
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Voting without version numbers

Permalink
https://escholarship.org/uc/item/9w91d4dz

Authors
Long, DDE
Paris, J-F

Publication Date
1997

DOI
10.1109/pccc.1997.581496

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9w91d4dz
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

VOTING WITHOUT VERSION NUMBERS

Darrell D. E. Long

Department of Computer Science

IBM Almaden Research Center

San Jose, CA 95120

darrell@almaden.ibm.com

Jehan-Fran�cois Pâris

Department of Computer Science

University of Houston

Houston, TX 77204-3475

paris@cs.uh.edu

ABSTRACT

Voting protocols are widely used to provide mu-
tual exclusion in distributed systems and to guarantee
the consistency of replicated data in the presence of
network partitions. Unfortunately, the most e�cient
voting protocols require fairly complex metadata to
assert which replicas are up-to-date and to denote the
replicas that belong to that set.

We present a much simpler technique that does not
require version numbers and maintains only n+log(n)
bits of state per replica. We show, under standard
Markovian assumptions, that a static voting proto-
col using our method provides nearly the same data
availability as a static voting protocol using version
numbers. We also describe a dynamic voting protocol
using our method that provides the same data avail-
ability as a dynamic voting protocol using much more
complex metadata.

I. INTRODUCTION

Voting protocols have been extensively used to pro-
vide mutual exclusion in distributed systems and to
guarantee the consistency of replicated data in the
presence of network partitions. They owe this dis-
tinction to their simplicity and their robustness. In
their simplest form, voting protocols assume that the
correct state of a replicated object is the state of the
majority of its replicas. Ascertaining the state of a
replicated object requires collecting a quorum of the
replicas. Should this be prevented by too many site
failures, the replicated object is considered to be in-
accessible.

Majority Consensus Voting (MCV) and Weighted
Voting (WV) [5] are both called static protocols be-
cause the required quorums of replicas and the number
of votes assigned to each replica are �xed. Dynamic
protocols that adjusts quorums, such as dynamic vot-
ing and its variants [4, 8, 10], or modify the number
of votes assigned to each replica [2], can minimize the
impact of site failures and increase availability.

The �rst author is Associate Professor of Computer Science

at the University of California, Santa Cruz.

The Dynamic voting (DV) protocol [4] instantly
adjusts quorums to reect changes in the state of the
network of sites holding the replicas. The DV protocol
requires each site to maintain in real time a connec-
tion vector recording the state of the network. Since
the dynamic voting protocol does not assign weights
to replicas and does not include a tie-breaking rule, a
majority block must always contain at least two repli-
cas. A simple extension, known as Dynamic-linear
voting (DLV) [8], resolves these ties by applying a to-
tal ordering to the sites.

A common feature of all replication control pro-
tocols is the use of metadata to record the states of
the replicas. These metadata nearly always include
a version number, which is an integer that is incre-
mented each time the replicated data are modi�ed.
All dynamic voting protocols also require each replica
to keep track of the identities of the replicas it believes
to be operational. This information is kept in a meta-
data structure, variously called a connection vector , a
partition vector or a majority block.

Despite the important role played by these meta-
data, the problem of �nding the most e�cient meta-
data organization for a given replication control policy
has not received the attention that it deserves. The
results of this neglect have been replication control
protocols with bloated metadata and complex proce-
dures for ascertaining which replicas are up-to-date.

We present new implementations of the majority
consensus voting and the dynamic-linear dynamic pro-
tocols that do not require version numbers. Instead
our protocols maintain for each replica a cohort set
that is updated any time a failure is detected or a
replica residing on a site that failed is repaired. By
requiring that all changes in the cohort set involve
all sites in the new cohort set, we guarantee that all
replicas sharing the same cohort set are identical and
remove the need for maintaining version numbers. As
a result, our protocols require only n+ log(n) bits of
metadata per replica, that is n bits for storing the co-
hort set and log(n) bits for storing the identity of the
replica.

129

II. THE CASE FOR COHORT SETS

All extant replication control protocols incorpo-
rate some form of version numbers, that is, integers
that are incremented every time the replicated data
are modi�ed. In most cases, these version numbers
are used to distinguish outdated replicas from repli-
cas that are up-to-date. Version numbers o�er several
disadvantages.

First, they take more space than other metadata.
While metadata do not constitute a signi�cant storage
cost when the unit of replication is a �le system or a
data base, they pose a signi�cant cost when the unit
of replication is a single �le, a data base table, or a
group of disk sectors. As a result, it is desirable to
allocate as few bits as necessary to version numbers.

Second, any scheme that increments version num-
bers monotonically will eventually overow any �xed
size integer. We can delay this occurrence by reset-
ting version numbers to zero every time all the repli-
cas return to a consistent state but, even so, there is
a danger of overow. To see this, consider the clas-
sical Gambler's ruin problem [6], which shows that
any compulsive gambler will eventually have a run
of bad luck that will ruin him. The same holds for
version numbers: the replicated data will eventually
encounter a sequence of failures and repairs that will
overow any �nite integer. This can be made arbitrar-
ily unlikely by increasing the number of bits allocated
to the version numbers but cannot be totally elimi-
nated.

Third, version numbers must be incremented ev-
ery time the replicated data are updated even though
the states of the replicas have not changed. A better
solution would only require to update the metadata
whenever a replica fails or recovers.

Finally, version numbers do not su�ce to imple-
ment dynamic voting protocols, among which the dy-
namic voting protocol and its variants [4, 8], which all
require additional metadata.

We propose to replace version numbers by cohort
sets, that is records of all replicas that participated in
the last write operation.

A. Static voting with cohort sets

We will consider replicated data objects consisting
of n replicas located at di�erent sites of a network and
managed by a static voting protocol. The protocol
may, or may not have, di�erent quorums for read and
write operations as well as di�erent weights, including
none, for each replica. We will only assume that:

1. all write quorums QW are high enough to dis-
allow simultaneous writes on disjoint subsets of
replicas, and

2. all read quorums are high enough to force each
read quorum QR to have a non-empty intersec-

tion with any write quorum QW .

Mutual consistency among the replicas will be guar-
anteed through site failures and network partitions as
long as (a) messages between sites are delivered intact
in the order they were placed on the network or not at
all, and (b) sites that fail immediately stop operation.
Byzantine behaviors are speci�cally excluded.

We will �rst give a formal de�nition of cohort sets
then explain the procedure to be used to �nd the cur-
rent replica(s) in a read quorum and show when and
why this procedure fails.

De�nition 1 The cohort set for a replica represents
the set of replicas that were current after the last write
or replica recovery in which the replica participated.

Axiom 1 The cohort set Cr of a replica r always in-
cludes that replica.

This requires cohort sets to be updated (a) when-
ever the replica participates in a write and (b) when-
ever a replica that became unavailable recovers. After
any write operation, the cohort sets of all replicas that
participated in the write operation must be identical
and contain exactly these replicas. Similarly, after any
replica recovery, the cohort sets of all replicas that
participated in the recovery must be identical.

By requiring that all changes in the cohort set in-
volve all sites in the new cohort set, we guarantee that
all replicas sharing the same cohort set are identical
and remove the need for maintaining version num-
bers. If n denotes the number of replicas, our protocol
will thus require only n+ log(n) bits of metadata per
replica, that is n bits for storing the cohort set and
log(n) bits for storing the identity of the replica.

Lemma 1 Consider a replicated data object with n

replicas, m of which are accessible. If the m replicas
have identical cohort sets and constitute a read quo-
rum QR, they are all up-to-date.

Proof:

1. Since the m replicas constitute a read quorum
QR, each and every write quorumQW must con-
tain at least one replica of QR. Hence at least
one of them participated in the last write to the
object.

2. Since the m replicas have identical cohort sets,
they all participated in the same last write. By
induction on each and every write or replica re-
covery operation, they are identical. Hence, if
one of them is up-to-date, they are all.

The situation is somewhat more complicated if the
m replicas do not have identical cohort sets and is bet-
ter explained with an example. Consider, for instance,

130

a replicated data object consisting of three replicas, a,
b and c and assume that the read and write quorums
are two replicas. Let Ca, Cb and Cc be the respec-
tive cohort sets of a, b and c. If the three replicas are
up-to-date, their cohort sets will be:

Ca = fa; b; cg Cb = fa; b; cg Cc = fa; b; cg

Assume now that c becomes unavailable because the
site holding c fails or becomes unreachable as the re-
sult of a network partition. The cohort sets of a and
b will not be updated until a write occurs. After that
write the three cohort sets will be:

Ca = fa; bg Cb = fa; bg (Cc = fa; b; cg)

Assume now that a becomes unavailable. Since b is
now the only accessible replica, the replicated object
will remain unavailable until either a or c recovers. If
c recovers, then the two operational replicas will have
di�erent cohort sets:

(Ca = fa; bg) Cb = fa; bg Cc = fa; b; cg

The protocol can assert that replica b is up-to-date
because its cohort set Cb is a subset of the cohort set
of replica c.

Theorem 1 Consider a replicated data object with n,
m of which are operational. If the m replicas consti-
tute a read quorum QR, then all replicas r 2 QR such
that Cr � Cs for all s 2 QR are up-to-date.

Proof:

1. Since the m replicas constitute a read quorum
QR, each and every write quorumQW must con-
tain at least one replica of QR. Hence QR con-
tains at least one replica that participated in the
last write.

2. If two replicas r and s have the same cohort sets
Cr and Cs, they are in the same state because
otherwise the cohort set of one of them, say s,
would contain a replica that was not current af-
ter the last write or replica recovery in which s

participated.

3. Consider now a replica r 2 QR such that Cr �
Cs for all s 2 QR. Should r not be current, there
should be in QR at least one current replica x

such that Cr � Cx. But then Cx would contain
r even though r was supposed not to be current.

4. Hence all replicas r 2 QR such that Cr � Cs for
all s 2 QR are up-to-date.

After replica c is brought up-to-date, the new co-
hort sets are:

(Ca = fa; bg) Cb = fb; cg Cc = fb; cg

There are a few cases where the protocol fails to
�nd the current replica(s) in QR because QR does not
contain any replica s such that its cohort set Cs is a
subset of all the cohort sets of the other replicas of
QR. Consider the following scenario:

1. After replica c is brought up-to-date, replicas b
and c receive a new update and the cohort sets
become:

(Ca = fa; bg) Cb = fb; cg Cc = fb; cg

2. Replica b becomes unavailable and replica c re-
covers; the cohort sets of a and c are such that
Ca 6� Cc and Cc 6� Ca:

Ca = fa; bg (Cb = fb; cg) Cc = fb; cg

Therefore, the protocol will fail to recognize that
c is the current replica. As a result the repli-
cated data object will remain unavailable al-
though two out of three replicas can be accessed.

This is clearly a failure of our protocol: any proto-
col using version numbers would have compared the
version numbers of replicas a and c and found that
replica c had the higher version number.

To recover, our protocol will need instead to wait
for the recovery of replica b. We will then have two
replicas, namely b and c with identical cohort sets.
Since these two replicas form a valid quorum, the pro-
tocol can use Lemma 1 to assert that the two replicas
are both current and use them to bring replica a up-
to-date.

The result is a slightly lower available availability
when using cohort sets to implement majority consen-
sus voting. But, as we will see, this is easily remedied
by using dynamic voting.

B. Dynamic-linear voting with cohort sets

As we said before, dynamic voting protocols im-
prove upon static voting protocols by either modify-
ing the weights allocated to the surviving replicas [2]
or temporarily excluding from quorum computations
replicas that are unaccessible [4, 8]. These latter pro-
tocols, among which dynamic voting [4] and dynamic-
linear voting [8], are particularly suited to implemen-
tations using cohort sets because we can use these co-
hort sets to store the set of replicas currently included
in quorum computations. We will say that these repli-
cas are part of the current majority block. To do that,
we will have to modify very slightly the de�nition of
cohort sets to exclude from the cohort sets replicas
that are not in the current majority block.

De�nition 2 The dynamic cohort set for a replica
represents the set of replicas that (a) were current

131

after the last write or replica recovery in which the
replica participated and (b) are in the current major-
ity block.

Axiom 1 and Lemma 1, as well as Theorem 1, still
apply although the read quorummentioned in Lemma
1 and in Theorem 1 must now be replaced by a major-
ity of the replicas belonging to the current majority
block.

The simplicity of having to maintain only one co-
hort set can be contrasted with the complexity of the
optimistic dynamic voting protocol [10] where each
replica must maintain:

1. a partition set Pi representing the set of sites
which participated in the last successful opera-
tion on the replicated data,

2. an operation number, oi that is incremented at
every access, and

3. a version number, vi that is incremented at ev-
ery write.

The price to pay for this simpli�cation is minimal.
First, we cannot reintegrate outdated replicas into the
current majority block without bringing them �rst up-
to-date. Second, excluding a replica from the majority
block has now the side e�ect of marking the replica
as being outdated even when the excluded replica is
identical to the replicas in the majority block.

Majority blocks present the interesting property
that any new majority block must contain a majority
of the replicas in the current majority block. Because
of this property, we will not encounter with dynamic
voting protocols situations similar to that described
in the previous subsection where a quorum of replicas
was present but the protocol could not assert which
replica(s) should be considered current. To under-
stand this, let us return to the replicated data ob-
ject of our previous example and assume now it is
managed by a dynamic-linear voting protocol updat-
ing the cohort sets every time a write operation or a
replica recovery occurs. Let us further assume that
the dynamic-linear protocol ranks the three sites in
the order a > b > c.

If the three replicas are up-to-date, their cohort
sets will be equal to:

Ca = fa; b; cg Cb = fa; b; cg Cc = fa; b; cg

If a write occurs after c has become unavailable, the
cohort sets of a and b will become equal to fa; bg and
c will be excluded from the majority block:

Ca = fa; bg Cb = fa; bg (Cc = fa; b; cg)

Should a now become unavailable, replica b will re-
main the only accessible replica and the replicated
object will remain unavailable until a recovers. Unlike

what happened before, the recovery of c will not make
the replicated object available again because replica c
cannot participate in quorum computations before be-
ing formally reintegrated to the majority block. Hence
the cohort sets of a, b and c will remain unchanged:

(Ca = fa; bg) Cb = fa; bg Cc = fa; b; cg

Thus, we have the following theorem:

Theorem 2 An implementation of the dynamic-linear
voting using cohort sets and no version numbers will
never fail to detect a valid quorum of replicas within
the current majority block.

Proof:

1. At any given time, all replicas in the current
majority block will always have the same cohort
sets and these cohort sets will reect the mem-
bership of the current cohort set. Since every
new majority block must contain a majority of
the replicas in the previous majority block, any
subset of replicas having identical cohort sets
and constituting a majority of the replicas in
the majority block represented by these cohort
sets will constitute a valid quorum of replicas
within the current majority block.

2. Conversely, any set of replicas that does not in-
clude such a subset will not be a valid quorum
within the current majority block because it will
not contain a majority of the replicas in the cur-
rent majority block.

In other words, an implementationof the dynamic-
linear voting using cohort sets and no version numbers
will always provide the same data availability as any
other implementation of the dynamic-linear protocol
that updates its metadata at the same frequency.

III. AVAILABILITY ANALYSIS

Availability is the most common measure of fault
tolerance for repairable systems that are expected to
remain operational over a long period of time. It is
traditionally de�ned as the fraction of time a system
is operational. In the case of replicated data objects,
the availability of a replicated object represents the
fraction of time that the consistency control protocol
will allow access to the object.

Our system model consists of a set of sites with
independent failure modes connected via a network
which does not fail. When a site fails, a repair pro-
cess is immediately initiated at that site. Should sev-
eral sites fail, the repair process will be performed
in parallel on those sites. Site failures are assumed
to be exponentially distributed with mean �, and re-
pairs are assumed to be exponentially distributed with

132

2µ

λ

µ

λ

µ

2µ

µ

λ

µ
λ

µ

λ

µ

µ 3λ

µ 2λ

µ
µ

2λ

2µ λ

22’3’

333

2’2’3’2’2’3

222’22’2’

2’2’2’

2’2’2

223’

2’22

Figure 1: State transition diagram of MCV with co-
hort sets for three replicas

mean �. The system is assumed to exist in statistical
equilibrium. Although the assumption of an indepen-
dent failure rate � is reasonable if the sites have inde-
pendent power sources, the assumption of exponential
repair times is harder to defend on general grounds.
However, both hypotheses are necessary to represent
each system by a Markov process with a �nite number
of states [6].

A. Availability of static votingwith cohort sets

Figure 1 has the state transition diagram for three
replicas managed by a majority consensus voting pro-
tocol using cohort sets assuming that the data are
continuously accessed. Each state is identi�ed by a
triple hxyzi where x, y and z represent the sizes of the
cohort sets of the three replicas. The cohort sets of
failed replicas are identi�ed by a prime mark. States
that have identical numbers of replicas in each cohort
sets but di�er in these cohort sets are identi�ed by
di�erent orderings of the three digits.

State h333i represents the initial state of the three
replicas when they are all operational and have identi-
cal cohort sets. The only two other available states are
state h2230i and state h2220i. State h2230i represents
the state of the system after one of the three replicas
has failed and the cohort sets of the two remaining
replicas have been updated. To reach state h2220i,
the system should experience �rst a failure of one of
its three replicas and move to state i2230h. Then a
second replica should fail bringing the system to state
h22030i. If the replica that failed �rst recovers �rst, its
cohort set will be updated and the system will be in
state h2220i.

Note also that state h2022i is not available although

two of the three replicas are operational. It corre-
sponds to the case where the two operational replicas
have intersecting cohort sets and the protocol cannot
recognize which one of them is current.

The availability of the replicated data object is
then given by:

AMCV -CS(3)p333+ p2230 + p2220 =

=
4 �5 + 31 �4 + 83 �3 + 91 �2 + 39 �+ 6

(� + 1)5 (4 �2 + 9 �+ 6)

where pijk denotes the probability that the system is
in state hijki and � = �

�
.

This availability is slightly lower than if version
numbers had been used to manage the replicas. In
that case, the replicated object would have remained
available whenever at least two of the three replicas
were available and the overall data availability would
have been:

AMCV -V N (3) = AMCV -CS(3) + p2022 =
3�+ 1

(�+ 1)3

rho

0.250.20.150.10.050

1

0.95

0.9

0.85

0.8

MCV-CS

MCV-VN

NR

Figure 2: Compared availabilities of MCV for three
replicas with version numbers (top), MCV for three
replicas with cohort sets (middle) and a single replica
(bottom).

Figure 2 displays the compared availabilities of
MCV for three replicas with version numbers (top
graph) and MCV for three replicas with cohort sets
(middle graph). The bottom graph represents the
availability of a single unreplicated data object and
was included to provide a baseline.

We selected a range of values for � between 0 and
0.25 because a recent study [11] has shown that the

133

mean time to failure (MTTF) for modern systems is
approximately 16 days plus or minus one. The mean
time to repair (MTTR) is approximately 29 hours plus
or minus two.

As one can see, the di�erence of data availabil-
ity between the two implementations of MCV never
exceeds 0.014 over the range of values of � being con-
sidered. This might be considered a small price to pay
for not having to update the version numbers at every
write access.

B. Availability of Dynamic-LinearVoting with

Cohort Sets

The availability analysis of our new implementa-
tion of dynamic-linear voting is essentially similar to
that of the optimistic dynamic voting protocol, as it
was presented [10]. The only di�erence between the
two implementations is that optimistic dynamic vot-
ing updates the metadata at every access while dy-
namic-linear voting with cohort sets will update the
cohort sets when write operation discovers a failure.

The critical issue is not so much the data availabil-
ity a�orded by dynamic-linear voting with cohort sets
as the minimum write access rate required to guar-
antee a timely detection of site failures and network
partitions. Should write operations be not frequent
enough to provide su�ciently �ne grained detection
of site failures and network partitions, then cohort
sets can be modi�ed when read operations occur. The
penalty to pay then will be the possibility of unnec-
essary copy repairs. These costs can however be kept
to a minimum if the repair process uses a smart algo-
rithm to detect which pages of the replica need to be
updated [1].

The availability of three replicas managed by the
optimistic dynamic voting protocol was found to be
equal to:

2�4 + ��3 + 6�3 + 3��2 + 11�2 + 4��+ 6�+ �+ 1

(� + 1)4(2�+ �+ 1)

where � = �
�
, � = �

�
and � is the rate at which

the replicated object is accessed [10]. This expression
can also be used to represent the availability of three
replicas managed by our new implementation of the
dynamic-linear algorithm if we rede�ne � to represent
now the rate at which the data are updated.

Figure 3 represents the availability of three replicas
managed by our implementation for values of � vary-
ing between 0 and 0.25 and � varying between 0 and
20. As one can see, the impact of the update rate to
repair rate ratio � on the availability becomes insignif-
icant as soon as � > 4 or, in other words, � > 4�. It
appears that there is no point in updating the cohort
sets during read operations as long as the frequency
of the write operations exceeds four times the failure
rate. Assuming a mean time to fail of 16 days, this
would mean two write access every week.

0

0.05

0.1

0.15

0.2

0.25

rho

0

5

10

15

20

phi

0.9

0.92

0.94

0.96

0.98

1

Figure 3: Availability of dynamic-linear voting with
cohort sets as a function of � and �.

Thus, two write accesses per week are enough to
guarantee that dynamic-linear voting with cohort sets
will never be outperformed by any other implementa-
tion of the dynamic-linear voting protocol despite the
fact that all of these implementations use more com-
plex metadata and update these metadata much more
frequently.

IV. POSSIBLE EXTENSIONS

One of the most vexing limitations of voting proto-
col is the fact these protocols require at least three vot-
ing entities to improve upon the availability a�orded
by unreplicated data. Fortunately, one of these three
entities can be a witness, that is an entity containing
the same metadata as a regular replica but no data
[12]. Cohort sets make witnesses especially attractive
because they reduce to an absolute minimum the stor-
age costs and the access costs.

To evaluate the storage cost of a witness we need
to distinguish between static voting protocols where
witnesses do not need to be included in cohort sets
and dynamic protocols where unaccessible witnesses
can be excluded from quorum computations and the
status of each witness recorded in the cohort set of
each voting entity. In the �rst case, adding one wit-
ness to a replicated object consisting of n voting enti-
ties requires n+O(log(n)) additional bits. In the case
of dynamic voting protocols, we must add to these
n + O(log(n)) bits the extra bit required at each of
the n + 1 voting entities to store the status of the

134

witness for a total cost of 2n+ O(log(n)).
The update costs of witnesses are also extremely

low because cohort sets, unlike version numbers are
only updated when a replica becomes unaccessible and
when it can be reached again. Hence, total cost of
updating a witness over its lifetime will depend only
on the frequency of site failures and network partitions
and not on the frequency of read and write accesses.

Because of these very low costs, it becomes fea-
sible to multiply the number of witnesses to a point
where the replicated data object would include more
witnesses than replicas. We can view these witnesses
as the distributed equivalent of a single very reliable
witness that would know at any time which replicas
are current and would enforce mutual exclusion. We
would thereby achieve a very close approximation of
the optimistic available copy protocol [3], which does
not guarantee the consistency of the replicated data in
the presence of network partitions but provides much
higher data availabilities than voting protocols.

V. CONCLUSIONS

Voting protocols have been extremely popular dur-
ing the last ten years due to their robustness and their
conceptual simplicity. Unfortunately, voting protocols
also su�er from some major drawbacks. First, they re-
quire at least three voting entities to improve upon the
availability a�orded by a single replica. Second, static
voting protocols provide poor data availabilities com-
pared to other replication control protocols. Finally,
dynamic voting protocols were thought to be compli-
cated to implement and require complex metadata.

We have presented a novel implementationof static
and dynamic voting protocols using cohort sets and
requiring only n + log(n) bits of state per voting en-
tity. Unlike version numbers that need to be incre-
mented every time the replicated data are updated,
cohort sets are only updated whenever a change in
the availability of the replicas is detected. We have
shown under standard Markovian hypothesis that a
static voting protocol using cohort sets provides al-
most the same availability as a static voting protocol
using version numbers. We have described a dynamic
voting protocol using cohort sets that provides the
same data availability as a dynamic voting protocol
using much more complex metadata. We have also
found that cohort sets dramatically reduce the update
costs of witnesses since witnesses would only need to
be updated whenever a change in the accessibility of
a replica is detected.

More work still needs to be done to investigate al-
ternative implementations of the cohort set update
process. One promising avenue would be to allow
the cohort sets of some replicas to continue to in-
clude some replicas that failed before the last write
but after the penultimate operation that recomputed

the cohort set.

VI. REFERENCES

[1] D. Barbar�a, H. Garcia-Molina and B. Feijoo,
\Exploiting Symmetries for Low-Cost Compar-
ison of File Copies," Proc. 8th Int. Conf. on
Distributed Computing Systems, (1988), pp. 471{
479.

[2] D. Barbara, H. Garcia-Molina and A. Spauster,
\Increasing Availability Under Mutual Exclusion
Constraints with Dynamic Vote Reassignment,"
ACM TOCS, Vol. 7, No. 4 (1989), pp. 394{426.

[3] P. A. Bernstein and N. Goodman, \An Algorithm
for Concurrency Control and Recovery in Repli-
cated Distributed Databases," ACM TODS, Vol.
9, No. 4 (1984), pp. 596{615.

[4] D. Dav�cev and W. A. Burkhard, \Consistency
and Recovery Control for Replicated Files," Proc.
10th ACM SOSP, (1985) pp. 87{96.

[5] D. K. Gi�ord, \Weighted Voting for Replicated
Data," Proc. 7th ACM SOSP, (1979), pp. 150{
161.

[6] B. V. Gnedenko, Mathematical Methods in Re-
liability Theory, Moscow, English Translation,
New York, Academic Press, (1968).

[7] N. Goodman, D. Skeen, A. Chan, U. Dayal, R.
Fox and D. Ries, \A Recovery Algorithm for a
Distributed Database System," Proc. 2nd ACM
PODS Symposium, (1983), pp. 8{15.

[8] S. Jajodia and D. Mutchler, \Dynamic Voting
Algorithms for Maintaining the Consistency of a
Replicated Database," ACM TODS, Vol. 15, No.
2 (1990), pp. 230{405.

[9] D. D. E. Long and J.-F. Pâris, \On Improving
the Availability of Replicated Files," Proc. 6th
Symp. on Reliable Distributed Systems, (1987),
pp. 77{83.

[10] D. D. E. Long, \The Management of Replica-
tion in a Distributed System," Ph.D. disserta-
tion, University of California, San Diego, 1988.

[11] D. D. E. Long, A. Muir, and R. Golding. \A
Longitudinal Study of Internet Host Reliability,"
Proc. 14th Symp. on Reliable Distributed Sys-
tems, (1995), pp. 2{9.

[12] J.-F. Pâris, \Voting with Witnesses: A Consis-
tency Scheme for Replicated Files," Proc. 6th Int.
Conf. on Distributed Computing Systems, (1986),
pp. 606{612.

135

