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Population genetic analysis is an important tool for estimating the

degree of evolutionary connectivity in marine organisms. Here, we

investigate the population structure of the three-spot damselfish

Dascyllus trimaculatus in the Red Sea, Arabian Sea and Western

Indian Ocean, using 1174 single nucleotide polymorphisms

(SNPs). Neutral loci revealed a signature of weak genetic

differentiation between the Northwestern (Red Sea and Arabian

Sea) and Western Indian Ocean biogeographic provinces. Loci

potentially under selection (outlier loci) revealed a similar

pattern but with a much stronger signal of genetic structure

between regions. The Oman population appears to be genetically

distinct from all other populations included in the analysis.

While we could not clearly identify the mechanisms driving

these patterns (isolation, adaptation or both), the datasets

indicate that population-level divergences are largely concordant

with biogeographic boundaries based on species composition.

Our data can be used along with genetic connectivity of other

species to identify the common genetic breaks that need to be

considered for the conservation of biodiversity and evolutionary

processes in the poorly studied Western Indian Ocean region.
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1. Introduction

Coral reefs are home to a diversity of fish species that originated despite the presence of few geographical

barriers to larval dispersal [1]. To understand the origins of marine biodiversity, evolutionary biologists

have often turned to the highly diverse Indo-Pacific realm (as defined by Kulbicki et al. [2]), a large

biogeographic region spanning from the Red Sea to the Central Pacific. This realm includes many

wide-ranging species that, upon close study, often show structured populations [3], revealing the

evolutionary and historical mechanisms that operate in the oceans. These studies can also be relevant

to marine resource management and conservation planning. For example, in Hawaii, assessing the

connectivity of multiple species enabled the identification of common genetic breaks that can be used

to delineate management units [4].

Over the past two decades, there have been numerous phylogeographic studies of Indo-Pacific reef fishes,

but comparatively few have examined patterns of population connectivity within the Western Indian

Ocean [5,6]. At the largest scale, and based on species distributions, this biogeographic region was

divided into the Northwestern Indian Ocean (NWIO) and the Western Indian Ocean (WIO) provinces

([2], figure 1). In general, biogeographic boundaries are created by one of two mechanisms [7]: either the

boundary is where two separate faunas meet, or the boundary itself is the engine of faunal separation.

In the latter case, sister species are expected to occur across the boundary, and in populations that have

not yet reached the stage of speciation, the biogeographic boundary coincides with a population

separation—a phylogeographic break. The goal of this study was to assess phylogeographic patterns in

Dascyllus trimaculatus and determine whether they matched established biogeographic boundaries.

In general, studies that have sampled populations in the Indian Ocean find results ranging from no

genetic structure [5,8–15], to little differentiation [16–18]. However, some of these studies have limited

geographical coverage. In some cases, strong genetic breaks between the Red Sea (a hotspot of

endemism) and the Indian Ocean were observed [19,20]. Biogeographic studies on the distribution and

evolutionary origin of endemic species show changes in species composition between the Red Sea, Gulf

of Aden and Arabian Sea [21,22]. Within the WIO province, there appears to be genetic breaks between

the Seychelles and populations on the African coast in some species, such as the parrotfish Scarus
ghobban [18] and the mangrove crab Neosarmatium meinerti [23]. Some datasets also show evidence of a

population genetic separation between the Chagos Archipelago and the rest of the WIO, for example in

the butterflyfish Chaetodon trifasciatus [24]. Detailed studies of the widespread fish species Epinephelus
merra and Myripristis berndti also showed evidence of structure within the WIO [25,26].

The three-spot damselfish, D. trimaculatus is an abundant species found throughout the Indo-Pacific [27],

from the Red Sea to French Polynesia, and has many characteristics that are ‘typical’ of a coral reef dwelling

damselfish. It spawns 2–3 times a month for several successive months [28] producing demersal eggs that

are guarded for 2–3 days [29], and has a pelagic larval stage that lasts 22–26 days [30]. Juveniles generally

settle on anemones, which they abandon once they are large enough to avoid predation, to find shelter in reef

crevices nearby [27,29]. Dascyllus trimaculatus belongs to a species complex that comprises four species,

D. trimaculatus, D. albisella, D. strasburgi and D. auripinnis [31]. The recent divergence of these species is

consistent with a parapatric speciation scenario [31], as D. trimaculatus occupies nearly the entire Indo-

Pacific range except the Hawaiian Archipelago, the Marquesas Islands, and the Line Islands, whereas the

closely related D. albisella, D. strasburgi and D. auripinnis are only present in those restricted peripheral

ranges, respectively [31]. Dascyllus trimaculatus populations show patterns of allopatric divergence—as the

Pacific Ocean populations are distinct from those of the Indian Ocean, these populations were probably

isolated by restricted water flow in the Sunda Shelf during the Pleistocene sea-level changes [31]. In the

Pacific Ocean, where all four species of the complex are present, genetic studies have found a lack of

congruence between colour morphs and genetic groups. For example, D. auripinnis, which has a bright

yellow ventral surface and fins, is not fully genetically differentiated from D. trimaculatus. By contrast,

only D. trimaculatus is present in the Indian Ocean and mitochondrial DNA (d-loop) and microsatellite

comparisons showed these populations belong to a single clade [31].

Here, we use single nucleotide polymorphisms (SNPs) developed using restriction-site associated

DNA sequencing (RADseq) to assess the population structure in Indian Ocean D. trimaculatus. Since

recent biogeographic studies have found that in some species genetic boundaries match biogeographic

regions in the Indian Ocean [32], and because D. trimaculatus shows moderate amounts of genetic

structure throughout its range with evidence of divergence in the species complex in peripheral

habitats [31], we considered the possibility of finding genetic divergence in peripheral areas where

biogeographic boundaries have been proposed (such as the Red Sea). Not only did sea-level changes

repeatedly isolate the Red Sea from the Indian Ocean during the Pleistocene [19], but currently, the
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Figure 1. (a) Study region with populations and sample sizes (circles) indicated (NRS, Northern Red Sea; DJI, Djibouti; OMA, Oman; DGA,
Diego de Garcı́a, Chagos; ZAN, Zanzibar; MAY, Mayotte; JNO, Juan de Nova, Scattered Islands). Summer upwelling and currents are shown;
dashed lines indicate winter reversals. Currents (C): NEM, North East Monsoon C; SC, Somali C; EACC, East African Coastal C; MC, Mozambique
C; SEC, South Equatorial C. (b) DAPC for neutral (n ¼ 1117) and outlier loci (n ¼ 25). (c) STRUCTURE plot with most likely K for neutral (K ¼ 1)
and outlier loci (K ¼ 2). (d) Isolation by distance (IBD) for neutral loci, mantel test p ¼ 0.1990, r2¼ 0.0756, y ¼ 8 � 1027x þ 0.0005;
and outlier loci, p ¼ 0.016, r2¼ 0.4801, y ¼ 8 � 1025x þ 0.0239. Dascyllus trimaculatus picture by Tane Sinclair-Taylor.
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presence of an upwelling along the Horn of Africa and the coast of Oman could further isolate Red Sea

and Arabian Peninsula populations from those of the Indian Ocean [21]. In the Red Sea, the pelagic larval

duration (PLD) of D. trimaculatus, D. aruanus and D. marginatus decreases as sea surface temperatures and

food availability increase from north to south [33]. These results suggest that local environment variation

affects the life history of D. trimaculatus, which in turn might influence its genetic structure. Currents near

the African coast may also affect the genetic connectivity of D. trimaculatus in the Indian Ocean. The main

oceanic current in the Indian Ocean is the South Equatorial Current (SEC, figure 1, [18]). This current

splits near Tanzania into two continental currents, the East African Coastal Current (EACC) that flows

north towards Somalia, and the Mozambique current that flows south and produces eddies in the

Mozambique Channel [15,18], potentially isolating populations located in the Mozambique Channel

from populations further north along the African coast.

In this study, we assessed differences between populations from the Red Sea, Arabian Peninsula,

African coast, Mozambique Channel and Chagos Archipelago. We also tested for population

divergence between the biogeographic NWIO and WIO provinces. To the best of our knowledge, this

is one of the first studies based on extensive genomic data to compare population genetic structures in

the Western Indian Ocean that simultaneously covers these two provinces.
pen
sci.6:172413
2. Material and methods
2.1. Sample collection
A total of 93 individuals from seven populations were collected while diving or snorkelling between 1998

and 2013 (figure 1). Populations were grouped, following Kulbicki et al. [2], into Northwestern Indian

Ocean Province, NWIO (Northern Red Sea: NRS, Djibouti: DJI and Oman: OMA); and Western Indian

Ocean Province, WIO (Diego Garcia, Chagos Archipelago: DGA, Zanzibar, Tanzania: ZAN, Mayotte,

Comoros Archipelago: MAY and Juan de Nova, Scattered Islands, Mozambique Channel: JNO,

figure 1). The NRS population consisted of six individuals from Eilat, Israel and three from Jeddah,

Saudi Arabia. Some of the samples were part of the earlier studies including individuals from Eilat,

Oman, Mayotte and Zanzibar [31,34].

2.2. RADseq library preparation and sequencing
Genomic DNA was extracted using the Qiagen DNeasy animal blood and tissue kit (Qiagen, Valencia, USA).

The library was prepared using the double-digest RADseq protocol [35], with modifications (see electronic

supplementary material, methods) and sequenced on a single Illumina HiSeq 2000 lane, at the UCLA

Neuroscience Genomics Core facility. Raw data were de-multiplexed, quality filtered and trimmed to

95 bp, using the ‘process_rad_tags’ script available in STACKS v. 1.09 [36]. Loci were assembled using the

STACKS ‘de novo_map.pl’ pipeline, while the ‘populations’ script was used to filter loci and create output

files (for raw data filtering and loci assembly see electronic supplementary material, methods). Loci were

shared between the seven populations ( p ¼ 7), in at least 65% of individuals within a group (r ¼ 0.65) and

with a coverage of 8� (m ¼ 8). We used only the first SNP of each sequence and removed loci with minor

allele frequencies lower than 1.5% (i.e. at least two individuals must have the unique allele). Our quality

control and filtering resulted in a total of 1174 loci and a data matrix that was 84% complete. We used

PGDSPIDER 2.0 [37] to convert the resulting STRUCTURE files into other formats.

2.3. Data analysis
First, we conducted population genetic analysis with all the loci (n ¼ 1174). Then, to gain more

perspective on the patterns of genetic structure and its potential mechanisms, we separated neutral

from outlier loci, and repeated the population genetic analyses with the neutral subset and the subset

of outliers that had higher than expected FST based on neutral expectations (see below).

To identify outlier loci, we used three methods. First, we used the modified FDIST approach [38]

implemented in ARLEQUIN [39], which uses a hierarchical island model and simulates an FST null

distribution across loci as a function of heterozygosity and determines outliers as being those outside

of the distribution using a 99% confidence interval. We ran 50 000 simulations with 100 demes per

group, with minimum and maximum expected heterozygosities of 0 and 0.5, respectively. To control

for false positives, we adjusted probabilities by applying a false discovery rate of 0.01 [40] using the R



Table 1. FST values between populations, for neutral loci (n ¼ 1117, below asterisks) and outlier loci (n ¼ 25, above asterisks).
Significant values ( p , 0.05) are indicated in italics while significant values after sequential Bonferroni corrections are indicated
in bolded.

NRS DJI OMA DGA ZAN MAY JNO

NRS *** 0.1522 a 0.1919 0.2944 0.3139 0.3030 0.3080

DJI 0.0055 *** 0.1825 0.2889 0.3292 0.3516 0.3533

OMA 0.0046 0.0075 *** 0.3469 0.3399 0.3768 0.3420

DGA 0.0056 0.0088 0.0157 *** 0.0738 0.0714 b 0.1309 c

ZAN 0.0030 0.0016 0.0060 20.0016 *** 0.0870 b 0.0273

MAY 20.0033 0.0050 0.0063 0.0006 20.0022 *** 0.0821 a

JNO 0.0008 0.0067 0.0039 0.0018 20.0010 20.0038 ***
aComparisons not significant when using the datasets with 9 and 7 outlier loci.
bComparison not significant when using the dataset with 9 outliers.
cComparison not significant when using the dataset with 7 outliers.
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function p.adjust. Second, we detected outliers using the program LOSITAN [41] that also uses the FDIST

method, but without a hierarchical approach. We ran 50 000 simulations, the false discovery rate was

set at 0.05, and used an infinite allele mutation model. Finally, we used a Bayesian approach to

estimate the probability that each locus is subject to selection, using BAYESCAN 2.1 [42]. The analysis

was run with 5000 iterations and prior odds of eight, with a false discovery rate of 0.01. Based on

these results, we classified each locus into one of three categories: (i) loci with FST values significantly

higher than expected under neutrality, (ii) loci with FST values significantly lower than expected, and

(iii) neutral loci with FST values within the expected range. The possible adaptive value of the outlier

loci was explored by blasting their sequences in the NCBI nucleotide database and looking for match

with genes and their functions. The search on the database nucleotide collection (nr/nt) was

optimized for somewhat similar sequences (Blastn), with the default algorithm options.

To test for genetic structure, we conducted hierarchical AMOVAs and calculated pairwise FST [43] using

ARLEQUIN; for the latter, sequential Bonferroni corrections were applied [44]. Discriminant analyses of

principal components (DAPC) [45] were executed using ADEGENET [46] for R (R Development Core Team

2015). In addition, we ran the Bayesian clustering method implemented in STRUCTURE [47]. To test for

isolation by distance (IBD), we compared matrixes of FST/(1 2 FST) and minimum ocean distance with

Mantel tests performed using GENEPOP [48]. For details, see electronic supplementary material, methods.
3. Results
A total of 1174 loci were obtained for 93 individuals. The three outlier loci methods combined identified

26 outlier loci with high FST. The ARLEQUIN method identified 25 loci before the false discovery rate

corrections and seven after the corrections. Nine loci, and one locus, were identified as outliers by

LOSITAN and BAYESCAN, respectively. Of the nine loci identified by LOSITAN, eight were also identified by

ARLEQUIN. The outlier locus identified by BAYESCAN was also found with LOSITAN and ARLEQUIN. All 26

outlier loci identified were compared with GenBank entries (BLAST search) to identify potential gene

functions, but no significant alignments were found (electronic supplementary material, table S1).

For the population genetic analysis with outliers, we performed analyses with 7, 9 and 25 loci (the

latter being the outlier loci identified by ARLEQUIN before further corrections) and all population genetic

results remained unchanged, except for some FST pairwise comparisons (table 1).

The FDIST method from ARLEQUIN without false discovery rate correction that identified 25 outlier loci with

high FST (potentially under directional selection), also identified 32 outliers potentially under balancing

selection (lower than expected FST). Based on these results, we generated three datasets for the

population genetic analysis: (i) all loci (n ¼ 1174), (ii) neutral loci (n ¼ 1117), and (iii) outlier loci (n ¼ 25).

Note that the 32 outliers thought to be under balancing selection were excluded from the neutral dataset.

Analyses of all loci (n ¼ 1174) showed evidence of a population structure within our study region. We

found a global FST of 0.0127 ( p , 0.0001). Pairwise FST comparisons (electronic supplementary material,

table S2) indicate that DJI and OMA are significantly different from all other populations, while the NRS
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is different from all except MAY and JNO. An AMOVA showed a very low but significant divergence

between the NWIO (Red Sea, Djibouti and Oman) and the WIO (Chagos, Zanzibar, Mayotte, Juan de

Nova) (FCT ¼ 0.0099, p ¼ 0.0225). However, STRUCTURE analysis did not resolve any population clusters,

while DAPC results suggest that Oman is distinct from other populations (electronic supplementary

material, figure S1). Finally, there was statistically significant IBD (electronic supplementary material,

figure S2), but the slope is low and there is not a strong model fit.

Analyses of the neutral dataset (n ¼ 1117) indicated high genetic connectivity and weak differentiation

between the two provinces (NWIO and WIO). Global FST was low but significant (0.0057, p , 0.0001),

Pairwise FST comparisons showed that the population in Oman (OMA) stood out and it was significantly

different from all other populations (table 1), while Djibouti (DJI) was significantly different from all

except Zanzibar (ZAN). An AMOVA demonstrated low but significant divergence between the NWIO

and the WIO provinces (FCT¼ 0.0041, p ¼ 0.0283, electronic supplementary material, table S3), while the

DAPC analysis shows a close relationship among all populations except Oman (figure 1). STRUCTURE

analysis indicated K ¼ 1 (figure 1). Finally, there was evidence of weak and not significant IBD (figure 1).

Analyses of the outlier loci (n ¼ 25) showed strong genetic differentiation between provinces. Global

FST for the outliers was 0.3271 ( p , 0.0001), and all the pairwise comparisons were significant except

between Zanzibar and Diego Garcia (Chagos Archipelago), and between Zanzibar and Juan de Nova

(table 1). An AMOVA supports the distinction between the NWIO and WIO provinces (FCT ¼ 0.2349,

p ¼ 0.0342, electronic supplementary material, table S3). The DAPC analysis also identified separation

of the NWIO and WIO provinces (figure 1), while the results from STRUCTURE suggest the presence of

two clusters (K ¼ 2) that closely match the DAPC results (figure 1). Outliers revealed significant IBD

(figure 1), but the slope is low and there is not a strong model fit.
4. Discussion
The present study revealed significant genetic structure between Northwestern and Western Indian Ocean

populations of D. trimaculatus, demonstrating concordance between intraspecific phylogeographic

boundaries and biogeographic boundaries [49]. In addition, Oman appears as a distinct population from

all the others, and Djibouti is distinct from most populations. At least some of the divergence appears to

be driven by the outlier loci. These showed a clear difference between provinces that was consistent

across analyses (STRUCTURE, DAPC, AMOVA), and the DAPC results for this dataset indicate that the

populations of Oman, Djibouti and the Northern Red Sea are distinct from each other. These results

suggest that gene flow is variable across the genome and it may be affected by different processes and/

or operate at different scales. However, it is important to acknowledge that variation in recombination

rate could also explain patterns of divergence across the genome [50].

Habitat discontinuities, deep-water upwellings and the direction of prevailing currents (figure 1)

could be responsible for contemporary isolation between the Northwestern and Western Indian Ocean

provinces. Seasonal upwelling brings cold and nutrient-rich waters to southern Oman and the Somali

coast, creating large areas unsuitable for the development of coral reef habitat. In addition, currents

and complex topography may divert larvae and prevent dispersal between these provinces [21,51]. If

the divergences revealed in the outlier dataset are due to isolation and not adaptation, then these loci

should be subject to the effects of drift and show similar patterns to the neutral loci. Our outlier

dataset does, in fact, show similar—but stronger—signals compared to the neutral loci. AMOVAs

based on the neutral and outlier loci demonstrate weak but significant structures between provinces

(see also electronic supplementary material, table S2).

Sea-level fluctuations may also contribute to the observed pattern, as the Red Sea was subject to

periods of extreme isolation when sea level dropped as much as 130 m below current levels during

the Pleistocene [21]. In some cases, this repeated isolation led to speciation, while in others it only led

to population differentiation, as seen here in D. trimaculatus. After the last glacial maximum 26.5 to

19 kya, populations of many species began to expand into the Red Sea and Persian Gulf as habitat

opened up [52]. When a subset of individuals at the leading edge of a population expansion moves

into a new territory, their particular alleles increase in frequency, a phenomenon called ‘allele surfing’

[53]. Unlike most other demographic effects, allele surfing generally does not affect all loci, so it can

impact neutral allele frequencies in ways that mimic the patterns of directional selection [53,54] and

could be responsible for the results that are more evident in outlier loci.

In contrast with the more stable WIO, the NWIO is one of the most variable and environmentally extreme

regions in the tropical oceans [21]. Such differences could be selecting for different traits across provinces in
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D. trimaculatus and other species. During the summer months, the waters between the Arabian Peninsula and

the Red Sea become the world’s hottest sea, while in the winter they become one of the coldest environments

for coral reef growth [55]. The Red Sea experiences large spatio-temporal fluctuations in physical conditions

and a unique north–south environmental gradient in salinity, temperature and primary productivity [21]

(see electronic supplementary material, figure S3). Reefs in both the Red Sea and Gulf of Oman are

known to have high variability in environmental factors such as temperature and salinity [22,56,57].

Adaptation to these highly variable environments might drive the high rates of endemism in the region

[21] and may affect the survival of recruits from non-native populations. There is a possibility that the

outlier loci are under selection and reflect adaptive divergence; however, this hypothesis is less likely.

Isolation by distance is a neutral pattern, yet a weak trend was detected in the outlier dataset. In addition,

we could not clearly identify genes involved in specific adaptations (electronic supplementary material,

table S3), nor exclude the possibility of false positives.

While it is difficult to distinguish between divergence driven by selection and drift, it is important to

note that these processes are not mutually exclusive and could be acting in concert on populations found

around the region, given its complex geologic history and heterogeneous environment. It is possible that

physical barriers between the provinces are semipermeable, allowing for restricted dispersal, and

environmental contrasts between provinces reinforce those barriers through selection. Because

population sizes fluctuate with sea level, the founder effect can also influence our results: population

expansions after isolation can promote adaptation if colonizing individuals carry beneficial mutations

[58]. In our view, multiple processes are probably at play in the study region, and carefully designed

experiments are needed to disentangle their particular roles.

Despite the lack of a clear causal mechanism, our data can be used along with data on genetic

connectivity of other species to identify the common genetic breaks that need to be considered for the

conservation of biodiversity and evolutionary processes in the poorly studied Western Indian Ocean

region. Our results suggest that the Red Sea and Arabian populations should be managed separately

from the greater Western Indian Ocean population, and the role of adaptive versus neutral variation

must be examined further.
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