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TOPICAL REVIEW
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Abstract
Research interests in two-dimensional (2D) materials have seen exponential growth owing to their
unique and fascinating properties. The highly exposed lattice planes coupled with tunable
electronic states of 2D materials have created manifold opportunities in the design of new
platforms for energy conversion and sensing applications. Still, challenges in understanding the
electrochemical (EC) characteristics of these materials arise from the complexity of both intrinsic
and extrinsic heterogeneities that can obscure structure–activity correlations. Scanning EC probe
microscopic investigations offer unique benefits in disclosing local EC reactivities at the nanoscale
level that are otherwise inaccessible with macroscale methods. This review summarizes recent
progress in applying techniques of scanning EC microscopy (SECM) and scanning EC cell
microscopy (SECCM) to obtain distinctive insights into the fundamentals of 2D electrodes. We
showcase the capabilities of EC microscopies in addressing the roles of defects, thickness,
environments, strain, phase, stacking, and many other aspects in the heterogeneous electron
transfer, ion transport, electrocatalysis, and photoelectrochemistry of representative 2D materials
and their derivatives. Perspectives for the advantages, challenges, and future opportunities of
scanning EC probe microscopy investigation of 2D structures are discussed.

1. Introduction

The discovery and development of atomically thin
crystals (so-called two-dimensional, 2D, materi-
als) has been a breakthrough for material science.
Isolating single/few atomic layers from bulk layered
materials has led to the discovery of a wide range
of exotic phenomena [1, 2]. Interests in explor-
ing the fascinating behavior of 2D materials have
seen rapid growth across multiple disciplines includ-
ing electronics [3, 4], mechanics [5], photonics [6],
and chemistry [7, 8]. Two-dimensional (2D) mater-
ials have shown great promise in supporting the
interconversion of electrical energy and chemical
energy due to their large surface area-to-volume ratio
and highly tunable physicochemical properties [8].

Further development of 2D materials in the field
of electrochemistry will rely on a deeper under-
standing of the fundamental factors that underpin
interfacial charge transfer and chemical reactivity
associated with these physicochemical properties.
Importantly, heterogeneity arising from the pres-
ence of structural modifications and defects of the
2D crystals plays a significant role in determining
the material’s overall electrochemical (EC) beha-
vior. Advanced characterization of the EC beha-
vior of any 2D material, and mechanistic insights
into the structure–function relationship of these sys-
tems is vital for identifying appropriate fundamental
and/or engineering strategies that may optimize the
system’s potential in energy conversion and storage
applications.
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Several advanced techniques have been developed
to characterize the properties of 2D materials that
are critical for their EC performance. For instance,
detailed morphology and crystal orientation of 2D
flakes can be readily visualized by high-resolution
transmission electron microscopy combined with
electron diffraction [9, 10]. X-ray characterization
techniques such as x-ray absorption spectroscopy
can provide quantitative structural information such
as the oxidation state, coordination number and
interatomic distances [11, 12]. Raman spectroscopy
is especially powerful in probing the evolution of
structure and surface chemistry of 2D materials due
to its sensitivity to the layer number, defects, strain,
and doping level [13–15]. However, with regard to
EC characterization, conventional electroanalytical
techniques suffer from their inability to isolate or
resolve the contributions of heterogeneities at elec-
trode surfaces. An alternative EC testing platform
involves the fabrication of individual 2D flakes into
on-chip devices [16, 17], where local measurement
may be performed by selectively exposing 2D flakes
using lithography. This approach has provided a
more direct strategy to spatially resolve EC activ-
ity and identify potential active sites. However, the
dimensions of on-chip devices in the current stage
are limited to micrometer scales, while higher spa-
tial resolution is required to reveal the behaviors of
(sub)nanoscale heterogeneities, which may include
atomic defects and step edges. The throughput of
this technique is also limited by the fact that only a
small portion of the 2D material can be probed at a
time.

Scanning electrochemical microscopy (SECM) is
an electroanalytical scanning probe technique cap-
able of obtaining the EC activity map of a sample
with high spatial resolution. Engstrom pioneered the
technique by employing ultramicroelectrodes to map
concentration profiles within the diffusion layer at
a macroelectrode surface [18]. This technique was
later introduced as SECM by Bard [19]. In an SECM
experiment, an ultramicroelectrode is scanned over
the sample to build an EC map that depends on
both the topography and the EC activity of the
substrate. Scanning electrochemical cell microscopy
(SECCM) was derived from SECM and introduced
by Unwin in 2010 [20, 21]. In an SECCM exper-
iment, an electrolyte-filled nanopipette is brought
into contact with the sample to form a miniatur-
ized liquid cell and perform localized EC meas-
urements. Both techniques are suitable for carrying
out spatially resolved, localized EC characterization
with their resolution defined by the probe size. The
success of applying scanning EC probe techniques
for localized measurement stems from the excep-
tional spatial resolution realized by miniaturization
of the EC probes (i.e. nanoelectrodes or nanopipette)
that may attain spatial resolutions ⩽10 nm [22,
23]. Shrinking the physical size of the probes down

to the nanometer range also permits steady-state
response readily attained at the nanogap/nanocell.
Well-established theories in combination with finite-
element simulations for various regimes of measure-
ments have granted SECM/SECCM the capabilities to
quantitatively interpret the EC data [22, 24].

In comparison with many widely employed
material characterization techniques, SECM/SECCM
are uniquely fitted to provide direct insights into the
EC behavior of the samples at the nanoscale level.
In this context, scanning EC probe techniques are of
increasing interest as platforms to investigate inter-
facial charge transfer at 2D material electrodes [25,
26]. The effects of structural heterogeneities (e.g.
step edges, terraces, stacking variants) as well as
external engineering (e.g. defects, substrate, strain)
on the electron transfer kinetics and electrocatalytic
activities have been clearly revealed with these spa-
tially resolved EC characterization approaches. In this
review, we present the basic principles of the SECMs,
followed by a comprehensive summary of the present
state-of-the-art SECM/SECCM work on 2D materi-
als covering their research background, key data, and
valuable insights obtained from the study. Finally,
we discuss the current challenges and limitations of
these methods, and signpost new avenues and future
opportunities in the development of scanning EC
probe microscopy to understand the chemistry of 2D
materials.

2. Principles of SECM and SECCM

In this section we provide a concise overview of
the working principles of SECM/SECCM. While this
review places an emphasis on the studies of 2Dmater-
ials, the readers are encouraged to refer to many com-
prehensive reviews of scanning EC probe methods
[21–23, 27–30] applied in a wide range of disciplines.

2.1. SECM
A schematic of a typical SECM instrument is shown in
figure 1(a). The positioning system generally consists
of three-dimensional stepper motors coupled with
piezoelectric actuators for precise positioning of the
probe relative to the substrate. A low current bipoten-
tiostat is used to independently modulate and meas-
ure the potential and the current at the probe and sub-
strate, respectively. A data acquisition and a control
system are required to synchronize data and coordin-
ate the bipotentiostat and the positioning system. An
SECM probe (generally referred to as an SECM tip)
is a critical component that defines the spatial resolu-
tion of the measurement. While a substantial num-
ber of reports have focused on the design and fab-
rication of various types of probes [31–33], disk-
shaped micro(nano)electrodes are generally the most
common geometry (figure 1(b)). Other important
accessories of an SECM include EC cells, vibration
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Figure 1. (a) Schematic of an SECM instrument. (b) SEM images of a 25 µm Pt disk microelectrode. Reprinted with permission
from [22]. Copyright (2016) American Chemical Society. (c) TEM image of a quartz nanopipette tip at×50 000. Reprinted with
permission from [33]. Copyright (2017) American Chemical Society. (d) Schematic diagram of SECM feedback mode and (e)
generation/collection mode. (f) Operation modes showing the single- and double-barrel SECCM configuration (top) and the
hopping and constant-distance modes (bottom). Reprinted with permission from [23]. Copyright (2023) American Chemical
Society.

isolation stages, optical microscopes, and comple-
mentary spectrometers [22].

2.1.1. Modes of operation
In an SECM experiment, the scanning of the tip over
the substrate surface is generally operated in two com-
plementary modes. In the feedback mode experi-
ment (figure 1(d)), the SECM tip is brought within
a short distance (comparable to the probe size) of the
substrate surface. With a suitable electrical potential
applied to the tip, the redox active reactant (B) is oxid-
ized/reduced to the product (A) at the tip surface.
The regeneration of B at an electroactive substrate
and the redox cycling of A/B within the tip-substrate
gap result in an increasing tip current with decreasing
distance (positive feedback). If the substrate is inert,
the tip current decreases with decreasing distance due
to the hindered diffusion of B to the tip electrode
(negative feedback). The measurement of the current
response as a function of the tip-to-substrate distance
(generally referred to as an ‘approach curve’) has a
strong dependence on the apparent reaction kinetics
at the substrate. The approach curve can be described
using analytical approximations [34, 35] that allow
charge transfer kinetics to be extracted quantitat-
ively. The feedback mapping experiments are carried
out by raster scanning the tip over the sample while
maintaining the tip-substrate distance in the feedback
region. The obtained map depends on both the topo-
graphy and reactivity of the substrate material.

In substrate generation/tip collection mode
(SG/TC, figure 1(e)), the tip collects the redox spe-
cies generated at the substrate surface (e.g. B in
figure 1(e)). The collection efficiency depends on
the separation distance and relative sizes of the tip
and the substrate. A lateral scan of the tip over the
surface is used to identify ‘hot spots’ where reactions
occur at a higher rate which and thus more products
are collected at the tip. Tip generation/substrate col-
lection mode (TG/SC) is operated where the redox
species are generated at the tip and subsequently col-
lected by the substrate, and is predominantly used
for performing local modification of substrate [36].
In additional to feedback and generation/collection
(GC) modes, competition mode has developed for
determining surface activities. In this mode, tip and
substrate compete for the same redox process, and
the consumption of redox species at substrate leads
to the decrease in tip current [22]. The attenuation
of tip current is then used as an indirect report of the
substrate catalytic activity.

The combination of SECM with atomic force
microscopy (SECM-AFM) offers a promising
approach to correlating EC activities with the nano-
scopic topography of a sample [37, 38]. The integ-
ration of a nanoelectrode to the apex of an AFM
probe allows local EC measurements taken at a con-
trollable distance to the substrate. The ability to
independently obtain topographic and EC inform-
ation permits a reliable evaluation of the EC activity.
Similarly, a hybrid system of SECM and scanning ion
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conductance microscopy (SICM) has been developed
for simultaneous imaging of noncontact topography
and local EC species [39, 40]. While this technique
is particularly useful for probing soft samples such
as living cells, it is not addressed in this review as
detailed SICM studies of 2D materials remain few.

2.1.2. Types of reactions
Interfacial EC processes are generally classified as
either outer-sphere or inner-sphere redox processes
[41, 42]. In outer-sphere redox reactions, there are
minimal bonding interactions between the redox spe-
cies and electrode surface in interfacial electron trans-
fer. These molecules undergo oxidation and reduc-
tion reversibly with simple reaction mechanisms.
They are ideal mediators used in the feedback mode
due to the EC reversibility and fast heterogeneous kin-
etics to achieve redox cycling between the tip and sub-
strate. Combined with mass transport modeling, the
reaction kinetic parameters are readily extracted from
the feedback current collected at the tip. These prop-
erties are often correlated with the surface conductiv-
ity and electronic density of the studied 2Dmaterials.

Inner-sphere redox (catalytic) processes are asso-
ciated with bonding or adsorption of reactants, inter-
mediates, and/or products to the electrode surface.
The reactions involve two ormore electrons, multiple
elementary steps, and even coupled homogeneous
chemical reactions. GC mode is particularly useful in
collecting and quantifying intermediates that are oth-
erwise inaccessible with other methods. Competition
mode can be employed to indirectly probe the con-
sumption rate of the reactants at the sample. The
obtained reactivity is dictated by the ability to sta-
bilize/destabilize key catalytic intermediates of the
probed 2D surface.

2.2. SECCM
SECCM was derived from SECM and has developed
into a new versatile scanning probe microscopy.
The SECCM instrument has similar components to
SECM but operates on a distinct principle: direct EC
measurement is carried out at the cell formedbetween
the sample and the nanopipette probe.

2.2.1. Dual channel setup
A double barrel (theta) nanopipette was originally
used as the SECCM probe [21]. Two quasi-reference
counter electrodes (QRCEs) are placed in each chan-
nel filled with electrolyte solution (figure 1(f)). The
EC cell consists of a meniscus droplet formed at
the end of the pipette. A potential (V1) is applied
between the QRCEs to induce an ionic conduct-
ance current through the hanging meniscus. The
change of ion current uponmeniscus contact is detec-
ted with high sensitivity, allowing any surface to
be probed regardless of its conductivity. The probe
moves laterally while the pipette height is adjusted
to maintain a constant meniscus shape and resolve

topographical features (constant-distance mode). An
additional voltage (V2) between the substrate and
QRCE is applied to implement voltametric and chro-
noamperometric experiments at the substrate.

2.2.2. Single channel setup
A simpler SECCM configuration based on single bar-
rel nanopipettes (figure 1(c)) has been developed
for synchronous EC/topographical imaging with
high spatial and temporal resolution [30, 43]. This
approach was reported first as scanning micropipet
contact method [44] and later renamed single chan-
nel SECCM.TheQRCE is kept at a desired voltage rel-
ative to the conductive substrate so that a measurable
current will flowuponmeniscus contact with the sub-
strate, which causes the instrument to halt the vertical
approach. Imaging is usually operated in a ‘hopping
mode’ where the nanopipette lands onto the substrate
at a series of predefined locations. Local voltammetric
experiments are carried out to construct an EC activ-
ity map. Due to the relatively smaller size of a single
channel nanopipette, direct topographical/EC ima-
ging is achieved with much higher spatial resolution.

In comparison with SECM, SECCM is advantage-
ous for being easier to implement. The pipette probes
used in SECCM are easily fabricated at sizes smal-
ler than typical microelectrodes. Since the electro-
active area is dictated by the meniscus contact, the
spatial resolution is determined by the nanopipette
size and surface wetting, and is free from interference
of diffusional broadening [21]. The modes of oper-
ation are straightforward, as EC current associated
with either outer-sphere or inner-sphere reactions is
directly measured.

3. Graphene and its derivatives

The isolation of graphene from graphite by mechan-
ical exfoliation from graphite and the discovery of its
exotic electronic properties [45, 46] ignited funda-
mental and applied research on graphene. Graphene
and its derivatives have been of significant interest as
electrodematerials due to their high conductivity and
tunable chemical/physical properties [8, 47]. The EC
performance of these materials can be controlled by
a range of methods that include stacking type, struc-
tural defects, chemical doping, and surface modifica-
tion. Understanding how these fundamental factors
influence interfacial activity is critical for explor-
ing new directions in sensing and energy conver-
sion/storage. In this section, we provide an overview
of priorwork on graphene and its derivatives, and dis-
cuss the unique benefits offered by spatially resolved
EC information in elucidating the structure–function
relationship of graphene-based electrodes.

3.1. Heterogeneous electron transfer (HET)
The kinetics of HET reactions are strongly influ-
enced by the electronic structure, the energy level
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Figure 2. (a) Schematic of a mechanically induced defect on the graphene electrode. (b) SECM image of the mechanically induced
defect. Reprinted with permission from [51]. Copyright (2012) American Chemical Society. (c) Raman mapping of the D band of
the defective graphene patterns. (d) SECM image of the defective graphene patterns. Reprinted with permission from [52].
Copyright (2014) American Chemical Society. (e), (f) AFM topographical image (e) and SECCM current map (f) for the
reduction of reduction of Ru(NH3)63+. Reprinted with permission from [58]. Copyright (2015) American Chemical Society.

of the redox molecule, and electrolyte properties
[48]. Pristine (undoped) graphene is a zero-bandgap
Dirac semimetal with its conduction and valence
bands meeting at the charge-neutrality/Dirac point
and a vanishing electronic density of states (DOS)
at the Fermi level. The basal plane of graphene has
been reported to allow rapid HET of a variety of
redox mediators both in aqueous and organic media
[49, 50], and structural defects such as vacancies,
adatoms, and grain boundaries have also been shown
to strongly influence the electronic characteristics of
graphene and thus impacts its HET behavior.

3.1.1. Defects and edges
SECM has demonstrated its powerful capability to
interrogate the roles of defects at electrode surfaces.
Tan et al examined the HET kinetics at the defect
of CVD graphene and its surrounding areas were
using SECM feedback imaging [51] as shown in
figures 2(a) and (b). Much higher feedback cur-
rents were observed at the defect edges than over
the surfaces far from the defects indicating more
facile electron transfer kinetics at the defective sites.

The higher activities were attributed to the exposed
edges and the chemical oxidation of sp2 carbon cen-
ters in an aqueous environment. A more quantitat-
ive SECM study of the defect effects on HET kinet-
ics was reported by Zhong et al [52]. Raman spec-
troscopy was used to determine the defect density
from the intensity of the D peak activated by struc-
tural defects (figure 2(c)). The SECM feedback cur-
rent images (figure 2(d)) are well correlated with the
Raman D-band mapping in indicating that HET kin-
etics (characterized by the heterogeneous ET rate con-
stant, k0) have a strong dependence on the defect
density. The enhanced HET kinetics at relatively low
defect density regions (<1013 cm2 s−1) was explained
as resulting from the formation localized electronic
states associated with the point defects producing
high local DOS that increases the overlap between
the electronic states of graphene and redoxmolecules.
The correlation between Raman spectra and SECM
was developed further by the work of Schorr et al
in which the EC effects of graphene oxidation were
assessed in real time [53]. By correlating the Raman
signatures of the graphene surface to the SECM
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Figure 3. (a) Optical image of CVD graphene with four different flakes labeled as A1 (monolayer), A2 (bilayer), A3 (trilayer), and
A4 (multilayer) and the corresponding SECCMmap of FcTMA+. (b) Correlation between the electrochemical current at a
kinetic-controlled potential and the number of graphene layers. Reprinted with permission from [57]. Copyright (2012)
American Chemical Society. (c) SECM feedback image of Au patterned graphene spot and exposed Au spot and (d) calculated k
mapping of ferrocyanide oxidation kinetics at graphene/Au area of an exfoliated graphene on a Si/SiO2 substrate. Reprinted from
[62], Copyright (2016), with permission from Elsevier. (e) SECCM images of [Ru(NH3)6]3+ reduction (top) and schematic
diagram of the 2D heterostructure stacking (bottom). (f) Histogram of E1/2 values measured on ML graphene and BL graphene.
Reproduced from [63], with permission from Springer Nature.

response, the effects of exfoliation, defect density,
and surface modification/passivation on EC response
were isolated.

A comparison of HET kinetics at graphene edge
sites and basal planes has been extensively invest-
igated for both natural graphite and highly ori-
ented pyrolytic graphite (HOPG) [54–56]. The trans-
ition from bulk scale to mono/few-layer graphene
has been largely explored by SECCM and micro-
droplet techniques [57–60]. To probe the behaviors
of graphene edges, Güell et al applied SECCM to
image exfoliated graphene on SiO2-coated Si wafers
using Ru(NH3)63+/2+ couple whose redox potential
lies close to the intrinsic Fermi level of graphene [58].
The AFM image and correlated SECCM map of the
exfoliated graphene (figures 2(e) and (f)) evidently
show that the regions with the highest HET activit-
ies are step edges. This dependence was attributed to
the overlap in the DOS of the edge (defect) and basal
graphene with the states of the Ru(NH3)63+/2+ redox
couple.

3.1.2. Thickness
The thickness dependence of graphene HET was
studied by Güell et al with SECCM [57]. Dual
channel pipettes filled with FcTMA+ solution
served as probes to obtain local voltammograms

at the graphene surface. Comparison between the
topography revealed by optical microscopy and the
SECCMcurrentmap (figure 3(a)) showed a clear cor-
relation between the HET activity and the number of
graphene layers. The local EC current as a function of
the layer number (figure 3(b)) clearly shows a system-
atic increase of the HET kinetics with the number of
layers until the point where HET becomes reversible,
consistent with the evolution of increasing electronic
DOS through single layer, bilayer, and multilayer
graphene.

3.1.3. Substrates
The substrate under graphene layers plays an import-
ant role in modulating the HET kinetics owing
to the effects of carrier doping and electrostatic
interactions [61]. Hui et al reported on the modula-
tion of the HET kinetics of outer-sphere redox medi-
ators by metal electrodes buried in the sub-surface
of continuous double layer graphene electrodes [62].
Figures 3(c) and (d) shows an increase in feedback
current and rate constant (k) of Fe(CN)63−/4− at
the graphene-covered Au area compared with bare
graphene, although this enhancement is smaller than
exposed Au. Liu et al examined the EC kinetics at
Cu-supported graphene layers using SECCM and
co-located structural microscopy [63]. The SECCM
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Figure 4. (a) Schematic of local voltammetric measurement at a TBG surface in an SECCM setup equipped with a single channel
nanopipette probe; (b) optical image of a TBG/hBN heterostructure connected to a graphite contact; (c) constant current STM
image of 1.15◦ TBG acquired from the region marked with a yellow dot in (b); (d) representative steady-state voltammograms of
2 mM [Ru(NH3)6]3+ solution obtained at graphene monolayer (blue), Bernal stacked bilayer (grey), 10 nm thick graphite
(orange), and 1.15◦ TBG (purple). (e) Standard rate constants (k◦) extracted from the experimental voltammograms as a
function of twist angle compared to the theoretical values. Reproduced from [66], with permission from Springer Nature. (f)
Dependence of the ET rate constant, k0, on the trilayer graphene stacking type (ABA, ABC) and θm for M-t-B TTG. Reprinted
with permission from [69]. Copyright (2023) American Chemical Society.

map (figure 3(e)) and E1/2 histogram (figure 3(f)) of
Ru(NH3)63+/2+ couple reveals that the HET kinetics
follow the trend monolayer > bilayer > multilayer
graphene. Varying the number of graphene layers
modifies the electrostatic potential felt by the redox
couple, which, in turn, changes the activation barrier
for the reaction. In additional to these imaging-based
studies, Chen et al investigated the effect of the
poly(methyl methacrylate) (PMMA) supports on the
HET behavior of FcMeOH0/+ couple at CVD-grown
graphene with SECM nanogap voltammetry [64].
The electrostatic charges of the underlying PMMA
filmwere shown to impact the access of charged redox
molecules to graphene, yielding varying transfer coef-
ficients (α) and standard rate constant.

3.1.4. Twistronics
The idea of twisting stacked 2D layers to manipulate
their electronic properties gained rapid popularity in
2018 when it was discovered that bilayer graphene
with a twist angle of ∼1.1◦ (the so-called magic
angle) behaves as a superconductor [65]. Recently, the
concept of ‘twistronics’ has been extended to con-
trol the HET at graphene materials by the interlayer
twist angle. Yu et al employed SECCM (figure 4(a))
to selectively probe the EC kinetics of Ru(NH3)63+/2+

at the basal planes of twisted bilayer graphene (TBG)

[66] stacked on boron nitride layers (figure 4(b)).
Scanning tunneling microscopy (STM) and SECCM
(figures 4(c) and (d)) were used to visualize themoiré
patterns [67] formed by twisting layers and obtain
local steady-state voltammograms, respectively. The
intriguing angle dependence of the HET kinetics
(figure 4(e)) was attributed to spatial variation in the
TBG reactivity due to localization effects of the flat
band and the associated lattice reconstruction [67,
68] at angles <1.5◦. Zhang et al extended the study
to twisted trilayer graphene (TTG) and discovered
that HET rates are strikingly dependent on electronic
localization in each atomic layer [69]. Figure 4(f)
shows the strong, nonmonotonic variation in k0 of
Ru(NH3)63+/2+ at TTG similar to the behavior of
TBG. Importantly, a rotationally misaligned mono-
layer on a Bernal stacked bilayer (M-t-B structure)
shows the greatest HET kinetics, suggesting the DOS
enhancements are distinctly localized on the top two
layers of M-t-B structures. In both studies, SECCM
was leveraged to selectively probe twisted basal planes
to exclude the effects from defective edges.

In summary, the simple reaction mechanisms
of outer-sphere HET allow SECM feedback ima-
ging and SECCM mapping to be employed for
effectively visualizing the spatial variations of HET
kinetics at graphene electrodes. Coupled with other
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Figure 5. (a) SEM image and (b) SECM feedback image of an agglomerate of r-GO flakes deposited on Si–SiO2 substrate. (c)
Schematic representation of the electronic pathway in an SECM feedback experiment. Reprinted with permission from [74].
Copyright (2014) American Chemical Society. (d) SEM and (e) SECCM images of the graphene with the wrinkle. Reprinted from
[76], Copyright (2022), with permission from Elsevier. (f) High-resolution electrochemical activity (i) and co-located
quasi-topographical maps of a graphene|Nafion membrane, using SECCM in the voltammetric hopping mode configuration
(right). Reprinted with permission from [77]. Copyright (2022) American Chemical Society. (g) SECCM current map of proton
transport and (h) AFM force map of graphene suspended over micrometer-sized holes etched into silicon nitride (SiNx)
substrates. Reproduced from [78], with permission from Springer Nature. (i) SECM feedback images of TMPD on fresh
patterned graphene at substrate potentials representing conditions before, during, and after (top to bottom) SEI formation. (j)
CV-SECM image of patterned graphene sample denoting Li+ flux (left) and SEM image of a similar region (right). Reprinted
with permission from [81]. Copyright (2016) American Chemical Society.

characterization techniques such as Raman spectro-
scopy and AFM [70], factors including defects, thick-
ness, and substrate were better understood using cor-
relative studies. In additional to thesemapping exper-
iments, nanogap voltammetry realized in SECM was
shown to be effective in determining rapid kinetics,
while local voltammetry in SECCM allowed research-
ers to obtain ECmeasurements exclusively at the basal
plane of the constructed graphene heterostructures.

3.2. Electronic and ionic transport
The electronic properties of graphene and its derivat-
ives result in distinctive inter- or intra-layer transport
properties, which can manifest in EC measurements
[1]. The reversible intercalation of mobile ions into
the interlayer gaps of layered materials plays a key
role in EC energy storage applications [71, 72]. SECM
and SECCM have been employed to acquire spatially
resolved EC data that shed light on the transport of
charge and ions.

3.2.1. In-plane electron transport
The effects of in-plane electron transport on
graphene electrochemistry have beenmainly investig-
ated using SECM feedback mode. Azevedo et al used

SECM to obtain surface conductivity maps of hetero-
geneous graphene oxide (GO) thin films deposited
on glass [73]. The conductivity was approximated
as a function of the feedback current, providing a
general and simplified framework for quantitative
conductivity mapping. Bourgeteau et al used SECM
to investigate the electronic conduction of indi-
vidual and interconnected reduced graphene oxide
(r-GO) flakes [74], using SECM feedback measure-
ments to map the EC activities of interconnected
and isolated r-GO flakes deposited on Si/SiO2 sub-
strates (figure 5(b)). The redox cycling reaction at the
substrate and positive feedback is necessarily asso-
ciated with a counter reaction occurring elsewhere
as depicted in figure 5(c). This indicates that the
inter-flake contact resistance impacts the transport of
electrons in r-GO-based materials. A similar SECM
approach was used to characterize the role of con-
tact resistance in the electrochemistry of MoS2 flakes
[75]. A solid-state SECCM was created using poly-
acrylamide as a solid electrolyte to probe the elec-
trochemistry of wrinkled graphene [76]. Correlated
SEM (figure 5(d)) and SECCM (figure 5(e)) images
revealed lower current at the two sidewalls of the
wrinkles compared to center of the wrinkle and
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the planar surface of graphene, suggesting a slower
electron transfer rate at the wrinkle. This is because
electrons need to climb over the nanoscale wrinkle,
which restricts electron transport and leads to a low
EC activity. This high spatial SECCM study provided
the first and direct evidence of the electron transfer
mechanism at the wrinkles.

3.2.2. Interlayer ion permeability
Graphene has been increasingly explored as an ion-
selective membrane for diverse applications. Bentley
et al captured ion-flux images at a graphene|Nafion
membrane using an SECCM [77]. The SECCM con-
figuration represented as an EC ion (proton) pump
cell was employed to detect local proton transport
across the graphene film in one direction in response
to the proton-consuming reactions at the under-
lying Pt electrode. SECCM scanning of ion trans-
port (figure 5(f)) revealed that the majority of the
CVD graphene overlayer does not conduct protons,
while proton transmission was noted to be highly
localized in areas of the graphene film that con-
tained atomic defects. Wahab et al later demon-
strated that proton permeation through defect-free
graphene and hexagonal boron nitride is greatly
facilitated by nanoscale non-flatness where strain is
accumulated [78]. Figures 5(g) and (h) show clear
wrinkles and edges in the AFM maps that correl-
ate well with high-conductivity areas in the SECCM
maps. The nanoscale ripples that are ubiquitous in
2D membranes result in considerable strain, accel-
erating proton transport due to lowered energy bar-
rier for proton permeation. The discovery that strain
and curvature can amplify proton conductivity in 2D
crystals holds promise for diverse applications. This
work further reinforce SECCM as an effective tool for
resolving ion transport through 2D materials.

3.2.3. Ion insertion
Significant research interest related to energy storage
has focused on exploring the intercalation dynam-
ics and the evolution of electrode structures [79, 80].
Importantly, SECM has been shown to be a poten-
tially powerful tool to characterize the surface con-
ductivity and ion flux distribution during ion inter-
calation at graphite and few layers of graphene.

Hui et al used SECM to demonstrate changes in
the surface conductivity throughout the evolution of
the solid–electrolyte interphase (SEI) upon Li+ inter-
calation in a few-layer graphene [81]. SECM oper-
ated in feedbackmode was used to image the spatially
resolved HET activity of TMPD redox reaction at a
patterned multilayer graphene electrode at various
stages of SEI formation (figure 5(i)). The substrate
potential at 2.6, 1.2, and 0.07 V vs Li/Li+ denotes
the condition before, during, and after SEI formation,
respectively. The SECM image at 2.6 V shows good
contrast between patterned holes and the graphene

surface, demonstrating fast electron transfer kinet-
ics at pristine graphene. As the potential is ramped
negatively to induce SEI formation, a reduction in
tip feedback response is noted, attributed to dimin-
ished substrate kinetics. At 0.07 V, the pattern became
indistinguishable, providing solely negative feedback
to the tip signal. This series of SECM images clearly
reveal that stable and condensed SEI layer blocks elec-
tron transfer. The spatial variation of Li+ conduct-
ivity was investigated by employing an Hg-capped
ultramicroelectrode [82] as a selective Li-ion sensor
to quantify Li+ uptake into multilayer graphene with
a formed SEI layer. The blue spots in the SECM image
(figure 5(j)) represent areas of lower Li+ concentra-
tion (therefore a larger inward Li+ flux), matching
well with the spatial distribution of the etched open-
ings. These observations demonstrate that Li ions
migrate into graphene interlayers more efficiently
through the edge planes. This work was the first time
that SECM is used to visualize ionic fluxes through an
SEI on a battery material in real time.

Similar SECM approaches were developed tomap
Li+ flux and electron transfer reactivity during SEI
formation at a graphene electrode [83, 84]. The cor-
related maps revealed that location-specific uptake of
Li+ was closely associated with heterogeneous sub-
strate distribution in feedback mapping. By develop-
ing a model of the intercalation process, the authors
determined localized kinetic information of revers-
ible Li+ (de)intercalation on edge planes. SECM also
allowed in-situ interfacial analysis of incipient SEIs
in various alkali-ion electrolytes formed on multi-
layer graphene [85]. By correlating SECCMmeasure-
ments with XPS results, the authors observed sub-
stantial formation of metal fluorides in the Li+ and
Na+ electrolytes, whereas there was no appreciable
formation in the K+ electrolyte. Sarbapalli et al fur-
ther presented SECM experimental evidence of Na+

intercalation in fluorinated few-layer graphene [86].
It was discovered that reversible Na+ intercalation
necessitates a pre-existing Li-based SEI alongside sur-
face fluorination.

In summary, these studies have underscored the
promise of SECM/SECCM as tools for characteriz-
ing nanoscale electronic and ion flux at graphene and
related materials. Importantly, the dynamics of in-
plane electron transport, ion transport across layers,
and surface conductivity modulation were translated
to the HET responses that were readily analyzed by
SECM/SECCM.

3.3. Electrocatalysis
A fundamental challenge in developing metal-
free electrocatalysts (e.g. graphene-based materi-
als) for sustainable energy conversion chemistry lies
in the low intrinsic catalytic activity of graphene
[87]. General strategies to improve the reactivity of
pristine graphene basal planes include heterostruc-
ture construction [88] and heteroatom doping [89],
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Figure 6. (a) Schematic of SECM SG/TC mode. (b) SECM SG/TC maps of H2O2 production over graphene/p-Au. (c) Schematic
of SECM redox competition mode with the substrate and Hg-capped Pt UME simultaneously biased to reduce O2. (d) SECM
map of electronic coupling with an asymmetric toroidal Pt underlayer increases the local competitive consumption of O2 by
FeOEP adsorbed on graphene. Reprinted with permission from [92]. Copyright (2018) American Chemical Society. (e) SECCM
topography and (f) HER current on NP-doped graphene. [97] John Wiley & Sons. © 2019 The Authors. (g) Current and (h)
charge density distribution of different sites using SECCM. Reprinted with permission from [98]. Copyright (2021) American
Chemical Society.

since these routes can be used to tune electronic states
and optimize the adsorption energies of key inter-
mediates. Scanning EC probe techniques have been
employed to mechanistically investigate the cata-
lytic performance of graphene-based electrocatalysts
optimized by these strategies.

3.3.1. Substrates
Electroactive materials adjacent to graphene layers
have a strong impact on the electrocatalytic activ-
ity of graphene. The carrier doping effects induced
by underlying metallic materials are well known to
modulate the electronic structure and DOS of the top
graphene layer [90, 91].

Hui et al demonstrated the SECM study on
the electronic effects induced by an underlying Au
substrate on the graphene reactivity toward oxygen
reduction reaction (ORR) [92]. The H2O2 generation
from a two-electron reduction of O2 at CVD-grown
graphene was spatially investigated via an SECM
SG/TC mode (figure 6(a)). Higher collection current
of H2O2 over the graphene/p-Au spot (figure 6(b))
reveals ORR kinetics enhanced by underlying metal.
This aligns with their calculated electronic struc-
ture, where the electronic DOS of the heterostruc-
tures is dominated by the metal, particularly the
d-subshell of Au. These findings underscore the sig-
nificant catalytic benefits attained through the incor-
poration of underlayer metal supports for graphene.
SECM competition mode was then used to explore
the charge coupling effects between metal underlay-
ers and adsorbed molecular catalysts (FeOEP) on
graphene (figure 6(c)). Higher consumption rate of
O2 by the substrate is reflected by decreased tip cur-
rent. The agreement between the current distribution

and the known metal underlayer geometry supports
the conclusion that enhancedORR is attributable spe-
cifically to electronic donation from the Pt underlayer
to the molecular overlayer through the electronically
‘semi-transparent’ graphene interface (figure 6(d)).

Schorr et al investigated the effects of plas-
monic Au nanoparticles as an underlying substrate
on the ORR reactivity of graphene with SECM [93].
The ORR kinetics obtained from H2O2 collection
by SECM tip followed the temperature depend-
ent Arrenhius behavior, suggesting that the photo-
thermal effects other than hot carriers are primarily
responsible for the enhanced EC reactivity. Substrate
effects on the electrocatalytic hydrogen evolution
reaction (HER) activity of a hexagonal boron nitride
[94] (hBN, also known as ‘white graphene’) layer
was studied using the SECCM technique [95]. Local
voltammetry and Tafel analysis reveal that Au-
supported hBN exhibiting significantly enhanced
HER kinetics compared to h-BN/Cu. The authors
postulated that this is due to themodulation of hydro-
gen adsorption energy caused by the electronic inter-
action of hBN with the underlying metal substrate.

3.3.2. Doping
Heteroatom doping is an effective approach to tailor
the electronic properties of graphene for efficient
surface chemistry. Introducing high electronegativ-
ity atoms such as N, B, and P in the graphene lattice
forms new active sites [89]. Multi-doped materials
show even higher electrocatalytic activities [96]. New
Insights into the doping effects were gained through
the following SECCM studies.

Kumatani et al investigated the synergetic effects
of the edge structure and N/P doping on the
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HER activity of a graphene-based electrocatalyst
with SECCM [97]. They synthesized edge-enriched
graphene with N and P dopants that predomin-
ately reside near the graphene edges. Figures 6(e)
and (f) show the SECCM topology and on-site HER
current map for the NP-doped graphene samples.
Comparison between the topology data and the cur-
rent mapping reveal that the edge region is more act-
ive in HER. Specifically, the turnover frequency val-
ues for chemically doped graphene were observed to
be approximately 100–200 times greater at the edges
compared to the planar regions. The presence of edges
introduces geometric frustration to the graphene
lattice, facilitating the accumulation of chemical
dopants, whereas defect-free regions promote elec-
tron transfer to the edge sites. Consequently, these
regions synergistically contribute to the enhancement
of reaction kinetics. This study directly demonstrates
that the combination of chemical doping and edge
engineering drastically boosts the HER activity.

SECCM was used to investigate the origins of
enhanced EC activity at edges of N-doped reduced
graphene oxide (N-rGO) [98, 99]. Local EC imped-
ance spectroscopy coupled with SECCM revealed
larger double-layer capacitance and smaller interfa-
cial resistance in the edges [99]. Jin et al extended
the SECCM study to the HER reaction at N-rGO
microsheets [98]. Non-faradic and faradic currents
from the total currents were isolated to map the
charge accumulation and EC activity, respectively.
The HER current map (figure 6(g)) and charge dens-
ity map (figure 6(h)) provided a direct correlation
between the activity and the accumulated charge at
the active sites, showing that charge accumulation at
edges has a great effect on promoting the catalytic
performance. This direct evidence will be significant
for a deep understanding of the mechanism of the
HER process at highly catalytic materials.

Dechant et al applied SECCM to investigate the
link between the geometry and EC activity of nitro-
gen and sulfur (NS) doped 3D curved graphene [100].
The elemental mappings demonstrated the distribu-
tion of NS dopant atoms at the curved regions rather
than the flat regions. SECCMmapping of the on-site
HER current clearly demonstrates the dependence
of activity on morphology, i.e. higher current was
observed at highly curved topographies. The curved
graphene induced topological defects and enhanced
the electronic DOS, resulting in Gibbs free energy
of hydrogen adsorption be nearly zero owing to the
cooperation of the dopants near the topological defect
sites.

Indeed, heteroatom doping introduces supple-
mentary parameters for fine-tuning catalytic activ-
ity. Spatially resolved measurements with SECCM
are deemed indispensable for elucidating the syn-
ergistic interplay between dopants and structural
heterogeneities.

3.4. Surface functionalization
Modified graphene is often used for enhancing
the specific absorption of analytes and anchoring
molecules/nanoparticles. While this topic has been
extensively reviewed [101, 102], this section focuses
on the applications of SECM in local EC function-
alization of graphene surface and characterization of
functionalized molecules.

SECM as lithographic tools are useful for local
surface EC modifications at different scales by tun-
ing the probe size and scanning range [103–105].
Generally operated in TG/SCmode (or direct mode),
the reactions controlled by the tip electrode induced
local chemical events that modify the underlying sub-
strate. Azevedo et al introduced an SECM approach
for local functionalization of thin GO films [36].
The in-situ generation of naphthalene radical anions
by an SECM tip electrode placed in the vicinity of
the GO substrate resulted in a localized reduction
of GO associated with the formation of conduct-
ive r-GO patterns. Smaller tip size and higher dis-
placement speed lead to higher spatial resolution
and more confined reduction spot. The local trans-
formation of GO into r-GO permitted a selective
electro-grafting of diazonium layer which was used to
immobilize Au nanoparticles. Torbensen et al modi-
fied the graphene surface with carboxylate groups via
CO2 reduction by SECM [106]. The process was car-
ried out with spatial control together with the degree
of carboxylationmanipulated by the EC potential and
reaction time.

SECM has been employed to characterize the
functionalized molecules and their effects on the EC
behavior. Pham-Truong et almodified graphene with
p-nitrophenyl diazonium and used SECM to probe
the changes introduced in the HET kinetics [107].
The kinetic parameters obtained from approach
curves demonstrate that the attached nitrophenyl
layer accelerates the HET kinetics. Rodríguez-López
et al used SECMto investigate the activity of a tripodal
molecular motif adsorbed on a monolayer graphene
and quantify its surface diffusion [108]. Using the
SG/TC mode of SECM, they concluded that the cata-
lytic tripod produced H2O2 more rapidly than the
bare graphene surface in the ORR. The evolution
of the SECM images suggested that the activity at
the tripodal spots decreased over time. This behavior
was attributed to decreased surface concentration
of the molecular catalyst due to diffusion, demon-
strating how the SECM technique is an important
approach for understanding the effects of mass trans-
port in graphene functionalization as well as molecu-
lar electrocatalysis.

In table 1 we summarize SECM/SECCM work on
graphene and its derivatives. Awide of range of outer-
sphere redox reactions and catalytic reactions demon-
strate the versatility of graphene electrode. In addi-
tion to elucidating intrinsic factors influencing HET
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Table 1. Summary of scanning electrochemical studies of graphene and its derivatives.

Technique/mode Materials Reactions References

SECM feedback CVD graphene FeEDTA3−/4−, Ru(CN)6
3−/4−,

Fe(CN)6
3−/4−, CoSep3+/2+,

FcMeOH+/0, Mo(CN)8
3−/4−,

MV+/0, Ru(NH3)6
3+/2+,

Ru(bpy)3
3+/2+, Fc+/0,

Co(dapa)2
3+/2+

[50]

SECM feedback CVD graphene FcMeOH+/0, Fe(CN)6
3−/4− [51]

SECM feedback Defective CVD single layer
graphene

FcMeOH+/0 [52]

Raman-SECM feedback CVD multilayer graphene FcMeOH+/0, Fe(CN)6
3−/4− [53]

SECCM, double-barreled pipette CVD graphene FcTMA2+/+ [57]
SECCM, double-barreled pipette Mechanically exfoliated

graphene
Ru(NH3)6

3+/2+ [58]

SECM feedback CVD graphene on Au Fe(CN)6
3−/4−, Fc+/0 [62]

SECCM hopping mode CVD graphene on Cu Ru(NH3)6
3+/2+ [63]

SECM feedback GO, r-GO FcMeOH+/0, Ru(NH3)6
3+/2+,

[Fe(CN)6]
3−/4−

[61]

SECM feedback CVD graphene FcMeOH+/0 [64]
SECCM, single-channel pipette Twisted bilayer graphene/h-BN Ru(NH3)6

3+/2+,
Co (Phen)3

3+/2+
[66]

SECCM, single-channel pipette Twisted trilayer graphene/h-BN Ru(NH3)6
3+/2+,

Co (Phen)3
3+/2+

[69]

SECM feedback r-GO FcMeOH+/0 [73]
SECM feedback r-GO Fc+/0 [74]
All-solid SECCM Multilayer CVD graphene Fe(CN)6

3−/4− [76]
SECCM, double-barreled pipette Monolayer CVD graphene H+ permeation [77]
SECCM, double-barreled pipette Mechanically exfoliated

graphene and h-BN
H+ permeation [78]

SECM feedback, ion-sensitive
SECM

Multilayer CVD graphene TMPD+/0, Li+ (de)intercalation [81]

SECM feedback, ion-sensitive
SECM

CVD graphene Li+ intercalation, TMPD+/0 [83]

SECM feedback, ion-sensitive
SECM

Multilayer CVD graphene Li+, Na+, K+ intercalation,
Fc+/0

[85]

Ion-sensitive SECM Fluorinated few-layer CVD
graphene

Na+ intercalation [86]

SECM SG/TC CVD graphene on metal
substrates

ORR [92]

SECM feedback and SG/TC CVD graphene on AuNP arrays FcMeOH+/0, ORR [93]
SECCM hopping mode h-BN on metal substrates HER [95]
SECCM, single-channel pipette Edge-enriched N-doped,

P-doped, NP-codoped CVD
graphene

HER [97]

SECCM, single-channel pipette N-doped r-GO HER [98]
SECCM-LEIS N-doped r-GO Fe(CN)6

3−/4− [99]
SECCM hopping mode CVD curved graphene,

NS-doped graphene
HER [100]

SECM, direct mode GO GO reduction, dopamine [103]
SECM, direct mode GO reduction of naphthalene,

GO reduction
[36]

SECM, direct mode Multilayer CVD graphene CO2 reduction, carboxylation of
graphene

[106]

SECM feedback Diazonium modified single layer
CVD graphene on plastic film

TCNQ0/−, Fc+/0 [107]

SECM SG/TC and feedback Tripodal compound adsorbed on
single layer CVD graphene

ORR, Fe(CN)6
3−/4− [108]

kinetics, SECM feedback experiments are proved
powerful in addressing electronic and ionic trans-
port. SECM GC mode was employed to detect
intermediates in complex catalytic reactions and

perform local modification with high precision.
SECCM served as a powerful tool to directly map
surface activity variation in both HET and catalytic
reactions.
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Figure 7. (a) Diagram showing the feedback between the tip and substrate. (b) AFM image of a MoS2 flake after SECM
measurements. (c) SECM image of MoS2 in Ru(NH3)63+. Reprinted with permission from [112]. Copyright (2018) American
Chemical Society. (d) Schematic representation of SECM positive feedback produced by oxidation/reduction of Fc. (e) Feedback
mode image of a mixed-phase MoS2 flake on ITO. Reproduced from [116], with permission from the Royal Society of Chemistry.
(f) Feedback mode SECM images of 2H MoS2 and (g) n-type 2H Et2N–MoS2 on ITO with 1 mM Fc. Reproduced from [117].
© IOP Publishing Ltd. All rights reserved. (h) SECMmap of high density of bilayer flakes on monolayer MoS2 using Fc mediator,
white bar indicates 3µm. (i) Local variation of the work function as recorded in KPFM. (j) SECM feedback for a bilayer within a
monolayer MoS2 flake using DmFc mediator. Reproduced from [119], with permission from Springer Nature.

4. Transitionmetal dichalcogenides
(TMDs)

Two-dimensional transition metal chalcogenides
(TMDs) are a class of van der Waals materials with
structural and electronic properties that hold promise
for a variety of applications in energy conversion and
storage [109]. As electrocatalysts, some TMDs have
been touted as candidates for low-cost and high-
efficiency energy conversion [8, 110]. Layered TMDs
can be described with the general chemical formula
MCh2, whereM is a transition metal element, and Ch
is a chalcogen. The structural polytypes (phases), step
edges, and other effects such as strain and the pres-
ence of atomic vacancies are considered key factors
in determining the overall activity. In particular,
the semiconducting 2H phases of group VI TMDs
(M = Mo, W) with a direct bandgap in the mono-
layer limit can absorb light to generate photoexcited
charge carriers for photoelectrochemical reactions. In
this section, we summarize recent progress in invest-
igating the rich (photo)electrochemistry of TMDs
using scanning EC probe techniques.

4.1. Heterogeneous electron transfer (HET)
4.1.1. Defects
Like sp2 carbon materials, HET reactions on MoS2
proceed more facilely at edge sites than at basal
planes due to higher electron density [111]. Ritzert
et al have demonstrated the spatial inhomogeneity in
HET behavior of MoS2 with submicron-resolution
SECM [112]. The current at the SECM tip associated
with the collection of electrogenerated Ru(NH3)62+

was measured as a function of lateral tip position
(figure 7(a)). Figures 7(b) and (c) show lowest
reactivity on basal plane areas (region E), whereas
regions possessing a trench (region C) and mac-
rosteps (region A) consisting of a high density of
edge sites were more active. Cabré et al further used
the hopping mode of SECCM to map the EC reduc-
tion of Ru(NH3)63+ on a 2D MoS2 sample immob-
ilized on Au substrate to detect nanoscale defects
[113]. These defects give rise to EC responses that
are equivalent to disk-shaped defects with radii of
tens of nanometers in size, or to one-dimensional
defects with nanometer to sub-nanometer widths.
Importantly, only low densities of defects are
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needed to dominate the EC response of the entire
surface area.

4.1.2. Structural polytypes
The metallic 1T phase and the related 1T’ phase
of MoS2 display dramatically distinct EC properties
in comparison with the semiconducting 2H phase.
Converting 2H to 1T or 1T’ via phase engineering
has been shown to be effective in enhancing the EC
activities [114, 115]. Due to the metastable nature
of the T phases, these polytypes transform back to
the 2H phase over time. Simultaneous nanoscale res-
olution of morphology and activity via SECM is a
viable approach to characterize the electrochemistry
of a complex system containing mixed phases. Sun
et al used SECM feedback mode (figure 7(d)) to spa-
tially probe 1T and 2H domains within a mesoscopic
MoS2 crystal using ferrocenemethanol as the redox
mediator [116]. A negative feedback response was
obtained at 2H phase, while significant positive feed-
back was observed at the 1T phase. The activity map
of the mixed-phase MoS2 nanosheets shows that the
1T phase was sandwiched by the 2H phase with an
abrupt boundary (figure 7(e)). This map suggested
that the phase conversion appears to proceed from the
outside of the flake inwards and along straight lines,
which was likely caused by a sliding of the S atomic
plane. Zhang et al demonstrated the stabilization of
heavily n-type doped 2H and 1T MoS2 monolayers
with a low reversion to the initial phase [117]. The n-
butyl lithium immersion treatment converts the 2H
phase to n-type 2H/1T’, while surface functionaliza-
tion stabilizes the phase. SECM images showed higher
tip currents over the surface-functionalized mono-
layer (figure 7(g)) than 2H MoS2 (figure 7(f)), sug-
gesting that the entire MoS2 monolayer is homogen-
eously n-type doped and the converted 1T’ phase was
stable in the air.

4.1.3. Thickness
SECCM was leveraged to quantify the effect of the
thickness of bottom-contacted 2D TMDs (MoS2,
MoSe2, WS2, WSe2) on the EC response of the
Ru(NH3)63+/2+ redox couple [118]. The responses on
all four materials were similar and showed a decrease
in the electron transfer rate with an increase in layer
thickness. This dependence was explained as result-
ing from by the electron transport process through
the TMD layers—thicker layers resulting in less fre-
quent electron tunneling and net slower transport
from the bottom contact across the TMD layer to the
TMD–electrolyte interface.

Another study by Du et al demonstrated that the
HET behavior of unbiased MoS2 flakes is affected
by both layer numbers and redox mediator [119].
Ferrocene (Fc) and decamethylferrocene (DmFc)
redox probes in organic solutions were used to elu-
cidate the central relevance of the mediator on the
band alignment and the localization effects in SECM

feedback experiments. A strong bilayer contrast was
detected in SECM maps with a quantitative feed-
back enhancement of the order of 30% on top of the
bilayer islands (figure 7(h)) when Fc was used as the
redox mediator. Figure 7(j) demonstrates a reversed
SECM feedback contrast when a more negative redox
potential mediator (DmFc) was used for the other-
wise identical sample system. The distinct behavi-
ors were attributed to the work function differences
(figure 7(i)) and how band offsets were aligned with
unoccupied states of Fc+ and DmFc+.

In contrast to graphene electrode, the HET at
TMDs is predominately dictated by the carrier dens-
ity and charge transport within the layer. The pub-
lished work exploited the advantages of scanning
probe electrochemistry to resolve the influence of
defects, phase, thickness, and external electrostatic
manipulation [120] to the charge carriers and the res-
ultant HET activities.

4.2. Hydrogen evolution reaction (HER)
Two-dimensional (2D) TMDs have stimulated much
interest in them from researchers in the field of HER
electrocatalysis [121]. The overall reaction kinetics
of the HER are largely dictated by the Gibbs free
energy associated with hydrogen adsorption, ∆GH∗ .
The adsorption energy is determined by the electronic
structure of the catalyst surface [122], which can be
tuned by doping, defect engineering, phase engineer-
ing, and strain engineering [123]. Spatially resolving
HER activity across TMD layers with scanning EC
probe techniques has been very useful for providing
a mechanistic understanding of how these paramet-
ers impact electrocatalytic behavior.

4.2.1. Edges
The edges of MoS2 have been proposed to be the act-
ive sites for HER from theory/computations [124]
and experimental measurements [125]. The site-
specific HER activities at MoS2 surfaces have been
extensively investigated by SECCM [126, 127]. For
instance, Bentley et al carried out pixel-resolved
linear-sweep voltammetry (LSV) at MoS2 surfaces
in acidic media using single channel nanopipettes
to achieve a high spatial resolution [43]. The topo-
graphic map (figure 8(a)) and the HER current map
(figure 8(b)) show relatively low yet uniform activ-
ity across the basal plane and enhanced HER kinetics
at the edge planes. Local LSVs obtained on different
spots shown in figure 8(c) distinctlymanifest the vari-
ations in activity across the SECCM map. Important
HER kinetic parameters such as exchange current
densities and Tafel slopes, were evaluated separately
on the basal planes and edge sites, a distinction that is
unachievable with any bulk measurement approach.
Tao et al expanded the SECCM study to WS2, show-
ing similar activity variation between basal and edge
planes [128]. The effects of surface aging were found
to deteriorate catalytic activity, due to the build-up
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Figure 8. (a), (b) Topographical (a) and HER current map (b) of a MoS2 surface. (c) Average LSVs obtained at dark blue area
(black), area in green box (green), and area in red box (red). Reprinted with permission from [43]. Copyright (2017) American
Chemical Society. (d) 10× 10 µm2 SECCM current map of 1H MoS2 after electrochemical activation. (e) 10× 10 µm2 SECCM
current map of heating activated 1H MoS2. (f) 5× 5 µm2 SECCM current map of MoS2/WS2 heterostructure. [131] John Wiley
& Sons. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (g) Schematic representation of SECM probing HER in
SG/TC mode. (h) SG/TC image of HER over a 2H MoS2. (i) HER SG/TC line profiles across ITO, 2H MoS2, and 1T MoS2 flake.
Reproduced from [116], with permission from the Royal Society of Chemistry.

of adsorbates and oxidation products, particularly at
active edges.

4.2.2. Atomic vacancies
Introducing S vacancies to the MoS2 lattice leads to
the emergence of localized electronic states (asso-
ciated with these S vacancies) within the bandgap.
These S vacancy sites favor hydrogen adsorption on
the TMD basal plane [129, 130]. Takahashi et al
carried out SECCM measurements on the effects of
defect engineering and TMD heterostructures [131].
The S vacancies on a 1H-MoS2 monolayer were
generated by EC desulfurization and controlled by
the applied potential. The SECCM current map in
figure 8(d) shows that the highest HER activity was
observed in the area activated by a bias of −1.40 V
vs. RHE, whereas no significant improvement was
seen with less positive biases. The results suggest that
a threshold voltage is required to generate S vacan-
cies. The SECCM current map (figure 8(e)) shows
superior activity of cracked regions similar to the edge
planes. In addition, inhomogeneousHER activity was
imaged at the surface of MoS2/WS2 heterostructures.
In the SECCM current map shown in figure 8(f),
the highest activity was observed at MoS2 edges. The
MoS2 basal planes are slightly more active than WS2
basal planes, but no distinctive catalytic activity was
observed at the heterojunction. It has also been repor-
ted that the activation of the basal plane of MoS2 by
creating S vacancies can be further enhanced by an
elastic strain that moves the midgap states closer to
the Fermi level [132]. Li et al employed SECM SG/TC
mode to determine the kinetic information on both

unstrained and strained S vacancies on the basal plane
of MoS2 monolayers [133]. The rate constant of the
samplewith 2%uniaxial tensile strainwas found to be
enhanced by almost four-fold, confirming that strain
indeed accelerates the HER kinetics at MoS2 with S
vacancies.

4.2.3. Structural polytypes
The activation of the TMD basal planes via phase
engineering (i.e. from 2H to 1T or 1T’) is a known
route for enhancing charge transfer kinetics and
improving theHERperformance of TMDs [114]. Sun
et al have investigated the HER performance of MoS2
nanosheets with mixed phases [116] using SECM
SG/TC mode (figure 8(g)). The high-resolution EC
maps in figures 8(h) and (i) demonstrate that the
HER activity of the 1T phase is more active com-
pared to the 2H basal plane, while 2H-MoS2 edges
also exhibit considerable activity.

WhileMoS2 is the most studied compound, other
non-precious metal TMDs have also been explored.
Jasion et al synthesized 2D FeS2 with controlled
morphology [134]. The SECM GC experiments sug-
gested that 2D FeS2 discs exhibit excellent HER activ-
ity and stability that is comparable to Pt.

4.3. Photoelectrochemistry
Isolating single or a few layers of TMDs from their
bulk form results in fundamentally distinctive phys-
ical properties that in turn impact the photoelec-
trochemical behavior [135]. Both light absorption
and diffusion mechanisms of charge carriers are
strongly dependent on the number of layers [136].
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Figure 9. (a), (b) Photoelectrochemical imaging of hydrogen evolution at individual p-type WSe2 nanosheets. Correlated
topographies (left) and photocurrent images are displayed. Reprinted with permission from [141]. Copyright (2019) American
Chemical Society. (c) Binary AFM image depicting edge features (i), edge density map (ii), SECCM image depicting HER
photocurrent (iii), and image depicting potentials necessary to reach HER currents of 20 pA (iv). Reprinted with permission from
[143]. Copyright (2020) American Chemical Society. (d) Schematic of carrier generation-tip collection scanning electrochemical
cell microscopy (CG-TC SECCM) used to map the minority carriers diffused within the material. (e) Optical transmission image
of n-WSe2 nanosheet with the area imaged via SECCM. (f) Photocurrent images at a series of different applied potentials.
Reproduced from [145], with permission from the Royal Society of Chemistry. (g) An optical image of a WSe2/WS2
heterostructure. (h) PL and (i) photocurrent maps of the sample in (g). Reproduced from [147]. © IOP Publishing Ltd. All rights
reserved.

The steps/edges at the 2D TMDs in the photoelec-
trochemical reactions can be both beneficial and det-
rimental since they concurrently serve as catalytic
active sites and charge recombination sites [137].
To obtain direct experimental insights into these
effects requires spatially resolved characterization
techniques. Scanning photocurrentmicroscopy using
a near-filed laser scanned over the sample surface
while recording the photocurrent has been employed
to investigate TMDs [138–140]. However, the collec-
ted signals are inevitably affected by non-illuminated
spots, and the spatial resolution is fundamentally lim-
ited by optical diffraction. Scanning EC probe tech-
niques are free from these limitations and have seen a
growing number of applications to investigate several
key factors of the 2D photoelectrochemistry.

4.3.1. Defects
Hill et al have investigated the photoelectrochem-
ical behavior of individual p-type WSe2 nanosheets
using SECCM [141], highlighting the effects of layer
thickness and geometric defect. SECCM data of HER
at p-type WSe2 nanosheets consisting of a topo-
graphical map and photocurrent map (figures 9(a)
and (b)) suggest a strong correlation between pho-
toelectrochemical activity and structural features.
Small steps were found to enhance HER photocur-
rents due to their high catalytic activities (spot 2 in
figure 9(b)), whereas large steps were generally found
to be detrimental to HER (spot 1 in figure 9(a)). This
behavior was explained as due to increased charge

recombination at defect-rich sites, which degrades the
photochemical response, unless the features aremuch
smaller than the optical penetration depth [142].

SECCM was further employed to create local
hole-like defects at the basal planes of individual
p-type WSe2 nanosheets by controlled anodization
of the WSe2 [143]. The defect density was mapped
by AFM (figure 9(c) i, ii) and compared to correl-
ated SECCM images (figure 9(c) iii, iv). These results
provide direct evidence supporting that the increased
density ofmonolayer-high step-like features enhances
the photoelectrochemical activities of TMDs. Strange
et al investigated the modulation of the photolumin-
escence (PL) of 2DMoS2 upon EC anodization [144].
The enhancement and red-shift of the PL were ori-
ginated from Mo oxidation that hinders nonradiat-
ive decay of excitons. SECCM mapping was used to
reveal that the MoS2 photooxidation is strongly loc-
alized at defective edge sites containing an abundance
of Mo–SH functional groups.

4.3.2. Carrier transport
Understanding the factors governing carrier gener-
ation (CG) and transport within 2D TMDs during
photoelectrochemical reactions is needed to guide
the rational design of improved devices. Hill et al
applied CG-TC SECCM to visualize carrier transport
[145]. In this approach, carriers are locally gener-
ated using a focused light source and detected as they
drive photoelectrochemical reactions at a spatially
offset electrolyte interface (figure 9(d)). Photocurrent
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Table 2. Summary of scanning electrochemical studies of TMDs.

Technique/mode Materials Reactions References

SECM feedback CVDMoS2 DmFc+/0, Fc+/0 [75]
SECM feedback Exfoliated MoS2 Fe(CN)6

3−/4−, Ru (NH3)6
3+/2+ [112]

SECM tunneling mode Solution-exfoliated 1T/1T′, 2H
MoS2 flake

FcMeOH+/0, Fe(CN)6
3−/4− [115]

SECM feedback and SG/TC Solution-exfoliated 1T, 2H MoS2 FcMeOH+/0, HER [116]
SECM feedback n-type doped 2H and 1T′ CVD

MoS2

FcMeOH0/+ [117]

SECCM hopping mode Mechanically exfoliated MoS2, WS2,
MoSe2, WSe2

Ru (NH3)6
3+/2+ [118]

SECCM hopping mode Mechanically exfoliated MoS2,
MoSe2, WSe2 on Au

Ru (NH3)6
3+/2+ [113]

AFM-SECM feedback CVDMoS2 DmFc+/0, Fc+/0 [119]
SECCM, single-channel pipette Mechanically exfoliated MoS2 FcMeOH+/0, Ru (NH3)6

3+/2+ [120]
SECCM hopping mode Cleaved MoS2 crystal HER [43]
SECCM hopping mode Cleaved MoS2, WS2 crystal HER [128]
SECCM hopping mode 1H-MoS2, MoS2/WS2 HER [131]
SECM SG/TC CVD monolayer 2H-MoS2 HER [133]
SECM SG/TC Solution-processing synthesized

FeS2 discs
HER [134]

SECCM hopping mode Mechanically exfoliated p-type
WSe2

Ru (NH3)6
3+/2+, HER [141]

SECCM hopping mode Mechanically exfoliated p-type
WSe2

HER, anodization of WSe2 [143]

SECCM carrier generation-tip
collection

Mechanically exfoliated n-type
WSe2

I2/I
− [145]

SECCM-PL Mechanically exfoliated WS2,
p-type WSe2, WSe2/WS2

I2/I
− [147]

SECCM-PL CVDMoS2 Oxidation of MoS2 [144]
SECCM carrier generation-tip
collection

Mechanically exfoliated n-type
WSe2

I2/I
− [146]

SECCM hopping mode n-type MoS2/p-type Cu2O HER [149]
SECCM hopping mode CVD monolayer 2H-MoS2 on GC HER [150]
SECCM hopping mode CVD monolayer 2H-MoS2 on GC HER [151]

images of an n-WSe2 nanosheet (figure 9(e)) showed
photocurrents increased in magnitude and widened
spatially with increasing potential. Photocurrents at
the edge (indicated by the dashed line) were sig-
nificantly reduced, providing a clear, unambiguous
visualization of carrier recombination at nanoscale
defects (figure 9(f)). Tolbert et al extended theCG-TC
SECCM approach to probe exciton transport down
to monolayer limit [146]. Photogenerated excitons in
monolayerWSe2 were found to drive reactions across
distances in excess of 20 µm, suggesting the existence
of long-lived charge transfer states.

4.3.3. Heterostructure assembly
Van der Waals heterojunctions formed by stacking
different TMDmonolayers or multilayers enable pos-
sibilities to create novel p–n junctions at the atomic
scale for energy-harvesting applications [148]. Fu
et al combined SECCM with PL to investigate the
layer-dependence of photocurrents inWSe2/WS2 ver-
tical heterostructures [147]. Figures 9(g)–(i) showed
reduced PL intensity in the heterojunction region
compared with pristine monolayer WSe2, while the
highest photocurrent was detected in the 4LWSe2/4L

WS2 location. The reduction of PL and enhancement
of photocurrent is mainly due to enhanced charge
transfer and exciton dissociation in the heterojunc-
tion. Importantly, the photocurrent in WSe2/WS2
heterostructures increases with the increasing thick-
ness of WSe2. Zheng et al examined the perform-
ance of MoS2/Cu2O nanorod-arrays heterostructures
in photoelectrochemical HER [149]. SECCM maps
showed higher photocurrent at strained heterostruc-
tures, in which strain was applied by controlling the
height of the Cu2O nanorods. The results indicated
that a more efficient separation of photogenerated
carriers induced by the strain can effectively enhance
HER activity.

In table 2 we summarize SECM/SECCM work on
2D TMD relatedmaterials. In analogous to graphene,
the structural effects such as edge, defects, and
thickness on HET and electrocatalytic reactions at
TMDs have been shown to be impactful. In addi-
tion, spatially resolved measurements have elucid-
ated the roles of phase, atomic vacancies, and strains
in regulating the reactivity of TMD layers. Coupled
with electromagnetic excitation, insights into the
dynamics of carrier transport and the implications in
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photoelectrochemistry were obtained from SECCM
images.

5. Transitionmetal oxides (TMOs),
hydroxides (TMHs), nitrides, and carbides

5.1. Transitionmetal oxides and hydroxides (TMOs
and TMHs)
Most pristine TMOs and TMHs exhibit unsatisfact-
ory performance in their bulk forms due to their poor
activity and conductivity. The electrocatalytic activity
of TMOs and TMHs can be significantly improved
by shrinking their size and reducing the thickness
towards the atomic scale [8]. Two-dimensional (2D)
TMOs and TMHs are especially active for electrocata-
lytic reactions involving the activation of water such
as the oxygen evolution reaction (OER) [152, 153].
Nanoscale SECM and SECCM have been shown to be
powerful operando techniques for accurately correlat-
ing the electrocatalytic OER activities with the local
structures.

5.1.1. Defects
Through defect engineering, the OER activity of
faceted nickel oxide (NiO) nanostructures was
enhanced due to the exposure of nanoscale edge
sites that significantly alter the electronic structure
of Ni2+ centers and promoted Ni3+ states [154]. Sun
et al employed SECM to probe 2D NiO nanosheets
containing defect holes with well-defined edges, and
directly correlated the electrocatalytic OER activit-
ies with the local structural defects [155]. The tip
electrode collects the oxygen generated at the sub-
strate in SG/TC mode (figure 10(a)). The SECM
image in figure 10(b) shows more efficient O2 gen-
eration at the NiO surface compared to the inactive
HOPG. The map with even higher resolution shows
increased OER current at the NiO/HOPG bound-
ary (figure 10(c)), consistent with a significantly
higher activity of the NiO edge. Atomic-resolution
structural measurements of the edges using electron
tomography showed that the edges are terminated
with (100) and (111) facets, which were responsible
for∼200-fold enhancement of activity.

5.1.2. Ion insertion
Ion insertion redox reactions convert inactive mater-
ials into active electrocatalysts during operation.
Single-crystalline β-Co(OH)2 catalyzed OER is
accompanied by hydroxide, water, and proton
(de)intercalation as well as the change in the oxid-
ation state of cobalt. Mefford et al used a suite of
correlative SECCM and x-ray microscopy techniques
[156] to establish a link between the OER activity
and the local structure of β-Co(OH)2. Importantly,
direct mapping of the OER current with SECCM
(figure 10(d)) revealed that edge facets are the act-
ive surfaces. In both scanning mode (figure 10(e))
and hoppingmode (figure 10(f)), the SECCM images

revealed that the edge facets have high EC activity
compared with the low activity of the basal planes.
The difference of these facets was rationalized by the
ion (de)intercalation characteristics of the system, in
which ion (de)intercalation is facilitated at the edge
facets, while ionmovement is restricted in the absence
of extended defects, which prevents the basal planes
from serving as reaction sites.

5.2. MXenes
MXenes are a class of 2Dmaterials consisting of layers
of transitionmetal carbides, nitrides, or carbonitrides
[157]. The versatile chemistry ofMXenes leads to tun-
able properties for applications including energy stor-
age, sensors, and catalysis [158, 159]. The general for-
mula of MXenes is Mn+1XnTx, where M is an early
transition metal, X is carbon and/or nitrogen, and T
is a functional group. Metallic MXenes that possess
inherently active basal planes have been investigated
via scanning EC approaches.

5.2.1. Conductivity
Gupta et al employed SECM to quantify the HET
kinetics of Fe(CN)64−/3− at Ti3C2Tx MXenes and
discovered a strong dependence on flake thickness
and the type of electrolyte [160]. Djire et al have
developed mixed transition metal nitride MXenes
and investigated their HER catalytic activity with
SECM [161]. Specifically, SECM was employed to
determine the conductivity and catalytic activity of
individual V-Ti4N3Tx nanoflakes. The feedback map
shown in figure 11(a) using Fc as the redox mediator
exhibits no measurable redox regeneration, while the
SG-TC map in an acidic solution shows measurable
activity towardHER (figure 11(b)). The SECMresults
were explained by proposing that the basal planes of
these V-Ti4N3Tx are catalytically active despite their
limited conductivity, due to the large exposed metal-
lic sites available for proton adsorption. However, we
note that modification of the conductivity and EC
behavior by H+ adsorption or intercalation [162]
could be an alternative explanation for this appar-
ent contradictory behavior. By increasing the V load-
ing, enhanced conductivity and metallic character
were observed in the feedback and SG-TC maps
(figures 11(c) and (d)).

5.2.2. Charge storage mechanism
Titanium carbide MXenes exhibit excellent per-
formance as supercapacitors, with a charge stor-
age mechanism associated with fast ion intercalation
into the interlayer space. Cabre et al conducted an
SECCM study [163] to analyze a small subregion
of a monolayer Ti3C2Tx flake where contributions
from ion-intercalation processes were eliminated,
allowing them to isolate surface-dependent processes
that contribute to MXene pseudocapacitive response.
Using an SECCM approach, cyclic voltammograms
(figures 11(e) and (f)) and quantitative analysis of
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Figure 10. (a) Schematic representations of substrate generation/tip collection of dioxygen at NiO nanosheet. (b) SG/TC mode
SECM images of the NiO nanosheet with defect holes exposing the underlying HOPG and (c) high resolution SG/TC image of the
NiO edge. Reproduced with permission from [155]. © 2019. Published under the PNAS license. (d) Schematic demonstrating the
SECCM technique probing a glassy carbon (GC) support with dispersed isolated β-Co(OH)2 particles. (e) Tip current density as
a function of position in scanning constant height mode for the particles shown in the FE-SEM images on the right. (f)
Topography and local current density maps at increasing applied voltage. Scale bar, 5 µm. Reproduced from [156], with
permission from Springer Nature.

Figure 11. (a) SECM feedback mode and (b) SG-TC mode image of a V-Ti4N3Tx MXene sample. (c) SECM feedback mode and
(d) SG-TC mode image of a V-Ti4N3Tx MXene sample prepared from higher V loading. [161] John Wiley & Sons. © 2020
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) Schematic of end of SECCM probe, highlighting the nanoscale
electrochemical droplet cell at the end of the SECCM probe and the two-electrode electrochemical cell configuration. (f)
Representative cyclic voltammograms over a carbon surface (black) and a single monolayer MXene flake (orange) at a scan rate of
0.5 V s−1 in 20 mMHClO4. Reproduced from [163], with permission from Springer Nature.

the pseudocapacitive response revealed that entire
MXene flakes were charged through EC contact of
only a small basal plane subregion, corresponding to
as little as 3% of the surface area. These results sug-
gest that the proton transport across the surface acts

as a complementary mechanism during the fast char-
ging/discharging of MXene-based supercapacitors.

In table 3 we summarize SECM/SECCM work on
2D TMO, TMH, and MXenes. Unique insights into
the roles of structural heterogeneities were gained
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Table 3. Summary of scanning electrochemical studies of TMOs and MXenes.

Technique/mode Materials Reactions References

SECM feedback and SG/TC NiO nanosheet OER, FcMeOH+/0 [155]
SECCM hopping mode β-CO(OH)2 OER [156]
SECM feedback Ti3C2Tx flakes Fe(CN)6

4−/3− [160]
SECM feedback and SG/TC M-Ti4N3Tx (M= V, Cr, Mo, Mn) FcMeOH+/0, HER [161]
SECCM hopping mode Ti3C2Tx flakes Pseudocapacitive processes in HER [163]

through SECM/SECCM and correlative character-
ization techniques. We also note the benefits of
the versatile SECM in understanding the correlation
between conductivity and reactivity, as well as the
capability of SECCM in selectively probing specific
sites to clarify charge storage mechanisms.

6. Conclusions and perspectives

In this review, we have highlighted the develop-
ment of scanning EC probe approaches to address
questions related to the (photo)electrochemistry of
2D materials that are inscrutable using conventional
methods. Experimental conditions of these research
efforts have been outlined in tables 1–3. Versatile
scanning EC platforms have proven to be capable of
resolving EC information with a high spatial resolu-
tion to understand the structure–function relation-
ships of the electroactive 2D materials.

6.1. Advantages and limitations
The most advantageous qualities of SECM/SECCM
are originated from the miniaturization of the EC
probes. Specifically, the high-resolution EC mapping
has been shown to be effective in identifying het-
erogeneities that are buried in ensemble measure-
ments, providing a general strategy to visualize the
activity variation across the surface of a 2D mater-
ial. As a result, the effects of morphology, defects,
dopants, strain, substrate, and other factors are read-
ily examined. Other benefits include (1) these non-
destructive approaches allow thematerials to be stud-
ied without altering their intrinsic properties; (2) the
2D material samples are not required to be manufac-
tured into a device format; (3) the (micro)nano scale
measurements reduce the background and improve
the signal-to-noise ratio; (4) the ability to detect and
quantify intermediates provides unique insights into
reaction mechanisms; (5) both in-situ and ex-situ
spectroscopic/microscopic analysis can be coupled to
correlate activities with physical properties.

In comparison to other EC techniques,
SECM/SECCM presents distinct advantages.
Ensemble measurements using a conventional three-
electrode setup fall short in resolving local variations.
While integrating individual 2D flakes into on-chip
devices [16, 164] allows for local EC interrogation,
its spatial resolution typically remains confined to
micrometer scales. It is important to note that poly-
mer contamination from the photoresist often proves

unavoidable, undermining measurement reliabil-
ity. Microdroplet techniques [60, 111] bear con-
ceptual similarities to SECCM, yet their through-
put is constrained as only a small fraction of the 2D
material can be probed at any given time. EC–STM
[165] or EC–AFM [166] enables real-time observa-
tion of nanoscale surface morphology changes but
is constrained by its inability to capture potential-
dependent images. Moreover, the close proximity of
the tip may interfere with EC processes at the 2D lay-
ers, potentially inducing shielding effects and intro-
ducing inaccuracies in measurements.

Despite the high merit of SECM/SECCM in
investigating the electrochemistry of 2D materials,
some limitations and challenges need to be overcome
to push their applications to the next level. (1) The
spatial resolution of SECM is influenced by both the
size of nanoelectrode tip and diffusional broadening
[21]. The resolution of SECCM is determined by the
size of nanopipette probe and wetting property of the
sample. Strategies to push their resolution to a few
nanometers or atomic scale are yet to be developed.
(2) The fabrication of SECM tips can be complex
and often irreproducible, while the knowledge of geo-
metry and dimensions of the probes is crucial for
reliable quantitative data analysis. (3) Both high-
resolution SECCM and SECCM mapping experi-
ments are time-consuming. This limitation demands
high instrument stability that needs to be engin-
eered through environmental control (e.g. vibrational
isolation and humidity control). The poor temporal
resolution limits studies of rapid dynamic EC pro-
cesses. (4) Electroanalytical techniques (e.g. voltam-
metry, amperometry, and impedance spectroscopy)
integrated in SECM/SECCM alone are incapable of
providing comprehensive chemical information in
complex catalytic reactions, limiting the ability to
characterize intermediates/products distribution and
reaction mechanisms.

6.2. Perspectives on technique development
The intuitive approaches to improve the spatial res-
olution of SECM/SECCM are probe miniaturization
down to nanometers. While this is attractive, one
should account for the changes of the fundamental
behavior of nanoprobes associated with the shrink
of size. Drastic double layer effects can impact the
migration of redox ions that leads to either enhance-
ment or inhibition to faradaic current [167]. As
a result, factors including electrolyte concentration,
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solvent dielectric property, and surface charge needs
to be considered. Careful characterization of nano-
electrodes and nanopipettes is critical because unam-
biguous geometric parameters of the probes are
necessary to interpret data. In SECCM, the true
electroactive area is estimated by characterizing the
meniscus ‘footprint’ with other microscopies [29].
Consequently, the surface chemistry of probedmater-
ials and the polarity of the solvent should be con-
sidered to control the meniscus contact. Further
discussions on probe fabrication and characteriz-
ation can be found elsewhere [22, 32, 33, 168].
Alternative approaches to improve the spatial res-
olution other than probe engineering have been
developed based ondata postprocessing [27, 169]. For
instance, algorithms to produce point spread func-
tion corrected SECM image have been developed to
relax the requirement of small probes [170].

Reproducibility in SECM and SECCM may be
impacted by fluctuations in probe geometry and sur-
face hydrophobicity. As discussed earlier, meticu-
lous characterization of probes is essential for ensur-
ing dependable measurements. Surface modifica-
tion of an SECCM probe, often achieved through
silanization [171] of the glass nanopipette’s outer
walls with hydrophobic or hydrophilic groups, can
bolster the stability of meniscus contact. An altern-
ative approach, oil-immersed scanning micropipette
contact method [172] improves droplet stability,
particularly beneficial for aqueous solutions sus-
ceptible to evaporation in uncontrolled humidity
environments.

Environmental variables like temperature and
humidity can introduce variability in repeated meas-
urements. Maintaining stable humidity levels is cru-
cial for consistent SECCM measurements, achiev-
able through humidified gas streams or humidifi-
ers. Recent advancements involve integrating SECCM
setups into glovebox environments [173], heighten-
ing precision when examining moisture and oxygen-
sensitive materials.

Slow imaging speed remains as main challenge in
SECM/SECCM mapping measurements. Developing
new scanning patterns [174] and fluid dynamic
simulations [175] to aid high-speed scanning have
shown immense potential for applications in large
data acquisition. We also envision that implementing
artificial intelligence driven automation [176, 177]
will find a niche in scanning probe electrochemistry.
In methods as such, self-driving experiments enabled
by artificial intelligence are performed to identify and
measure representative data in lieu of full dataset
[176], therefore promoting the efficiency of meas-
urements. However, this algorithm may not apply to
complex EC systems with heterogeneities, and careful
verification of the data fidelity is required.

Integrating SECM/SECCM with complementary
techniques [178] is another promising avenue to
pursue the comprehensive characterization of 2D

materials. Combining in-situ Raman spectroscopy
[15] and SECM/SECCM is expected to provide vital
information on the evolution of structure, charge
density, and surface chemistry of the 2D electrode
during a reaction, although matching the optical res-
olution with that of SECM/SECCM and eliminating
the interference from probe tips remain challenging.
Coupling scanning EC probes to mass spectrometers
[179] would allow researcher to extract spatially
resolved product distribution in complex reactions
such as CO2 catalysis and EC organic synthesis.
Challenges in achieving sufficient sensitivity to detect
chemistry taking place at the nano- or micron-sized
interfaces should be noted. Fabricating 2D materials
in a field-effect transistor configuration [120, 180] is
particularly promising in measuring/controlling the
electronic transport in a 2D layer while it is interrog-
ated with SECM/SECCM. Multifunctional analytical
platforms such as these would tremendously expand
the versatility of scanning EC probe techniques and
make them even more suited to investigating the rich
physics and chemistry of 2D materials.

6.3. Perspectives on future objectives
There remains a wide space to expand the availability
of SECM/SECCM to explore the untapped domains
of 2D materials. While the studies described in this
review are mostly devoted to revealing the activit-
ies of structural features, a wide variety of addi-
tional strategies to activate the inert pristine surfaces
of 2D layers remain to be explored. For instance,
the modulation of electronic structure by means of
ion intercalation [181, 182], external field effects
[183–185] and other ‘quantum’ engineering [186]
approaches are expected to impact the HET kinetics
and catalytic activities. In addition to the reactions
covered in this review, 2D materials have been shown
to support other important reactions such as CO2

reduction and ammonia synthesis. The complicated
reaction mechanisms of CO2 reduction [187, 188]
and nitrogen fixation [189] are largely hypothesized
without direct experimental detection of intermedi-
ates. The opportunities for SECM/SECCM include
using high-resolution mapping to identify catalytic
active sites and adopting the nanogap methods [190,
191] to detect intermediates that can elucidate the
complex mechanisms of these multi-electron, multi-
proton reactions at the 2D catalysts. The chemical
stability of the materials themselves requires atten-
tion as 2D catalysts undergo different degrees of
corrosion [192] while mediating interfacial chemical
transformations.

Many more materials and derivatives in the exist-
ing library of 2D crystals deserve attention. For
instance, black phosphorus [193] is a layered semi-
conductor with distinctive properties for applica-
tions in energy storage and catalysis [194]. Two-
dimensional (2D) analogues of metal–organic frame-
works possess a high degree of exposed catalytic active
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sites and tunable structures that are also suitable for
the synthesis of single-atom catalysts with high repor-
ted electrocatalytic activities [195]. The versatility and
tunability of 2D materials may be further enhanced
by fabricating vdW heterostructures [25, 196–199]
formed with dissimilar 2D layers. The new chemistry
produced by constructing distinctive vdW heteroint-
erfaces awaits rigorous investigation with nanoscale
EC microscopy.

The capability of SECM and SECCM renders
them indispensable in sensor technology and energy
storage. SECM/SECCM enhances sensor design by
enabling precise mapping of EC activity on sensor
surfaces, crucial for crafting highly sensitive and
selective sensing platforms catering to a myriad
of analytes, from small molecules to biomolecules
[200, 201]. The growing application of 2D materi-
als in sensors is propelled by their distinctive attrib-
utes including a high surface-area-to-volume ratio,
abundant reactive sites, andmechanical resilience and
flexibility, aligning seamlessly with cutting-edge tech-
nologies like wearable electronics [202]. We foresee
exciting prospects in amalgamating SECM/SECCM
with the developmental trajectory of 2D materi-
als in sensor innovation. Both SECM and SECCM
offer avenues to scrutinize the formation of SEIs on
electrodes—a pivotal facet of battery research [203].
Furthermore, by unraveling multiple charge transfer
andmass transfermechanisms in the complex EC sys-
tems, SECM/SECCM can directly impact the evolu-
tion of more efficient metal-ion batteries [203, 204].
The suitability of 2D materials as advanced battery
electrode materials stems from their expansive spe-
cific surface area, minimized ion diffusion distances,
and capacity to mitigate volume fluctuations during
repeated charge/discharge cycles [205, 206]. The con-
vergence of SECM/SECCM with the evolution of 2D
materials for energy storage applications holds great
promise.

In summary, scanning EC probe techniques have
shown immense potential to become some of the
most powerful tools for the characterization of 2D
materials. Continued collaborations among chemists,
physicists, andmaterials scientists will realize the next
generation of high throughput EC microscopy and
accelerate the discovery of exciting phenomena in this
unique family of materials.
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Jousselme B, Derycke V, Campidelli S and Cornut R 2014
Localized reduction of graphene oxide by electrogenerated
naphthalene radical anions and subsequent diazonium
electrografting J. Am. Chem. Soc. 136 4833–6

[37] Macpherson J V and Unwin P R 2000 Combined scanning
electrochemical−atomic force microscopy Anal. Chem.
72 276–85

[38] Kranz C, Friedbacher G, Mizaikoff B, Lugstein A,
Smoliner J and Bertagnolli E 2001 Integrating an
ultramicroelectrode in an AFM cantilever: combined
technology for enhanced information Anal. Chem.
73 2491–500

[39] Comstock D J, Elam J W, Pellin M J and Hersam M C 2010
Integrated ultramicroelectrode−nanopipet probe for
concurrent scanning electrochemical microscopy and
scanning ion conductance microscopy Anal. Chem.
82 1270–6

[40] Takahashi Y, Shevchuk A I, Novak P, Murakami Y, Shiku H,
Korchev Y E and Matsue T 2010 Simultaneous noncontact
topography and electrochemical imaging by SECM/SICM
featuring ion current feedback regulation J. Am. Chem. Soc.
132 10118–26

[41] Bard A J 2010 Inner-sphere heterogeneous electrode
reactions. Electrocatalysis and photocatalysis: the challenge
J. Am. Chem. Soc. 132 7559–67

[42] Bentley C L, Kang M and Unwin P R 2019 Nanoscale
surface structure–activity in electrochemistry and
electrocatalysis J. Am. Chem. Soc. 141 2179–93

[43] Bentley C L, Kang M and Unwin P R 2017 Nanoscale
structure dynamics within electrocatalytic materials J. Am.
Chem. Soc. 139 16813–21

[44] Williams C G, Edwards M A, Colley A L, Macpherson J V
and Unwin P R 2009 Scanning micropipet contact method
for high-resolution imaging of electrode surface redox
activity Anal. Chem. 81 2486–95

[45] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y,
Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric
field effect in atomically thin carbon films Science
306 666–9

[46] Zhang Y, Tan Y-W, Stormer H L and Kim P 2005
Experimental observation of the quantum Hall effect and
Berry’s phase in graphene Nature 438 201–4

[47] Kaplan A, Yuan Z, Benck J D, Govind Rajan A, Chu X S,
Wang Q H and Strano M S 2017 Current and future
directions in electron transfer chemistry of graphene
Chem. Soc. Rev. 46 4530–71

[48] Bard A J and Faulkner L R 2001 Electrochemical Methods:
Fundamentals and Applications 2nd edn (Wiley)

[49] Li W, Tan C, Lowe M A, Abruña H D and Ralph D C 2011
Electrochemistry of individual monolayer graphene sheets
ACS Nano 5 2264–70

[50] Ritzert N L, Rodríguez-López J, Tan C and Abruña H D
2013 Kinetics of interfacial electron transfer at single-layer
graphene electrodes in aqueous and nonaqueous solutions
Langmuir 29 1683–94

[51] Tan C, Rodríguez-López J, Parks J J, Ritzert N L, Ralph D C
and Abruña H D 2012 Reactivity of monolayer chemical
vapor deposited graphene imperfections studied using
scanning electrochemical microscopy ACS Nano 6 3070–9

[52] Zhong J-H, Zhang J, Jin X, Liu J-Y, Li Q, Li M-H, Cai W,
Wu D-Y, Zhan D and Ren B 2014 Quantitative correlation
between defect density and heterogeneous electron transfer
rate of single layer graphene J. Am. Chem. Soc.
136 16609–17

[53] Schorr N B, Jiang A G and Rodríguez-López J 2018 Probing
graphene interfacial reactivity via simultaneous and

23

https://doi.org/10.1039/C7CS00874K
https://doi.org/10.1039/C7CS00874K
https://doi.org/10.1039/C9CS00601J
https://doi.org/10.1039/C9CS00601J
https://doi.org/10.1016/j.xcrp.2020.100190
https://doi.org/10.1016/j.xcrp.2020.100190
https://doi.org/10.1021/ac00295a044
https://doi.org/10.1021/ac00295a044
https://doi.org/10.1021/ac00177a011
https://doi.org/10.1021/ac00177a011
https://doi.org/10.1021/ac102191u
https://doi.org/10.1021/ac102191u
https://doi.org/10.1146/annurev-anchem-062012-092650
https://doi.org/10.1146/annurev-anchem-062012-092650
https://doi.org/10.1021/acs.chemrev.6b00067
https://doi.org/10.1021/acs.chemrev.6b00067
https://doi.org/10.1021/acs.analchem.2c05105
https://doi.org/10.1021/acs.analchem.2c05105
https://doi.org/10.1016/j.apmt.2017.05.003
https://doi.org/10.1016/j.apmt.2017.05.003
https://doi.org/10.1016/j.apmt.2017.05.001
https://doi.org/10.1016/j.apmt.2017.05.001
https://doi.org/10.1146/annurev-anchem-091422-110703
https://doi.org/10.1146/annurev-anchem-091422-110703
https://doi.org/10.1021/acs.chemrev.2c00766
https://doi.org/10.1021/acs.chemrev.2c00766
https://doi.org/10.1002/elsa.202100081
https://doi.org/10.1002/elsa.202100081
https://doi.org/10.1021/acs.analchem.8b05235
https://doi.org/10.1021/acs.analchem.8b05235
https://doi.org/10.1002/1521-4109(200208)14:15/16<1041::AID-ELAN1041>3.0.CO;2-8
https://doi.org/10.1002/1521-4109(200208)14:15/16<1041::AID-ELAN1041>3.0.CO;2-8
https://doi.org/10.1021/acs.analchem.6b01095
https://doi.org/10.1021/acs.analchem.6b01095
https://doi.org/10.1021/acs.analchem.7b02269
https://doi.org/10.1021/acs.analchem.7b02269
https://doi.org/10.1002/cphc.200900600
https://doi.org/10.1002/cphc.200900600
https://doi.org/10.1021/ac200862t
https://doi.org/10.1021/ac200862t
https://doi.org/10.1021/ja500189u
https://doi.org/10.1021/ja500189u
https://doi.org/10.1021/ac990921w
https://doi.org/10.1021/ac990921w
https://doi.org/10.1021/ac001099v
https://doi.org/10.1021/ac001099v
https://doi.org/10.1021/ac902224q
https://doi.org/10.1021/ac902224q
https://doi.org/10.1021/ja1029478
https://doi.org/10.1021/ja1029478
https://doi.org/10.1021/ja101578m
https://doi.org/10.1021/ja101578m
https://doi.org/10.1021/jacs.8b09828
https://doi.org/10.1021/jacs.8b09828
https://doi.org/10.1021/jacs.7b09355
https://doi.org/10.1021/jacs.7b09355
https://doi.org/10.1021/ac802114r
https://doi.org/10.1021/ac802114r
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1039/c7cs00181a
https://doi.org/10.1039/c7cs00181a
https://doi.org/10.1021/nn103537q
https://doi.org/10.1021/nn103537q
https://doi.org/10.1021/la3042549
https://doi.org/10.1021/la3042549
https://doi.org/10.1021/nn204746n
https://doi.org/10.1021/nn204746n
https://doi.org/10.1021/ja508965w
https://doi.org/10.1021/ja508965w


2D Mater. 11 (2024) 032001 P Adanigbo et al

colocalized Raman–scanning electrochemical microscopy
imaging and interrogation Anal. Chem. 90 7848–54

[54] Lai S C S, Patel A N, McKelvey K and Unwin P R 2012
Definitive evidence for fast electron transfer at pristine
basal plane graphite from high-resolution electrochemical
imaging Angew. Chem., Int. Ed. 51 5405–8
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