penalization with Application to

Group fMRI Data

3.1 Introduction

Clustered data, such as that arising from repeated measurements on several sub-

jects, is often analyzed with a mixed effect model. In a linear mixed effect model, the

population, or marginal, mean is modeled by a linear combination of covariates; the

coefficients of these covariates are called ‘fixed effects’. The mean for a given cluster,

or conditional mean, is modeled by the fixed effects plus a linear combination of covari-

ates; the coefficients corresponding to these additional covariates are called ‘random

effects’ and are specific to each cluster in the model. The random effects are assumed

to come from some distribution, typically normal distribution with mean 0, and induce

correlation within each cluster in the marginal model. In the general linear mixed ef-

fect model, the within cluster correlation is additionally modeled through a parametric

correlation structure for the errors.

In this chapter, we consider a variation of the general linear mixed effect model

where the parametric model of the marginal mean is replaced by a non-parametric

model. As in a standard general linear mixed effect model, the correlation structure

44
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is modeled through a combination of random effects and an error correlation structure.

We chose to use splines to obtain a non-parametric estimate of the marginal mean since,

as noted by Speed in [62], a spline model can be written as a mixed effect model and

thus we can write the combined spline and mixed effect model as a single general lin-

ear mixed effects models. Two types of splines are considered, regression splines and

penalized splines (p-splines). We start with a large number of basis function in either

method and use penalization to prevent over-fitting. The L2 penalty is used for p-splines

while an L1 penalty is used to select knot locations for the regression splines.

3.1.1 L1 penalization

The LASSO (least absolute shrinkage and selection operator) was introduced by

Tibshirani [65] for the purposes of estimation and variable selection in linear regression.

In the usual linear regression model with centered covariates y = Xβ + ε the parameter

β is estimated by minimizing the residual sum of squares and an L1 penalty term:

β̂ = argmin
β

{
(y −Xβ)>(y −Xβ) + λ

s∑
j=1

|βj|

}
.

Model selection is performed by the choice of the parameter λ in the penalty term: as λ

increases from zero, the number of covariates in the model may change, since β̂j’s are

allowed to be set to exactly zero. A discussion of the LASSO in comparison with other

shrinkage techniques is presented by Hastie, Tibshirani and Friedman [30]. Knight and

Fu [40] studied the asymptotics of LASSO estimates in the context of linear regression

with iid errors.

While much of the theory of the LASSO is derived under the assumption of a

parametric model, the LASSO has been applied to non-parametric problems: the prob-

lem of knot selection in regression splines by Osborne, Presnell and Turlach [54] is one

example and some theory is presented in Bühlmann and van de Geer [6].

Limited results have been obtained for correlated data. In a doctoral dissertation,

Gupta [27] studied the asymptotics of LASSO estimates in the presence of correlated

errors and a large number of covariates. In particular, results were obtained for the
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following estimate of β:

β̂ = argmin
β

{
(y −Xβ)T Σ̂−1(y −Xβ) + λ

s∑
j=1

|βj|

}
where the errors ε are assumed to beN(0,Σ) and Σ̂ is assumed to be consistent estimator

of Σ. Wang, Li and Tsai [69] study the problem of joint selection of covariates and type

of autoregressive process via the LASSO for linear regression with autoregressive errors.

3.1.2 L2 penalization

An overview of p-splines can be found in [57]; here, the L2 penalization is used

with the truncated power basis. P-splines with difference penalties and the B-spline ba-

sis are introduced by Marx and Eilers in [18]. Asymptotics were first considered in [28];

here, expressions were derived for asymptotic variance and bias in the case of indepen-

dent errors and uniformly dense knots. Later references are [70, 39, 47, 10]. While the

results in these papers extend [28] to explicitly account for the number of knots, non-

normal outcomes, and make connections with kernel smoothing, there is limited work

on the asymptotics of p-splines with correlated errors. Smoothing parameter selection

when the error structure is mispecified is covered in [41].

3.2 Penalized Mixed Effect Models

Two applications of L1 penalization for the selection of both random and fixed

effects have recently been proposed. Ibrahim et al. [36] used one penalty to select

fixed effects and another penalty on the cholesky decomposition of the random effects

covariance matrix to select random effects. Their method extends to generalized linear

mixed models. Bondell, Krishna and Ghosh [3] purposed methods similar to that of

Ibrahim et al [36]. In both works, the variance components of the model are estimated

using REML and the number of covariates is less than the number of datapoints. Most

recently, Schelldorfer, Bühlmann and van de Geer [58] proposed L1 penalization for

linear mixed models when the number of covariates to be much larger than the number

of observations. Their verison is appropriate for situations where it is known which

covariates will be used as random effects, such as the random intercept model.
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Smoothing splines with with cubic B-spline basis have been proposed by Brum-

back and Rice in [5] for the analysis of nested curves. Their model uses a smoothing

spline to fit the marginal mean as well as cluster-specific deviations and may be written

as a linear mixed effect model where both the fixed and random effect covariates are

basis functions.

We first describe our approach to estimate single mean curve in the presence of

random effects and correlated errors.

3.2.1 Notation

Let yik be the measurement at time tk in cluster i for i = 1, . . . ,m and k =

1, . . . , ni. Assume that each measurement follows the model

yik = µ(tk) + zikbi + εik, (3.1)

where µ(t) is a smooth function of t, zikbi is a cluster specific deviation from µ(tk) and

εi = stack(εi1, . . . , εini
) is distributed N(0, Vi(σv)) for some correlation matrix Vi(σv)

known up to a s × 1 vector of parameters σv. We assume that the bi’s are r × 1 vec-

tors of random effects independently drawn from N(0, D1(σd)) for i = 1, . . . ,m, each

associated with the 1× r covariate vector zik. Let Zi be the matrix with rows zik.

For simplicity, we consider the case where k = 1, . . . , ni = n for all i =

1, . . . ,m.

3.2.2 Penalized spline fit of the marginal mean

We estimate the function µ over the interval [t1, tn] by a linear combination of

basis functions. One might consider the use of the B-spline basis here; these are often

preferred for their numerical stability and compact support [19]. For the L1 penalty, the

minimal amount of overlapping support is actually a disadvantage: when one spline is

removed from the set via a zero coefficient then the entire basis must be re-calculated,

otherwise a ‘dip’ will be appear in the estimated function. For L2 penalization, either

set of basis functions may be used; often B-splines are preferred for the aforementioned

reasons. We stick with truncated basis functions for ease of presentation. With either
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basis, the number and position of knots are essential for obtaining a good estimate of µ:

we start with a large Q and evenly space the knots in the interval [t1, tn]: from this initial

set of basis functions we simultaneously estimate µ and reduce the number of knots

used by placing an L1 penalty on the elements of β that correspond to basis functions

with knots. Alternately, in the p-spline approach, we keep all knots but penalize the

coefficients of basis functions that correspond to knot locations with an L2 penalty.

We approximate µ by a linear combination of basis functions. We present the

model in terms of the truncated cubic spline basis, {1, t, t2, t3, (t− τ1)3
+, . . . , (t− τQ)3

+}
where (x)+ is x if x > 0 and 0 otherwise. The points τ1, . . . τQ are called knots. For

each i, denote yi = (yi1, . . . , yin)> and

Xi =


1 ti1 t2i1 t3i1 (ti1 − τ1)3

+ . . . (ti1 − τQ)3
+

...
...

...
...

...
...

1 tin t2in t3in (tin − τ1)3
+ . . . (tin − τQ)3

+

 .
Our model can be written in matrix form as y = Xβ + Zb+ ε where X =

stack(X1, . . . , Xm), β = stack(β0, . . . , βS+3), Z = diag(Z1, . . . Zm), b =

stack(b1, . . . , bm), ε = stack(ε1, . . . , εm) and y = stack(y1, . . . , ym). To make the

distinction between unpenalized and penalized elements clear, we partition β as β =

stack(βu, βp) and X = (Xu, Xp) so that Xβ = Xuβu +Xpβp. Let D =

diag(D1(σd), . . . , D1(σd)), V (σv) = diag(V1(σv), . . . , Vn(σv)) and Σ = V + ZDZ>.

Since V , Z and D are all block diagonal matrices, Σ is as well. Denote the ith block of

Σ, which corresponds to cluster i, by Σi.

Let µ = stack(µ(t1), . . . , µ(tn)). Under the model in (1), the log likelihood of

y is (up to a constant)

l(y|µ,Σ) = −1

2
log |Σ| − 1

2
(y − µ)>Σ−1(y − µ). (3.2)

We approximate µ by Xβ, a linear combination of basis functions, and choose µ̂ = Xβ̂

by replacing µ with Xβ in (2) and penalizing the coefficients of basis functions that

correspond to knot locations:

(β̂, Σ̂) = argmin
β,Σ

{
1

2
log |Σ|+ 1

2
(y −Xβ)TΣ−1(y −Xβ) + pλ(βp)

}
. (3.3)
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If Σ was known and the L1 penalty used, p1
λ(βp) = λ

∑Q
q=1 |βpq|, then this procedure

would be exactly that of Osbourne, Presnell and Turlach used to select knot locations

for regression splines[54]. If the L2 penalty were used, p2
λ(βp) = λ

∑Q
q=1 (βpq)

2, and

Σ known, then this method would result in a p-spline estimate of µ(t) in the style of

[57]. Once the estimates of µ and Σ are obtained, predictions of the random effects b

can be by maximizing the ‘joint’ likelihood of µ and b with µ replaced by Xβ. This

maximization results in

b̂ = D̂Z>Σ̂−1(y −Xβ̂)

We choose λ to minimize either BIC, as in Schelldorfer, Bühlmann and van de Geer

[58]:

λ̂ = argmin
λ

[l(y|Xβ) + log (nm)DF ]

or AIC. For either AIC or BIC, the degrees of freedom (DF) depends on the penalty

used: for the L1 penalty, the degrees of freedom is the number of non-zero parameters

in the model while for the L2 penalty, it is the trace of the ‘hat’ matrixH plus the number

of covariance parameters. The hat matrix H is such that ŷ = Xβ̂ + Zb̂ = Hy.

3.2.3 Standard errors

Standard errors via the Sandwich Estimator

In [20], Fan and Li proposed a sandwich estimator to obtain standard errors

for nonzero elements of β̂ when penalization is used to estimate β in the usual linear

regression setting. It was later shown that this estimator is consistent when the number of

parameters grows at a certain rate with the sample size [21]. The sandwich estimator for

penalized likelihoods has an additional term in the second derivative due to the penalty.

Denote the vector of all non-zero elements of β̂ and the parameters

σ = stack(σv, σd) in Σ by θ. Let∇l and∇2l be the first and second derivatives of l with

respect to θ and pλ(θ) be the penalty term. The sandwich estimate for the covariance of

θ̂ in [20] is

ĉov(θ̂) = m{∇2l(θ̂)− Λ}−1ĉov{∇l(θ̂)}{∇2l(θ̂)− Λ}−1 (3.4)
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where the (k, s)-element of Λ is ∂2pλ(θ)/∂θk∂θs and the (k, s)-element of ĉov{∇l(θ̂)}
is {

1

m

m∑
i=1

∂li(θ̂)

∂θk

∂li(θ̂)

∂θs

}
−

{
1

m

m∑
i=1

∂li(θ̂)

∂θk

}{
1

m

m∑
i=1

∂li(θ̂)

∂θs

}
We follow [21] by using a local quadratic approximation to approximate

∂2pλ(θ)/∂βk∂βk with 1/|βk| when pλ(θ) is the L1 penalty. Differentiating the log-

likelihood (2) leads to the following formulas for∇l and ∇2l:

∂l

∂β
= −

m∑
i=1

X>i Σ−1
i (yi −Xiβ)

∂l

∂σk
= −1

2

{
mtr

(
Σ−1
i

∂Σi

∂σk

)
−

m∑
i=1

(yi −Xiβ)TΣ−1
i

∂Σi

∂σk
Σ−1
i (yi −Xiβ)

}
∂2l

∂β∂βT
=

m∑
i=1

X>i Σ−1
i Xi

∂2l

∂β∂σk
=

m∑
i=1

X>i Σ−1
i

∂Σi

∂σk
Σ−1
i (yi −Xiβ)

and

∂2l

∂σs∂σk
=− 1

2

{
mtr

(
−Σ−1

i

∂Σi

∂σs
Σ−1
i

∂Σi

∂σk
+ Σ−1

i

∂2Σi

∂σs∂σk

)
+

m∑
i=1

(yi −Xiβ)>
(
−Σ−1

i

∂Σi

∂σs
Σ−1
i

∂Σi

∂σk
Σ−1
i + Σ−1

i

∂2Σi

∂σs∂σk
Σ−1
i

− Σ−1
i

∂Σi

∂σk
Σ−1
i

∂Σi

∂σs
Σ−1
i

)
(yi −Xiβ)

}

Once ĉov(β̂) is obtained, a 95% confidence interval for µ(tk) may be formed by µ̂(tk)±
1.96σk where σk is the kth element of

√
diag(X ĉov(β̂)X>).

Parametric bootstrap

In addition to the sandwich estimator, we also considered confidence intervals

for µ(tk) based on a parametric bootstrap. We generated µ̂∗(t) as follows:

1. draw m b∗i ’s from N(0, D̂2
1),

2. draw m ε∗i ’s from N(0, V̂i),
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3. form y∗i = Xiβ̂ + Zib
∗
i + ε∗i for i = 1, . . . ,m,

4. obtain µ̂∗(t) via equation (3).

OnceB such µ̂∗(t) are obtained, we created a percentile 95% confidence interval

by taking the 2.5th and 97.5th highest µ̂∗(t)’s.

We also considered using estimates from a full model in the above procedure. In

a small number of simulations, both bootstrap procedures worked well; in practice the

amount of computation was undesirable and so we did not pursue these methods further.

3.2.4 Computational aspects

The criterion may be non-convex in β and the parameters in Σ. Following Wang,

Li and Tsai [69] but breaking up β into its penalized and unpenalized components, we

iterate between

(βj+1
p |βju,Σj) = argmin

βp

{
(y −Xuβ

j
u −Xpβp)

>(Σj)−1(y −Xuβ
j
u −Xpβp) + pλ(βp)

}
(3.5)

and

(Σj+1, βj+1
u |βp) = argmin

Σ,βu

{
1

2
log |Σ|+ 1

2
(y −Xuβu −Xpβ

j
p)
>Σ−1 (3.6)

×(y −Xuβu −Xpβ
j
p)

(3.8)

until convergence. In each step, βjp may be obtained from 3.5 using any of the standard

methods for LASSO in linear regression models (LARS, cyclic or greedy coordinate

descent, homotopy) when the L1 penalty p1
λ(βp) is used. We found that the ‘lars’ func-

tion in the R package ‘lars’ worked well. When the L2 penalty p2
λ(βp) is used, this step

is simply ridge regression. Here we used the function ‘lm.ridge’ from the ‘MASS’ R

package. The covariance parameters in Σ may be obtained from 3.7 by numerical op-

timization. By noting that 3.7 is equivalent to fitting a general linear mixed model on

y∗∗ = y−Xpβ
j
p, one can use any standard software for maximum likelihood estimation
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of such models. We used the function ‘lme’ in the R package ‘nlme’. An alternative to

iteration between 3.5 and 3.7 would be an EM algorithm as in Ibrahim et al, [36] and

Bondell, Krishna and Ghosh [3].

3.3 Simulations

For each of 100 simulations, we generated m = 5, 10 or 40 curves, each of

length ni = 70 points. The generating model had either an overall mean of µ(t) =

sin (10πt/70) (‘sine’) or a model of the hemodynamic response (’fMRI’). We used the

R package neuRosim to generate the latter curve. This package allows for three models

of hemodynamic response function and various types of noise. We used the double

gamma model of hemodynamic response:

h(t) =

(
t

d1

)a1
exp

(
−t− d1

b1

)
− c

(
t

d2

)a2
exp

(
−t− d2

b2

)
(3.9)

with the default setting for the parameters: a1 = 6, a2 = 12, b1 = b2 = 0.9, di = aibi,

c = 0.35. We assume an experiment design of 10 seconds of rest, followed by 30

seconds of an activity, followed by 30 seconds of rest, with a TR of 1. The assumed

signal for this setting is shown in the right of Figure 3.1. Data generated from either the

sine or fMRI curve had within curve errors εi from N(0,R1(0.4)) and and R1(0.4) is the

autocorrelation matrix of a first order autoregressive process with parameter 0.4.

For each simulation set, we fit three models of the mean curve: a regression

spline model with L1 penalization for knot selection (‘L1’), a penalized spline with knots

at every other other time point (‘L2 by 2’) and a penalized spline with knots at every time

point (‘L2’). For each model, the smoothing parameter was selected to minimize AIC,

BIC with the sample size as the number of clusters (‘BIC (m)’) or BIC with the sample

size as the number of observations (‘BIC (nm)’). The R package ‘lars’ was used when

fitting the regression spline; for both the regression and penalized splines the covariance

parameters were found using the function ’gls’ from the R package ’nlme’. The criterion

used to determine convergence was sum of absolute values of differences in parameters

less than 10−4.

Tables 3.1 and 3.2 and shows the mean (se) of the covariance parameters from

the 100 simulation runs while Table 3.3 has the mean integrated squared error (se).
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Figure 3.1: True Mean Curves from Simulation

Table 3.1: Within group correlation ρ = 0.4

Sine fMRI
AIC BIC(m) BIC(nm) AIC BIC(m) BIC(nm)

m = 5
L1 0.337 (0.005) 0.337 (0.005) 0.340 (0.005) 0.337 (0.006) 0.341 (0.006) 0.358 (0.006)
L2 (by 2) 0.335 (0.005) 0.335 (0.005) 0.335 (0.005) 0.335 (0.005) 0.335 (0.005) 0.386 (0.011)
L2 0.388 (0.005) 0.389 (0.005) 0.420 (0.005) 0.382 (0.005) 0.384 (0.005) 0.425 (0.007)
m = 10
L1 0.371 (0.003) 0.371 (0.003) 0.371 (0.003) 0.366 (0.003) 0.367 (0.003) 0.377 (0.003)
L2 (by 2) 0.370 (0.003) 0.370 (0.003) 0.370 (0.003) 0.370 (0.003) 0.370 (0.003) 0.379 (0.004)
L2 0.394 (0.003) 0.392 (0.003) 0.407 (0.004) 0.392 (0.003) 0.391 (0.003) 0.406 (0.003)
m = 40
L1 0.395 (0.002) 0.394 (0.002) 0.394 (0.002) 0.394 (0.002) 0.394 (0.002) 0.396 (0.002)
L2 (by 2) 0.370 (0.003) 0.370 (0.003) 0.370 (0.003) 0.391 (0.002) 0.392 (0.002) 0.395 (0.002)
L2 0.394 (0.003) 0.392 (0.003) 0.407 (0.004) 0.398 (0.002) 0.398 (0.002) 0.401 (0.002)
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Table 3.2: Error variance σ2 = 0.09

Sine fMRI
AIC BIC(m) BIC(nm) AIC BIC(m) BIC(nm)

m = 5
L1 0.079 (0.001) 0.079 (0.001) 0.081 (0.001) 0.079 (0.001) 0.077 (0.001) 0.084 (0.001)
L2 (by 2) 0.076 (0.001) 0.076 (0.001) 0.076 (0.001) 0.076 (0.001) 0.076 (0.001) 0.090 (0.003)
L2 0.072 (0.001) 0.072 (0.001) 0.087 (0.001) 0.074 (0.001) 0.073 (0.001) 0.091 (0.002)
m = 10
L1 0.084 (0.001) 0.084 (0.001) 0.086 (0.001) 0.085 (0.001) 0.085 (0.001) 0.088 (0.001)
L2 (by 2) 0.084 (0.001) 0.084 (0.001) 0.084 (0.001) 0.084 (0.001) 0.084 (0.001) 0.086 (0.001)
L2 0.083 (0.001) 0.083 (0.001) 0.089 (0.001) 0.083 (0.001) 0.084 (0.001) 0.089 (0.001)
m = 40
L1 0.089 (0.000) 0.089 (0.000) 0.089 (0.000) 0.089 (0.000) 0.089 (0.000) 0.090 (0.000)
L2 (by 2) 0.084 (0.001) 0.084 (0.001) 0.084 (0.001) 0.088 (0.000) 0.088 (0.000) 0.089 (0.000)
L2 0.083 (0.001) 0.083 (0.001) 0.089 (0.001) 0.089 (0.000) 0.089 (0.000) 0.090 (0.000)

Table 3.3: MISE (se) = mean integrated square error

Sine fMRI
AIC BIC(m) BIC(nm) AIC BIC(m) BIC(nm)

m = 5
L1 0.744 (0.022) 0.741 (0.022) 0.786 (0.025) 0.726 (0.023) 0.784 (0.026) 0.855 (0.030)
L2 (by 2) 0.906 (0.023) 0.906 (0.023) 0.905 (0.023) 0.902 (0.023) 0.902 (0.023) 1.756 (0.139)
L2 2.100 (0.149) 2.101 (0.149) 2.586 (0.146) 2.062 (0.148) 2.085 (0.149) 2.641 (0.151)
m = 10
L1 0.404 (0.012) 0.402 (0.012) 0.415 (0.013) 0.377 (0.012) 0.375 (0.012) 0.482 (0.017)
L2 (by 2) 0.454 (0.013) 0.454 (0.013) 0.453 (0.013) 0.454 (0.013) 0.454 (0.013) 0.614 (0.035)
L2 1.401 (0.120) 1.399 (0.119) 1.626 (0.118) 1.405 (0.119) 1.406 (0.118) 1.587 (0.115)
m = 40
L1 0.111 (0.003) 0.112 (0.003) 0.113 (0.003) 0.105 (0.003) 0.110 (0.003) 0.142 (0.005)
L2 (by 2) 0.454 (0.013) 0.454 (0.013) 0.453 (0.013) 0.113 (0.004) 0.120 (0.003) 0.167 (0.002)
L2 1.401 (0.120) 1.399 (0.119) 1.626 (0.118) 0.318 (0.029) 0.336 (0.029) 0.377 (0.029)
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3.4 fMRI data

3.4.1 Model of hemodynamic response

The hemodynamic response hi(tk) to brain activation, observed in a voxel at

time tk, may be assumed to have some common form:

hi(tk) = ai + bih(tk) + εik (3.10)

where ai and bi are constants, h(t) is a particular function, and εit are errors that are

correlated over time. Typically the baseline activation ai varies by subject and so, to

facilitate between-subject comparisons, it is removed by modeling the percent change

PCi(t) = (hi(t) − ai)/ai. In practice, this is accomplished by dividing the observed

activation at each measurement time by â, where â is some estimate of the baseline

activation (either the mean observed time series or the mean of the observed time series

during ‘rest’ blocks). The model may be expanded to include allow other types of

subject specific deviations from h(t). For example, a time shift ci may be included via

h(t+ ci) ≈ h(t) + h′(t)ci.

3.4.2 Caffeine dataset

Functional MRI is a popular method of estimating brain activity by measuring

blood flow to the brain. The Center for Functional MRI at UCSD performed a study to

examine the effect of caffeine on the blood oxygenation level dependent (BOLD) signal

from fMRI sessions (Rack-Gomer, Liau, and Liu, [56]). The study had 11 subjects, but

2 were dropped due to head movement during the scans. A block design was used to

observe fingertapping: after an initial period of 20 seconds, the subjects were told to

alternate fingertapping (30 seconds) and not fingertapping (30 seconds) for five cycles.

The BOLD signal was measured every 2 seconds and the first 4 seconds were dropped

from each scan, giving a total of 156 time points for the duration of each scan. These

156 points of 2 second intervals will be referred to as the ‘time’ variable. The block

design was performed twice for each subject, once for a ‘pre-caffeine’ session and again

after ingested 200 mg of caffeine (the ‘post-caffeine’ session). During fingertapping

periods, some of the voxels in the motor-cortex region of the brain become ‘activated’
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- more oxygen was sent to this part of the brain. Following standard preprocessing

techinques in the field, the voxels in the motor cortex for each subject were selected that

were common to both the pre and post caffiene sessions.

3.4.3 Model of pre and post caffeine sessions

Let yivjk be the BOLD signal at time k, during session j, in voxel v for subject

i for i = 1, . . . ,m, j = 1, 2 and t = 1, . . . , 156 and v = 1, . . . , nvi Assume that each

measurement follows the model

yivjk = βij1[i 6=1] + µj(tk) + bivj + εivjk (3.11)

where µj(t) is smooth functions of t, εivj = (εivj1, . . . , εivjn)T is distributed N(0, σ2R1)

for some correlation matrix R1 (known up to a vector of parameters ρ) and biv is inde-

pendently distributed N(0, D1) for each iv.

3.4.4 Results

In the analysis of the pre and post-caffeine scans over all subjects for the finger-

tapping sessions, Rack-Gomer, Liau, and Liu [56] compared four measures. They found

a significant difference in 1) time to reach 50% of peak response and 2) time to fall to

50% of peak response but not a significant difference in 3) the full width-half maximum

(difference between the previous two times) or 4) the maximum amplitude of the BOLD

response.
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Figure 3.2: Estimated (solid) and observed (dots) BOLD signals from three voxels
per subject, by session. The estimated curves were obtained via L2 penalization with
smoothing parameter selection by AIC. The fits were obtained using the entire dataset;
only the results for three voxels are shown for the purpose of display.
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via L2 penalization with smoothing parameter selection by AIC.
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computed with the sandwich estimator.
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3.5 Discussion

In this paper, we have combined several methods to obtain a non-parametric

estimate of a mean from correlated data. The resulting model can easily be fit using

existing software.
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Appendix A

fMRI Plots

Table A.1: Number of motor cortex voxels per subject.

Subject 1 2 3 4 5 6 7 8 9
Number of Voxels 77 35 73 124 78 106 67 89 72

62
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Figure A.2: Randomly selected BOLD signals from the motor cortex of Subject 1,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.
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Figure A.3: Randomly selected BOLD signals from the motor cortex of Subject 2,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.
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Figure A.4: Randomly selected BOLD signals from the motor cortex of Subject 3,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.
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Figure A.5: Randomly selected BOLD signals from the motor cortex of Subject 4,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.



68

Pre Post

2500

5000

7500

0 50 100 150 0 50 100 150
Time (2 seconds)

B
O

LD
 S

ig
na

ls
 fo

r 
S

ub
je

ct
 5

 fr
om

 1
5 

V
ox

el
s

Pre Post

95

100

105

110

0 50 100 150 0 50 100 150
Time (2 seconds)

%
 C

ha
ng

e 
in

 B
O

LD
 S

ig
na

l, 
C

en
te

re
d 

at
 1

00
, f

or
 S

ub
je

ct
 5

Figure A.6: Randomly selected BOLD signals from the motor cortex of Subject 5,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.
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Figure A.7: Randomly selected BOLD signals from the motor cortex of Subject 6,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.
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Figure A.8: Randomly selected BOLD signals from the motor cortex of Subject 7,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.
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Figure A.9: Randomly selected BOLD signals from the motor cortex of Subject 8,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.
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Figure A.10: Randomly selected BOLD signals from the motor cortex of Subject 9,
before and after caffeine. The top two plots show the BOLD signals during the pre (left)
and post (right) caffeine sessions while the bottom two plots display these signals as
percent changes centered at 100. Time-series of the same color are from the same voxel.
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Figure A.21: Average BOLD signals from the motor cortices of 9 subjects, before and
after caffeine.
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Figure A.22: Average BOLD signals from the motor cortices of 9 subjects, before and
after caffeine. The top two plots show average BOLD signals for the pre (left) and
post (right) caffeine sessions while the lower two plots display these signals as percent
changes, centered at 100. Light gray shading indicates periods of fingertapping.
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