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Run-Time Partitioning of Scientific Continuum Calculations 
Running on Multiprocessors 

Scott Benjamin Baden 

Abstract 

A wide range of scientific continuum calculations typically concentrate corn-

putational effort non-uniformly over localized regions of physical space. We 

present a run-time partitioning strategy, intended for such methods, that distri-

butes work evenly across a team of processors and that can exploit the spatial 

localization present in the original computation in order to avoid high overhead 

costs. We tried out our strategy on Anderson's Method of Local Corrections, a 

type of vortex method for computational fluid dynamics. Because computational 

effort follows particles that congregate and disperse irregularly about the domain, 

this problem is hard to partition in a way that distributes the work evenly among 

the processors. We ran experiments on 32 processors of an Intel Personal 

Scientific Computer - a message-passing hypercube multiprocessor - and on 4 

processors of a Cray X-MP - a ~hared-memory vector architecture - and 

achieved good parallel speedups of 22 and 3.6, respectively. The partitioner may 
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be implemented as a virtual machine (VM) and made available to the program­

mer as a library of run-time utilities. The semantics of the VM are insensitive to 

the application and to the computer architecture on which the VM is imple­

mented. The VM works with ordinary programming languages, incurs modest 

overhead costs, and requires no special hardware support. It should apply to 

diverse applications, including finite difference methods, and to diverse architec­

tures without requiring that the application be reprogrammed extensively for 

each new architecture. 
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Introduction 

... It took me years to write it, 
They were the best years of my life. 
It was a beautiful song, 
But it ran too long ... 
So they cut it down to three-o-five. 

-Billy Joel, "The Entertainer" 

1.1. Run-Time Partitioning and Software Portability 

1 

Ideally a multiprocessor system would satisfy two conditions: (1) its performance would be 

linearly proportional to the number of processors in use and (2) programs that run well on it may 

be written nearly independently of how its processors communicate. In practice, however, work 

can accumulate on only some of the processors, leaving the rest to sit mostly idle. Unless some 

kind of run-time partitioning strategy is employed to mitigate such load imbalance, the overall 

throughput of the system will be proportional .not to the number of available processors, but to 

the small fraction that can be utilized effectively. A large number of run-time partitioning stra-

tegies already exist, but the overhead costs they incur can depend heavily upon the system on 

which they are implemented. Therefore a major difficulty remains: how to construct software 

that can run on diverse architectures without entailing substantial reprogramming for each 

implementation. For example, a program that runs well on a shared-memory architecture can 
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look very different from a program implementing the same calculation but optimized for a 

message-passing architecture with only local memories. 

I believe that a good run-time panitioning strategy for load balancing should have three 

characteristics. First, it should be versatile over some reasonable range of applications, and 

should not have to be reimplemented for each new combination of multiprocessor system and 

application. Second, a good strategy should incur modest overhead. A strategy that introduces 

excessive communication costs, for example, may be unable to improve throughput even if it 

does mitigate load imbalance; idleness caused by communication latency is no more productive 

than idleness caused by imbalanced workloads. Third, the low operating costs of the strategy 

should not depend on excessive hardware suppon. Owing to physical limitations in circuit 

packaging, any extra hardware devoted to suppon for load balancing activity must impinge on 

the hardware devoted to numerical computation; we would hope that the extra needed hardware 

would not impinge too much, lest a machine do an excellent job of load balancing at the cost of 

. having the arithmetic run at an unreasonably slow rate, and thereby perform worse than a 

machine that did a poorer job of load balancing but had faster arithmetic. 

This dissertation presents a programming methodology for implementing, on multiproces-

sors, numerical algorithms exhibiting a spatial localization property that will be described 

shonly. Non-numerical computations, communication-intensive computations, or implementa-

tions on distributed multicomputer systems are not within the scope of this research. It is my 

thesis that a simple set of programming abstractions provided by a virtual machine (VM) can be 

effective in maintaining balanced workloads and, to some extent, in insulating the programmer 

from how a particular multiprocessing system handles communication. The abstractions have a 

low operating cost and require no extraordinary system suppon, either hardware or software, to 

operate efficiently. Though my approach requires that the programmer be aware of task decom-

position and interprocessor communication activities, I believe that the amount of attention he 

must pay to them will be modest. 

.. 
; 
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Many scientific continuum calculations use some form of spatial discretization to represent 

a continuous distribution of data. A specific example would be a method that takes finite differ-

ences on a grid to compute the electric field induced by a continuous charge distribution. Such 

algorithms work by transforming a collection of state variables through a succession of states, 

beginning with an initial state supplied as input For an important subset of computational 

methods, the dependencies between discrete state-variables are localized in space. In this disser-

tation I formalize these properties in the following way: 

(1) The computation consists of two parts: a local part and a relatively 
inexpensi ve global pan. 

(2) In the local pan, each variable changes state only under the 
influence of variables lying within a small neighborhood. If we 
subdivide space by a fine mesh, then variables interact locally only 
if they they lie in boxes of the mesh whose indices differ by at 
most some specified small integer. 

(3) The time taken to update the state of the variables in the local part 
can be estimated from the current state by an inexpensive auxiliary 
computation. 

My programming methodology is intended for numerical algorithms that fit this simple model of 

spatial localization. Specific examples of calculations that fit this algorithmic model include: 

• particle methods for fluid dynamics, astrophysics, and plasma phy­
sics (as described by Hockney and Eastwood [4]); 

• explicit finite difference methods for hyperbolic panial differential 
equations, including adaptive grid methods (as described by Berger 
and Bokhari [3]); 

Each state-variable is assigned an initial point in problem-space which will often, though 

not always, have a physical significance. State transformations are localized; though each vari-

able may change state under the influence of the others, it is more strongly influenced by nearby 

variables than by distant ones, where the notion of nearness is a parameter of the algorithm. 

More formally, nearby points communicate far more frequently with respect to the computation 
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done on them than do the more distant ones. As a result of this localization property, state 

transformations divide into two parts: a local part and a relatively inexpensive global part. Con-

sider the local part. If problem-space is subdivided by a fine, regular lattice of boxes, then each 

variable communicates only with others that lie within a small surrounding square neighborhood 

of boxes. Variables that are not nearby are locally independent, but may communicate in an 

unconstrained manner during global computation. State variables are free to move about the lat-

tice as the result of a state-change. The cost of updating a state variable may change from one 

state transition to the next, and vary non-uniformly over problem-space. The cost depends pri-

marily on the distribution of locally dependent variables and may be predicted with a simple 

formula involving the current values of those variables. 

Numerical algorithms that fit my model apply computational effort non-uniformly over the 

spatial domain of the problem, and the amount of effort they apply to a point in space is a func-

tion of time. Unless dynamically repartitioned when implemented on a multiprocessor, they 

could cause work to accumulate on some of the processors, with the result that the others would 

sit mostly idle. 

1.2. A Programming Methodology 

The user of my strategy for implementing spatially localized numerical algorithms adopts 

the following programming discipline: 

(1) He employs a local-memory execution model for local computation, in 
which processors communicate by passing messages. 

(2) He handles communication during global computation himself. 

(3) He calls a few utilities that decompose the computation into rectangular 
subproblems and handle the local communication across the edges of the 
subproblems. The utilities' semantics are independent of the application 
and of the architecture on which the utilities have been implemented. 

(4) He writes a few subroutines that depend solely on the application and 
passes them as arguments to the utilities. 

" 



'.' 

5 

The programmer who adopts such a discipline will be well rewarded by software that is 

relatively insensitive to changes in the number of processors, to interconnection structure, and to 

whether or not memory is shared. The parts of his software that pertain to task decomposition 

and localized communication will be isolated from the numerical parts of the code and confined 

to subroutines most of which he will use without ever reading. I believe that software modular­

ized in this way will transport much more easily among different architectures than software 

written in a style in which decomposition and communication activities are woven inextricably 

within the program. 

Computations that are spatially localized usuaIly exhibit spatial coherency; locally 

interacting variables tend to form dense structures. In constraining computations to work within 

the framework of a mesh, we can take advantage of spatial coherency in order to reduce the cost 

of task decomposition and partitioning activities. Because they scatter heavily communicating 

variables unpredictably among processors, partitioning strategies that do not conserve spatial 

coherency usuaIIy incur high communication and administrative overheads. Variables that have 

been coherently partitioned need to communicate far less information Per unit of computation to 

keep track of one another than do incoherently partitioned variables. In addition, such informa­

tion may be communicated en masse, rather than a word at a time, to exploit any fast block 

modes of transfer provided by the underlying architecture. Another reason to exploit spatial 

coherency is that algorithms exist for partitioning lattices into coherent rectangular regions that 

can do a reasonable job of balancing workloads at low extra cost. 

1.3. Results 

To test out my hypothesis I have implemented my load balancing utilities on the Intel Per­

sonal Scientific Computer (iPSC), a hypercube-type mUltiprocessor, and on the Cray X-MP/416, 

a shared-memory architecture with vector arithmetic capabilities. I applied them to an imple­

mentation of Anderson's Method of Local Corrections [1], a two dimensional vortex method for 
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incompressible inviscid flow. This particle method is typical of various problems that are spa­

tially localized-thus appearing well suited to parallel computation- but which are hard to parti­

tion because they expend effort that varies non-uniformly both over the spatial domain of the 

problem and over time. 

Parallel speedups of 22 were attained on the iPSC with 32 processors. The overhead of the 

load balancing utilities was less than 10% including interprocessor communication. This is 

surprisingly low in light of concerns voiced that the recursive bisection strategy would introduce 

high communication overhead on message-passing architectures [3,5]. Speedups of 3.6 were 

attained on the Cray with 4 processors. The overhead of load balancing utilities was less than 

5%. Computations vectorized as well as they did on the best uniprocessor implementation, and 

executed floating point operations at the rate of 250 megaflops/second on 4 processors. 

I speculate that the utilities will apply not only to particle methods like the Method of 

Local corrections but more generally to a diversity of mathematical physics calculations that fit 

my algorithmic mod"eL Some elliptic problems may also fit this model owing to a local regular­

ity property, noted by Colella. that will be discussed in a forthcoming publication [2]. 

This dissertation contains 7 chapters. The next chapter reviews past work. Chapter 3 

briefly summarizes the important details of the model problem. Chapter 4 presents a set of pro­

gramming abstractions and then applies them to the model problem, and may be thought of as a 

programmer's manual for my VM. It also presents an implementation strategy for the VM. 

Chapters 5 and 6 present experimental results obtained. respectively, from the iPSC and the Cray 

X-MP. and discuss some implementation details. Chapter 7 presents the major findings of the 

dissertation. 
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Past Work 

R He TO qTO n03a6hlna 0 6hlnOM, HeT, R He Morna 
3Toro 3a5hlTb, R KaK-TO OTAanHnaCb OT Hero. 

qHHrH3 AATMaTOB, TIepBhlA yqHTenb, 
nepeBOA C KHprH3CKoro 

2.1. Introduction 

.. ~ I did not forget the past, no. I couldn't have forgotten it. 
I son of drifted away from it. 

~hingiz Aytmatov, "Duishen", 
(translation into Russianfrom the KirghizJ 

8 

Until very recently - the early 1980's - most results concerning run-time partitioning were 

obtained from simulations. Few studies were conducted on working hardware. Most of these 

considered simple computations, such as successive overrelaxation (SOR), that use simple regu-

lar data structures and are not heavily compute bound. As a result, communication overhead was 

more troublesome than workload imbalance. 

Since run-time partitioning entails assigning pieces'of work to processors, the immediate 

question is how big the pieces should be. Task size, often referred to as task granularity, can 

range from microscopic- on the order of a single machine instruction- to very coarse- a process, 

say, executing billions of instructions. Oleinick's study [161 of a speech recognition system 

i' 
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running on the C.mmp shared-memory multiprocessor gave early empirical evidence that load 

imbalance can be improved by decreasing the granularity and hence increasing the number of the 

tasks. Our explanation is fairly simple: the sums of the completion times of tasks can be made 

more even over the processors. 

Oleinick's study also showed that the process of reducing task granularity will eventually 

reach a point of diminishing returns where the cost of managing the more numerous tasks will 

exceed any savings that result from having them more evenly balanced. This happens because 

as tasks shrink in size the fixed overhead in managing them becomes relatively expensive. We 

can also infer from this that fine-grained tasks do more communication relative to computation. 

We call this a surface effect and explain it in terms of a data dependency graph. Let the nodes of 

the graph correspond to the variables used in the computation, and the edges connect each pair of 

variables that interact. The partitioning process embeds a surface into the graph that cuts the 

edges, and communication overhead is roughly proportional to the number of cuts. As the 

number of tasks increases, the surface area of the embedded surface increases, and so does the 

number of cuts. Hence, communication overhead increases. Viewed differently, when surface 

effects are benign, nearby points are likely to be assigned to the same processor, so frequent 

communication between them will be inexpensive. Distant points will likely be assigned to dif­

ferent processors between which communication is expensive; but communication between such 

points turns out to be infrequent for a broad class of mathematical physics calculations of 

interest here that have the spatial localization property. 

Having introduced the important issues, we next present a survey of run-time partitioning 

strategies. We roughly group the strategies into two categories, according to w.hether they bal­

ance workloads implicitly or explicitly. 
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2.2. Implicit Load Balancing 

In an implicit strategy no attempt is made either to measure workload imbalance or to 

improve it. Instead, processors obtain work by sampling a pool of tasks. Although tasks may 

carry varying amounts of work, on average all processors will be equally loaded, so long as the 

work-pool is sufficiently large. The various implicit strategies differ in the way they construct 

the work-pool and divide it among the processors. 

2.2.1. Non-Traditional Computer Architectures 

An ideal multiprocessing system would handle all the details of task decomposition and 

communication for the user. Dataflow implementations [2,5] are examples of novel "non-von 

Neumann" systems that rely on special architectural and compiler suppon to distribute work 

automatically among the processors. See Treleaven's survey [21] for examples of others. Pro­

grams in dataflow are graphs of partially ordered operations that have no central program 

counter. Unlike the tOlally ordered operations specified in traditional uniprocessor systems, par­

tially ordered operations can execute in an arbitrary order; so long. as the data they need to exe­

cute is available. A dataflow machine therefore has the freedom to execute many operations 

concurrently. Nodes of a data flow graph have a microscopic granularity and represent simple 

primitive operations like addition or subtraction. For reasons previously stated, each processor 

will get a fair share of available work but for a price: the cost to administer to the fine grains of 

work can easily exceed the amount of work the grain does. 

Gajski, Padua, and Kuck [9] have characterized the high overhead of dataflow in a dif­

ferent way: a dataflow machine is a very long pipeline; calculations must exhibit extreme levels 

of parallelism - on the order of several hundred independent instructions - to keep the pipe 

busy; only certain kinds of calculations in fact do so. As a result of their high overhead costs, 

dataflow implementations tend to require considerable hardware aimed to reducing the cost of 

administrative activities. This hardware could be unnecessary were the grains of work coarser, 
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e.g. on the order of subroutines, but then the machine would have to balance workloads expli­

citly. We discuss one non-traditional architecture that uses an automatic, explicit strategy in sec­

tion 2.3.1. 

III an ideal dataflow multiprocessor, communication overhead as well as administrative 

overheads would be negligible. In classic dataflow implementations, however, communication 

is expensive: tasks, which are small and numerous, do a lot of communication relative to the 

computation they do. Part of the problem is that tasks that share the same processor cannot com­

municate via processor registers, as would the equivalent machine instructions on traditional 

architectures. This happens because there is no notion of explicit storage in dataflow: a task's 

state is bound to a processor only for the duration of task execution and leaves the processor 

once the task terminates. The information must travel expensively through to higher levels of 

the memory hierarchy to a special repository where other instructions look for their arguments. 

Gajslci, Padua, and Kuck [9] have cited the lack of explicit storage as one of the major shortcom­

ings of dataflow. Such problems have motivated Hwu,'Patt, andShebanow [17] to propose the. 

HPS restricted data flow microarchitecture with special-purpose hardware· support for allowing 

heavily dependent tasks to communicate through processor registers. Their strategy is loosely 

based on the Tomasulo algorithm [1] used in the mM 360/91. 

2.2.2. Processor Self-Scheduling 

Processor self-scheduling is a popular technique for doing load balancing. Instead of rely­

ing on the operating system to make work assignments, each processor obtains work on its own 

by sampling a shared data structure. A common application is an iterative finite difference 

method that processes the rows of an array independently of one another, but which must finish 

with all the rows in one iteration before processing any rows in the next. A shared row counter 

keeps track of the next available row to be processed. When a processor finishes with a row, it 

samples and increments the row counter to get a new assignment. The sample and increment 
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code executes as a critical section to ensure mutually exclusive access to the counter. When the 

counter reaches its limit, processors without work must wait at a barrier synchronization point 

for the active processors to finish. So long as the number of rows is large compared with the 

number of processors, the wait time usually won't be noticed. 

In processor self-scheduling the programmer is aware of task decomposition activity. On 

commercial multiprocessor systems such as the Sequent Balance [20] and the Cray X-MP and 

Cray-2 multiprocessors [4], the programmer annotates his program with special commands that 

tell the compiler to emit the code required to implement the counters, critical sections, and bar­

rier synchronization used in processor self scheduling. 

Processor self-scheduling has also been considered for research multiprocessor systems 

such as the IBM RP3 [18], the University of Illinois's Cedar [23], and the NYU Ultracomputer 

[10]. All these systems support shared-memory-based communication. Processor self­

sched.uling applies primarily to shared-memory architectures. On message-passing architectures 

bOth the counters and the program data structures have to shuffle between the processors. This 

complicates the code and introduces a high communication overhead. Counters must be sent in 

short messages, which are expensive owing to a high message startup cost. When tasks shuffle 

between processors they must leave behind forwarding trails for other processors to follow. A 

processor must send and receive short messages to follow such trails in order to obtain data it 

needs from tasks that have migrated. And, because several tasks reside on each processor, com­

munication overhead can be further compounded by the difficulty in assigning heavily commun­

icating tasks to the same processor. 

Processor self-scheduling can incur a high communication latency on shared-memory 

architectures because processors must concurrently access the same memory locations to obtain 

new work assignments. Kumar [13] has recently noted that certain memory access patterns can 

severly degrade the performance of some kinds of staging networks over which the processors 

access memory. Even on networks for which such hot spots may not be problematic, the effect 

'1', 
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of access conflicts- for example, on shared task queues- can be intolerable. In their studies of 

the MSPLICE circuit simulator running on the BBN Butterfly Multiprocessor, Jacob et al. [11] 

have found that use of multiple queues can help reduce memory contention delays, but at the 

cost of increasing the workload imbalance. They ran with up to 99 processors and obtained 

maximal speedups of about 25 on a machine that had no floating point hardware. 

2.2.3. Scatter Decomposition 

Fox [8] has advocated a scatter decomposition strategy for the Caltech Hypercube. The 

technique is currently being tried on diverse applications: a finite element method [15], ray trac­

ing for computer graphics, and matrix decomposition. Unlike most load balancing strategies, the 

scattered decomposition strategy is static rather than dynamic. It begins, by partitioning the 

domain into a fine lattice of tasks, called templates, that are far more numerous than processors, 

and then systematically scatters each processor's work assignments throughout the domain. 

Scattered decomposition for the special case of 2 processors corresponds to a red-black ordering 

on a checkerboard. The programmer may adjust the size of the templates, and hence the granu­

larity of tasks, in order to trade off load imbalance against communication overhead due to sur­

face effects. 

Scatter decomposition works because each processor samples diverse regions of the prob­

lem and so obtains a fair cross section of a distribution of various task-sizes. The advantage of 

scattered decomposition lies in its simplicity: it partitions work statically and into simple 

shapes. So long as tasks don't interact over distances greater than the spacing of the templates, 

the underlying communi~ation structure of the computation will involve only nearest neighbors 

in a mesh. This is a desirable because messages that travel only between nearest neighbors are 

both less expensive and easier to program than messages that involve intermediate hops. If the 

templates become too small, however, then message traffic may not always be simple, in which 

case communication would no longer be restricted to involve only nearest neighbors. In addi-
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tion, as the tasks become smaller, they will send shorter, more numerous messages. 

2.3. Explicit Load Balancing 

Explicit load balancing strategies use a work metric as part of a decision-making process 

for assigning work to processors. The various strategies differ both in the work metric they use 

and in the process by which they arrive at work assignments. Unlike implicit methods, which 

split work into many fine-grained tasks, explicit methods tend to split work into relatively small 

numbers of coarse-grained chunks. As a result, explicit strategies can incur much lower over­

head costs than implicit methods. Explicit load balancing strategies come in two varieties: 

indirect and direct. We discuss two indirect methods- pressure gradient methods and simulated 

annealing- and two direct methods- each based on recursive bisection. 

2.3.1. Indirect Methods 

Pressure Gradient Methods. One kind of indirect method computes local gradients in a 

• 'work potential function" and then shifts work incrementally in the direction of the gradients. 

To compute a local work gradient, each processor estimates the amount of work assigned to it, 

exchanges the information with nearest neighbors, and then differences the information. The 

signs of the resultant numbers identify which processors have excess work to give up and which 

suffer from a work deficit, and the magnitude gives the intensity of these quantities. Such a stra­

tegy has been used in Keller's novel redifiow architecture [12], but also in more traditional 

implementations. Saltz [19] has used the technique for block iterative methods running on a 

simulated shared-memory multiprocessor with "substantial local memory." Swensen and Dippe 

[6] have used it for a three dimensional ray tracing graphics application, used to produce realistic 

artificial images, on a paper design of a mesh-connected multiprocessor. 

Pressure gradient strategies are attractive because of their low overhead costs: (1) they are 

distributed and can exploit the concurrent resources of the machine; (2) they incur modest 
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amounts of communication since loads shift gradually among processors. However, use of a dis­

tributed load balancing strategy complicates the process of deciding which work to shuffle 

among the processors; decisions must be coordinated to avoid unstable work assignments that 

would periodically starve some processors while overloading others. Pressure gradient strategies 

that interleave load balancing activity with computation have the added disadvantage of having 

to maintain forwarding trails when implemented on message-passing architectures, as with pro­

cessor self-scheduling. 

Simulated Annealing. Simulated annealing is a probabilistic technique that has been suc­

cessfully applied to various optimization problems, such as VLSI circuit placement, over the 

past 30 years. Recently Fox [8] and Williams [22] have discussed another application for simu­

lated annealing - dynamic load balancing on multiprocessors. In simulated annealing, the first 

step is to subdivide the computational domain finely into numerous subproblems and then to ini­

tially assign the subproblems randomly to the processors. An annealing algorithm then proba­

bilisticly readjusts the work assignments until all processors have roughly the same amount of 

work to do. The algorithm· is biased to ignore work reassignments tha~ would worsen workload 

imbalance. 

The criteria for selecting desirable reassignments can be expressed as minimizing an objec­

tive function describing the energy of a system of particles. We can think of the computational 

elements in the calculation as charged particles that interact within a "processor space" that is 

distinct from the spatial domain of the problem. Particles repel one another at close distances 

and will tend to disperse evenly among the processors. There generally exists more than one 

balanced configuration of particles, though some configurations incur a lower communication 

overhead than others. If communication overhead were of concern, then the objective function 

could be augmented by a term that took into account communication costs. This term would 

consist of long-range attractive forces to prevent work from being moved off a processor if, as a 

result of the move, communication incurred during the course of computation would increase. 
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It is not clear how much effon is required to construct the Hamiltonian nor to evaluate it. 

Indeed, Fox alludes to these problems [8]: 

" ... simulated annealing is a non-trivial undertaking; if we could find a simple method which 
gave decompositions almost as good, we would be happy" . 

With simulated annealing, partitions can take on irregular shapes. The software required to han-

dIe such shapes can be cumbersome, complicating the application-code. These shapes are also 

prone to surface effects that increase communication overhead. Though the use of simpler 

shapes such as rectangles could reduce communication overhead, how severely this would 

impede the annealer's ability to balance workloads isn't clear. 

2.3.2. Direct Methods 

In direct methods the computation is mapped onto a regular lattice. The lattice is often rec-

tangular though other tessellations such as hexagons could be used if appropriate. For the case 

of rectangular tessellations the task is to partition the lattice into rectangular regiOns, using a 

work estimate mapping that gives the cost of computing on an arbitrary sublattice. Direct 

methods for balancing workloads have a major advantage over indirect methods in tha-t tasks 

they generate tend to fonn simple convex polygonal shapes without holes, and therefore tend to 

suffer from only modest surface effects. The reason is that the load balancer knows how to pro-

duce the smallest possible number of "nice" shapes (equal to the number of processors) that 

carry roughly the same amount of work. Load imbalance could probably be lowered if work 

were split into a swarm of tasks, or if tasks could have ragged shapes, but probably not enough 

to justify the effon. 

We discuss three strategies based on recursive bisection. Recursive bisection works by 

splitting the domain into two parts that represent roughly equal amounts of work, and then recur-

sively splitting each pan until the desired number of subproblems have been rendered. The stra-

tegy has been applied to the traveling salesman problem and various problems in computer 
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graphics. More recently, Berger and Bokhari applied it to a two-dimensional adaptive mesh 

refinement calculation for hyperbolic partial differential equations [3]. Analytic results were dis-

cussed, in particular the cost of communication on various kinds of processor interconnection 

topologies. 

McCormick and Quinlan [14] propose a variant of recursive bisection called multi-level 

load balancing. Their innovation is to implement recursive bisection concurrently and to incor-

porate communication loading into the work estimation mapping used to determine a fair subdi-

vision of labor. They propose the following 2-stage partitioning process that generalizes to 

higher-dimensional problems. Assume P processors that form a perfect square. First recur­

sively bisect the domain into fP strips. Then apply the procedure to each strip concurrently, 

making orthogonal cuts that split each strip into fP pieces. 

Fox [7] discusses the Orthogonal Recursive Bisection strategy for decomposing sparse 

matrix problems. Unlike the first two recursive bisection strategies, ORB partitions space into 

irregular shapes, and may not apply to applications that work best when partitioned into more 
- -

simple shapes like rectangles. Fox shows th~t ORB panitionings incur a favorable communica-

tion overhead as compared to optimal partitionings produced by simulated annealing, and for a 

much lower cost. 

2.4. Comparison with Our Approach 

We take a direct approach to dynamically balancing workloads that uses recursive bisec-

tion to handle task decomposition. Though recursive bisection has already been discussed in the 

literature, past applications of the strategy have been primarily theoretically oriented, i.e. what 

kind of communication overhead would be incurred on multiprocessor xyz, and how might it be 

avoided. In contrast, our results are based on empirical measurements of a substantial calcula-

tion running on real multiprocessors. 
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How recursive bisection works, or how it may be efficiently implemented is relatively 

unimportant in this study. Any strategy that is fast and accurate, and that can render spatially 

coherent partitionings would be equally well-suited to the task at hand. We are more concerned 

with the consequences of using run-time data partitioning to do dynamic load balancing- with 

communication and programming methodology- than with the mechanics of the partitioning 

process itself. Our contribution is a programming methodology that allows the user to remain 

aloof from dynamic task decomposition, and the communication that comes as a side effect. The 

user of such a methodology can write software that runs on different kinds of multiprocessor sys-

terns without necessarily encountering major difficulties in reprogramming for each new system. 
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A Model Computation 

From the beginning it was never anything but chaos: it 
was a fluid which enveloped me, which I breathed in 
through the gills. 

-Henry Miller, Tropic of Capricorn 

3.1. Mathematical Background 

21 

The model calculation solves a time dependent, non-linear partial differential equation: that 

arises in fluid mechanics- the vonicity-stream function formulation of Euler's equation for two 

dimensional, incompressible inviscid flow. 

Let u(x(t ),t) be the velocity of the fluid at position x(t) at time t. Owing to the 

incompressibility condition, 'i/.u = 0, u may be expressed in terms of the stream function 'II: 

u = (u, v) = (-a'll/cry ,a'll/ax) (3.1a) 

where u and v are the x and y components of velocity. Finally define vorticity, co, as the curl of 

velocity: 

(3.1 b) 

Applying (3.1 a) to the (3.1 b): 
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(3.1c) 

The Euler equations describe the motion of an incompressible inviscid fluid. The vorticity 

stream function form of the equations is: 

aO) DO) 
- + udp V 0) = - = 0 
at Dt 

(3.2a) 

0) = -A'V in n, (3.2b) 

h Dad n· th 'al d" d A a2 a2
. th d' . at were - = -;- + u 'P v IS e maten envattve, an u = --2 + --2 IS e two ImenslOn 

Dt at ax cry 

Laplacian operator. The first equation is a hyperbolic equation, the second elliptic. The flow 

satisfies free-space boundary conditions: u = 0 at x = 00. This will be satisfied if 

'V - C log(r), 1 f . C = - co(r)dr 
21t lR? 

(3.2c) 

The coupled equations (3.2) completely specify the flow. Equation (3.2a) governs the evolution 

of 0); vorticity is transported by .its own velocity field u, and it does not decay. Equation (3.2b) 

tells how to find that velocity field u given ro:solve (3.2b) for 'V subject to free-space boundary 

conditions (3.2c); then differentiate 'V using (3.1a). For a thorough discussion of these equa-

tions, see Chorin and Marsden's introductory text on fluid mechanics [6]. 

3.2. The Calculation 

A vortex blob method [5] will be used to solve the equations (3.2). It describes the flow of 

the fluid by computing the motion, over a series of timesteps, of a set of particle-like computa-

tion elements called "vortex blobs." The vortices in vortex methods are treated like the particles 

in astrophysics or plasma physics calculations-they move under mutual interaction. However, 

they are not particles of fluid but an artifact of a mathematical discretization of the 

problem-tagged locations that carry information about the vorticity of the fluid. Vortex 



" 

23 

methods have many desirable properties for solving incompressible flow problems; see Chorin's 

early paper [5] on the vortex blob method for the details, and Leonard's survey [11] for addi-

tional information. 

The vortex blob method concentrates the vorticity field into discrete patches of vorticity 

represented by the blobs: 

N 
Ul{x(t ),t) = 1:K a<Xj (t) - x(t» OOj' 

j=i 
(3.3) 

where Xj (t) is the position of the jth vortex blob at time t, OOj is a signed constant giving its 

strength, K (J is called called the vortex core junction, and 0 is the cutoff radius. The strength Wj 

is the total vorticity collected from a small surrounding neighborhood and concentrated on the 

vortex blob of radius 0, and must be a constant to satisfy the vorticity evolution equation (3.2a). 

The core function is determined by accuracy considerations. The one used here is given by Cho-

rin [5]: 

r<O 

r2:0 
(3.4) 

where r = 1 x I. See Beale and Majda [3] or Hald [9] for other kinds of core functions. The vor-

ticity vanishes outside the cutoff radius. 

Using (3.2b) it can be shown that the velocity field induced by the vorticity distribution of 

(3.3) may be expressed as: 

N 
u(x(t ),t) = 1: Xa<Xj (t) - x(t» Wj' 

j=l 
Xi ;t X 

(3.5) 

where Xcr is called an influence fun~tion. This function is like a basis function for the purpose of 

decomposing the velocity field and it is determined by the choice of core function. The 

influence function that corresponds to the core function of (3.4) is: 



Xa<x) ={(-y ,x)/21trcr 
(-y,x)/21tr 2 

r<cr 

r~cr 
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(3.6) 

The vonex method consists of calculating the motion of the centers of a discrete set of vor-

tices whose strengths never change. A system of ordinary differential equations describes the 

. motion of the vortices: 

d N 
dtXi(t)= ~Xo(Xj(t)-Xi(t»roj' i =1, ... , N,i *j. 

J=l 
i ~j 

(3.7) 

Equations (3.7) are an approximation to the Lagrangian form of (3.2a); for a derivation see 

Anderson and Greengard [1]. The differential equations may be discretized in time with a 

second order Runge-Kutta time integration scheme (Heun's method). Specifically, given the 

positions of the N vortices after the kth timestep by the vector X.t = (xI(k~t), ... ,xN(k~t», 

where ~t is the timestep, we are to compute X.t+I, the positions at the k+ 1st timestep, in two 

steps: 

(3.8a) 

Q2 = ~t U(X.t +QI;(k + l)~t) (3.8b) 

(3.8c) 

where QI and Q2 are N -element displacements, and U(X;k~t) is the vector of velocities of the 

N vortices located at positions X at time k ~t. In the first step, called the predictor step, the vor-

tices move by the amount QI, which has magnitude ~t. In the second step, called the corrector 

Q2-QI hi h h . d A 2 G step, the vortices move by a much smaller amount, 2 ' w c as magrutu e ut. en-

erally, ~t« 1. 

, 
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The standard method for evaluating the velocities in (3.7) evaluates all N (N -1) sum-

mands, and has a running time of that is quadratic in the number of vortices. The method is 

expensive for larger problems when the vortices number ten thousand or more. For instance, a 

single velocity field evaluation of 12848 vortices takes about 1 minute on one processor of a 

Cray X-MP/416 (fable 3.1). Production runs comprising hundreds of timesteps-wi~ 2 velocity 

field evaluations per .timestep required for second order accuracy in time-would take several 

hours. The direct method is therefore impractical when N ~ 10,000. 

3.3. Anderson's Method of Local Corrections 

Anderson's Method of Local Corrections, abbreviated as the "MLC," may be used to 

accelerate the computation of (3.7) with reasonable accuracy [2]. It can be ten to fifty times fas-

ter than the direct method when the vortices number 104 or more. The MLC divides vortex 

interactions into two components: (1) N -body interactions computed accurately for vortices 

close enough to one another; (2) long-range interactions approximated by solving a discrete 

Poisson equation on a finite-difference grid: When they number in the thousands or more, the 

calculation spends most of its time computing local N -body interactions between nearby vor-

tices. Vortices that are not so close to one another interact indirectly through the relatively inex-

N Time 
(sec) 

1590 1.77 
3180 6.99 
6414 28.2 

12848 113 

Table 3.1. The direct method has an 0 (N 2) running time. Times are reponed for a single timestep of the 
two-FA V problem used throughout this dissertation. Vortices are distributed unifonnly within two circu­
lar patches of radius 0.13. The centers are separated by 0.25. Times were measured on a single processor 
of a Cray X-MP/416. 
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pensive global finite difference computation. The MLC is much faster than the naive method 

because it exploits a locality property inherent in the elliptic part of the Euler's equation (3.2b). 

A logarithmic potential that governs the motion of the vortices diminishes rapidly with increas-

ing distance from a vortex so that distant interactions may effectively be averaged over large dis-

tances. The MLC is more accurate than Christiansen's vonex-in-cell method [8], which doesn't 

treat local interactions specially. 

The MLC computes the velocity on a set of vortices in two steps: 

(1) Solve Poisson's equation for an approximate velocity field on the 
finite difference grid and interpolate to the centers of the vortices. 

(2) Locally correct the velocity of each vortex by undoing the portion 
of the approximate velocity due to nearby vortices and substituting 
in their place local direct interactions. 

To simplify matters consider only the the x component of velocity,. u; the y component, v, is 

computed in a similar fashion . 

. Step I calculates Ii , an approximation to u on a grid, in four sub steps. Assume a single 

vonex centered at the origin. This simple case generalizes to arbitrary collections of vonices by 

superposition and linearity. The first step divides into 4 parts: 

(1.a) Set up the right hand side for Poisson's equation exclusive of Diri-
chlet boundary conditions. 

(1.b) Set up the boundary conditions for (1.a). 

(1.c) Solve. 

(I.d) Interpolate. 

Setting up the right hand side entails smearing the influence of the vonex onto a small square 

neighborhood of the mesh centered on the box covering the vonex. Specifically, evaluate the 

spread function gD (ih ,jh ) at a discrete set of points on a grid: 



.. {llhU(ih,jh) 
gD(ih ,jh) = 0 

o < I ih I and I jh I ~ D 

otherwise 
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(3.9) 

where Ilh is the discrete Laplacian, and U is the x component of the point vonex velocity func-

tion, modified to avoid self-induced velocities at the origin (the blob velocity function could also 

be used but is more expensive to compute): 

{ 

(-y ,x )/2rcr 2 

u(x,y) = 0 
r > 0 

r=O 
(3.10) 

Computing the Dirichlet boundary conditions for the right hand side entails evaluating the 

point vonex velocities at the discrete positions on the grid's boundary. This grid is then passed 

to the Poisson solver. The first step finishes by interpolating the velocity field returned by the 

solver onto the center of the vonex. We used the Lagrange interpolation fonnula for complex 

analytic functions used by Anderson [2]. 

The second major step of the MLC does the local corrections on the vortices distributed 

among the bins .. Consider correcting the vortices lying in asingie bin. These vortices are 

influenced by others lying in the correction neighborhood, a square region of space of radius C 

surrounding the bin (Although this square neighborhood is slightly larger than a circular neigh-

borhood of radius C that would be good enough, the extra vortices included there can't hun the 

accuracy of the calculation nor slow it down much). The local corrections divide into two parts: 

(2.a) Undo the effect of the smearing for all the vonices in the correction 
neighborhood of that bin. 

(2.b) Compute local interactions with those same vortices. 

Step (2.a) entails, for each bin, locally reconstructing the velocity field induced by the vor-

tices in the correction neighborhood, and interpolating onto the bin's vortices. These interpo-

lated velocities are subtracted from what has already been accumulated on the vortices to cancel 

out the locally induced component of the approximate velocity field. 
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The local interactions in the MLC are computed in much the same way as direct interac­

tions involving charged particles. The MLC requires that a "correction radius" C be chosen by 

the method's user to distinguish nearby vortices, closer than C, from distant ones. These nearby 

vortices, once identified at any time, are the ones that participate in the local part of the compu­

tation. 'To speed up the search for nearby vortices, space is customarily subdivided into a few 

thousand fairly small bins, and then the vortices are sorted into the bins, as shown in Figure 3.1. 

This technique is discussed in the text [10] on particle-based calculations by Hockney and East­

wood. The local interactions are handled a bin at a time. Convenience dictates setting the 

correction radius C to a small multiple of the bin width, say 1 or 2. Let C now stand for that 

multiple. Then, all the vortices influencing bin (i ,j) are found in the bins whose indices differ 

from i and j by integers no bigger than C. These bins form shaded regions in Figure 3.1 where 

C = 1. In practice the bins used in the MLC are much smaller than shown in the figure, so the 

vortices interact directly only over short distances. The pseudo-code of Figure 3.2 summarizes 

the MLC. 

The.MLC runs in time O(N 2IM 4)+O(NM)+O(f(M», where N is the number of vor­

tices, M is the linear dimension of the grid used to solve Poisson's equation, and f is bounded 

by a polynomial of degree 3. The first term gives the running time for the local interactions, the 

second for the evaluation of boundary conditions, and the third for the Poisson solver. Usually 

N »M , in which case the last two terms may be ignored. This happens because as N increases, 

the cost of doing the local corrections grows faster than the cost of doing the finite difference 

computations. This is shown in Table 3.2. 
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Figure 3.1. Vortices. shown as x's, get sorted into bins. demarcated here by hyphenated lines. Associated 

with each bin is a pointer to a list of vortices that lie within the bin's region of space. In practice, the bins 
are much smaller and more numerous than shown here. Each shaded region designates the domain of 

dependence for the bin at the region's center, with C = 1. The region contains all the vortices that 

infl uence those in the b in. and inel udes the bin i !Self. 
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N C Time % % % 
(sec) Interact BCs Solver 

390 1/15 0.30 25.2 1.48 3.44 
796 1/15 0.62 36.2 2.23 1.87 

1590 1/15 1.39 51.8 2.96 1.26 
3180 1/15 3.49 69.2 3.17 0.69 
6414 1/30 6.51 54.8 4.97 1.18 

12848 1/30 16.4 70.5 5.04 1.24 
25702 1/60 29.3 53.3 7.95 3.85 

Table 3.2. A breakdown of the times spent in various phases of the MLC calculation reveals that the local 
interactions computation predominates when the vortices number in the thousands. For N > 3180, we 
roughly scaled the interaction distance C with the square root of the number of vortices. This reduces the 
running time of the computation from a quadratic function of N to an almost linear function, and de­
creases the fraction of time spent computing local interactions. The time column gives the time to com­
pute a single timestep. Measurements were taken from a single processor of a Cray X-MP/22 running ver­
sion 114g of the CFr compiler (this is a dialect of CFT used at the National Magnetic Fusion Energy 
Computer Center at the Lawrence Livermore National Laboratory). This Cray runs about 15% slower 
than the X-MP/416 we used. 

3.4. Accuracy and Parameter Selection 

The l'vfl...C is a subroutine that evaluates the velocity field at the centers of a collection of 

vortices. Like most particle methods, vortex calculations involve integrating the positions of the 

vortices with respect to time, i.e. "pushing" them over a discrete series of timesteps, doing one 

or more velocity field evaluations per timestep. As previously mentioned, the time integration 

scheme we used is accurate to second order, and does two velocity field evaluations per time step. 

In addition to computing local interactions, the MLC also does some finite difference computa-

tions, including a global calculation to solve Poisson's equation. All finite difference calcula-

tions were accurate to fourth order. 

A variety of parameters play an important role in determining the speed and the accuracy 

of the l'vfl...c. There is the cutoff radius cr, the finite difference mesh spacing h, the correction 

radius C, and the spreading radius D. For all the test problems used here vortices are initially 

set up on a lattice with spacing hv' The following parameter settings were used for all the runs: 

... 
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Compute the velocities induced on a set of vortices sorted into bins 
Each bin is a pointer to a collection of vortices 
The calculation uses a finite difference mesh gD to speed up the computation 
h is the spacing of the mesh 
C is the correction distance, measured in mesh boxes, and is chosen by the user 
Ignore any indices lying outside the domain 

Compute an approximate velocity field ii on the grid gD 
First set up the RHS for the solver 

foreach bin (i ,j) 
foreach vortex (X,Ol) in bin (i ,j) 

~u, the Laplacian of the velocity induced by a vortex, 
vanishes with increasing distance from the vortex 
We approximate this quantity in two parts: ~h ii inside a square neighborhood 
centered on the box covering the vortex, and zero outside. 
The neighborhood is W + 1 boxes on a side. 
XpoiN (r) is the velocity induced at r by a point vortex of unit strength at the origin 
XbIob(r) is the velocity induced at r by a vortex blob of unit strength at the origin 

gD(i,j) := gD(i,j)+~hNx>iN(Y-X)*Ol 
where 

y= (-Q.5+(i +k)*h,-Q.5+U +l)*h), 
(k,l) E [-C-I ... 0 ... C+l]x[-C-I ... 0 ... C+I] 

Compute the boundary conditions 
foreach (i,j) on a boundary point y 

gD(i ,j) := gD(~ ,j) + Xpoilll(Y-X)*Ol 

Find ii .such that ~ii = gD 
call so}ver(gD ,ii) 

. -- Interpolate 
foreach bin (i ,j) 

foreach vortex (x,u) in bin (i ,j) 
update u by interpolating from Ii onto x and adding 

-- Local corrections 
foreach bin (i ,j) 

foreach vortex (x,u) E bin (i, j) 
foreach vortex (y,Ol) E bin (k, I) 
where (k, l) E [-C + i .. i .. C + i ] x [-C + j .. j .. C + j ] 

Subtract off ii due to nearby vortices 
update u by interpolating Nx>illl (X-y)*Ol 

onto x and subtracting 
where x ranges over the 5-point stencil 
of points centered on bin(k ,I ) 

Compute local interactions 
update u by adding Xblob (X-Y)*Ol 
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Figure 3.2. Anderson's Method of Local Corrections computes the velocity field induced at the centers of 

a collection of vortices. 

--------------_._0 __ .-
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a hll
u./) 

C 2h 
D 2h 

The values of hll we used varied in magnitude from 10-2 to 10-3 while h ranged from 1130 to 

11240. The timestep 6t used in our time integration scheme ranged from 5xl0-2 to 6.25xlO-3• 

The settings for a, C, and D 6t seem reasonable in light of other results by Anderson [2], 

Anderson and Greengard [1], Beale and Majda [4], Perlman [12], and Chorin [7]. 

The spreading radius D affects the accuracy of the global part of the solution and can be no 

smaller than a. It cannot hurt to make D slightly too large, although the cost to set up the right 

hand size for Poisson's equation increases roughly as D2. C can be no smaller than a because 

the finite difference approximation to u isn't accurate inside the core of the vortex (r < a) and 

must be corrected there. The answers get more accurate with increasing C, but for a price; the 

cost to do the local corrections varies roughly as the square of C , depending on the local density 

of vortices. 

We did a three parameter study to gain a better understanding of the appropriate settings 

. for some of the parameters. We varied h", h, and 6t over runs of a single test problem with a 

known exact solution, and compared the known solution with that computed by the MLC. The 

initial vorticity distribution for the test problem is radially symmetric and vanishes outside a cir-

de of radius 0.25 centered about the origin. The vortices are distributed on a uniform mesh of 

points, with the strength of a vortex at x = (x ,y) given by 41t( 1 - 4(x 2 + y2)l The vortices rotate 

about the origin, with a angular velocity that increases with decreasing distance from the origin. 

See Perlman [12] for the details. The runs were stopped when the fastest moving vortices had 

rotated one revolution. The L2 norm of the error was reported. This error is defined as: 

[ 

N ] 112 
hll L (computed (x)) - exact (x) ))2 

J=I 

(3.11 ) 

Three different values of hll were used and correspond with N, the number of vortices, as 
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follows: 

N hv 
1005 0.014 
4020 0.007 

16043 0.0035 

The results of the study are presented in Table 3.3, and tell us three things: 

(1) t1.t Ih y must remain constant, i.e. the time step must decrease as the 
vortices increase in number. The choice of appropriate time step 
can be inferred by moving across a row and noting when decreas­
ing the timestep doesn't appreciably decrease the error. 

(2) The correction radius C scales with cr = hyO.7S• Accuracy is insen­
sitive to changes in C, so long as C > cr. This can be inferred by 
moving down a column and keeping the number of vortices fixed. 

(3) Accuracy improves significantly as the vortices are initially spaced 
more closely, so long as an appropriate timestep has been chosen. 
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The second result is significant since it tells us that the number of local interactions need not 

necessarily grow as N 2, if C and hence h are decreased with hy • This is indeed what has been 

observed in practice, as shown in Table. 3.4. 

---------------- ---------
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N h 
t:..t 

0.1 0.05 0.025 0.0125 0.00625 
1005 1/30 9.09Ox 1 0-3 4.566x10 3 3.497xlO-3 3.243x10-3 3.175xlO-3 

1/60 9.082x10-3 4.556xl0-3 3.488xl0-3 3.233xl0-3 3.165xlO-3 

4020 1/30 7.659xl0-3 3.648x10-3 1.476xl0 3 1.216xl0-3 -
1/60 7.661xl0-3 3.650xl0-3 1.478xl0-3 1.218xl0-3 -

direct 7.658xl0-3 3.646><10-3 1.474xlO-3 1.214xlO-3 -
16043 1/30 7.172xl0-3 1.971xl0 3 7.479xlO-4 4.828xl0-4 4.219xlO-4 

1/60 7.173xl0-3 1.974x 1 0-3 7.500xlO-4 4.850xlO-4 4.24 Ix 10-4 
1/120 7.174xl0-3 1.974x 1 0-3 7.506xlO-4 4.856xl0-4 4.247xlO-4 

Table 3.3. Results from a three parameter study show the effect of varying certain simulation parameters 
on the accuracy of the computed solution. For comparison, a result for the direct method is presented for 
the single case of 4020 vortices; accuracy is not significantly better than it is with the MLC. 

Time/timestep (min) 

N C MLC Direct MLC 
Soeedup 

12848 1/30 0.25 1.9 7.6 
25702 1/60 0.48 7.6 16 
51376 1/60 1.3 30 23 

102822 11120 3.2 122 55 

Table 3.4. The correction distance C scales with the initial spacing of the vortices h y • Use of this scaling 
procedure can reduce the quadratic growth in the running time of the calculation to nearly a linear func­
tion of N, the number of vortices. Unlike the MLC, the direct method is impractical for the large prob­
lems shown here; its running time is quadratic in N. The italicized times for the direct method, when 
N > 12848, were extrapolated from the running times for smaller N that were presented in Table 3.1. 
For 102822 vortices the MLC is 55 times faster than the naive method. Times are reported for a single 
timestep of the two-FAY problem and were measured on a single processor of a Cray X-MP/416. 



35 

3.5. References 

1. C. Anderson and C. Greengard, "On Vonex Methods," SIAM J. Numer. Anal. 22,3 (June 

1985), pp. 413-440. 

2. C. R. Anderson, "A Method ofl.ocal Corrections for Computing the Velocity Field Due 

to a Distribution of Vonex Blobs," 1. Comput. Phys. 62(1986), pp. 111-123. 

3. 1. T. Beale and A. Majda, "The Design and Numerical Analysis of Vonex Methods,''' 

PAM-48, Center for Pure and Applied Mathematics, University of California, Berkeley, 

1981. 

4. 1. T. Beale and A. Majda, "Vonex Methods. II: Higher Order Accuracy in 2 and 3 

Dimensions," Math. Comput. 39,159 (July 1982), pp. 29-52. 

5. A. J. Chorin, "Numerical Study of Slightly Viscous Flow," J. Fluid Mech. 57(1973), pp. 

785-796. 

6. A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, 

Springer-Verlag, New York, 1979. 

7. A. 1. Chorin, private communications. 

8. 1. P. Christiansen, "Numerical Simulation of Hydrodynamics by the Method of Point 

Vortices," J. Comput. Phys. 13(1973), pp. 363-379. 

9. O. Hald, "Convergence ofVonex Methods, II," SIAM J. Numer. Anal 16(1979), pp. 726-

755. 

10. R. W. Hackney and 1. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, 

1981. 

11. A. Leonard, "Vortex Methods for Flow Simulation," 1. Comput. Phys. 37(1980), pp. 

289-335. 

~--- --- ----- ._--



36 

12. M. B. Perlman, "On the Accuracy of Vortex Methods," PAM-l92, Center for Pure and 

Applied Mathematics, University of California, Berkeley, December 1983. Ph. D. 

Dissertation. 



4 

User Abstractions for 

Run-Time Partitioning 

Butfour young Oysters hurried up, 
All eager for the treat ... 
And this was odd, because, you know, 
They hadn't any feet. 

Four other Oysters follO'rl!ed them, 
And yet another four; 
And thick andfast they came at last, 
And more, and more, and more ... 

-Lewis Carroll, Through the Looking-Glass 

4.1. Underlying Assumptions 

37 

We next discuss a simple set of abstractions for handling run-time partitioning. We first 

present the user interface, and following that show how to apply our abstractions to a practical 

example-the MLC. We finish the chapter by giving an implementation strategy for the abstrac-

tions. Though we focus on how the utilities work in a particular problem-instance in two dimen-

sions, the ideas presented should also make sense for other localizable calculations of arbitrary 

dimensionality. We exclude from discussion both low-level optimizations for speeding up arith-

metic operations, and the non-localized computation, i.e. the Poisson solver, to which the 

abstractions do not apply. These will be discussed in chapters 5 and 6, where appropriate. 

---- ------- -----
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Our abstractions assume a simple execution model for localized computation, called the 

lattice model. In this model, a computation is viewed as a sequence of state transformations per-

formed ona collection of variables mapped onto a lattice, which we call a workLattice. A 

workLattice, A, is a uniform collection of sets of variables, indexed by a rectangular subset of 

Z". In the rest of the chapter we will assume that n = 2; however, the abstractions w~ will dis-

cuss readily generalize to an arbitrary number of dimensions. Each bin Ai,j abstracts a set of 

variables. If (i,j) is in the index set of A, then Ai,j is the set of variables (or by abuse of nota-

tion, their values) at a given bin of the lattice. Each new state of a bin depends solely on it previ-

ous state, as well as the previous state of a small square neighborhood of bins. The size of the 

neighborhood is a run-time parameter C. Let the symbol ~ designate data dependence; then 

Ai,j t-+ AkJ ( read "Ai,j depends on Ak,l") only if Ii -k I S C and ij -I I S C. 

To execute the above computation on a mUltiprocessor, we partition A into sublattices, 

Ai, i = 0, ... ,P -1, and assign each sub lattice to one of P unique processors. The Ai cover all 

of A and are disjoint: A = UAi ; Ai (J Ai = <\> <:::::::> i ~ j. Each processor executes the identical 
i 

program, called a task, and owns the bins in its assigned sublattice. It stores these bins in its 

private memory and it alone will be responsible for updating them. To each task~s Ai there 

corresponds a small buffer region, fli , used for for handling communication with interacting sub-

problems. This region is called an external interaction region and consists of a collection of 

bins that lie in a thin rectangular shell surrounding the perimeter of Ai (see Fig. 4.1). Since 

index-set(fli ) (J index-set(Ai ) = <\>, the bins in the external interaction region are not properly 

owned by the task. The fli serve as a staging area for data owned by all other tasks j such that 

Ai ~ Ai (and by virtue of their mutual interaction, Ai t-+ Ai), or equivalently, for which index-

set(fli) (J index-set(Ai) ~ <\>. The thickness of fli is a run-time parameter. 

We provide a mechanism for handling the communication among the overlapping regions. 

The task assigned to panition Ai may communicate with that assigned to partition Ai by receiv­

ing copies of data in fli from Ai, where these intersect, and sending copies from Ai to t::.i . These 
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Figure 4.1. Processor 0 is assigned L 0, a subregion of the workLattice L, and an external interaction re­
gionDO. 

---~---~ ---­
~--- -- ---
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copies can be thought of as boundary conditions. It is p?ssible, in addition, for the task assigned 

to Ai to modify its own ~i , and to transmit this change to neighboring partitions. In the MLC, 

for example, a vortex may change owners by moving outside of Ai and into f1i. It will eventu­

ally be collected from f1i and transmitted to its new owner. 

Data transmitted from one task to another can be combined in an arbitrary, application­

determined way with data in the receiving bin. In cases where several tasks transmit data to the 

same bin, the order of receipt is not defined, and the user is responsible for insuring that his algo­

rithm is insensitive to this order. 

4.2. A Virtual Machine 

We provide the programmer with a set of abstractions for handling the communication and 

data partitioning activities discussed in the previous section. These abstractions implement a 

virtual machine (VM)- an abstract local-memory multiprocessor. Since the VM has no shared 

memory, its processors communicate by passing messages. The semantics of the VM's abstrac­

tions are unaffected by the architecture on which implemented; in partiCular, the kind of com­

munication model employed by underlying layers of hardware and software, i.e. either 

memory-sharing or message-passing. The user's code will not be completely insulated from a 

change of architecture, however, since our abstractions apply only to computation that fits the 

lattice model. But, the user will likely spend less time rewriting software than he would without 

our abstractions, since he will be primarily concerned with only the parts of the' code that the 

VM leaves up to his discretion. We will discuss such discretionary programming later in this 

chapter. We next specify the abstractions for handling task decomposition and communication. 

These are summarized in Figures 4.2 and 4.3. 

The VM specifies that in addition to the P tasks executing their own subproblem, called 

worker tasks, there will be a distinguished task called the }:)o S s. The purpose of the boss is to 

spawn the worker tasks, to provide them with initial input, and to maintain a small amount of 

',. 

.' 



-- Initialize the "boss:" establish P as the number of tasks; 
-- mapSize as the bounds of the index set of the global lattice; 
-- and buffSize (optional) as the maximum length of the VM's message buffers. 
-- Spawn P tasks; each will execute the same program "worker" 
-- User is responsible for transmitting initial inputs to the tasks 

proc initBoss(P:int,mapSize:tuple, worker:proc(tuple),buffSize:int) 

-- thisTaskO returns the worker's unique taskIndex assigned by the boss, 
-- an int in O • .P-! 
(une thisTaskO --+ taskIndex 

-- numTasksO returns the the total number of worker tasks 
(une numTasksO --+ int 

Types provided by the VM 

type partition 
-- A partition is a bounding box with two user operations: 

give upper and lower bound along coordinate k 
(une limH(k:int,q:partition) --+ int 
(une 1imL(k:int,q:partition) --+ int 

type workMap 
-- One operation defined on workMap: set Wm;,j to w 
proc w Assign(w:int, wm:workMap,(ij):tuple) 

Partitioner utility 
-- Given a workMap for thisTaskO, wait for all other tasks initiated 
-- by the boss to call partitioner, and return a partition indicating 
-- the next work assignment for thisTaskO. 
-- Partition boundaries will move no more than constraint bins in any direction 
-- Side effect clear workMap, establishing the new index set corresponding 
-- to the new bounding box 
(une partitioner(wm:workMap,constraintint) --+ partition 

41 

Figure 4.2. This pseudo-code defines the user interface to the boss, and to task partitioning abstractions. 

The pseudo-<:ode of Figure 4.3 defines the user interface to local communication abstractions. 

-~.-­
~---. 
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supervisory state. The supervisory state is not directly accessible to the workers, but only 

indirectly through the VM's abstraction mechanisms. The initBoss procedure establishes 

the number of tasks, the common routine to be executed by the tasks, the bounds on A's global 

.index set (the lower bounds are always 0), and the maximum length of internal message buffers 

used by the VM. When initBoss returns, the worker tasks will all be executing the same 

subroutine in parallel with the boss. Each worker may determine the unique identifier assigned 

to it by the boss by means of the function thisTask () , and the total number of worker tasks 

with numTasks () . 

The VM defines two :tbstract data types: partition and workMap. A partition 

is a rectangular subregion of the A and is defined by its bounding box. The user may query the 

bounds of a partition with the limL and limH functions. These give the upper and lower 

bounds, respectively, of the bounding box along a given axis; limH (0, q) - limL (0, q) 

+ 1, for example, gives the width of panition q in bins, along the Oth coordinate. A work­

Map is a mapping from the index set of the Ai onto the integers; it gives the cost of updating the 

state of each bin of Ai. There is only one user operation defined on workMaps- assignment. 

Having now described the two data types, and the simple operations defined on them, we next 

discuss the VM's two utilities for handling run-time panitioning. 

4.3. VM Utilities 

4.3.1. Mapper 

The Mapper utility handles ~e communication among interacting regions of the work­

Lattice. It also enforces a local barrier synchronization constraint to ensure correctness. When 

it encounters a local barrier, each task must communicate with all the tasks it depends on, and 

will not pass through the barrier .until it has finished. Each task will generally encounter the bar­

rier at a different time, according to the fraction of the total work assigned to it; workload assign-



-- VM provides abstractions for localized communication 

-- Wait for all tasks interacting with thisTaskO to call Mapper 
-- Transmit data from region within IC/ units of bQundary of thisTaskO 
-- to appropriate tasks: 
-- If C > 0, region transmitted is within ICI units outside this Part, else inside 
proc mapper(C:int,dataMovingStuff:procPair) 

-- The user provides a pair of routines to fill and empty mapper's message buffers 
typ.edd procPair is struct { 

pack:proc(patch:partition,in out buffer:sequenee(*) byte,out more:bool) 
-- Pack data from within patch into buffer, up to maximum length of byte sequence 
-- Assert 'more' if buffer full, but data not exhausted. 
-- In this case repeating the call until 'more' clears will convert 
-- remaining data into a sequence of byte-streams 

unpack:proc(buffer:sequence(*) byte) 
-- When given a sequence of bytes produced by pack, combines them with data 
-- that already reside in the memory of thisTaskO 

} 

-- The message buffers are flexible sequences of bytes 
-- They ~ave a maximum length, defined by initBossO 
-- There are two user operations defined on message buffers: . 

writeSeq, used by the user-supplied pack routine; and 
readSeq, used by the user-supplied unpack routine 

rune writeSeq(buff:sequenee (*) byte,data:anyType) 4 boof 
-- Appends datum of any type onto the end of buff, returning TRUE unless no room 
-- If no room, returns FALSE, leaving buff unchanged 

runc readSeq(buff:sequence (*) byte,data:anyType) 4 bool 
-- Reads datum of any type from the head of buff; 
-- If successful, returns TRUE and advances the head of buffer marker; 
-- else, if not enough bytes left to satisfy request, returns FALSE 
-- and leaves the head of buffer marker unchanged 

Figure 4.3. The VM's abstractions for han~irlg ~oca~comE1unlc~tiQn"-

43 
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ments will rarely be in perfect balance. As a result, some tasks may wait much longer than oth­

ers to finish communicating, regardless of the amount of information they transmit C is the first 

parameter passed to Mapper, and it specifies how Mapper will handle communication in 

terms of the global index set of A. Mapper collects all information within I C I bins of the 

perimeter of Ai and transmits them to the appropriate interacting task(s). For C > 0, information 

is sent from!l.i to the partitions, Aj, of other tasks. If C < 0, information is sent from Ai to the 

t!/ of other tasks. Thus, I C I effectively specifies the thickness, in bins, of the external interac­

tion region. In effect, the sign of C decides whether the!l.l act as sources or sinks for informa­

tion transmitted by Mapper. 

Mapper abstracts the communication process in two ways: (1) it specifies communication 

in terms of regions of the global coordinate system of A, without knowing the local memory 

addresses of the data belonging to the regions; (2) it transmits only sequences of bytes, and 

knows nothing about how the· user represents his. data structures. To convert between a byte 

sequence and his representation of data, the user provides Mapper with a second argument, of 

type procPair. A procPair consist of two routines: pack collects data from the user's 

data structures and moves them into a byte sequence; unpack moves the data in the other 

direction. These two routines are responsible for transforming between the index set of A and 

the coordinate system of the application. 

Mapper subdivides the regions of space from which it collects information into a set of 

disjoint rectangles of type part it ion. Pack moves the data in each rectangle corning 

from the memory of thisTask () into an output byte sequence. It will pack up to the max­

imum allowable length of a byte sequence. If it has more information to supply, pack sets a 

boolean flag passed as an in out argument; it will eventually be restarted by Mapper and 

must therefore remember where it has left off. Unpack reverses the pack operation; it 

moves a byte sequence of data passed to it into the memory of thisTask () , combining the 

newly-acquired data with existing data, if appropriate. Unpack takes neither a partition 
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nor a restart flag as arguments since pack will have appended the appropriate geographic infor-

mation onto the data passed in the byte sequence. Unpack is responsible for allocating any 

storage it needs. The user is responsible for reclaiming this storage separately. 

The YM supplies two operations for dealing with byte sequences, which will be used by 

pack and unpack. Byte sequences are strings of bytes whose length may dynamically shrink 

and grow, up to a maximum length established by the boss. Invoking 

wri teSeq (bseq, data) appends a data element of any type to the end of the byte sequence 

bseq, provided there is room. If there is room, writeSeq returns true, else false. 

Invoking readSeq (b,seq, data) reads the first data element from the beginning of bseq, 

provided there is one. If there is, writeSeq returns true, else false. 

Each call to Mapper may be specified with its own value for C and its own procPair. 

Though the external interaction region used by each different call will be a logically disjoint 

entity, the user is free to recycle the storage used by the different interaction regions in order to 

save memory. However, he may want to implement each distinct interaction region with dif-

ferent data structures, The decision to do so will depend not only on the application, but on the 

architecture; in particular, on the amount of memory available for computation. We employed 

such a strategy on the iPSC, on which memory is a scarce resource, but not on the Cray X-MP, 

where memory is plentiful. 

4.3.2. Partitioner 

Given a workMap from each task, the partitioner utility subdivides A into P partitions (P 

is part of the global context estl,lblished by the boss), Ai, i = 0, ... , P -1, and assigns Ai to the 

task with thisTask () = i. If Ai is empty, the task does nothing. Partitioner requires 

a global workMap covering all of A; but this global structure is hidden from the programmer 

and each worker computes only the part of the workMap covering its assigned Ai. As the 

result of calling Partitioner, each worker obtains a new bounding-box and_ a s~itab~_ 
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restructured workMap whose index set confonns to "the new Ai and whose entries are zero. 

Before he next calls Part it ioner, the user must set up the appropriate entries in his local 

workMap. 

Partitioner makes one assumption about the workMap, namely that it is roughly set­

additive; the total amount of work done in the partitioned problem differs only slightly from the 

work done on the unpanitioned problem. If the mapping isn't set-additive, Parti tioner 

may not necessarily produce good partitionings. Certain domain decomposition methods for 

elliptic partial differential equations, for example, fall into this category (see, for example, Keyes 

and Gropp [7]). 

Because the cost of updating each Ai may vary with time, Partitioner must be 

invoked periodically to shift work from the more heavily loaded tasks to the more lightly loaded 

ones. As a result of such repartitioning, Ai changes to k, for all i ; some data may change own­

ers,and must therefore be transmitted to the correct task by a call to Mapper (see Figure 4.4). 

The data that k gives up belongs to the region of ~pace specified ~y Ai -k , where "-" is the 

set differencing operator. Generally, the walls of the partitions can move by arbitrary amounts 

within the global coordinate space of A. Mapper will be able to handle load shifting 

correctly, i.e. without losing any data, so long as we can guarantee that Ai -k CJ",i. To ensure 

that this is true, the user supplies an integer that constrains the amount that P arti tioner 

may move the comers of the partitions from one call to the next. This constraint must be no 

more than the thickness of the external interaction region specified to Mapper. Though J",i is a 

superset of the region of space involved in load shifting, we believe that optimizing Mapper to 

collect only from the necessary pans of J",i would not make much of a difference in overhead. 

4.4. Portability Considerations 

There are five aspects of an application's implementation that the VM does not specify. 

These can either depend in an essential way on particular hardware structures or system calls, on 
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Figure' 4.4. As the result of repartitioning. processor i's assigned subproblem changes from Lb to L i . 

The motion of the partition is constrained to ensure that data given up by processor i. Lb -L i . will be 

contained in its external interaction region D i . 



the application, or may simply be left up to the user's discretion: 

(1) Assignment of tasks to processors, and task scheduling. 

(2) Communication between the boss and worker tasks. 

(3) Storage management 

(4) Communication among workers that cannot be efficiently handled 
by Mapper. 

(5) Input/output. 
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We are primarily concerned about the first three aspects; the other two will be mentioned only 

briefly in chapters 5 and 6. 

The VM specifies that each task will be assigned a unique processor. On many systems, 

e.g. the Cray X-MP and Intel iPSC, a processor can execute more than one process and so the 

user is free to have more tasks than there are physical processors on the system. This practice 

may not prove worthwhile, however, as it can incur a high scheduling overhead, especially 

within Mapper. A more efficient way of executing multiple .tasks on a processor would be to 

have the user to handle scheduling himself, and would require some simple changes to the VM. 

ThisTask () would be modified to return a list of task identifiers, and Partitioner, a list 

of partitions, one for each task. The user would then be responsible for applying his computa-

tion to successive elements of the list of partitions. Mapper, however, would not have to 

change. 

One aspect of task management that the VM doesn't specify is whether the boss executes 

on its own processor, or is just scheduled as another task along with the workers. This affects 

the user's code, and not just the VM, because the user is free to have the boss do useful work on 

behalf of the workers (for example, distributing initial data or coordinating global parts of the 

overall computation), a process that entails some communication, and the VM doesn't specify 

how the boss and workers communicate. On the Cray X-MP, for example, it is convenient to 

divide the boss's activities into two parts: one part running as a separate task scheduled by the 
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operating system, and another other running as pan of a distinguished worker task. A condi-

tional statement selects the distinguished worker that is to impersonate the boss and the boss and 

workers communicate through shared memory. On the iPSC, on the other hand, there is an addi-

tional host processor that may be used to handle the boss's actions. The boss and the workers 

communicate by passing messages. 

The final aspect of what the VM leaves up to the user is storage management. The pro-

grammer is free to manage the storage used by the pack and unpack routines however he 

wishes. The same holds true for the workMap and the skeletal structure of the workIAttice, i.e. 

the bins but not the data. In addition, the user is responsible for implementing the necessary 

conversions between the global index space of A and the coordinate system(s) meaningful to his 

application. 

4.5. MLC Implementation 

Having introduced the abstractions, we ~ext show how. to use them in the MLC. The 

implementation we discuss will be ponable, ignoring the limitations discussed at the end of the 

last section. We leave the job of specifying the parts of the code that are not portable to succeed-. 

ing chapters. We begin by asking two questions: 

(1) Can the MLC be divided into two parts, one that fits the lattice 
model of execution (the "local pan"), and a part that does not (the 
"global pan")? 

(2) Is the global part small enough that it will not become a serial 
bottleneck on the number of processors we expect to use? 

(3) Can the cost of updating each of the bins of the workIAttice be 
computing in a simple way? 

The answers to these questions are "yes;" our abstractions therefore apply to the MLC. The 

MLC works by pushing a set of particle-like elements at a discrete set of timesteps. Each vortex 

feels two kinds of influences, local and distant, each of which is handled by a separate computa-
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tion. The MLC organizes the vortices into a mesh to distinguish the local influences from dis-

tant ones. Local influences are computed as N body interactions between nearby pairs of vor-

tices; when there are thousands of vortices, this computation consumes the largest fraction of the 

MLC's running time. Distant influences are computed separately, by interpolating values from a. 

finite-difference grid. The grid is produced as the result of non-localized computation done by a 

Poisson solver. The cost of the solver will be small if the vortices are sufficiently numerous.! 

Finally, the cost of updating each bin of vortices can be readily computed by knowing the 

number of vortices in the bin, and in those nearby . 

. Because it illustrates all the mechanisms of our VM, we will focus on the local interactions 

part of the MLC computation. Figure 4.5 shows the boss's code. Figures 4.6,4.7, and 4.8 show 

the workers' code, including the calls to the run-time partitioning utilities. 

The MLC uses some simple data structures to compute local interactions: the bins used to 

keep track of vortices, and the vortex-records themselv~s. Each bin is a collection of 

vortex-records. A .collection can be thought of as a linked list, but the exact representation 

is irrelevant The bins that hold vortices corresPond with the bins of the workLattice used by our 

abstractions. Though each task really needs only a subset of A at anyone time, we chose to pro-

vide each task with a global copy of the bins of A (though not all the vortices), as well as the 

workMap, and to implement the data structures as dense arrays. This wasted some storage, but 

also simplified the programming. A more sophisticated implementation would employ sparse 

data structures instead of dense arrays so that a task would only store the bins of A it actually 

used. 

1 The level of concurrency at which global computation becomes a performance bottleneck depends both on the 
application, i.e. the relative fraction of time spent in global computation, and the architecture, i.e. the cost of com­
munication relative to computation. The Poisson solver we used was not a performance bottleneck on 32 processors 
of the Intel iPSC, on which communication is considered expensive. Though it wasn't parallelized on the 4-processor 
Cray X-MP, the solver was not a performance bottleneck on that machine either. 



-- Main program: boss reads in simulation parameters, 
-- initializes supervisory state and spawns worker tasks with their input 
program vortex 

int P, M, maxDeltaX, maxDelPart, corrRad 
-- P: the number of worker tasks 
-- M: the linear bound of the workLattice (it is assumed to be square) 
-- maxDeltaX: maximum amount a vortex may move in one velocity evaluation 
-- maxDelPart: constraint on motion of partitions between successive repartitionings 
-- corrRad: the maximum distance over which vortices interact directly 
-- numerical: a catch-all for various simulation parameters, like the timestep !:it 

The MLC's data structures 

Vortices are organized via the workLattice, an M by M array of bins 
At anyone time the task's partition and external interaction region 
are kept in a portion of the workLattice and the rest isn't used 

-- Each bin of the workLattice is a Collection of records of type vortRec 
A Collection is a primitive data-type enumerated by the foreach construct 

typedef workLattice: is array(M,M) of ColIection(vortRec) 

vortRec is a user-defined type 
typedef vortRec is struct { 

position vectors: 
1,101d : array(2) of real, 

velocity vectors 
U, Uold : array(2) of real, 

scalar strength 
CJ) : real} 

read P, M, maxDeltaX, maxDelPart, corrRad, numerical 
Spawn P workers, each executing the external procedure iterate 

call bosslnit(p,(M,M),iterate) 

-- Transmit the initial input to the workers; this code is supplied 
-- by the user, and depends on both the application and architecture 

call workerlnit(maxDeltaX,maxDelPart,corrRad,numerical) 
end vortex 
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Figure 4.5. The main program reads the input, initializes the boss, spawns off the worker tasks and pro­
vides them with their initial input. Also shown are the data types defined by the MLC. The routine that 
initializes the workers isn't shown. Figures 4.6, 4.7, and 4.8 show the pseudo-code for the workers' com­

putation. 



-- Worker procedure 
-- Main timing loop does two velocity evaluations per timestep 
-- Calls the MLC to do the velocity evaluations 
-- MLC exists as two routines: one handles sorting, other evaluates velocities 
proc iterate(inputtuple) 

-- These routines are used by mapper, and may not be portable 
-- The code is simple and will not be shown 

external proc pack. unpack 

workLattice bins 

int maxDeltaX, maxDelPart, corrRad 
Obtain input from the boss, this code is not portable 

call recvlnput(maxDeltaX,maxDelPart,corrRad,numerical) 

Set up various data. including an initial balanced assignment of vortices 
Set thisPart to the initial bounding-box of the task's partition i 

-- Fill in only the part of the workLattice corresponding to thisPart; 
In particular, leave the external interaction region empty 

call tasklnit(bins,numerical,numTasksO,thisPart) 
do while t < t max 

Call the MLC to do the first velocity evaluation, and then push the vortices 
call push(bins,l,maxDeltaX,maxDelPart,corrRad,numerical) 

Second velocity evaluation and push phase 
call push(biils,2,'maxDeltaX,maxDelPart,corrRad,numerical) 
tf-t+6t 

end while 
end iterate 
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Figure 4.6. The boss spawns off this worker procedure to each task. The work is done by the procedure 
called "push," defined in Figure 4.7. The code that receives the input from the user has been omitted, as 

has the code that sets out the initial distribution of vortices. 
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There are three simple rules for determining where to insert calls to the Partitioner 

and Mapper utilities: 

(1) Find a convenient stopping place in the computation where the 
data may be repartitioned, i.e. between timesteps, and insert a call 
to Partitioner. . 

(2) Locate local barrier synchronization points, which are essentially 
the boundaries between state transitions, as discussed in § 4.1. At 
these points, a task's assignment of data can become inconsistent 
with the logical partitioning established by Parti tioner, or 
copies of data obtained by a previous call to Mapper can become 
inconsistent with the originals. Insert a call to Mapper at each 
barrier synchronization point. 

The next two subsections discuss each in turn. 

4.5.1. Data Partitioning 

Figure 4.9a shows a simple way to divide up the workLattice among 16 processors: split 

the bins uniformly into a regular pattern of box-like subproblems. This strategy, however, 

would underutilize the processors; only 4 of 16 would be given much work to do. The trouble is 

that the vortices distribute themselves unevenly so that the completion time for a subproblem 

may not be proportional to its area. Figure 4.9b shows a better way to split up the problem that 

compensates for the uneven distribution of vortices over the domain. This adaptive decomposi-

tion generates somewhat irregularly sized subproblems that all complete in roughly the same 

time, and it diminishes the running time of the computation by a factor of four. This is the kind 

of partitioning rendered by Partitioner. 

Since vortices move, the partitioning cannot be left fixed for all time; work must be period-

ically reapportioned as shown in Figure 4.10. If the work were not redistributed, then some pro-

cessors would become overloaded while others would only stand and wait. Some work must be 

shifted from the more heavily loaded processor(s) to the more lightly loaded one(s) in order to 

advance the latest completion time. Owillg. to a_tiIlle _step constraint, ¥ortices to jump -byonl-y 
----~-- --~--- --- ---- --



-- This code implements the MLC and includes the calls to the YM's utilities 
proc push(bins:workLattice,(evalNumber,maxDeltaX,maxDeIPart,corrRad):int,numerical) 
__ Place each vortex into the correct bin, as determined by "1 
-- Error if any move maxDeltaX bins beyond thisPart 

call sort(bins, thisPart,maxDel taX) 
Migrate any vortices that have changed owners since the last velocity evaluation 

call Mapper(maxDeltaX,(pack,unpack» 
Reclaim alI the workLattice outside thisPart 

call trim(thisPart,maxDelt1X) 

Repartition space according to the predicted time to push the vortices in each bin 
-- Vortices move only slightly between velocity evaluations; repartition only every timestep 

if (evalNumber = 1) then 
-- First produce the workMap 

call makeWorkMap(wm,thisPart,bins,corrRad) 
Partitioner returns the new bounding box 
No corner of a bounding box may move more than maxDeIPart bins in any direction 

thisPart:= Partitioner(wm,maxDeIPart) 
-- Migrate any vortices that have changed owners as the result of repartitioning 

call Mapper(maxDelPart,(pack,unpack» 
-- Remove the originals 

call trim( thisPart,maxDelPart) 
end if 

Send copies of vortices lying just inside your partition that others depend on 
call Mapper( -corrRad,(pack, unpack» 

compute velocities 
call vorvel(thisPart,bins) 

Part of the second order time integration scheme 
call timeIntegration( eValN umber,thisPart, bins) 

Done with the external interaction region 
call trim(thisPart,corrRad) 

end push 
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Figure 4.7. Inserting the calls to the YM's utilities into the push procedure which handles time integration 
and uses the MLC to evaluate velocities. The MLC executes as twO subroutines. One routine, called 

yorvel, does the velocity computation. The other sorts the vortices into their correct bins. Sorting is 

necessary as some vortices may have changed bins since the last velocity evaluation. The work associated 

with time integration is negligible compared with that done in the velocity evaluations and may be ig­
nored; see chapter 3 for additional details. Certain code has been omitted: the workMap computation, data 

packing and unpacking done for Mapper, and storage reclamation. The code that push calls to compute 

local interactions appears in Figure 4.8. 
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small amounts between time" steps; repanitioning need therefore be done every few, say 4 or 8, 

timesteps. 

The number of local corrections done on each bin is a good measure of work for the 

workMap that Partitioner uses to panition bins into subproblems. The number of local 

interactions done on the vortices in a single bin is easy to compute and is the product of two 

quantities: the number of vortices in the bin, and the number of vortices in that bin and neighbor-

ing bins found within the correction distance. This can be expressed as in terms of a work-

mapping: 

workEst (i ,j) = card(i ,j)[ L card(i +k ,j +/)1 
Ikl.lll$C J (4.5) 

where "card(i,j)" is the number of vortices in workLattice(i,j), and i and j range over the 

index-set, thisPart, of thisTask () , i.e. limL(O,thisPart) 

limH(O,thisPart), and limL(l,thisPart) SjS limH(l,thisPart). The 

code is simple and will not be shown. 

After calling Parti tioner each worker now luis the bounding box of the region of the 

workLattice assigned to it. With the aid of the limL () and limH () functions, the user can 

construct loop bounds for ranging over the appropriate bins of A.. 

Because Parti tioner may not split bins of the workLattice, each bin represents an 

indivisible unit of work. In the case of the MLC, a less restricted scheme that allowed internal 

boundaries to pass through the bins would impose additional coding overhead, and appears to 

confer no advantage. An easier way to improve the workload imbalance is to refine the work-

Lattice. At some point, however, a point of diminishing returns is reached where the cost of 

manipulating additional bins outweighs the benefits of having the work more evenly balanced. 

The pseudo-code of Figure 4.8 does not specify the order in which vortices' influences are 

accumulated. For obvious implementations of the foreach construct and the unpack rou-

--- --- -- -------
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tine, we may expect this order to be non-deterministic, depending on the relative speeds of the 

processors, for example. However, as required according to the discussion in § 4.1, our algo-

rithm is relatively insensitive to these orderings, and results of multiple runs may be expected to 

agree within roundoff. 

One measure of effectiveness for a partitioning strategy is the amount of duplicate compu-

tation it introduces along the perimeter of each partition. There is. no redundant computation in 

the local interactions computation shown in Figure 4.8. In our iPSC implementation, however, 

there was some redundant computation in other localized parts of the calculation that are not 

shown in the pseudo-code; in particular within the part of the code that locally corrected the far-

-- Compute local interactions 
proc vorvel(thisPart:partition, 

. workLattice:array{M,M) of coUection(vortRec), 
C:int) 

-- Visit each bin in the index set of thisPart 
foreacb (i,j) e [limL (O,thisPart) .. limH (O,thisPart )]x[limL(l,thisPart) .. limH (l,thisPart)] 

-- Compute local interactions against each vortex in the bin 
foreacb vortex atx with velocity i1 e workLattice (i,j) 

-- Influencing vortices are found in a neighborhood of bins surrounding the vortex 
-- The correction radius gives the extent of a vortex's influence, in bins 

i1:= 0 
foreacb vortex at y with strength c.o e workLattice (k, I) 
wbere(k,l)e [-C+i .. i .. C+i ]x[-C+j .. j .. C+j] 

-- Xm is the velocity induced at -; by a unit-strength vortex blob at the origin 
update i1 by adding Xl,1ob (x-j)*c.o 

end vorvel 

Figure 4.8. This code computes the local interactions. 
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field velocities computed by the global solver computation. There was no duplication at all in 

the Cray X-MP implementation, in which the computations were organized differently to take 

advantage of the Cray's vector-mode hardware. 

4.5.2. Local Communication 

We used three calls to Mapper to handle local communication in the MLC. Setting up 

the calls entails: 

(1) Choosing the appropriate sign and magnitude ofC. 

(2) Writing the pack and unpack routines, and handling storage recla­
mation. 

Part (2) generally requires re-implementation for each new system. 

Choice of c. Generally the user should make C no larger than necessary, since the cost of 

mapping increases with C. The value of C depends on how Mapper will be used. Mapper 

. performs 2 functions in the MLC: (1) it issues copies of vortices to allow each processor to 

obtain boundary conditions; (2) it migrates vortices that change owers, either as the result of 

their own motion, repartitioning, or both (see Figure 4.11). The proper value for C in the first 

call equals the negative of the correction radius -corrRad, since all copies must originate from 

inside some task's Ai. If the magnitude of C is too small, the answers will be incorrect since 

some of the vortices a task needs will not become visible through the external interaction region. 

When Mapper migrates vortices, C will be positive. There are two separate calls; one to 

handle migration as the result of sorting, the other to handle migration as the result of reparti-

tioning. For the first call, C should be chosen to be somewhat larger than the maximum amount 

that vortices can move between timesteps. This number will generally be known to the user, and 

can be determined through experimentation. We found that a good value was 1 or 2. Whatever 

this value of C is, it must also be passed to the sort routine, and sort must check that no 
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Figure 4.9. Partitions with (a) equal areas and (b) equal amounts of equal work. The labels give each 
partition's share of the workload nonnalized to 1000 units of total work. If loads were perfectly balanced, 
then each subproblem would get 062 units of work. The calculation began with 2 finite area vortices with 
radius 0.120 and centers separated by 0.25. Each patch had 795 vortices, shown as dots, placed evenly on 
lattice points spaced 7.5xIO-3 units apart Some vortices have been omitted for the purpose of 
clarification. 
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vortex moves further than C bins outside the partition of thisTaskO; otherwise some vortices 

could become lost to Mapper and results would be incorrect. The value of C for the final call 

to Mapper must be no smaller than the repartitioning constraint the user passes to Parti­

tioner. A good value is 2 or3. 

Pack and unpack routines. The pack and unpack routines implement the gather and 

scatter operations familiar to users of vector-type architectures like the Cray. The code is simple 

and will not be shown. Because the programmer is free to allocate different kinds of data struc­

tures for the different uses of the external interaction region, each call to Mapper can have its 

own set of pack and unpack routines. This was done on the iPSC, for example, in the 

interest of saving memory, but was unnecessary on the Cray X-MP, which had plentiful 

memory. In the iPSC implementation we also managed the different kinds of data structures out 

of separate heaps and so had to modify the numerical inner loops of the code to treat indices 

lying outside Ai specially. However, if we used a single heap, the inner loops would not have 

been modified. 

In order to satisfy correctness requirements, the external interaction region must be cleared 

out before it can be reused by Mapper. Owing to limitations on memory, disused vortex­

records must then be recycled. We managed our own heap of vortex records, in both the iPSe 

and Cray X-MP implementations, and therefore handled reclamation ourselves. Reclamation 

consisted of visiting all the bins of the external interaction region and reclaiming any vortices 

found there. 

4.6. Implementation Strategy for the Virtual Machine 

In this section we give an implementation strategy for the VM. Roughly speaking, the 

strategy we describe here is the same as. that we used for the Intel iPSC and the Cray X-MP 

implementations. We will mention how the two implementations differ in chapters 5 and 6. 
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4.6.1. Partitioner 

Partitioner works with two data types: partition and workMap. We chose to 

implement partition as a 4-element vector; the bounds query operations are merely array 

subscripting operations. We implemented workMap as a doubly-subscripted array; the one 

user operation, wAssign, is simply an assignment statement to a subscripted variable. 

Prior to calling Partitioner, each task has only a subset of the workMap in its 

private memory. Since Partitioner needs the entire map, it may have to accumulate the 

local pieces into a single global data structure. The implementor is free to do whatever is con­

venient. On the iPSC, for example, we used a spanning tree utility, described by Moler and 

Scott [8] to combine the pieces. On the Cray, we implemented the workMap as a single large 

array in shared memory. When Partitioner returns, the boss has a copy of all P subprob­

lems for the internal use of the VM. 

We used a recursive bisection algorithm to partition the workLattice. The algorithm is a 

useful abstraction for determining a fair partitioning of work across a team of processors since it 

carries no knowledge about either the application or machine architecture. Any partitioning 

algorithm that rendered rectangles, however, and that was as fast as recursive bisection, would 

have sufficed. The recursive bisection algorithm has been around for some time and has been 

used by Warnock [9] for hidden surface removal in computer graphics; by Karp for the 

traveling-salesman problem [6]; by Dippe and Swensen [3], and Dippe and Wold [4] for realistic 

image rendering in computer graphics; and by Berger and Bokhari [1] for partitioning hyperbolic 

differential equations across mUltiprocessors. In two dimensions, the strategy is to cut an area of 

interest into two rectangles that represent equal amounts of work, or as nearly equal as possible, 

and then to apply the procedure recursively to each part; see Figure 4.12. This simple procedure 

generalizes trivially any number of dimensions. The two-dimensional algorithm is shown in Fig. 

4.13. 
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Figure 4.12. Recursive bisection into 4 subproblems: (a) first split the problem into two parts that com­
plete in roughly the same time, (b) apply the procedure recursively to each part. To obtain boxes, the al­
gorithm alternates the direction of the cut from one level of recursion to the next; this has the effect of di­

minishing the length of the longest internal boundary every other level of recursion. To obtain strips (c) 

the algorithm makes cuts in one direction only. 
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Our philosophy for doing load balancing is to do it cyclicly and as often as possible. We 

make no provision for balancing only when load imbalance exceeds a user-specified threshold 

value, as others have advocated. However, given that Parti tioner has all the neceSSaI) 

information to measure load imbalance- the work estimate mapping-thresholding could be 

installed without difficulty. 

In our discussion we have specifically ignored certain kinds of partitionings. First, we 

assume that the number of subproblems that Partitioner can render remains constant over 

time. We have also assumed that in the course of repartitioning, each processor can be identified 

with a volume of space that shrinks, grows, and translates by no more than a given small 

amounts. As a result, workloads will shift gradually among processors. In particular, no cut 

may change directions (from horizontal to vertical or vice-versa) from one call of Parti­

tioner to the next. Consider, for example, the simplest two-processor case in which the sin­

gle cut changes direction, as shown in Figure 4.14. Roughly half the work gets redistributed. 

Such a massive work redistribution can incur a communication overhead that overwhelms "ny 

savings that 'result from· impro'ving the workload balance. We therefore disallow it. We have 

also assumed that all processors run at the same rate. A simple change to the algorithm would 

accommodate processors that ran at different speeds, so long as the speeds didn't vary too 

quickly over time. 

4.6.2. Mapper' 

We may specify the internal behavior of the utility in terms of a message-passing commun­

ication model. TIle use of this model facilities the discussion, though the implementor is free to 

design Mapper however he wishes. Let us characterize the message passing model, perhaps 

simplistically, by two primitive operations send and receive (see, for example, the iPSe 

User's Guide [5] for the details of how message passing works in practice). Invoking 

send (buffer, id) sends the message in buffer to the processor designated by id. 



-- Recursively bisect a region of the workLattice into a list of sublattices 
-- of roughly equal weights. 
-- The weight of a sublattice is defined as the sum of the weights of its bins 
-- A workMap, provided as input, weights each bin of the lattice and is used 
-- in placing the cuts. The algorithm may return some empty partitions 
-- if too many workMap entries are zero. 

proc rba(q:parti tion,dir:int,P:int, 
maxDelta:int,wm:workMap) returns partList 

-- q is the region of interest 
-- dir=O or 1 cut in the horizontal or vertical direction 

number of desired sub lattices -- P 
-- maxDelta the maximum distance that any partition is allowed to move 

relative to the cuts generated by the previous call 
-- wm the workMap 

-- Internal state maintained by the algorithm to enforce the constraint 
-- on the motion of a partition's comers. 

oldCuts array (*) of int 

-- If you asked for only 1 sublattice, return the original lattice 
-- partListO converts from type partition to type partList 

if (P = 1) return partList(q) 

PI := P div 2 
P2:= P- PI 

Split into two parts, with no cut moving more than maxDelta units 
-- relative to oldCuts; in particular no cut may switch directions 
-- The ratio of the weights of the 2 parts will be as close as possible to PlIP2 
-- In particular, if P is a power of 2, split into two equally-weighted parts 
-- For a horizontal cut return the left sub lattice 
-- For a vertical cut return the upper sublattice -
-- Align the cut along direction 'dir'; if that fails, and this 

is the first time through the Partitioner, try the other direction 

leftPart := split(q,db:.P1!P2,wm.oldCuts) 

-- Recurse; if you got back only one sublattice from split, 
-- any remaining sublattices will be empty 
-- Split returns an empty partition if its input is also empty 
-- The append operator joins together two partLists 
-- The infix '-' operator forms set differences on proper subsets 

end rba 

return append(rba(leftPart, l-dir,Pl, wm), 
rba(q-leftPart, l-dir,P2,wm» 

Figure 4.13. The recursive bisection algorithm. 
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Invoking receive (buffer, id) allows an incoming message into buffer and sets id 

to identify the processor, if any, that sent the message. Message buffers are flexible byte 

sequences, as discussed earlier in the chapter. 

Mapper knows how to handle communication in terms of the global coordinate system of 

the workLattice. It uses two routines-pack and unpack-whose internal behavior it knows 

nothing about to make the necessary conversions to the local coordinate system of each task's 

private address space. Mapping divides into two activities, an influence action and a dependence 

action. The influence action uses pack to collect variables from the the designated regions of 

A into byte sequences, and sends the information to any processor needing them. The depen­

dence action invokes unpack to copy incoming information from message buffers into newly­

allocated storage assigned by the user. The influence and dependence actions execute con­

currently. 

Pack provides Mapper with a stream of data, though the stream may have to be broken 

into pieces owing to the finite length of Mapper '. s message buffers. So although Mappe r 

doesn't kriow how pack and unpack work, it does know that they may have to be restarted. 

Mapper expects pack to set a flag signaling that more data is to come. Unpack doesn't 

use a flag. since it relies on pack to furnish the appropriate restart information in the message­

buffer. 

4.7. Summary 

We have outlined a simple approach to writing numerical software for mUltiprocessors. It 

relies on using a virtual machine whose semantics are unaffected by the architecture on which it 

is implemented. The VM is not universal or complete, however; it applies only to localized 

parts of a computation, and leaves some programming details· up to the discretion of the user, 

and to the particulars of the system he is using. The user must divide the data and computation 

for the local part of the problem into bins of a regular rectangular mesh, must supply work 
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o 

1 

Figure 4.14. Partitioner does not allow cuts to change direction, as shown here, since such cuts would 
result in massive worlc redistribution that would incur a high communication overhead. We show the sim­
plest case with two processors in which the work in the shaded regions migrates to the other processor. 
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estimates for the computation in each bin, and must supply routines for converting these data to 

and from byte streams. The VM will assign bins to tasks in order to even the workload and will 

allow each task to access and communicate the necessary boundary data. 

Our VM is not universally suitable even for local computations. In chaotic algorithms (cf. 

Chazan and Miranker [2]), the state transitions are, in effect, far too numerous to perform 

efficiently using Mapper. However, there is a wide class of well-behaved local computations 

for which the VM should work well, from which we have selected the MLC as an example. 

The purpose of using the MLC as a model computation is that it is a good model for other 

computations in mathematical physics. The localized computation supported by our Mapper 

utility is an essential activity that arises not only in the MLC and in other particle methods, but 

also in finite-difference methods. In adaptive mesh refinement algorithms (AMR), for instance, 

systems of locally refined grids interact across grid interfaces, as shown in Figure 4.15. Boun­

dary conditions must propagate across the interfaces regardless of whether the computation has 

been implemented on a multiprocessor. AMR is also interesting because partitioning the data 

structures introduces some redundant computation along newly-generated grid-boundaries. If 

the grids were not split, then these values would be computed only once. Unlike the MLC, this 

problem is intrinsic to the AMR algorithm, and not just to the implementation. 

Our VM has two attractive attributes that together contribute to the writing of simpler 

code, in the local part of the computation: (1) it hides all the details of interprocessor communi­

cation from the programmer; (2) it doesn't need to know how the application's data structures 

are represented. Appfication-dependent code and system-dependent code need never become 

heavily intertwined; were the code transported to a new machine, the parts that would have to 

change to accommodate a different communication model are restricted mostly to code the pro­

grammer never sees. 



69 

, , , , 
- -1- - - ...,.t- - - - + - - - -1 - - - -,- -

, , , , , 
- ...l - - - -,- - - - 1- - - - ...l - - - -'- -

, , 
- -,-- - -,--, , 

I 
--1--

, 
_...l __ 

Figure 4.15. In adaptive mesh algorithms, boundary conditions must propagate across grid interfaces for 
numerical reasons. This activity is identical to the mapping process used by our virtual machine. We 
have shaded an interface shared by two grids at the same level of refinement Some interfaces have not 

been shown; they connect grids at different levels of refinement. .. 
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5.1. O"erview 

5 

iPse Implementation 

My own interests are in using computers as God intended 
- to do arithmetic. 

-Cleve Moler 
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From the standpoint of this dissertation, traditional MIMD multiprocessor architectures 

differ primarily according to how they implement interprocessor communication, and come in 

roughly two varieties: message-passing or shared-memory architectures 1. In this chapter we 

evaluate our VM on an architecture of the first kind: the Intel Personal Scientific Computer 

(iPSC), manufactured by Intel Scientific Computers of Beaverton, Oregon. In chapter 6 we will 

consider a shared-memory architecture. We will not compare the cost-effectiveness of the iPSe 

with other systems; that is out of the scope of this research. Instead, we will show that the per-

formance of an iPSe system running our VM can scale reasonably well with the number of pro-

cessors in use. The chapter begins with a description of the iPSC system. We will then pose a 

I The IBMRP3 [8J is a notable exception. The user may divide the RP3's physical memory address space into 
two parts: a global part, shared by all the processors, and a local part, divided equally among the processors into 
private sections. When there is no local part, the RP3 operates as a shared-memory architecture, when there is no lo­
cal part the machine operates as a message-passing architecture. In between these two extreme settings, the RP3 
operates in a "hybrid" mode. 
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series of questions, answering each question with the aid of computational experiments con-

ducted with the Method of Local Corrections. 

5.2. The iPSe 

The iPSC is a hypercube-type multiprocessor inspired by the Caltech cosmic cube [10]. 

An iPSC system may be configured with 32, 64, or 128 processor nodes that communicate by 

sending messages over the hypercube interconnection network shown in Figure 5.1. Nodes may 

communicate with a host processor but may not communicate with the outside world in any 

other way. The 32 processor model d5 we used is nominally a 1 megaflop machine and has been 

observed by Moler [6] to deliver 0.8 megaflops on Gaussian elimination. A single processor 

node delivers about 0.033 megaflops in double precision for the daxpy operation used in LIN-

PACK and the BLAS [2]: 

ror i = 1 to n do 
y[i] = y[i] + a*x[i] 

end 

Each node consists of the following off-the-shelf VLSI parts: an Intel 80286 central pro-

cessor and 80287 arithmetic co-processor each running at 8 megahertz2; 512 kilobytes of local 

memory, of which about 300 kilobytes are accessible to the user; and eight ethemet communica-

tion ports. Seven of the eight ports provide dedicated links to up to 7 nearest neighbors. All of 

the links are used in the model d7 with 128 processors; the model d5, with 32 processors, uses 

only five of seven. The eighth port communicates with the host via a multiplexed ethemet 

channel. The host is an Intel 286-310 system with 4 megabytes of memory, 30 megabytes of 

1 The 80286 overlaps indexing with the floating point arithmetic done on the 80287. 
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Figure 5.1. A two-dimensional hypercube, or 2-cube (upper), and a 3-cube (lower). A hypercube of di­
mension d, called a d-cube, has 2d nodes. Each node communicates with d nearest neighbors over dedi­
cated links, and with nodes with which it does not share a link by making intennediate hops. If the nodes 
are labeled with integers from 0 to 2d -1, then the number of hops between two nodes equals one less 
than the Hamming distance between them. The Hamming distance is defined as the number of places in 
which the bit strings of the labels differ. The maximum distance between two nodes is d and follows from 
the inductive property of hypercubes. A 3-cube, for example, may be inductively constructed from two 

2-cubes by connecting each pair of corresponding nodes. This process may be used to construct higher di­
mensional hypercubes. The inverse operation, tearing, may be used to partition hypercubes. 
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disk storage, and two ethemet ports. One pon connects the host to the multiplexed ethemet 

channels and the other is used for diagnostics. Both host and nodes run a modified version of the 

Intel XENIX-286 operating system. The iPSe is a standalone system; though several users may 

share the host, only one at a time may use the hypercube processor array. 

The processing nodes of a hypercube multiprocessor may be thought of as forming the 2d 

comers of a d -dimensional hypercube, or d -cube for shon. Figure 5.1 shows a 2-cube with 4 

nodes, and a 3-cube with 8. Each node communicates directly with d nearest neighbors, and 

with any node that is not a neighbor via intermediate nodes. On the iPSe, however, as on most 

other hypercubes, the user sees a fully connected network; the operating system routes messages 

transparently through intermediate nodes. There can be at most d-l hops involving intermedi-

ate nodes, so the worst-case communications delay varies as the logarithm of the number of 

nodes. In the absence of any other message traffic, nearest processors in the hypercube intercon-

nection network communicate at a rate that ranges from 160 kilobytes/sec for a 1 kilobyte mes-

sage to 286 kilobytes/sec for the maximum-sized message of 16 kilobytes. The following 

expression gives the time to send a message of n bytes: 

Twup + T pacut x<f n / 10241 - 1) + T trQlLfmiJ Xn (5.1) 

where Tstartup is a fixed setup time, T pacUt is the packetization cost charged to every packet after 

the first, and T trQIISmit is the transmission time per byte (One way of interpreting message latency 

(5.1) is as half the time for a message to make a round trip between two nearest neighborS). For 

release 2.1 of the operating system that we used, these times are3
: 

Tstartup 

T pacut 

T trQlLfmit 

= 5.0 milliseconds 
= 2.6 milliseconds 
= 0.87 microseconds 

3 Release 2.1 is now obsolete and the the Star1llp time has been reduced to about 1 millisecond. 



75 

The 5 millisecond startup cost dominates the cost of transmitting short messages of up to 1 kilo­

byte. 

Because iPSC uses a store-and-forward method for implementing message-hops, each 

intermediate node must buffer an incoming message in its memory and then read out the mes­

sage upon retransmission. The cost of forwarding a message would therefore be expected to be 

proportional to the number of hops. Rudell [9], however, has shown that owing in part to the 

high cost of starting up a message, forwarded messages go faster than expected; a 5 hops mes­

sage, for example, takes only about 2.5 times longer to reach its destination than does a similar 

message passed to a nearest neighbor, regardless of its length. 

Message latency increases in the presence of other message traffic. Because the memory 

used to buffer messages cannot keep up with more than one ethernet communication channel at a 

time (the CPU also competes for memory bandwidth), messages that arrive at a node at the 

same time will be processed sequentiaIly. Message latency under such conditions is unpredict­

able; the receiving processor will force all but one of the senders to retransmit at a later time. A 

node may also reject incoming messages if it runs out of internal buffers used by the operating 

system to hold messages. Until it has disposed of a sufficient number of buffered message pack­

ets, the node will force the senders to keep retrying. This is obviously a severe problem when 

many messages are going through intermediate nodes, and is prone to deadlock. We did not 

observe a hard deadlock, however, though we did observe transient deadlock, lasting for 

seconds or even minutes. The long delays occurred when two communicating processors, each 

with a full memory, backed off at the same rate, and continued to do so until their clocks grew 

sufficiently out of phase4. 

There are only 16 system calls for the iPSC: blocking and non-blocking message-passing 

primitives (discussed below), a 60 Hz timer, and some calls to manage communication channels. 

4 This problem has since been fixed in the latest release of the node operating system. 



76 

The iPSe User's Guide [3] offers a more complete discussion than can be given here. Timing 

measurements can be taken from the nodes only (the host has no timer) and may be resolved 

. down to about 33 milliseconds. 

In simple terms, the iPSe provides two message-passing primitives: send and recv. 

Send (buffer, length, type, destination) passes length bytes of infonnation in 

the message buffer to the destination processor, and tags the message with the 

specified type. Recv (buffer, length, type, sender, count) filters out messages 

of the prescribed type only and ignores all others. It places the incoming message into 

buff er, writes the identity of the processor that sent the message into the sender argument, 

and writes the length of the received message into the count argument. The length argu­

ment gives the maximum size message that recv can accept; longer incoming messages will 

be truncated to that length. 

Send and recv come in two flavors: non-blocking and blocking. Non-blocking 

message-passing is ap. asynchronous activity that can proceed in parallel with. computatio-n; a 

return from send or recv does not necessarily signal Completion of the. action. The message 

buffer must not be used again' until the status routine detennines it is free for re-use; other­

wise, unpredictable behavior may result. The blocking versions of send and recv have 

procedure-call semantics; a return from sendw ("send wait") indicates that the buffer is free 

for re-use, although the message may not yet have been received at its destination. A return 

from recvw ("recv wait") indicates that the message has been received. Messages arriving at 

a node from a particular source will be received in FIFO order, i.e. in the order sent. With multi­

ple senders the FIFO ordering will be preserved within each group of messages coming from a 

single source. 
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5.3. Implementation 

5.3.1. Overview 

Because we set them up in-much the same way as we did in chapter 4, we will not discuss 

the calls to the VM's utilities in great detail. We will, however, say a few things about how we 

implemented the VM. All software was written in FORTRAN 77 and compiled using the Intel 

Jtn286 compiler. Two programs were written: one for the host and the other for the nodes. The 

host executed as the boss task. It did all the I/O on behalf of the nodes, such as reading in simu­

lation parameters, and it also ran the Partitioner utility. The nodes executed as the worker 

tasks; all executed the same program and handled the numerical parts of the computation. Each 

node processor recorded its own timing information about the various phases that make up each 

time step of the calculation. At the end of a run the host collected these data from the nodes and 

wrote them to a file. A separate program reduced the raw data to report the times spent com­

municating, doing localized computation, solving .Poisson's .equation, doing task partitioning, 

and so on. 

5.3.2. Virtual Machine Implementation 

We chose to run the boss on the host, in order to conserve node memory. Because of that, 

Partitioner was obliged to communicate with the nodes both to obtain a copy of the work 

estimate mapping and to return the table of subproblems it had rendered. The cost of this com­

munication, however, was unnoticeable. 

Mapping, as discussed heretofore, divides into two concurrent activities: the dependence 

action and the influence action. Though the iPSe nodes may be multiprogrammed, we elected 

not to implement the influence and dependence actions as parallel processes, but to achieve a 

similar effect by interleaving the two actions. This roughly balances incoming and outgoing 

message traffic to help avoid transient deadlocks that won't lock up the code permanently but 
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which could slow it down. However, per our previous comments, we still experienced some 

problems with the nodes temporarily locking up. 

The iPSe implementation of Mapper diverged from the specification in one way: the 

user-supplied pack, unpack, and reclaim routines were hardwired into Mapper and 

were not passed to it as subroutine-arguments. This was done in the interest of expediting a 

rapid prototype of the code and was never changed. The code could be modularized in such a 

way that the user-routines could be passed to Mapper, without introducing unreasonably high 

overhead costs. The additional overhead would come from having to call a subroutine passed as 

an argument, whose name was not known at compile-time, instead of calling a subroutine whose 

name was known statically. This overhead, however, is slight: the number of messages that 

Mapper will send is proportional to the number of calls to the external subroutines; each mes-

sage costs at least 5 milliseconds; a subroutine call, including argument transfer, costs tens of 

microseconds . 

5.3.3. Global Computation a~d Communication 

To handle global computation and communication we relied on various utilities supplied 

by others. One utility is a fast 9-point Poisson solver, written by Cleve Moler of Intel Scientific 

Computers. For P processors and an MxM finite difference mesh, the solver uses a direct solu-

tion method involving 0 (M 3/P) arithmetic and 0 (M 2/P) storage per processo~. The solver 

gets called twice during each velocity evaluation, once for each component of velocity. Because 

of the relatively high communication overhead of the solver (see Figure 5.2), we found that com-

puting each velocity component on P /2 processors, and in parallel with the other, was faster than 

computing the two components serially, but on P processors. 

S The method is based on knowing the eigenvalues and eigenvectors of the 9-point difference operator for the 
Laplacian. The dimensions of the grid need not be a power of two, unlike an FFr method. The code for the solver ap­
pears in the Appendix. 
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Figure 5.2. For the 36x36 finite-difference mesh we used in our calculation, the solver runs fastest on 8 
processors. Beyond that point. the increased cost of communication overwhelms any savings in computa­
tion time. The cost of communication decreases relative to computation as the size of the mesh increases. 
For a 66x66 mesh, for example, the maximum achievable speedup is roughly twice what it is for the 

smaller problem. 
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The solver assumes that the input resides in the memory of a designated node andretums 

its result to that same node. Each node, however, contributes only a local portion of the right 

hand side in the parallel MLC algorithm. The local right hand sides must somehow be combined 

into a single global right hand side. In addition, each node must also obtain a copy of the 

solver's result. To handle these activities we relied on communication utilities, discussed by 

Moler and Scott [7], that use a spanning tree communication structure. There were two routines: 

(1) gsum, that accumulates like-size arrays stored on different processors into a single array of 

that size stored on a designated root processor; and (2) gsend, that broadcasts an array from 

the root processor to all other processors. 

5.3.4. Arithmetic 

All arithmetic was done using 8-byte double-precision numbers. The program used three 

major data structures that were duplicated on all the processors. The major data structures used 

were: three 42x42 finite-difference meshes; three 84x84 arrays of 2-byte integers used for the 

bins and to do work estimation; apd vortex-records, each describing a single vortex. Each bin is 

a pointer to a list of vortex records; each consisting of 154 bytes of information: 2 real-valued 

position vectors; 2 real-valued velocity vectors; real-valued vortex strength, analogous to an 

electrostatic charge; 5 complex-valued interpolation coefficients; and a 2-byte integer pointer 

that links vortices into the bins. To economize the iPSC's scarce memory a short form of the 

vortex record was also used to hold copies of vortices obtained by Mapper from other proces­

sors. Since the only information needed about such vortices is position and strength, the shan 

vortex record is 26 bytes long and consists of 2 real-valued position vectors, 1 real-valued 

strength, and an integer link. For each of the 32 processors there were many more shan-form 

vortex-records than long-form ones; 1500 of the former and 250 of the latter. The major data 

structures therefore consumed 162 kilobytes of each node's memory. In addition, the Mapper 

utility used two message buffers that were 10080 bytes long each, leaving about 120 kiloby~es 
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that contained mostly code. 

5.4. Evaluation Strategy 

The ideal way to evaluate an implementation would be to take account of adapting the 

mathematical algorithm to the hardware, but this lies beyond the scope of our research. As a 

result of this restriction, we will assume that the cost of non-parallelizable computation, or com­

putation that does not parallelize well, cannot be significantly changed. The task at hand is 

therefore to find out how well our VM can utilize the iPSe's hardware, given that only a certain 

fraction of computation parallelizes well, and communication has a certain cost relative to com­

putation. We will not be concerned with the cost-performance of our implementation compared 

to implementations on other architectures. What we are interested in is relative cost­

performance, i.e. how well performance scales with the number of processors used. We will 

pose a series of questions, and answer each question using the appropriate measurements taken 

from runs of the MLC. 

. All results were obtained from runs involving the finite area vortex (FA V} problem of Fig­

ure 4.10: the vortices were positioned on a lattice of points confined to two circular patches 

placed symmetrically about the origin. The patches had a radius of 0.12 units and their centers 

were 0.25 units apart. N, the number of vortices, was kept proportional to P , the number of pro­

cessors; this is consistent with the expectation that ever-larger problems may be handled as com­

putational resources increase. Each processor was initially assigned about 100 vortices regard­

less of the size of the problem though, as a result of the motion of the vortices and of the dynam­

ically changing partitionings of the problem, the exact number fluctuated with time. Experi­

ments were run on 4, 8, 16, and 32 processors but not on 1 or 2; the problems that 1 or 2 proces­

sors could accommodate - about 100 or 200 vortices - are too small to overcome the fixed over­

head costs of the finite difference part of the calculation. Worthwhile problems should have at 

least several hundred vortices and more likely several thousand. 



82 

A calculation involving 3180 vortices ran at a rate of 3.5 minutes per time step on 32 pro-

cessors. Table 5.1 compares the average execution time per timestep for various values of N. 

The timestep!1t was fixed at 0.05, and all runs lasted 64 timesteps or, equivalently, 3.2 units of 

simulation time. We did not scale the timestep M with N, as suggested by results of the 3 

parameter study presented in chapter 3. We would liked to have decreased!1t to 0.025 for the 

largest problem, but doing so would have increased the" running time of the calculation to an 

unreasonable amount of time - about 11 hours - so we had to settle for a larger timestep. 

The computation took place within the unit box, extended in all directions by the correc-

tion radius. We ran with a 36x36 finite difference mesh. The mesh spacing h was fixed at 1130, 

and the correction radius C was set at 2h. Owing to insufficient memory, we were unable to 

scale h and hence C with the initial spacing of the vortices. Given more memory we would 

have decreased h from 1130 to 1160 for N = 3180 vortices. However, we did have sufficient 

memory to reduce the spacing of the bins to one-half that of the finite difference meshes, i.e. 4 

bins lay under each finite difference panel. This was done because Partitioner can do a 

better job of balancing workIo"ads as the bins become smaller and more numerous. If there were 

sufficient memory to refine the finite difference mesh, however, the bins would have the same' 

size as the finite difference mesh-boxes, and would not have to be made any finer. 

N P iPSe time 
(minutes) 

386 4 1.3 
796 8 1.6 

1586 16 2.2 
3180 32 3.5 

Table 5.1. The average running time per timestep on the iPSe (in minutes) averaged over 64 timesteps. 
N is the number of vortices and P the number of processors. The loads were rebalanced every other 
timestep or every fourth velocity evaluation - each timestep did two velocity evaluations. The computa­
tion time is roughly proportional to P 1.7. 
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5.5. The Experiments 

The first question we ask is: how well does performance scale with P? To answer this we 

compute parallel efficiency, a familiar performance metric for evaluating multiprocessor imple-

mentatioos. Kuck [5, p. 33] defines TIp as the efficiency with P processors: 

(5.2) 

where Tp is the time to complete on P processors. T I is the time taken on a uniprocessor. For 

this special case of P = 1, various overheads that would be incurred on a multiprocessor, such as 

communication, are non-existent.6 By definition TIl = l. . 

Exclusive of the Poisson solver, the size of the problem increases with the number of pro-

cessors, and so T I cannot be measured directly. A problem with 3180 vortices, for example, 

would take about 100 hours to complete on 1 processor. We must therefore rely on indirect 

means of measuring T I. T I comprises two parts: T~ois, the time spent solving Poisson's equa­

tion, and Tyocal ,localized c~mputation split up by' Partitioner. T~ois can be measured 

directly on a uniprocessor, because the size of the problem passed to the solver doesn't change 

with the number of processors. Tyocal is the part that cannot be measured directly. But, since 

Partitioner roughly conserves the total amount of work that would be done in a uniproces­

sor computation (this is true because the work-estimate mapping is almost set-additive), Tyocal 

can be reasonably approximated by summing up the completion times for all P processors: 

P-I 
Tyocal = L T~(Aj), (5.3) 

j=O 

6 The iPSC implementation of the MLC was written to work on any number of available processors and no at-

tempt was made to optimize it for the special case of one processor. However, the spurious overheads thus incurred 

on a uniprocessor run are slight enough that they can be ignored. 

----.----_._­._-----
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where Tpcal(Ai ) is the time to complete the localized part of subproblem Ai on P processors. 

Using equations (5.2-3), we determined the parallel efficiency from the timing information 

reported by each node. As shown in the final column of Table 5.2 or, equivalently, in the top 

and bottom curves of Figure 5.3, 1lp ranges from 90% with 4 processors to 74% with 32. This is 

quite good; if efficiency were 100%, the program would run at most only 35% ((I-1lpl)xl0Q%) 

faster. 

The next question we ask is: why does 1lp fall shon of 100% efficiency? Generally there 

are three reasons why: (1) some complitations must run on only one processor and act as serial 

bottlenecks; (2) processors must spend some of their time communicating; (3) loads are not per-

fectly balanced. We next measure the cost of these three factors. 

A different measure of efficiency than the one used before, that ignores all but serial 

bottlenecks, is called maximum theoretical efficiency, TiP. This is the efficiency that could be 

attained under ideal conditions of instantaneous communication and perfectly balanced work-

loads. It therefore establishes an upper bound on efficiericy, since we assume that serial 

bottlenecks cannot be substantially reduced except by a change of algorithm.7 TiP is defined as 

_ (T1ompllu + Tpartitiofl )/ P 

1lp = (T1ompllJe /P + Tpartiliofl) 

where Tpartiliofl is the time spent partitioning, and 

(5.4) 

(5.5) 

The denominator of (5.4) reflects perfect parallelization of the computational work, but no paral-

lelization of Partitioner. 

7 The cost of the serial bottleneck generally depends on the architecture as well as the algorithm. However, the 
subject of adapting algorithms to architectures is not within the scope of this research. We assume that the parts of the 
computation that execute serially have been appropriately minimized. 

'. 
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As shown in Table 5.2, (or equivalently in Figure 5.3) maximum theoretical efficiency is 

never less than 98%; our implementation of the MLC parallelizes well and includes only a small 

amount of computation that must be done on a single processor - Parti tioner. Further-

more, the cost of this non-parallelizable work, relative to that of numerical computation, is rela-

tively insensitive to the number of processors in use. The observed efficiency, by comparison, 

decreases much more sharply than the maximum theoretical efficiency as the number of proces-

sors increases. Load imbalance is the major difficulty here; communication and other overhead 

are comparatively benign. This can be seen by looking at the idealized efficiency successively 

degraded by the various sources of overhead, shown in Table 5.2 and plotted in Figure 5.3. Two 

new measures of efficiency divide the difference between the idealized and observed efficiency 

into three parts: the upper pan represents efficiency losses due to communication overhead, 

except what was incurred in the solver, the middle pan represents efficiency losses incurred by 

the Poisson solver, the lower pan represents the losses due load imbalance. The total 

Idealized Efficiency Observed· 

N p Max With Cornrn 1lp Sp 
Theor Comm + 

Solve 

386 4 0.990 0.961 0.944 0.904 3.6 
796 8 0.988 0.946 0.922 0.849 6.8 

1586 16 0.988 0.938 0.914 0.787 13 
3180 32 0.990 0.941 0.918 0.738 24 

Table 5.2. Parallel efficiency and speedup figures. N, the number of vortices varies linearly with p. the 
number of processors. Columns 3 to 5 give three measures of idealized efficiency. "Max Theor" as­
sumes that loads are perfectly balanced and ignores all communication overhead. It assumes that parti­
tioning is work that could not be parallelized. "With Comm" includes the cost of communication that 
was ignored in the previous figure. and finally. "Comm + Solve" adds in the efficiency loss that results 
from imperfect parallelization of the solver. Columns 6 and 7 give the observed efficiency, 1lp. and 
speedup, Sp. that include all overhead costs. By definition 1lP = SpIP. The differences between adja­
cent columns in columns 3 to 6 give the efficiency losses due to three factors: communication overhead 
(including spanning tree communication), solver overhead, and load imbalance, respectively. The losses 
incurred by the first two factors increase much more slowly with the number of processors than do the 
losses due to load imbalance. 

----_._---- ---- ----
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Figure 5.3. Parallel efficiency decreases as the number of processors increases. The top curve gives the 
maximum theoretical efficiency that would be attained under ideal conditions. The bottom curve gives 
the efficiency observed for all phases of the computation. The two curves in the middle divide the 
efficiency losses represented by the gap between the upper and lower curves into 3 regions, corresponding 
to losses due to communication, the Poisson Solver, and to load imbalance, respectively. Loads were bal­
anced every other time step, or every fourth velocity evaluation. 
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communication overhead increases gently with the number of processors and the solver over-

head decreases gently, while load imbalance increases sharply. We will next explain the solver 

and other overheads, and return to the problem of load imbalance later. 

We identify three sources of efficiency loss: (1) poorly-parallelizing computation - the 

Poisson solver, (2) partitioning, and (3) communication. The solver we used does not parallelize 

well because it communicates frequently with respect to computation. However, the fraction of 

time spent in the solver depends both on the numerical algorithm and its implementation, topics 

which we have explicitly excluded from discussion. We therefore are more interested in the 

solver's overall cost, relative to the entire computation, rather a breakdown of its ovemead costs. 

This is consistent with the specification of the VM: the VM does not apply to a computation like 

the solver, but merely accepts it as global computation that does not parallelize well. We can 

determine how throughput is affected by a change of solver simply by measuring the solver's 

execution time and then applying Amdahl's law. The solver ovemead shrinks with P because 

the while the amount of localized computation grows roughly as P 1.7, the size of the solver's 

computation remains fixed. This is shown in Table 5.3. 

N P Computation Overhead 
Local Pois total o = :Janition + mappin~ + global 

386 4 0.83 0.13 0.040 0.012 0.003 0.026 
796 8 0.88 0.07 0.050 0.012 0.008 0.030 

1586 16 0.91 0.04 0.053 0.010 0.014 0.029 
3180 32 0.92 0.02 0.046 0.008 0.016 0.022 

Table 5.3. This table gives the fraction of time spent in localized computation ("Local"), the Poisson 
Solver ("Pois"), and in various overheads. "Total", is the total fraction of time spent in computation 
that would not be done on a uniprocessor and divides into three subtotals: "partition," Partitioner over­
head; "mapping" Mapper overhead, and "global," the overhead of doing global summations and broad­
casts. The fractions don't quite add up to 1.0 owing to a slight uncertainty in the measurement technique. 
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Exclusive of the Poisson solver, communication overhead ranged from 2.9% on 4 proces­

sors to 4.3% on 16. Communication serves two purposes: (1) to do mapping and (2) to manipu­

late the finite difference grids used by the solver. The first activity was less expensive than the 

second; it incurred a communication overhead that ranged from 0.3% to 1.6% of the total execu­

tion time. This overhead was low because the partitions have simple shapes and because 

Mapper amortizes the iPSC's high message startup cost over the sending of several vortices in 

one message. As the number of processors increases, the cost of global communication 

increases less sharply than than the local communication done in Mapper. This happens 

because the cost of spanning tree communication is 0 (log (P », but the cost of local communi­

cation done by Mapper is roughly 0 (P) (see Table 5.4). 

Surprisingly, Mapper's communication structure is not especially localized on the 

hypercube interconnection network, despite the fact that the MLC is considered a spatially local­

ized computation. With 32 processors, for instance, each processor communicates on average 

with 12 others. Table 5.4 shows that the number of communicating "neighbors" increases 

roughly with the number of processors. This reflects the tendency of the smallest of the parti­

tions to become much smaller in area th°an their respective external interaction regions as the 

number of processors increases. Were we able to scale C with hy , the initial spacing of the vor­

tices (or more precisely, with 0= hyOo7S), however, the external interaction regions would scale 

with the size of the smallest partition and so would the number of vortices that interacted across 

a partition boundary. Communication costs and storage overhead would grow much more 

slowly then if C were not scaled. This is shown in the Table 5.5. 

One overhead remains to b~ discussed-Parti tioner. Partitioning overhead was never 

more than 1.2%, including both the time to compute a workload estimate and to do recursive 

bisection. The work estimate computation parallelizes and hence is not a serial bottleneck. The 

recursive bisection algorithm is fast, doing only integer arithmetic and running in time that is 

.0 
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Neighbors Packets Messages 
p 

max avg avg avg max max 

4 3 2.6 7 6 6 5 
8 5 3.8 15 12 10 8 

16 11 7.4 30 23 20 15 
32 18 12 53 39 31 24 

Table 5.4. During a velocity evaluation each processor sends packets to a substantial number of other pro­
cessors, called neighbors. "Max neighbors" is the maximum number of processors that anyone proces­
sor had to communicate during a single velocity evaluation, and "avg neighbors," the average number. 
"max packets" and "avg packets" give the maximum and average number of 1024-byte packets sent out; 
"max messages" and "avg messages" give the maximum and average number of messages sent per pro­
cessor. The message buffers were 10080 bytes long. The correction distance C was 1115. 

Neighbors Vortices Total Work 
C (Xl07 Interactions) 

Max Avg Total Copies 
1115 15 10 1071 982 14 
1130 8 5.7 555 469 4.2 

. Table 5.5. Halving the local interaction radius halves the number of vortices that interact across partition 
boundaries during a velocity evaluation, and hence reduces both the message traffic and the amount of 
storage that must be reserved for vortex-copies. The total number of local interactions is also reduced by 
a factor of three. Message traffic is measured in terms of the number of interacting neighbors (columns 2 
and 3) and the numbers of vortices communicated (columns 4 and 5). Column 2 gives of the maximum 
number of tasks that anyone had to communicate with, column 3 the average number of interacting tasks 
per task. Column 4 gives the maximum number of vortices that any task stored, including those the task 
owned. Column 5 gives the number of vortex copies out of that maximum total. These data were ob­
tained from traces of 3180-vortex runs done on the Cray X-MP; they were run on the Cray since the iPSC 
lacked sufficient memory to store a refined finite-difference mesh. 

proportional to the logarithm of the number of processors. The total time spent in the communi-

cation and load balancing utilities was therefore never greater than 2.4% (This figure is the max-

imum combined utility overhead observed on any single number of processors. The previous 

overheads were reported separately and occurred on different numbers of processors). 

Hav,ing considered the overhead costs and the cost of the solver, we next consider the 

maj~r_source_ of~ffici~9' 10~s_:_Joad imbalance.- We-ask the following question: was load-
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imbalance the result of our using a poor work estimate mapping, the restriction on allowable cuts 

made by Partitioner, or a combination of the two? The answer is the latter, as we now 

show. We can eliminate the first cause by a simple experiment. We compare the observed 

efficiency with an efficiency measure based on the number of local corrections as the unit of 

time, which 'is the efficiency predicted by Partitioner's the work estimate mapping. The 

two efficiency measures agreed to within 5%, as shown in Figure 5.4. 

Since the work estimate mapping used by Partitioner appears to give an accurate 

prediction of processor loading, we suspect that the cause of load imbalance lies in the restric-

tions on how Partitioner can make cuts. In particular, cuts may not subdivide bins into 

which vortices get sorted. A way to get around this problem is to reduce the size of the bins. To 

show how this helps, we ran a simulation experiment on the Cray (the iPSC had insufficient 

memory). As in the previous experiment, w~ measure the efficiency predicted by Parti-

tioner, using the number of local corrections as the measure of time. Table 5.6 shows that 

efficiency increases as the bins get smaller. 

What the' table does not show is that the process of refining the bins may not be carried on 

indefinitely. Eventually, the .cost of manipulating still more bins will exceed any savings due to 

bin-size Efficiency 
1 0.528 

114 0.734 
1116 0.869 
1/64 0.918 

Table 5.6. Efficiency loss due to load imbalance can be reduced by making the bins smaller, increasing 
the spa,tial resolution of the partitioning process. These runs are with 32 processors, and were obtained 
from simulations on the Cray (we did not have sufficient memory to run on the iPSC). The completion 
time for a task was measured in terms of the number of local corrections computed. For the iPSC runs we 
used bins that were 114 the size of the Poisson solver mesh-boxes. This bin-size was optimal for our im­
plementation in the sense that either increasing or decreasing the size of the bins would lower efficiency. 
Load imbalance diminishes with the size of the bins, but the cost of doing load balancing increases as the 
bins become smaller and more numerous. 
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Figure SA. The efficiency predicted by partitioner agrees reasonably well with the actual efficiency ob­
served for the entire calculation - "observe." The unit of work for the predicted efficiency is the local in· 
teraction. Not surprisingly, the predicted efficiency agrees almost exactly with the actual efficiency ob· 
served for the local interaction part of the computation - "interact" We also show the efficiency for the 
localized computation, that includes local interactions as well as some other computations. The localized 
efficiency is always higher than the observed efficiency since it ignores the overhead costs included in the 
latter. 

----~ ----- --- .---
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a reduction in load imbalance. We observed this behavior on a extended-memory model of the 

iPSC with 4 megabytes of memory per node, and found that little was gained by refining the 

bins any further than was possible on the standard-memory model iPSe. For our particular 

implementation of the MLC, then, the level of load imbalance we observed was optimal in the 

sense that reducing it would not substantially improve throughput. However, because many bins 

were empty, we could reduce the optimal bin-size, and hence increase throughput, by imple­

menting a sparse bin data structure. 

Having now established the various sources of efficiency loss, and in particular the dom­

inating effect of load imbalance, we next ask the following question: how often must workloads 

be rebalanced? In the first experiment, we balance workloads on the initial timestep only, i.e. do 

static load balancing, and then observe how efficiency varies as a function of time (see Figure 

5.5). Efficiency decreases steadily, but gently with time. Clearly loads must be periodically 

rebalanced, but not on every timestep. 

Though load balancing incurs modest overhead for the MLC, and may be done on every 

timestep, the overhead may be high enough in some calculations to justify an increase in repani­

tioning frequency. The optimal repartitioning frequency wiII have the property that either 

decreasing or increasing it wiII increase the running time of the computation. This implies that 

increasing the frequency will improve load imbalance at the expense of load balancer overhead 

and decreasing it will produce the opposite effects. For the MLC we found that the optimal 

repartitioning frequency depended on the number of processors but was somewhere around 2 to 

4 timesteps for P 2: 8, as shown in Table 5.7 and the equivalent plots of Figures 5.6-7. 

5.6. Discussion 

Processor idleness due to misbalanced workloads is the major performance bottleneck for 

the Method of Local Corrections running under our VM on the iPSe. Workload imbalance is 
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Figure 5.5. With static load balancing, the loads will drift gradually out of balance. Each curve plots 
efficiency against time for either 4, 8, 16, or 32 processors. Efficiency is reported for each of the two 
velocity evaluations done each timestep. The run with 32 processors ran out of memory after only 18 
timesteps; the loads had drifted so far out of balance that some processors lacked sufficient memory to 
hold an excessively large number of vortices. The. staircasing effect on the curves comes as the result of 
vortices jumping by much smaller amounts in the second velocity evaluation of time integration than in 
the first Load imbalances therefore drift more gradually out of balance during even-numbered velocity 

evaluations than in odd-numbered ones. 
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Figure 5.6_ Each family of curves plots the efficiency achieved with a different number of processors, as a 
function of repartitioning frequency_ Repartitioning frequency varies from 1 to 8 timesteps. An infinite 
repartitioning frequency corresponds to static partitioning_ The hyphenated lines plot the efficiency for the 
local part, labeled L, and the solid lines, labeled N, the net efficiency for the entire calculation_ The labels 
on the curves also give the number of processors. Except for 4 processors, the net efficiency first in· 
creases - the savings due to improving the workload balance exceeds the overhead - and then decreases 
as the overhead begins to dominate. The optimal repartitioning frequencies correspond to the places where 
the solid curves level off. The efficiency in the local part doesn't include the cost of doing load balancing 
and tends to decrease as the repartitioning frequency increases. 
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Figure 5.7. Each of the four plots show, for a single value of P, how increasing the number of velocity 
evaluations between repartitionings affects the additional time spent partitioning and doing localized com­
putation. The net effect on the entire computation is also shown. Net negative times indicate an improve­

ment The final data point on each curve corresponds to static partitioning 
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Proc- Part Time Efficiency 
essors Freq 

Overall Local Partitioner Overall Local 
4 1 39.2 32.1 0.9 0.894 0.955 

2 -0.4 +0.0 -0.4 0.904 0.955 
4 -0.6 +0.0 -0.7 0.909 0.954 
8 -0.7 +0.1 -0.8 0.911 0.953 
00 +4.2 +5.1 -0.9 0.810 0.825 

8 1 47.4 41.1 1.1 0.840 0.914 
2 -0.5 +0.1 -0.6 0.849 0.913 
4 -0.7 +0.1 -0.9 0.852 0.912 
8 -0.3 +0.6 -1.0 0.848 0.903 
00 +6.3 +7.3 -1.1 0.744 0.779 

16 1 67.2 60.2 1.4 0.780 0.852 
2 -0.6 +0.1 -0.7 0.787 0.850 
4 -0.8 +0.2 -1.1 0.789 0.847 
8 -0.3 +1.1 -1.3 0.782 0.836 
00 +15.3 +16.8 -1.4 0.633 0.664 

32 1 105.9 96.5 1.7 0.732 0.798 
2 -1.0 +0.0 -0.9 0.738 0.797 
4 -0.8 +0.8 -1.3 0.737 0.790 
8 +0.5 +2.5 -1.5 0.729 0.778 

O!O +20.3 +23.2 -1.7 0.614 0.643 

Table 5.7. The optimal partitioning frequency increases with the number of processors. Repartitioning 
frequencies were varied from once every· time step down to once at the initial.timestep only, i.e. infinite 
repartitioning frequericy. Times are reported for the overall computation and for two interesting com­
ponents: local computation time and partitioning time. For the repartitioning ·rate of 1 timestep, time is re­
ported in absolute seconds. For lower repartitioning rates, the unit of time is delta seconds taken against 
the absolute times. The optimal repartitioning rate corresponds to the largest negative delta value in the 
overall time column, i.e. for P=8, the optimal rate is 4. The last two columns of the table give the parallel 
efficiency for the overall computation and for the para1lelizable part. 

reasonable, however, given that we achieved better than 70% efficiency on 32 processors; a ver-

sion of the program that ran at 100% efficiency would run only 35% faster. Owing to memory 

limitations we could not run on a model d6 iPSC with 64 processors or a model d7 with 128; in 

order to use these machines we would have to exploit the inherent sparseness of various arrays 

used in the MLC calculation. Sparse data structures would also be essential even on 32 proces-

sors, in order to scale the simulation parameters properly with the size of the problem. Doing so 

would allow us to reduce the numerical operation count of the computation. We have already 

begun to work out the details of sparse data structure representations for a three-dimensional 
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vortex code presently under development [1]. 

Surprisingly, the high message latency time of the iPSC appeared to have very little impact 

on the running time' of the calculation, even though communication is not as localized on the 

hypercube interconnection network as it is in physical problem-space. Our VM incurred a low 

communication overhead because it can transmit data in bulk rather than an element at a time. 

This was facilitated by restricting the partitions to have simple shapes. Because the VM does 

not localize communication on the iPSC's interconnection network, and because it concentrates 

communication into brief instants of time, it can severly stress the iPSC's communication sub­

system. The operating system must cope with the peak loading by carefully controlling the flow 

of disruptive messages. 

The reason why our VM did a good job of avoiding load imbalance is that the simple work 

estimate mapping that Parti tioner uses appears to be a good metric for dividing up work 

fairly; the efficiency predicted by Parti tioner agreed to within 5% of what was observed. 

Partitioner is surprisingly effective, considering all the constraints on the way it may parti­

tion the.work. Since it· is: recursive it can render only a subset of all possible partitionings into 

rectangles; the partitioning of Figure 5.8, for instance, cannot be achieved by the recursive bisec­

tion strategy. So far, the simple partitionings appear adequate. Although the rectangular 

geometry of the partitions further restricts the way that the Partitioner can split up work, 

the benefits of using more complicated shapes such as general tetrahedra would probably not be 

worth the trouble as the data structures used to represent the partitions would be difficult to 

manipulate. 

Recently Intel Scientific Computers has announced a high performance option of the iPSC, 

called the iPSC-VX [4]. Arithmetic runs about 100 times faster on the VX than on the iPSC we 

used, but communication is only about 4 times faster. With the improved memory utilization 

made possible by sparse data structures, an iPSC-VX system could tackle large problems with, 

say, ten thousand vortices. Communication overhead, and not load imbalance, would be the 
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Figure 5.8. The recursive bisection strategy cannot render this partitioning. 
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dominant peIforrnance bottleneck, since communication on the iPSC-VX is much more expen­

sive relative to computation than it is on the iPSC we used. We found that communication con­

sumes roughly 5% to 10% of the running time of our implementation of the MLC running on the 

"original" iPSe. A simple application of Amdahl's law reveals that the iPSC-VX's fast vector 

units could speed up our MLC computation by a factor of 10 or 20. 
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To test the hypothesis that our run-time partitioning utilities can work on diverse architec-

tures, we implemented them on a shared-memory machine: the Cray X-MP, manufactured by 

Cray Research, Inc. The X-MP differs from the iPSC in three major ways: (1) the processors 

communicate via shared memory instead of messages; (2) there are fewer of them - at most 

four, and (3) individually they are quite powerful - they provide fast vector mode arithmetic and 

each is capable of computing at a sustained rate of 100 megaflops or more. Despite these differ-

ences, however, we were able to implement the Method of Local Corrections using a local-

memory execution model and to use our run-time partitioning utilities in the same way as they 

were on the iPSC. We were also able to handle global communication with utilities that had the 

same semantics as they did on the iPSe. 
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The X-MP code did differ from the iPSC's in two important ways. The most noticeable 

difference was that many of the inner loops in the numerical portion of the code had to be rewrit­

ten so that they could run in vector mode. However, the problem of getting a program to vector­

ize runs orthogonal to the one of how to handle run-time partitioning. The only significant 

difference, therefore, was the second one: how the user sets up parallel tasks to run on the Cray, 

in particular, the boss task. Despite this difference, we believe that our VM could help the user 

save considerable time in porting his code between such diverse architectures as the X-MP and 

iPSe. 

The chapter begins with a description of the X-MP system, both hardware and software. 

Next, we describe our implementation of the MLC and of the VM. Finally, we present the 

results of some experiments we ran on the X-MP. 

6.2. The Cray X-MP Multiprocessing System 

The X-MP is a shared-memory architecture with up to four processors and 16 million 

words of main memory (1 word = 64 bits). We used this largest model, known as the X- . 

MP/416. The definitive source of information about the X-MP IS the hardware reference manual 

published by Cray Research, Inc. [3]. A more accessible document is the pamphlet by S. Chen 

et. al. made available by Cray [1]. 

The Cray X-MP processing engine is a descendent of the Cray-l [6,7]. It has a very fast 

cycle time - as fast as 8.5 nanoseconds in some models - and multiple arithmetic functional 

units that can work in parallel. Some of the functional units are pipelined and operate in a very 

fast vector mode of computation for FORTRAN-style DO loops. Independent scalar operations 

can also be pipelined. Put in round figures, a loop that vectorizes runs ten times faster in vector 

mode than in scalar mode. But not all loops can vectorize and, as the fraction of time spent in 

vector mode decreases, the maximum useful speedup attributable to vector mode also decreases. 

To see why, compare two programs; the first spends 95% of its time in vector mode, the second 
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50%. If the time spent in vector mode could be reduced to zero with infinitely fast vector 

hardware, then the first program would run twenty times faster than before, but the second only 

twice as fast. The maximum useful vector execution rate is therefore ten times greater for the 

first program than for the second. This phenomenon is known as Amdahl's law: 

(6.1) 

where S is the reduction in execution time, the speedup, f v is the fraction of time in vector 

mode, and R the ratio of vector mode execution rate to the scalar mode execution rate. 

, Another way of stating Amdahl's law is that speeding up the vector rate beyond a certain 

point will not decrease the running time of a program unless the program can be coerced to 

spend less time out of vector mode. In general R is a function of both the length of the pipeline 

and the vector length, n. For short vectors R will be small, since the time to fill the pipeline will 

be high compared with the time to pass through it. As n ~oo, R approaches the maximum 

asymptotic rate of Q, where Q is the number of stages in the pipeline. Hackney and Jesshope 

[5] define n 1/2 as the value of n required to attain one-half the maximum rate. The Cray's adder, 

for example, ·has six pipeline stages, so n 112 = 6. This is considered to be quite low;. the CDC 

Cyber 205 has an n 112 of about 100 [5]. 

What makes the Cray so attractive is that it is a balanced architecture: not only does it per­

form well on short vectors, but can also execute scalar operations reasonably fast. There are two 

reasons why this is so: (1) scalar mode is not that much slower than vector mode (2) independent 

scalar operations may be pipelined. This is important because operations on scalars and short 

vectors, as opposed to long vectors, ultimately limit performance. 

6.2.1. Arithmetic and Registers 

The Cray is a register-based architecture, with 64-bit words. Memory referencing instruc­

tions load and store registers. All other instructions operate only on registers, of which there are 



104 

several kinds: 8 vector (V) registers, each 64 elements long and 64 bits wide; 8 address (A) 

registers, each 24 bits wide; 8 scalar (S) registers, each 64 bits wide; and B and T register-sets, 

each with 64 registers, to back up the A and S registers, respectively. The backup registers may 

be used as a small software-managed cache memory; the X-MP has no other local storage. 

There are also some special control registers, a real-time clock, and a set of shared registers that 

provide a fast path for communicating small amounts of information between processors. These 

shared resources will be ignored for the moment. The X-MP also provides a hardware perfor­

mance monitor for counting floating point operations, dynamic instruction frequencies, and so 

on. 

The CPU provides the usual arithmetic, logical, and register transfer operations. 1 A com­

plex of 14 functional units implements the various arithmetic and logical operations. Cenain 

combinations may be active simultaneously to increase the throughput of the engine. The 

integer adder, for instance, may work in parallel with the floating point adder so that the CPU 

may overlap loop control with floating point arithmetic. Moreover, s.ome functional units may 

be hooked together into a pipeline by a process called chaining. Since memory read and write 

operations are also chainable, the Cray may overlap memory transfers with arithmetic. Many of 

the Cray's instructions come in two varieties: vector-mode instructions and scalar mode instruc­

tions. A vector-mode instruction repeats the same operation over up to 64 sets of arguments. 

One argument is always stored in a vector register; the other, if it exists, may be in either a vec­

tor register or a scalar register. In the case of a scalar argument, the scalar value is used repeat­

edly for each element of the vector argument (There are also triadic instructions that take a third 

argument stored in a mask register to be discussed below). _ 

I One exception is division: the Cray has no divide instruction. Instead it has a reciprocal approximation instruc­

tion. The approximate reciprocal is refined through one Newton-type iteration to provide division to near machine ac­

curacy. 
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Scalar mode instructions can also be pipelined though they may not keep the pipeline as 

busy as vector instructions. The problem is that certain scalar operations may have to wait until 

any pending operations have completed. Because this can include memory transfers, and 

because such transfers go at one tenth the rate in scalar mode than in vector mode, the pipeline 

delays on scalar operations can be expensive. 

The Cray provides vector comparison instructions for generating a bit-string of comparison 

flags, held in a 64-bit mask register, and vector merge instructions that use the mask to control 

the merging of two vector register arguments. For example, if Z is assigned the result of 

"merge (X ,Y ,M)," for data vectors X and Y and mask vector M, then Zj = Xj if M j is set, and 

Y j otherwise. 

6.2.2. Memory 

Memory is organized into 4 sections of 16 banks each. Each processor has 4 memory 

access pons to main memory: two for reading, one for writing, and one for 110. All four ports 

can be simultaneously active. Each port of each CPU has a private connection to each section of 

memory. Memory referencing instructions reserve ports for the duration of a memory transfer; 

transfer times are unpredictable since the flow of the data can be disrupted by access conflicts 

between ports on one or more processors. Access conflicts occur as the result of a bank conflict­

simultaneous accesses to the same bank by more than one port from within a CPU or between 

CPU's- or a section conflict- simultaneous accesses to the same section over two or more ports 

of a single one CPU. Different CPUs may access the same section of memory, however, so long 

as there isn't a bank conflict. In addition, a CPU can wait on a bank that is already occupied 

with a pending memory request; this is called a bank busy conflict. Each section of memory 

monitors incoming address traffic and blocks incoming references whenever the path is busy . 

Since this mechanism cannot detect concurrent reads and writes to a critical section of memory, 

the programmer is responsible for employing an appropriate software mechanism to avoid hazar-
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dous race conditions, e.g. lock out critical sections. 

Memory transfers go fastest in block transfer mode, either when loading a vector register 

or when loading a backup register set. The cost of an n -word block transfer is (17 + n) CPs for 

vector registers, (16 + n) CPs for backup registers. The maximum transfer rate is 3 words/CP 

per CPU with the two read and the single write pon simultaneously active upon three transfers. 

Fast block-mode transfers need not be confined to arrays of consecutive words so long as their 

addresses are in an arithmetic progression; rows or diagonals of arrays may be accessed as 

quickly as columns. However, consecutive accesses to the same bank must be separated by at 

least 4 CPs - otherwise the bank will be busy with the last request. This problem can be avoided 

in software by dimensioning arrays with bounds that are relatively prime to 64. The cost of 

transferring one word to the scalar or address registers is 14 CPs. The X-MP also provides 

hardware gather and scatter instructions for speeding up non-contiguous memory transfers 

involving doubly nested array subscripts; but, our code did not invoke these, and they will be 

discussed no furthe~. 

6.2.3. Shared Registers 

The X-MP provides 5 sets of shared registers. Each set has 32 (1 bit) shared semaphore 

registers, 8 (64 bit) shared scalar registers and 8 (24-bit) shared address registers. A processor 

that wishes to share a register set does so by loading its private cluster register with the appropri-

ate set number. Processors in the same cluster may then communicate address and scalar infor-

mation, one data element at a time, by loading and storing the shared registers. Members of a 

cluster may also synchronize themselves through a semaphore register by means of an atomic 

test-and-set instruction. This instruction implements a binary semaphore; it samples and then 

sets a designated shared semaphore register. If the semaphore was already set, the test-and-set 

I This happened for historical reasons: the MLC code was initially developed on a Cray-l that had no gather­
scatter hardware, so we had to implement gather-scatter in software. 
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waits until the register clears. To guarantee the atomicity of the operation, no processor may 

execute the test-and-set on a semaphore register until any pending test-and-set completes. If all 

processors in a cluster are waiting on the same semaphore, then the machine issues a deadlock 

interrupt. An interrupt handler may then decide on an appropriate course of action such as job 

cancellation. 

6.2.4. X-MP System Software 

All software was written in Cray X-MP FORTRAN [2]. This is a superset of FORTRAN 

77 which Cray Research, Inc. has extended to improve the vectorizability of code and to deal 

with certain aspects of concurrency. Several new Cray FORTRAN library routines are provided 

in support of these activities and are described both in the FORTRAN manual and in the Cray 

X-MP Multitasking User's Guide [4]. We used Version 1.14 of the CFT compiler, dated 

October 8, 1985, and Version 2.2 of the loader (segldr), dated December 1, 1986, and ran under 

version 1.16BFl of COS, the Cray Operating System. Since COS is a batch operating system, 

and therefore non-interactive, jobs were submitted to the Cray mainframe from an interactive 

front-end processor. 

The X-MP may be run in either timeshared mode or dedicated mode. Jobs in timeshared 

mode compete for processors to the extent that no job has control over how many CPUs it will 

get. Since different jobs can interfere with one another either by contending for memory or by 

issuing interrupts, the running time of a job is not generally predictable. In dedicated mode jobs 

may be run one at a time. Interference from other jobs is virtually non-existent, except for cer­

tain system activities, and a job will have all the CPUs at its disposal. Various front-end proces­

sors may be disconnected, to avoid costly 110 interrupts. Timeshared mode was used to debug 

the code, since dedicated mode time is dear. But dedicated mode was used to make all timing 

measurements since only then can execution times be accurately reproduced. 
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Using the Cray's real time clock, times can be measured accurately down to the tens of 

microseconds. The jlowtrace option of the CFT compiler produces code that uses this clock to 

generate a profile of the fraction of time the program spent in each subroutine. In addition, the 

jloptrace facility can be used to provide useful information about floating point and memory 

operation counts obtained from the X-MP's hardware performance monitor. The mechanisms 

impose an overhead cost on each subroutine call. Floptrace, for instance, introduces a 300 to 

600 CP overhead. Unfortunately, flowtrace and floptrace work only for uniprocessor runs since 

they would be confused by multitasking primitives that exit through the job scheduler. No tim-

ing breakdowns could be obtained directly on multiple processors, and indirect means had to be 

used instead (e.g., floptrace on uniprocessor runs). 

The Cray X-MP multitasking library provides subroutines for creating and administering 

parallel tasks. Calling tskstart with an external subroutine as argument spawns an indepen-

dent task that begins executing the subroutine. The call to tskstart is asynchronous since a 

return doesn't indicate that the task has completed; the user invokes the tskwait routine to 

determine when a spawned task has finished. Owing to the high overhead incurred by these rou-

tines, the user will usually want to call tskstart only at the beginning of his program, and 

tskwait only at the end. The first call to tskstart a program makes costs roughly 

1,500,()()0 CPs, while each additional call costs 25,000 CPs. Tskwait costs roughly 25,000 

CPs for each call. The prudent user will want to employ a less expensive mechanism provided 

by the multitasking library for synchronizing at a finer level of granularity than is feasible with 

tskstart and tskwait. 

One inexpensive synchronization mechanism is the binary semaphore; it incurs no more 

than a 1500 CP overhead, excluding any waiting time. Binary semaphores may therefore be 

used to synchronize at the level of millions of instructions, but never within tight inner 100ps.3 

3 The multitasking library also provides an event mechanism that we did not use but which could just as easily 
have sufficed. 

.. 
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Two routines, called lockon and lockoff, implement binary semaphores, called locks. 

These may be used, for example, to lock out critical sections of code or to construct higher level 

synchronization mechanisms such as barrier synchronization. Both lock primitives take a stan­

dard FORTRAN integer variable, the lock, as argument. Lockon performs a test-and-set 

operation: it samples the lock, waiting until the lock clears, then sets the lock. Lockof f 

clears the lock, possibly enabling a task that was waiting on the lock. The testing and setting, 

and the clearing of locks are atomic operations. 

The lock mechanism is implemented in software; a test-and-set instruction is used to 

guarantee exclusive access to the lock variable, but the variable itself is a word in memory and 

not a bit from a hardware semaphore register. When lockon encounters a cleared lock, it 

returns at a total cost of 200 CPs, with the lock set. When lockon encounters a set lock, the 

task executing it enters a blocked state. Lockon will then periodically poll the lock. To avoid 

tying up the CPU and memory on non-productive polling activity, however, blocked tasks will 

not be allowed to idle for very long - typically a few thousand CPs - at which point they enter a 

wait state. A block tasked enters the wait state by exiting lockon through the multitasking 

library1s scheduler, which then tries to pre-empt the waiting task with one that is ready to exe­

cute. The cost of exiting through the library scheduler is roughly 1500 CPs. Under certain con­

ditions, the COS scheduler may have to intervene; this wiII increase the overhead of lockon to 

tens of thousands of CPs (For additional details, see the Multitasking User's Guide). Lock­

of f always exits through the library scheduler, taking only 200 CPs to complete if no tasks are 

waiting on the newly-unlocked lock variable. The time increases to 1500 CPs if any task 

becomes unblocked as a result of the lock variable becoming clear, since tasks must be moved 

among job queues and perhaps moved to an available processor. 

Code-reentrancy is novel feature of Cray X-MP FORTRAN and is required to permit the 

sharing of code. In earlier versions of Cray FORTRAN for uniprocessors, local variables were 

allocated statically. In a multi-tasked environment static allocation could cause programs to 
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behave incorrectly, since all the tasks would share the same set of local variables. In X-MP 

FORTRAN each subroutine call dynamically allocates a private set of local variables on a stack. 

This can cause some old software to behave incorrectly since local variables, which were once 

static, are no longer defined at the beginning of a subroutine call, nor do they persist from one 

call to the next There is no way to have static read-write local storage; the user must work 

around the problem in software. In particular, the save statment cannot be used, for although 

the saved variables are visible to only the routine executing the save, they are also visible to 

all tasks executing the routine. 

To avoid conflicts involving common blocks there is a new form of common block called 

task conunon. Task common is a version of common that is global to a single task only. 

In other words, task common is memory shared among all subroutines in a single task unlike 

standard common, which is memory shared among all subroutines in all tasks. Task· common is 

dynamically allocated as the result ofa tskstart and initially it is undefined. 

6.3. Implementation 

We next discuss how we implemented the Method of Local Corrections on the Cray X-MP, 

using our VM. Since the semantics of the VM's utilities are the same regardless of the architec­

ture on which run, we will not be concerned with setting up the calls to the utilities; that has 

already been discussed in sufficient detail in chapter 4. Instead, we will focus on the details of 

the implementation that are left unspecified by the VM. We will begin with a discussion of how 

we parallelized the the MLC. Next, we will discuss the implementation of the VM and of the 

global communication utilities that were also used in the iPSC implementation. We also discuss 

how we coerced the tight inner loops of the MLC to vectorize. This is done for completeness 

only, as the problem of how to vectorize the code runs orthogonal to the problem of how to . 

parallelize it. 
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6.3.1. Parallelization 

We show how we parallelized the MLC using the Cray X-MP FORTRAN extensions, the 

multitasking library, and our run-time partitioning utilities. There are six aspects to parallelizing 

the MLC code: 

(1) Determine which pans of the code; if parallelized, could substan­
tially reduce the running time of the calculation, and which pans 
can run serially, i.e .. on just on the one boss task. 

(2) Determine which common blocks should be global and which 
should be local to a task. 

(3) Insert calls to the multitasking library routines. 

(4) Implement data partitioning, i.e. modify loop bounds (already dis­
cussed in chapter 4). 

(5) Insert calls to the Partitioner and Mapper utilities (already 
discussed in chapter 4). 

(6) Handle global communication. 

Serialization. The MLC spent over 90% of its time executing as multiple tasks. The 

solver consumed the major part of the time spent executing on one processor; program initializa-

tion and task partitioning consumed the" remaining pans, and may be ig"nored, since they 

accounted for less 0.01% of the total running time of the computation (This does not include the 

cost of constructing parti tioner' s work estimate mapping, which does parallelize. That 

will be considered separately). Though the Poisson solver could have been parallelized, doing 

so would not have saved significant time on a machine with only four processors. A calculation 

with 12848 vortices that used a 64x64 solver mesh spent only 0.6% of its time in the solver. 

Amdahl's law tells us that the effect of running the Poisson solver on just one processor instead 

of four is to reduce the ideal speedup of 4.00 (achieved when all computations parallelize and all 

overheads are non-existent) to 3.92, where in equation (6.1) we replace R by P = 4 and f v by 

the fraction of time spent in the solver (0.006). Thus, parallelizing the solver perfectly on four 

processors would speed up the whole calculation by at most 2%. 
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Common blocks. As on the iPSe,the major data structures were duplicated for each task 

in local memory: the vortices, the bins, and most of the finite difference grids were stored in 

task common. Each task reserved local storage for two grids (one for each component of 

velocity) and three copies of the bin structure. These structures were 132 elements on a side and 

consumed a total of 87 kilowords of memory per task. There were also four grids stored in glo-

bal common, and shared by all tasks. Two held the solver's global right hand side, the other two 

tables of trigonometric functions that were internal to the solver, for a total of 70 kilobytes of 

storage regardless of the number of tasks. 

To enable the code to vectorize, each task also had 10 gather/scatter vectors, each 4096 ele-

ments long, for an additional storage overhead of 41 kilowords per task. 

The storage assigned to the vonex-records overwhelmed what was consumed by the grids 

and the gather/scatter vectors. Together all tasks could hold as many as 136,000 vortices. With 

12 words per vortex, this came to 1.6 million words of memory for all tasks. Each task statically 

allocated space for 136,0001P vonices, where P was the number of tasks.4 In our implementa-

tion the boss executes partly' as a P + 1st task, and so all the task common blocks were dupli-

cated on this task, too. As a result, the total number of vonex-records allocated by all the tasks 

actually decreases with the number of tasks, since the extra bit allocated by the boss decreases 

with P. The total amount of memory reserved for all the major data structures was therefore 3.6, 

3.0, and 2.8 megawords' for 1, 2, and 4 processors respectivelys. The debug utility indicated that 

each task consumed an additional 100 kilobytes of stack space and that all tasks shared 400 kilo-

bytes of heap storage. In total, the running program consumed 4.1, 3.6, and 3.6 megawords for 

1, 2, and 4 processors. Using the load map, we determined that the shared code consumed only 

4 Storage was allocated statically by 'compiling different versions of the code, each intended for a different 
number of processors. Each version of the code differed only in a compile-time constant specified by the user. This 
would have been unnecessary with dynamic storage allocation. 

S With dynamic memory allocation, the duplicate set of task common blocks would vanish before the workers 
were spawned, and the tota! storage costs would increase with the number of tasks, and drop to 1.8, 2.0, and 2.2 mega­
words, for I, 2, and 4 tasks respectively. 
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43 kilobytes of storage, divided roughly equally among the MLC code and the system libraries. 

Though we used some global storage in our X-MP implementation, we abided by the VM's 

requirement that each task execute on its own set of data during local computation. We res-

tricted our use of global common in two ways that did not violate the spirit of our VM's local-

memory execution model: (1) to handle global communication, that lies out of the scope of the 

VM; and (2) to have the boss set up read-only data fo·r the workers, e.g. simulation parameters. 

Multitasking library calls. The calculation starts from a single thread of control, the boss. 

The boss reads all the simulation parameters into global common, and then sets up the initial 

panitioning of space based on the initial configuration of vorticity. It calculates the work esti-

mate without actually setting down any vortices since it does not have enough memory to store 

them all. This is the only time that the work estimate is constructed this way; subsequently, the 

workers assume the responsibility and each examines the vortices assigned to it to determine its 

contribution to the work estimate. Next, the boss calls the tskstart routine within a loop to 

spawn off P worker tasks: 

ror i = 0, P-l 
call tskstart(idtask( l,i),iterate) 

end ror 

where idtask is a task descriptor, and iterate is the subroutine that the newly-created 

worker calls upon creation. 

We elected to multiplex some of the boss's activities, i.e. panitioning, as part of a dis-

tinguished worker task, number O. Conditional statements were used to examine a task's id to 

decide whether the task is to execute the boss's code. The worker tasks view the simulation 

parameters and subproblem descriptions as read-only data since only the boss may change these 
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data, and then only when all workers are inactive.6 

Since the calls to tskstart are asynchronous, a return does not indicate completion of 

the worker tasks. The part of the boss that spawned the workers must therefore wait for each to 

finish by repeatedly calling the tskwait subroutine, once for each task: 

(or i = 0, pol 
calilskwail(idtask{1,i» 

end for 

AIl the workers have finished when control drops out of the loop. This is very coarse-grained 

synchronization. We used barrier synchronization to coordinate tasks at a finer level of granular-

ity than could be accomplished with tskstart and tskwait. This routine was generously 

provided by John L. Larson of Cray Research, Inc. in Chippewa Falls, Wisconsin, and uses 

locks to implement the barrier. 

In barrier synchronization, no task may pass through the barrier until all have arrived. We 

used barrier synchronization to interleave the boss's activities with those of the distinguished 

worker task. The part of the code that handles task partitioning, for example, is one place where 

such synchronization is needed. Before it can invoke Partitioner, the worker task imper-

sonating the boss must wait for the others to finish computing their contribution to the global 

work estimate mapping. Otherwise, Partitioner could try and balance workloads using an 

incomplete work estimate. The remaining tasks must then wait for the boss to finish, since their 

activities depend on the new work assignments returned by Partitioner. A conditional 

statement selects worker task 0 to execute the boss's code. The other tasks immediately reach a 

barrier and will wait until the boss finishes with his work and reaches the barrier, too. All are 

then free to continue. This is shown in the following code fragment: 

6 To improve the portability of the code, we would want to implement these data structures in task common and 
use the global broadcast utility to give each worker its own copy. However, this falls out of the VM's jurisdiction. 
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compute the work estimate 
synchronize at the barrier 
if this is task #0 call partitioner 
synchronize at the barrier 
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Though Larson's barrier synchronization routine is reasonably efficient, it should not be 

used too often, i.e. within tight inner loops. The Cray Multitasking User's Guide [4] alludes to 

this: 

"Multitasking does not reduce the CPU cycles necessary to execute the program. In fact. multi­
tasking introduces an overhead that increases CPU time; therefore, the number of calls to the 
Multitasking Library must be minimized. You should exploit parallelism at the highest level 
possible to reduce the overhead" 

The overhead of Larson's barrier synchronization primitive is about 3000P CPs, where P is the 

number of tasks. So long as a task does roughly 106 floating point operations between bamers, 

then the overhead of synchronization will be reasonable; assuming that a flop costs 2CPs, the 

overhead of bamer synchronization is roughly 0.5% on four processors. 

Global Communication. We duplicated the global summation and global broadcast rou-

tines used in the iPSC implementation to manipulate the Poisson solver's global finite difference 

grid. The semantics of these routines were the same as on the iPSC, though the implementations 

were different. 

Gsum combines an array duplicated in each task's task common into a single array stored 

in global common. Gsum uses locks to execute as a critical section. Once inside the critical sec-

tion, each task sums its local common block into an accumulator stored in global common. In' 

addition, two bamer synchronization points bracket the beginning and end of the routine to 

satisfy two correctness constraints: (1) no task may enter gs urn, and hence modify the global 

accumulator, until all other tasks that have not yet entered gsum have finished using the 
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accumulator's contents; (2) no task may use the global accumulator until all have updated it with 

their contribution. Gsend, the global broadcast operation, generally accompanies a gsum. Its 

effect is to copy a global common array into arrays stored in task common. Gsend begins 

with a barrier synchronization point to ensure that no task will try and copy an array that is still 

being produced. No task, for example, must try and copy the solver's result until the boss 

finishes computing it. 

A possible disadvantage with using gsum and gsend is that they can incur a memory 

overhead that is proportional to the number of tasks, unless some attempt is made to exploit the 

inherent sparseness of the local grids. In our implementation of the MLC, even though a task 

uses only parts of the local mesh it stores an entire copy. It really only needs a subset of the 

mesh covering the task's assigned region of space (extended slightly to include a surrounding 

external interaction region) and a one-dimensional region covering the physical boundary of the 

problem. Because memory was so plentiful on the X-MP/416, we were not compelled to take 

advantage of the sparseness of the mesh. 

There are two alternatives to using gsumlgsend that would obviate the need for maintain­

ing local copies of the finite difference grids, and require only a single global grid. Both incur a 

much higher overhead than using gsum and gsend, as we now show. One way is to serialize the 

local finite difference computations that set up the right hand side for the solver. Amdahl's law 

tells us that this strategy would slow down the entire computation by 30% to 45% on 4 proces­

sors, since the local finite difference computations can account for up to 10% to 15% of the total 

running time of the uniprocessor computation. When the gsurn and gsend utilities are used, 

the local finite difference work can be done concurrently; the serial work gets concentrated into 

brief phases of communication and computation. On four processors, for example, the overhead 

of gsurn is roughly 6xl04 CPs; there are three barrier synchronization points, and a total of 8 

calls to lockon and lockoff. Gsum does impose some extra computational overhead to 

serially add up the arrays, and gsend must copy arrays, but all this would cost roughly 7xl04 CPs 

'. 
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at worse and is small compared with the work done to produce the local right hand sides 

(roughly 3X107 CPs). 

An alternative to serializing the local computations is to use locks to serialize accesses to 

the global array. To update a mesh box of the global accumulator, a task sets a lock, performs 

the fetch-add-replace, then unlocks the lock. The overhead of the such a scheme, however, 

would be intolerable; at least 400 CPs to invoke the lock primitives compared to only 2CP to do 

the addition. Empirical measurements have shown that for the finite area vortex problem we 

have used throughout this dissertation, using 12848 vortices and a 64x64 solver mesh, the calcu-

lation does roughly 105 fetch-add-replace operations per ,:elocity evaluation per component of 

velocity. The total cost of synchronization is therefore at best 4x107 CPs. This is about 500 

times more expensive than using gsum and gsend. gsum and gsend are inexpensive 

because the number of times they call lockon and lockoff is proportional to P, not to the 

number of accesses to the shared array. 

6.3.2. VM Implementation -

In chapter 4 we showed how to invoke the utilities of our VM and set up their argument 

lists. We therefore will not repeat that discussion, but move directly to the VM implementation. 

We consider only Mapper, since the implementation of Partitioner was·the same as that 

of chapter 4. 

Mapper was implemented in much the same way as on the iPSC, except that we first had to 

implement the message-passing primitives send and recv on top of the X-MP's global 

memory, using shared mailboxes. Send (type, buffer, length, destld) sends the 

first length words of buffer to the task with id destld and tags the message with 

type. When send returns, the buffer is free for re-use. 

7 Assuming that a fetch-add-slOre operation costs 2CPs, that the global broadcast routine copies data at the rate 
of 2CPs per word, and that copying must be done serially owing 10 memory contention. 

----_._._--
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Recv (type, buffer, length, cnt, srcId) admits the first length words of the least 

recently sent message of type type into buffer, and stores the length of the message in 

cnt. If cnt eq -1, there is no such message pending; otherwise, the first cnt words of 

buffer contain the message, and srcId contains the id of the task that sent the message. 

The user is responsible for determining how to cope with messages that have not yet arrived; 

recv is non-blocking. As with the iPSC, messages of a single type passing between a single 

source and destination arrive in FIFO order. 

Each processor has its own set of mailboxes, one box for each of the allowed types 

O .. MAXTYPE-l. Mailbox(p,t) is the head of a list of messages of type t pending for task p. 

The mailbox resides in global common and may be read or written by any task. Messages are 

broken into packets of length PACKLEN words and the packets of a single message are threaded 

together into a list. Messages can be of any length so long as there is sufficient available storage 

for packets. There is enough storage for MAXP ACK packets. The parameters MAXTYPE, 

PACKLEN, and MAXPACK are selected at compile-time and the values we used were:. 

MAXPACK = 64 
MAXTYPE = 8 
PACKLEN = 2048 

i.e. 128 kilowords of storage were reserved for message packets. 

Send appends a message onto the end of the list of messages attached to the appropriate 

mailbox. This operation must execute as a critical section since other tasks must not disturb the 

mailbox until the message has been appended. Recv examines the head of the appropriate 

mailbox within a critical section. If it has ascertained that a message is pending, it moves the 

data from the message packets into the message buffer and reclaims the packet-storage. 

Mapper used two message buffers for each task, an input buffer and an output buffer. The 

buffers we used were 16 kilowords long. The total storage devoted to Mapper was therefore 

less than 160 kilowords, which is small compared with the memory uSed in the numerical 
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portions of the calculation. In particular, mapper's storageovemead was comparable to that 

of the gather/scatter operations, which used 40960 words of buffer storage per task, or about 160 

kilowords for 4 tasks. 

6.3.3. Vectorization 

The incentive of having do loops executing in vector mode had a major impact on the 

design of the numerical portion of the MLC code. The task of getting the code to vectorize, 

however, is completely independent of any concerns regarding code parallelization. Two 

changes had to be made to certain inner loops, to allow the compiler to vectorize them. 

(1) Vortices stored as linked lists must be gathered into vectors before 
being used within inner loops and the results scattered to memory 
afterwards. 

(2) Within tight inner loops both branches of a conditional statement 
must be executed and the desired result selected with a Cray FOR­
TRAN intrinsic merge function that vectorizes. 

Gather/Scatter. Owing to the high cost of following pointers on the Cray, linked lists 

should first be gathered into contiguous vectors before they can be used within a tight inner loop. 

Later, the result of the computation will be scattered from the adjacent locations of the array into 

the non-adjacent locations of the linked list. The effectiveness of gather and scatter operations is 

contingent on their being done infrequently relative to numerical operations. We implemented 

gather and scatter operations in software; the code is simple and will not be shown. 

Conditionals. Operation counts can be a misleading timing metric on the Cray since 

operation times are sensitive to how well the Cray's pipelined functional units are kept filled. 

Even if they execute more arithmetic operations, calculations that have been modified to utilize 

the pipeline more effectively often run faster than the original computation that executed fewer 

arithmetic operations. Decisions, for example, are often very expensive within tight inner loops, 

since the flow of data through the pipe can be disrupted. Under certain conditions some inner 
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loops with embedded conditional statments can vectorize without change. Others will have to be 

rewritten to evaluate both branches of the loop and then to use the CFf intrinsic vector merge 

function to select the desired results. Figure 6.1 shows two versions of a loop with the same 

semantics; one vectorizes and the other does not. 

The merge function is fast because it executes vector compare and vector merge instruc-

tions that are fully pipelined. The net effect, therefore, of using the merge function is to replace 

a conditional statement that does not vectorize by a conditional expression that does. In making 

the conversion, however, we may have introduced spurious illegal operations, such as division 

by zero, whose results will never be used but which could abort the program. Such erroneous 

operations must be somehow be avoided in software or rendered harmless. We chose the first 

method, called "protection," which employs an intrinsic function like max.8 

6.4. Evaluation 

We evaluated our VM by taking measurements of full-scale runs of ' the Method of Local 

Corrections. 

6.4.1. Simulation Parameter Selection 

The evaluation on the X-MP differed in four major ways from what was done on the iPSC: 

8 The use of max would be unnecessary, resulting in a faster running code, by suppressing the Cray's floating 
point mode flag while the loop executed. Upon division by zero the machine would return a distinguished value, 
without raising an exception. The error-value would later be filtered out by the merge function, so that the the spuri­
ous error would disappear without a trace. However, suppressing the mode flag will suppress all exceptions, including 
ones that are not spurious, and may lead to incorrect results if not used carefully. 



-- This loop may not vectorize, owing to the embedded conditional statement 
-- t, x, and y are n-element arrays 
-- if x[if2 + y[i]"2 is non-zero, then it it must be no smaller than 

a small constant eps, where eps « 1 

(or i = 1, n 
r[il := x[i]**2 + y[i]**2 
if (r[i] ~ 1.0) then 

t[i] := x[i]/r[i] 
else i( (r[i] > 0) then 

t[i] := x[i]/sqrt(r[i]) 
end i( 

end (or 

-- This loop vectorizes; 
-- the conditional statement has been replaced by a conditional expression 

(or i = 1, n 
rei] := x[i]**2 + y[i]**2 

-- If rei] was zero, rNew will be assigned a small distinguished value, 
-- smaller than eps, which rei] can never take on 
-- This protects against a possible division by zero below 
-- The compiler allocates a vector temporary for rNew to allow the statement to vectorize 

rNew := amax(r[i],epslle6) . 

-- cvmgp is a vectorizing intrinsic merge function 
-- merge(x,y,t) <==:> if (t ~ 0) ~ x, else y 

u = cvmgp(x[i]/rNew,xlsqrt(rNew),rNew-1.O) 

-- This rejects the result where r[il = 0, for if rNew < eps, 
-- then r[il must have been zero 

t[il = cvmgp(u,O,rNew-eps) 
end (or 
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Figure 6.1. The merge function replaces a non-vectorizing conditional staunent by a vectorizing condi­
tional expression. The max function protects against any spurious division by zero. Merge functions 
come in different flavors; the one we used, cvmgp, bases its decision on whether or not the third argument 

is positive. If the third argument is positiv~en cvmgp returns th~first argument,_else the second. 



(1) Larger-scale problems with up to 2.5xI04 vortices could be run. 

(2) The local interaction radius C could be scaled with the problem­
size. 

(3) Uniprocessor running times could be measured directly. 

(4) Indirect means had to be used to account for the various sources of 
efficiency loss. 
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The first three differences came as the result of the Cray's high throughput rate, its plenti-

ful memory, and the fact that it has only a few processors. The final difference is a consequence 

of the uncertainty in measuring times on computations with multiple threads of control. We 

used the same test problem for the Cray X-MP as for the iPSC: initially.two Finite Area Vortices 

(FAVs) of radius 0.12 with centers separated by 0.25. However, we allowed many more vor-

tices on the Cray. We ran with two different problem sizes - 12848 and 25702 vortices - and 

used the following simulation parameters: 

N hv h C 6.t 

12848· 2.6516xl0-3 1I~0 1130 0.0125 
25702 1.8750xl0-~ 11120 1160· 0.0125 

The time step 6.t was chosen in accordance with the results of the 3 parameter study of 

chapter 3. The correction distance C, however, had to be made somewhat larger to avoid certain 

overhead costs that increase as C decreases. To decrease C, the finite difference mesh spacing 

h must also decrease. But the cost of setting up the finite difference computation is 

o[ ! + hI2]' where the fir.;t teon corresponds with setting up Dirichlet boundary conditions. the 

second with setting up the right hand side. As C decreases, then, the number of local interac-

tions computed decreases, but the cost of the finite difference computation increases. In addi-

tion, decreasing h also decreases bin size and hence the number of vortices in each bin. Since 

vector length equals the cardinality of a bin for most parts of the local computation, decreasing 

the size of the bins can slow the calculation down, even if the total number of arithmetic 
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computations performed is reduced. This is shown in Table 6.1. For the run with 12848 vor-

tices, for instance, decreasing C from 1/30 to 1160 didn't speed up the calculation but actually 

slowed it down slightly. The reason why was that although the total number of floating point 

operations was reduced roughly by a factor of two, so was the rate at which those operations got 

done; the average vector length decreased from 160 to 40 elements, as determined from trace-

files. 

6.4.2. Computational results 

Except as noted, all the runs were done during two four-hour blocks of dedicated time. At 

the end of the simulation the positions of all the vortices were written to a trace-file using for-

matted 110. We later compared the results obtained from different numbern of processorn but 

with the same number of vortices. In all cases the results agreed to printing precision (5 decimal 

N C Local Interactions Finite Differences Overall 
Time Mfiops Time Mfiops Time x109 

(sec) per sec (sec) j)eI'sec (sect fiot'S 
12848 1115 67.4 89 3.02 84 72.0 6.30 
12848 1/30 28.2 69 5.37 68 36.1 2.33 
12848 1160 19.1 34 13.0 47 38.5 1.35 
25702 1160 95.l 78 8.85 79 108 8.19 
25702 1/120 45.8 50 17.9 63 71.6 3.50 
25702 11240 36.9 23 49.8 42 112 3.50 

Table 6.1. The optimal values used for the correction radius C have the property that increasing or de­
creasing them increases the overall running time of the computation. The optimal values, shown in bold­
face, are larger than the minimum allowable values, immediately below the bold-face, owing to an in­
crease in the cost of finite difference computations. Two effects contribute here: the amount of work in­
creases and the rate at which work can be done decreases. Using the floptrace facility we were able to 
measure the running time and the execution rate for the two dominant parts of the computation: local in­
teractions and finite difference computations (finite difference computation ignores the time spent in the 
Poisson solver). We also report the running time and the floating point operation count for the entire com­
putation. Though these measurements were taken from runs that lasted just two timesteps, we have evi­
dence that the operation count fluctuates only slightly as a function of time, perhaps no more than 10% 
from the time-averaged value. 
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digits). 

The first question we ask is how well can our VM utilize the X-MP's processors? As on 

the iPSe, we used parallel efficiency as the figure of merit Unlike the iPSe, however, we were 

able to measure T 1 directly, since we ran on at most 4 processors. We ran the two instances of 

the 2-FAV problem on P = 1, 2,4 processors. To conserve scarce dedicated computer time, we 

started the runs at an advanced stage of the simulation, using a snapshot file that had been gen­

erated from a simulation done on another X-MP, where batch time was more plentiful. The 

snapshots were taken at 10.0 units of simulated time; this is an interesting point in the simulation 

where the patches have begun to entrain, as shown in the plots of Fig. 4.10. We ran the 12848-

vonex run for 400 timesteps, the 25702-vonex run for 240 timesteps. Load balancing was done 

every time step. Table 6.2 gives the timings and the parallel speedup and efficiency for the vari­

ous runs. Efficiency was never less than 89%; under ideal conditions of 100% efficiency the 

programs would run only 12% faster. Parallel efficiency was quite good. Nevenheless we 

would ~ike to know what prevented us from achieving 100% efficiency. 

There are six causes of efficiency loss, some of which are interrelated, and none of which 

are present in a uniprocessor run: 



(1) Load imbalance. The Partitioner utility cannot do a perfect 
job of distributing the work among the processors. 

(2) Serial bottlenecks. The Poisson solver and parts of the program 
initialization ran on just one processor. 

(3) Memory contention. Concurrent access to the same memory bank 
or to the same word in memory can increase memory access time. 

(4) Mapper overhead. Mapper passes messages by moving 
blocks of data through memory. In tum, the MLC program must 
move vortices out of their linked lists into the blocks, and back 
again. Mapper also invokes various synchronization primitives 
that incur an overhead cost. 

(5) Parti tioner overhead. This entails producing a work estimate 
mapping and invoking the recursive bisection algorithm. 

(6) Global communication overhead. There is an overhead associated 
with accumulating and broadcasting finite difference arrays. Calls 
to Larson's barrier synchronization primitive were used within 
these communication routines, as well as in various other places 
within the MLC program. 
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We have ranked these sources of overhead in what we believe to be decreasing order of cost. 

Since jiowtrace does not apply to multitasked programs, we had to resort to indirect means of 

determining the various overheads. We consider only the case of 4 processors; our measurement 

techniques are too imprecise to account for the slight overheads incurred on 2 processors. Our 

technique is to account for the various overheads individually by computing an ideal efficiency 

that ignores all overhead costs except the one in question, and then to multiply the all ideal 

efficiency measures to arrive at a guess of overall efficiency. This efficiency will then be com-

pared with what was observed. This procedure is a bit imprecise; we had no way of judging how 

some overheads correlated, e.g. how the construction of a local memory on top of shared 

memory affects memory contention. We speculate that our methodology will give a pessimistic 

guess. 

Load imbalance. We estimate load imbalance by tallying the number of local corrections 

computed by each task, and using this as a measure of time to compute the parallel efficiency. 

We modified the code to compute this estimate of load imbalance, and ran for just 20 timeste~s-

running for hundreds of timesteps would have been too expensive. and we believe that our 
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efficiency estimate would not have changed significantly. Table 6.3 shows that the estimated 

efficiency was 0.965 for 12848 vortices, for example. 

Serial bottlenecks. To measure the cost of computations that ran as one task, we measured 

a uniprocessor version of the program running under ftowtrace. Using the profiling information 

we determined the fraction of the time spent in non-parallelized computations and then applied 

N P Time (sec) Sp 11p 
12848 1 5999 1.00 1.000 
12848 2 3081 1.95 0.973 
12848 4 1651 3.63 0.908 
25702 1 7032 1.00 1.000 
25702 4 1970 3.57 0.892 

Table 6.2. Timings. parallel efficiency and speedup for the X-MP runs. All runs began at 10.0 units of 
simulated time. The runs with 12848 vortices ran for 400 timesteps, the larger run for 240 timesteps. We 
did not run the larger problem on 2 processors since we needed the CPU time for other experiments. 

N TI T4 Speedup Efficiency 

12848 1.981xl08 5.129x107 3.86 0.965 
25702 2.209xI08 5.646x107 3.91 0.978 

Table 6.3. We estimated the load imbalance on 4 processors by computing an efficiency measure based 
on the local correction as a unit of time. Efficiency is idealized in that it ignores all effects other than load 
imbalance. T 1 is defined as the total amount of time consumed by each task. T 4 is defined as the sums of 
the times on the most heavily loaded task for each timestep. Generally the most heavily loaded task varies 
with time. The runs lasted just 20 timesteps. 

N h Time fraction Efficiency 

12848 1160 0.006 0.982 
25702 11120 0.015 0.957 

Table 6.4. The idealized efficiency for serial bottlenecks on four processors is high because only a small 
fraction of time was spent in the solver. The table also shows h , the finite difference mesh spacing used 
by the solver. 

.. 
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Amdahl's law to get an idealized efficiency that measured only the serial bottlenecks. The Pois-

son solver accounted for nearly all non-parallelized computation. The two other parts the com-

putation that did not parallelize well - program initialization and vortex tracing - consumed an 

insignificant amount of time. Both did a lot of I/O. Table 6.4 gives the Poisson solver time per 

timestep for the two values of h used, as well as the idealized efficiency measure that considers 

only the cost of serial bottlenecks. 

Memory contention. To gain a rough estimate of memory contention we executed the 

operation "x := x + 0.01" lOS times within an inner loop that was in tum repeated 30nO/p 

times, where P was the number of tasks. This test program executed 3.07xI09 floating point 

operations regardless of the number of tasks and loads were perfectly balanced. The program 

ran for about 9 seconds on four processors. Because the only calls to the multitasking primitives 

where made at the beginning and the end of the program, ( tskstart and tskwait), 

memory contention could be the only plausible cause of performance loss. Table 6.5 gives the 

running times and the ideal speedup and efficiency. 

Mapping overhead. To measure the overhead due to Mapper, we constructed a shared-

memory version of the MLC-code, in which the vortices and the bins resided in global common, 

and Mapper was therefore not used. We then compared the running time of this version to the 

local memory version running with Mapper. We had enough computer time to do one full-

Processors Seconds Speedup Efficiency 
1 36.9696 1.00 1.000 
2 18.5256 2.00 0.998 
4 9.4485 3.91 0.978 

Table 6.5. Measurement of an ideal efficiency measure that ignores ail overheads except memory conten­
tion. This test program accesses memory twice per floating point operation, which is three times the rate 
at which the MLC program accesses memory. Where therefore expect that the memory contention for the 
test to establish an upper bound on the memory contention for the MLC. 
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length run; we ran with 12848 vortices on 4 processors for the full 400 timesteps. Surprisingly, 

the net effect of running with Mapper was found to speed up the computation by 0.3%. This 

savings is too small to affect our analysis and presumably is due to a reduction in memory bank 

conflicts. We can't say by how much, however, since we can't separate Mapper' 5 overhead 

from the overhead due to memory contention. 

Partitioning overhead. As previously mentioned, flowtrace revealed that the Parti­

tioner utility consumed insignificant time, so its costs may be ignored. However, we ignored 

the cost of computing partitioner' 5 work estimate mapping in that analysis. Using 

flowtrace, we found that the fraction of time spent producing the work estimate mapping on a 

uniprocessor was 0.22% for 12848 vortices and 0.18% for 25702. However, this computation 

parallelizes, and, assuming that loads were about as well balanced as they were in the remaining 

part of the computation, the overhead of work estimation would drop to less than 0.05% on 4 

processors, which is too small to be of concern. 

Global communication. Per our previous analysis, the overhead of the global communica­

tion utilities was 'I % of the cost of setting up the right hand side for the Poisson,solver. How-, 

ever, that operation accounted for never more than 3% of the entire computation, so the cost of 

global communication can effectively be ignored. We also lump the cost of Larson's barrier 

synchronization routine with global communication. There were six barrier synchronization 

points in each timestep, used to interleave the boss task with one of the worker tasks. Each syn­

chronization cost roughly 72,000 CPs ignoring wait time due to load imbalance. By comparison, 

the cost of arithmetic computation was roughly 109 flops per timestep. If in a worst case 

analysis we assume that 1 flop executes in 1 cp, then global communication adds only about 

0.01 % to the computation's running time and may be ignored. 

We next multiply the various ideal efficiencies to arrive at a guess of the overall efficiency. 

With 12848 vortices running on 4 processors, we predict 92.8% efficiency which agrees reason­

ably well with w.as measured - 90.8%. With 25702 vortices we predict 91.5%, which again is 
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close to what we observed - 89.2%. Given the rough nature of our analysis, there are many pos-

sible sources for error. We have ignored the costs of 110 and of producing the work estimate. If 

we include the cost of these operations, then the predicted efficiency is 91.8 % for the 12848 vor-

tex run, and agrees even more closely with what was measured9. 

6.5. Conclusions 

We have successfully applied our programming methodology to a very high-perfonnance 

architecture with vector arithmetic capabilities. We achieved speedups in excess of 3.5 on 4 pro-

cessors. The code was fully vectorized and ran at a rate of 200 to 250 megaflops/sec on the four 

processors. The overhead of our communication and load balancing utilities was negligible; 

indeed, use of the local communication utility actually sped up the computation slightly. The 

two major sources of inefficiency were load imbalance and the Poisson solver that ran on just 

one processor. Parallelizing the solver, however, would not significantly improve throughput on 

. a machine with only 4 processors, though if we had a Cray-like multiprocessor with 8 or 16 

.. CPUs, we· would have a much strong incentive to parallelize the solver .. A simple strategy for 

supportin,g global communication and synchronization works reasonably well; the strategy is 

compatible with what was done on the iPSC and incurs a modest overhead. 
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Discussion and Conclusions 

... you spend a good piece of your life gripping a baseball 
and in the end it turns out that it was the other way around 
all the time. 

-Jim Bouton, baseball pitcher 

7.1. What Has Been Accomplished 

131 

We have presented a programming methodology that allows its user to cope with run-time 

partitioning reasonably well without having to pay attention to all the low-level details. We· 

have tried out the methodology on a substantial numerical computation -Anderson's Method of 

Local Corrections (MLC), a vortex method for modeling the flow of an incompressible ideal 

fluid-and have obtained good parallel speedups on two diverse architectures-the Cray X-MP 

and the Intel iPSe. 

Our programming methodology is intended for calculations that fit a simple model of spa-

tial locality that we believe applies not only to the MLC but also to many other scientific and 

engineering calculations that arise in such areas as: 
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• fluid mechanics, 

• plasma physics, 

• astrophysics, 

• structural engineering, 

• electronic circuit simulation, and 

• computer graphics. 
,.., 

Our approach is to provide the user with a virtual machine (VM) consisting of software 

utilities for handling task decomposition and communication activities. The VM makes no spe-

cial requirements of either programming language or computer architecture. Its semantics are 

thoroughly decoupled from the application and from the underlying layers of hardware and 

software that handle communication. The VM is not universal, however; it applies to only the 

localized part of a computation, and is intended for systems with tens of processors, though it 

may still be more generally effective for bigger systems so long as the amount of non-localized 

work to be done isn't too great. Nevertheless, we believe that the VM will help diminish the 

user's preoccupation with such details as whether he is using a message-passing or a shared-

·memory architecture. 

Because our VM applies to communication with only a certain kind of localized structure, 

the programmer must to deal with other kinds of communication himself. We believe, however, 

that the user may be able to rely on someone else's software for handling some of the more 

commonly-occurring communication structures to which our VM does not apply. Communica-

tion structures that arise in array-based computations, like the Poisson solver we used in the 

MLC, are fairly well understood, and could be handled by a standard application library for mul-

tiprocessors. Indeed, the spanning-tree communication utilities we used on the iPSe were also 

implemented with the same semantics on the Cray X-MP. 

Our VM relies on a redundant storage scheme to cache information a processor does not 

properly own. Though this does reduce the amount of memory otherwise available to the com-

putation, the overhead will be be reasonable for localized computations. For calculations with 



133 

strong long-range coupling, however, the storage overhead would be unacceptable. If some 

numerical scheme could be found to weaken the long-range coupling, then the need to store 

large amounts of information redundantly could be avoided. The Method of Local Corrections, 

for instance, provides the means of approximating N-body interactions without entailing massive 

global computation. This is possible because of the logarithmic potential governing the motion 

of the vortices: distant interactions can be computed by means of a fast Poisson solver involving 

a small number of degrees of freedom; direct interactions will be computed only among nearby 

vortices. Although such methods are attractive from the standpoint of their localized communi­

cation structure, they can also have a lower operation count than globally strongly-coupled 

methods, even on uniprocessors on which the MLC, for instance, can be substantially faster than 

the direct N-body method. Thus, the need to localize a computation for the purpose of paralleli­

zation may also be beneficial because it encourages the user to seek a numerical method that is 

more efficient regardless of parallelization. 

Though computations running under our VM will exhibit physically localized data depen­

dencies, this does not necessarily mean that the VM will localize their communication structures 

within processor space. IIi running the MLC on iPSC, for example, each processor was observed 

to communicate with many others during a timestep. The reason why this is so is that our VM 

partitions work into different-sized tasks that do not have a fixed connectivity with respect to 

neighboring tasks, and because some tasks are so small that others may still interact even if they 

are not nearest neighbors. Such a communication structure stressed the iPSC's communication 

subsystem; processors occasionally became clogged with messages, resulting in a severe degra­

dation in the message-passing time. This had the undersirable side effect of consuming storage 

that would otherwise be available to the user, since the operating system had to reserve addi­

tional storage for messages that pile up at a node . 

. Experimental results from our research suggest, to a certain extent, that there is an optimal 

range of problem sizes N for each particular value of P , the number of processors. In particular, 
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N must be varied concomitantly with P. On the iPSC, for example, the largest problem we ran 

would not fit into the memory of a single processor. If N is too small for a given value of P, the 

cost of administrative overheads and of computations that don't parallelize well will become 

unreasonable. In MLC, the number of vortices must be kept sufficiently large to prevent the 

Poisson solver from consuming too large a fraction of the computational effort, and becoming a 

performance bottleneck. On the Cray X-MP, we were obliged to run with at least 10,000 vor­

tices on four CPUs, since the solver ran on just one CPU. 

Our results also suggest that as the number of processors increases, load imbalance has a 

tendency to increase, unless the spatial resolution available for task subdivision also increases. 

For the MLC, this meant keeping track of the vortices on an ever-finer mesh. There is a cost, 

however, associated with improving the resolution of task subdivision, since the number of bins 

in the workLattice will increase. The added cost of manipulating and storing more bins places 

an effective limit on how well loads can be balanced, or alternatively how many processors may 

effectively utilized; improvements in the workload imbalance may actually degrade throughput, 

or there may not be enough memory to store the additional bins. We ran into both these prob­

lems on the iPSe; however, if we had exploited the sparseness of the MLC's workLattice mesh, 

we could probably have improved efficiency somewhat. 

There may be other more compelling reasons for not wanting to avoid load imbalance 

entirely because, long before that good point is reached, other performance bottlenecks like 

non-p~IIelizable computation may well become more significant. As load imbalance 

decreases, the total running time of the computation decreases and those bottlenecks consume an 

ever-increasing fraction of that time (Amdahl's law). On 32 proCessors of the iPSC, for exam­

ple, reducing load imbalance to zero would speed up the computation by only about 30%. 

The aforementioned problems with non-parallelizable computation and load balancing 

overhead bound the number of processors PeriJ that may be effectively used to speed up a com­

putation. The performance of the communication subsystem and the total amount of memory 
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available to the user are also important factors in determining PeriJ' One important measure is 

the ratio, R , of the maximum sustainable rates of communication and of computation. The max­

imum sustainable communication rate is important because our VM breaks a calculation into 

relatively long phases of computation, interspersed by relatively short but concentrated bursts of 

"communication during which the communication subsystem is under maximum stress. Com­

munication can be thought of as a kind of serial bottleneck; as R decreases, so does PeriJ . 

7.2. Comparison with Other Approaches 

Our approach to run-time partitioning has two characteristics: (1) it partitions work at a 

coarse level of granularity; and (2) it shuffles around work only at well-defined times, and then 

only when computation is suspended. These characteristics allow it to exploit spatial localization 

and avoid high overhead costs even on message-passing architectures. One drawback of our 

approach is that we require its user to discipline communication somewhat and to predict the 

work density distribution of his computation. In light of their beneficial effect on performance, 

we believe these requirements will tum out to be as reasonable in other applications as they were 

for our model problem. 

By and large, two approaches to run-time partitioning compete with ours: dataflow, and 

processor self-scheduling. We focus on these approaches because they have received much 

more attention than others. Both, and especially dataflow, have motivated a number of architec­

tural innovations. Most experience with practical dynamically partitioned scientific applications 

appears to be with processor self-scheduling. In contrast to our approach, dataflow and 

processor-self scheduling use fine-grained partitionings to diminish load imbalance, and they 

assign work to processors on demand. A major difficulty that remains is how to exploit spatial 

locality without increasing load imbalance, in order to avoid high communication and adminis­

trative overheads. The problems are much more severe for dataflow than for self-scheduling 

because dataflow's tasks have a much finer granularity; the work a task does can be 

overwhelmed by the cost to manage it 
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The principal advantage that dataflow has over our approach is that in theory the user 

would hardly know that he was using a multiprocessor. We say "in theory" because current 

dataflow implementations must somehow overcome substantial performance bottlenecks to com­

pete with the cost/performance of traditional computer architectures. We believe, however, that 

even if the obstacles were overcome, a traditional system running our VM would be far simpler 

and less expensive build than its dataflow counterpart. 

Processor self-scheduling is applicable to a wide variety of mathematical-physics prob­

lems. The major problem with it is that contention on the shared data structures used to control 

task dispatchment tends to increase with the number of processors, and can become a serious 

performance bottleneck. Furthermore, on vector architectures vector lengths can be extremely 

sensitive to the number of tasks [5]; some computations may actually run fastest on just one pro­

cessor. If these problems were overcome, however, processor self-scheduling would probably 

. still apply primarily to shared-memory architectures, and be of only limited use on message­

passing architectures. The reason why is that the small quanta of shared data used to control task 

dispersal must constantly shuffle among the processors, and doing so is expensive owing to a 

high message startup cost. 

Though our VM doesn't balance workloads perfectly, and though the user must provide it 

with a cost function appropriate for his application, we believe that the benefits from these 

compromises far outweigh their costs. Computations can vectorize as well as they would in a 

uniprocessor implementation. Given a prediction of computational effort, the VM is able to 

adjust the assignment of work by redistributing it among tasks without having to break the tasks 

into ever smaller pieces, and can therefore use coarse-grained coherent partitionings that are 

known to incur low overhead costs. If the solution changes slowly enough, as it did in the MLC, 

loads shift gradually among processors according to ·Iocal changes in the density of computa­

tional effort, and the imbalance of loading builds up gradually enough that intermittent rather 

than continual re-balancing works well enough. The VM can partition work semi-statically, at 
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convenient stopping points in the computation, rather than continually interleave work­

redistribution with computation. This is desirable since it reduces the amount of shared informa­

tion that would otherwise be manipulated expensively during computation. The single global 

work queues used in processor self-scheduling, for example, are effectively replaced by private 

balanced queues, one for each processor. 

7.3. Future Work 

We think that our VM should apply to a class of problems that is far more general than the 

single model problem discussed here. We have already begun collaborating with Berger and 

Colella [2] on how best to partition adaptive grid methods. These computations are interesting 

because they represent the solution at different levels of description using a hierarchy of sub­

problems. We have also implemented a subset of our VM - the partitioner utility - on ten pro­

cessors of the Sequent Balance 8000, a shared-memory multiprocessor, and applied it to G. K. 

Jacob.'s PSPLICE3 circuit simulation program [4]. The installation required only a few changes 

to the PSPLICE3 code, and preliminary results indicate that performance is comparable· to what 

it was when an old self-scheduling algorithm was used. We are developing the remaining parts 

of the VM in order to facilitate the installation of the PSPLICE3 code onto a hypercube architec­

ture that uses message-based communication. 

We expect that our VM would have to be enhanced to run on architectures that support 

high levels of parallelism, such as the N-Cube Corporation's N-CUBE with up to 1024 proces­

sors. As the number of processors increases, so does the incentive to reduce communication 

ovemead by a prudent assignment of tasks to processors. Our current strategy is to assign tasks 

in any convenient way. A better way would be to assign the more heavily communicating tasks 

in a way that best utilized the communication links with the greatest bandwidth. Bokhari [3] has 

referred to this as the processor mapping problem. However, the semantics· of our VM would 

not change with the inclusion of processor mapping. 
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We are pursuing additional questions concerning how well our approach generalizes to 

various kinds of calculations. We are collaborating with Buttke and Colella [1] on a three­

dimensional vortex method. The computation will be applied to vortex breakdown, a problem 

exhibiting spatial workload distributions that vary wildly with time. Also of interest are hetero­

geneous problems that exhibit different physics in different regions of the problem and which 

must be treated by different numerical methods. Boundary layer problems involving viscous 

fluid flows are one example. 
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Appendix A 

This appendix contains the source listings for the software written during the course of this 

research. The listings have been photographically reduced onto microfiche; a copy may be 

obtained by writing to the following address: 

Scott B. Baden 
Lawrence Berkeley Laboratory 
50A-2129 
University of California 
Berkeley, CA 94720 
USA 

There are a total of 7 listings. The name of each listing appears in block letters at the top 

of each page of microfiche and is visible to the unaided eye. The listings are as follows: 

NAME EXPLANATION # FILMS 
UNIBLOB Uniprocessor Cray X-MP MLC program 2 
XMP-LOCAL Local memory multi tasked version of above, 2 

including all utilities 
XMP-SHARE Shared-memory model version of above 2 
PLOTTING Cray plotting program 1 
BLOBIPSC iPSC version of MLC program 3 
IPSCLIB iPSC utility libraries 1 
REPORT iPSC timing report program 1 
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