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ABSTRACT

We present a method to calibrate empirically the demand parameters in a merger 
simulation model by using brand-level profit margin data.  While the approach can be 
generalized, we develop these ideas within a particular framework — the PCAIDS 
(proportionality-calibrated AIDS) model.  We show that the brand-level margins 
effectively define product “nests” (products that are especially close substitutes) and 
substantially increase the flexibility of PCAIDS for modeling critical own- and cross-
price elasticities.  The model is particularly valuable for transactions at the wholesale 
level (where scanner data do not exist) and for geographic markets that span national 
borders (where comparable data may not be available), since other methods to derive 
elasticities, particularly those based on econometric estimation, may not be possible or 
may not be reliable.  
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I. INTRODUCTION

Merger simulation has developed rapidly within the field of industrial 

organization as an important tool to evaluate unilateral price effects of mergers involving 

differentiated goods.1  Simulation typically calculates these effects as percentage changes 

in equilibrium prices between the pre and post merger markets, assuming the absence of 

overt collusion among competitors.  A virtually unknown area a few years ago, the FTC 

has recently termed simulation among the past decade’s “remarkable developments in the 

quantitative analysis of horizontal mergers.”2  The appeal of simulation is that it provides 

an economically coherent framework to quantify potential unilateral price increases, 

taking into account market shares, efficiencies, and other key features of a transaction.  

In practice, simulation has to confront the significant practical constraints of the 

merger review process, including often limited amounts of data, the need to control costs, 

and regulations that often permit only a short amount of time for the evaluation of 

competitive effects.  Much research relating to merger simulation has focused on other 

complications involving the appropriate specification of demand systems, the empirical 

estimation of parameters, the assumption of static versus dynamic pricing behavior, and 

other methodological issues.3  Given these factors, there is increasing interest in methods 

1 For a recent review of some of the relevant literature, including references to the work 
of Werden and Froeb, Berry, Levinsohn, and Pakes, and Hausman, Leonard, and Zona, 
see Baker and Rubinfeld (1999).

2 See Issues in Econometric Analysis of Scanner Data, available at www.ftc.gov. 
3 See Pinske and Slade (2002) for a more detailed discussion.
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to obtain values for the inputs to the analysis that can make simulation a feasible and 

persuasive option in a broader range of situations.4

In this article we describe a modeling strategy to achieve these goals that is 

fundamentally different from existing approaches that are based on structural 

econometric estimation.5 Specifically, we integrate the PCAIDS (Proportionality-

Calibrated Almost Ideal Demand System) merger simulation methodology (Epstein and 

Rubinfeld (2002)) with brand-level profit margin data, data that should be available (at 

least for the parties) in an actual merger review.  Our approach uses the margin data to 

estimate the PCAIDS parameters that define “nests”  (i.e., groups of products that are 

particularly close substitutes).  The nests provide a flexible and relatively parsimonious

structure for estimating pre-merger demand elasticities that are consistent with the 

observed margins and that exactly satisfy the Bertrand first-order conditions for profit 

maximization conventionally used in merger simulation.

Briefly, PCAIDS is an approximation to the Almost Ideal Demand System 

(AIDS) that is widely used in applied microeconomics.7  PCAIDS relies on a generalized 

principle of proportionality to reduce greatly the number of free parameters in the 

demand model: a price increase for a single brand results in diversion of lost sales to the 

other brands in proportion to their current market shares.  In its most basic form (i.e., with 

a single nest), PCAIDS can be fully specified with two parameters: the margin for a 

single brand and the price elasticity for the market as a whole.  If the market is well 

characterized by proportionality, this specification will yield a close approximation to the 

elasticities from the unrestricted AIDS.  When the actual pattern of demand deviates from 

“strict” proportionality, then the quality of the approximation can be improved by adding 

additional nests to generalize the analysis.9  As the amount of a priori margin (or 

elasticity) information increases, PCAIDS is able to calibrate more and more nests 

4 Werden and Froeb (2002).
5 See, e.g., Berry, Levinsohn, and Pakes (1995) in addition to Pinske and Slade (2002).
6 Nests are clusters of brands that are particularly close substitutes.  
7 Deaton and Muellbauer (1980).
8 In Epstein and Rubinfeld (2002) PCAIDS in this setting is equivalently parameterized 

using the price elasticity for a single brand and the market elasticity.
9 Nests in our analysis are analogous to the different levels of a multi-stage budgeting 

model, an approach that is sometimes used to make econometric estimation tractable.  



3

empirically.  The resulting elasticities are less constrained than those implied by strict 

proportionality and can result in a much closer approximation to a full AIDS model. 

The key to our analysis is the linkage between the “nesting parameters” in 

PCAIDS and the accounting data on profit margins.10  We will show that in some 

circumstances the margin data are sufficient to identify the nesting parameters exactly, 

while in other cases the nesting parameters are not fully identified.  Lack of identification 

is not necessarily a serious issue because the margin data nonetheless yield bounds on the 

possible values for the nesting parameters.  In still other cases (corresponding roughly to 

a situation of many margins and relatively few nests) the nesting parameters will be 

overidentified, necessitating a further discussion of calibration strategies. 

Properly measured accounting margins hold out the prospect of more accurate 

model calibration compared to conventional econometric modeling of pre-merger own 

and cross-price elasticities.  The new approach may be particularly appealing for 

transactions at the wholesale level (where scanner data do not exist) and for geographic 

markets that span national borders (where comparable data may not be available).  The 

econometric approach is not well suited for many transactions because of a lack of 

adequate data even when strong assumptions are made about market structure (such as a 

multi-stage budgeting process) to reduce the typically large number of parameters to be 

estimated.  Even with relatively large datasets, the empirical results can be problematic, 

with wrong signs, implausible magnitudes, and low statistical reliability for the estimated 

coefficients.  

The balance of this article is organized as follows.  In Section II we set the stage 

by briefly reviewing the structure of PCAIDS with nests.  In Section III we explain how 

the accounting profit margin data can be used to infer nesting parameters empirically.  

Section IV briefly discusses some of the relevant considerations when using accounting 

data in this context.  Section V presents several examples of the analysis.  Section VI 

contains a brief conclusion.

10 The term “nesting parameter” will be used in place of “odds ratio factor” and “scaling 
factor” used in Epstein and Rubinfeld (2002), pp. 896, 897.
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II. MERGER SIMULATION WITH PCAIDS 

Merger simulation models for differentiated products typically assume that prices 

in the market can be analyzed using Bertrand assumptions.  According to this theory, the 

first-order conditions (“FOCs”) for profit maximization by each firm can be specified in 

terms of market shares, incremental profit margins, and price elasticities.  The market is 

assumed to be in Bertrand equilibrium both pre- and post-merger.  

There are n firms pre-merger.  The ith firm produces ni brands and there is a total 

of N brands in the market.  A general expression for all of the FOCs for profit 

maximization is given by the matrix equation:

s + diag(E1, E2, …, En)Sµ = 0. (1)

In this expression, s = (s1, s2, …, sN)´ is the vector of market shares (in terms of revenue)

and S = diag(s).  The corresponding vector of brand margins is µ = (µ1, µ2, …, µN)´.  For 

the ith firm, Ei is an ni by ni matrix of transposed price elasticities with element (k, j) 

equal to εjk.  In the pre-merger equilibrium, the brands margins µ are given by 

µ = – S–1diag(E1, E2, …, En)
–1s . (2)

Assume that the merger involves firms n–1 and n.  The merged firm is 

characterized by an augmented elasticity matrix E*
n–1 for the nn–1 plus nn brands it is now 

producing.  The FOCs for the post-merger market are

s + diag(E1, E2, …, E*
n–1)Sµ = 0, (3) 

 
where all variables are understood to be taken at their post-transaction values.  Merger 

simulation consists of finding the post-merger prices that yield margins, shares, and 

elasticities that solve (3).  

The solution to equation (3) depends on the functional form of the underlying 

demand model and a supply model that determines how total cost responds to 

incremental changes in post-merger output.  The demand side can be modeled using a 

variety of specifications; the literature includes examples of linear, constant elasticity, 

and variants of logit and AIDS systems.  The supply side is generally treated as a step-

function for which incremental cost does not vary with output.  The step allows for 

possible merger-specific efficiencies, which are analyzed by changing the level of post-
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merger incremental costs (keeping the assumption that the new level of incremental cost 

does not vary with output).

In PCAIDS each si is a linear function of the natural logarithms of the vector of 

prices p of all of the brands in the relevant market.  Letting p be the vector of prices of 

the brands, the model can be written as 

s = a + Bln(p) 

where a is a vector of constants and B is a matrix of coefficients (that are assumed to be 

invariant to price changes).  Unlike AIDS, PCAIDS suppresses  the aggregate expenditure 

terms, i.e., the model imposes homotheticity, so that a change in total industry 

expenditure has no effects on share.11 To proceed, differentiate each share equation 

totally to obtain:

ds = B(dp/p) (4) 
 

Equation (4) describes a simple relationship between the change in each brand’s market 

share (ds) and the unilateral effects (dp/p).  The elements bij of B act as weights to 

determine the amount of share lost or gained due to unilateral effects.  Moreover, as is 

apparent from (4), knowledge of the ai terms is unnecessary.  The post-merger shares for 

use in equation (3) are given by spost = spre + ds.  PCAIDS therefore is a particularly 

convenient demand model for merger simulation.  

The post-merger own and cross-price elasticities for each brand in the market in 

general will also depend on the vector dp/p of unilateral effects.  It can be shown12 that in 

PCAIDS:

Own-price elasticity for the ith brand: εii = )1(1 i
i

ii +++− εs
s

b (5) 

 Cross-price elasticity of the ith brand with respect to the price of the jth brand: 

εij =  )1(j
i

ij ++ εs
s

b
. (6) 

Here ε is the price elasticity of demand for the market as a whole, which is typically 

assumed to remain unchanged post-merger.  Using the spost vector in equations (5) and (6) 

yields the post-merger elasticities.

11 To our knowledge, the empirical AIDS models in the literature seldom indicate an 
economically important role for the expenditure term.

12 Epstein and Rubinfeld (2002), Appendix.
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Finally, the solution to (3) requires updated brand profit margins.  Algebraically, 

it can be seen that for each brand, µi
post = 1 – (1 – µi

pre)/exp(dpi/pi).  This relationship is 

independent of the demand model. This structure is sufficient to solve the post-merger 

FOCs entirely in terms of the predicted unilateral effects dp/p.  

A. Calibrating PCAIDS Under Strict Proportionality

The problem remains of finding appropriate values for the bij.  PCAIDS assumes 

that the share lost as a result of a price increase is allocated to the other firms in the 

relevant market in proportion to their respective shares.  In effect, the market shares 

define probabilities of making incremental sales for each of the competitors.  We also 

impose homogeneity on the demand model in equation (4) as an appealing theoretical 

property, i.e., ∑bik = 0 ∀k.  (Since shares must sum to 100%, the model also satisfies an 

adding-up constraint ∑bki = 0 ∀k by definition).  Homogeneity with the proportionality 

assumption implies symmetry of B, thereby satisfying Slutsky symmetry, as will be 

proved below.  

A three-brand example will illustrate the basic proportionality assumption.  

Consider a price increase dp1/p1 with all other prices unchanged.  With proportionality, 

sales are diverted to brands 2 and 3 in proportion to their market shares.  That is, ds2/ds3 = 

s2/s3.  Moreover, the sum of the changes in shares across all brands must equal zero

(because shares must always sum to 100%).  It follows that b21 equals –s2/(s2+s3)b11 and 

b31 equals –s3/(s2+s3)b11 (the minus sign is necessary to satisfy ∑dsi = 0).  The other 

coefficients in B can be calibrated similarly, e.g., a change dp2/p2 implies b12 equals –

s1/(s1+s3)b22 and b32 equals –s3/(s1+s3)b22. B can accordingly be expressed in this 

example as:

13 See Horizontal Merger Guidelines at ¶2.211.
14 Our discussion of PCAIDS focuses on implementation with aggregate market share 

information.  However, the method is also applicable as a set of restrictions that could 
be imposed when estimating AIDS with scanner data.
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The matrix is completely determined by the three unknown diagonal elements.  

Proportionality has dramatically reduced the calibration problem from order N2 to order 

N.

Homogeneity and adding-up simplify the problem even further.  Express b33 as 

–b31–b32 and substitute in b11 = –b12 – b13 to find that b22=(s2/s1)(1–s2)/(1–s1)b11.  

Similarly, b33=(s3/s1)(1–s3)/(1–s1)b11.  That is, the entire demand model under 

proportionality can be calibrated in terms of a single parameter.  (We prove below that 

this result holds regardless of the number of brands in the market.)  Assuming the own-

price elasticity ε11 is known for the first brand and that the market elasticity of demand ε
is also known, invert equation (5) to find

))1(1( 111111 +−+= εsεsb .

The B matrix is then determined by appropriate scaling of b11 with the market shares.

These ideas can be illustrated as follows.  Assume that the shares for the 3 brands 

(each sold by a different firm) are 20%, 30%, and 50%, respectively.  Now, assume that 

there is a proposed merger between firms 1 and 2, the industry elasticity is –1, and the 

own-price elasticity for the first brand is –3.  Table 1 shows the resulting B matrix and 

elasticities.

Table 1

PCAIDS Coefficients and Elasticities

PCAIDS Coefficient with Respect to: Elasticity with Respect to:
Brand p1 p2 p3 Brand p1 p2 p3

1 –0.400 0.150 0.250 1 –3.00 0.75 1.25
2 0.150 –0.525 0.375 2 0.50 –2.75 1.25
3 0.250 0.375 –0.625 3 0.50 0.75 –2.25
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The PCAIDS coefficients satisfy adding-up and homogeneity and are symmetric, as 

required.  

Assume that the first two firms merge.  PCAIDS simulation with these parameters 

predicts a unilateral post-merger price increase (absent efficiencies) of 13.8% for Brand 1 

and 10.8% for Brand 2.

Table 1 illustrates an important feature of strict proportionality: it constrains the 

cross-price elasticities corresponding to a given price change to be equal, although they

may still vary substantially with respect to price increases across brands.  The ability to 

derive a large number of elasticities from a single parameter (e.g., b11) therefore comes at 

the expense of some flexibility in the model.  This constraint is the main difference 

between PCAIDS and the full, unrestricted AIDS.  It is generally of most concern when 

products are highly differentiated, since proportionality may not accurately describe the 

diversion of sales in those circumstances.15 The purpose of nests is to relax this 

constraint and allow a closer approximation to the unrestricted AIDS.

B. Nests and Deviations from Strict Proportionality

We allow a more general analysis of elasticity by grouping brands in “nests.”16

Proportionality governs diversion within a nest, where brands are relatively close 

substitutes.  Brands are poorer substitutes across nests than indicated by proportionality, 

implying variation in the cross-price elasticities.  While εik = εjk for brands in the same 

nest, the cross-price elasticities are (relatively) lower across nests, i.e., εmk < εik.for brands 

m and i in different nests.  

To illustrate, return to the three-brand example discussed in the previous section.  

In that example, brand 2’s market share of 30% and brand 3’s share of 50% implied that 

15 Cf. Horizontal Merger Guidelines at ¶2.211: “The market shares of the merging firms’ 
products may understate the competitive effect of concern, when, for example, the 
products of the merging firms are relatively more similar in their various attributes to 
one another than to other products in the relevant market.  On the other hand, the 
market shares alone may overstate the competitive effects of concern when, for 
example, the relevant products are less similar in their attributes to one another than to 
other products in the relevant market.”

16 See Werden and Froeb (1994) for a discussion of nests in the context of a logit demand 
model.  
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37.5% (30/80) of the share lost by brand 1 when its price increased would be diverted to 

brand 2 and 62.5% (50/80) would be diverted to brand 3.  This effect can be characterized 

using an odds ratio.  Here, the odds ratio between brand 2 and brand 3 is 0.6 

(0.375/0.625).  That is, under proportionality, brand 2 is only 60% as likely to be chosen 

by consumers leaving brand 1 as brand 3.  Now suppose instead that brand 2 is relatively 

“farther” from brand 1 in the sense that that fewer consumers would choose brand 2 in 

response to an increase in p1 than would be predicted by proportionality.  For example, 

brand 2 may only be “half as desirable” a substitute as brand 3 and the appropriate odds 

ratio really only 0.3.  It is straightforward to calculate in this case that the share diversion 

to brand 2 becomes 23.1% and the diversion to brand 3 increases to 76.9% (an odds ratio 

of 0.3=.231/.769).  As expected, fewer consumers leaving brand 1 would choose brand 2. 

We use “nesting parameters” to generate the scaling factors that adjust diversion 

away from proportionality.  Share diverted to a brand in a different nest is adjusted in the 

following sense: the odds ratio is equal to the odds ratio under proportionality, multiplied 

by a nesting parameter on the interval (0,1].  For brands within a nest, the nesting 

parameter effectively equals 1.  The result is that brands within a nest are closer 

substitutes than brands outside the nest.  Proportionality for all brands can be thought of 

as a model with a single nest.  PCAIDS with multiple nests allows a more flexible pattern 

of cross elasticities, as the model is no longer fully constrained by the proportionality 

assumption.17

To characterize the nest structure in above example we place brand 2 in a separate 

nest with a nesting parameter of 0.5.  Table 2 reports the calculated elasticities for both 

the nested model and the original model. 

Table 2

PCAIDS Elasticities with Nests

Non-Nested Demand
Separate Brand 2 Nest,

(Odds Ratio Factor = 0.5)
Elasticity with Respect to: Elasticity with Respect to:

Brand P1 p2 p3 Brand p1 p2 p3

17 Given the fundamental role of nests in PCAIDS, discussions that ignore this feature of 
the model, e.g., Wu (2003), model are necessarily incomplete. 



10

1 –3.00 0.75 1.25 1 –3.00 0.46 1.54
2 0.50 –2.75 1.25 2 0.31 –2.08 0.77
3 0.50 0.75 –2.25 3 0.62 0.46 –2.08

The cross-price elasticities ε2i in the right-hand panel are scaled down by 50% 

relative to the other brands.18  (The cross elasticities measuring the responses of brand 1 

and brand 3 to the price of brand 2 remain equal, but at lower values, because brands 1 

and 3 are in the same nest.) In general, the nesting treats brand 2 as a poorer substitute 

for brands 1 and 3, while brands 1 and 3 become better substitutes for each other 

Simulation of a merger of brand 1 and brand 2 using this nested PCAIDS model 

predicts a unilateral price increase (without efficiencies) of 10.1% for both brand 1 and 

brand 2, compared to the original increases of 13.8% and 10.8% without nests.  The 

unilateral effects are smaller because the merging brands are less close substitutes for 

each other.

The number of nesting parameters required in the model obviously depends on the 

number of nests.  More specifically, the number of parameters equals the number of pairs 

of nests, because each parameter modifies the share diversion between the two associated 

nests.  With 2 nests there is one nesting parameter; a 3-nest specification requires three 

parameters; and a 4-nest specification requires six parameters.  Because the number of 

nesting factors increases exponentially with the number of nests, a tractable simulation

model probably should not have more than 3 or 4 nests.  

Assume that there are w nests, 2 ≤ w ≤ N, with each brand assigned to a nest.  The 

number of nesting parameters is w(w–1)/2. To summarize the nesting parameters, it is 

helpful to arrange them in a matrix. In the case of three nests the matrix takes the form:
















=Ω

%100f

%100f

100%f

fff

323

312

211

321

ωω
ωω
ωω

(7) 

18 The calculations continue to assume an own-price elasticity of –3 for Brand 1 and an industry elasticity 
of –1.  It would be incorrect to scale the non-nested elasticities in the left-hand panel directly.  Nests affect 
the impact of adding-up, homogeneity, and symmetry and the appropriate calculation takes account of these 
constraints to generate economically consistent elasticities.  
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The matrix is symmetric.  Given a price increase for a brand in nest fi, the 

diversion of share to a brand nest fj deviates from proportionality by the nesting 

parameter 0 < Ω(ℑ(i), ℑ(j)) ≤ 1.  ℑ(k) is an indicator function that returns the nest 

containing brand k.  Proportionality is the special case where Ω(ℑ(i), ℑ(j)) = 100%.  

We illustrate a general calculation of bij with nesting parameters with the example 

used for Table 2.  There are two nests, so Ω contains a single sub-diagonal element ω1.  

We assume that Ω(ℑ(1), ℑ(2)) = ω1 and that Ω(ℑ(1), ℑ(3)) = 100%.  That is, brands 1 

and 3 are in a common nest and brand 2 is in a separate nest.  The share diversion for the 

price change for brand 1 can be expressed (imposing the adding-up condition) as 

–ds1 + λ2s2/(1–s1)ds1 + λ3s3/(1–s1)ds1 = 0 (8)

or, rewriting, 

λ2s2/(1–s1) + λ3s3/(1–s1) = 1, (9) 

 

where the λ’s are share-diversion weights to be determined.  In the case of strict 

proportionality, λi = 100%.  The adjustment due to the deviation from proportionality in 

this example satisfies

λ2 / λ3 = Ω(ℑ(1), ℑ(2)) / Ω(ℑ(1), ℑ(3)) = ω1.

It follows from our prior assumption that λ2 = ω1λ3, and by substitution in equation (9), 

λ3 = (1–s1)/(ω1s2 + s3).  Finally, equation (8) can be written as 

–ds1 + ω1s2/(ω1s2 + s3)ds1 + s3/(ω1s2 + s3)ds1 = 0  

That is, b21 = ω1s2/(ω1s2 + s3)b11 and b31 = s3/(ω1s2 + s3)b11.  To evaluate these 

expressions substitute the shares (30%, 50%), b11 = –0.400 (unchanged from Table 1), 

and ω1=0.5.  The results are 0.231 and 0.769, agreeing with the share diversion 

percentages that we calculated at the beginning of this section.  

C. General Calibration of PCAIDS with Nests

We generalize the determination of B with nests as follows.  Each element of B

can be written as bik = θikbkk, where the θ’s are known, but the diagonal elements bkk are 

unknown.  Impose adding-up and homogeneity.  The constraints imply a system of N–1 

independent equations in the N unknown diagonal elements.  Without loss of generality, 
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normalize with respect to the first brand and define a vector β with N–1 elements equal to 

bjj/b11 = βj, j > 1.  The equation system is then non-singular and can be written as
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Equation (10) can be inverted to solve for the β vector. B can therefore be specified 

entirely in terms of b11 and the θ’s.  With known ε11 and ε, calibration is completed by 

using (5) to solve for the value for b11. 

The θ’s are known functions of the market shares and the nesting parameters.  In 

general it can be shown that:

∑ ≠ ℑℑΩ
ℑℑΩ−=

km m
iik (m))(k),(

(i))(k),(

s
sθ  , i≠k. (11)

With strict proportionality (i.e., a single nest that contains all of the brands), the nesting 

parameter equals 100% and equation (11) reduces to θik = –si/(1 – sk).  

We now show that the matrix B of PCAIDS coefficients is symmetric both under 

strict proportionality and with nests.  Since equation (10) has a unique solution, any 

feasible solution is also unique.  We try the symmetric solution for B and assume that bj1

= θj1b11 and b1j = θ1jbjj, symmetry implies that βj = θj1 / θ1j.  From equation (11) it follows 

that 

∑
∑

≠

≠
ℑℑΩ
ℑℑΩ
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1m m
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and from before, bjj = βjb11.

Equations (11) and (12) imply that
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N∑ =
ℑℑΩ

ℑℑΩ−= . (13) 

for i≠j.  Symmetry of B follows directly.  It can be shown that the bij from equation (13) 

satisfy adding-up and homogeneity.  They therefore comprise the unique solution to 

equation (10).
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What remains is the problem of finding appropriate values for the nesting 

parameters.  A coarse grid on the parameters (e.g., 0.75, 0.50, and 0.25) is generally 

sufficient to assess the sensitivity of the simulation of different nests.  This is easy to 

carry out in the case of two nests but rapidly becomes unwieldy as the number of nests 

increases.  

III. MARGINS AND NESTS IN PCAIDS

In this section we show how margin data can be used to estimate nesting 

parameters.  Begin with the (“FOCs”) in the pre-transaction market:

s + diag(E1, E2, …, En)Sµ = 0 (14) 

Each firm may sell brands in different nests and every brand must be assigned to a 

nest.  As a theoretical matter, since proportionality is unlikely to hold exactly, each brand 

might be put in a separate nest.  However, as previously discussed, this strategy rapidly 

generates an intractable number of required parameters.  A priori information must be 

available to group brands more broadly.  To simplify the analysis, we aggregate the 

brands in the same nest for a given firm into a composite brand whose share is equal to 

the sum of the shares of the underlying brands.  That is, the number of different nests that 

a firm sells into equals the number of (possibly composite) brands that it produces.

Assume that firms 1 and 2 are the merger partners and that the margins are known 

for each of the brands they produce.  Each nest has either one or two margins associated 

with it; one margin if only one firm sells a brand in the nest, and two otherwise.  These 

data are likely to be available to the merger parties and to the appropriate enforcement 

agency.  To further simplify, assume also that no other margins are known and that the 

industry elasticity equals –1 (these assumptions are not essential to the results that 

follow).  From equations (5) and (12), it can be seen that the elasticity matrices Ei in the 

FOCs are functions of the margins, market shares (and industry elasticity), and the 

unknown nesting factors.  

The problem of determining nesting parameters amounts to finding values for 

them that generate E matrices that satisfy the FOCs with the pre-determined elements of 

the margin vector µ. Because margins are only known for firms 1 and 2, the nesting 



14

parameters depend only on the FOCs for the two merger partners (more generally, the 

parameters will depend on the FOC equations for the brands with the known margins).  

The structure of PCAIDS leads to a simple solution.

To simplify the notation, let the subscript † denote the rows and columns in 

equation (14) that refer to the brands sold by the merging firms. Then E† is the n1+n2

transposed block-diagonal matrix of elasticities for firms 1 and 2, and B† is the 

corresponding n1+n2 block-diagonal matrix of coefficients from the B matrix of PCAIDS 

coefficients.  It is straightforward to show that E† = B†S†
–1–I, where I is the identity 

matrix with rank n1+n2.  Rewrite (14) as 

S†µ† = –E†
–1s†

where the expression just includes the shares for firms 1 and 2.  By substitution, 

S†µ† = –(B†S†
–1–I†)

–1s†

implying

(B†S†
–1 –I†)S†µ† = –s†.

Rewriting, 

B†µ† = S† (µ† – 1) (15) 

where 1 is a column vector of 1’s.  That is, the FOCs can be rewritten as a system of 

linear equations in the PCAIDS coefficients.

The next step is to express B† in terms of the nesting factors.  Using equations 

(12) and (13), it follows that 

[ ] τω ×ℑℑΩ+−⊗′−= ∑ ≠⇑ )))(),((()(
im mi mjssdiagIssB

where 

))(),((
11

11∑ >
ℑℑΩ=
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Finally, rewrite (15) as

[ ]
11

11 ))(),((
)1()))(),((()(

b

mjss
SmjssdiagIss m m

im mi

∑∑ >
≠

ℑℑΩ
×−=ℑℑΩ+−⊗′− µµω

(16) 

This shows that the FOC’s are also a linear function of the nest factors, conditional on 

knowledge of b11.
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The solution to (16) depends on the number of nests.  We begin with the cases 

that are likely to be most common and most tractable - either 2 or 3 nests.  With two nests 

(and two margins) there is an exact solution.  In this case, equation (16) reduces to a 

system of 2 equations in 2 unknowns, the single nesting parameter and the b11 coefficient.

With three nests, (16) becomes a system of 3 equations in 4 unknowns, three nesting 

parameters, and the b11 coefficient.  The most convenient solution in this case is to solve 

(16) by setting an exogenous value for one of the nesting parameters.  A range of 

solutions is possible, depending on the selection of the exogenous parameter.

This 3-nest system is underidentified.  However, (16) still places bounds on the 

solution because the nesting parameters must lie on the (0,1] interval.  Depending on the 

particular values of the key parameters, these bounds can be fairly tight, resulting in a set 

of simulations that are highly informative. 

Now consider the possibility of overidentification.  When there are multiple 

margins for the same nest, estimates of nesting parameters are no longer unique. The 2-

nest system will illustrate.  Suppose initially that firm 1 produces a single brand A11 and 

firm 2 produces a single brand B21.  A11 is in nest f1 and B21 is in nest f2.  This system has 

an exact solution.  Now suppose that firm 1 also produces a second brand A12 in nest f2.  

The system still has two nests, but f2 now has two brands available for the calibration.  

We believe it appropriate to use the additional margin information to evaluate the 

sensitivity of the merger simulation analysis to the specification of the demand model.  

To test the specification of the model, we propose that one calibrate (16) using 

only the A11 and B21 margins, while treating A12 as belonging to f2, but with an unknown 

margin.  The results would then be used to solve equation (14) for the implied remaining 

margins in the model.  This would yield a predicted value for the A12 margin.  A

predicted margin that was close to the actual A12 margin would provide evidence that it 

was reasonable to place A12 in the same nest as B21 and the test would stop.  

If, however, the predicted and actual A12 margins were substantially different, we 

would reevaluate the original nesting assumptions.  One possibility is that it is more 

appropriate to place A12 in f1. This could be tested by putting A12 in a new nest f3 with 

the constraints (using the notation in equation (7)) that ω2=100% and ω3=ω2). In this 

case, equation (14) would be recalibrated using the new nest structure and the two 
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additional, pre-determined nesting parameters.  Solving (14) again for the new predicted 

A12 margin would now test whether the brand belongs in f1.  If the predicted and actual 

margins still diverged, this would be evidence that A12 should be placed in its own nest 

with independent nesting parameters.

Analogous considerations apply to the 3-nest system.  

IV.  MEASURING INCREMENTAL PROFIT MARGINS USING 
ACCOUNTING DATA

The relevant profit margin to calibrate the model in principle should be based on 

the profit associated with an incremental increase in output, i.e., the difference between 

the incremental revenue and the incremental cost associated with the additional output.  

While seemingly straightforward, this information generally is not shown explicitly in the 

firm’s financial statements, implying the need for further accounting and economic 

analysis.  For example, external reporting under Generally Accepted Accounting 

Principles (GAAP) mandates expense categories that typically commingle fixed costs 

with variable costs.  In addition, certain costs of capacity should be treated as fixed in 

some circumstances but variable in others.  Finally, adjustments for common costs and 

joint products may be required for measuring net incremental costs for a single product of 

a multi-product firm.

In particular, the gross margin (revenue minus cost of goods sold, or COGS) 

reported on a firm’s income statement prepared under GAAP usually is not the relevant 

measure of the incremental profit margin.  The main issue is that COGS includes 

allocated fixed costs of production, such as rent and depreciation, which may not vary 

with output.  It also excludes variable sales, marketing, and administrative expenses (such 

as commissions and warranties).  If the firm’s current production is at or near capacity

(which can be limited by physical plant and equipment, personnel, and intangible assets 

such as quotas under licenses), then additional capacity would be required for the 

incremental production and the associated costs should be included in the profit margin 

calculation.  

Empirically, two approaches are typically used to determine incremental costs.  

The first approach relies on a regression analysis in which the dependent variable is total
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operating costs and the independent variable is either quantity produced or sales revenue.  

The regression coefficient on the quantity variable provides an estimate of incremental 

cost.  The regression coefficient on the revenue variable is an estimate of 1 minus µ, 

where µ is the incremental profit margin percent.  Multiple regression analysis is also 

used, where the independent variables are various “cost drivers” (e.g., machine hours) 

that are correlated with output.19  While potentially highly informative, regression 

analysis is subject to a variety of statistical pitfalls that can lead to unreliable estimation 

results.  It can also be misleading to extrapolate the results of a regression when cost 

effects due to capacity limits or multi-product production are relevant.

The second accounting analysis approach involves identifying each line item in a 

firm’s detailed, internal cost reporting system as either “fixed” or “variable.”  This can be 

especially useful when the adjustments to COGS are reasonably straightforward, e.g., 

subtracting out depreciation or adding in sales commissions.  However, account analysis 

can entail subjective assumptions when the individual line items still combine fixed and 

variable components.  Account analysis can also become arbitrary in the case of multi-

product firms, where a variable cost item may have to be allocated across different 

product lines.

Costs associated with the need for additional capacity are also likely to require 

separate analysis.  When capacity can be rented, market prices should be available to 

include in incremental cost.  If the firm must undertake additional investment, economic 

and financial analysis is required to determine the optimal scale of the investment and the 

associated capital charge.  That is, the capacity cost in this situation is incremental and 

needs to be amortized over the economic useful life of the investment.

V. EXAMPLES

To illustrate the ideas developed to this point we now discuss several different 

examples.  We begin with model calibration in the 3-firm market example described 

previously.  We then turn to a well-known analysis of the beer market published by 

19 Horngren, Dukar, and Foster (2003).



18

Hausman, Leonard, and Zona (“HLZ”).  Our last example focuses on identification 

issues.

A. Calibration in a 3-firm market

Recall that each of the 3 firms produces a single brand; the shares for the firms are 

20%, 30%, and 50%, respectively.  The industry elasticity is –1, and the merger partners 

are firms 1 and 2, with firm 1 having an incremental profit margin of 33.3%. 

Suppose first that all brands are assumed to belong in a single nest and that the 

simulation model is calibrated with the firm 1 margin.  PCAIDS generates an elasticity of 

–2.75 for firm 2 (see Table 1), implying a corresponding margin of 36.4% (the negative 

reciprocal of the elasticity).  If the actual incremental profit margin were close to 36.4%, 

we would take this as support for the strict proportionality assumption and use of a single 

nest in the model.  Conversely, if the model were calibrated with the firm 2 margin, the 

resulting elasticity and margin for firm 1 would be –3 and 33.3%, respectively, which 

would also support the proportionality assumption.

Suppose, however, that firm 2 had a profit margin of 48.1%.  This would suggest 

that firm 2 faces less competition than implied by proportionality.  We would infer that 

the model requires two nests, with firms 1 and 3 in the same nest and firm 2 in a separate 

nest.  The model is exactly identified because the two margins map into the two unknown 

parameters in equation (16).  The solution yields a nesting parameter equal to 0.5, since 

(see Table 2) this value for the nesting parameter results in an elasticity for firm 2 of –

2.08, which corresponds to the observed 48.1% margin.

The decision as to how to group brands into nests is an important one.  Thus, firm 

2 could also have faced reduced competition if it were in the same nest as firm 3 and firm 

1 was in a separate nest.  Obviously, the nesting parameter, and the resulting elasticities 

in the model, can be sensitive to this choice.  Beyond the intuition just given, there is one 

additional helpful guide.  A nesting parameter must lie in the interval (0,1] to be 

economically meaningful.  In this case, the alternative nest structure can only satisfy the 

observed margins if the nesting parameter had the value 2.16, an extraneous solution that 

in our view rules out this nest from further consideration.  We conclude that the most 

appropriate model should use the nests in Table 2.
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We believe it reasonable to utilize a principle of “maximum proportionality” as an 

additional model selection criterion that is relevant to the grouping problem.  When 

different nest structures are consistent with the margin data and have valid nesting 

parameters, we advise selecting the structure for which the length of a vector of 1’s minus 

the vector of feasible nesting parameters is a minimum.  This metric yields a solution 

with a minimum deviation from strict proportionality.  In the case of a single parameter, 

for example, we would use the nests for which the parameter is closest to 1.0.  We view 

this as an application of Occam’s razor, since proportionality has the virtue of 

simplicity.20

Grouping and maximum proportionality in this example are further illustrated in 

Table 3.  For each of the three possible configuration of nests, the table shows the ranges 

of feasible elasticities for firms 1 and 2.  More specifically, for each configuration we 

first hold the elasticity for firm 1 at –3 (the observed 33.3% margin) and solve for the 

minimum and maximum possible elasticities (and associated margins) for firm 2 obtained 

by varying the nesting parameter over (0,1].  We then hold the firm 2 elasticity at –2.75 

(implied by the firm 1 margin and strict proportionality) and similarly solve for the 

possible elasticity range for firm 1.  That is, each configuration “starts” with a nesting 

parameter of 1.0 and then maps the feasible deviations from strict proportionality that are 

consistent with the observed margins.  One of the main implications of Table 3 is that the 

various configurations of nests are able to accommodate an extremely wide range of 

margins.

Suppose we are in the situation where firm 1 has a 33.3% margin and firm 2 has a 

48.1% margin.  Table 3 shows that the only feasible nest structure to attain the required 

elasticities of –3 and –2.08 is Configuration A (with implied nesting parameter equal to 

0.5).  The other two nest structures are not consistent with the margin data.  Suppose 

instead that firm 2 had an elasticity of –2.75 (36.4% margin), but that firm 1 had an 

elasticity of –1.5 (66.7% margin).  Then C is the only feasible solution (with a nesting 

20 The assumption of “maximum proportionality” appears consistent with the views of 
other economists who specialize in merger analysis. See Werden and Froeb (2002) p. 
14 who state, “Absent contrary evidence, substitution in proportion is often viewed as 
the most natural default assumption. We share that view…” and their cites to Willig 
(1991) and the Horizontal Merger Guidelines. 
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parameter equal to 0.19).  Finally, suppose the elasticities for firms 1 and 2 were –3.50

and –2.75, respectively.  Configurations A and B both provide solutions, with nesting 

parameters 0.71 and 0.07, respectively.  By maximum proportionality, A is preferred.  A 

parameter of 0.07 suggests that firm 3 virtually does not compete with firms 1 or 2.  

Ideally, other information external to the model would also indicate that firm 3’s brand 

was a reasonably good substitute for firms 1 and 2 to support an inference that 0.71 is 

reasonable and 0.07 is implausibly small.

Table 3

Nest Configurations and Feasible Elasticities
for the Merging Firms

Firm 1 Margin = 33.3% Firm 2 Margin = 36.4%

Implied Firm 2 Elasticity: Implied Firm 1 Elasticity:

Nest 
Configuration Minimum Maximum Minimum Maximum

A:  (1,3) —(2) –1.02 –2.75 –3.00 –10.00

B:  (1,2)—(3) –2.34 –2.75 –2.75 –3.60

C:  (2,3)—(1) –2.75 –10.00 –1.02 –3.00

Note: Only elasticities in the interval [–10, –1) are included.

B. The Light Beer Market Revisited

We first illustrate PCAIDS with nests by analyzing a model of retail demand for 

beer published by Hausman, Leonard, and Zona (“HLZ”).21 We focus on the light beer 

segment that was estimated as part of a multi-stage budgeting model of a broader beer 

market.  HLZ used a panel of weekly store-level data to estimate demand for five 

different brands (Genesee Light, Coors Light, Old Milwaukee Light, Miller Lite, and 

Molson Light) using an AIDS model. Their AIDS specification imposed symmetry and 

homogeneity, but was otherwise unrestricted.  Although HLZ did not report market 

21 Hausman, Leonard, and Zona (1994). 
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shares for the brands, the estimation results contain sufficient information for us to infer 

reasonable values.  For purpose of this example we have assumed the shares shown in 

Table 4.22

Table 4
Estimated Light Beer Market Shares

Brand Share (%)
Genesee Lite 37.1
Coors Light 25.7
Old Milwaukee Light 11.4
Miller Lite 15.9
Molson Lite 9.9

                 Total 100.0%

We calibrate PCAIDS using HLZ’s estimates of an unconditional price elasticity 

for Genesee of –3.763 and a light beer segment elasticity of –2.424.  These values imply 

b11 = –0.813.  The resulting PCAIDS coefficients with no nests (using equations (12) and 

(13) are:

-0.813 0.332 0.148 0.206 0.127
0.332 -0.665 0.102 0.143 0.088
0.148 0.102 -0.353 0.063 0.039
0.206 0.143 0.063 -0.467 0.055
0.127 0.088 0.039 0.055 -0.309

with implied elasticities:

Table 5
PCAIDS Elasticities (No Nests)

Genesee Light -3.72 0.53 0.24 0.33 0.20
Coors Light 0.76 -3.95 0.24 0.33 0.20

Old Milwaukee 
Light 0.76 0.53 -4.25 0.33 0.20

Miller Lite 0.76 0.53 0.24 -4.16 0.20
Molson Light 0.76 0.53 0.24 0.33 -4.28

22 It appears that their data were for stores in upstate New York, which (at least several 
years ago) would account for the brands and relative shares.
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As expected under strict proportionality, the cross-price elasticities in each column are 

identical.  

Compare the PCAIDS elasticities to those estimated by HLZ:

Table 6
HLZ Light Beer Elasticities

Genesee Light -3.76 0.46 0.40 0.25 0.20
Coors Light 0.57 -4.60 0.41 0.45 0.48

Old Milwaukee Light 1.23 0.96 -6.10 0.84 0.57
Miller Lite 0.51 0.74 0.59 -5.04 0.58

Molson Light 0.68 1.21 0.61 0.89 -5.84

Ave. HLZ cross price 
elasticity 0.75 0.84 0.50 0.61 0.46

The variation in the HLZ cross-price elasticities suggests that strict proportionality is not 

satisfied within a segment defined as these five brands.  (In contrast, HLZ’s results 

support  proportionality much more strongly in their premium beer segment.)  

Deviating from proportionality requires assumptions about nesting.  While beer 

lovers can debate what brands are the closest substitutes, HLZ suggest that Coors Light 

and Miller Lite are particularly close.  We put these brands in nest f1, along with Molson 

Light as another high quality, heavily advertised national brand.  We find it plausible that 

Old Milwaukee Light occupies a middle ground between those three brands and Genesee 

Light, a regional label that is not without its charms.  Accordingly, we put them in 

separate nests f2 and f3, respectively. Finally, we hypothesize the following nesting 

parameters:
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These parameters imply that f2 is “equally far” from f1 and f3, and that f3 is relatively 

farther from f1.

Recalibrating PCAIDS with these additional parameters results in the following 

matrix of elasticities:
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Table 7

PCAIDS Elasticities (3 Nests)

Genesee Light -3.76 0.48 0.40 0.30 0.18
Coors Light 0.69 -4.82 0.40 0.82 0.51

Old Milwaukee Light 1.30 0.90 -5.50 0.56 0.35
Miller Lite 0.69 1.32 0.40 -5.32 0.51

Molson Light 0.69 1.32 0.40 0.82 -5.63

Average PCAIDS cross-price 
elasticity with nests 0.85 1.01 0.40 0.62 0.39

The three nesting parameters bring the PCAIDS elasticities quite close to the unrestricted 

HLZ results.  We might view them as analogous to a “sufficient statistic” for the demand 

system.  That is, it appears that the four PCAIDS parameters (b11 and three nesting 

parameters) contain essentially the same information as the 25 coefficients estimated by 

HLZ.

C. Calibration in a 3-Nest System

Suppose there are five firms in the market, the merger partners (A, B) plus three 

competitors.  Firm A sells two brands.  The other firms sell one brand.  There are three 

nests (Popular, Budget, and Prestige).  Collectively, firms A and B sell into all three 

nests.  In the absence of nests, we would calibrate the PCAIDS model if we knew one 

brand elasticity.  Now, however, we have the case of 3 FOC equations (for the 3 brands 

produced by the merger partners) and 4 unknowns (b11 and the three nesting parameters).  

The shares and nests in the market are as follows:

Table 8
Shares in a 3 Nest Market

Firm-Brand Share (%) Nest
A-1 10.0 Popular
A-2 7.5 Prestige
B 12.5 Budget
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C 15.0 Popular
D 25.0 Budget
E 30.0 Popular

                 Total 100.0

We consider three different margin scenarios to create three different examples of nest 

calibration.

Scenario 1

Suppose the margins for brands  A-1, A-2, and B are 40.0%, 55.0%, and 45.0%, 

respectively, and the overall market demand elasticity is –1.0.  We use the solution 

method outlined above that sets one of the nesting parameters exogenously.  First, we test 

whether the 3 nests can be reduced to 2 nests.  This is done by solving equation (16) three 

times, each time fixing a different ωi at 100%.  We found that in no case was there a 

feasible solution.  That is, each solution to equation (16) with ωi =100% required at least 

one nesting parameter outside (0,1] to satisfy the FOCs.  This is an important piece of 

information that supports the necessity of using a model specification with at least three 

nests.  

We next find the range of feasible solutions for equation (16) by using a coarse 

grid to set ω3 exogenously.  We found that a value of approximately 0.75 was the highest 

value for ω3 that permitted a feasible solution.  We then solved equation (16) using the 

grid (.75, .50, .25, and .01). Each exogenous value for ω3 implies corresponding unique 

values for ω1 and ω2.  Table 9 reports the range of solutions.  

Table 9
40%, 55%, and 45% Margins: Nest Factors

ω1

Popular—
Prestige

ω2

Budget—
Popular

ω3

Budget—
Prestige

0.03 0.24 0.75
0.24 0.30 0.50
0.46 0.36 0.25
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0.66 0.41 0.01

The results show a fairly tight range for ω2, the Budget—Popular nesting 

parameter, centered at approximately 0.32.  The other two parameters move inversely.  If

there is evidence that both Popular and Budget are substitutable for Prestige, then the 

parameters close to 0 may be ruled out as solutions.  That is, we could exclude the 

solutions where ω3 = 0.75 or ω3 = 0.01.  On this basis, Table 8 suggests that a reasonable 

solution is to assume that all nest factors are in the range 0.25 to 0.50.  This is likely to 

offer sufficient precision for the nest factors in many cases.  Alternatively, the principle 

of maximum proportionality generates a solution vector of approximately (0.37, 0.34, 

0.35), a similar result.

Scenario 2

Suppose the margins are 40.0%, 35.0%, and 35.0%.  In this case, there is no

feasible solution for any set of nesting factors in the (0,1] range.  There are several 

possible explanations.  First, the margins may not have been measured or reported

accurately. It is possible, of course, that firms are not Bertrand pricers, or that markets 

are not in equilibrium.  A second possibility – the one that we find the most intriguing --

is that the assignment of the brands to the nests was not reasonable.  For example, there is 

a feasible solution if C is moved from Popular to Prestige.  This suggests that using 

margin data with PCAIDS can offer a useful methodology for model specification 

purposes.

Scenario 3

Finally, suppose the margins are 40.0% for all three brands.  There is a feasible 

solution in this case.  Moreover, the range of feasible solutions is tight, as Table 10

illustrates.
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Table 10

40% Margins for all Brands: Nest Factors

Popular—
Prestige

Budget—
Popular

Budget--
Prestige

0.76 0.71 1.00
1.00 0.80 0.80

The nest factors are not identified, but are nevertheless estimated with a high level of 

precision.

VI.  CONCLUDING REMARKS

We believe that the direct use of brand-margin data to estimate the parameters of 

demand systems offers a fruitful empirical basis for merger simulation analysis.  We have 

shown, within the PCAIDS framework, that the margins serve to calibrate empirically the 

nest structure (groups of products that are particularly close substitutes) and generalize 

the analysis of own- and cross-price elasticities.  PCAIDS in its basic formulation relies 

on an assumption of “proportionality” which greatly reduces the number of free 

parameters but constrains all cross-price elasticities corresponding to a given price 

change to be equal.  By incorporating nests, however, PCAIDS can relax the 

proportionality constraint and more closely approximate an unconstrained AIDS model. 

This modeling strategy exploits information that is likely to be available in the 

typical merger investigation (at least for the merging parties), but that has not been 

integrated into existing econometric models used for merger simulation.  In some cases, 

the nesting parameters will be exactly identified.  In other cases, they will be 

underidentified, but simulated price effects can be still bounded.  In still other cases, the 

nesting parameters will be overidentified, which permits an analysis of the robustness of 

the underlying demand specification.  

PCAIDS may be especially appealing for mergers at the wholesale level (where 

scanner data do not exist) and for geographic markets that span national borders (where 

comparable data are often difficult to gather).  Available brand margin data, market 
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shares, and an estimate of the market demand elasticity should be sufficient to make 

PCAIDS feasible in such cases.  In contrast, it may be difficult or even impossible to 

implement more data-intensive methodologies that rely on the econometric estimation of 

demand systems.  Some of the areas for continued work include: how does PCAIDS 

compare in practice and in theory to a logit model with nests?  to a multi-stage AIDS 

model?  What are the most appropriate procedures for testing and evaluating the 

robustness of the PCAIDS results to the choice of nesting parameters?   These and other 

questions are ripe for future research.
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