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ARTICLE

Exact broadband excitation of two-level systems by
mapping spins to springs
Jr-Shin Li1, Justin Ruths2 & Steffen J. Glaser3

Designing accurate and high-fidelity broadband pulses is an essential component in

conducting quantum experiments across fields from protein spectroscopy to quantum optics.

However, constructing exact and analytic broadband pulses remains unsolved due to the

nonlinearity and complexity of the underlying spin system dynamics. Here, we present a

nontrivial dynamic connection between nonlinear spin and linear spring systems and show

the surprising result that such nonlinear and complex pulse design problems are equivalent to

designing controls to steer linear harmonic oscillators under optimal forcing. We derive

analytic broadband π/2 and π pulses that perform exact, or asymptotically exact, excitation

and inversion over a defined bandwidth, and also with bounded amplitude. This development

opens up avenues for pulse sequence design and lays a foundation for understanding the

control of two-level systems.
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Manipulating large ensembles of dynamical systems by
a single control signal is a common challenging
problem in experimental physics, chemistry, biology,

and neuroscience; difficult chiefly due to the inherent
heterogeneity present in the systems. For example, in
spectroscopic applications such as nuclear magnetic resonance
(NMR) spectroscopy, optical spectroscopy, magnetic
resonance imaging, and quantum computing, experiments are
often performed on quantum ensembles on the order of 1023

rather than individual molecules or atoms1–7. These experiments
are conducted through a sequence of engineered electromagnetic
pulses that are globally broadcast to produce a desired excitation
profile or a time evolution of the quantum ensemble. The system
Hamiltonian is inherently not uniform over the ensemble due to
variations in the values of the parameters that characterize
the dynamics of each individual spin. NMR spectroscopy
offers canonical examples, including broadband excitation and
inversion of spin populations, where only a single coil is available
to generate radio-frequency (RF) fields that are used to steer all
nuclear spins of a particular type (e.g., protons) in a macroscopic
sample from some initial state (e.g., thermal equilibrium) to a
desired target state (e.g., transverse magnetization with a desired
phase) despite inherent variation in the natural frequency of the
spins. The ability to perform a state-to-state transformation of
this type has direct impact on experimental outcomes in,
for example, increasing medical image resolution8, amplifying
off-resonance signal recovery in large-protein NMR9,
achieving effective coherent control of logical qubits10, and
developing pulses for ultrafast all-optical signal processing
devices11.

The evolution of a two-level system is described by the Bloch
model, which can be represented as a bilinear dynamical system.
If the spin population is characterized by a single frequency, it is
well known that an on-resonance sinusoidal pulse, where the
frequency of the RF pulse is tuned to match the frequency (ω) of
the sample, is able to excite or invert the spins exactly.
In these cases, the RF pulse γB1y cos(ωt) achieves equalization
(a π/2 or 90° rotation) or inversion (a π or 180° rotation) of
the spin population in T= π/(2γB1y) or T= π/(γB1y) units of
time, respectively12, where B1y is the strength of the RF pulse
applied around the y axis of the rotating frame and γ is the
gyromagnetic ratio.

In practice, however, the resonance frequencies of the spins are
spread over a range due to chemical shifts caused by varying
levels of magnetic shielding1 or by magnetic field gradients8.
Practitioners regularly use this frequency dispersion in
constructive ways in order to distinguish between nuclei in
different chemical environments, however, the same
phenomenon makes manipulating spin populations uniformly
over a specified bandwidth highly nontrivial.

Calculating the time evolution of the spin magnetization
corresponding to a given RF pulse can be accomplished through
straightforward integration, however, solving the inverse
pulse design problem, which seeks to construct an RF pulse that
produces a desired distribution of final spin states, or
magnetization profile, is much more difficult. Work to date has
focused on developing robust numerical optimization techniques
to search for an optimal pulse that achieves broadband excitation
or inversion. These methods are often highly customized and
have slow or unverified convergence rates, especially when
designing pulse sequences for difficult experiments with more
demanding performance specifications13. The development of
analytical approaches or optimization-free algorithms for
broadband pulse design has been minimal due to the nonlinearity
of the spin dynamics. The exceptions are the hyperbolic secant
pulse14, which is a parameter-dependent selective inversion pulse,

where the selectivity is achieved when the amplitude of the pulse
reaches above a threshold and when the pulse parameters are
appropriately tuned, and the Shinnar–Le Roux algorithm, which
maps the problem of selective pulse design to the design of finite
impulse response (FIR) filters15.

In this work, we present an analytic result for broadband pulse
design. The main discovery is to reveal a nontrivial dynamic
connection between nonlinear spin and linear spring systems
under optimal forcing and present the unexpected result that
such nonlinear and complex pulse design problems are equivalent
to designing controls for steering linear harmonic oscillators,
which is analytically tractable. We derive analytic broadband π/2
and π pulses that perform exact, or asymptotically exact,
excitation and inversion over a defined bandwidth, and also with
bounded amplitude.

Results
Mapping spins to springs. The Bloch model is a semi-classical
description of the time evolution of a two-level system and is of
the form,

d
dt

Mxðt;ωÞ
Myðt;ωÞ
Mzðt;ωÞ

2
64

3
75 ¼

0 �ω uðtÞ
ω 0 �vðtÞ

�uðtÞ vðtÞ 0

2
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3
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Myðt;ωÞ
Mzðt;ωÞ

2
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3
75; ð1Þ

when the duration, T, of the external RF pulse, u(t)=−γB1y and
v(t)= −γB1x, is much shorter than the transverse and longitudinal
relaxation times T2 and T11. In this case, the effects of
relaxation can be neglected and the bulk spin magnetization
vectorM= (Mx,My,Mz) evolves on a sphere. In the absence of an
irradiating RF pulse for a time that is much longer than T1,
the spin vector aligns with the static magnetic field,
conventionally in the +z direction (the spin magnitude is
typically normalized so we consider a unit sphere). To simplify
the presentation of the analysis, we consider a pulse applied
only along the y axis, i.e., v(t)= 0 (we discuss an implementation
with both controls in Supplementary Note 5). For the sake of
simplicity, the rest of the manuscript uses dimensionless vari-
ables, normalized by the maximum RF amplitude γA, |B1y| ≤ A
(i.e., RF amplitude and frequency dispersion are measured in
units of γA, and time is measured in units of γ−1A−1).

Consider separately the dynamics of an undamped harmonic
oscillator represented in matrix form,

d
dt

xðt;ωÞ
yðt;ωÞ

� �
¼ 0 �ω

ω 0

� �
xðt;ωÞ
yðt;ωÞ

� �
þ 1

0

� �
u tð Þ; ð2Þ

where the state X= (x,y), ω and u(t) represent the oscillator’s
velocity and position, frequency, and external forcing, respectively
(Supplementary Note 1). Observe that the unforced dynamics,
u(t)= v(t)= 0 in Eq. (1), of the transverse components (Mx and
My) of the spin magnetization coincide with the dynamics of an
unforced, u(t)= 0, undamped harmonic oscillator, or spring, of
the same frequency. It is intriguing then to explore the possibility
that the connection between the spin and the spring can be
preserved even when driven by a common external input. In this
report, we identify and characterize the unexpected dynamic
connection between the time evolution of forced spins
and springs that is not limited to the linear regime of small
rotation angles. We exploit this connection to offer an
analytic solution to the broadband pulse design problem.
Ultimately, there can be no direct mapping for every point along
the evolution of these linear and nonlinear systems; however, we
discover a dynamic projection that maps the endpoints of the
trajectory of a spin to that of a spring, which is sufficient, because
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the pulse design problem is defined by the desired terminal
magnetization profile.

To develop this connection, we construct the complex
projection,

f tð Þ ¼ Mx tð Þ þ iMyðtÞ
a tð Þ þMz tð Þ ; ð3Þ

where 0≤ t≤ T is the pulse duration and a(t)= a1(t) + ia2(t) is a
complex-valued function satisfying a Riccati equation with the
initial condition a(0)= 1 and depending on the time-varying RF
pulse (see Eq. (17) in Supplementary Note 2). If a(t)= 1 over
the entire duration, then f(t) simply becomes the
stereographical projection. Using the fact that the magnitude of
the vector ||M|| = 1, we can compose conditions on f(t) and a(t)
to ensure that the dynamic projection corresponds to a valid (i.e.,
noncomplex-valued and unique) Bloch trajectory (Supplementary
Note 6). The necessary and sufficient condition for the projection
in Eq. (3) to be a one-to-one correspondence to a spin trajectory
is in terms of the following bound on f(t),

0 � fj j2<
1� aj j2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aj j2� �2 þ 4a22

q
2a22

; ð4Þ

where |a|2= a12 + a22. This condition also indicates why the
stereographic projection fails to provide a mapping in the general
case (Supplementary Note 6).

Using this dynamic projection, we show that an RF pulse, u(t),
which results in f(t) that satisfies Eq. (4) and the following integral
condition, Z T

0
uðtÞeiωtdt ¼ � π

2
; ð5Þ

steers the Bloch system from M(0) = (1,0,0) to M(T) = (0,0,1)—a
reverse excitation pulse (Supplementary Note 2). Classic linear
systems analysis16 reveals that the external forcing that steers a
harmonic oscillator of the same frequency from X(0)= (π/2,0) to
X(T)= (0,0) must satisfy the same integral condition in Eq. (5);
therefore, under the bound in Eq. (4), the conditions on
the controls for driving the spin and spring coincide.
More precisely, we show that u(t) satisfying Eq. (4) will exactly
transfer the value of the dynamic projection f(t) from 1 to 0 and
hence drives a reverse excitation of the spin in the Bloch system,
in the absence of irregular singularities caused by the evolution of
a(t) at time T (Supplementary Note 3). The input that steers the
spring from X0= (0,0) to Xπ/2= (π/2,0) at time T can be
converted to a forward excitation pulse taking the spin from
M0= (0,0,1) toMπ/2= (1,0,0) by reversing it in time and changing
its sign17.

Analytical optimal excitation pulses. Most importantly—and the
fundamental result reported in this work—a properly conditioned
forcing of the linear harmonic oscillator, which can be computed
using known linear systems theory, is an excitation pulse for
the nonlinear Bloch system. Among the many potential
control functions u(t) that complete the desired transfer, we
can select the minimum-energy control, i.e., the control u*(t)
that minimizes the cost functional

R T
0 u

2 tð Þdt (Supplementary
Note 1). For example, the minimum-energy control that
steers the spring with frequency ω= 3 from X0 to Xπ/2 at T= π is
given by u*π/2(t)=−cos(3t), which is a π/2 pulse taking the
spin from M0 to Mπ/2. This optimal control and the
resulting trajectories of the spring and the spin with ω= 3 are
illustrated in Fig. 1.

The same notion can be adopted to design an inversion pulse,
which is realized by constructing a control that steers the spring
from X0 to X(T)= (π,0) =Xπ, or by concatenating a π/2 pulse
with its time-reversed version17, which is a pulse sequence X0 to
Xπ/2 to Xπ. The minimum-energy inversion pulse and the
resulting trajectories for the spring and the spin of ω= 3 and T
= π are illustrated in Supplementary Fig. 2.

Broadband excitation pulses. The dynamic connection between
spin and spring has enabled the analytic design of π/2
and π pulses that manipulate the spin magnetization at a single
frequency ω. We now apply this discovery to design a control u(t)
that simultaneously steers an ensemble of springs between X0

and Xπ/2 (or Xπ), which is called a broadband π/2 (or π) pulse,
respectively. The minimum-energy broadband controls can
be derived by solving the integral Eq. (5) in function space
(since ω becomes a variable) and are composed of the prolate
spheroidal wave functions (Supplementary Note 7). Figure 2
and Supplementary Fig. 7 show broadband π/2 and π pulses,
respectively, which produce uniform excitation over the
designed bandwidth. In practice these pulses can be
constructed using the discrete prolate spheroidal sequences
available in many scientific programming tools, such as “dpss” in
Matlab (Supplementary Note 7).

Practical considerations, e.g., limited power of RF coils, make it
critical to design pulses with bounded amplitude. Steering
an ensemble of springs with a bounded control is a
challenging optimal control problem. However, we show that it
can be reduced to a convex optimization problem,
which can be effectively solved, and the optimal control has a
bang–bang pulse shape (Supplementary Note 7). The bang–bang
pulse in Fig. 2 is an example of a bounded amplitude broadband
π/2 pulse. The performance (i.e., average excitation) can be
adjusted by selecting different amplitude bounds and pulse
durations.

t
0 π/4 π/2 3π/4 π

−1

0

1
z

x
y

a b

u(
t)

Fig. 1 Exact excitation of single spins. a The minimum-energy control u*π/2 steering the spring from X0= (0,0) to Xπ/2= (π/2,0), with b the corresponding
trajectories of the spring (red) and spin (black) for ω= 3 and T= π
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Discussion
The dynamic mapping in Eq. (3) reveals a nontrivial connection
between nonlinear spin and linear spring systems under optimal
forcing and enables the design of analytical broadband pulses.
The bound on this dynamic projection f(t) in Eq. (4) is critical to
ensure the feasibility of the designed pulses. To illustrate
the importance of this bound, in Fig. 3 we plot the time evolution
of |f(t)|2 for the minimum-energy control and a quadratic control,
which satisfies the integral condition in Eq. (5), but not the
bound in Eq. (4). Supplementary Fig. 6 shows several other such
counterexample controls. Note that all controls steer the spring
from X0 to Xπ/2, but only when Eq. (4) is satisfied in the

minimum-energy case does the control also steer the spin from
M0 to Mπ/2.

Moreover, empirical results presented in Supplementary Note 5
and Supplementary Fig. 5 strongly suggest that the framework
described here can be generalized to design pulses that employ
two controls simultaneously and also that achieve arbitrary flip
angles (not only restricted to π/2 and π pulses).

Analytic control inputs for exact broadband excitation and
inversion of spin systems provide a new toolset that will help to
push past some of the limitations in using current numerical
methods for pulse sequence design. The application of dynamic
projection methods to the spin–spring relationship introduced in
this article, together with convex optimization methods to solve
the amplitude-bounded optimal control problem, lays a founda-
tion to develop pulse sequences for more complicated profiles,
such as frequency selective pulses.

Methods
Optimal steering of springs. The minimum-energy control that steers the spring
modeled in Eq. (2) from X0 to XF can be derived using least squares theory16 and
is of the form u� tð Þ ¼ B′e�AtW�1 e�ATXF � X0½ �, where W is the controllability
Gramian of the spring system, defined by W ¼ R T

0 e
�AtBB′e�A′ tdt, where A ¼

0 �ω
ω 0

� �
and B ¼ 1

0

� �
. For example, if the frequency of the spring is ω= 3, then

the minimum-energy control that drives the spring from X0= (π/2,0) to XF= (0,0)
of during π is u*(t) = −cos(3t) for t 2 ½0; π� (Supplementary Note 1).

Dynamic mapping between spin and spring. Using the relation M2
x þM2

y þ
M2

z ¼ 1 for all t 2 ½0;T�, the complex projection defined in Eq. (3) follows the
dynamic equation

_f ¼ iωf þ 1
2
uf 2 þ 1

2
βu; f 0ð Þ ¼ 1; ð6Þ

where β ¼ e2iωt , if the complex function a(t) is chosen to satisfy

_a ¼ � uβ
2m

a2 � uz β � 1ð Þ
m

aþ u 1þ z2 � z2βð Þ
2m

; a 0ð Þ ¼ 1: ð7Þ

Integrating (6) using contour integration, we show that f is steered to f(T)= 0
following the control input that drives the spring from X0= (π/2,0) to XF= (0,0).
This implies that the spin is excited from M0 = (0,0,1) to Mπ/2= (1,0,0), so that this
control is a π/2 (or 90°) pulse (Supplementary Note 2).
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Fig. 2 Broadband excitation of spin ensembles. The a broadband minimum-energy and b amplitude-limited controls steering a family of harmonic
oscillators with frequencies −1≤ω≤ 1 from X0= (0,0) to Xπ/2= (π/2,0) with the corresponding trajectories, d and e, respectively, of the harmonic
oscillator (red) and nuclear spin (black) for ω= −1. These pulses achieve c high-fidelity magnetization excitation profiles, Mx(T), over the frequencies
−1≤ω≤ 1, with average excitation of 1000 (minimum energy in black) and 0.996 (amplitude limited in red), respectively
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Fig. 3 Feasibility of pulse designs. The trajectory of |f|2 (black) and the
corresponding bound (red) given by the right side of Eq. (4) resulting from
the a minimum-energy control u*π/2 and b a quadratic control, u(t)= (18t2

+ 4 − 9π2)/8, that steer the spring from X0= (0,0) to Xπ/2= (π/2,0). In a
the trajectory of |f|2 is much smaller than the bound, appearing as a
horizontal line at the bottom of the figure
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Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information.
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