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Simple Summary: Contrast-enhanced MR has been used in diagnosing and treating liver patients.
Recently, development in MR-guided radiation therapy calls for daily contrast MR for tumor tar-
geting. However, frequent contrast injection is risky to patients. We developed a deep learning
model (GRMM-GAN) to synthesize contrast-enhanced MR from pre-contrast images. GRMM-GAN
adopts gradient regularization and multi-discrimination mechanisms. It shows superior performance
compared with state-of-the-art deep learning models.

Abstract: Purposes: To provide abdominal contrast-enhanced MR image synthesis, we developed an
gradient regularized multi-modal multi-discrimination sparse attention fusion generative adversarial
network (GRMM-GAN) to avoid repeated contrast injections to patients and facilitate adaptive
monitoring. Methods: With IRB approval, 165 abdominal MR studies from 61 liver cancer patients
were retrospectively solicited from our institutional database. Each study included T2, T1 pre-contrast
(T1pre), and T1 contrast-enhanced (T1ce) images. The GRMM-GAN synthesis pipeline consists of a
sparse attention fusion network, an image gradient regularizer (GR), and a generative adversarial
network with multi-discrimination. The studies were randomly divided into 115 for training, 20 for
validation, and 30 for testing. The two pre-contrast MR modalities, T2 and T1pre images, were
adopted as inputs in the training phase. The T1ce image at the portal venous phase was used as
an output. The synthesized T1ce images were compared with the ground truth T1ce images. The
evaluation metrics include peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and
mean squared error (MSE). A Turing test and experts’ contours evaluated the image synthesis quality.
Results: The proposed GRMM-GAN model achieved a PSNR of 28.56, an SSIM of 0.869, and an MSE
of 83.27. The proposed model showed statistically significant improvements in all metrics tested with
p-values < 0.05 over the state-of-the-art model comparisons. The average Turing test score was 52.33%,
which is close to random guessing, supporting the model’s effectiveness for clinical application. In
the tumor-specific region analysis, the average tumor contrast-to-noise ratio (CNR) of the synthesized
MR images was not statistically significant from the real MR images. The average DICE from real vs.
synthetic images was 0.90 compared to the inter-operator DICE of 0.91. Conclusion: We demonstrated
the function of a novel multi-modal MR image synthesis neural network GRMM-GAN for T1ce MR
synthesis based on pre-contrast T1 and T2 MR images. GRMM-GAN shows promise for avoiding
repeated contrast injections during radiation therapy treatment.

Keywords: MR synthesis; GAN; multi-modal fusion; tumor monitoring; contrast enhancement
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1. Introduction

The American Cancer Society has estimated 41,260 newly diagnosed liver cancer and
intrahepatic bile duct cancer patients in the United States and 30,520 related deaths [1]. Medical
imaging is essential in both the diagnosis and treatment of liver cancer. Magnetic resonance
(MR) imaging provides excellent soft tissue contrast with its versatile and functional imaging
sequences. Compared to computed tomography (CT), multi-phase contrast-enhanced MR has
shown improved sensitivity in detecting hepatocellular carcinoma (HCC), the most common
type of primary liver cancer [2]. Hence, several guidelines recommend multi-phase contrast-
enhanced MR as the standard imaging modality for liver cancer diagnosis [3–6]. Treatments
of liver cancer include surgery, liver transplant, thermal ablation, chemo-radioembolization,
external beam radiation therapy (EBRT), targeted drug therapy, or immunotherapy. EBRT
has the advantage of being geometrically targeted and non-invasive within these modalities.
However, the outcome of conventional fractionated EBRT is unsatisfactory due to tumor
radio-resistance and the risk of radiation-induced liver disease [7]. Stereotactic body radiation
therapy (SBRT), a more precise, ablative type of radiation, has gained popularity in the recent
decade in overcoming the radio-resistance of various cancers, including liver cancer [8]. SBRT
is an aggressive form of EBRT delivering highly hypo fractionated, thus more biologically
potent, doses. The success of SBRT hinges on geometrically accurate tumor targeting and
rapid dose drop-off to spare the surrounding normal tissues. In other words, SBRT requires a
more stringent tumor definition and reduced geometrical margin. To this end, multi-phase
contrast-enhanced MR has been increasingly used to register with CT for SBRT planning to
better define tumor and normal anatomy interfaces. However, deformable image registration
between CT and MR can be error-prone [9].

More recently, MR-guided linear accelerators (LINACs) have been commercialized,
making MR-only SBRT planning and adaptation an appealing alternative circumventing
MR-CT registration. Besides being more sensitive in detecting liver tumors for more
accurate treatment, contrast-enhanced MR imaging could be used for daily treatment
response assessment by providing better visibility and richer details in the region of interest
as the contrast agents flow with blood vessels over time. However, obtaining daily contrast-
enhanced images on MR-LINAC can be prohibitive due to the increased risk of side effects
from repeated contrast injections [10–12]. The side effects can be severe for patients with
compromised kidney function, a condition more commonly observed in patients with liver
cancer [13]. Safety concerns regarding administering gadolinium-based contrast agents,
nephrogenic systemic fibrosis, and additional procedure time [14–16] also preclude more
frequent contrast-enhanced MR acquisition. The limitation on contrast usage thus severely
diminishes the value of contrast-enhanced MR in MR-guided radiotherapy for daily tumor
targeting and early response assessment. Therefore, there is a clinical need for predicting
contrast-enhancement MR information without repeated contrast injection.

Medical image synthesis [17] is a rapidly developing area benefitting from deep
learning (DL) methods, among which the generative adversarial network (GAN) [18,19]
was mainly designed for image synthesis. The state-of-the-art GAN methods include
pix2pix [20], which enforced the L1 norm paired image similarity and was efficient in paired
image synthesis, and CycleGan [21], which learned the high-level features in the source
domain and then applied them for style translation. GAN medical imaging contributions
include medical image enhancement [22–24], super-resolution [25,26], cross-modal MR-CT
image synthesis [27,28], and multi-contrast MR synthesis [29–31].

Multi-modal learning has attracted increasing interest in MR image synthesis due to
the available salient and mutual complementary information. However, inherent redun-
dancy and noisy artifacts exist across multiple modalities, making the efficacious fused
learning from multi-modal MR images difficult. Several studies attempted to tackle the
challenge. MM-Syns [32] learned a shared latent feature space for multi-modal data and syn-
thesized the multi-output brain an MR image via an encoder–decoder structure. Similarly,
LR-cGAN [33] adopted the encoder–decoder design in a GAN-based model for brain MR
image synthesis. Hi-Net [34] proposed a mixed fusion block with element-wise operations
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for multi-modal feature fusion and brain MR image synthesis. MMgSN-Net [35] adopted
the structure of Hi-Net with improved self-attention fusion for nasopharyngeal carcinoma
MR image synthesis. MustGAN [36] designed a flexible multi-stream fusion framework to
aggregate information across multiple sources and predicted missing modality data.

However, abdominal contrast-enhanced MR image synthesis from multi-modal inputs
(e.g., T2, T1pre) is still challenging. To the best of our knowledge, there is currently no re-
ported work for multi-modal contrast-enhanced liver MR image synthesis. We hypothesize
that three difficulties account for this gap: (1) the inherent heterogeneity across different
tumor types and patients in abdominal MR images. Compared with MR image synthesis
for other anatomical sites, there is more significant variation in abdominal MR image
characteristics due to different tissue composition, vascularization, perfusion, and motion
artifacts. The interpatient heterogeneity poses substantial challenges to the discriminative
feature learning of multi-modal fusion methods. (2) Co-registration error across abdominal
MR modalities. Inevitable breathing motion during the collection of abdominal MR images
results in mismatches between different sequences. The uncertainties in the co-registration
could confuse a synthesis method, especially for the deep learning model, because of strong
memory. (3) Blurring and over-smoothing effect of MR image synthesis. The blurring and
over-smoothing effects of synthesized images are common and recognized as an issue in
GAN-based models [37,38].

This study presents a novel image gradient-regularized multi-modal multi-discrimination
sparse attention fusion generative adversarial network (GRMM-GAN), a non-intrusive, effi-
cient, and cost-saving clinical tool for contrast-enhanced abdominal MR image synthesis. The
GRMM-GAN produces synthetic contrast-enhanced abdominal MR images to enable more
accurate tumor delineation and response assessment for adaptive liver radiation therapy.

2. Methods
2.1. Data and Preprocessing

With IRB (21-33858) approval, we randomly solicited 165 MR studies of 61 liver patients
from our institutional database. The patients’ demographic and clinical information is sum-
marized in Table 1. Each study included three modalities, T2, T1 pre-contrast (T1pre), and T1
contrast-enhanced (T1ce) at the portal venous phase. The portal venous phase was used to
test the MR synthesis idea. In theory, different GRMM-GAN can be built for the arterial and
delayed phases. The three modalities of each study were rigidly registered in VelocityAITM

(Varian, a Siemens Healthiness company, Palo Alto, CA, USA). Various resolutions, including
640 × 640, 512 × 512, and 320 × 320, were used in the original MR images. In practice, we
downsampled the MR images to 256 × 256 to balance computational cost and image quality.

Table 1. Patient Characteristics.

Characteristic Value

No. of patients 61 (Male: 45, Female: 16)

Age, median (range) 62 (37–83)

No. of studies 165

Type of liver cancer

Cholangiocaracinoma: 1
Colon :5
Colorectal: 1
Esophageal adenoca: 1
Gstric:1
HCC:45
Rectal:6
Sigmoid adenocarcinoma:1

Stage at diagnosis

IA:4
IB: 13
II: 25
IIIA: 2
IIIB: 1
IV: 16
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Table 1. Cont.

Characteristic Value

Primary vs. metastatic
Primary: 44
Metastatic: 16
Both: 1

Average no. of liver tumors for the ten selected testing patients 2.1 (1–4)

2.2. Overall Pipeline

The GRMM-GAN MR synthesis pipeline consists of a conditional GAN baseline and
three modules: sparse attention fusion, gradient regularization (GR) mechanism, and
multi-scale multi-smoothness discriminators (MMD), as shown in Figure 1a. Specifically,
the sparse attention fusion module was designed to extract modal-specific features from
each input modality (T1pre and T2) while eliminating the inherent redundancy and noisy
artifacts and discovering the salient and mutual complementary information. The image
gradient regularization mechanism preserves the crucial texture and edge features of the
abdominal organs and blood vessels such that the inherent heterogeneous knowledge of
the abdominal MRs can be well studied. The multi-scale multi-smoothness discriminators
examine the synthesis images in different scales and smoothness levels to overcome the
blurring and over-smoothing effect. The following sections explain the baseline model and
each network module in detail.
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Figure 1. Framework of the proposed GR-MSSF GAN. (a) Network design and structure. (b) Sparse
fusion module.
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2.3. Baseline Conditional GAN Model

The GRMM-GAN method is derived from a conditional GAN framework consisting of
a generator G and a discriminator D. The generator’s objective G is to fuse the multi-modal
pre-contrast MR inputs, T1pre and T2, and predict the contrast-enhanced T1ce. At the same
time, the discriminator D focuses on the discrimination of the synthetic MR from the real
MR. The prime conditional GAN objective function LcGAN is given by:

LcGAN(G, D) = Ex1,x2,y[logD(x1, x2, y)] + Ex1,x2

[
log(1− D(x1, x2, G(x1, x2)))

]
(1)

where the multi-modal inputs and target reference are denoted as x1, x2, and y, respectively.
Following the pix2pix method [20], the L1 loss is employed to promote the structural

consistency between the real and the synthetic output and to avoid blurring. The L1 loss is
defined as:

LL1(G) = Ex1,x2,y[‖y− G(x1, x2)‖1] (2)

2.4. Sparse Attention Fusion

Although the current conditional GAN-based method shows promise for MR image
synthesis, the inherent redundancy and noisy artifacts across multiple modalities present
challenges for the effective fused learning of multi-modal abdominal MR images. To
achieve superior fusion by discovering the salient and mutual complementary information
in multiple MR modalities while discriminating redundancy and noise from distortion and
ambiguous co-registration, we designed a sparse attention fusion network, as shown in
Figure 1b. This module was inspired by the previously proposed L1 sparsity-regularized
attention feature fusion work (L1-attention fusion) [39]. Specifically, a sparse regularization
term λ‖ci‖ was introduced to the learned attention (ci) where the sparsity regularizer
(λ) controls the sparsity level of the attention weights. The sparse attention updates
were realized using soft thresholding after the forward inference at each iteration, shown
as follows:

c∗ = Sλ(c), s.t. Sλ(c)= max(c− λ, 0) (3)

The sparsity constraint, applied to the attention estimated for multi-modal fusion,
eliminates the inherent redundancy across modalities and improves discriminative ability.

2.5. Gradient Regularization Mechanism

We added an image gradient regularization to manage the inter-patient heterogeneity
and capture salient high-level features. At the same time, the network discriminated the
redundancy and artifacts from the noisy inputs. The gradient regularization mechanism [40]
introduced a gradient preservation loss, shown as the following:

LGR(G) = ‖g⊗ G(x1, x2)− g⊗ y‖2
2 = ‖g⊗ (G(x1, x2)− y)‖2

2 (4)

where g is the Sobel gradient operator [41], and ⊗ denotes the convolution operation, as
shown in Figure 2a. A similar idea was recently applied as Ea-GANs for brain MR image
synthesis [42]. The gradient regularization mechanism enforced the fidelity of the first-
order information between the synthetic and real T1ce images. It thus preserved the crucial
texture and edge features of the abdominal organs and blood vessels while increasing the
module robustness to heterogeneous redundancy and noise. Figure 2a shows resultant
gradient maps for the synthetic and real T1ce images after the Sobel operation.
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2.6. Multi-Discrimination Mechanism

In GAN-based models for image synthesis, blurring and over-smoothing effects are
commonly observed since the optimization of the fidelity loss could easily fall on a local
optimum [37,38]. This problem becomes more severe and visible due to the heterogeneous
nature and ambiguous co-registration of multi-modal abdominal MR images. Inspired by
the multi-scale discriminators [43,44] that enhanced the resolution of the image synthesis,
as well as the illumination and scale-invariant SIFT feature learning [45,46], we propose
multi-scale multi-smoothness discriminators (MMD) to improve the discriminative ability
and counter over-smoothness in synthesized images. The multi-modal inputs, synthesis,
and ground truth images were downsampled twice into half of their original size. Then a
Gaussian filter was applied to blur the synthetic image to simulate the over-smoothness
effect. In total, there were three scales (256′256, 128′128, and 64′64), creating two pairs
each with the original image downsampled over smoothed image for the discriminator.
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Three discriminators were trained given the paired blurred synthetic and real images, as
shown in Figure 2b. The module thus learned blurring and over-smoothing effects in the
synthesis and enforced the discrimination against these effects in adversarial training. The
multi-scale multi-smoothness discrimination function is given as follows:

min
G

max
D1,D2,D3

∑k=1,2,3 LcGAN(G, Dk). (5)

where G is the generator for image synthesis, Dk, k = 1, 2, 3 are the three discriminators for
over-smoothing discrimination, and LGAN is the conditional GAN loss function.

2.7. Objective and Optimization

After incorporating the sparse attention fusion, image gradient regularization, and the
multi-scale multi-smoothness discriminators into the prime conditional GAN model, we
wrote the final objective of the proposed GRMM-GAN formula as follows:

min
G

((
max

D1,D2,D3
∑k=1,2,3 LcGAN(G, Dk)

)
+ λ1LGR(G) + λ2LL1(G)

)
. (6)

where λ1 and λ2 are the trade-off hyper-parameters to balance the influence of different
loss terms.

The proposed network was implemented on a workstation with Intel i9 7900x CPU
and NVIDIA RTX 2080Ti´4 GPU under the PyTorch 1.4 and Ubuntu 18.04 environment. For
the contrast-enhanced MR image synthesis task, the training procedure of our proposed
model took 150 epochs, and we applied the Adam optimization algorithm with a batch size
of 16 to update the network parameters. The balance hyper-parameter λ2 was set to 100.
λ1 took a linear increase from 0 to 50 in the first 50 epochs and was frozen to 50 afterward.
The learning rate for the first 50 epochs was fixed at 0.0002 and then linearly decreased to 0
in the following 100 epochs.

3. Model Evaluation

The performance of the proposed GRMM-GAN was evaluated quantitatively and
compared with four state-of-the-art image synthesis networks: pix2pix [20], LR-cGAN [33],
Hi-Net [34], and MMgSN-Net [35]. Pix2pix is the widely applied single modal image-to-
image translation model in which both T2 and T1pre were set as the input. The other
three comparisons are all state-of-the-art multi-modal MR image synthesis methods. In
addition, 6 radiation oncologists (RadOnc 1–6), including 2 board-certified and 4 residents,
performed Turing [47] tests to determine the authenticity of the synthesized T1ce images
against the real images on 100 randomly (1:1 ratio) selected axial slices.

Three widely applied statistics metrics for evaluating the medical imaging synthesis
include peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), and mean
squared error (MSE). The definitions of these metrics are presented as follows:

MSE =
1
N
(y− G(x))2 (7)

PSNR = 10log(
L2

MSE )
10 (8)

SSIM =
(2µyµG(x) + c1)(2σyG(x) + c2)

(µ2
y + µ2

G(x) + c1)(σ2
y + σ2

G(x) + c2)
(9)

where y and G(x) are the ground truth and synthetic images, respectively. N represents
the total number of pixels in each image slice. µy, µG(x) and σy, σG(x) are the mean and
variance of the ground truth image and the synthesis image, and σyG(x) is the covariance
between y and G(x). c1 =

(
k1L)2 and c2 =

(
k2L)2 are two variables introduced to stabilize
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the SSIM division index with a weak denominator; here, the default setting of k1 = 0.01
and k2 = 0.03 are adopted, and L = 255 is the dynamic range of the pixel intensity.

To evaluate the synthesis performance within the tumor region, we retrieved the
clinical diagnosis report of the patients and selected twenty patients with confirmed tumors.
According to the diagnosis report and tumor markers depicted by the radiologists, we
manually drew three bonding boxes on the axial slice containing the tumor, i.e., the tumor
region, the normal liver tissue region, and the background noise region. The tumor contrast-
to-noise ratio (CNR) is defined as:

CNR =
|µT − µN |

sB
, (10)

where µT and µN are the average values of the tumor region and the normal tissue region,
respectively, and σB is the standard deviation of the background ground noise region.

To evaluate the impact of image synthesis on liver tumor delineation, we invited
2 additional physicians (1 radiation oncologist attending with >20 years of experience and
1 senior medical resident trained by the same attending) to independently contour 21 liver
tumors from 10 testing patients. The DICE coefficient (defined as the intersection over an
average of two volumes) and Hausdorff distance (HD, measuring how far two volumes
are from each other) were used as analysis metrics. Both physicians first performed tumor
delineation on the real T1ce MRs. The DICE coefficients were calculated from the two
physicians’ contours for each tumor. The average DICE (RadOnc7 vs. RadOnc 8) served as
the baseline. The attending performed delineation on both the real T1ce MRs and synthetic
T1ce MRs. The DICE (real vs. synth) coefficient and Hausdorff distance were calculated
from volumes contoured on real and synthetic MRs for each tumor.

We performed tumor center shift analysis to further evaluate the potential effects
of image-guided radiation therapy. This analysis extracted the tumor center of mass
coordinates from real and synthetic volumes. The difference in the coordinates indicated
the shifts in the superior–inferior (SI), right–left (RL), and anterior–posterior (AP) directions
between real and synthetic tumor volumes.

4. Results

The synthesized T1ce was compared with the ground truth T1ce for thirty random
patients. The overall performance is presented in Table 2. GRMM-GAN achieved a PSNR of
28.56 ± 0.87, an SSIM of 0.869 ± 0.028, and an MSE of 83.27 ± 15.42. GRMM-GAN outper-
formed all state-of-the-art multi-modal MR synthesis models and the single-modal pix2pix
method. GRMM-GAN significantly improved all metrics over the comparison methods
(p-value < 0.05). Figure 3 presents the synthesis results for one example patient. GRMM-
GAN is shown to maintain rich details and textural consistency. The detail preservation is
evident in the tumor region denoted by the red box.

Table 2. Performance Comparison of the Proposed GR-MMSF GAN and State-of-The-Art Compar-
isons in Contrast-enhanced Liver MR Synthesis and Ablation Study of the Proposed Method.

Methods PSNR SSIM MSE

Pix2pix (T2) (20) 24.45 ± 1.33 0.786 ± 0.035 213.51 ± 29.81
Pix2pix (T1pre) (20) 24.82 ± 1.42 0.795 ± 0.039 192.32 ± 25.69
LR-cGAN (33) 25.91 ± 1.25 0.813 ± 0.032 141.48 ± 20.37
Hi-Net (34) 27.28 ± 1.26 0.836 ± 0.036 110.86 ± 21.04
MMgSN-Net (35) 28.04 ± 0.93 0.851 ± 0.033 98.43 ± 21.16
GR-MMSF GAN (proposed) 28.56 ± 0.87 0.869 ± 0.028 83.27 ± 15.42

Only GR, no MMD 27.61 ± 1.06 0.838 ± 0.031 105.43 ± 16.15
No GR, no MMD 26.84 ± 1.19 0.820 ± 0.034 121.65 ± 16.32
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In comparison, the other models, including both the single-input Pix2pix models
and multi-input fusion models (LR-cGAN, Hi-Net, and MMgSN-Net), resulted in a sub-
stantial loss of anatomical details due to the lack of complementary feature mining and
discrimination. The pix2pix methods with single input could not exploit the complemen-
tary information across different MR modalities. Although the pix2pix with T1pre input,
as shown in Figure 3e, roughly predicted the tumor contour, it lost fine details, such as
small vessels in the liver. The synthesis quality improved using LR-cGAN with added T2
input, as shown in Figure 3f, but the improvement on small vessel structures was modest.
Hi-Net and MMgSN-Net more substantially improved fine structural preservation at the
cost of compromising the contour integrity of the hypodense liver tumors. In contrast, our
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method, GRMM-GAN, retained the tumor integrity and preserved the high-contrast fine
features, as shown in Figure 3i.

The Turing test results further substantiated the image quality preservation shown in
Table 3. The average Turing test score from the 6 radiation oncologists was 52.33% ± 6.06,
which is close to random guessing, indicating comparable visual quality between the
synthetic and real images.

Table 3. Turing Test Results from Six Radiation Oncologists.

Radiation Oncologist Evaluation Results Percentage (Correct)

1
Correct 55

55%Incorrect 45

2
Correct 56

56%Incorrect 44

3
Correct 42

42%Incorrect 58

4
Correct 59

59%Incorrect 41

5
Correct 53

43%Incorrect 47

6
Correct 49

49%Incorrect 51

Average 52.3%

The contribution of each module was evaluated in an ablation test. The performance
by different statistics metrics, PSNR, MSE, and SSIM, showed a consistent trend of ad-
ditive value. Therefore, only MSE is described and discussed here for brevity. Figure 4
provides a visual evaluation of the ablation study. After removing the multi-scale and multi-
smoothness (MMD) component, the average performance indicated by MSE increased from
83.27± 15.42 to 105.43± 16.15, highlighting the contribution of MMD in the discrimination
of the low-quality synthesis. The exclusion of the GR model further increased the MSE to
121.65 ± 16.32, indicating the contribution of GR to structural preservation. Additionally,
the average PSNR, SSIM, and MSE for the synthesized tumor region are 28.40, 0.856, and
88.71, respectively. The multiple performance evaluations show that the real and synthe-
sized MR images for the specific tumor region are very similar, leading to the conclusion
that the synthesized MR images could be a suitable surrogate for real contrast MR when
the latter is unobtainable.

The average CNR of 20 patients for the real MR tumor region was 26.18 ± 21.13.
In contrast, the average CNR for the synthesized MR tumor regions was 24.53 ± 20.08 with
a p-value of 0.401 with no significant difference between the real and synthesized images
for tumor analysis, suggesting similar tumor conspicuity provided by synthetic and real
T1ce MR images.

RadOnc 7 and 8 achieved an average DICE (RadOnc7 vs. RadOnc 8) of 0.91± 0.02 from
tumor volumes drawn on the real T1ce MRs. This result sets the inter-operator baseline in
the real clinical setting. RadOnc 8 achieved an average DICE (real vs. synth) of 0.90 ± 0.04
and HD of 4.76 ± 1.82 mm. Only sub-millimeter tumor center shifts were observed in all
three directions. The detailed tumor volume information is shown in Table 4.
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Table 4. Tumor contouring evaluation on ten patients (with 21 lesions) from two radiation oncologists.

Radiation Oncologist Average (Range) Volume (cc) SI (mm) RL (mm) AP (mm)

7 (on real T1ce) 30.8 (1.2–233.7) NA
8 (on real T1ce) 29.4 (1.1–238.4)

0.67 0.41 0.398 (on synthetic T1ce) 28.6 (1.1–245.0)

5. Discussion

Contrast-enhanced MR images provide improved visualization of liver tumors, which
is essential for MR-guided radiotherapy and SBRT. However, repeated injections of contrast
may not be clinically viable. As an alternative, we synthesized contrast-enhanced MR
images from multi-modality pre-contrast MR images using a novel GRMM-GAN model.
The synthesized virtual contrast-enhanced MR images closely mimicked the ground truth
contrast-enhanced images in quantitative image analysis and human expert Turing tests.
The success indicates that the pre-contrast T1 and T2 images have a substantial predictive
value for the post-contrast MR. The latent information in T1 and T2 images is intricate for
human operators to appreciate but can be distilled via image synthesis into a format, e.g.,
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post-contrast MR, familiar to human operators. Our technical innovations in building the
GAN network overcame multiple challenges in existing image synthesis methods.

Several deep learning models have been developed for brain MR synthesis [34,48].
Compared with brain images, abdominal MR images are considerably more heteroge-
neous in soft tissue composition, MR relaxation properties, size, shape, and textures. The
heterogeneity is further compounded by substantial motion in this anatomical region,
leading to mismatches among different MR sequence acquisitions. Therefore, abdominal
MR synthesis is a more challenging problem.

The challenge is highlighted by prior efforts using single-modal deep learning mod-
els for abdominal MR image synthesis [49,50], which fail to learn the salient knowledge
across MR modalities, leading to a substantial loss in the synthesized image quality. The
proposed GRMM-GAN is the first network to discover and fuse mutual complementary in-
formation, which markedly improves the synthesis performance, showing realistic contrast
enhancement style translation, precise contours, and textures.

Our technical innovations are summarized as follows. First, a multi-modal fusion
model was developed to exploit the salient and complementary information in multiple
MR modalities. A sparse attention fusion module was investigated to distinguish the
redundancy incurred. Second, we adopted the previously proposed image gradient reg-
ularization mechanism to avoid the loss of anatomical details in the GAN-based model
and presented the novel multi-scale and multi-smoothness discrimination. In addition
to these technical innovations, we prepared a valuable multi-modal abdominal database
for contrast enhancement MR synthesis with patient data (165 scans from 61 patients) to
support model development and validation.

The exclusion of the GR and MMD components decreases the average MSE to
105.43 ± 16.15 (p-value < 0.05) and 121.65 ± 16.32 (p-value < 0.05), respectively. Figure 4
provides an intuitive understanding of the essential contribution of each module. The absence
of the MMD module degrades the discriminative ability of the network in over-smoothing
and blurring effects, which can be visually observed in Figure 4c. The further removal of
the GR module decreases the perception of the network to textural and structural details, as
illustrated in Figure 4d. The specific tumor region synthesis evaluation also solidifies the
proposed method in potential clinical application. The CNR and other performance evaluation
metrics (PSRN, SSIM, and MSE) indicate that the salience and similarity of the synthesized
specific tumor of interest are good enough compared with the real tumor data.

Similar to our GRMM-GAN model, the three multi-modal fusion generative methods,
LR-cGAN, Hi-Net, and MMgSN-Net, generally performed better than the single modality
synthesis model (pix2pix). The better performance could be attributed to the theory of
multi-modal fusion to exploit the complementary information from different MR modalities.
Specifically, MMgSN-Net was derived from Hi-Net and achieved the second-best overall
performance boosted by the self-attention fusion module multi-modal feature learning.
However, these methods still failed to discriminate the redundancy that existed accordingly,
resulting in inferior synthesis quality with over-smoothing effects. For the single modal
synthesis comparison, the pix2pix model yielded better performance with the T1pre as the
input than with T2, likely because T1pre is more similar to the output T1ce modality. On
the contrary, Li et al. [35] reported that the crucial knowledge from multi-modalities (e.g.,
T2) in revealing the hyper-intensity or pathological inhomogeneity characteristics could
not be neglected.

Despite the excellent image synthesis quality and expert evaluation results, our work
has the following limitations. We downsampled the original MR images from 256 × 256 to
balance the image quality and computation complexity. This preprocessing could compromise
the fidelity and precision of the synthesis results compared to the original resolution. A super-
resolution [43,51] or interpolation [52,53] could be incorporated. Although quantitative
metrics, such as PSNR, MSE, and SSIM, are suited for comparative image quality tests, they
are not directly linked to more clinically relevant dosimetric measures for adaptive planning
applications. We have performed an exploratory contouring study and showed satisfactory
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DICE coefficients calculated from real vs. synthetic MRs. In practice, the impact on the
dosimetric endpoints will need to be evaluated for adaptive radiation therapy, which will
require longitudinal MR images through the treatment course. Finally, our model is built
upon diagnostic MR images; whether the network can be applied to MR-LINAC systems
during or post-radiation MR synthesis will need to be tested.

6. Conclusions

This study developed a novel multi-modal contrast-enhanced liver MR image syn-
thesis network (GRMM-GAN) capable of synthesizing highly realistic T1ce images that
outperformed three state-of-the-art synthesis networks.
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