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PRINCIPLES OF PHYLOGEOGRAPHY
AS ILLUSTRATED BY FRESHWATER
AND TERRESTRIAL TURTLES

IN THE SOUTHEASTERN

UNITED STATES

DeEtte Walker and John C. Avise
Department of Genetics, University of Georgia, Athens, Georgia 30602;
e-mail: walker@bscr.uga.edu, avise@bscr.uga.edu

KEY WORDS: historical biogeography, mitochondrial DNA, molecular evolution, conservation
genetics

ABSTRACT
Geographic patterns in mtDNA variation are compiled for 22 species of fresh-
water and terrestrial turtles in the southeastern United States, and the results are
employed to evaluate phylogeographic hypotheses and principles of genealog-
ical concordance derived previously from similar analyses of other vertebrates
in the region. The comparative molecular findings are interpreted in the context
of intraspecific systematics for these taxa, the historical geology of the area,
traditional nonmolecular zoogeographic information, and conservation signifi-
cance. A considerable degree of phylogeographic concordance is registered with
respect to (a) the configuration of intraspecific mtDNA subdivisions across tur-
tle species, if) the principal molecular partitions and traditional morphology-
based taxonomic boundaries) ¢enetic patterns in turtles versus those described
previously for freshwater fishes and terrestrial vertebrates in the region, and
(d) intraspecific molecular subdivisions versus the boundaries between major
zoogeographic provinces as identified by composite ranges of species in the Tes-
tudines. Findings demonstrate shared elements in the biogeographic histories of
a diverse regional biota. Such phylogeographic concordances (and discordances)
have ramifications for evolutionary theory as well as for the pragmatic efforts of
taxonomy and conservation biology.
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In the study of dispersal and distribution of animals, it is important to see that the physical
conditions lead, and that in a more or less definite succession the flora and fauna follow;
thus the fauna comes to fit the habitat as a flexible material does a mold. The time is
passed when faunal lists should be the aim of faunal studies. The study must not only be
comparative, but genetic, and much stress must be laid on the study of the habitat, not in a
static, rigid sense, but as a fluctuating or periodical medium.

Charles Adams, 1901

INTRODUCTION

The spatial genetic architecture of any species is likely to be a complex out-
come of contemporary demographic and ecological forces acting upon a preex-
isting population structure that was molded by biogeographic factors operative
throughout the evolutionary history of a species. Molecular methods are well
suited for @) describing current population genetic structures @ddcover-
ing historical components of those structures. A particularly useful molecule
is animal mitochondrial (mt) DNA, which, by virtue of a rapid rate of change
and a nonrecombining mode of asexual transmission through female lineages,
permits powerful phylogeographic inferences at the levels of conspecific pop-
ulations and closely related species (9, 39,67). Given the great diversity of
ecological and evolutionary factors that can influence genealogical structures,
an idiosyncratic phylogeographic outcome might be expected for each species.
Nonetheless, comparative molecular assessments of many freshwater fishes,
terrestrial vertebrates, and maritime species in the southeastern United States
have revealed repeated patterns at several levels (reviews in 6, 8). These studies
prompted the original formulation of phylogeographic hypotheses (9) and prin-
ciples of genealogical concordance (8, 10), which are summarized in Table 1.
Because these concepts were motivated (rather than independently tested) by
the regional biogeographic data available at the time, they were considered
provisional ideas pending further empirical evaluation. Thus, an important
guestion is whether these phylogeographic hypotheses and concordance trends
may prove generalizable to other taxonomic groups and to other regional biotas.
Here we provide a summary of the results of one such extended set of indepen-
denttests: comparative evaluations of intraspecific phylogeographic patterns in
the Testudines (turtles and tortoises) distributed across the southeastern United
States.

BACKGROUND

This research on the Testudines was motivated by comparative phylogeographic
patterns reported for conspecific populations within each of several freshwater
fish species in the southeastern United States (11, 14, 40, 54): bdvafiia (
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Table1l Phylogeographic hypotheses and principles of genealogical
concordance

Phylogeographic Hypotheses (from Reference 9)

I. Most species are composed of geographic populations whose
members occupy recognizable genealogical branches of an
extended intraspecific pedigree.

I1. Species with limited or “shallow” phylogeographic population
structure have life histories conducive to dispersal and have
occupied ranges free of long-standing impediments to gene flow.

I11. Intraspecific monophyletic groups distinguished by large
genealogica gaps usually arise from long-term extrinsic

(biogeographic) barriersto gene flow.

Aspects of Genealogical Concordance (theoretical corollaries of

Phylogeographic Hypothesis |11; after Reference 8)

A. Concordance across sequence characters within a gene (yields
statistical significance for putative gene-tree clades).

B. Concordance in significant genealogical partitions across multiple
genes within a species (establishes that gene-tree partitions
register population-level phylogenetic partitions).

C. Concordance in the geography of gene-tree partitions across
multiple codistributed species (implicates shared historical
biogeographic factors in shaping intraspecific phylogenies).

D. Concordance of gene-tree partitions with spatial boundaries
between traditionally recognized biogeographic provinces
(implicates shared historical biogeographic factorsin shaping
intraspecific phylogenies and organismal distributions).

calva); mosquitofish (Gambusia affinis/=Gambusia holbrjdargemouth bass
(Micropterus salmoidgsand four species of sunfish€pomis punctatus,ep-

omis microlophusLepomis gulosus, aricepomis macrochirgs Within each

of these species, deep and geographically oriented phylogenetic “breaks” typi-
cally have distinguished populations in the eastern portion of the species’ range
(river drainages primarily along the Atlantic coast and in peninsular Florida)
fromthose to the west (most drainages entering the Gulf of Mexico from western
Georgia or Alabama to Louisiana). An example involving the spotted sunfish
(Lepomis punctatus) is presented in Figure 1.

Additional genetic substructure is evident within some of these east-west phy-
logeographic units, but these differences typically were “shallow” (low mtDNA
sequence divergence) relative to the matrilineal separations between regions.
In some of these fishes, notalblly salmoide$44),L. macrochirug11), and the
Gambusiacomplex (54), contact zones of introgressive hybridization also have
been documented by allozymes (in conjunction with mtDNA) in geographically
intermediate populations primarily in western Georgia and eastern Alabama.
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The major mtDNA phylogeographic subdivisions in freshwater fishes are
consistent with historical biogeographic scenarios that invoke long-term
(Pleistocene or earlier) separations of drainages and the fishes they contain into
the Atlantic coast region and the Gulf coast region. The subvisions are also
consistent with relatively recent physical connections permitting interdrainage
exchange of fishes within each area. Such patterns are concordant with a tra-
ditional class of biogeographic information: the distributional boundaries of
species. In a compilation of ranges for the 241 freshwater fish species native
to the southeastern region, the most fundamental break was identified at the
Apalachicola River it that forms part of the Alabama-Georgia boundary (58).
Thus, a phenetic clustering of 31 drainages based on a presence-absence matrix
of species revealed two basal assemblages (Figureal an(eastern (mostly
Atlantic coast) group composed of all rivers from the Savannah to the Suwannee
and (b) a western (Gulf coast) group composed of the Apalachicola and all
drainages westward to Louisiana (Figure 1). Most of the intraspecific breaks
in fish mtDNA reported previously (11, 14, 54) fall in this same general area as
well, thus yielding concordance aspects C and D as defined in Table 1.

Several studies of terrestrial vertebrates in the southeastern United States
also have revealed strong intraspecific phylogeographic partitioning in mtDNA
and a tendency (though not as consistent or well documented as in fishes) for
concordant spatial patterns (8). Populations in peninsular Florida (and in some
cases the adjoining Atlantic coast) tend to be strongly differentiated from those
to the north and west. These results have been attributed to the insulariza-
tion effects of a Floridian peninsula that was relatively isolated periodically
during the Pleistocene and earlier (18,23). Such isolating effects on faunal
distributions were predicted many years ago: Remington (48) first emphasized
the large number of species whose populations display a “suture zone” of sec-
ondary contact situated at the boundary between the Floridian peninsula and
the continental mainland. Remington afforded this contact region a status equal
to that of only five other major suture zones in North America.

Figure1 (Top) Map of the 10 southeastern states that are of primary interestin the current analysis.
Heavy linesdepict most of the river drainages in the Gulf of Mexico freshwater biotic province, and
light linesindicate river drainages in the Atlantic provinc&ottom left) Phenogram summarizing
faunal similarities among 31 southeastern river drainages, based on a presence-absence matrix of
241 fish species in the area (after Reference 58). Note the basal split between the Atlantic and Gulf
regions. Bottom righ}) Phenogram summarizing relationships among mitochondrial (mt) DNA
haplotypes observed in the spotted sunfiskfpomis punctatus) sampled across more than a dozen
major drainages in the region (after Reference 14). Note that the fundamental split in the mtDNA
gene tree distinguishes conspecific specimens of the Atlantic coast drainages from those of the
Gulf coast drainages.
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Thus, in addition to tests of the general phylogeographic hypotheses and
concordance aspects listed in Table 1, comparative studies of the Testudines in
the southeastern United States permit independent evaluations of more specific
biogeographic predictions. With respect to life history, aptitude for dispersal,
and potential response to vicariant biogeographic effects, aquatic turtles as a
group should be intermediate between freshwater fishes and low-vagility ter-
restrial mammals. Most turtles are associated with aquatic environments but
are able to move on land; tortoises are slow moving and have no aquatic affil-
iations. Thus, if previous genetic findings for other freshwater and terrestrial
vertebrate taxa in the southeastern United States are a guide, any deep phylo-
genetic partitions uncovered within species of Testudines might also tend to
distinguish populationsa) in peninsular Florida from those on the main body
of the continent and/or (b) in the Atlantic coastal region from those to the west
and along the Gulf coast.

PHYLOGEOGRAPHIC OUTCOMES BY SPECIES

A total of 35 species of Testudines are native to the southeastern United States.
Twenty-two of these (63%) have been the subject of molecular analyses based
on MtDNA restriction sites or sequences (Table 2). Typically, a genetic study
involved the assay of about 240-500 base pairs per individual either as an
accumulation of data from multiple-restriction enzyme assays or as sequences
obtained directly from particular mitochondrial genes (e.g. the control region).
Many studies involved assays of scores of specimens, often sampled from
populations scattered throughout the region. Table 2 is also a compilation of
information on genetic variability either as reported directly in the original
publications or as calculated by us from the data provided.

Following are brief species-by-species descriptions of major mtDNA phylo-
geographic studies. The original papers should be consulted for details. Typ-
ically, the authors used (a) parsimony and/or maximum likelihood (59) as ap-
plied to DNA sequence data or to presence-absence restriction-site matrices and
(b) neighbor-joining (53) and/or phenetic clustering (56) as applied to genetic
distance matrices. Inno case did these alternative phylogenetic procedures yield
inconsistent or conflicting outcomes with respect to the major mtDNA intraspe-
cific phylogroups that are the focus of this review. Furthermore, these phy-
logroups invariably received strong statistical support by criteria such as boot-
strapping (20) in phylogenetic appraisals presented in the original publications.

Thus, for simplicity and for ease of visual comparison across studies, re-
sults summarized below are presented in the form of cluster phenograms (and
associated geographic maps) as plotted on common scales of estimated nu-
cleotide sequence divergence. For the most part, we are not concerned with
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genetic structure of local populations within the principal phylogroups, although
(small sample sizes notwithstanding) such shallower genealogical structure was
pronounced for most species in terms of spatial heterogeneity in haplotype fre-
guencies (e.g. Figure 2).

Freshwater Turtles

STERNOTHERUS MINO@®MUSK TURTLE) In Sternotherus minor, a small-bodied
turtle confined to the southeastern United States, two morphological subspecies
have been recognize&.m. minorto the east an®.m. peltiferto the west
(Figure 3). In both restriction-site and direct-sequencing assays, Walker et
al (61) observed numerous mtDNA haplotypes, all of which were spatially
localized (Figure 2). These haplotypes cluster into two distinct phylogroups
whose geographic orientations align well with these subspecies as tradition-
ally recognized (Figure 3). Because the mean genetic distance between these
intraspecific phylogroups is considerably greater than observed haplotype dis-
tances within either assemblage, net sequence divergence is agg€.032

in the restriction-site assays (Table 2).

To explain the geographic distributions of the two subspecies, Iverson (25)
suggested that an ancestaminorstock invaded southeastern North America
during the Miocene and subsequently became vicariantly subdivided into two
units—one in peninsular Florida and the other in what is now north-central Al-
abama. The current distributions were suggested to be a result of post Miocene-
Pliocene dispersal from these refugial areas, probably facilitated for ancestral
S.m. peltifetby a well-known historical connection of the current Tennessee
River system to rivers draining southward through Alabama into Mobile Bay
(37,57).

STERNOTHERUS DEPRESSEATTENED MUSK TURTLE) The range ofSterno-
therus depressusonfined to the Black Warrior River in northern Alabama
(Figure 3), is completely encircled by that 8f minor peltifer The flattened
musk turtle has been of questionable taxonomic status (see discussion in 65),
but it is thought to be related closely $ minorand is currently on the federal

list of threatened and endangered species. Notwithstanding its odd distribution
and an uncertain genetic etiology for a characteristic flattened carapace, this
form s phylogenetically distinctin mtDNA composition from b&hm. peltifer

andS. m. minoas well as from all other kinosternid turtle speciesin the southern
United States (Figure 4).

STERNOTHERUS ODORATUSTINKPOT) Sternotherus odoratuis traditionally
considered monotypic: It is relatively uniform in morphology and life history
features throughout its range, so no taxonomic subspecies have been recog-
nized (49, 55, 60). However, striking geographic differentiation was uncovered
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Sternotherus minor

2

Figure 2 Parsimony network for the 10 different mitochondrial (mt) DNA haplotypes observed
in restriction-site assays of the musk tuigiernotherus minor, superimposed over the geographic
source of the collections (after Reference 8iyclesandother linesencompass the ranges within
which particular haplotypes were observed among the total of 52 specimens assaysdslaes!
across branches of the network indicate numbers of restriction-site changes along each path.

in the mMtDNA assays, with all haplotypes spatially localized. Three major
phylogroups with regional distributions are evident (Figure &) droup C

in Florida and south Georgiab) group B along the Atlantic seaboard from
Georgia to Virginia, andq) group A in all locales to the west. Within the lat-

ter assemblage, two phylogeographic subgroups occur (64): one from northern
Alabama to western Virginia and the other in western sites from southern
Missouri through Mississippi and Louisiana.

KINOSTERNONSPECIES (MUD TURTLES) For reasons that will become appar-
ent, two traditionally recognized congeners in the southeastern United States
are considered together. The rangeKafosternon subrubrunencompasses
most of the region, where three parapatric morphological subspecies typically
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— ) outgroup species
N

S. minor

S. depressus

7/ .
\ 8. carinatus

8. odoratus

L

F 4
—E) K. flavescens

) K. baurii

I
o

K. subrubrum

|_| E) K. baurii
_|_—|:|: K. subrubrum

Figure 4 Distinctive phylogenetic position of the threatened flattened musk t8ternotherus
depressuswithin a broader array of some presumed relatives in the geBtnaotherusand
KinosternonKinosternidae) (after Reference 65). These particular assays involved control region
sequences of the mitochondrial mtDNA molecule. They were based on samples chosen to represent
the major phylogroups identified by restriction fragment length polymorphisms (RFLPS) in more
extensive geographic surveys.

have been recognized (Figure 6). In terms of mtDNA, four major phylogroups
are evident (Figure 6):a group D, confined to the Florida peninsula (con-
sistent with the traditionally described rangekofsubrubrum steindachneri);

(b) group C, along the Atlantic seaboard from south Georgia to Virginia (part of
the traditionaK. subrubrum subrubrujn(c) group B, in a central region from
the Florida Panhandle and western Georgia to Mississippi kalsabrubrum
subrubrum); andd) group A, from the west (in the traditional range of
K. subrubrum hippocrepjs
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However, the genetic situation becomes more complicated when a close
taxonomic relativeKinosternon baurii, is included in the comparison (62).
This taxon has two moderately different mtDNA phylogroups (Figure 7): One
is confined to the Florida peninsula, and the other occurs along the Atlantic
coast. Both of th&. bauriimtDNA units are related more closely to haplogroup
C in K. subrubrum(the Atlantic coast assemblage) than is this C assemblage
to other haplogroups withiK. subrubrum. Indeed, all haplotypesKkn baurii
are embedded phylogenetically within the broader diversity of the C clade of
K. subrubrum(Figure 4).

Several explanations are possible (62). Perhaps hybridization hasled to anin-
trogressive transfer of mtDNA lineages between two otherwise long-separated
biological species of mud turtles along the Atlantic seaboard. Alternatively,
K. baurii may be a recent phylogenetic derivativekofsubrubrumin this area
and has not yet evolved noticeable differences from its ancestor in mtDNA
composition. Under this hypothesiK, subrubrumand K. baurii might be
good biological species with the former being paraphyletic to the latter in ma-
trilineal genealogy. Under either of these scenarios, a secondary invasion of the
Floridian peninsula b¥K. baurii could account for the sympatric occurrence
there of highly divergent mtDNA lineages (the C and D phylogroups) within
the Kinosternoncomplex. Another possibility is tha€. baurii is confined to
the Floridian peninsula and that turtles along the Atlantic seaboard represent
K. subrubrumexclusively. Indeed, because of morphological similarity be-
tween the two species, particularly along the Atlantic seaboard, there has been
much discussion in the literature as to whether the range€. dfaurii truly
extends into this area (21, 26, 27, 30). In the absence of direct evidence from
nuclear genes, we cannot resolve these possibilities.

In any event, at least four major mtDNA phylogroups are present within
this complex oKinosternormud turtles in the southeastern United States, and
their distributions overall bear considerable likeness to those discussed above
for S. odoratus

GRAPTEMYS SPECIE®MAP TURTLES) Many turtle groups tend to be relatively
conservative morphologically (relative to birds, for example). However, the
carapaces and heads@&faptemyspecies display varied and strikingly beauti-
ful designs, from which the moniker map turtles derives. About a dozen forms
in the southeastern United States traditionally are recognized at the taxonomic
level of species, and most are endemic to particular drainages along the Gulf
coast (Figure 8). No species occur in Atlantic coastal drainages or in peninsular
Florida.

Lamb et al (31) examined all of these forms for mtDNA restriction sites as
well as nucleotide sequences from thg b gene and control region. About
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five of the taxa assayed could not be distinguished by restriction sita br
sequences, and depths of genetic separations Brdggemysomplex overall
were small by the standards summarized above for intraspecific phylogroups
within other turtle species (Table 2). Nonetheless, three monophyletic lineages
within Graptemysould be discerned in assays of mtDNA restriction fragment
length polymorphisms (RFLPs) (Figure 8)a)(a G. pulchragroup of four
taxonomic species in central coastal rivers of the Gulf states; (b) a G. pseudo-
geographicagroup of five species mostly to the west but overlapping spatially
with members of thes. pulchragroup to some extent; and (§raptemys
geographicaa widespread species in the central and northern United States.
The genealogical data taken at face value suggest thargptemysomplex
has been taxonomically oversplit at the species level. Perhaps this is because
shell characters have been available to distinguish adjacent populations, many
of which now appear from the molecular data not to have been long separated
historically. Indeed, th&raptemyscomplex appears to display less mtDNA
lineage diversification overall than do conspecific populations of several kinos-
ternid species (compare Figure 8 with Figures 3, 5, and 6).

TRACHEMYS SCRIPTSLIDER) Trachemys scriptés widespread and abundant,
with two named subspecies in the current coverage ares: scripta mostly
along the Atlantic coast, an@. s. elegansto the west. In field guides (e.g.
17), these forms usually are depicted as “intergrading” in western Georgia,
Alabama, and the Florida Panhandle.

With respect to mtDNA, Avise et al (12) first surveyed a small number of
specimens of this species, but additional specimens in the current study bring
the total sample size thl = 65. Mitochondrial variation in this species is
extremely limited: Two haplotypes were observed, and these differed by only
three assayed restriction sitgs & 0.006). Nonetheless, the two lineages
show a strong geographic orientation generally consistent with the described
subspecies ranges (Figure 9). However, two individuals with the western hap-
lotype A were observed in the Atlantic coastal plain.

DEIROCHELYS RETICULARILCHICKEN TURTLE) Deirochelys reticulariaoccurs
primarily in coastal plain regions throughout the study area (Figure 10). In
control region sequences, the mtDNA of some specimens display a variant
feature of potential cladistic import that has not been reported in other turtle
species: a relatively large (10 bp) deletion. This deletion, which appears to be
a derived condition by reference to outgroup species, is present in all chicken
turtles in the eastern portion of the species’ range (Atlantic coast and peninsu-
lar Florida) but is absent to the west (Figure 10). However, within the western
region, large sequence divergence estimates (npe& 0.045) distinguish
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samples in Missouri from those along the Gulf coastal plain. The pattern
suggests an ancient separation in the mtDNA gene tree plus a more recent
derivation for the distinctive matrilines along the Atlantic coast and peninsular
Florida (Figure 10).

MACROCLEMYS TEMMINCKIALLIGATOR SNAPPING TURTLE) Striking phylo-
geographic structure in mtDNA is evident at two spatial scales witaaro-
clemys temminckiia highly aquatic species (51, 52). First, samples from each
of several river drainages entering the Gulf of Mexico display fixed differences
in haplotype frequencies, suggesting severe restrictions on contemporary in-
terdrainage gene flow. Second, much deeper phylogenetic separations in the
MtDNA gene tree distinguish three regional population assemblages (Figure 11)
that the authors (52) refer to as evolutionarily significant units. The most dis-
tinctive of these units is confined to the Suwannee River, the only major drainage
in peninsular Florida currently inhabited by the species. The two other princi-
pal mtDNA units characterize populations in all drainages from the Pensacola
River in western Florida to the Trinity River in Texas and all drainages in the
Floridian Panhandle between the Pensacola and the Suwannee.

CHELYDRA SERPENTINACOMMON SNAPPING TURTLE) Chelydra serpentina
occurs throughout eastern and central North America. Two subspecies are
recognizedC. s. osceola, in the Florida peninsula, ahds. serpentina, else-
where on the continent. A survey of mtDNA control-region sequences from
samples across the southeastern United States revealed almost no variation
within or between populations (63). A single haplotype characterized 60 of the
66 specimens surveyed, and two variant haplotypes differed from it by one and
two mutational changes (Figure 12). This paucity of mtDNA variation could
be attributed to some unknown molecular mechanism or selective peculiarity
that has arrested mtDNA evolution in snapping turtles, but these reasons seem
unlikely because a broader geographic survey of the species uncovered mod-
erate mtDNA sequence differences between North American specimens and
those in Central and South America (45). Also, in similar molecular assays,
the snapping turtle proved to be highly distinct from its closest living relative,
the alligator snapping turtle (51, 52).

Figure 8 Phylogeographic patterns of mtDNA in map turtles of the g&Braptemys Maps show

the distribution of the species in the southeastern United Statesshéitled regionéndicating
approximate geographic ranges of species conventionally recognized by morphological criteria
(after Reference 17). See text for further explanation. (Center) Single-linkage cluster phenogram
summarizing genetic relationships among the mtDNA haplotypes of these species. The scale is in
units of sequence divergencg) petween species.
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Terrestrial Turtle

GOPHERUS POLYPHEMUBSOPHER TORTOISE) The gopher tortoise is the sole
land-confined turtle in the southeastern United States. This threatened species
occurs in sand-scrub habitats in Florida and in the coastal plain from eastern
South Carolina to Louisiana. A genetic survey (42) revealed numerous mtDNA
haplotypes that are grouped into two major phylogenetic lineages with a strong
geographic configuration (Figure 13). One phylogroup characterizes samples
from western Georgia and the Floridian Panhandle to Louisiana, and the other
is confined to peninsular Florida, southern Georgia, and South Carolina. The
latter assemblage also consists of two recognizable subgroups, one of which is
present only in mid-Florida.

PHYLOGEOGRAPHIC HYPOTHESES
AND GENEALOGICAL CONCORDANCE

These comparative data on the intraspecific matrilineal histories of several
species of Testudines in the southeastern United States permit independent
tests of phylogeographic hypotheses and principles of genealogical concor-
dance previously derived from similar genetic studies of other freshwater and
terrestrial vertebrates in the region. These phylogeographic concepts and their
corollaries are appraised in order of their appearance in Table 1.

Hypothesis I: Populations of Most Species Display
Significant Phylogeographic Structure

Perhaps not surprisingly, the hypothesis that populations of most species dis-
play significant phylogeographic structure is supported abundantly by mtDNA
data for the Testudines. With the exception of the snapping turtle, all broadly
distributed species surveyed across the southeastern region show striking matri-
lineal population structure at various spatial scales and inferred temporal depths.
Given the limited mobility of individuals in most turtle species, perhaps this
local structure is to be expected, as is a window of opportunity for the evolution
of deeper interregional separations in response to longer-term biogeographic
barriers. This latter opportunity appears to have been realized, as evidenced
by the major phylogeographic breaks identified within nearly all of the broadly
distributed turtle species surveyed.

Hypothesis Il: Nonsubdivided, High-Dispersal Species
May Have Limited Phylogeographic Structure

The common snapping turtl€, serpentina, isthe only surveyed species without
pronounced mtDNA phylogeographic structure. Although shallow or modest
matrilineal structure might yet be detected in more sensitive molecular assays,
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the available data strongly suggest that long-standing evolutionary separations
have not been a part of the phylogeographic history of contemporary populations
of the common snapping turtle in the southeastern United States. Perhaps
individuals of this species are unusual among the surveyed turtles with respect
to high dispersal capabilities (19) and attendant imperviousness to historical

biogeographic barriers that appear to have affected other species.

A related possibility has to do with the observation that among all North
American turtlesC. serpentingandChrysemys picta) are tolerant to cold and
were “always among the first to invade formerly glaciated areas at the end of
the Wisconsin” (24, p. 45). The southeastern United States was never covered
by Pleistocene glaciers, but its climate was far cooler at times of glacial max-
ima, and some drainages traversing the South received frigid meltwaters from
northern glaciers during warming episodes (37). The unusual cold tolerance
and perhaps the high dispersal capabilitoserpentinanay indicate that the
species was not confined to isolated pockets of warm water habitat during the
late Tertiary and Quaternary and thus was less subject to historical population
subdividing by climatic events and/or shifting watersheds.

Hypothesis Ill: Major Phylogeographic Units
Within a Species Reflect Long-Term Historical
Barriers to Gene Flow

Most of the widely distributed turtle species assayed display deep matrilineal
separations on a regional geographic scale. However, major splits in a gene tree
(such asthat for mtDNA) cannot automatically be equated with deep separations
in a population tree (5, 22, 32,41, 43). Thus, it has been argued (10), additional
evidence in the form of genealogical concordance is required to establish by
hard criteria that major phylogenetic branches in a gene tree register major
branches in an organismal phylogeny. Four aspects of genealogical concor-
dance (Table 1) can be distinguished, all of which represent logical corollaries
of phylogeographic hypothesis IIl.

CONCORDANCE ACROSS CHARACTERS WITHIN A GENE Every deep phyloge-
netic split in the intraspecific gene tree of a turtle species is, by definition,
supported concordantly by multiple restriction-site or sequence characters in
MtDNA. Thus, this category of genealogical concordance merely identifies the
major gene-tree phylogroups worthy of further biogeographic consideration.

CONCORDANCE OF GENEALOGICAL PARTITIONS ACROSS MULTIPLE GENESThe
concordance of genealogical partitions across multiple genes cannot be evalu-
ated critically in the turtles studied because comparable genealogical evidence
from multiple nuclear genes is unavailable for comparison. In the absence
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of such direct information, a potential surrogate can be employed: traditional
subspecies definitions. To the extent that morphology-based intraspecific tax-
onomy reflects substantial population-level differences in nuclear genomes,
this category of genealogical concordance can be addressed, at least in part.

Agreement exists between mtDNA phylogeography and taxonomic defini-
tions for several of the turtles assayed: witBbernotherus mingiFigure 3) and
Trachemys scriptéFigure 9), to a partial extent withiinosternon subrubrum
(Figure 6), and with regard to the phylogenetic distinctivenestefotherus
depressugrom the other species of Kinosternidae (Figure 4). However, in
other cases such agreement is lacking. Thus, the mtDNA data provide no ev-
idence for a special phylogenetic distinctiveness of the Floridian subspecies
of Deirochelys reticularia(Figure 10) orChelydra serpentingFigure 12) or
for long-standing evolutionary separations among several of the recognized
species ofcraptemydurtles (Figure 8). Conversely, relatively deep phyloge-
netic separations in mtDNA are apparent within the taxonomically monotypic
Sternotherus odoratu@-igure 5),Macroclemys temminck{Figure 11), and,
to a lesser extenGopherus polyphemy&igure 13).

For these cases of mtDNA discordance with traditional taxonomy, two pri-
mary possibilities remain:a) The existing taxonomy does not reflect signifi-
cant phylogeographic partitions dy)(the mtDNA phylogenies are misleading
in this regard. Described next are two aspects of genealogical concordance that
suggest that the mtDNA gene trees are meaningful registers of phylogeographic
population histories and hence that current taxonomy in several cases may need
revision.

CONCORDANCE OF GENEALOGICAL PARTITIONS ACROSS MULTIPLE CODISTRI-
BUTED SPECIES As was true in earlier studies of freshwater fishes, a re-
markable result of the current review is the level of general agreement across
species of Testudines in the spatial positions of major mtDNA phylogeographic
units across the southeastern United StateStémnotherus minofFigure 3),
Sternotherus odoratu@~igure 5), Kinosternon subrubrunfFigure 6), Tra-
chemys scriptgdFigure 9),Deirochelys reticularia(Figure 10),Macroclemys
temminckii(Figure 11), andsopherus polyphemu§&igure 13), recognizable
phylogenetic separations in the mtDNA gene tree distinguish populations in
peninsular Florida and/or those along the Atlantic coast from populations in
western (Gulf coast) areas. These regions also bear striking resemblance to the
areas inhabited by major mtDNA phylogroups within several southeastern US
fish species (Figure 1).

Furthermore, as was the case for the freshwater fishes surveyed, in only a
few cases of the turtles are additional deep mtDNA subdivisions evident within
the surveyed region. Exceptions to this statement involve far western forms in
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K. subrubrum(Figure 6) andD. reticularia (Figure 10) and a central Alabama
form of SternotherugS. depressyd-igures 3, 4). These cases embellish but
do not contradict the tendency for the above-mentioned phylogeographic dis-
tinctions between eastern and western regions.

CONCORDANCE OF GENEALOGICAL PARTITIONS WITH BIOGEOGRAPHIC PROVIN-
CES IDENTIFIED BY INDEPENDENT EVIDENCE Faunal lists are the traditional
data by which regional biotic provinces are identified. For example, as de-
scribed earlier, an analysis of geographic ranges for the 241 species of fresh-
water fishes in the southeastern United States identified Atlantic (including
peninsular Florida) and Gulf drainages as the two most distinctive regions fau-
nistically (Figure 1). These two regions also show general agreement with the
geographic distributions of major intraspecific mtDNA phylogroups in several
fish species (e.g. Figure 1). Does a similar concordance between composite
faunal distributions and intraspecific mtDNA phylogroups exist for the Tes-
tudines?

Following the general procedures employed by Swift et al (58) in analyses of
fish faunal provinces, we compiled range information (17, 19) for all 35 native
species of freshwater and terrestrial turtles that inhabit the southeastern United
States. Presence or absence of each species was determined for each of 48
grids on a southeastern map (Figure 14), and similarity coefficients (Jaccard
coefficients of association; see 56) between grids were calculated. The resulting
similarity matrix was clustered phenetically (by UPGMA,; see 50), with results
shown in Figure 14.

The geographic picture of the Testudines bears strong resemblance to that of
the freshwater fishes: A basal split distinguishes the Atlantic coast and Floridian
region from locales to the north and west across most of the remainder of the
survey area. As already described, this pattern agrees well with geographic
trends in the distributions of major mtDNA phylogroups within several of the
turtle species surveyed. Where deep phylogeographic splitting was observed,
almost invariably the major phylogroups were oriented in an eastern (Atlantic)

Figure 14 Faunal assessments of Testudines in the southeastern United States based on composite
species distributions. The map shows the two basal faunal assemtghgdsedandunshaded

for all native turtle species in the region as identified in a cluster analysis (phenogram shown in
thelower half of the figurgof a matrix of faunal similarity coefficients for the grid squares. Note

the basal distinction between “Atlantic” and “Gulf” areas. A somewhat different grouping method
based on turtle “species richness” gives nearly identical resultdNimnbered areaen the map

depict freshwater faunal ecoregions or aquatic ecological units as identified by differences in the
assemblages and subassemblages of fish species (36).
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versus western (Gulf) pattern generally consistent with the major break in the
overall faunal distributions.

We suspect that these two seemingly different sources of information on
zoogeographic provinces—composite faunal lists and intraspecific phylogeo-
graphic partitions—may have similar evolutionary etiologies reflecting long-
standing ecological or biogeographic impediments to interregional dispersal.
The ranges of species clearly reflect dispersal barriers. Similarly, we suggest
that phylogeographic breaks within species that are widely distributed across
biogeographic provinces are due to evolutionary subdivision, with populations
in both biotic provinces having survived for current observation. If populations
in only one of the historical regions had survived, that species as a whole would
be merely another contributor to the concordant distributional faunal lists upon
which biotic provinces traditionally have been recognized.

On a finer geographic scale, Maxwell et al (36) identified several additional
“ecoregions” or “aquatic ecological units” in the southeastern United States
(Figure 14) that might be considered biogeographic “subprovinces” from tradi-
tional evidence. One of these (ecoregion 39) encompasses the Floridian penin-
sula and southern Georgia and is approximately coincident with Remington’s
(48) demarcation of the unique Floridian biome. Another of Maxwell et al's
units (ecoregion 40) encompasses all of the Atlantic coastal plain from Georgia
to Virginia. This distinction between peninsular Florida and the northern coastal
plain was mirrored closely by phylogenetic partitions in mtDNA witSirodor-
atus(Figure 5),K. subrubrum(Figure 6), and. baurii (Figure 7). To the west,

a more complicated array of ecoregions appear in Maxwell et al's analysis,
and in general these bear a less clear alignment to phylogeographic patterns
observed in molecular studies of the Testudines.

PHYLOGEOGRAPHIC SEPARATIONS

The comparative phylogeographic patterns summarized here for the Testudines
are similar in yet another regard to those reported previously for the freshwater
fishes in the southeastern United States. In mtDNA studies of these fishes,
the geographic distributions of the principal phylogroups were similar across
the assayed species, but the absolute magnitudes of the estimated net sequence
divergences between these mtDNA clades varied by more than an order of
magnitude: e.g. fronp = 0.006 in the bowfin Amia calva) top = 0.082 in

the redear sunfislh.épomis microlophyg14). Under a conventional molecular
clock calibration for vertebrate mtDNA(= 0.02 between a pair of lineages

per million years; Reference 16), these estimates at face value imply times of
intraspecific phylogroup separation ranging from roughly 300,000 years ago
(bowfin) to 4,100,000 years before the present (redear sunfish).
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Similarly, net sequence divergence estimates between the major intraspecific
phylogroups in the turtles differ by more than an order of magnitude (Table 2):
from p = 0.006 inTrachemys scriptéo p = 0.070 inKinosternon subrubrum
(phylogroups A and B). Under the conventional clock noted above, these trans-
late into population divergence estimates ranging from 300,000 to 3,500,000
years ago. From mtDNA studies of other Testudine taxa, a fivefold to tenfold
slower pace of mtDNA sequence evolution has been suggested (12, 15, 29; see
also 33-35, 46, 47). As applied to the phylogroups under current review, these
values imply intraspecific separation times that could range from 1.5 Mya to as
much as 35 Mya.

Microevolutionary rate assessments are particularly challenging because de
novo sequence change postdating population separations must be distinguished
from sequence differences attributable to lineage sorting from a polymorphic
common ancestor (7). In principle, the former is independent of effective
population size whereas the latter is critically dependent on historical population
demographic factors (that typically remain unknown from independent evi-
dence). Our use of “net” sequence divergence (as defined in Table 2) is an
attempt to correct for ancestral polymorphism, but it assumes that levels of
variation in extant taxa are representative of that in an ancestral population.

Apart from these and additional concerns about estimation errors, at least
two ad hoc biological explanations can be advanced for the large variance
in the sequence divergence values. First, perhaps extant turtle populations
were subdivided at widely different times. During the Pliocene and especially
the Pleistocene, repeated episodes of climatic alteration promoted ecophysio-
graphic changes in the southeastern landscape and forced either range shifts
or extinctions on its biotic elements. Thus, lineage separations within various
species might trace to different climatic cycles depending in part on the patterns
of extinction of former regional isolates. Furthermore, some of the phylogeo-
graphic footprints might trace to earlier Tertiary times, when (for example)
the central highlands of Florida probably existed periodically as one or more
islands relatively isolated from the continent.

Second, perhaps a mtDNA “clock” ticks at widely varying paces in differ-
ent turtle lineages. Considerable controversy (beyond the scope of this paper)
exists about the calibration and reliability of molecular clocks (38), and consid-
erable empirical evidence exists for severalfold mtDNA rate variation among
taxonomic groups (e.g. 2,4, 33-35, 46,47,66) and sometimes even among
closely related lineages (68).

Our recent molecular findings on several kinosternid speci&téimotherus
andKinosternon) run counter to our prior experience with several other ma-
rine, estuarine, freshwater, and terrestrial species of Testudines, in which un-
usually low (by vertebrate standards) levels of intraspecific and interspecific
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MtDNA sequence divergence had been the norm (12, 15, 28, 29). The highly
variable mtDNA genotypes in the Kinosternidae do not by themselves speak
directly to molecular clock calibrations, but they do provide different impres-
sions of the magnitudes of intraspecific population variation and differentiation
as compared with several other turtle groups. One extinct kinosternid turtle
(Xenochelys formo3gdnas been described from the Oligocene, and the extant
speciesternotherus odoratdKinosternon subrubrurnave been described
from Pliocene deposits (19). This considerable antiquity for these kinosternid
turtles provides an opportunity for ancient intraspecific lineage separations. On
the other handChelydra serpentinalso has been reported from the Pliocene
(19), yet no deep mtDNA lineage separations were evident.

RELEVANCE TO CONSERVATION BIOLOGY

Regardless of the particular historical scenarios invoked to account for the phy-
logeographic patterns in these terrestrial and freshwater turtles, the molecular
data on matrilineal separations carry ramifications for management and con-
servation efforts in two principal regards (13). First, the data are germane to
taxonomic and systematic issues for particular endangered (or other) species
considered individually. For example, the federally threateBtmtnotherus
depressusvas a problematic taxon because of its peculiar range and because
of uncertainties about the genetic basis of its oddly flattened carapace. The
MtDNA data indicate that the matrilines of this population had a relatively an-
cient evolutionary separation from those of other kinosternids in the region. To
this extent, the basis for the existing taxonomic recognition is bolstered, as are
special conservation efforts that have stemmed from it.

Second, the intraspecific genetic architectures of multiple species add to
knowledge of the faunal provinces that, we argue, should be appreciated as
major centers of biogeographic diversity in biome-based conservation efforts.
With recognition of the relative integrity and tendency toward uniqueness of ma-
jor historical biotic assemblages, conservation planning at the ecosystem level
might be instituted in conjunction with traditional species-focused management
efforts to enhance the effectiveness and impact of conservation programs on a
regional scale (8).

SUMMARY

We have identified four aspects of genealogical concordance that apply empir-
ically to several species of turtles (as well as to other freshwater and terrestrial
vertebrates) in the southeastern United States. Many species-idiosyncratic phy-
logeographic outcomes also are apparent in the mtDNA analyses. Depending
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onthe context, both the idiosyncrasies and the generalized trends can be relevant
to taxonomic and conservation efforts.

In the future, it will be of interest to evaluate phylogeographic hypotheses
and principles of genealogical concordance by conducting similar comparative
analyses on other regional biotas. Outcomes may differ. For example, perhaps
high-latitude ecoregions will tend to lack genealogical concordance because
no long-term in situ evolution can have taken place in recently glaciated areas.
A more cosmopolitan view of phylogeography would recognize such trends
as well. Regardless of the outcomes of such future studies, the comparative
genetic analyses of faunas in the southeastern United States already have con-
tributed insights into the historical nature of particular biotic provinces and of
the evolutionary factors that can contribute to the composite architectures of
species on a regional scale.
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