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Abstract

Measurement-Induced Phase Transitions in Quantum Circuits

by

Yaodong Li

This thesis is devoted to the study of quantum dynamics interspersed with quantum mea-

surements. Focusing on a one-dimensional “hybrid” quantum circuit model consisting of ran-

dom unitary gates and local projective measurements, we provide extensive evidence for a stable

“weakly measured phase” that exhibits volume law entanglement entropy, and a novel contin-

uous quantum dynamical phase transition between the weakly measured phase and a strongly

measured “quantum Zeno phase” that exhibits area law entanglement entropy. We further

study consequences of conformal symmetry at the critical point, as well as properties of the

weakly measured phase. In the latter case, we develop an effective domain wall theory which

correctly accounts for an unusual subvolume powerlaw correction to the entanglement entropy,

and draw close connections between the domain wall theory and an emergent quantum error

correcting code. In the last Chapter, we discuss an experimental protocol that can avoid the so-

called “postselection problem” and allow scalable experimental observations of such transitions

on near term quantum processors.

viii



Contents

Curriculum Vitae vii

Abstract viii

1 Introduction 1
1.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Permissions and Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Hybrid circuit model and the measurement-induced phase transition 8
2.1 The circuit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Critical behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Circuits with Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Beyond Clifford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Conformal invariance at the critical point 49
3.1 The hybrid circuit model and the conjecture . . . . . . . . . . . . . . . . . . . . 54
3.2 Results on rectangular circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Periodic boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4 Capillary wave theory of dynamically generated quantum error correcting
codes in the volume law phase 104
4.1 Model and setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Domain wall picture of entanglement entropies . . . . . . . . . . . . . . . . . . . 116
4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Linear cross entropy benchmark for experimental observation of the phase
transition 139
5.1 Linear cross-entropy and an order parameter . . . . . . . . . . . . . . . . . . . . 141
5.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

ix



A Brief review of the stabilizer formalism and gauge fixing 151
A.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2 The clipped gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.3 Proof of Theorem 1 in Sec. 4.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B Entanglement dynamics under Clifford unitary-projective evolution 173
B.1 Unitary dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
B.2 Measurement dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
B.3 Toy particle traffic-flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C Conformal invariance 182
C.1 Review of some elementary results in CFT . . . . . . . . . . . . . . . . . . . . . 182
C.2 Purification dynamics of reference qubits in the Clifford Circuit . . . . . . . . . . 184
C.3 The scaling dimension h

(1)
f |f from “localizable entanglement” . . . . . . . . . . . . 189

C.4 Parallel results for the Hartley entropy in Haar circuits from minimal cuts in
critical first-passage percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D Capillary-wave theory calculations 196
D.1 Domain walls with pinned endpoints . . . . . . . . . . . . . . . . . . . . . . . . . 196
D.2 “Waist” domain walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
D.3 Point-to-line (pl) domain walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

E Cross entropy as boundary correlation function 203
E.1 Bulk cross entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
E.2 Bulk cross entropy without encoding . . . . . . . . . . . . . . . . . . . . . . . . . 207
E.3 Numerical algorithm for cross entropy in Clifford circuits . . . . . . . . . . . . . 208

F Bitstring distribution in the output state 212

Bibliography 216

x



Chapter 1

Introduction

There are two fundamental processes in quantum mechanical time evolution, namely unitary

ones as governed by the Schödinger equation, and quantum measurements that break unitarity.

On an abstract level, all quantum mechanical evolution in real time can in principle be reduced

to a sequence of these two operations. For example, when the measurement results are left

unattended or unrecorded, measurements are equivalent to couplings to a dissipative bath,

which leads to “decoherence” of the quantum system. Classical behavior of the system invariably

follows.

The situation is drastically different when the measurement results are recorded by an ob-

server, so that the time evolution is kept coherent (albeit non-unitary) to the observer. (This is

sometimes known as a “quantum trajectory” approach.) One early example is the EPR thought

experiment [1], where “quantum entanglement” leads to perfectly correlated measurements on

space-like separated particles, an apparent violation of causality. In quantum computing the-

ory, tremendous effort has been devoted to designing such coherent processes of a large number

of quantum bits (or “qubits”) – often in the form of quantum circuits – that can solve algorith-

mic problems beyond the reach of any classical computer. Here, the interplay between unitary

time evolution and measurements must be so delicately designed that the measurements return

the desired trajectory with a high probability [2].
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Introduction Chapter 1

Due to their inherent quantum mechanical nature and possible technological applications,

such “hybrid” processes – particularly in the many-qubit setting – holds interest to both com-

puter scientists and physicists. However, the space of such processes is extremely huge, so

even for the purpose of exploration some focus is necessary. In the case of quantum com-

puting, the algorithmic problem itself provides very useful guidance, as well as possible hard-

ware considerations. Here, we are motivated by the theoretical question of possible dynamical

“phases” [3, 4, 5, 6, 7, 8, 9, 10, 11] that can arise in such dynamics and their universal proper-

ties, as well as their potential of being realized in emerging experimental platforms [12, 13] and

near term quantum processors [14], where measurements are native operations and quantum

trajectories can be clearly resolved.

This thesis focuses on a particular model of this type, namely one dimensional “hybrid”

quantum circuits in discrete time, with random two-qubit unitary gates and single-qubit mea-

surements at random locations occuring with rate p per qubit per each time step [15, 16, 17];

see Fig. 2.1. This model thus describes a system that is constantly “monitored” by an observer.

Although a simple idealization, it captures a common ingredient to all such hybrid processes,

namely the competing effects between unitaries and measurements on the amount of entangle-

ment, as quantified by the so-called “(von Neumann) entanglement entropy”, between qubits

in a subregion A and its complement A, defined as

SA := − lnTr ρA ln ρA.

Here ρA is the reduced state on A. While unitaries generically increase the entanglement

entropy, measurements collapse the wavefunction and typically tends to reduce it on the trajec-

tories. A main result of the thesis is the phase diagram of this model (Fig. 2.3), which features

a stable volume law entangled phase (where SA ∝ |A|) for weak measurements and an area law

phase (where SA = O(1)) for strong measurements. The two phases are separated by a single

second-order phase transition at p = pc.

Notably, the volume law entanglement can coexist with measurements when p is below

2



Introduction Chapter 1

a finite threshold. This initially came as a surprise [18], since the number of measurements

that can reduce SA is proportional to LA, where as only a constant number of unitaries at

the boundary of A can increase SA. Thus, the aforementioned competition is in an apparent

imbalance, and a threshold would seem to be nonexistent. Part of this thesis is motivated by

addressing this apparent puzzle, first in Chapter 2 by using various numerical characterizations,

and later in Chapter 4 by using the decoupling principle [19] from the theory of quantum error

correction; see also Refs. [20, 21, 22, 23, 24]. It is not an exaggeration to say that quantum

error correction and the phenomenon of quantum information scrambling form the “conceptual

pillar” [25] for such dynamics.

To put these results into context, it is useful to compare the hybrid dynamics with purely

unitary quantum dynamics. With strong measurements, the steady state is area law entangled,

and resembles ground states of gapped Hamiltonians rather than finite temperature Gibbs

states. In this sense, measurements provides a mechanism to avoid thermalization.1 We discuss

this perspectives in more details at the beginning of Chapter 2; see also a recent review by

Potter and Vasseur [26].

There is however an important aspect that is unique to this hybrid model. The phases are

defined by entanglement entropies on individual quantum trajectories, which are themselves

labelled by the measurement record. In general such trajectories can only be obtained by

postselecting on the record. However, the number of trajectories is exponential in the number

of measurements, for the history “branches” every time a measurement is made. Thus, it

is not immediately clear what ramifications the phase transition would have on observable

quantities, even if we can build the circuit perfectly in the lab. Related to the distinction

between “recorded” and “unrecorded” measurements that we emphasized at the beginning of

this Chapter, the transition must be probed by using the measurement outcomes explicitly, in

one way or another. The most straightforward option is to experimentally postselect on the
1As we show in Chapter 4, even in the volume law phase the steady state is also typically nonthermal, as

evidenced by a subvolume powerlaw correction to the entanglement entropy. The correction is subtle, but crucial
to the stability of the volume law phase.

3



Introduction Chapter 1

measurements, but as we have argued this is not scalable. Alternatively, we may try to look at

the probability distribution over measurement outcomes, which contains a lot of information.

This is a first step towards our protocol in Chapter 5.

Yet another option is to relate the phase transition as one in the computational hardness of

simulating either the hybrid dynamics in 1d [16] or unitary dynamics in 2d [27] on a classical

computer. The phase transitions is thus measured by the growth of classical resources with

increasing circuit size.

The rest of this thesis is organized as follows. In Chapter 2, we define the model and our

numerical method in detail, and provide extensive numerical characterizations of the phase

diagram. We reveal that the phase transition exists is generic to hybrid circuits, and is largely

independent of the microscopic details. We make heavy use of the stabilizer formalism in our

numerical simulations, which allows us to confirm critical scaling behavior and unveil a subvol-

ume powerlaw correction to the entanglement entropy in the volume law phase. In Chapter 3,

we focus on the critical point, and provide extensive evidence to an emergent conformal sym-

metry. In turn, we use the conformal symmetry to obtain accurate estimates of several critical

exponents. These results places the transition in a different universality classes than critical

percolation, the latter describing the phase transition in certain simplifying limits. We also

find EPR-like nonlocality as a necessary consequence of conformal invariance. In Chapter 4,

we develop a capillary wave theory for the volume law phase based on analytical mappings of

the circuit to statistical mechanical models [28, 29, 30, 31]. We relate certain properties of the

statistical mechanical model to properties of a dynamically generated quantum error correcting

code. In Chapter 5, we propose a protocol for experimentally probing the phase transition.

This protocol tries to estimate the so-called “linear cross entropy” between bulk measurement

outcomes, and has several advantages over existing ones.

We also bring the reader’s attention to a few more references that improves upon the results

in this thesis, but not included here. Refs. [32, 33, 34] contains more recent results on the family

of critical points discussed in Chapter 3. Ref. [32] also proposed a measure of multipartite

4
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entanglement for a broader class of measurement induced phase transitions, which may be of

independent interest. Ref. [35] improves the capillary wave theory in Chapter 4 by taking into

account of quenched disorder, and the new theory – that the entanglement domain walls behave

like directed polymer in random media – is in quantitative agreement with numerics.

1.1 Outlook

There are various models besides the random circuit model considered here that exhibit

measurement-induced phases and phase transitions. We sample a few from these, and discuss

future theoretical directions that could be made possible by these developments.

An important class is “measurement-only circuits” [36, 37, 38, 39, 40, 41, 42, 43]. These

circuits do not have any built-in unitary gates, and the nontrivial dynamics is generated instead

by competing local measurements drawn from a finite set. In many such models, one finds

“measurement-protected phases” [39] with area law entanglement entropies favored by different

types of measurements, and transitions between these area law phases can also be transitions

in the channel capacity from finite to zero. Because the measurements are prevalent, the

measurement-only circuits closely resemble the conventional “decoding” dynamics of a stabilizer

code [44, 45, 46, 47] – with competing check operator measurements and interspersing errors

– rather than an encoding circuit. This connection was noticed in Refs. [42] and explored

in Refs. [42, 48], where the repetition code and the toric code are considered. Whether such

connections can be further bolstered is a question worth further exploring. In particular, it

would be extremely appealing to understand if certain refined notions, such as soundness [49]

and single-shot properties [50], can be understood in universal terms.

Another interesting class of dynamics are those with continuous U(1) symmetry, first defined

in Refs. [51, 52, 53]. Due to symmetry constraints, the circuit dynamics is inevitably less

scrambling, and as a consequence an observer is more effective in gaining information about the

system (than in circuits without continuous symmetry) by making local charge measurements.

This leads to a new type of phase transition, termed “charge sharpening transition”, where when

5
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p < p# (“charge fuzzy phase”) it takes polynomial time for the observer to read out the total

charge in the system (which is conserved under time evolution), whereas when p > p# (“charge

sharp phase”) it takes only constant time to do so. This is in sharp contrast to the volume

law phase of circuits without continuous symmetry, where this time scale is exponential in the

system size, as would be the case whenever a domain wall picture with finite surface tension is

at work. A description of the two phases would presumably not be in terms of domain walls,

and is most intriguing. It would also be interesting if results from covariant quantum error

correction [54, 55, 56] can be informative in understanding these phases.

Most recently, there have been works that tries find analogs of such hybrid quantum dynam-

ics in classical systems [57, 58]. It would indeed be meaningful to perform such a comparison.

For systems of basic degrees of freedoms that are point like, the dynamics considered are very

similar to so-called probabilistic cellular automata, which strictly obey causality. On the other

hand, if the point-like degrees of freedoms are connected by strings, dynamics under local update

rules of these points can induce certain nonlocal moves on the strings. It would be interesting

know to what extent classical dynamics can mimic quantum hybrid dynamics.

1.2 Permissions and Attributions

1. The content of Chapter 2 and Appendices A, B is the result of collaborations with Xiao

Chen and Matthew P. A. Fisher [17, 59], and has previously appeared in Physical Review

B.

2. The content of Chapter 3 and Appendix C is the result of collaborations with Xiao Chen,

Andreas W. W. Ludwig, and Matthew P. A. Fisher [60], and has previously appeared in

Physical Review B.

3. The content of Chapter 4 and Appendix D is the result of collaborations with Matthew

P. A. Fisher [61], and has previously appeared in Physical Review B.

4. The content of Chapter 5 and Appendices E, F is the result of ongoing collaborations

6
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with Yijian Zou, Paolo Glorioso, Ehud Altman, and Matthew P. A. Fisher [62].

7



Chapter 2

Hybrid circuit model and the

measurement-induced phase

transition

Quantum many-body systems under unitary dynamics will generally thermalize [3, 4, 5, 6,

7, 8, 9]. But is thermalization inevitable? Are there systems in which the thermalization of

entanglement entropy is avoidable? One example is many-body localization [10, 11], in which

entanglement growth is suppressed by strong quenched disorder. Repeated local measurements

provide an alternative approach for taming the growth of entanglement. While unitary dynamics

tends to increase entanglement, local measurements tend to disentangle. When measurements

are made continually, the steady-state wavefunction should exhibit non-maximal, and non-

thermal, entanglement entropy [63]. If measurements are made as frequently as possible, the

wavefunction will become localized in the Hilbert space near a trivial product state – a quantum

Zeno effect [64]. What happens in the intermediate regime when measurements are made

at a small but finite rate? Can the volume law scaling of entanglement entropy survive in

the presence of a non-zero rate of measurement? These questions are pertinent to our basic

understanding of quantum information dynamics.

8



Hybrid circuit model and the measurement-induced phase transition Chapter 2

In Refs. [18, 16, 17], a prototypical (1+1)d circuit model with both unitary dynamics and

projective measurements was introduced and explored. Local unitary gates acted on all neigh-

boring qubits, while single (or two-) qubit measurement gates were sprinkled throughout the

circuit, with each space-time point occupied with probability p, representing the strength of the

measurements. In Ref. [18] it was argued that the volume law entangled phase is destroyed by

arbitrary rare measurements, for all p > 0, while the authors in Refs. [16, 17] presented argu-

ments and numerical evidence for a stable volume law entangled phase, separated from an area

law entangled phase at a critical value of measurements, pc > 0. Due to different approaches

taken in these papers, a direct comparison was not immediate.

In this Chapter, we continue to investigate these hybrid circuit models with unitary-

measurement dynamics. Our goal is to explore and characterize both the nature of the en-

tanglement transition and the properties of the volume law entangled phase in the presence of

weak measurements. A central focus is on generic circuits with randomness in both the unitary

gates and in the locations of the measurement gates. The least constrained model we consider

is a “random Haar circuit”, with 2-qubit unitaries taken from the Haar measure [65, 66] and

single qubit measurements randomly scattered across the circuit [18, 16]. However, the high

entanglement in the volume law phase poses formidable numerical challenges even in one dimen-

sion. We thus will largely study “random Clifford circuits” with the Haar unitaries replaced by

random two-qubit Clifford unitaries, and the single qubit measurements restricted to the Pauli

group [44, 67, 68]. Such Clifford circuits can be efficiently simulated on a classical computer,

enabling us to perform extensive large scale numerical studies. We draw several conclusions

from our data in the random Clifford circuit:

• At long times, measurements reduce the entanglement entropy from maximal, and the

steady-state entanglement fluctuates weakly over time and over circuit realizations, inde-

pendent of the initial conditions. These “typical” steady states are non-thermal, qualita-

tively distinct from thermal states.

• The volume law phase persists when measurements are infrequent, consistent with results
9
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from Refs. [16, 17]. The algebraic structure of the Clifford dynamics provides a convenient

framework for characterizing the entanglement structure of these wavefunctions, revealing

an unusual scaling form of the entanglement entropy, namely SA = α ln |A| + s|A| for a

contiguous subsystem A.1 The sub-leading correction is exposed by analyzing the length

distributions of the “stabilizers” – mutually commuting Pauli string (eigen)operators of

the Clifford wavefunctions with unit eigenvalue. The stabilizer distribution is “bimodal”,

consisting of a power law distribution of “short” stabilizers that contribute to the loga-

rithm, and “long stabilizers” with length ℓ ≈ L/2 giving the volume law piece (L being

the system size). This sublinear correction is conjectured to be a generic feature of volume

law steady states in the presence of measurements.

• The “entanglement transition”, from volume law to area law states [16, 17], occurs when

the weight under the “long stabilizer” peak at ℓ ≈ L/2 vanishes continuously upon ap-

proaching pc from below. Remarkably, the power law tail of “short” stabilizers remains,

implying a purely logarithmic form for the entanglement entropy right at the critical

point, p = pc. The entanglement transition exhibits conformal symmetry of the mutual

information at criticality, and we extract several critical exponents. In particular, we

find that in all the models we study, the mutual information between two small regions

separated by a large distance, r, scales as 1/r4. Off criticality the mutual information

decays exponentially.

• We explore the fluctuations of certain spin-spin correlation functions across the transition,

and find that they are enhanced at the critical point, mimicking the mutual information.

We establish the generality of these results by exploring models with imposed spatial sym-

metry constraints – specifically Clifford circuits with the unitaries periodic in space and time

(Floquet) and/or the measurement locations periodic in space and time. All models are found

to exhibit a measurement-driven entanglement transition, with similar exponents and similar
1 It was later realized, after the publication of Ref. [59], that the subleading correction should be |A|β with

β ≈ 1/3, after a careful comparison with directed polymer in random media [35]. This comment similarly applies
to Fig. 2.3 and Eq. (2.19).
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behavior of the stabilizer length distribution as in the random Clifford circuit. Apparently

the randomness in the unitaries and measurement locations are inessential, with the remaining

stochasticity in the measurement outcomes sufficient to account for the presence and univer-

sality of the entanglement transition.

Going beyond Clifford, we implement a full quantum simulation of more general circuit

models for systems with size up to L = 20 qubits. Both random Haar circuits and (non-

Clifford) Floquet circuits exhibit behavior consistent with their Clifford counterparts. We

also explore models with (non-projective) “generalized measurements”, with each and every

qubit being measured at each time step, and find evidence for an entanglement transition,

with accessible exponents being consistent with the Clifford circuits. Of particular interest is

a space-time translationally symmetric Floquet model with generalized measurements, which

exhibits an entanglement transition where the only stochasticity is in the results of the quantum

measurements.

Motivated by the remarkable consistency between all of our different models, we conjecture

that generic hybrid circuits have a volume law phase with logarithmic correction for weak

enough measurements, and exhibit an entanglement transition in a single universality class.

This Chapter is organized as follows. In Sec. 2.1 we define the circuit models of interest.

Extensive numerical results for Clifford circuits are reported in Sec. 2.2 and 2.3. In particular,

Sec. 2.2 contains evidence for the phase transition in entanglement entropy, and allows char-

acterization of the volume-law phase in terms of stabilizers. Sec. 2.3 is devoted to a detailed

analysis of the critical behavior of the entanglement transition. In Sec. 2.4, we systematically

explore Clifford circuit models with space and time symmetries imposed, either in the unitaries

or the measurement locations – or both. In Sec. 2.5, we consider more generic non-Clifford

circuits, establishing complementary results via a full quantum simulation for smaller systems.

We close with discussions in Section 2.6.

Finally, in Appendix A we review Clifford circuits and define the stabilizer length distri-

bution, and detail measurement and unitary Clifford dynamics – beyond the steady state – in

11
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Figure 2.1: The random circuit model with random measurements. In this circuit, the unitaries
are arranged in a brick-layer fashion, while the single qubit Z-measurements are positioned
randomly in space and time. We depict the Poissonian arrangement in this figure, for which
the measurements take place at each available space-time site independently with probability
p. For a circuit with L qubits and with depth D, there are LD such available sites.

Appendix B.

2.1 The circuit model

Consider first the prototypical quantum circuit model, shown in Fig. 2.1, with L qubits

arranged on a one-dimensional chain. The circuit dynamics is composed of two parts, as

depicted in Fig. 2.1 and detailed below (in order), namely (i) the background unitary evolution,

and (ii) measurements made on selected qubits scattered throughout the system.

(i) The background unitary time evolution of the L-qubit wavefunction is determined by

applications of local unitary gates which are arranged in a bricklayer pattern, such that

the geometry of the circuit is periodic in both space and time. The local unitaries act on

neighboring pairs of qubits. Each discrete time cycle of the circuit consists of two layers,

and each layer has L/2 two-qubit unitary gates, acting on all the odd links in the first

layer, and all the even links in the second. We primarily consider circuits with periodic

spatial boundary conditions, except in Appendix B where circuits with open boundary

condition are more convenient.

We define the depth of a circuit to be the number of unitary layers, and denote it by D.
12
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Therefore, a circuit with depth D has T = D/2 time cycles. The circuit as a whole can

be regarded as a unitary transformation in the Hilbert space of many-body wavefunctions

on L qubits,

UT =

T−1∏
t=0

U(t), (2.1)

where U(t) is the time evolution operator for the t-th time cycle,

U(t) =

( ∏
x odd

U(x,x+1),2t+1

)( ∏
x even

U(x,x+1),2t

)
, (2.2)

where U(x,x+1),d is the gate on link (x, x + 1) at depth d. Under the action of a unitary

gate, the wavefunction transforms as,

|ψ〉 → U(x,x+1),d |ψ〉 , (2.3)

so that the wavefunction at arbitrary time T is |ψ(T )〉 = UT |ψ(0)〉.

(ii) The full dynamics of the model is non-unitary, wherein the space-time sheet of the unitary

circuit is punctuated with measurements – for simplicity chosen as single-qubit measure-

ments. In a circuit with depth D = 2T , there are L × D available space-time locations

between unitary layers available for such measurements. Measurements are made on a

fraction p of all these sites, chosen either randomly or deterministically. The parameter p

is thus the rate of measurement. In Sections 2.1–2.3 of this Chapter we will choose these

sites randomly (Poisson distribution) as depicted in Fig. 2.1, a model first proposed in

Refs. [18, 16]. The unitary background is obtained by setting p = 0.

Under the action of a measurement the wavefunction transforms as,

|ψ〉 → Mα |ψ〉
‖Mα |ψ〉‖

, (2.4)

13
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where {Mα} are a set of linear “generalized measurement” operators satisfying
∑

αM
†
αMα =

1 [69]. Under such a measurement, the process described by Eq. (2.4) is probabilis-

tic, with outcome α happening with probability pα = 〈ψ|M †
αMα |ψ〉. Throughout much

of the Chapter, and unless specified to the contrary, we will choose these “generalized

measurement” operators to be mutually orthogonal projectors, that is Mα → Pα, with

P± = (1 ± Z)/2 measuring the Z-component of the spin of individual qubits. Such pro-

jectors satisfy PαPβ = δαβPα and
∑

α Pα = 1.

For a convenient initial wavefunction (unentangled, for example), once the realizations of

each unitary and measurement gate are specified as well as the measurement outcomes, the

many body wavefunction at any time step is determined, by following the transformations

defined in Eqs. (2.3, 2.4). This pure state time evolution is known as a quantum trajectory [70].

As emphasized in Refs. [16, 17] the entanglement physics of interest to us will not be contained

in the time evolution of the mixed state density matrix (appropriate when/if the measurement

results are summed over, rather than tallied), which appears in more familiar treatments of

open quantum systems [71].

While unitary gates generically increase entanglement, local measurements tend to reduce

the entanglement entropy on average. This competition is subtle since the effect of the unitary

gates on the entanglement is strictly local and incremental [72], while the measurement opera-

tors are expected to have some non-local effects on entanglement. Moreover, this competition

could lead to interesting entanglement dynamics at early times. For example, in Ref. [16] the

entanglement dynamics can be mapped to the first passage percolation [73, 74, 75, 76] in certain

limits, while in Ref. [17], sublinear power-law growth of entanglement was observed at a critical

measurement rate, in contrast to the linear growth in purely unitary circuits. Non-monotonic

growth of entanglement can also occur in this type of circuit [18, 77]. However, in this Chapter

we will primarily focus on the entanglement entropy of the late-time steady state, rather than

its early-time dynamics. We leave a detailed study of the latter to the future.

The primary quantity we use to characterize the steady state wavefunctions is the Rényi
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entropy, defined as,

Sn
A =

1

1− n
log2Tr (ρA)

n , ρA = TrA |ψ〉 〈ψ| , (2.5)

where (A,A) is a bipartition of the L-qubit system with A being a contiguous subregion, and

|ψ〉 is the pure state wavefunction we obtain by following the quantum trajectory. A closely

related quantity is the mutual information between two subregions,

InA,B = Sn
A + Sn

B − Sn
A∪B. (2.6)

The mutual information is guaranteed to be non-negative when n ≤ 1.

For a large part of the Chapter, we will consider Clifford circuits. In this case, all Rényi

entropies are equal to each other due to the flat entanglement spectrum [78, 79], and we will

drop the Rényi index (the superscript n).

The generic circuit has three types of randomness: (i) a random ensemble of unitary gates,

(ii) the random locations of the measurements, and (iii) the intrinsic random outcome of each

quantum measurement. We will mostly consider the mean values of the entanglement en-

tropies, averaged over the various forms of randomness present in the circuit. As we shall see

in Sec. 2.2, the distributions of the entanglement entropies in the steady state are narrow, so

well represented by their averages.

2.2 The phase diagram

In this section we discuss the phase diagram of a generic circuit with random Clifford uni-

taries and random measurement placements. Specifically, we consider circuits of the structure

exactly as in Fig. 2.1, wherein the unitary gates are sampled from the uniform distribution

on the two-qubit Clifford group (see Appendix A), and the measurements are taken to be

single-qubit Pauli-Z measurements, namely P± = (1± Z)/2, at random positions chosen inde-

pendently with probability p (the Poissonian fashion). We shall refer to this specific model as
15
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Figure 2.2: (a) Time dependence of the entanglement entropy SA with |A| = L/2 and
L = 512, in the random Clifford circuit averaged over circuit realizations, starting from either
a maximally entangled state or a trivial product state. (b) Distribution function of SA for
different circuit realizations and over time well after saturation. The solid lines are fits to a
normal distribution.

the “random Clifford circuit”, in short.

The primary motivation for studying the random Clifford circuits, rather than the more

generic circuits with non-Clifford gates (e.g. random Haar unitaries), is numerical tractability.

On the single gate level, the random Clifford unitaries approximate the random Haar unitaries

quite well, being known as a unitary 2-design [80]. Our expectation for the equivalence in

terms of the entanglement physics is partially justified in Sec. 2.5, where comparisons are made

between the two circuits for small system sizes – and consistency is found.

The simulability of Clifford circuits is a result known as the Gottesman-Knill theorem [44,

67, 69, 68]. As reviewed in Appendix A, the methodology involves following the dynamics of

“stabilizers” – mutually commuting and independent Pauli string operators – that uniquely

specify the wavefunction, and readily allow for calculation of the entanglement entropy [81, 82,

83, 72]. Clifford circuits have proven useful in the study of entanglement and operator dynamics

in various contexts [72, 28, 84].

2.2.1 The steady state

Given a circuit of a finite length L of qubits, we are primarily interested in the late time

behavior when T → ∞. In this infinite time (circuit depth) limit we expect the system to evolve

into a steady state, characterized by a typical value of entanglement entropy that depends on
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the measurement rate p, but not the dynamics at finite times. To check that this limit is

well-defined, we compute the time dependence of the entanglement entropies starting from two

types of initial states, namely,

• The trivial product state,
∏

x |0〉x, which is a stabilizer state, i.e. the simultaneous eigen-

vector with eigenvalue 1 of its stabilizers G = {Z1, Z2, . . . , ZL}.

• The maximally entangled state, obtained by evolving the random Clifford circuit without

measurements well after saturation.

The results, averaged over circuit realizations, are plotted in Fig. 2.2(a). For all values

of p and for both choices of the initial state, the entanglement entropy saturates to a value

that is determined solely by p. We believe that this holds for an arbitrary choice of the initial

state. Therefore, we can talk about the “steady state” for a given rate of measurement without

referring to the initial state. The steady state is thus a bulk property of the circuit.

After saturation there are only minimal fluctuation in the entropies over time. Moreover,

the fluctuations are also small over different circuit realizations. In Fig. 2.2(b), we plot the

distribution of the entanglement entropy taken from an ensemble of circuits, and over many

time steps well after saturation. Notice that the functions are sharply peaked for each p, and

fit well to the Gaussian distribution.2

We define SA(p; |A|, L) to be the late-time entanglement entropy of a subsystem with size

|A|, when averaged over different circuit realizations, for a circuit with length L and measure-

ment rate p. Given the (average) spatial translational symmetry this quantity only depends on

the size (but not the location) of the subregion A. In the following we will usually refer to this

quantity as the entanglement entropy, unless otherwise specified.
2Similarly to footnote 1, this statement is updated in Ref. [35]. The distribution is not Gaussian, but rather

the (scaled) GSE Tracy-Widom distribution with a width growing as L1/3. The two distributions have apparently
similar density functions, and subtle but important differences in their tails.
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<

Figure 2.3: The phase diagram and scaling behavior of the entanglement entropy in both
phases and at criticality. Note that the asymptotic scaling of SA in the volume law phase, as
presented in this figure, is incorrect. We refer the reader to footnote 1 for a discussion of this
issue.

2.2.2 The two phases

Attempts have been made to map out the phase diagram [18, 16, 17]. The limiting cases

are easy to understand. When p → 1, the steady state is close to a trivial product state,

and has area law entanglement entropy. The other limit, p → 0, corresponds to the random

unitary circuit, where the steady state is characterized by maximal volume law entanglement

entropy [72]. The putative phase diagram is shown schematically in Fig. 2.3, which shows a

volume law phase and an area law phase separated by some critical rate of measurement, pc.

Whether pc is 0 or finite was not agreed upon in earlier work.

Here our numerics for the random Clifford circuit supports a finite pc, consistent with

[16, 17]. In Fig. 2.4(a), we plot the entanglement entropy SA(p; |A| = aL,L) for different values

of p as functions of L, with a fixed a = 1/2. We find qualitatively distinct behavior of SA below

and above pc ≈ 0.16. For p < pc, the curves asymptote to straight lines of slope 1 on a log-log

scale, suggesting volume law scaling of the entanglement entropy, SA(p; |A| = aL,L) = s(p)L.

For p > pc, the curves are saturating to zero slope, suggesting an area law scaling, SA(p; |A| =

aL,L) = c(p)L0.

In Fig. 2.4(b), we plot SA(p; |A|, L) as a function of |A| while fixing L = 512. Similar scaling

behavior is observed.
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Figure 2.4: (a) Entanglement entropy SA(p; |A|, L) with fixed |A|/L = 1/2, as functions of L,
for different values of p. (b) SA(p; |A|, L) with fixed L = 512, as functions of |A|, for different
values of p. Both plots are on a log-log scale. Notice that curves in (a) and (b) corresponding
to the same value of p < pc has the same slope, s(p) (see main text).

2.2.3 Entanglement entropy from stabilizer distribution

For Clifford circuits further information about the nature of the two phases can be revealed

by examining the stabilizer distributions, as we now discuss. We start by listing several re-

sults regarding the stabilizer formalism [44, 67, 69, 68, 72]. These results are also reviewed in

Appendix A.

1. A wavefunction |ψ〉 in the Clifford circuit of L qubits is uniquely characterized by L

mutually commuting and independent Pauli string operators G = {g1, . . . , gL} such that

each one “stabilizes” the wavefunction, gi |ψ〉 = |ψ〉.

Elements of G are called stabilizers. Such a wavefunction is called a stabilizer state or

codeword. Only stabilizer states appear in the Clifford circuit.

Being Pauli string operators, the stabilizers have endpoints where they terminate. Specif-
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ically, we define the left and right endpoints of a stabilizer to be

l(g) = min{x : g acts non-trivially on site x}, (2.7)

r(g) = max{x : g acts non-trivially on site x}, (2.8)

where x is the coordinate of the site, which takes values in {1, 2, . . . , L}. For systems with

periodic spatial boundary conditions, there is an arbitrariness in choosing the origin of the

coordinate system, and there is no absolute distinction between left and right. However,

we note that the functions l(g) and r(g) are well-defined once the origin is chosen and

fixed, which we will always assume to be the case in the rest of the Chapter.

2. The choice of G is not unique. For any stabilizer state, one can choose G such that there

are exactly two stabilizer endpoints on each site,

ρl(x) + ρr(x) = 2, for all sites x. (2.9)

We say G is in the clipped gauge [72].

Notice that G is not uniquely fixed by this gauge condition.

3. Within the clipped gauge, the entanglement entropy of a contiguous subregion A is given

by half the number of stabilizers that cross either its left or right boundary,

SA =
1

2
#{g ∈ G :

(
l(g) ∈ A and r(g) ∈ A

)
or
(
l(g) ∈ A and r(g) ∈ A

)
}. (2.10)

With periodic spatial boundary conditions, the subregion A can be either sites {x, x +

1, . . . , x+ |A|−1} when x+ |A| ≤ L+1, or x, x+1, . . . , L, 1, 2, . . . , x+ |A|− (L+1) when

x + |A| > L + 1. In the clipped gauge, the entanglement entropy is given solely by the

end positions of the stabilizers, and does not depend on their “internal” contents.
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Consider the bigrams of stabilizer endpoints which encode the “span” of each stabilizer,

B(G) ≡ {(l(g1), r(g1)) , . . . , (l(gL), r(gL))}. (2.11)

As shown in Appendix A, for a given wavefunction this object is unique, provided G =

{g1, . . . , gL} is in the clipped gauge. Generally there may be many different choices of G that

satisfy the (clipped) gauge condition, which all share the same bigram. Nevertheless, the bi-

gram fully characterizes the entanglement entropy of the wavefunction(s) through the relation

in Eq. (2.10), being insensitive to the gauge redundancy.

It is convenient to define the normalized stabilizer (spatial) distribution function,

DG(x, y) =
1

L

L∑
i=1

δl(gi),xδr(gi),y, (2.12)

where the overline represents an ensemble average of the bigrams taken over different circuits

and times. We can also define the normalized stabilizer length distribution function,

DG(ℓ) =
1

L

L∑
i=1

δlen(gi),ℓ, (2.13)
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Figure 2.5: The normalized stabilizer length distribution DG(ℓ) plotted on a log-log scale for
a system with size L = 512. Here we take α(pc) = 1.6.
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where len(gi) = r(gi)− l(gi). The latter is the integral of the former,

DG(ℓ) =
∑
x,y

δℓ,y−xDG(x, y). (2.14)

For circuits with periodic spatial boundary conditions, our numerics reveal (data not shown)

that the spatial distribution of the stabilizers for a particular length ℓ is uniform, true at each

value of ℓ and p. That is,

DG(x, y) = DG(x
′, y′) if y − x = y′ − x′. (2.15)

Thus, taking into account the geometric constraint that a stabilizer with length ℓ can only have

its left endpoint in the range (0, L− ℓ), we have

DG(x, y) =
DG(y − x)

L− (y − x)
≈ DG(y − x)

L
, (2.16)

where the last approximation applies when y − x ≲ L/2. These two distribution functions

depend on each other through a simple relation, and one can be inferred from the other.

In Fig. 2.5, we plot the distribution function DG(ℓ) ≈ DG(x, y) × L, where ℓ = y − x, at

different values of p, for fixed L = 512. The distribution function is quite remarkable.

• In the volume law phase p < pc, the distribution is “bimodal”, namely a tail of “short

stabilizers”, which is checked to be independent of L (data not shown), and a peak of

“long stabilizers” at ℓ ≈ L/2 3. On a log-log plot, the short stabilizer distribution for

p < pc looks like a straight line with slope −2, corresponding to a power-law distribution

DG(ℓ) ∼ ℓ−2. The peak at ℓ ≈ L/2 has nonzero weight in the volume law phase, and the

weight vanishes continuously as one approaches the critical point from p < pc.

• In the area law phase, p > pc, the power-law distribution of “shorter” stabilizers becomes
3We also notice a small hump at ℓ ≈ L. This part of the distribution is a boundary effect due to the periodic

boundary condition, and the height of the hump decays as 1/L as we go to the thermodynamic limit. Moreover,
from Eq. (2.10), these long stabilizers of length ∼ L barely contribute to the entanglement entropy. Thus we
ignore this unimportant hump.
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truly short-ranged.

The results in Fig. 2.5 can be schematically summarized as,

DG(ℓ) ∼



α(p) 1
ℓ2

+ s(p)δ(ℓ− L/2), p < pc

α(p) 1
ℓ2
, p = pc

α(p) e
−ℓ/ξ

ℓ2
, p > pc

(2.17)

where α(p) is the weight of the power law, which has weak dependence on p or L, s(p) is the

weight of the peak, and ξ is some finite length scale that cuts off the length of the stabilizers

in the area law phase.

From the formula for entanglement entropy Eq. (2.10), we see that for a region A with

1 � |A| � L,

SA =
1

2

∫
x∈A

∫
y∈A

[θ(y − x)DG(x, y)× L+ (x↔ y)]

=
1

2

∫
x∈A

∫
y∈A

[θ(y − x)DG(y − x) + (x↔ y)] . (2.18)

Combined with Eq. (2.16) and (2.17), we have

SA ∼



α(p) ln |A|+ s(p)|A|, p < pc

α(p) ln |A|, p = pc

α(p) ln ξ. p > pc

(2.19)

This scaling behavior is consistent with our findings in Fig. 2.4. When p < pc, the two

parts of the distribution contribute to the two terms separately: the volume law entanglement

comes from the peak at ℓ ≈ L/2, while the logarithmic correction comes from the power law

distribution of the “shorter” stabilizers, which gets exposed at the critical point. 4

4The comment in footnote 1, that sublinear correction should be |A|β rather than ln |A|, similarly applies here.
Fitting the stabilizer length distribution to a powerlaw can be tricky, for the clipping algorithm requires cutting
the periodic b.c. system somewhere, thereby explicitly breaking the translational symmetry. The stabilizers
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Figure 2.6: (a) Entanglement entropy at the critical point fits well to a purely logarithmic
function, SA(pc; |A|, L) ≈ α(pc) ln |A|, where α(pc) = 1.6, plotted for |A| < L/4. (b) Collaps-
ing the SA(p; |A| = L/2, L) data to the scaling form in Eq. (2.22), where we find pc = 0.16
and ν = 1.3.

From the stabilizer length distribution, the existence of a phase transition is rather obvious.

The transition is accompanied by the vanishing of s(p) as we approach pc from below, and by

the divergence of ξ as we approach pc from above.

2.3 Critical behavior

2.3.1 Finite size scaling of entanglement entropy

As seen from Eq. (2.19), the inverse-square power law form of the stabilizer length distri-

bution at p = pc implies that the entanglement entropy right at the critical point should vary

logarithmically with sub-system size. In Fig. 2.6(a) we plot SA(p; |A|, L) with fixed values of

L at pc, and see that it indeed has the desired scaling form. The coefficient of the logarithmic

function matches well to that of the inverse square power law, α(pc), as expected.

To further probe the entanglement transition, we consider a finite size scaling form for

SA(p; |A| = aL,L),

SA(p; |A| = aL,L) = α(pc) lnL+ F
(
(p− pc)L

1/ν
)
. (2.20)

are then subject to the geometrical constraint that they cannot span the cut. [In particular, a longer stabilizer
will have fewer places to be, therefore a larger “effective” density. Roughly this effect contributes to a larger
subleading term.] This issue should disappear in the thermodynamic limit, but the system sizes accessed here
do not seem enough. We refer the reader to Ref. [35] for numerical results that reveals the powerlaw correction.
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In order to match on to Eq. (2.19) in the thermodynamic limit, the function F must be pro-

portional to L when p < pc, and cancel the lnL term when p > pc. Therefore F (x) has the

following asymptotics,

F (x) ≈



|x|ν , x→ −∞

const, x = 0

−α(pc)ν ln |x|. x→ +∞

(2.21)

Therefore, from Eq. (2.19) we identify s(p) with (pc − p)ν for p < pc, and ξ with |p − pc|−ν

having the meaning of the correlation length.

This scaling form appeared in Refs. [16, 85]. In Ref. [85] this formula follows if/when the

entanglement entropy can be mapped to the change of the free energy caused by the insertion of

two boundary condition changing operators in a 2d classical spin model. These two operators

are inserted at the boundaries of the subsystem A and the free energy cost for them can be

represented as the logarithm of the two point correlation function. Deep within the two phases,

the volume law and area law scalings of the entropy are consistent with the free energy of

a domain wall connecting the two boundaries of A in the ordered and disordered phases of

the classical spin model, with finite and zero surface tensions, respectively. The logarithmic

correction in the volume phase would be accounted for by the contributions to the free energy

due to capillary wave fluctuations of the interface in the ordered phase of the spin model [86, 87].

Right at the critical point the two point correlation function of the boundary condition changing

operator decays as a power law. Thus, upon taking logarithms, the coefficient α(pc) in the

entanglement entropy has the meaning of twice the scaling dimension of the boundary condition

changing operator.

In order to put Eq. (2.20) into a conventional finite size scaling form, we will subtract out

the critical entropy to cancel out the lnL term, and fit our entanglement entropy data to the
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Figure 2.7: (a) The mutual information, IA,B , with region sizes |A| = |B| = L/8 and separa-
tion rA,B = L/2, as shown in the inset. (b) Data collapse of the curves in (a), where we have
taken ν = 1.3. Dashed lines show the function f(x) = e−c|x|ν where c ≈ 1.7.

scaling form,

|SA(p; |A| = aL,L)− SA(pc; |A| = aL,L)| = F̃
(
(p− pc)L

1/ν
)
. (2.22)

In Fig. 2.6(b) we plot the left hand side of Eq. (2.22) (with a = 1/2) versus (p − pc)L
1/ν for

values of p both below and above pc, choosing the exponent ν = 1.3 to give the best scaling

collapse. The quality of the data collapse supports the existence of a diverging correlation

length ξ ∼ |p− pc|−ν and the validity of the scaling hypothesis near criticality.

Notice that in Ref. [17] a different scaling form was used for data collapse, and a different

ν was found.

2.3.2 Mutual information and correlations near criticality

The bipartite mutual information IA,B is one convenient measure of correlations between

two disjoint regions A and B. Loosely speaking, it is the entanglement shared only between

A and B, but not with any third party. We will first focus on the mutual information when

the two regions A and B, of size |A| = |B| = L/8, are antipodal in the system with periodic

boundary conditions, their centers separated by rA,B = L/2. In both phases, away from

criticality, we expect the mutual information to fall off exponentially with the system size,

varying as IA,B ∼ exp(−L/ξ), much like the behavior of correlation functions in conventional
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Figure 2.8: The squared correlation function for two regions A and B, as shown in Fig. 2.7.

finite temperature transitions away from the critical point. Right at criticality we expect IA,B

to be enhanced due to the longer range correlation [16].

In Fig. 2.7(a), we plot the mutual information IA,B(p; |A| = |B| = L/8, rA,B = L/2, L)

as a function of p for different system sizes. The mutual information has a peak at p = pc,

which gets sharper with increasing system sizes, as we expect. Moreover, the height of the

peak saturates to a constant that is independent of L, which is consistent with the conformal

symmetry discussed in the next subsection.

In Fig. 2.7(b), we attempt a data collapse with the following finite size scaling form,

IA,B(p; |A| = |B| = L/8, rA,B = L/2, L) = f
(
(p− pc)L

1/ν
)
, (2.23)

where f(x) ∝ e−c|x|ν , and c is a non-universal constant. The collapse is with high quality, and

the data fits well to the predicted functional form of f(x).

The von Neumann mutual information serves as an upper bound on the fluctuation of

connected correlation functions between two disjoint regions A,B [88],

IA,B ≥ 1

2

|〈OAOB〉c|2

‖OA‖2‖OB‖2
, (2.24)

where 〈...〉c denotes the connected correlation function, OA and OB are operators on A and B,

respectively, and ‖...‖ is the operator norm. For the purpose of illustration, we take A and B
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Figure 2.9: (a) Data collapse for the mutual information, IA,B , at pc as a function of the
cross ratio η, on a log-log scale. The red line corresponds to η2.1. (b) Fitting IA,B at pc
to Eq. (2.29), where we vary |A| = |B| but keep rA,B = L/2 fixed. The red line shows the
function (|A|/L)4.

to be the same antipodal subregions as above with |A| = |B| = L/8, and the operators to be

OA =
∑
x∈A

Zx, OB =
∑
x∈B

Zx. (2.25)

In Fig. 2.8 we plot the averaged value of | 〈OAOB〉c |2 as a function of p. Notably, the curves

all show a peak at pc, which gets sharper as L is increased.

We emphasize that the average squared correlation function is only obtained by examining

the quantum trajectories one by one, and cannot be written as the expectation value of any

operator,

〈OAOB〉2c 6= Tr (ρOA∪B) . (2.26)

Indeed, since ρ is the infinite temperature density matrix for arbitrary p > 0, it does not contain

any information about the entanglement phase transition [16, 17].

2.3.3 Emergent conformal symmetry at criticality

In 1d equilibrium quantum critical systems, the entanglement entropy and mutual infor-

mation of the ground state show universal scaling behaviors, as predicted by conformal field

theories (CFT) [89]. The logarithmic scaling of the entanglement entropy and the diverging
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correlation length suggest that our non-unitary entanglement transition might likewise be de-

scribed by some appropriate conformal field theory [85, 16].

To check for such possible underlying conformal symmetry, we compute the mutual infor-

mation between two disjoint intervals, whose size and locations can be varied. Let A = [x1, x2],

B = [x3, x4], C = [x2, x3], D = [x4, x1] be a partition of the system. In a conventional confor-

mal field theory the mutual information between A and B is related to a 4-point correlation

function of boundary condition changing operators, IA,B = F (〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉). As a

direct consequence of the conformal symmetry, it is a function only of the cross ratio [90], i.e.,

IA,B = f(η), where η ≡ x12x34
x13x24

, (2.27)

where xij is taken as the chord distance, xij = L
π sin

(
π
L |xi − xj |

)
because of the periodic bound-

ary condition.

We numerically compute the mutual information for a sequence of choices for the partition

such that the cross ratio takes value across several orders of magnitude. In Fig. 2.9(a), we plot

the mutual information versus the cross ratio at the critical point. We find that the data points

lie on a single curve, confirming the prediction of CFT. In the limit η � 1, we find IA,B ∝ η∆,

where ∆ ≈ 2.

One interesting regime is when A and B are distant sites, |A| = |B| = 1 � rA,B � L. Here

η ∝ r−2
A,B, so that,

IA,B ∝ r−2∆
A,B . (2.28)

Since the left and right boundaries of A (or B) are close, one can apply the operator product

expansion (OPE) to simplify the 4-point correlation function, and the mutual information can

now be viewed as the sum of 2-point correlation functions between operators that appear in

the OPE. The dominant term comes from the operator with lowest scaling dimension, which

can now be identified with ∆ in the putative underlying CFT.
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We can also consider another regime where η � 1. Let |A| = |B| = aL, with a � 1 and

rA,B = L/2, so that η ∝ a2. We thus have,

IA,B ∝ η∆ ∝ a2∆ =

(
|A|
L

)2∆

, (2.29)

as verified in Fig. 2.9(b) with ∆ = 2, and confirming the result in Fig. 2.7 where the height of

the peak saturates to a constant with increasing L. This setup will prove useful in extracting

∆ in other models.

To summarize, the numerical results strongly support an emergent conformal symmetry at

the critical point, and open up the possibility of an underlying CFT description.

2.4 Circuits with Symmetry

In previous sections we have been focusing on stochastic circuit models which have three

types of randomness present: (i) spatial and temporal randomness in the unitary gates, (ii)

spatial and temporal randomness in the positions of the measurements, and (iii) stochasticity in

the measurement outcomes. Due to (i) and (ii) these models are quite generic, with no imposed

symmetries or constraints (excepting the Clifford constraints). In this section we consider

simple Clifford circuit models which have additional constraints imposed, involving space or

time translational symmetry. In all examples considered we find the existence of a phase

transition sharing similar critical exponents with the random Clifford circuit. Remarkably,

this is true even for our most constrained model which has both space and time translational

symmetry in the unitary gates and the measurement locations (spatially uniform Floquet) – the

only remaining stochasticity being the measurement outcomes. This indicates the ubiquitous

and universal character of the entanglement transition in hybrid unitary-measurement systems.
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CNOTL

local-Z measurement

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

x

CNOTR

P x H

Figure 2.10: The Floquet Clifford circuit model within one time period. Measurements are
made at random locations between each adjacent unitary layer. The CNOTL/R gate is the
controlled-NOT gate with the left/right qubit as the control, and P and H are the phase gate
and the Hadamard gate, respectively (see Appendix A).

2.4.1 Floquet circuits with randomly located measurements

Unitary circuit models without measurements are naturally adapted for mimicking systems

with periodic drive [8, 91, 92, 93, 94]. In such circuits, the unitary gates are periodic in time,

but could be either random or regular in space. As for unitary Hamiltonian dynamics, there is

a notion of chaos in such Floquet circuits, as diagnosed by the entanglement growth [95, 96],

the operator growth (and butterfly effect in out-of-time-order correlator) [97], the level spacing

statistics and the spectral form factor [98, 91, 94, 92], etc; familiar examples include the kicked

Ising model, which will be discussed in the next section. The temporal randomness is not

essential for the development of chaos.

Here we first examine the measurement-driven entanglement transition in Floquet Clifford

circuits where the unitary background has both spatial and temporal translation symmetries,

but the measurements are still made at random positions, as shown in Fig. 2.10. We choose

the Floquet Clifford unitaries to be “chaotic”, having a recurrence time that is exponential in

the system size and maximal entanglement at shorter times. For the Clifford gates shown in

Fig. 2.10 we check that this holds by examining small system sizes (data not shown).

For the circuit in Fig. 2.10 the results for our numerical simulation are shown in Fig. 2.11.

The stabilizer length distribution shown in Fig. 2.11(a) has a behavior very similar to that

of the random Clifford circuit, clearly indicating the existence of both a phase transition and
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Figure 2.11: Numerical data for the circuit in Fig. 2.10. (a) The normalized stabilizer length
distribution for L = 512, where α(pc) = 1.6. (b) Collapsing the SA(p; |A| = L/2, L) data to
the scaling form in Eq. (2.22), where we set pc = 0.075 and ν = 1.3. (c) Mutual information
at pc for the geometry as in Fig. 2.9(b). We can similarly extract the exponent ∆ ≈ 2 from
the data with |A|/L� 1.

of SA = α ln |A| + s|A| scaling of the entanglement entropy in the volume law phase. The

coefficient of the critical logarithmic entropy, α(pc) ≈ 1.6, as extracted from the stabilizer

length distribution, is close in value to that of the random Clifford circuit. Moreover, we can fit

the entanglement entropy data near the transition with the finite-size scaling form in Eq. (2.22)

using the same critical exponent ν ≈ 1.3, and find a reasonable collapse (see Fig. 2.11(b)).

Finally, from the mutual information at criticality for the geometry as in Fig. 2.9(b), we can

extract the exponent ∆ ≈ 2 (see Fig. 2.11(c)), consistent with the random Clifford circuit

results.

2.4.2 Random unitary circuit with periodic measurements

We next consider a circuit in which the measurements are arranged (quasi-)periodically,

while the background unitary circuit is still composed of random Clifford unitaries, as illus-
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random Clifford unitary

local-Z measurement

Figure 2.12: Two examples of circuits with random Clifford unitaries but quasi-periodic
measurements, for (a) p < 0.5, and (b) p > 0.5.

trated in Fig. 2.12. Specifically, at a fixed measurement rate p, for each spacetime site (x, d) a

measurement is made if and only if

bx√pc < b(x+ 1)
√
pc , and bd√pc < b(d+ 1)

√
pc , (2.30)

where brc is the largest integer that is not greater than r.

In Fig. 2.13, we plot the numerical results for this circuit, and observe behavior that is

essentially the same as in the earlier models – both the random and Floquet Clifford circuit

models with randomly located measurements. Evidently, eliminating the randomness in the

locations of the measurements does not change the existence – or universality class – of the

entanglement transition.

2.4.3 Circuits with space-time translational symmetry

Lastly, we consider a circuit with translational symmetry in space and time for both the

unitaries and measurement positions. The only remaining stochasticity is in the randomness in

the outcome of a measurement, which is intrinsic to quantum mechanics.

In our circuit we superpose the Floquet unitary background in Fig. 2.10 with the quasi-

periodic measurement pattern in Fig. 2.12. Numerical results are shown in Fig. 2.14. As

compared to our earlier models, we once again find essentially the same stabilizer length dis-

tribution indicative of two phases and an entanglement transition. Moreover, the critical ex-
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Figure 2.13: Numerical data for the circuit in Fig. 2.12 with periodically located measurement
gates. (a) The normalized stabilizer length distribution for L = 512, where α(pc) = 1.6. (b)
Collapsing the SA(p; |A| = L/2, L) data to the scaling form in Eq. (2.22), where pc = 0.162
and ν = 1.3. (c) Mutual information at pc for the same geometry as in Fig. 2.9(b), where we
identify ∆ ≈ 2.
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Figure 2.14: Data for a Clifford circuit with space-time translational symmetry, as defined
in subsection 2.4.3. (a) The normalized stabilizer length distribution for L = 512, where
α(pc) = 1.6. (b) Collapsing the SA(p; |A| = L/2, L) data to the scaling form in Eq. (2.20),
where pc = 0.08 and ν = 1.3.
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Figure 2.15: The mutual information for the random Haar circuit with projective measure-
ments. In the numerical simulation the two regions A and B have size |A| = |B| = 1 and are
antipodal in a system with periodic boundary conditions of size L = 20. Here the regions A
and B are single sites.

ponents ν = 1.3 and α(pc) = 1.6 at the entanglement transition are the same as in the other

models.

The significant fluctuations in Fig. 2.14 are due to the lack of averaging – since we have only

a single circuit in this case there is no ensemble averaging. Moreover, for Clifford circuits with

Pauli measurements, the measurement outcomes are represented by the signs of the stabilizers,

and do not affect the entanglement structure or the mutual information. Thus, the randomness

in the measurement outcomes has no effect on the quantum information quantities here, and

we have an almost deterministic Clifford circuit. The only type of averaging available is as a

function of time.

2.5 Beyond Clifford

In this section we explore the transition in qubit systems beyond the stabilizer formalism.

2.5.1 Random Haar circuit

Consider the random Haar circuit with the structure shown in Fig. 2.1, where each rectangle

now represents a two qubit gate which is a 4 × 4 matrix chosen randomly and independently
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(a)

A B
r

(b)

Figure 2.16: Comparison between (a) the mutual information and (b) the squared correla-
tion function, in the random Haar circuit with projective measurements. In the numerical
calculation A and B are separated by distance r with |A| = |B| = 1 (see the inset).

from the Haar measure of the unitary group [65, 66, 99]. Without measurements, this is a

minimal model to study operator dynamics and chaos propagation in systems with small onsite

Hilbert space and local interaction [28, 100]. With measurements, it is the most generic model

in which the unitary-measurement dynamics can be addressed.

Random Haar circuit with projective measurements

We first consider the random Haar circuit with projective measurements. As in Fig. 2.1,

the single site projective measurements, taken to be P± = (1 ± Z)/2, are introduced on each

site independently with probability p. This model is closest in spirit to the random Clifford

circuit studied in Sec. 2.2 and 2.3, with which comparisons should be made.

As for the Clifford circuits, we use mutual information between two antipodal regions (in

a system with periodic boundary conditions) to diagnose the putative phase transition. This

approach is particularly useful for small systems with L = 20, where it is hard to distinguish

between volume law and area law scaling behavior by directly looking at the entanglement

entropy. The numerical results, where the two regions are taken to be single sites, are shown

in Fig. 2.15.

We notice that the mutual information for all Rényi indices show a peak, signifying the
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existence of a transition. Within the Haar circuit, Rényi entropies and the mutual information

can depend on the Rényi index n, and we discuss them separately. For I0A,B, the peak is located

at pc = 0.5, as predicted by the percolation mapping [16] (see the inset of Fig. 2.15). This

situation is different for InA,B with n ≥ 1, whose peaks are located at p much smaller than 0.5,

and there is no obvious mapping to percolation 5. While these peaks are rather broad due to

finite size effects, they sit close to one another, suggesting that pc is independent of n for n ≥ 1

– i.e. there is a single transition (instead of a different transition for each n).

As discussed in Sec. 2.3, the fluctuation in the connected correlation function is upper

bounded by the mutual information. We consider the following quantity in this model,

|〈OAOB〉c|2, where OA = Z1 and OB = Zr+1, (2.31)

and the distance r is varied. In our numerical calculations shown in Fig. 2.16, we find that it

takes a similar form as I1A,B and has a peak at the corresponding pc.

Random Haar circuit with generalized measurements

Projective measurements can be generalized to measurements that model imperfect mea-

suring devices, known as “generalized measurements” or “weak measurements” [69]. Here, the

coupling between the system and the measuring device is weak, and less information (≤ one

bit) is extracted from the system by one such measurement. We consider a model in which

the single site measurement gates in Fig. 2.1 are taken to be generalized measurements with

operators,

M± =
1± λZ√
2(1 + λ2)

. (2.32)

These measurement operators satisfy the required completeness relation, M †
+M++M †

−M− = 1.

The parameter λ represents the measurement strength: in the limit λ→ 0, the system and the
5Notice that for Rényi indices greater than 1, there is no subadditivity of entanglement, and the mutual

information is not necessarily non-negative, although in our data the mean values are never negative.
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(a) (b)

Figure 2.17: Data for the Haar unitary circuit with generalized measurements. (a) The
mutual information, I1A,B , where A and B are antipodal in the system with periodic boundary
conditions. (b) The squared correlation function as a function of λ. Here the two intervals A
and B are separated by distance r (see the inset of Fig. 2.16(b)). In both (a) and (b), we take
L = 20 and |A| = |B| = 1.

measuring device are totally decoupled and M± acts trivially on the wavefunction, while in the

limit λ → 1, it becomes a projective measurement. For simplicity, we take the measurement

rate p = 1 so that the generalized measurements are uniformly applied to each and every qubit

in the circuit. Notice that these generalized measurements do not have a Clifford counterpart.

In Fig 2.17(a), we present results for InA,B, where we find a peak for n ≥ 1. The closeness

of the peaks again suggests a single phase transition, as in the Haar circuit with projective

measurements. Compared to the projective measurement case we note that here there is no

phase transition in S0
A – as long as λ < 1, S0

A obeys a volume law. Moreover, we compute the

squared correlation function and find a peak close to λc (see Fig. 2.17(b)).

Despite the uniformly imposed generalized measurements, the wavefunctions are not com-

pletely disentangled as long as λ < 1. Moreover, the volume law phase is stable for λ < λc.
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exp(- i τ0 Zj Zj+1 )

exp(- i τ0 hX Xj )

exp(- i τ0 hZ Zj )

(a)

UF  =  

projective

generalized

(b) (c)

Figure 2.18: (a) The Floquet operator is specified by a quantum circuit. (b) The projective
measurements are introduced in the circuit after each two-qubit gate layer with probability
p. (c) The generalized (weak) measurements are applied uniformly with p = 1 in the circuit
after each Floquet operator, UF .

2.5.2 Floquet Ising circuits

As a generalization of the Floquet Clifford circuits from Sec. 2.4, we consider a Floquet

Ising spin chain model with the following Floquet operator,

UF = exp[−iτ0HZ ] exp [−iτ0HX ] , (2.33)

where

HX = hX

L∑
j=1

Xj ,

HZ =
L−1∑
j=1

ZjZj+1 + hZ

L∑
j=1

Zj . (2.34)
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Figure 2.19: Mutual information InA,B for the Floquet spin chain model with projective
measurements. A and B are antipodal in the periodic boundary condition. We take L = 20
and |A| = |B| = 1.

The Floquet operator defines a one-dimensional periodically driven system with period T = 2τ0.

This Floquet model is integrable when hZ = 0. We will focus on the generic non-integrable case

with hZ 6= 0. The circuit in Fig. 2.18(a) represents a particular discretization of the Floquet

operator that we adopt. For the special parameter set, (τ0, hX , hZ) = (π/4, 1, 1), the discretized

Floquet operator falls within the Clifford group. Without measurements, the Floquet circuit

has both temporal and spatial translational symmetries, and no randomness is present.

Floquet Ising circuit with projective measurements

We introduce projective measurements in the Floquet circuit (see Fig. 2.18(b)), taking the

measurement gates to be P± = 1
2 (1±X). The single site projective measurements are applied

randomly in the same fashion as in Fig. 2.10.

In Fig. 2.19 we show data for the mutual information as a function of p. Here we have taken

the parameter hZ = 0.9, with the rest of the parameters the same as the Clifford parameters.

There is a peak in InA,B, with the location of the peak depending weakly on the Rényi index,

which we identify as pc. Again, the data supports the existence of the entanglement transition.

The dashed line in Fig. 2.19 shows the data for hZ = 1.0, i.e. the Clifford limit in which

there is no n dependence. The Clifford curve is close to the n = 1 curve for the non-Clifford
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Figure 2.20: Mutual information InA,B for the Floquet spin chain model with gener-
alized measurements. A and B are antipodal in a system of size L = 20 with peri-
odic boundary conditions, while |A| = |B| = 1. The Floquet parameters are chosen as
(τ0, hX , hZ) = (0.8, 0.9045, 0.809) [8].

circuit and gives a consistent estimation of pc. This comparison further justifies using the

Clifford circuits as a convenient stand-in for more generic (non-Clifford) quantum circuits.

Floquet Ising circuit with generalized measurements

We next introduce generalized measurements in the Floquet spin chain model, again taking

the measurement rate p = 1, so that the generalized measurements are uniformly applied at each

and every site after UF (see Fig. 2.18(c)). The result for the mutual information is presented in

Fig. 2.20. Once again, the presence of the peak is indicative of an entanglement transition. As

in the random Haar circuit with generalized measurements, there is no phase transition in S0
A.

2.5.3 Various properties at criticality

The location of pc

The previous numerical results for random Haar circuit and Floquet Ising model suggest

that pc is independent of the Rényi index n when n > 1. This result can be further supported
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by the following inequality for Rényi entropies,

S∞
A ≤ Sn

A ≤ n

n− 1
S∞
A , (2.35)

where the second inequality holds when n > 1. Since Sn
A is bounded on both sides by S∞

A , in

the thermodynamic limit, the scaling behavior of Sn
A (n > 1) must be the same at any p. This

indicates that the transition for Sn
A with n > 1 occurs at the same pc and the critical exponent

ν should also be the same. However, the coefficient α in Sn
A(pc; |A|, L) = α(pc) ln |A| at the

critical point could depend on n.

Scaling of mutual information

As shown in Sec. 2.3.3, for the Clifford circuits we were able to extract the operator scaling

dimension of a (putative) underlying CFT from the scaling of mutual information at criticality.

Here, we attempt the same for the four non-Clifford models considered in this Section. To this

end, we compute IA,B with fixed |A| = |B| = 1, varying the distance rA,B between the two

sites. In this case the cross ratio varies as η ∝ r−2
A,B � 1.

In Fig. 2.21 we plot the mutual information as a function of the cross ratio η, which is

defined in Eq. (2.27) for a system with periodic boundary conditions. At small values of η, the

mutual information for all four models varies as a power law, I1A,B ∝ η∆ with ∆ ≈ 2, consistent

with the Clifford circuit results (see Figs. 2.9(b), 2.11(c), and 2.13(c)).

2.6 Discussion

2.6.1 Summary

In this Chapter we have investigated a broad class of hybrid quantum circuit models con-

structed by interleaving unitary and measurement gates, the latter breaking the circuits unitar-

ity. Under the circuit dynamics we have followed quantum trajectories of the qubits, focussing

on the entanglement properties of the evolving pure state wavefunction at late times (in the
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steady state). Entanglement generated by the unitary gates competes with the disentanglement

from the measurements. As established numerically, upon varying the frequency of measure-

ments, p, the phase diagram has two stable phases – a volume law entangled phase when

measurements are rare/weak (p < pc), and an area law entangled phase when measurements

are frequent/strong (p > pc). These two phases are separated by a critical point at p = pc, with

associated universal scaling properties.

The entanglement entropy in the volume law phase has a remarkable sub-leading correction

that is logarithmic in the sub-system size, SA = α(p) ln |A| + s(p)|A|, as we established by

analyzing the length distribution of stabilizers used to simulate our Clifford circuits. The

coefficient of the logarithm is non-universal throughout the volume law phase, but vanishes in

the absence of measurements, α(0) = 0. The coefficient of the linear piece in the entanglement

entropy, s(p), smoothly vanishes as one approaches the phase transition from the volume law

phase, scaling as s(p) ∼ ξ−1 ∼ (pc−p)ν with a universal correlation length exponent ν ≈ 1.3. At

the critical point, the logarithmic scaling of the entanglement entropy survives, with a universal

coefficient given by α(pc) ≈ 1.6. Moreover, the mutual information between two sites was found

to decay as a power law of the distance at the critical point, r−2∆ with exponent ∆ ≈ 2, while

the bipartite mutual information for more general geometries depends only on the cross ratio,

as expected for a conformal field theory (CFT). Together with the logarithmic entanglement at

pc, this suggests the possible existence of an underlying CFT description.

It should be emphasized that these results were established by considering a large class of

quantum circuits, both with and without Clifford gates. In addition to generic random models

with no symmetries, we also explored circuits with space-time translational symmetries of the

unitary dynamics and/or the measurement gate locations. In all cases we found stable volume

law phases with a logarithmic correction, and similar critical exponents as in models without

those symmetries.

43



Hybrid circuit model and the measurement-induced phase transition Chapter 2

2.6.2 Volume law phase and powerlaw correction

We now discuss a general framework incorporating measurements and unitaries that can be

used to help better understand and bolster our numerical results. As above, we emphasize that

the steady state entanglement properties of purely unitary circuits are qualitatively different

from those circuits with measurements. In the absence of measurements, the steady state is

maximally entangled, i.e. each subset A has an entanglement entropy of SA = |A|. Measure-

ments on a portion p of all qubits immediately reduces SA from |A| to (1 − p)|A|. This result

is a direct consequence of the subadditivity of entanglement. Thus the maximally entangled

state is very susceptible to measurements. Indeed, if we assume that this pSA reduction in SA

is true for any volume law entangled state, we would reach the conclusion that no volume law

phase should exist [18].

However, this intuition does not carry over to the case for the generic volume law entangled

states present with measurements, which, firstly, have a linear slope s smaller than 1 − p, so

that the subadditivity bound on entanglement is no longer tight. With less entanglement,

local measurements would have a weaker effect. Indeed, taking the limit of a trivial product

state, a local measurement has only a local effect because of the lack of entanglement.

To illustrate this argument, we consider the following “surface growth” picture, as considered

in Ref. [16] and shown in Fig. 2.22. Taking open spatial boundary conditions, we define a

“height” function, h(x), to be the entanglement entropy of the subsystem containing the first

x qubits,

h(x) = SA={1,2,...,x}. (2.36)

It is convenient to define the average height function,

h :=
1

L

∑
x

h(x). (2.37)

In the volume law phase, h ∝ L1, while in the area law phase h ∝ L0, similar to the scaling of
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the entanglement entropy with subsystem size. Consider now the effect of the circuit dynamics.

At all times, h grows under unitary time evolution. After a unitary layer in the circuit, it is

expected that,

∆Uh ∝ L0. (2.38)

Recall that each measurement layer has pL measurement gates distributed homogeneously

across the L qubits, after which the reduction in h̄ is,

∆Mh =
1

L

pL∑
i=1

L∑
x=1

(
h(i)(x)− h(i−1)(x)

)
=

pL∑
i=1

δMh
(i)
, (2.39)

where h(i) is the height function after the first i measurements are made, and δMh
(i)

:=

1
L

∑L
x=1

(
h(i)(x)− h(i−1)(x)

)
is the reduction of h by the i-th measurement. Each of the δMh

(i)

has a non-positive expectation value.

At this point, we ignore the correlations and causal relations among measurements within

the circuit, and treat δMh
(i) for all measurements deep within the circuit as an independent

samplings of a single random variable, δMh. This simplification is based on the assumption

that in a generic circuit with little structure, the disentanglement of a single measurement

should depend only on the entanglement structure of the pre-measurement wavefunction, which

fluctuates weakly over time after saturation.

Therefore, Eq. (2.39) can be simplified as

∆Mh = (pL)
〈
δMh

〉
, (2.40)

where 〈. . .〉 denotes the expectation value, taken within the ensemble of all measurements after

saturation. Here, δMh quantifies the disentangling ability of a single local measurement.
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By definition, within the steady state, the entangling and disentangling effects must balance

out, i.e. ∆Uh+∆Mh = 0, therefore
〈
∆Mh

〉
∝ L0, or

〈
δMh

〉
= O

(
1

L

)
. (2.41)

This is a relation that must hold for all p > 0, regardless of the steady state entanglement

entropy. In particular, it must hold in any volume law entangled state in the presence of

measurements, despite the fact that
〈
δMh

〉
= O(L0) in a maximally entangled state and in a

Bell pair state as discussed in Ref. [18].

Direct numerical evidence for the validity of Eq. (2.41) for all p > 0 can be established in our

Clifford circuits, as we now discuss. As detailed in Appendix B, we compute the normalized

distribution function of δMh for the random Clifford circuit. Specifically, the distribution

function of the “disentanglement length” R ≡ −L× δMh, which we denote as P(R), takes the

following schematic form within the volume law and area law phases,

P(R) ∼


R−γ(p), p < pc,

e−R/R0R−γ(p), p > pc,

(2.42)

where R0 is proportional to the correlation length in the area law phase. Here the power γ(p),

which varies with p throughout the volume law phase, grows as we increase p, consistent with

our intuition that less entanglement implies less disentanglement. For p very small γ(p) appears

to approach 2, and is close to 3 when p = pc, γ(pc) ≈ 3. Throughout the volume law phase γ(p)

is always larger than 2. Thus, despite the power law distribution of the disentangling scale, R,

in the volume law phase, the average disentangling length, 〈R〉 =
∫ L/2

dRRP(R) is finite for

all p > 0. We then conclude that
〈
δMh

〉
= −〈R〉/L = O(1/L), validating Eq. (2.41).

When restricted to Clifford circuits, the difference between the maximally entangled state

and a general volume law entangled state in the presence of measurements is well illustrated

by the stabilizer length distribution. As we show in Appendix B, within the clipped gauge,
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a local measurement (say Zx) replaces one of the L stabilizers with Zx, while rearranging the

others in a way that more or less preserve their lengths. When p = 0, the stabilizer distribution

function is a delta function at ℓ ≈ L/2. In other words, there are only long stabilizers but

no short ones. In this case, a local measurement will inevitably replace a long stabilizer with

Zx, causing a non-local change in the entanglement structure, as seen from Eq. (2.10). On

the other hand, when p > 0, the power law distribution of “shorter” stabilizers protects the

long stabilizers in the ℓ ≈ L/2 peak from always being replaced by a unit length one (Zx), so

that the replacement and rearrangement only happens within the “shorter” stabilizers, thereby

preserving the volume law entropy. In the (rare) case when a long stabilizer does get replaced

by Zx, the power law distribution of “short” stabilizers can shift to the right under unitary

evolution and compensate this reduction, rendering the distribution steady. In all models that

we have studied, the inverse-square power law distribution of the “shorter” stabilizers is present,

giving the sub-leading logarithmic correction to the entanglement entropy. We might thus say

that the logarithmic correction is necessary for the stability of the volume law phase.

It seems plausible that the power law distribution in the measurement induced “disentan-

glement length”, P(R), and the power law distribution of the “shorter” stabilizers are related

to one another, but the exact relation remains unknown to us. Although the distribution P(R)

was computed for the random Clifford circuit it is defined with complete generality, and we

believe that both the stability criterion γ > 2 as well as the logarithmic correction are universal

for volume law phases stable against measurements in generic hybrid circuits.
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Figure 2.21: The mutual information I1A,B for the four non-Clifford models studied in Section
VI, each at their respective critical points, plotted versus the cross ratio, η, on a log-log
scale. Here, the critical values, pc and λc were determined by the peak location of I1A,B when
rA,B = L/2 = 10.

x

h(x)

x1 x2

Zx1 U(x2 , x2+1)

Figure 2.22: The entanglement entropy growth problem can be transformed into a surface
growth model. While the unitary entanglement growth is local, the disentanglement of a local
measurement (Zx1

) can be non-local.
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Chapter 3

Conformal invariance at the critical

point

Entanglement is a central concept in quantum physics. It violates classical laws of physics in

dramatic ways, and makes quantum communication and quantum computation fundamentally

more powerful than their classical counterparts [69]. In recent years, the entropy of entan-

glement has proven useful in condensed matter physics, providing new insights and tools for

understanding quantum states of matter, either in or out of equilibrium, at zero or finite tem-

perature [3, 4, 101, 89, 102, 103, 104, 10, 11].

One of the most bizzare aspects of entanglement, namely quantum non-locality, has always

involved wavefunctions subject to measurements. The measurements, albeit local, have non-

local influences on the states and their entanglement structure. In the famous EPR thought

experiment [1, 105], one destroys entanglement between a pair of distant qubits by making

local measurements in exchange for perfectly correlated measurement outcomes. Conversely,

one can entangle a pair of distant qubits with local measurements via a mechanism similar

to quantum teleportation [106, 107], without the two ever needing to talk to one another – a

phenomenon known as “entanglement swapping” that has found wide applications in quantum

information science [106, 108, 109, 110] (see Fig. 3.1(a) for an illustration). These are examples
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tim
e 2-qubit measurement 

in the Bell basis

Before:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~
After:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

Alice Bob Charlie Eve

(a)

~~~~~~~~~~~ ~~~~~~~~~~~…

~~~~~~~~ ~~~~~~~~…

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

tim
e

(b)

Figure 3.1: Illustration of the entanglement swapping protocol. (a) An example with
four parties. The initial state consists of two Bell pairs, (Alice, Bob) and (Charlie, Eve),
with Alice and Bob far apart, as well as Charlie and Eve. Suppose Bob and Charlie are
spatially proximate and they make a collective 2-qubit measurement in the Bell basis (
{ 1√

2
(|00〉 ± |11〉) , 1√

2
(|01〉 ± |10〉)}) [69]. The measurement “swaps” the entangled pairs, and

now we have entangled pairs (Alice, Eve) and (Bob, Charlie). Notice that Alice and Eve never
directly talked to one another, but nevertheless become entangled due to the measurement:
for each one of the four possible measurement outcomes, Alice and Eve share a different state
in the Bell basis. Since the distance between Alice and Eve is arbitrary, the speed of entangle-
ment is arbitrarily large. However, no information is transmitted: in order for Alice and Eve
to know what their wavefunction is, classical information about the mesurement outcome must
be obtained from Bob and Charlie via classical communication. (b) A many-qubit example of
entanglement swapping. In this circuit with nearest neighbor gates, only a finite circuit depth
is required to generate a long-range entangled Bell pair, given that the initial state is properly
set-up and each two-qubit Bell measurement is perfect. This fine-tuned example merely serves
the purpose of illustrating the possibility of infinite entangling speed in many-body systems.
Notice the similarity with the actual circuit in Fig. 3.2.

of “measurement-induced quantum non-locality” in systems of a few qubits, and the experi-

ments usually require carefully following specific protocols (that is, making the right unitary

gates and right measurements at the right place and right time). One is therefore led to the

following question: can quantum non-locality show up in many-body quantum dynamics under

measurements without fine tuning? Notice that this is never possible in unitary systems, since

information as well as quantum entanglement must evolve in a strictly local fashion, as required

by the Lieb-Robinson bound [111, 112].

The numerical accessibility of the hybrid circuit model defined in Chapter 2 (see Fig. 2.1)

alone makes it a convenient theoretical platform for investigating non-unitary quantum dy-

namics. For example, one can ask if the aforementioned measurement-induced quantum non-

localtity shows up in such circuits. In Ref. [59], it was suggested that the disentangling capa-

bilities of local measurements are indeed non-local, as evidenced by the powerlaw distribution
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of the “disentanglement length” throughout the volume-law phase and at the critical point.

However, this was an indirect probe lacking an explicit information-theoretic meaning.

On a seemingly separate note, it was found that the steady state wavefunction right at the

critical point exhibits long-range correlations and conformal invariance [16, 59, 30]. While in

random unitary circuits the time-evolution is well understood [72, 28, 100], exactly how the

long-time critical entanglement structures of the hybrid quantum circuits emerge under the

real-time evolution, has not been explicitly described (see relevant discussions in Refs. [16, 30]).

In the present work, we establish the emergence of conformal symmetry in the spacetime

circuit right at the critical point – by illustrating its role in describing the critical entanglement

dynamics – and discuss the physical mechanism underpinning its emergence, namely the afore-

mentioned non-locality induced by quantum measurements. Our starting point is a simple pos-

tulate that at the critical point, the spacetime manifold of the hybrid circuit hosts a Euclidean

field theory, with the real-time direction of the circuit playing the role of imaginary/Euclidean

time of the field theory (this naturally accounts for the absence of a Lieb-Robinson bound, as

we briefly explain below). This idea was already implicit in the mappings to effective spin mod-

els [31, 30] relating quantum entanglement entropy to the boundary free energy of a classical

statistical mechanics model [85]. Once time is interpreted as another spatial dimension, and

entanglement entropies as boundary free energies, it is immediate that the conformal invariance

– therefore also “criticality” and long-range correlations – makes already detailed predictions

for entanglement dynamics at the very early times. Long-range correlations at arbitrarily early

times imply an infinite entangling speed (as detailed in Eqs. (3.75, 3.76)), giving a positive

answer to the question raised above – that there is indeed a many-body version of entangle-

ment swapping induced by measurements in the circuit, despite the fact that the circuit is

composed of completely random unitaries and measurements (as opposed to carefully designed

protocols as in Fig. 3.1).1 This suggests that “measurement-induced quantum non-locality” is
1There are important subtleties in this statement, which we clarify immediately below.
• Entanglement itself does not contain information, and absence of lightcone in entanglement dynamics does

not imply the ability to send information faster than light. As emphasized in the caption of Fig. 3.1, to
verify the entanglement that has been generated by entanglement swapping, classical communication of
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a consequence of broken unitarity, rather than of specific protocols/algorithms.

We establish the main results by studying the random Clifford circuit model for a 1d chain of

Qubits, introduced in Ref. [59], taking a trivial product initial state and open spatial boundary

conditions, tuned to the transition. The space-time region of the circuit is thus a rectangle.

The Gottesman-Knill theorem [44, 67, 68] enables efficient simulation of Clifford circuits of

up to thousands of qubits on a laptop, allowing us to perform detailed scaling analyses. We

numerically compute the entanglement entropies and mutual information for various subregions

at all time steps of the evolution, and verify that their dynamics are completely characterized by

boundary 3- and 4-point correlation functions, respectively, of a CFT in the finite rectangular

geometry. From the data we also extract several critical exponents characterizing the underlying

Clifford CFT.

We further explore several different sets of boundary conditions of the Clifford circuit, by

“inserting” physical qubits initialized in a trivial product state at the spatial and/or temporal

boundaries of the finite circuit. Remarkably, the boundary qubits become critically entangled

through the bulk as an intermediary, despite the fact that they never talked directly to each

other – another manifestation of entanglement swapping. Numerical computations of entangle-

ment entropies and mutual information further confirm the presence of conformal symmetry,

and give consistent estimates of corresponding boundary operator scaling dimensions appearing

in various different observables.

Among various different setups, of particular interest is the one in which the initial state

consists of L Bell pairs (i.e. of L maximally entangled pairs of qubits). By taking one qubit

the measurement outcomes is necessary (for specifying the pure state wavefunction after the measurement,
much like in a quantum teleportation experiment). This type of communication between “people” that
perform and monitor the experiment is of course not included in the simple circuit model.

• The entanglement dynamics is only accessible in the pure state quantum trajectories, and is not accessible
in the mixed state density matrix. In fact, in the density matrix everything remains local, since we are only
applying local operations. To experimentally access the nonlocal entanglement one needs to prepare several
copies of the same wavefunction, which requires heavy post-selection on the measurement outcomes. The
need of introducing an “experimenter” doing all the work of recording measurement outcomes and post-
selecting them, is in some sense similar to the aforementioned need of classical communication between
“parties” in order to verify entanglement swapping.
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from each pair, we form a length-L qubit chain which is subsequently subject to the hybrid

circuit dynamics (the “system qubits”); the remaining qubit chain (the “environment qubits”)

is left unevolved. The two qubit chains appear to be on the same footing and have identical

entanglement structures at all times. In particular, while the system qubits experience the

entanglement transition, the environment qubits also know about the transition. After tracing

out the environment qubits, this setup is equivalent to the one in Ref. [21], where a mixed-state

density matrix was time-evolved. The entanglement entropy between the system qubits and

the environment qubits is correspondingly interpreted as the “purity of the system”, and the

entanglement transition is now a “purification transition”, between a “mixed phase” and a “pure

phase” characterized by, among other things, slow and fast purification dynamics, respectively.

In our CFT language, this setup maps to the same bulk theory but with a different boundary

condition, so the purification transition is indeed the same bulk transition as the transition

in entanglement entropy with a pure initial state. We show that the (T/L)−1 decay (T is

the circuit depth) of the entanglement entropy between “system” and “environment” at early

times, observed in the numerics of Ref. [21], follows directly from conformal symmetry, which

in turn identifies the amplitude of that decay as a universal (boundary) scaling dimension of

the CFT (up to a factor of π). We also show that the universal exponential decay of the same

quantity at late times is a consequence of crossover to a quasi-one-dimensional system, the

rate of decay being given by yet another universal (boundary) scaling dimension of the CFT,

which we identify here. These results are consequences solely of the conformal invariance; they

hold in all CFTs, and thus hold, in particular equally in other critical hybrid quantum circuits

described by CFTs, presumably including those with Haar unitaries.

We apply the same reasoning to the analysis of the problem of the 0th Rényi (Hartley)

entropy in random Haar circuits, which is believed [16] to be described by two-dimensional crit-

ical first-passage percolation. Comparison between the critical properties of the von Neumann

entropy in Clifford CFT and those of the so-obtained zeroth Rényi (Hartley) entropy in the

Haar circuits is made, and their relationship is discussed.
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The rest of this Chapter is organized as follows. In Sec. 3.1, we introduce the random hybrid

circuit model in rectangular geometry with several sets of boundary conditions. We then give a

statement of the conjecture regarding the presence of conformal symmetry, as well as a concrete

prescription for computing the entanglement entropy of an arbitrary segment at an arbitrary

time step. In Sec. 3.2, we present the main results of this Chapter, namely the numerical data on

entanglement entropy and mutual information dynamics in the rectangular circuit, and compare

them with CFT calculations. In Sec. 3.3, we present results for circuits with periodic boundary

condition, that are used for fixing tuning parameters of our fitting scheme. In Sec. 3.4, we

discuss the universality of our results, relations to other works, and possible future directions.

In Appendix C.1, we provide, for reference, a list of elementary facts from conformal field theory

used in this Chapter. In Appendix C.2, we discuss purification dynamics of “reference qubits”

recently introduced in Ref. [113], which reveals a boundary operator scaling dimension taking

different values in the Clifford CFT and in critical percolation. This result is further confirmed

by a separate calculation in Appendix C.3. In Appendix C.4, we present parallel numerics and

analysis of two-dimensional critical first-passage percolation.

3.1 The hybrid circuit model and the conjecture

3.1.1 The hybrid circuit models with different boundary conditions

Amongst various versions of the hybrid quantum circuit model [16, 17, 59, 20, 21, 31,

30], we take the one with random Clifford unitaries on pairs of qubits (with local Hilbert

space dimension q = 2) and projective measurements of single-site Pauli operators made in a

Poissonian fashion with probability p, which was introduced in Ref. [59] and referred to as “the

random Clifford circuit”. We focus on the critical point of the entanglement transition, taking

p = pc ≈ 0.1600 in this particular model [59, 21] (see Sec. 3.3 for the location of the transition).

The circuit model is always defined together with its boundary conditions (b.c.), which we

take, for the most part of this Chapter, to be open spatial boundary conditions. In Fig. 3.2, we
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Figure 3.2: Random hybrid Clifford circuit model with different boundary conditions. The
rectangles in cyan represent random Clifford unitary gates, arranged in a brickwork fashion.
Between the unitary layers are projective measurements of single-site Pauli operators made at
random sites at probability p = pc, represented by hollowed circles. The blue solid circles at
the upper boundary represent physical qubits after evolution of circuit depth T . Notice that
time runs “upwards”. In (a), we illustrate the simplist b.c. of all, with a trivial product state
and open spatial b.c. These two are assumed to correspond to the same “free b.c.”, denoted f
and represented with black color. The blue edge represents a “physical qubit b.c.”, denoted a.
The two boundary conditions are separated by boundary condition changing (bcc) operators
at the corners, denoted z1 and z4. In (b), we “insert” initially unentangled physical qubits at
the left and right edges of the circuit at every time period, so that we have the a b.c. on three
edges of the rectangle, with the other one still in f . In (c), we take the initial state of L Bell
pairs, and take one qubit from each pair to form a qubit chain (the system) which undergoes
the circuit dynamics, leaving the other qubit chain untouched (the environment). We put the
environment and the system on the t = 0 and t = T boundaries, respectively, and both in the
a b.c. In (d) we combine the initial state in (c) and the “temporal insertion” setup, to obtain
a circuit with a on all four sides. We shall refer to the four sets of boundary conditions as
(a)fffa, (b)afaa, (c)fafa, and (d)aaaa, respectively.

55



Conformal invariance at the critical point Chapter 3

bc
c

op
er

at
or

D
efi

ni
tio

n
Sc

al
in

g
di

m
en

sio
n

R
ef

er
en

ce

ϕ
f|

a,
ϕ

f|
b

,
h

f|
a
=
h

f|
b

is
un

kn
ow

n
Eq

s.
(3

.2
,3

.4
,3

.5
,3

.3
3)

.

ϕ
a|

b
∼

h
a|

b
=

0
.7
6
ln
(2
)
=

0
.5
3

Eq
s.

(3
.4

,3
.2

3,
3.

47
);

Fi
gs

.(
3.

5,
3.

6,
3.

8,
3.

9,
3.

11
,C

.1
)

ϕ
(1

)
f|

a
∼

ϕ
f|

a
+
ϕ
(1

)
f|

a
h
(1

)
f|

a
=
h

f|
a
+
0
.9

Eq
.(

3.
33

);
Fi

gs
.(

3.
5,

3.
6)

.

ϕ
(1

)
f|

f
∼

1 f
|f
+
ϕ
(1

)
f|

f
h
(1

)
f|

f
=

0
.4
1

Eq
.(

3.
58

);
Fi

gs
.(

3.
8,

C
.1

,C
.2

,C
.3

).

ϕ
(1

)
a|

a
∼

1 a
|a
+
ϕ
(1

)
a|

a
h
(1

)
a|

a
=

2
.0

Eq
.(

3.
36

,3
.4

8)
;F

ig
.(

3.
9)

-
-

x p
.b
.c
=

0
.1
2
5

Eq
.(

3.
84

);
Fi

g.
(3

.1
1)

.

Ta
bl

e
3.

1:
A

su
m

m
ar

y
of

bo
un

da
ry

co
nd

iti
on

s(
b.

c.
),

bo
un

da
ry

co
nd

iti
on

ch
an

gi
ng

(b
cc

)o
pe

ra
to

rs
,a

nd
th

ei
ro

pe
ra

to
rp

ro
du

ct
ex

pa
ns

io
ns

(O
PE

)t
ha

tw
ill

ap
pe

ar
la

te
ri

n
th

is
C

ha
pt

er
.

T
he

re
ar

e
th

re
e

ty
pe

so
fb

.c
.,

na
m

el
y

(1
)f

,c
or

re
sp

on
di

ng
to

pr
od

uc
t

in
iti

al
st

at
e

an
d

op
en

sp
at

ia
lb

.c
.

of
th

e
ci

rc
ui

t;
(2

)
a,

co
rr

es
po

nd
in

g
to

ph
ys

ic
al

qu
bi

ts
;a

nd
(3

)
b,

co
rr

es
po

nd
in

g
to

qu
bi

ts
fo

r
w

hi
ch

th
e

en
ta

ng
le

m
en

te
nt

ro
py

is
co

m
pu

te
d.

Ex
ch

an
ge

sy
m

m
et

ry
be

tw
ee

n
a

an
d

b
is

as
su

m
ed

.
T

he
fu

nd
am

en
ta

lb
cc

op
er

at
or

is
th

e
on

e
se

pa
ra

tin
g

f
an

d
a,

w
hi

ch
we

de
no

te
as
ϕ

f|
a

(o
ri

ts
sy

m
m

et
ric

co
un

te
rp

ar
tϕ

f|
b)

.T
he

O
PE

be
tw

ee
n
ϕ

a|
f

an
d
ϕ

f|
b

gi
ve

s
ris

e
to

a
bc

c
op

er
at

or
se

pa
ra

tin
g

a
an

d
b,

an
d

we
de

fin
e
ϕ

a|
b

to
be

th
e

le
ad

in
g

te
rm

w
ith

sm
al

le
st

sc
al

in
g

di
m

en
sio

n.
T

he
se

tw
o

op
er

at
or

s
ϕ

f|
a

an
d
ϕ

a|
b

ar
e

as
su

m
ed

to
tr

an
sfo

rm
as

pr
im

ar
y

fie
ld

s
un

de
r

co
nf

or
m

al
tr

an
sfo

rm
at

io
ns

[1
14

].
W

e
fu

rt
he

r
de

fin
e

ϕ
(1

)
f|

a,
ϕ
(1

)
f |

f,
an

d
ϕ
(1

)
a|

a
as

th
es

ub
lea

di
ng

op
er

at
or

si
n

th
ec

or
re

sp
on

di
ng

O
PE

ch
an

ne
ls.

In
th

es
eO

PE
sw

eh
av

es
up

pr
es

se
d

pr
ef

ac
to

rs
an

d
on

ly
ke

pt
th

e
op

er
at

or
co

nt
en

t;
th

e
fu

ll
fo

rm
w

ill
be

pr
ov

id
ed

w
he

n
th

ey
ar

e
en

co
un

te
re

d
(s

ee
al

so
A

pp
en

di
x

C
.1

).
W

e
su

m
m

ar
iz

e
sc

al
in

g
di

m
en

sio
ns

ex
tr

ac
te

d
fo

r
th

es
e

op
er

at
or

s
an

d
th

ei
r

ap
pe

ar
an

ce
in

th
is

C
ha

pt
er

,w
hi

ch
we

re
fe

r
to

fo
r

m
or

e
de

ta
ile

d
ex

pl
an

at
io

ns
.

N
ot

ic
e

th
at

we
ar

e
un

ab
le

to
ex

tr
ac

t
th

e
sc

al
in

g
di

m
en

sio
n

fo
r
ϕ

f|
a

sin
ce

it
do

es
no

t
ex

pl
ic

itl
y

ap
pe

ar
in

th
e

en
ta

ng
le

m
en

t
en

tr
op

y
ca

lc
ul

at
io

n.
x
p
.b
.c
.

ap
pe

ar
in

g
at

th
e

bo
tt

om
is

no
t

as
so

ci
at

ed
to

sc
al

in
g

di
m

en
sio

ns
of

bc
c

op
er

at
or

s;
ra

th
er

,i
t

is
a

un
iv

er
sa

ls
ca

lin
g

ex
po

ne
nt

of
th

e
bu

lk
C

FT
(s

ee
Se

c.
3.

3)
.

56



Conformal invariance at the critical point Chapter 3

illustrate the circuit model with the corresponding space-time geometry of a finite rectangle,

with length L (measured in terms of the number of qubits) and depth T (measured in terms

of the number of unitary layers), where we define 4 sets of different b.c. on its edges. In

order to introduce the circuit models, we have to make several postulates in assigning the

boundary conditions; in this section we neither explain the physical meanings of these boundary

conditions, nor provide justifications of our assumptions. We postpone these issues to later

sections: Sec. 3.1.2, Sec. 3.2 and Appendix C.4. We proceed by listing the four sets of boundary

conditions that we consider:

(a) The simplest of all is the one with a product initial state and open spatial b.c. at the right

and left boundaries of the rectangle (Fig. 3.2(a) – time goes “upwards”). We posit that

these two map to the same b.c. (in the sense described in Sec. 3.1.2), which we refer to

as the “free b.c.”, denoted f . We further posit that the physical qubits at the boundary

representing the quantum state at final time t = T map to a different b.c., which we refer

to as the “physical qubit” b.c., denoted a.

Since the b.c. change from f to a at the corners denoted by z1 and z4 in Fig. 3.2(a), we

say that there are (analogous to Ref. [85, 30]) boundary condition changing (bcc) operators

ϕf |a(z1) and ϕa|f (z4) located at these corners. The meaning of the bcc operators will be

specified in Sec. 3.1.2.

As a result, we have a circuit with boundaries labeled by the sequence of boundary condi-

tions fffa in counter-clockwise order (starting from the left boundary of the rectangle).

(b) In the 2nd case, we introduce physical qubits at the left and right edges of the rectangle

in the following manner (see Fig. 3.2(b)). We retain L − 2 qubits sitting at positions

x = 2, . . . , L − 1 of the chain, and at each time step, we introduce two “fresh” qubits,

each initially in a disentangled 1-qubit pure state (the specific state is unimportant), and

“inject” them into the system as the 1st and the L-th qubit of the circuit. The L-qubit

chain is then evolved under the circuit dynamics for one time period (notice that one time

step corresponds to two consecutive unitary layers). After that period, we take out the 1st
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and the L-th qubit, keep them somewhere else without further actions on them, and fill

their positions in the chain with two new fresh qubits in the next time period. For a circuit

of depth T (with T even), by the end of its evolution, the left and right edges will each

have T/2 qubits, namely those “fresh” qubits that have been “injected” on the right and

left edges, in addition to the L − 2 qubits at the final time t = T (the upper edge of the

rectangle), taking the same position as qubits in the previous setup (a). We posit that they

map to the same b.c. a, as that discussed in the previous setup (a). As compared with

Fig. 3.2(a), we now have eliminated the bcc operators at the corners denoted by z1 and z4,

at the cost of introducing new bcc operators ϕf |a(z2) and ϕa|f (z3) at the corners denoted

by z2 and z3. By the same convention as above, we refer to this b.c. as afaa.

(c) In the 3rd case, we take an initial state composed of L pairs of maximally entangled qubits

(i.e. Bell pairs), where different pairs are unentangled with each other (as required by

monogamy of entanglement). Taking one qubit from each pair, we form an L-qubit chain

(which we call the “system”), and the rest form another L-qubit chain (which we call the

“environment”). We let the “system chain” undergo the circuit dynamics of depth T , while

the “environment chain” is left unevolved. By the end of the evolution, we naturally have

the “system” at the upper edge of the rectangle, and we assume that the “environment”

“lives” on the lower edge (in a sense to be specified in Sec. 3.1.2). We further posit that the

upper and lower edges are described again by the same b.c. a, discussed in the previous

two setups (a) and (b), as shown in Fig. 3.2(c).

In this setup, there are bcc operators at all 4 corners to start with: ϕf |a(z1), ϕa|f (z2),

ϕf |a(z3), ϕa|f (z4). We refer to this b.c. as fafa.

(d) In the 4th case, we combine the b.c. in (b) and (c) so that we have physical qubits on all

four edges. Specifically, we take the initial state as described in (c), and while evolving the

“system”, we inject physical qubits at each time step as in (b). The physical qubits on all

four edges are assumed to correspond to the same b.c., a, as shown in Fig. 3.2(d).
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In this setup, we do not have any bcc operators at any of the corners (since the b.c. do not

change). We refer to this b.c. as aaaa.

As clarified above, at this point issues like the “labelling” of the boundary conditions (with

f or a) and “where the physical qubits sit on the rectangle” are meaningless until certain

observables are assigned to them. As we will see next in Sec. 3.1.2, the boundary conditions

are important in defining boundary free energies within the putative conformal field theory.

3.1.2 Statement of the conjecture and example calculations of entanglement

entropy

Previous works on the measurement-induced entanglement transition are quite suggestive of

the presence of full conformal invariance in spacetime, though the models considered differ from

one another in details. Among these are Ref. [16], where the critical percolation description of

the 0th (Hartley) Rényi entropy in circuits with random Haar gates was already manifestly con-

formally invariant; Refs. [17, 21], where a dynamic exponent of z = 1 was found; and Ref. [59],

where the presence of conformal invariance in the steady state was numerically confirmed, all

for Clifford circuits. More recently in Refs. [31, 30], concrete critical spin models which admit

conformal field theory (CFT) descriptions at their critical points were proposed to describe the

nth Rényi entropies with n ≥ 1 in hybrid quantum circuits with Haar random unitaries in the

limit of infinite local Hilbert space dimension.

Motivated by these considerations, we propose the following conjecture(s) at entanglement

transitions in generic hybrid quantum circuits:

1. There is an emergent CFT living on the two-dimensional finite spacetime manifold of

the circuit (with certain spatial and temporal b.c.), where the real-time direction of the

circuit becomes the “imaginary time” of the CFT.

2. Physical qubits live on boundaries of the finite circuit, and the von Neumann entanglement

entropy2 of a contiguous segment A of qubits is given by the change in (boundary) free
2Throughout the Chapter we consider Clifford circuits, for which all Renyi entropies are equal to the von
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energy of the CFT in the finite geometry due to change of the b.c. inside A (recall that

free energies of a CFT depend crucially on the specific b.c.3.)

Specifically, for a contiguous segment A of the boundary of the rectangle with endpoints located

at z1 and z2, which we denote by A = [z1, z2], we posit that

S([z1, z2]) ≡ − ln
Zcircuit[ϕ(z1)ϕ(z2)]

Zcircuit
, (3.1)

where Zcircuit is a suitably defined background “circuit partition function” of the rectangle

specified by boundary conditions of the circuit, and Zcircuit[ϕ(z1)ϕ(z2)] is the partition function

with the same boundary conditions as Zcircuit, except that in the boundary segment A = [z1, z2]

the boundary condition has changed as compared to Zcircuit, which in a CFT can be accounted

for by the insertion of boundary condition changing (bcc) operators ϕ at the endpoints z1 and

z2 of A. An expression similar to Eq. (3.1) first appeared in the extreme volume-law phase

of Random Tensor Networks aimed at describing gravitational Ryu-Takayanagi behavior [116],

then in Random Tensor Network Models for entanglement transitions [85] which are [30] very

close cousins of the entanglement transitions in hybrid circuits discussed here, and shortly after

in the present context of measurement-driven entanglement transitions [59, 31, 30].

We remark on an apparent conceptual leap on which we briefly elaborate at the end of

this paragraph: While previously in Fig. 3.2 the bcc operators ϕf |a are merely placeholders to

signify the change of boundary condition, in a CFT they become scaling fields that define the

partition function; we further assume that these fields are what is called primary [114]. These

boundary scaling fields are the central objects of this Chapter, and govern the entanglement

structure of the circuit through Eq. (3.1).

The expression Eq. (3.1) can be obtained directly by repeating the steps presented in

Ref. [30], but now for the reduced density matrix for the random Clifford circuit with mea-

surements, upon making the only assumption that an effective statistical mechanical model

Neumann entropy.
3See, e.g., Ref. [115] for a review.
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emerges after averaging, which exhibits a conformally invariant transition in the bulk of the

circuit.4 We provide in this paper extensive evidence for the validity of this assumption for

Clifford circuits. All the remaining assumptions made in this Chapter about the appearance

of boundary condition changing operators follow from general properties of CFT. In particular,

any microscopic boundary condition (satisfying certain locality conditions) on a CFT will at

long distance scales in general always turn into a “conformal boundary condition” described by

a (boundary) fixed point of the Renormalization Group. Moreover, at a point on the boundary

where two different such “conformal boundary conditions” meet, a boundary condition chang-

ing conformal boundary operator will appear. For the convenience of subsequent discussions in

this Chapter, we summarize in Table 3.1 all relevant boundary conditions, bcc operators, and

their operator product expansion (OPE), that will appear in later sections.

We illustrate the prescription in Eq. (3.1) with the fffa circuit in Fig. 3.2(a), which we choose,

in the present case, to represent the “background” configuration of boundaries. Because of the

two bcc operators at the corners ϕf |a(z1) and ϕa|f (z4) (as defined in Table 3.1), the circuit

partition function is given as (see Fig. 3.3(a))

Zcircuit =
〈
ϕf |a(z1)ϕa|f (z4)

〉
Z0, (3.2)

where 〈· · · 〉 denotes the “expectation value” taken in an underlying (2+0)-dimensional CFT in

the bulk of the rectangle, which can be thought of as some suitable classical statistical mechanics

system representing the CFT; and Z0 is the partition function of this CFT living in a rectangle

with free boundary condition f on all four sides.

Next, let us consider the entanglement entropy of a contiguous segment A of physical qubits

within [z1, z4]. According to the conjecture, S(A) is the change in free energy due to change of

b.c. in A from a to yet another one, denoted by b, which is assumed to be of the same type as
4Hybrid circuits with periodic, non-random (Floquet) unitaries and/or (quasi-)periodically located measure-

ments in space and time also appear to exhibit an entanglement transition in numerics [59]. Provided these
are also conformal transitions, with which the numerical evidences appear to be consistent, general assumptions
of this Chapter also apply, although a statistical mechanical model cannot be readily obtained along the lines
outlined in Ref. [30].
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(a)             ⟨ ϕf|a(z1) ϕa|f(z4) ⟩
1 4

ff

f
2 3

a
1 4

ff

f
2 3

b

(b)             ⟨ ϕf|b(z1) ϕb|f(z4) ⟩ (c)             ⟨ ϕf|b(z1) ϕb|a(z5) ϕa|f(z4) ⟩ 
5

b a
1 4

ff

f
2 3

(d)             ⟨ ϕf|a(z1) ϕa|b(z5) ϕb|f(z4) ⟩ 

a b
1 4

ff

f
2 3

5

Figure 3.3: Pictorial representations of the parition functions with bcc operators inserted at the
corner and on the edge, for computations of bipartite entanglement entropies in the fffa circuit
shown in Fig. 3.2(a). (a) The “background” partition function, given by correlation function
of bcc operators at z1 and z4 separating f and a. (b) The partition function corresponding
to computation of entanglement entropy of the whole qubit chain. Since the entire system is
in a pure state, the entanglement entropy should be 0, as realized by the exchange symmetry
between a and b (see Eq. (3.5)). (c, d) The partition functions corresponding to the calculation
of S(A = [z1, z5]) = S(A = [z5, z4]) (see Eq. (3.4)).

a, but different (we will be more specific below). Such effects are accounted for by inserting bcc

operators at the endpoints of A, separating boundary conditions a (outside A) and b (inside

A). We denote such an operator ϕa|b (see Table 3.1 for its definition).

In the simple case when A = [z1, z5] as depicted in Fig. 3.3(c), i.e. having one of its endpoint

at the corner z1 (therefore specifying a single bipartition of the top boundary of the rectangle

at z5), the boundaries of the rectangle is labelled by three distinct boundary conditions: a in

A = [z5, z4], b in A = [z1, z5], and f elsewhere, in counter-clockwise order. The corresponding

partition function should therefore be given by the correlation function of three bcc operators

located at z1, z5 and z4. Explicitly, following Eq. (3.1), the bipartite entanglement entropy S(A)
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can be written as 5

S(A = [z1, z5])

= − ln
Zcircuit[ϕa|b(z1)ϕb|a(z5)]

Zcircuit

= − ln

〈
ϕf |b(z1)ϕb|a(z5)ϕa|f (z4)

〉〈
ϕf |a(z1)ϕa|f (z4)

〉 . (3.3)

For a pure wave function, the entanglement entropies satisfy S(A) = S(A), where A is the

complement of the segment A on the upper boundary of the rectangle. This requires that the

partition function is invariant under exchanging a and b; indeed, using Eq. (3.3), we have (see

Fig. 3.3(c, d))

S(A = [z1, z5])

= − ln

〈
ϕf |b(z1)ϕb|a(z5)ϕa|f (z4)

〉〈
ϕf |a(z1)ϕa|f (z4)

〉
= − ln

〈
ϕf |a(z1)ϕa|b(z5)ϕb|f (z4)

〉〈
ϕf |a(z1)ϕa|f (z4)

〉
= S(A = [z5, z4]). (3.4)

5In fact, literally following Eq. (3.1), this entropy is related to the correlation function involving the inserted
two bcc operators at z1 and z5, in addition to the existing ones at the corners z1 and z4. Thus we have a
four-point correlation function:

S(A = [z1, z5])

= − ln
Zcircuit[ϕa|b(z1)ϕb|a(z5)]

Zcircuit

= − ln

〈
ϕf |a(z1)ϕa|b(z1)ϕb|a(z5)ϕa|f (z4)

〉〈
ϕf |a(z1)ϕa|f (z4)

〉 .

In going from this to Eq. (3.3), we have implicitly invoked the following OPE (to leading order; see Table 3.1),

ϕf |a(z1)ϕa|b(z1 + ϵ) ∼ ϵ−ha|bϕf |b(z1) + . . .

to account for the coincidence of the left endpoint of A with the corner of the rectangle, therefore effectively
reducing the four-point function to a three-point function, as expected. Despite its apparent complexity, the
physical picture is intuitive: after ϕf |a(z1) and ϕa|b(z1 + ϵ) have fused into ϕf |b(z1), there are only three “colored
segments” on the boundary, and therefore the partition function is given by a simple three point function.
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ζ(z) = λ(m) (z - i Y)

ζ1 = -K(m)

ζ2 = -K(m) - i K(1-m) ζ3 = +K(m) - i K(1-m)

ζ4 = +K(m)
w2 = -m-1/2 w1 = -1 w4 = +1 w3 = +m-1/2

w(ζ) = sn(ζ | m)

w(z) = sn( λ(m) (z - i Y) | m)

z1 = -L/2 + i Y

z2 = -L/2

z4 = +L/2 + i Y

z3 = +L/2

Figure 3.4: The conformal mapping, from the finite rectangle to the LHP. The parame-
ter m is chosen such that the aspect ratio match. The boundary of the rectangle, high-
lighted, is mapped to the real axis of the LHP, where the 4 vertices of the rectangle map to
w1 = −1, w2 = −m−1/2, w3 = +m−1/2, and w4 = +1, respectively.

In the limit when A includes all the physical qubits ( – i.e. when z5 = z4, see Fig. 3.3(b)),

S([z1, z4]) = − ln

〈
ϕf |b(z1)ϕb|f (z4)

〉〈
ϕf |a(z1)ϕa|f (z4)

〉 = 0, (3.5)

as expected for a pure state. Again, we have used the exchange symmetry between a and b.

These considerations illustrate more specifically the sense in which “the boundary condition b

is of the same type as a, but different”, as mentioned above.

Although for simplicity, we have only considered the fffa circuit and have only taken segment

A to start from either z1 or z4 in this calculation, straightforward generalizations can be made

to other cases, as we will see in Sec. 3.2.

Our approach here is “experimental”, though reasonably motivated by general principles.

For example, we notice that the exchange symmetry between a and b comes about naturally

from the general requirement of purity of the wavefunction. In Sec. 3.2, we will provide numer-

ical evidences for CFT calculations like Eq. (3.4), supporting our conjectures, together with the

prescription for computing entanglement entropies and the assignments of boundary conditions.
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3.1.3 Finite rectangular geometry and the Schwarz-Christoffel mapping

In most of this Chapter we will focus on systems as in Fig. 3.2, where the circuit manifold has

the geometry of a finite rectangle (open boundary conditions); the case of cylindrical geometry

(periodic boundary conditions) is treated in Sec. 3.3. The former case is convenient because

the rectangle is simply connected, and can thus be mapped to the lower half plane (LHP) via

a conformal mapping (due to Schwarz-Christoffel)6, allowing simple calculations of correlation

functions in the rectangle (such as those in Fig. 3.3), due to their conformal covariance in the

putative CFT (see Appendix C.1). Since all rectangles are conformally equivalent to the LHP,

one can relate dynamics at different time scales via the conformal mapping, using the LHP as

an intermediary. Similar ideas have been applied to crossing probabilities in two-dimensional

critical percolation [118].

We first address an important subtlety in mapping the circuit to a CFT in a finite rectangle.

In the circuit model, the physical qubits undergo real-time evolution, and there is no obvious

space-time rotational symmetry; therefore, space and time are on separate footing, and in

particular, a circuit with L = T does not necessarily correspond to a square system when

viewed as a CFT. We must therefore introduce a suitable “lattice spacing” for both the space

and time directions, λx and λt, with λx measured in the number of qubits, and λt in the

number of layers. The “correct” aspect ratio of the rectangular circuit when viewed as a CFT

is therefore given by

τ :=
T/λt
L/λx

≡ Y

L
, (3.6)

where Y =
(
λx
λt

)
T is the “rescaled (imaginary) time” or “depth”. For the random Clifford

circuit, we fix the ratio Y/T ≈ 0.61; the determination of this ratio is detailed in Sec. 3.3.

We emphasize that Y/T is a bulk property and is independent of the boundary conditions.

The value Y/T ≈ 0.61 is thus fixed for all boundary conditions of the random Clifford circuit
6See, e.g. Ref. [117] for an introduction.
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considered in this Chapter. However, Y/T is non-universal and can vary from circuit to circuit;

in particular, for the percolation problem that describes the zeroth Rényi entropy in Haar

random circuits, there is explicit rotational symmetry therefore Y/T = 1 (see Appendix C.4).

In the rest of this subsection, we detail the particular conformal mapping we use to relate

the finite rectangle and the LHP, as summarized in Fig. 3.4. Points in the original rectangle

are labeled by a complex coordinate,

z = x+ iy, (3.7)

where we take the convention x ∈ [−L/2, L/2] for the position of the qubit, and y = Y
T t ∈ [0, Y ]

the rescaled time coordinate. As a first step, we perform a translation by −iY , followed by

an overall scaling, to transform the L × Y rectangle (living in the complex z-plane) to the

2K(m) × K(1 − m) “canonical” rectangle (living in the complex ζ-plane), where the overall

scaling factor is

λ(m) := 2K(m)/L
!
= K(1−m)/Y. (3.8)

Here K(m) is the complete elliptic integral of the 1st kind with parameter m ∈ [0, 1], and m is

chosen such that aspect ratios match,

τ(m) := K(1−m)/2K(m)
!
= Y/L. (3.9)

It is only through this parameter m that the aspect ratio (hence time) comes into the correlation
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functions. We will take the convention that the four corners of the rectangle sit at [117]

ζ1 = −K(m), (3.10)

ζ2 = −K(m)− iK(1−m), (3.11)

ζ3 = +K(m)− iK(1−m), (3.12)

ζ4 = +K(m). (3.13)

In the second step, we map the canonical rectangle to the LHP via a Jacobi sn function [117],

w(ζ) = sn(ζ|m), (3.14)

and we have

w1 = w(ζ1) = −1, (3.15)

w2 = w(ζ2) = −m−1/2, (3.16)

w3 = w(ζ3) = +m−1/2, (3.17)

w4 = w(ζ4) = +1. (3.18)

Thus, the composition of these two maps, z → ζ → w, reads

w(z|τ(m) = Y/L) = sn(λ(m)(z − iY )|m). (3.19)

It is useful to recall [117] the asymptotic forms of τ(m),

τ(m) ∼


π
2

(
ln 16

1−m

)−1
, as m→ 1 (τ → 0),

1
2π ln 16

m , as m→ 0 (τ → ∞),

(3.20)
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and also the asymptotic forms of the the cross ratio,

η =
w12w34

w13w24
∼


16 exp(−π/τ), τ → 0

1− 16 exp(−πτ), τ → ∞

where wij := wi − wj (i, j = 1, . . . , 4).

3.2 Results on rectangular circuits

In this section we present results of numerical simulation of the Clifford circuits defined

in Sec. 3.1. Unless otherwise noted, we will take the circuit with length L = 512 (measured

in the number of qubits), and varying the depth up to T = 1024, (measured in the number

of unitary layers). The simulation uses the stabilizer formalism [67], and follows the standard

algorithm in Ref. [68]. The computation of entanglement entropies [81, 82, 83, 78, 79] is done

in the “clipped gauge”, which is a particular choice of stabilizers where entanglement entropies

can be efficiently computed [72, 59]. It is always implicit that the entanglement entropies and

mutual information are computed for various subregions at each time step, individually for each

pure-state quantum trajectory, and then averaged over ensembles of trajectories. Only a subset

of data points for selected time windows are presented to avoid crowding; we have verified that

other data points also collapse well onto the same curves. The included time windows range

from early times τ � 1 to late times τ ≳ 1. Due to limited numerical precision of floating

point numbers on a standard computer, we exclude from the plots data at extremely early time

τ(m) ≲ 0.03, where |1−m(τ)| ≤ 10−16. We do not think this is an important issue, but merely

a technical nuisance we have yet to fully resolve.

We will always take pc = 0.1600 and Y/T = 0.61 for all b.c., where Y is the rescaled time

(see Sec. 3.1.3). The determination of these values are discussed in Sec. 3.3.

Some of the analytic calculations make use of standard results of simple correlation functions

and Operator Product Expansions (OPEs) in CFT, which are listed in Appendix C.1.
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b a
1 4

5

ff

f
2 3

(a)

b a
1 4

5

ff

f
2 3

b

6

(b)

η 1 - η

Figure 3.5: (a) Entanglement entropies for the fffa circuit, where the data collapse follows
Eq. (3.23). The apparent deviation of the data from the predicted form at larger values of
ξ is due to non-universal corrections when z1 and z5 are close on the lattice. (b) Mutual
information for two subregions sitting next to the corners, where the data collapse follows
Eq. (3.32). The limiting behaviors for η → 0 and η → 1 follow Eqs. (3.35) and (3.40),
respectively, and are shown in the insets.

Throughout the paper we compute the entanglement entropy by taking the natural loga-

rithm on the reduced density matrix, following a convention adopted in Refs. [30, 31, 101],

S(A) := −TrρA ln ρA. (3.21)

We notice that this convention differs from that in Refs. [16, 17, 59, 20, 21, 113], where the

base-2 logarithm is used.

3.2.1 Circuit with boundary conditions fffa - Fig. 3.2(a)

Bipartite entanglement entropies as 3-point functions

Bipartite entanglement entropies within the fffa circuit (with a product initial state and

open spatial b.c.; see Fig. 3.2(a)) were already discussed as an example in Sec. 3.1. This setup,

as shown in Fig. 3.3(c), has three bcc operators. The simplicity of 3-point functions in CFT
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allows us to carry out the computation in Eq. (3.4) explicitly7

exp [−S([z1, z5])] (Fig. 3.5(a))

=

〈
ϕf |b(z1)ϕb|a(z5)ϕa|f (z4)

〉〈
ϕf |a(z1)ϕa|f (z4)

〉
=

(
∂w

∂z

)ha|b

z5

〈
ϕf |b(w1)ϕb|a(w5)ϕa|f (w4)

〉〈
ϕf |a(w1)ϕa|f (w4)

〉
∝

((
∂w
∂z

)
z5
w14

w15w54

)ha|b

. (3.22)

Thus,

S([z1, z5]) = −ha|b ln

((
∂w
∂z

)
z5
w14

w15w54

)
+ const. (3.23)

The data collapse for S([z1, z5]) where z5 = x5 + iY with varying x5 and Y (that is, bipar-

tite entanglement entropies for varying positions of the bipartition at different circuit depths)

against ξ =
( ∂w

∂z )z5
w14

w15w54
is shown in Fig. 3.5(a). Consistency with Eq. (3.23) is found, and we fit

for ha|b ≈ 0.53.8

Entanglement dynamics

The quality of the data collapse in Fig. 3.5(a) (together with Fig. 3.5(b); see below) lends

strong support to our conjecture regarding the conformal invariance of the circuit, together

with our assumptions about the boundary conditions and the algorithm for computing the

entanglement entropy. Assuming these are indeed correct assumptions, the 3-point functions,

in turn, provide a complete description of the entanglement entropy dynamics and mutual
7A boundary operator ϕf |b(z), if initially located at a position z on a straight edge (say, top or side edge)

away from the corner, is known to acquire, as it approaches the corner z1, a powerlaw singularity in the distance
(z1 − z), because the scaling dimension of the operator is twice as large when placed at the 90-degree corner,
as compared to at a straight edge. This singularity is a consequence of the conformal mapping. The same
powerlaw singularity occurs in the denominator of the ratio appearing in the equation below and cancels out.
The same type of cancelation occurs in all other ratios of correlation functions involving boundary operators
located directly at a corner that we consider in this Chapter.

8We note that ha|b ≈ 0.76 ln 2, where the value 0.76 is consistent with Refs. [59, 21].
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information dynamics, as we show in this subsection and the next. For example, as we will now

show, Eq. (3.23) leads to the logarithmic temporal growth of entanglement entropies at early

times [16, 17], as well as the logarithmic scaling with spatial size in the steady state [16, 17, 59].

To see this explicitly, we focus on the two simplifying regimes when τ = Y/L � 1 and when

τ = Y/L � 1, where we recall that Y ∝ T is the rescaled imaginary time (proportional to the

circuit depth).

1. τ � 1. In this limit, the conformal mapping for z = x+ iY reduces to

lim
τ→0

w(z) = lim
m→1

sn(λ(m)x|m) = tanh
[ π
2Y

x
]
, (3.24)

so that Eq. (3.23) takes the following simple form

S([z1, z5])

= −ha|b ln
π

Y
+ const.

= ha|b lnY + const. (3.25)

This is independent of z5 since when L� Y the corners of the rectangle are infinitely far

away.

2. τ � 1. In this limit, the conformal mapping for z = x+ iY reduces to

lim
τ→∞

w(z) = lim
m→0

sn(λ(m)x|m) = sin
[π
L
x
]
, (3.26)

and Eq. (3.23) becomes

S([z1, z5])

= ha|b ln

(
L

π
sin
[πx15
L

])
+ const., (3.27)

where x15 = x1−x5, reminiscent of the Cardy-Calabrese formula [101], and when x15 � L,
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reduces to S([z1, z5]) = ha|b lnx15.

Mutual information as 4-point functions

We take a segment away from the corners, A = [z5, z6], where zj = xj + iY and −L/2 =

x1 < x5 < x6 < x4 = L/2, and compute S([z5, z6]). (According to our prescription, this is

the entanglement entropy of the segment A = [z5, z6] at time y = Y .) Since the segment A is

away from the corners, this geometry involves four boundary changing operators at positions

z1, z5, z6, z4 along the upper boundary of the rectangle; see the inset of Fig. 3.5(b). Following

Eq. (3.1), this is given by

exp [−S([z5, z6])] (Fig. 3.5(b))

=

〈
ϕf |a(z1)ϕa|b(z5)ϕb|a(z6)ϕa|f (z4)

〉〈
ϕf |a(z1)ϕa|f (z4)

〉
=

〈
ϕf |b(z1)ϕb|a(z5)ϕa|b(z6)ϕb|f (z4)

〉〈
ϕf |b(z1)ϕb|f (z4)

〉
=

(
∂w

∂z

)ha|b

z5

(
∂w

∂z

)ha|b

z6

×
〈
ϕf |b(w1)ϕb|a(w5)ϕa|b(w6)ϕb|f (w4)

〉〈
ϕf |b(w1)ϕb|f (w4)

〉
∝

[(
∂w
∂z

)
z5

(
∂w
∂z

)
z6

(w56)
2

]ha|b

Ffbab(η), (3.28)

where

η =
w15w64

w16w54
(3.29)

is the cross ratio, and we have defined Ffbab(η) with the following convention,

Ffbab(η)

=

〈
ϕf |b(w1)ϕb|a(w5)ϕa|b(w6)ϕb|f (w4)

〉〈
ϕf |b(w1)ϕb|f (w4)

〉 〈
ϕb|a(w5)ϕa|b(w6)

〉 . (3.30)
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Given S([z5, z6]), we are now ready to compute another quantity of physical interest, namely

the mutual information between two subregions sitting next to the corners, A = [z1, z5] and

B = [z6, z4] (illustrated in the inset of Fig. 3.5(b)). We have

I([z1, z5], [z6, z4])

= S([z1, z5]) + S([z6, z4])− S([z1, z5] ∪ [z6, z4])

= S([z1, z5]) + S([z6, z4])− S([z5, z6]) (3.31)

for a pure state, so that

exp [−I([z1, z5], [z6, z4])]

∝ 1

Ffbab(η)

(
η

1− η

1

1− η

)−ha|b

, (3.32)

where we have used Eq. (3.23), (3.28), and the exchange symmetry between a and b. Thus, the

mutual information is a function only of the cross ratio η, and this is supported by the data

collapse shown in Fig. 3.5(b), where the numerical data is again obtained at different times

with various values of z5 and z6.

We note in passing that the scaling form of the entropy S[z5, z6] (illustrated in the inset

of Fig. 3.5(b)) is fully determined by that of the mutual information in Eq. (3.32), as well as

those of S([z1, z5]) and S([z6, z4]), as already discussed in subsection 3.2.1.

Limits of the 4-point function from Operator Product Expansion (OPE)

Let us examine the limit in which z5 → z1, or z6 → z4, so that the crossratio η → 0. In this

limit, ϕf |b(z1) and ϕb|a(z5), as well as ϕa|b(z6) and ϕb|f (z4), are close to one another, and it is

the following OPE that is needed in Eq. (3.30) (see Table 3.1),
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ϕf |b(w1)ϕb|a(w5) (Fig. 3.5(b))

∼ w
−ha|b
15

(
ϕf |a(w1) + C

(1)
f |b|aw

h
(1)
f |a−hf |a

15 ϕ
(1)
f |a(w1) + . . .

)
,

(3.33)

where we have denoted by ϕ(1)f |a(w1) the subleading bcc operator in the f |a-channel with a larger

scaling dimension h
(1)
f |a > hf |a = hf |b.With this, Ffbab(η) in Eq. (3.30) reads

Ffbab(η)

∝
(

η

1− η

)−ha|b
(
1 + #η

h
(1)
f |a−hf |a

)
, η → 0. (3.34)

Inserting this equation into Eq. (3.32), we obtain the mutual information as a powerlaw function

of η,9

I([z1, z5], [z6, z4]) = I(η)

≈ #η
h
(1)
f |a−hf |a + ha|b × η, η → 0. (3.35)

When h
(1)
f |a − hf |a < 1, the first term is more dominant than the analytic term of order O(η).

From the fit in Fig. 3.5(b) (see inset), we find the powerlaw exponent h(1)f |a − hf |a ≈ 0.9.

Referring again to Fig. 3.5(b), another limit of interest is z5 → z6, where η → 1. The

following OPE appearing in Eq. (3.30) is now relevant (see Table 3.1),

ϕb|a(w5)ϕa|b(w6) (Fig. 3.5(b))

∼ w
−2ha|b
56

(
1b|b + C

(1)
b|a|bw

h
(1)
b|b

56 ϕ
(1)
b|b(w6) + . . .

)
(3.36)

9Here (and in all following equations), we use the symbol # to denote an order one, nonuniversal number.
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After the two operators on the left hand side fuse, the b.c. is b on both sides of the new operator,

therefore the leading behavior is captured by the identity operator, in addition to which we also

include the subleading operator ϕ(1)b|b, which denotes the most relevant operator with positive

scaling dimension in the spectum10 of all possible boundary operators at boundary condition

b, with the scaling dimension being h(1)b|b = h
(1)
a|a. At the same time, the following OPE-channel

of the remaining two operators in the 4-point function appearing in Eq. (3.30) is relevant in the

limit η → 1 (compare Fig. 3.5(b)),

ϕb|f (w4)ϕf |b(w1) (Fig. 3.5(b))

∼ w
−2hf |b
41

(
1b|b + C

(1)
b|f |bw

h
(1)
b|b

41 ϕ
(1)
b|b(w1) + . . .

)
(3.37)

From these two OPEs, and that h(1)b|b = h
(1)
a|a, we obtain the following behavior of the 4-point

function (defined in Eq. (3.30))

Ffbab(η) ∝ 1 + #(1− η)
h
(1)
a|a , η → 1. (3.38)

Using this result and Eq. (3.32) to compute the mutual information, we find

exp [−I([z1, z5], [z6, z4])]

∝ 1

1 + #(1− η)
h
(1)
a|a

(
η

1− η

1

1− η

)−ha|b

≈ (1− η)2ha|b

1 + #(1− η)
h
(1)
a|a

, (3.39)

so that

I([z1, z5], [z6, z4])

= −2ha|b ln(1− η) + # (1− η)
h
(1)
a|a , η → 1. (3.40)

10This spectrum of operators is of course not analytically known to us in the present theory.
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The leading term fits well to the data in Fig. 3.5(b); however, we cannot reliably extract h(1)a|a

from these data since here the leading term diverges in this limit while the subleading term goes

to zero. Here we mention that a different way to determine the same exponent for different b.c.’s

of the background circuit will yield in Eqs. (3.68),(3.69) of Sec. 3.2.4 the estimate11 h
(1)
a|a = 2.0.

Note that in the limit where z5 → z6, and thus η → 1, the regions (intervals) A = [z1, z5]

and B = [z6, z4] sit close to each other, so that S(A ∪B) → 0, and the mutual information

becomes twice the entanglement entropy of A (or B, which has equal entanglement entropy).

Therefore, Eq. (3.40) must recover the result in Eq. (3.23). Indeed,

lim
z6→z5

I([z1, z5], [z6, z4])

≈ −2ha|b lim
z6→z5

ln(1− η)

= −2ha|b lim
z6→z5

ln
w56w14

w16w54

≈ −2ha|b ln

(
∂w
∂z

)
z5
w14

w15w54

≈ −2ha|b ln ξ

= 2S(A). (3.41)

3.2.2 Circuit with boundary conditions afaa - Fig. 3.2(b)

We briefly discuss the afaa circuit defined in Fig. 3.2(b). In this setup, we still evolve from

the product state, but with physical qubits injected at the left and right sides of the circuit.

The situation here is entirely similar to the circuit with boundary conditions fffa, discussed in

the previous subsection 3.2.1, except that we have moved the corner bcc operators from z1 and

z4 “down” to z2 and z3 (compare the insets of Fig. 3.6 with those of the previous Fig. 3.5).
11 For the reader interested in details, we remark here on a subtlety: Our CFT could be what is called a

“logarithmic CFT”[log-CFT] in which, roughly speaking, certain powerlaws are not the pure powerlaws which
we display in the equations of this Chapter, but some of the same powerlaws would be in fact multiplied by a
logarithm of the argument of the powerlaw. However, the presence or absence of such multiplicative logarithms
is unlikely to be concinvingly identifiable in numerics. For this reason we will not elaborate in this Chapter on
the presence of possible logarithms, such as e.g. those desribed in Ref. [119]. In particular, the appearance of
the scaling dimension h

(1)

a|a = 2.0 may be related to the sitation discussed in this Reference. We plan on coming
back these questions in future work.
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bb

f
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Figure 3.6: Numerical results for the afaa circuit. (a) Entanglement entropies, where z5 takes
different locations on either the left ([z2, z1]) or the right ([z4, z3]) side of the rectangle. The
data collapse follows Eq. (3.23). (b) Mutual information for two subregions sitting next to
the corners, with z5 ∈ [z2, z1] and z6 ∈ [z4, z3]. The data collapse confirms Eq. (3.32). The
limiting behaviors for η → 0 and η → 1 follow Eqs. (3.35) and (3.40), respectively.

Accordingly, we compute the entanglement entropies and mutual information for regions that

begin at the lower corners of the rectangle at z2 and/or z3. This amounts to modifying Eq. (3.23)

to

S([z2, z5]) = −ha|b ln

((
∂w
∂z

)
z5
w23

w25w53

)
+ const., (3.42)

and to a different choice for the cross ratio,

η =
w25w63

w26w53
, (3.43)

where the forms of the mutual information in Eq. (3.32), as well as its limits in Eq. (3.35) and

(3.40), remain unchanged, since they are given by the same 4-point correlation functions.

The numerical results are given in Fig. 3.6, which has similar interpretations as Fig. 3.5; in
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(a)

a

⟨ ϕf|a(z1) ϕa|f(z4) ϕf|a(z3) ϕa|f(z2)⟩

ff

a

2 3

1 4

(b) ⟨ ϕf|b(z1) ϕb|f(z4) ϕf|a(z3) ϕa|f(z2)⟩

b

ff

a
2 3

1 4

(c) ⟨ ϕf|a(z1) ϕa|f(z4) ϕf|b(z3) ϕb|f(z2)⟩

a

ff

b
2 3

1 4

(d)

b

⟨ ϕf|b(z1) ϕb|f(z4) ϕf|b(z3) ϕb|f(z2)⟩

ff

b
1 4

2 3

Figure 3.7: Pictorial representations of the parition functions for the fafa circuit, with the
L-Bell pair initial state. (a) represents the background circuit, while (b) and (c) represents
the partition functions relevant to computations of the entanglement entropy of [z1, z4] and
[z2, z3], respectively. (d) corresponds to the partition function for the computation of the
entanglement entropy of [z1, z4]∪ [z2, z3], i.e. all the physical qubits. We notice the similarity
between this figure and an illustration in Ref. [31].

particular, it gives consistent estimations of the scaling dimensions. The data for afaa provide

further evidence for the presence of conformal invariance, and justifies our assumption about

the b.c. corresponding to physical qubits at the left and right sides of the rectangle.

We also studied yet another similar circuit with b.c. ffaa with physical qubits only on the

left side, which is again consistent with fffa and afaa (data not displayed).

3.2.3 Circuit with boundary conditions fafa - Fig. 3.2(c)

We consider the fafa circuit (see Sec. 3.1 and Fig. 3.2(c)), where the initial state consists of

L Bell pairs, so that we have, as discussed above, two maximally entangled chains of qubits of

length L each, and only one chain is evolved under the circuit dynamics with open boundary

condition (the “system”); the other chain is left unevolved (the “environment”). We are inter-

ested in the entanglement entropy between the “system” (living on the upper boundary of the

rectangle) and the “environment” (living on the lower boundary of the rectangle). We have

S([z1, z4]) = S([z2, z3]) which arises physically from the maximal entanglement of the original

Bell pairs (compare Eqs. (3.45),(3.46) below). We illustrate the boundary conditions for these

computations in Fig. 3.7, following our general prescription in Sec. 3.1.

The partition function for the fafa circuit reads (see Fig. 3.7(a))

Zcircuit =
〈
ϕf |a(z1)ϕa|f (z4)ϕf |a(z3)ϕa|f (z2)

〉
, (3.44)

having the form of a 4-point correlation function of bcc operators at all four corners. For
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Fig. 3.7(b,c), we have

exp [−S([z1, z4])]

=

〈
ϕf |b(z1)ϕb|f (z4)ϕf |a(z3)ϕa|f (z2)

〉〈
ϕf |a(z1)ϕa|f (z4)ϕf |a(z3)ϕa|f (z2)

〉
=

〈
ϕf |a(z1)ϕa|f (z4)ϕf |b(z3)ϕb|f (z2)

〉〈
ϕf |a(z1)ϕa|f (z4)ϕf |a(z3)ϕa|f (z2)

〉
= exp [−S([z2, z3])] , (3.45)

where we used the exchange symmetry between a and b, as expected for a pure state, while for

Fig. 3.7(d),

exp [−S([z1, z4] ∪ [z2, z3])]

=

〈
ϕf |b(z1)ϕb|f (z4)ϕf |b(z3)ϕb|f (z2)

〉〈
ϕf |a(z1)ϕa|f (z4)ϕf |a(z3)ϕa|f (z2)

〉
=

〈
ϕf |a(z1)ϕa|f (z4)ϕf |a(z3)ϕa|f (z2)

〉〈
ϕf |a(z1)ϕa|f (z4)ϕf |a(z3)ϕa|f (z2)

〉
= 1, (3.46)

again consistent with a pure state.

The computation in Eq. (3.45) involves a 4-point function whose explicit form we do not

know. We can nevertheless examine the two limits of small and large (relative) circuit depth,

τ → 0 and τ → ∞, as we discuss in the next two sections. (τ is the aspect ratio of the rectangle

defined in Eq. (3.6).)

Before diving into the calculations, we notice an important point, namely the symmetry be-

tween the “system”, the upper edge [z1, z4], and the “environment”, the lower edge [z2, z3] of the

rectangle. Viewed geometrically, the symmetry is merely a reflection. Viewed as collections of

qubits, the two edges are drastically different: the “system” qubits actually experience the cir-

cuit dynamics, while the “environment” qubits are merely sitting there. The symmetry between

the two edges implies that they have identical average entanglement structures. This means

that if we take an arbitrary subset of qubits A of the upper edge [z1, z4] and its counterpart B,
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i.e. the subset of the lower edge [z2, z3] which contains precisely the qubits that are initially

Bell-entangled with those in A, their entanglement entropies will have the same expectation

value at all times, despite that they might be described by multi-point functions in the CFT

which we do not know how to compute explicitly. In particular, this implies that at long times,

when the upper and the lower edges have disentangled with each other, they will both appear

“critical”. This is possible since the qubits in lower edge [z2, z3], initially unentangled with one

another, can nevertheless have nontrivial entanglement structure due to the a “entanglement

swapping” mechanism induced by local measurements performed in upper edge [z1, z4].12 This

symmetry has been checked numerically (data not displayed) and can be justified in the case

of the Hartley entropy in random Haar circuits with measurements, using heuristic arguments

based on its description by a “minimal cut” optimization problem in percolation [16] (see also

Appendix C.4 for detailed discussions).

Bell-pair entanglement entropy at early times

The regime of a shallow depth circuit, τ → 0, is illustrated in Fig. 3.8(a). We observe that

the τ → 0 limit corresponds to the m → 1 limit, where m is the parameter for the conformal

mapping (see Eq. (3.20) of Sec. 3.1.3). The bcc operator at corner z1 is now very close to that

at corner z2 (and the same is the case for the bcc operators at corners z3 and z4), so that they

can be desribed by the OPE of these operators, describing their “fusion”, as illustrated in

Fig. 3.8(a). After mapping to the lower half complex plane (LHP), the distance between these

point is precisely w12 = w34 = m−1/2 − 1, and vanishes in the limit m→ 1.
12For example, a possible such event “swaps” two inter-chain pairs for two intra-chain pairs (see Fig. 3.1).
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ϕa|b(z1) ϕb|a(z4)
f

b
f

ϕf|b(z1) ϕb|f(z4)

ϕa|f(z2) ϕf|a(z3)
a

τ << 1

1a|a(z1) 1a|a(z4)
f

a
f

ϕf|a(z1) ϕa|f(z4)

ϕa|f(z2) ϕf|a(z3)
a

(a)

b1 4
ff

a2 3

b
1 4

ff

a2 3

(b)

Figure 3.8: (a) Pictorial representations of the parition functions with bcc operators inserted
at the corners, with the Bell-pair initial state, in the limit τ → 0. The relevant OPEs are
Eq. (3.48), (3.47). (b) Numerical data for S([z1, z4]) = S([z2, z3]), in the limits τ → 0 (main)
and τ → ∞ (inset). The data agrees well with calculations in Eq. (3.50), (3.63). We see from
the data that S([z1, z4]) is smaller than the predicted value when τ ≲ 10−2. We attribute
this deviation to finite size effects. The entanglement entropy of the system [z1, z4] is always
bounded from above by L ln 2. Thus, the formula must break down when ha|bπτ

−1 > L, or
τ < τ0(L) := ha|bπL

−1. This temporal cutoff τ0(L) vanishes in the thermodynamic limit; this
trend is confirmed in Fig. 3.8(b).

We assume the following forms of the OPE to leading order (see Table 3.1),

ϕa|f (w2)ϕf |b(w1)

∼ w
−2hf |a+ha|b
12 ϕa|b(w1) + . . . (3.47)

ϕa|f (w1)ϕf |a(w2)

∼ w
−2hf |a
12

(
1a|a + w

h
(1)
a|a

12 C
(1)
a|f |aϕ

(1)
a|a(w2) + . . .

)
, (3.48)
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Using these, we obtain Eq. (3.45) in the limit z1 → z2, z3 → z4 (compare Fig. 3.8(a))

exp [−S([z1, z4])] (Fig. 3.8(a))

=

〈
ϕa|f (z2)ϕf |b(z1)ϕb|f (z4)ϕf |a(z3)

〉〈
ϕa|f (z2)ϕf |a(z1)ϕa|f (z4)ϕf |a(z3)

〉
∝

w
−2hf |a+ha|b
12 w

−2hf |a+ha|b
34

〈
ϕa|b(w1)ϕb|a(w4)

〉
w

−2hf |a
12 w

−2hf |a
34

∝ w
ha|b
12 w

ha|b
34

〈
ϕa|b(w1)ϕb|a(w4)

〉
∝ (w12w34)

ha|b

∝ (m−1/2 − 1)2ha|b , (3.49)

where we used the fact that w14 → 2 (a constant) in that limit. Using the asymptotic form of τ

in Eq. (3.20), we obtain the asymptotic behavior m ∼ 1− 16 exp
(
− π

2τ

)
where the second term

is small as τ → 0. Using this in the previous equation yields the following asymptotic behavior

of the entropy in the limit τ → 0 of a shallow-depth circuit

exp [−S([z1, z4])]

∝ (m−1/2 − 1)2ha|b

∝ exp
[
− π

2τ

]2ha|b

∝ exp

[
−
ha|bπ

τ

]
, (3.50)

implying

S([z1, z4]) = S([z2, z3]) = ha|bπτ
−1, (τ → 0), (3.51)

a form first obtained numerically in Ref. [21]. The fit in Fig. 3.8(b) gives ha|b ≈ 0.53, consistent

with estimation of ha|b in the previous section.

Alternatively, the asymptotic τ−1 behavior of the entropy as τ → 0 can be understood in

terms of the transfer matrix formalism. Here we take the spatial direction to be the “direction of
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propagation” of the transfer matrix, and denote the generator of translations in this direction by

Hab. Specifically, Hab denotes the Hamiltonian of the CFT in question, defined on an interval

of length Y (compare Eq. (3.6)), with boundary conditions a and b at the two ends of the

interval. The (finite size) spectrum of energies Eab of the Hamiltonian Hab is known [120] in

any CFT to take on the form

Eab = E0 +
π(h

(j)
a|b + n)

Y
. (3.52)

Here n ≥ 0 is an integer, and h
(j)
a|b, where j = 0, 1, 2, . . ., denotes the spectrum13 of scaling

dimensions (in increasing order) of all possible primary bcc operators that occur when the

boundary condition changes from a to b. The smallest such scaling dimension corresponding

the j = 0, we denoted previously by ha|b, i.e. ha|b = h
(j=0)
a|b . (The quantity E0 cancels out in

the observables of interest to us, and is not needed in the sequel.)

A special case of the above situation is the case where the two boundary conditions are the

same, a = b. In this case the (finite size) spectrum takes the form

Ea|a = E0 +
π(h

(j)
a|a + n)

Y
. (3.53)

As before, n ≥ 0 is an integer, and h
(j)
a|a, with j = 0, 1, 2, . . . denotes the spectrum of scaling

dimensions of all possible primary bcc operators that occur at a given boundary condition a.

The smallest such scaling dimension corresponding the j = 0, is the identity operator, i.e.

ϕ
(j=0)
a|a = 1 corresponding to h(j=0)

a|a = 0.

The partition function of the rectangle is written in the usual manner in terms of the transfer

matrix exp(−Hab × L) and a state |f 〉 representing the vertical boundary of the rectangle

(compare Fig. 3.8(a)) with free boundary condition f , as the amplitude

Zab = 〈f | exp(−Hab × L) |f 〉 . (3.54)
13Here we choose for simplicity a notation suitable for a discrete spectrum.
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Upon inserting a complete set of eigenstates, one sees that in the limit L � Y , both Zab and

Zaa are dominated by their respective lowest energy eigenvalues h(j=0)
a|b = ha|b and n = 0, as

well as h(j=0)
a|a = 0 and n = 0, yielding the following asymptotic form of the ratio

Zab
Zaa

∼ exp
(
−ha|bπL/Y

)
. (3.55)

The resulting entanglement entropy thus behaves asymptotically as (recall from Eq. (3.6) that

τ = Y/L)

S([z1, z4]) = − ln
Zab
Zaa

∼ ha|bπτ
−1, (τ → 0). (3.56)

Bell-pair entanglement entropy at late times

For a very deep circuit where τ → ∞, corresponding to w14 → 0 and w23 → 0, we now have

the cross ratio

η =
w12w34

w24w13
→ 1. (3.57)

In this limit, to compute 4-point correlation functions defined in Eq. (3.45), we need the the

vacuum channel OPE in Eq. (3.48), where we now include a subleading term,

ϕf |a(w1)ϕa|f (w4) (Fig. 3.8(b))

∼ w
−2hf |a
14

(
1f |f + C

(1)
f |a|fw

h
(1)
f |f

14 ϕ
(1)
f |f (w1) + . . .

)
(3.58)

ϕf |b(w1)ϕb|f (w4)

∼ w
−2hf |a
14

(
1f |f + C

(1)
f |b|fw

h
(1)
f |f

14 ϕ
(1)
f |f (w1) + . . .

)
(3.59)

where ϕ(1)f |f (w1) denotes the most relevant subleading operator that does not change this bound-

ary condition (i.e. “which appears in the f |f -channel”). Here, C(1)
f |a|f and C

(1)
f |b|f denote OPE
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coefficients of the corresponding BCC operators, where14 in general C(1)
f |a|f 6= C

(1)
f |b|f . The same

OPE in Eq. (3.58) holds for ϕf |a(z3)ϕa|f (z2), that also appears in Eq. (3.45).

By using these OPEs, one can express the leading behavior of the 4-point function in

Eq. (3.45) in the limit η → 1, in terms of the limiting behavior of the following two functions

Ffafb(η) =

〈
ϕf |a(w3)ϕa|f (w2)ϕf |b(w1)ϕb|f (w4)

〉〈
ϕa|f (w2)ϕf |a(w3)〉〈ϕf |b(w1)ϕb|f (w4)

〉
= 1 + Cfafb(1− η)

h
(1)
f |f , η → 1. (3.60)

where Cfafb = C
(1)
f |a|fC

(1)
f |b|f , and

Ffafa(η) =

〈
ϕf |a(w3)ϕa|f (w2)ϕf |a(w1)ϕa|f (w4)

〉〈
ϕa|f (w2)ϕf |a(w3)〉〈ϕf |a(w1)ϕa|f (w4)

〉
= 1 + Cfafa(1− η)

h
(1)
f |f , η → 1. (3.61)

14To phrase this in a more general language, consider the case where labels A,B, ... take values in a set
specifying M different boundary conditions of type a, b, ..., i.e. A,B ∈ {a, b, ...}. Permutation symmetry of these
M boundary conditions implies, under the condition listed below, the following generalized form of the OPE

considered in Eq. (3.58): ψf |A(w1)ψA|f (w4) ∼ w
−2hf |A
14 1f |f + C

(1)

f |f w
−2hf |A+h

(1)
f |f

14 ψ
(1);A

f |f (w4). Under permutations of
the M boundary conditions, the left hand side forms a representation of the permutation group SM of M objects
which is known to decompose into a sum of the totally symmetric one-dimensional and the (M − 1)-dimensional
irreducible representation. This decomposition is reflected on the right hand side: The set of operators on the
right hand side satisfy

∑M
A=1 ψ

(1);A

f |f = 0 and transform in the (M − 1)-dimensional representation. In writing
this OPE we have assumed that the first subleading operator beyond the identity operator is the operator ψ(1);A

f |f
transforming in the (M−1) irreducible representation as opposed to another (singet) operator, besides the identity
operator, which transforms in the one-dimensional (totally symmetric) representation. We note that the linear
dependency condition immediately implies the following condition for the two point function ⟨ψ(1);a

f |f ψ
(1);a
f |f ⟩+(M−

1)⟨ψ(1);a
f |f ψ

(1);b
f |f ⟩ = 0 where permutation symmetry was used. This implies that the generalizations of Eq. (3.60)

and Eq. (3.61) below to M permutation symmetric boundary conditions are not equal, which is a necessary
condition for obtaining a non-trivial result in the subsequent equation Eq. (3.63), which is confirmed by our
numerics. At the same time, had the first subleading operator in the above OPE been the totally symmetric
one-dimensional representation, the first subleading terms in Eq. (3.60) and Eq. (3.61) would be equal, in contrast
to our numerical results. [Our assumption is thus confirmed by the numerics.] - We can now immediately recover
the formulation presented in Eq. (3.58) upon specializing to the case of M = 2 boundary conditions of this type,
i.e. A,B ∈ {a, b}: In this case the linear dependency condition reads ψ(1);a

f |f + ψ
(1);b
f |f = 0. Upon making the

identifications C(1)

f |f ψ
(1);a
f |f ≡ C

(1)

f |a|f ϕ
(1)

f |f as well as C(1)

f |f ψ
(1);b
f |f = (−1)C

(1)

f |f ψ
(1);a
f |f ≡ C

(1)

f |b|f ϕ
(1)

f |f , we recover Eq. (3.58)
with C

(1)

f |b|f = (−1)C
(1)

f |a|f .
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Figure 3.9: Numerical results for the aaaa circuit. (a) Entanglement entropy fitted to 2-point
functions according to Eq. (3.65). Here we take z5, z6 ∈ [z1, z4] for simplicity. (b) Mutual
information fitted to 4-point functions according to Eq. (3.66). The two intervals are either
both on the same side [z1, z4], or on opposite sides [z1, z4] and [z2, z3]. The limiting behaviors
are given in Eqs. (3.69), (3.71).

where Cfafa = C
(1)
f |a|fC

(1)
f |a|f . Inserting the above results into Eq. (3.45), we obtain

exp[−S([z1, z4])] =
Ffafb(η)

Ffafa(η)

≈ 1− (Cfafa − Cfafb)(1− η)
h
(1)
f |f , 1− η → 0. (3.62)

Since η = 1− 16 exp(−πτ) in the limit τ → ∞ (Eq. (3.20)), we can show that

S([z1, z4]) ∝ (1− η)
h
(1)
f |f ∝ exp

(
−h(1)f |f πτ

)
. (3.63)

From our fit in Fig. 3.8(b)(inset), we have the conformal dimension h
(1)
f |f ≈ 0.41. We note that

the exponential decay in Eq. (3.63) is understood as a consequence of crossover to a quasi-one-

dimensional system as Y � L, where every correlation function falls off exponentially, with the

correlation length set by L.

3.2.4 Circuit with boundary conditions aaaa - Fig. 3.2(d)

Entanglement entropies as 2-point functions

As mentioned in Sec. 3.1, the aaaa circuit has physical qubits on all four edges of the

rectangle, therefore the background partition function of the circuit is defined without any
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boundary condition changing operators; see Fig. 3.2(d). This is convenient since now the

entanglement entropy of a contiguous subregion is given by a 2-point function, which has a

simple form. (Recall that in contrast, for boundary conditions of the rectangle of type fffa and

fafa, the entanglement entropies map to (more complicated) 3- or higher-point functions.) In

terms of the conformal mapping, the entanglement entropy of an interval [z5, z6] reads for the

present boundary conditions

exp [−S([z5, z6])] (Fig. 3.9(a))

=

(
∂w

∂z

)ha|b

z5

(
∂w

∂z

)ha|b

z6

〈
ϕa|b(w5)ϕb|a(w6)

〉
∝

[(
∂w
∂z

)
z5

(
∂w
∂z

)
z6

(w56)
2

]ha|b

, (3.64)

hence

S([z5, z6]) = −ha|b ln


(
∂w
∂y

)
z5

(
∂w
∂y

)
z6

(w12)
2

+ const.

(3.65)

The computed entanglement entropy and fit to the 2-point function is shown in Fig. 3.9, where

we took ha|b = 0.53.

Mutual information as 4-point functions

We compute the mutual information of two subregions to further confirm the conformal

symmetry. We take the two subregions to be the intervals A = [z5, z6] and B = [z7, z8] which

sit at various positions, either both on the upper edge, or with one on the upper edge and the

other on the lower edge of the rectangle, as shown in the insets of Fig. 3.9(b). The mutual

information is expressed in terms of the 4-point correlation function of the same bcc operators

87



Conformal invariance at the critical point Chapter 3

as

exp [−I([z5, z6], [z7, z8])] (Fig. 3.9(b))

=

〈
ϕa|b(z5)ϕb|a(z6)

〉 〈
ϕa|b(z7)ϕb|a(z8)

〉〈
ϕa|b(z5)ϕb|a(z6)ϕa|b(z7)ϕb|a(z8)

〉
=

〈
ϕa|b(w5)ϕb|a(w6)

〉 〈
ϕa|b(w7)ϕb|a(w8)

〉〈
ϕa|b(w5)ϕb|a(w6)ϕa|b(w7)ϕb|a(w8)

〉
≡ 1

Fabab(η)
(3.66)

where we used the crossratio

η ≡ w56w78

w57w68
. (3.67)

The numerical results are shown in Fig. 3.9(b), where we find I([z5, z6], [z7, z8]) collapses well

to a function only of η.

The limiting behaviors in η → 0 and η → 1 can be similarly obtained by considering the

appropriate OPE, namely Eq. (3.36), in a fashion parallel to Sec. 3.2.1.

• Limit z5 → z6, z7 → z8, in which η → 0. Using twice the OPE in Eq. (3.36) (once for

z5 → z6 and once for z7 → z8), leads to the following form

Fabab(η → 0) = 1 +#η
h
(1)
a|a , (3.68)

and therefore we obtain, upon making use of Eq. (3.66),

I([z5, z6], [z7, z8]) ∝ η
h
(1)
a|a , η → 0, (3.69)

where we extract15 h
(1)
a|a ≈ 2.0 from the plot in Fig. 3.9(b), consistent with Ref. [59].16

15Comments regarding features of logarithmic CFTs [Log-CFT], analogous to those made in footnote 11 of
Sec. 3.2.1, could be made here. Again, because of the inability to determine the presence of absence of corre-
ponding logarithms multiplying powerlaws we do not elaborate here on these possible features.

16The same numerical value for this exponent was found in the mutual information for the Hartley entropy
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z2z1 z3

Y

z4

+x +x+2-x-x-2

w(z) = - exp[(π/Y)z]

w1 w2 w3 w4

Figure 3.10: The conformal mapping from the infinite strip with finite width Y to the LHP,
allowing calculation of entanglement entropies and mutual information for finite segments.
The infinite strip is obtained by taking the thermodynamic limit (L→ ∞) of the aaaa circuit.

• Limit z6 → z7, z5 → z8, in which η → 1. Using again the relevant OPE Eq. (3.36), we

obtain

exp [−I([z5, z6], [z7, z8])]

∝

(
1−η
η

)2ha|b

1 + #
(
1−η
η

)h(1)
a|a

, (3.70)

thus

I([z5, z6], [z7, z8])

≈ −2ha|b ln (1− η) + # (1− η)
h
(1)
a|a , η → 1 (3.71)

which has the same form as that in Eq. (3.40) and the leading behavior ln(1− η) depen-

dence is verified in Fig. 3.9(b).

Entanglement dynamics and the absence of entanglement lightcone

As in Sec. 3.2.1, based on the consistency between the numerics and CFT calculations,

we try to obtain an analytic understanding of the entanglement dynamics for aaaa using the

for circuits with Haar unitaries obtained in Ref. [16]. The same comments concerning logarithms multiplying
powerlaws, as in the previous footnote, can be made here.
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conformal mapping. The simplicity of this boundary condition allows us to compute the entan-

glement entropy in an infinitely large system by first taking L→ ∞, where the corners are now

unimportant. (Note that, in contrast, for rectangles with boundary conditions fffa the corners

are always important because of the bcc operators present.)

In Fig. 3.10 we show a infinite-length system (L = ∞) with finite Y ∝ T , i.e. an infinite

strip. The conformal mapping from the infinite strip to the LHP takes the form

w(z) = − exp
[ π
Y
z
]
, (3.72)

where the upper and lower edge of the strip map to the positive and negative real axis, respec-

tively. Using this map, the entanglement entropy of a finite interval A = [z1, z2] now can be

easily computed,

S([z1, z2])

= −ha|b ln

[ (
π
Y

)2
cosh

(
π
Y z12

)
− 1

]
+ const.

≈


2ha|b lnY +

ha|bπ

Y z12, Y ∝ T � z12

2ha|b ln z12, Y ∝ T � z12

(3.73)

Interestingly, at early times we see a lnY growth in addition to the volume law of the entropy

(due to the maximal entanglement in the initial state) which “purifies” as z12
Y in a similar

fashion as Eq. (3.50), while at late times the entanglement entropy crosses over to the familiar

logarithmic form. Notice that 2ha|b has the meaning of the “coefficient of the log”, found to

be approximately 2ha|b ≈ 1.6 ln 2 in Refs. [59, 21]. It is immediate from the computation that

for two intervals [z1, z2] and [z3, z4] which sit next to each, i.e. where z2 = z3, their mutual

90



Conformal invariance at the critical point Chapter 3

information dynamics becomes

I([z1, z2], [z2, z3])

≈


2ha|b lnY, Y ∝ T � z12, z23

2ha|b ln
(
z12z23
z13

)
, Y ∝ T � z12, z23

(3.74)

where the early time dynamics is reminiscent of the lnY growth of bipartite mutual information

in Ref. [21].

The dynamics of mutual information of two distant regions is more interesting in that the

two regions can share non-zero mutual information with infinite speed. Consider again the

setup in Fig. 3.10, where we take two finite intervals (both of size 2 in this case), separated by

a distance r = 2x, in an infinite system after a circuit evolution of finitely many layers, where

the qubits are at the y = Y boundary. The mutual information between these two intervals

follows Eq. (3.69) in the limit η → 0, that is

I(η) ∼ η
h
(1)
a|a , where η =

w12w34

w13w24
=

sinh2( πY )

sinh2
[
π
Y (1 + x)

] .
(3.75)

It is obvious that I(η) is nonzero for arbitrarily small but finite values of Y/x, indicating an

infinite entangling speed, in contrast to a finite light speed in a local unitary circuit model, i.e.

one in which random projective measurements are absent. More generally, it can be shown that

there do not exist finite constants B,C, v such that [111]

I(η) ≤ B exp [−C(x− vT )] , for all x and T . (3.76)

In particular, this inequality is violated by Eq. (3.75) in the regime x� vT � 1.

The infinite entanglement speed is a direct consequence of conformal invariance, where

time is identified as the vertical spatial dimension. Intuitively, the long-range correlations at
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Figure 3.11: (a) Starting from a product initial state with periodic spatial b.c., the entangle-
ment entropy in the steady state τ → ∞ is mapped to a 2-point function. (b) Starting from a
Bell-pair initial state with periodic spatial b.c., the entanglement entropy of either the upper
and lower edge is predicted to also have the form SBell = ha|bπτ

−1 in the τ → 0 limit, as in
Eq. (3.81). In the limit τ → ∞, we fit to SBell = exp (−xp.b.c. (2π) τ) with xp.b.c. ≈ 0.125, as
in Eq. (3.84).

the critical point are present for an arbitrarily narrow strip Y � L, or equivalently, for an

arbitrarily shallow circuit. Physically, this is possible since we have introduced local, unitarity-

breaking measurements, leading to an “entanglement swapping” mechanism (see Fig. 3.1) that

survives in a random many-body system.17

3.3 Periodic boundary condition

3.3.1 Numerical results

In this section we consider circuits with periodic spatial b.c., which therefore have cylindrical

geometry. This is not quite as simple as a rectangle, since a finite cylinder is topologically

distinct from the LHP, and a conformal mapping to the latter is not available. Therefore,

the dynamics of entanglement and mutual information is in general more difficult to discuss

as compared to a circuit of rectangular geometry. However, several simplifications occur in

suitable limits to be discussed below.
17We note in passing that in Clifford circuits, the growth of the stabilizers is necessarily non-local and there must

be no lightcone at the critical point, in any gauge, as required by the long-range mutual information; therefore,
a hydrodynamic description with local rules of stabilizer growth cannot be accurate. Natural extension can be
made away from critical point: with a finite correlation length ξ, there will be a maximal velocity as ξ/λt, where
λt is the temporal lattice spacing; this velocity diverges as we approach the critical point (compare discussion in
Sec. 3.4.4).
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One simplification occurs in the “late time limit”, where the depth of the circuit is much

larger than the number of qubits, Y ∝ T � L, which is when the qubit chain is already in its

steady state. This limit can be described by a semi-infinite cylindrical circuit, which in turn

can then be mapped to the LHP via the following conformal map,

z 7→ w(z) = tan(πz/L). (3.77)

This leads to the following form of the entanglement entropy in the steady state,

S([z1, z2]) (Fig. 3.11(a))

= −ha|b ln

[(
∂w
∂z

)
z1

(
∂w
∂z

)
z2

(w12)2

]
+ const., (3.78)

and the collapse of S([z1, z2]) against ξ =
( ∂w

∂z )z1(
∂w
∂z )z2

(w12)2
is shown in Fig. 3.11(a), where we again

find ha|b = 0.53.

In the steady state it is also possible to compute the mutual information of two non-

overlapping intervals, where the OPE in Eq. (3.36) is now relevant, and the limiting behavior

of I(η) end up being the same as that in Eqs. (3.69) and (3.71). We again find the same same

values of the critical exponents h(1)a|a = 2.0 and ha|b = 0.53 (data not shown) that were found in

Sec. 3.2.4. The value for both exponents are consistent with that found in Ref. [59].

Another simplification occurs in the limits Y � L and Y � L for the Bell entanglement

entropy for the L Bell pair initial state. This is analogous to corresponding limit of the rect-

angular circuit with fafa b.c.’s, discussed in Sec. 3.2.3 above, except that the qubit chains now

have periodic b.c.’s:

1. We first consider Y � L, in parallel to Sec. 3.2.3. Using the transfer matrix formalism

by treating the spatial direction as the “direction of propagation” of the transfer matrix,

the partition function for this setup is given by

Zab = Tr exp (−Hab × L) , (3.79)
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where the trace accounts for the periodic b.c., and Hab is the same Hamiltonian as that in

Eq. (3.52) (compare the two insets of Fig. 3.11(b)). As L� Y , Zab is again given by the

ground state energy of Hab. A similar reasoning applies to Zaa. Combining these results,

we obtain

exp[−SBell] =
Zab
Zaa

∼ exp
(
−ha|bπL/Y

)
, (3.80)

thus (recall from Eq. (3.6) that τ = Y/L)

SBell ∼ ha|bπτ
−1, (3.81)

which is the same result as that in Eq. (3.50).

2. As Y � L, we take the temporal direction as the “direction of propagation” of the transfer

matrix, with initial and final states now denoted by |a〉 and |b〉. We have

Zab

= 〈a| exp(−Hp.b.c. × Y ) |b〉

= e−ϵ0Y
[
〈a|0〉 〈0|b〉+ 〈a|1〉 〈1|b〉 e−(ϵ1−ϵ0)Y + . . .

]
(3.82)

and similarly

Zaa

= 〈a| exp(−Hp.b.c. × Y ) |a〉

= e−ϵ0Y
[
〈a|0〉 〈0|a〉+ 〈a|1〉 〈1|a〉 e−(ϵ1−ϵ0)Y + . . .

]
(3.83)

where Hp.b.c. is the Hamiltonian of the underlying CFT with periodic b.c.’s., whose excita-
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tions energies are known to be related to scaling dimensions of the bulk CFT. Specifically,

we have denote by ϵ0 and ϵ1 the energies of the lowest and first excited states |0〉 and |1〉

of Hp.b.c. which have non-vanishing overlap with both, the final and initial states. Due to

conformal symmetry, the so-defined excitation energy has the form ϵ1 − ϵ0 ≡ 2πxp.b.c./L,

where xp.b.c. is a critical exponent of the bulk CFT.18 Therefore we have

SBell = exp (−xp.b.c. (2π) τ) , (3.84)

where xp.b.c. is a scaling dimension in the bulk Clifford CFT (i.e. a universal quantity),

and which in general will not coincide with boundary scaling dimension h
(1)
f |f (discussed,

e.g., in Fig. 3.8(b)).

The results of the numerical computation of SBell are shown in Fig. 3.11(b), where we find

ha|b ≈ 0.53 and xp.b.c. ≈ 0.125.

3.3.2 Determination of pc and Y/T

Due to the simplicity of the periodic b.c. at late times, namely the absence of corner

operators and therefore the simple form of Eq. (3.78), we use this setup for determining pc.

Specifically, we choose pc such that the plot in Fig. 3.11(a) fits best to a straight line; this gives

us pc = 0.1600 ± 0.0003, as well as ha|b ≈ 0.53. We further define Y/T (where τ = Y/L =

(Y/T )(T/L)) such that Fig. 3.11(b) fits best to SBell ≈ ha|bπτ
−1 at small τ . This gives us

Y/T ≈ 0.61.

pc and Y/T are the only tuning parameters in our fitting scheme. Once they are obtained

from Fig. 3.11, they are fixed for all random Clifford circuits in this Chapter, for which we have

found good data collapse. This confirms our anticipation that Y/T and pc are b.c.-independent

properties of the bulk.
18Here xp.b.c. = h+ h̄ = 2h where h = h̄ due to translational invariance of the initial and final states. h is the

scaling dimension (conformal weight) of a primary field in the bulk CFT.
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3.4 Discussion and outlook

3.4.1 Summary

In this Chapter we presented extensive numerical evidence supporting the presence of con-

formal symmetry at the measurement-driven entanglement transition in the random Clifford

quantum circuit, via identifying entanglement entropies of the circuit with boundary free ener-

gies of the conformal field theory in the bulk of the circuit in response to changes of boundary

condition. With this identification, the critical dynamics of entanglement and mutual infor-

mation can be understood from analytic computations of correlations of boundary condition

changing (bcc) operators whose functional form is highly constrained by conformal symme-

try, and we verify explicitly the specific constraint forms of these correlations in our numerics.

Moreover, by fitting numerical results for such correlation function to their functional form pre-

dicted by conformal symmetry, we are able to extract numerical values for scaling dimensions of

several bcc operators for the circuit with several sets of different boundary conditions, and find

a remarkable agreement. These results constitute a consistent charaterization of the Clifford

CFT underlying the circuit at criticality.

Crucial to our analysis is the interpretation of the temporal direction of the circuit as the

vertical spatial dimension of the CFT, which then allows a conformal mapping among circuits of

different aspect ratios of the (space-time) rectangle, relating dynamics at different time scales.

This interpretation of “time” was implicit, or has been anticipated in previous works on the

entanglement transition [16, 17, 59, 21, 31, 30].

Conformal symmetry combined with the standard Schwarz-Christoffel conformal map gives

analytical control over various finite-size scaling behaviors in the rectangular geometry of the

critical circuit. The circuit depth T corresponds to the size of the “Euclidean time” coordinate

and thus T or the spatial size L sets the correlation length in the quasi-one-dimensional geometry

of a narrow strip when τ � 1, or τ � 1, respectively, with τ ∝ T/L. This naturally explains

the logarithmic growth of the entanglement entropy from an initial product state, as well as the
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purification dynamics of mixed state [21] (ha|bπτ
−1 at small τ , and e

−h
(1)
f |f πτ at large τ). Other

interesting scaling behaviors discussed in this Chapter can be understood in a similar fashion:

they follow directly from conformal invariance.

An immediate consequence of the “imaginary time” and criticality is the absence of a light-

cone in the dynamics of the entanglement structure of the circuit, as highlighted by the infinite

speed at which two distant finite regions develop nonzero mutual information (whereas the

entire system is in the thermodynamic limit). This is only possible in the presence of mea-

surements that break unitarity of the time evolution, via a mechanism similar to entanglement

swapping. It is interesting to notice that while measurements reduce entanglement entropy on

average, they sometimes “trade” short-range entanglement for long-range entanglement, which

then helps stabilizing the volume-law phase. This provides a view of the volume-law phase

complementary to the quantum error correction argument in Ref. [20].

Although we have established our results exclusively for the Clifford circuit, our approach

builds upon general principles such as conformal invariance and reasonable assumptions about

the boundary conditions, without assuming detailed knowledge of the universality class. There-

fore, most of these conclusions will thus clearly immediately generalize to entanglement dynam-

ics in other hybrid unitary-measurement circuits for all the Rényi entropies, including the n ≥ 1

Rényi entropies of Haar circuits [30], as well the n = 0 (Hartley) Rényi entropy in the same

circuits [16] (see also Appendix C.4).

3.4.2 Restatement of the central assumptions

In this subsection we restate the central assumptions underlying our work and the underlying

logic, which are as follows:

(i) We assume there is an emergent CFT describing the two-dimensional space-time in the

bulk of the circuit at the entanglement transition. We provide extensive numerical verifi-

cation of this assumption in this Chapter.

(ii) Furthermore, we assume that various boundary conditions on the circuit described at
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microscopic scales in terms of specific configurations of qubits at the boundary, are de-

scribed at the transition by conformally invariant boundary conditions (as long as the

former does not possess non-local entanglement). This is a general feature of CFT, and

emerges ultimately from thinking of such boundary conditions in a Renormalization Group

picture.

(iii) Subsequently, we assume that entanglement properties (such as Rényi entropies) of the

critical circuit are described by imposition of different boundary conditions which, by

item (ii) above, can be viewed as conformal boundary conditions. Note that the connec-

tion between entanglement entropies and imposition of different boundary conditions (for

bipartite entanglement properties, different in boundary region A, as opposed to at its

complement) originates from Ref. [85] and its sequel [30], and does not really require an

assumption. Indeed, by repeating the steps presented in Ref. [30], but now for the reduced

density matrix for the Clifford circuit, one directly obtains the central relation Eq. (3.2)

between entanglement entropies and the ratio of two partition functions of the circuit, one

where different (numerator) and one where the same (denominator) boundary conditions

are imposed on the circuit in region A and its complement. Physically, as first stressed

in this context in Ref. [85], the (negative) logarithm of such a ratio of partition func-

tions corresponds to a difference of boundary free energies. In other words, entanglement

entropies of the circuit are described by (differences of) boundary free energies.

(iv) Then, at each point on the boundary where different conformal boundary conditions meet

(for the bipartite situation the endpoints of region A), a conformal boundary condition

changing (bcc) operator appears. The leading (lowest scaling dimension) operator appear-

ing at a boundary change is primary in standard CFT, and we make the (probably weak)

assumption that this is also the case in the (complicated) CFT describing the circuit.

(This assumption is verified numerically in the work presented here.)

(v) Finally, we make important assumptions central to our work about the nature of boundary
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conditions which we denote by f , a, b, and which are defined (in Sec. 3.1.1) at the micro-

scopic (lattice) scale in terms of specific properties of qubits and their physical properties.

The central objects of our work are then bcc operators changing between different such

qubit-based boundary conditions, such as e.g. ϕf |a or ϕa|b, and the entanglement prop-

erties described by correlation functions of several such bcc operators, as detailed in the

main text for many different situations of physical interest. Assumptions about the nature

of these microscopically defined boundary conditions, whose validity we confirm through

numerics, are necessary for the Clifford circuits since, in contrast to random Haar circuits,

there is no explicit Statistical Mechanics model available for the former in terms of which

an explicit microscopic formulation of these boundary conditions can be formulated.

3.4.3 Universality class of the transition and relationship with critical 2D

percolation

The universality class of the transition is an interesting question. For the measurement-

induced transition in Haar random circuits with (finite) on-site Hilbert space dimension q, all

nth Rényi entropies with n ≥ 1 are described by a known statistical mechanics model [31, 30]

in the bulk of the circuit (the Rényi entropies with different n ≥ 1 being described by different

boundary observables on the same bulk which therefore become critical at the same value of

the tuning parameter, the space-time density of measurements p). On the other hand, the 0th

Rényi (Hartley) entropy is described by a different statistical mechanics model which becomes

critical at a different (higher) value of the density of measurements.

This statistical mechanics model describing all nth Rényi entropies with n ≥ 1 turns

out [31, 30] to be exactly solvable in the limit of infinite onsite Hilbert space dimension q → ∞,

possessing a critical point in the universality class of two-dimensional percolation. This limit

provides a starting point for a systematic access to the so-far not analytically understood generic

transition at finite q, which is the infrared limit of a renormalization group flow out of perco-

lation by a single relevant perturbation which emerges because [85, 30] a finite onsite Hilbert
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space dimension q turns out to (explicitly) break a symmetry that is present when q = ∞. On

the other hand, the 0th Rényi (Hartley) entropy for any onsite Hilbert space dimension q is

described [16] by “minimal cut paths” in two-dimensional percolation (argued to be described

by “first passage percolation”).

Clifford circuits have only been accessible numerically, but can be studied for very large

system sizes. Recently in Ref. [113], several operator dimensions in Clifford CFT were found

to have numerical values close to their counterparts in percolation, while recognizing some do

not. In a particular setup, one scaling dimension was extracted by looking at the early-time

purification dynamics of a single “reference qubit”, and further identified with the lowest scaling

dimension of the boundary spin operator at a free boundary in critical percolation, η∥
2 = 1

3 . We

revisit this setup in Appendix C.2, where we denote this scaling dimension by h(1)f |f (defined in

Table 3.1 and in Sec. 3.2.3) whose value appears to be distinct from η∥
2 = 1

3 . A more thorough

comparison between Clifford CFT and critical percolation is summarized in Table 3.2, which

further highlights their differences. It might perhaps be conceivable that the appearance of

scaling dimensions observed in Refs. [113, 123] with values close to percolation, could be due

to a possible proximity of a percolation fixed point in a generalized phase diagram.

3.4.4 Outlook

Extensions within the current framework

Besides going to even larger systems as mentioned above, it would be interesting to also

extend the current fitting algorithm off the critical point, and to extract critical exponents such

as ν and β [113, 123].

It is satisfying that the trivial product state and the L-Bell pair state map to conformal

boundary conditions in the CFT formalism. Exploring other quantum states (such as a max-

imally entangled Page state [124], which has non-local entanglement) and attempting to fit

them into the current framework would be an interesting direction.
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Implications of non-unitary dynamics

The emergence of conformal symmetry in hybrid circuits is perhaps in itself not surprising

given previous numerical work on Clifford circuits [17, 59] as well as analytical results on Haar

circuits [16, 31, 30]. What is surprising is the way the time dimension fits in the CFT picture,

and the consequences that emerge from the fact that the real time coordinate ends up acting

as imaginary time. Therefore, this type of hybrid dynamics is in a class distinct from ordinary

unitary dynamics.

Although we have established the imaginary time using conformal invariance that is only

present at the critical point, one can generate a finite (bulk) correlation length by detuning

from the critical point (by letting p 6= pc). Certainly, as long as one remains within the

scaling limit where the correlation length is much larger than the microscopic lattice scale, the

physics is expected to be the standard deformation to a theory with exponentially decaying

correlations. Therefore, one also expects that real time to still act as imaginary time. This can

be seen explicitly in the 2D statistical mechanics lattice model describing Haar unitary circuits

with measurements [30].19 However, since all correlations fall off exponentially away from the

critical point [16, 59], it is only on length scales short compared the correlation length that the

measurement-induced quantum non-locality and violations of the Lieb-Robinson bound will be

manifest.

Going beyond the current model, it is possible that imaginary time is a general consequence

of non-unitarity, and might not be restricted to this family of unitary-measurement circuits (see

e.g. Ref. [125]). It will be interesting if concrete examples of criticality in unitarity-breaking

dynamics can be found to confirm this expectation, possibly identifying other universality

classes.
19Detuning from criticality only affects the local Boltzmann weights, and thus does not change the fact that

physical (real) time acts as one of two spatial coordinates of the lattice on which the 2D statistical mechanics
model is defined.
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Experimental relevance

As addressed in Refs. [59, 31, 113], the experimental cost of directly accessing the entan-

glement transition grows exponentially in the product of system size and circuit depth, since

one has to post-select on all the measurement outcomes (which are intrinsically probabilistic,

following Born’s rule) to produce multiple copies of any wavefunction in order to measure the

entanglement entropy (see also footnote 1), or to estimate variances of correlation functions [59].

Our findings in this Chapter suggest that the critical behavior is already present at early stages

of the circuit evolution, and one does not have to evolve the circuit all the way to saturation

to measure the entanglement entropy; an early time measurement would suffice. In principle,

it can slightly alleviate the experimental challenge. Yet we have not been able to identify a

general experimental protocol that allows efficient access to the transition.

In the special case of Clifford circuits, the quantum state is a “stabilizer error-correcting

code” at all times [67], for which the two possible post-measurement states resulting from a Pauli

measurement are related to one another via a single Pauli string operator, that can be efficiently

computed given the knowledge of the stabilizer representation of the state [68]. Thus, one can

fix a choice of all the unitary gates U and measurement placements X in the circuit, as well as all

the measurement outcomes M, and replicate the stabilizer code state resulting from the hybrid

circuit evolution (U ,X ,M), by simulating the (U ,X ) circuit while “correcting” the “errors” –

measurement outcomes that differ from their counterparts in M – with the application of one

“error correcting” Pauli string operator (mentioned above) immediately after each error occurs.

This replication algorithm runs in polynomial time; therefore, entanglement entropies can be

efficiently measured, at the cost of keeping track of the time evolution of all the stabilizers (a

polynomial-time and polynomial-space overhead).

On the other hand, purity of “reference qubits” [113], as well as the quantum Fisher in-

formation [20], might enable indirect access to the transition in polymonial time on near-term

quantum computing platforms [12, 13, 14].

103



Chapter 4

Capillary wave theory of

dynamically generated quantum

error correcting codes in the volume

law phase

Quantum error correcting codes (QECC) [126, 127] are important constructions of quantum

states that can be used for protecting information from decoherence and other types of errors. A

QECC encodes quantum information nonlocally, so that sufficiently local errors are detectable

and reversible, allowing for explicit protocols to counter the errors [128, 129]. Besides concrete

constructions of QECCs with an intended use for quantum computation [130, 131, 128, 44, 132,

45], they can also occur naturally in physical contexts, e.g. in many-body quantum systems as

a consequence of topological orders [133, 102], or in quantum gravity as a consequence of the

holographic principle [134].

Recently, in (1+1)-dimensional “hybrid” quantum circuits [16, 18, 17] that exhibit a “measurement-

driven transition” [59, 20, 21, 31, 30, 113, 123, 22, 60] between a highly-entangled phase and a

disentangled one (see Sec. 4.1.1), the notion of QECC also appears, and provides an interesting
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perspective [20, 21, 31, 22]. The idea is to view the quantum states generated by the circuit

dynamics as QECCs. Indeed, in Clifford hybrid circuits, where numerical characterizations are

most accessible, the states are “stabilizer quantum error correcting codes” in a strict sense, for

which the “code space” changes at each time step of the circuit evolution. Local measurements

in the circuit can be correspondingly interpreted as “local errors”, which tend to decrease the

code rate, and when frequent enough, can drive the QECC through a transition from a phase

where the QECC is resilient to local errors and thus retains a finite code rate, to a phase where

the “error rate” is so high that a finite code rate cannot be sustained.

A complementary approach, as firmly established in hybrid random Haar circuits [30, 31],1

translates the measurement-driven transition into a “conventional” finite-temperature ordering

transition by mapping to an underlying statistical mechanical (stat. mech.) model of spins in

(2 + 0)-dimensions with short-range interactions, with the temporal dimension of the circuit

viewed as the second spatial dimension.2 Within this mapping, the disorder-averaged entan-

glement entropy of a subregion corresponds to the free energy cost upon a change of boundary

condition in that subregion. In the low-temperature ordered phase, this change of boundary

condition requires the presence of sharp domain walls. This geometrical picture raises the pos-

sibility of a stat. mech. description of the entanglement structure, and, in turn, of QECCs

in hybrid circuits in terms of these “entanglement domain walls”. The aim of this work is to

demonstrate such a description.

We focus on error correcting properties of stabilizer codes, as generated dynamically after

running a random Clifford circuit into the steady state, where the circuit depth scales at most

polynomially in the system size. We will mostly focus on the case with a maximally-mixed

initial state, and with the measurement rate below the transition threshold, p < pc (i.e. the

mixed phase [21]; see Sec. 4.1.1), which was shown to have a finite code rate on relevant time

scales.
1We note that Refs. [30, 31] extended a mapping first obtained in Refs. [116, 72, 28, 29] for random Haar

unitary circuits without measurements, where it was first pointed out that the entanglement entropy can be
viewed as free energies of “entanglement domain walls”. This mapping has been extended in various contexts of
unitary quantum dynamics [135, 136, 137], and this development is independent of hybrid circuits.

2See also Refs. [116, 85], where a similar mapping was derived for random tensor networks.
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We start in Sec. 4.1 by introducing the model using the stabilizer code formalism, and

translate the circuit dynamics into their actions on the code space. We then state a theorem

in Sec. 4.1.4 that applies to all stabilizer codes, which equates the number of independent, un-

detectable (hence uncorrectable) errors supported on a subregion, with the mutual information

between the subregion and the environment.

In Sec. 4.2, we review the domain wall picture of free energies as established analytically

in Refs. [30, 31], and numerically for Clifford circuits in Refs. [113, 60]. Since the Clifford

stat. mech. model is not known at this stage, we choose to model the “entanglement domain

walls” as the simplest type, i.e. that of the liquid-gas interface (or Ising domain walls) in the

low-temperature phase, as described by what is called “capillary-wave theory” [86, 87, 138].

This simplification allows analytic calculations, and, as we shall see, quite generally captures

qualitative features of entanglement domain walls. Using the theorem, we translate certain

algebraic properties of the QECC to geometric properties of the domain walls. In particular,

the code rate is interpreted as the surface tension, and the code distance as the length scale below

which the transverse, entropic fluctuations of the domain wall dominates over the surface energy.

The “correctability” of a subregion, as quantified by the “decoupling principle”, translates into

a geometric decoupling condition of domain walls.

In Sec. 4.3, we perform entanglement entropy calculations for a random Clifford circuit

model, and demonstrate that capillary-wave theory gives a qualitatively accurate description

of the results. However, quantitative deviations from capillary-wave theory are present in our

numerics, which presumably reflects the specific nature of the entanglement domain walls within

a stat. mech. description for such Clifford circuit dynamics.

In Sec. 4.4, we discuss implications of our result, and mention several possible future direc-

tions.
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t

x

2-qubit random Clifford unitary

1-qubit Pauli measurement

Figure 4.1: The hybrid circuit composed of local unitaries and local measurements. The
rectangles represent random Clifford unitary gates, arranged alternatively in a “brickwork”
fashion. Projective measurements of single-site Pauli operators are made between unitary
layers, and at each site indepedently with probability p < pc, represented by hollowed dots.

4.1 Model and setting

4.1.1 The random Clifford circuit

We consider “hybrid” circuit models [16, 18, 17] as shown in Fig. 4.1, acting on a set of

qubits Q = {1, . . . , L}, arranged in a one-dimensional array. The circuit is composed of nearest-

neighbor unitary gates, which we restrict to the two-qubit Clifford group;3 and sporadic single-

qubit projective measurements, which we restrict to be of the Pauli operators. We focus on the

quantum trajectories of the state density matrix under circuit evolution, namely,

ρQ → UρQU
†, under a Clifford unitary gate, (4.1)

ρQ →
PρQP

Tr[PρQP ]
, under a Pauli measurement. (4.2)

Here, the projection operator P is given by P = 1±g
2 , where g is the Pauli operator being

measured, and the plus-minus signs are the (possibly random) outcomes of the measurement.

In the case when this outcome is indeed random, we choose either outcome randomly with the

corresponding probability given by Born’s rule.

For concreteness, we choose to sample the unitaries uniformly from the two-qubit Clifford

group, and perform single-qubit measurements of probability p at each time step, independently
3Recall that the Clifford group contains all unitaries that maps every Pauli string operator to another under

conjugation.
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on each qubit (the “random Clifford circuit” [59]).

We will focus on the maximally-mixed initial state with maximal entropy, S(ρQ) = |Q| ln 2 =

L ln 2.4 This entropy can be equivalently thought of as the entanglement entropy between Q

and a “reference system”, R, where Q and R together holds a pure state |ΨQR〉, and ρQ is the

reduced density matrix after tracing out R,

ρQ = TrR |ΨQR〉 〈ΨQR| =
1

2|Q|1Q. (4.3)

With these specifications, the circuit model is unambiguously defined. Within this model,

the entropy of ρQ is a monotonically decreasing function of time, T , the circuit depth. The

decrease of entropy is due to measurements (Eq. (4.2)) that try to read out some information

about the state, while the unitaries (Eq. (4.1)) “scramble/delocalize” the information, protect-

ing it from being read-out by local measurements. This competition leads to a “purification

transition” at p = pc ≈ 0.16 [21, 60], where

• When p < pc, the state ρQ retains a finite density of entropy at times T at most polyno-

mial in |Q| (or formally T = O(poly(|Q|))), therefore in the “mixed phase”.5 An arbitrary

subset of Q also has a finite density of entanglement entropy, or equivalently, the entan-

glement entropy has a volume law scaling.

• When p > pc, the entropy density drops to zero on those time scales, therefore in the “pure

phase”. A subset of Q thus has zero density of entanglement entropy, or equivalently, the

entanglement entropy has an area-law scaling.

We will primarily restrict our attention to “intermediate” time scales, with T = O(poly(|Q|)),
4In this Chapter we compute the (von Neumann) entropy by taking the natural logarithm,

S(ρ) := −Trρ ln ρ.

This is the convention adopted in Refs. [31, 30, 116, 85], for which the equality between (average) entanglement
entropies and free energies can be made (see Eq. (4.18)). This choice of convention accounts for the extra factor
of ln 2 here, as well as those appearing in Eqs. (4.7, 4.13, 4.23) and Appendix A.3.

5In the case of a pure initial state [16, 17] where this transition was first found, p < pc corresponds to a
“volume law entangled phase”, where one should be thinking in terms of the reduced (mixed) density matrix of
a subsystem which holds a finite entropy density as T → ∞.
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since for T exponentially large in |Q|, the circuit dynamics should fully purify the state, even

when p < pc.

As discussed below, the state ρQ at any point of the circuit evolution can be thought of

as a “stabilizer code”, that can in principle be used for quantum error correcting purposes.

When the state is viewed as a QECC, the purification transition aquires a new interpretation:

it is a transition from “good” to “bad” QECCs, where the QECC has a nonzero/zero code rate

(which is equal to the entropy density, see below) at relevant time scales, respectively, in the

two phases.

4.1.2 The stabilizer formalism

Here we summarize several basic notions of stabilizer QECC that are necessary for stating

and using the theorem appearing towards the end of this section. We refer the reader to

Refs. [45, 69] and Appendix A.3 for details.

A “stabilizer group” S is an abelian subgroup of the Pauli group on Q (denoted P(Q))

generated by m ≤ |Q| independent and mutually commuting Pauli string operators,

S

=


m∏
j=1

(gj)
bj

∣∣∣∣bj ∈ {0, 1}, gj ∈ P(Q), [gj , gj′ ] = 0


= 〈g1, . . . , gm〉

≡ 〈G〉 , (4.4)

where G = {g1, . . . , gm} is called a “generating set” of S. The group S is abelian, where each

element has order 2, and can therefore be viewed as an m-dimensional vector space on F2, the

isomorphism being given explicitly above in terms of the b-vector.

We list a few more properties that follow from the notion of a stabilizer group [45]:

1. A stabilizer group defines a “code space”, that is, the subspace HQ(S) of the Hilbert space
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HQ on which all elements of S acts trivially. We have

dimHQ(S) = 2k ≡ 2|Q|−|G|, (4.5)

where k := |Q| − |G| = L−m is known as the number of “logical qubits” encoded.

2. The stabilizer group also defines its “code state”, namely the maximally-mixed state on

the code space. Its density matrix is proportional to the projection operator onto the

code space, and is explictly given by [81],

ρQ(S) =
1

2|Q|

∑
g∈S

g. (4.6)

As an example, the maximally-mixed state (i.e. the initial state of the circuit model in

Fig. 4.1) is such a code state, for which the stabilizer group is empty. Consequently, as we

will show below, the state at any point of the random Clifford circuit evolution remains

a code state, and therefore is a “stabilizer QECC” in a strict sense.

Since we will mostly be concerned with codes states as in Eq. (4.6), we will usually write

ρQ as a shorthand notation for ρQ(S), where its dependence on S is implicit.

3. A code state ρQ as in Eq. (4.6) has a flat spectrum, and all its Rényi entropies are equal

to [81]

(ln 2)−1S(ρQ) = |Q| − |G| = k = log2 dimHQ(S). (4.7)

That is, the entropy of the code state is equal to (ln 2 times) the number of logical qubits.

It follows that the “code rate”, defined to be the ratio between the number of logical and

physical qubits, k
|Q| , is equal to the entropy density of ρQ up to a factor of ln 2.

4. We recall that a “logical operator” is an element in P(Q) that commutes with all elements
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in S, that is, an element of the centralizer C(S).6 A logical operator operator is “trivial”

if it is itself an element of S, and “nontrivial” otherwise. Consequently, a nontrivial

logical operator acts within the code space, but nontrivially, and therefore is a so-called

“undetectable and uncorrectable error” of the code.

With this trivial/nontrivial distinction, it is clear that a logical operator is defined up to

gauge freedom, that is, up to arbitrary multiplications of elements in S (which do not

change its action on the code space). Thus logical operators are most easily thought of

as “equivalence classes”, or formally, cosets of S in C(S). We define the “logical group”

L as the following quotient group, L := C(S)/S, with |L| = 22k. We note that L can be

generated by representative “logical Pauli X- and Z-operators”, conventionally denoted

as {X1...k, Z1...k}.

4.1.3 The circuit evolution in the stabilizer formalism

We briefly describe the circuit dynamics in the stabilizer formalism, with the help of notions

introduced above. We show that the state at any point of the circuit evolution, as governed by

Eqs. (4.1, 4.2), remains a code state as in Eq. (4.6).

1. Firstly, we notice that the initial maximally-mixed state is a code state with S = ∅.

2. Under a Clifford unitary gate U as in Eq. (4.1)

ρQ(S) → UρQ(S)U † = ρQ(USU †), (4.8)

6Throughout the paper, by C(S) we really mean the abelianized centralizer,

C(S) =
{g ∈ P(Q)

∣∣ [g,S] = 0}
{±1,±i} .

That is, we “forget about” the (uninteresting) coefficients / commutation relations of the logical operators, and
focus on their operator contents. This way, C(S) can be viewed as vector spaces on F2, and group homomorphisms
(e.g. those in Appendix A.3) can be viewed as linear maps between vector spaces. On the other hand, we do
care about commutation relations of stabilizers (elements of S). We always require S to be abelian and hence
identical to its abelianization. Thus, S is a subgroup of the abelianized centralizer C(S), and the logical group
L is defined by their quotient.
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where S ′ = USU † is obtained from S by conjugating each element of S by U . Thus S ′ is

also an abelian subgroup of P(Q). Moreover, we have S(ρQ(S)) = S(ρQ(S ′)) .

3. Under a Pauli measurement of g ∈ P(Q) as in Eq. (4.2)7, one can easily verify that [68]

(i) When g anticommutes with some elements of S (hence a detectable error), it is

always possible to choose G such that it has exactly one element that anticommutes

with g. The updated stabilizer group S ′ is generated by G′, where

G′ = {gj |gj ∈ G, [gj , g] = 0} ∪ {g}. (4.9)

(ii) When g commutes with all elements in S and is itself within S (a trivial logical

operator/trivial error),

G′ = G. (4.10)

(iii) When g commutes with all elements in S and is itself not within S (a nontrivial

logical operator/undetectable error),

G′ = G ∪ {g}. (4.11)

Thus, if the initial state of the circuit is a “code state” as in Eq. (4.6), then at any point

of the circuit evolution the state is a code state, which admits an efficient representation in

terms of G, and consequently efficient simulation of the circuit dynamics, a result known as the

Gottesman-Knill theorem [67, 68].

Moreover, one sees from above that the entropy of the state decreases by ln 2 (i.e. the state

gets “purified” by one unit) if a nontrivial logical operator (or equivalently an “undetectable

error”) g is measured (compare Eq. (4.7)), but remains unchanged otherwise [22, 37]. This
7The results here holds generally for all Pauli operators g, although we are mostly interested in single site

Pauli operators that are relevant in the context of the circuit model in Fig. 4.1 and in Eq. (4.2).
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observation provides a first clue to a possible connection between the error correcting properties

of the state (when viewed as a QECC) and the purification dynamics.

4.1.4 Code distance and the theorem

An important metric of a QECC is its “code distance”, d, defined to be the minimal weight

of all nontrivial logical operators.8 In our circuit model that has locality, it is natural to

define a similar quantity, the “contiguous code distance” [21, 37], dcont, as the minimal length

of a contiguous segment of qubits that supports a nontrivial logical operator. By definition,

d ≤ dcont.

We say that a logical operator g ∈ C(S) is “localizable” on a set A of qubits, if there exists

g′ ∈ S such that gg′ acts trivially on A, where A := Q−A is the complement of A in Q. It can

be verified that all logical operators localizable on a given set A form a subgroup of C(S). It

can also be verified that this subgroup of operators localizable on A contains S as a subgroup,

upon taking g′ = g ∈ S above. We take the quotient between these two, and denote the

corresponding quotient group as LA, which is a subgroup of L (see Appendix A.3 for a detailed

characterization of LA). We have |LA| = 2ℓA , where ℓA is an integer, and has the meaning of

“the maximal number of independent and inequivalent logical operators (undetectable errors)”

on A. The quantity ℓA thus measures how susceptible the QECC is to undetectable errors on

A.

By definition, any subset (resp. segment) A of qubits with weight (resp. length) smaller

than d (resp. dcont) supports no logical operators (therefore ℓA = 0), or equivalently, no

“undetectable errors”. An error occuring on A must therefore be either “detectable” (that brings

states outside the code space) or “trivial” (that leaves states within the code space unchanged).

When a detectable error located on A occurs, an error correcting unitary supported on A that

reverses the effect of the error can be found, given its error syndrome [45, 69].

Following the standard nomenclature, we may say that the circuit defines a [|Q|, k, dcont]-
8Recall that the weight of a Pauli string operator is the number of qubits on which its content is not the

identity operator.
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code over the course of its time evolution, where both k and dcont are functions of time. A

central purpose of this Chapter is to characterize the code dynamics, and develop an intuitive

picture of its error correcting capabilities as quantified by k and dcont. This is partly achieved

by the following relation between ℓA and the entanglement structure of the state:

Theorem 1. Let ρQ be a code state (defined in Eq. (4.6) to be the maximally-mixed state

on the code space), and |ΨQR〉 be an arbitrary purification of ρQ,

ρQ = TrR |ΨQR〉 〈ΨQR| . (4.12)

Then for any subset A of Q, A ⊆ Q, we have

ℓA = (ln 2)−1IA,R, (4.13)

where the RHS is the mutual information between A and R,

IA,R

= S(ρA) + S(ρR)− S(ρAR)

= S(ρA) + S(ρQ)− S(ρA). (4.14)

Here again, A := Q−A is the complement of A on Q. □

The proof of the theorem is given in Appendix A.3.

Several comments are in order:

• The quantity ℓA was introduced and explored in Refs. [139, 140] (see also Ref. [141]),

although not explictly cast in the form of a mutual information. From the theorem it

follows directly that ℓA + ℓA = 2k, the “cleaning lemma” [141, 142].

• Clearly, from its definition, ℓA ≤ ℓAB since A ⊆ AB, which implies IA,R ≤ IAB,R or,
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equivalently,

S(ρA) + S(ρABR) ≤ S(ρAB) + S(ρAR), (4.15)

the strong subadditivity inequality.

• We have not specified the pure state |ΨQR〉. However, since both sides of Eq. (4.13) can

be defined from ρQ alone (see the last line of Eq. (4.14)), any purification of ρQ would

work equally well.

• For concreteness, let us choose |R| = k, the minimal number of qubits required, and

consider the following “encoded state” as a purification of ρQ,

|ΨQR〉 =
1√
2k

∑
x

|xQ〉 |xR〉 , (4.16)

where {|xQ〉} is an orthonormal basis of the code space, and {|xR〉} is an orthonormal

basis of R. This pure state can be obtained by starting from k Bell pairs, collecting one

qubit from each pair, and encoding this collection of k qubits in the QECC (on Q) while

labelling the other k qubits as R.

The implication of the theorem when A is a contiguous segment and |A| < dcont is impor-

tant, and perhaps familiar from general considerations of QECCs. The LHS of Eq. (4.13)

is zero, following the definition of dcont. The RHS is therefore also zero, as it must

be [143]: Since all errors on A can be detected (and hence corrected), no observables

on A can reveal any information about the encoded state, and there should be no cor-

relations between A and R.9 Therefore, they must “decouple” on the level of density
9In particular, no measurements on A should be able to change the entropy of ρQ(S). The “decoupling

condition” in Eq. (4.17) was argued to hold for typical states when p < pc, thus responsible for the very exsitence
of a “mixed” phase [20]. We will come back to these points in Sec. 4.4.
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matrices [144, 145, 19, 146],

|A| < dcont ⇒ ρAR = ρA ⊗ ρR, (4.17)

leading to a vanishing mutual information between A and R.

On a practical level, the theorem provides a concrete relationship between error correcting

capabilities of the QECC and its entanglement structure. For example, one can readily “read

off” the code distance of the QECC, assuming a complete knowledge of the entanglement

structure.

4.2 Domain wall picture of entanglement entropies

In this section we review the mapping of the circuit dynamics to effective stat. mech.

models, as first developed for unitary Haar circuits in Refs. [116, 72, 28, 29, 137], and later

extended to hybrid Haar circuits in Refs. [31, 30]. In either case, the entanglement entropy

can be related to a domain wall free energy in the stat. mech. model, which can receive both

“energetic” and “entropic” contributions. We will however focus on the case of hybrid circuits

with a nonzero measurement strength p, where results in Refs. [30, 31] can be directly applied.

4.2.1 Mapping to a spin model

The upshot of the mapping introduced in Refs. [31, 30] for the hybrid random Haar circuit

can be very roughly summarized as follows (compare Fig. 4.2(a)), where we omit technical

details. Recall that the hybrid random Haar circuit [31, 30] is structurally identical to the

circuit in Fig. 4.1, except with each unitary gate sampled from the Haar measure on U(4), and

the sporadic projective measurements replaced by generalized weak measurements of the same

strength on each qubit at each time step. This strength plays a role similar to the frequency of

sporadic projective measurements in Fig. 4.1.

1. In the bulk of the circuit, there is one Potts-like spin degree-of-freedom associated with
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=   Jp(si, sj; sk) 

si sj

sk

free spin

fixed spin in direction a

fixed spin in direction b

(a)

S(ρA=[x1, x2]) = — ln

Zcircuit

Zcircuit[A]

A

a

ab
Q

Q

x1 x2
(b)

Figure 4.2: (a) Illustration of the underlying spin model in Refs. [31, 30] for the hybird
random Haar circuit. This figure is adapted from Ref. [30]. Each bulk unitary maps to a bulk
spin (green square), that is “free”. Qubits at the final time t = T (solid dots) correspond to
“fixed” spins all pointing in either the a or b direction. A Boltzmann weight is associated
with each downward-pointing triangle (shaded), and is a function of spins on its vertices.
(b) Representation of the entanglement entropy of the segment A as the difference of two
free energies (see main text). In this figure, we have chosen to “zoom in” on a small part
near the upper edge of the circuit; the upper edge corresponds to physical qubits Q at the
final time t = T of the circuit evolution. The other boundaries are far away, and need not be
specified. The illustrations on the RHS represent typical configurations in the low-temperature
“ferromagnetic” phase, possibly after a sufficient number of coarse-graining steps. In the
denominator (Zcircuit), the upper edge is colored blue, corresponding to the fixed boundary
condition a; thus, the bulk spins tend to also order along a. In the numerator (Zcircuit[A]) the
segment A is colored yellow, and the spins are aligned to have a different value b. This will
induce the alignment of proximate bulk spins along the same direction b. A domain wall is
then present where the two domains meet.
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each unitary gate, taking values in {a, b, c, . . .}. The bulk spins form a square lattice (see

Fig. 4.2(a), and compare with Fig. 4.1). A Boltzmann weight is defined on each downward-

pointing triangle of the lattice (see Fig. 4.2(a)). The “circuit partition function”, Zcircuit,

is obtained by contracting all free spin indices of the Boltzmann weights.

2. At the t = T (final time) boundary of the circuit, there is a spin associated with each

physical qubit in Q. All spins in Q are fixed to have the same value (say a), and therefore

corresponds to a “fixed” boundary condition (b.c.) of the spin model.

3. At the t = 0 (initial time) boundary of the circuit, there is also a spin associated with each

physical qubit in Q, and certain short-range entangled initial states on Q corresponds to

simple b.c. of the spin model. In particular, a pure product initial state corresponds to a

“free” b.c., where each spin can indepedently take all allowed values. On the other hand,

the maximally-mixed initial state corresponds to the same “fixed” b.c. (a) as at the t = T

boundary.

4. When the spatial b.c. is periodic, the circuit geometry is cylindrical, and there are no

other boundaries of the circuit. When the spatial b.c. is open, the circuit geometry is

rectangular, and the boundary conditions on the left and right sides of the rectangle are

also “free”.

5. To compute the entanglement entropy of a segment A = [x1, x2] in the final state (at

t = T ), one needs to compute another partition function. This partition function is

defined by the same boundary condition as Zcircuit, except with all spins in the segment

A at the upper edge of the circuit “aligned” to another different value, say b. We call this

new partition function Zcircuit[A].

As shown in [30, 31, 85], the (ensemble averaged) entanglement entropy follows,

S(ρA) = − ln
Zcircuit[A]

Zcircuit
, (4.18)
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taking the form of a “free energy cost” due to the change of b.c. (see Fig. 4.2(b)).

6. The purification/entanglement transition corresponds to an ordering transition of the spin

model, where the measurement strength p plays a role similar to temperature. Within the

low-temperature ordered phase of the spin model, a well-defined domain wall with finite

surface tension must be present to account for the b.c. change (see Fig. 4.2(b)).10 The

free energy cost, mostly coming from the domain wall, will be extensive, leading to volume

law entanglement entropies. We will, for brevity, call it “the entanglement domain wall”.

The surface tension decreases with increasing p, and eventually vanishes at the critical

point.

As demonstrated for random Haar circuits [31, 30], this mapping requires a replica limit

of the spin model (the limit where the number of available values of the Potts spins goes to

1), and enables certain predictions for critical properties of the model [30] for n ≥ 1 Rényi

entropies. However, the more general viewpoint of entanglement entropies (namely as free

energies of domain walls) [72, 28, 29, 137, 135, 136] has proven useful in understanding the

phase transition in other contexts: for the zeroth Rényi entropy [16] (where the entanglement

entropy is equal to a “geometrical minimal cut” of the underlying lattice); and for critical

properties of the random Clifford circuit [113, 60].

We will henceforth assume this general domain wall picture holds for the random Clifford

circuit in the mixed phase. Since a derivation of the underlying stat. mech. model (if it exists) is

unavailable at present, the precise nature of the domain walls is unknown. Nevertheless, as we

shall see, the domain wall picture alone, with the additional assumption that the domain walls

are of the simplest type (“Ising like”; see Fig. 4.2), captures much of the qualitative aspects

of the entanglement entropies in the Clifford circuit. We will devote the rest of this section

to capillary-wave theory of Ising domain walls and its implications, and the next section to
10Notice that in Fig. 4.2(b), we have chosen to present the domain wall in the simplest form, where a and b

can meet directly (so that there can be as few as only one domain wall) and are the only spin values that need to
be considered. The spins are therefore Ising like. In general, it might be energetically favorable to have yet other
different domains inserted between the a- and b-domains in typical configurations subject to this b.c., resulting
in multiple mutually-avoiding domain walls [30].
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numerical checks of capillary-wave theory for the Clifford circuit.

4.2.2 Capillary-wave theory of Ising domain walls

Capillary-wave theory [86, 87, 138] was originally proposed for describing domain walls in

the low-temperature ordered phase of the Ising model. For the example in Fig. 4.2, a sharp

domain wall must be present to be consistent with the assigned boundary conditions. For this

geometry, one can further argue that it is sufficient to consider configurations with a single

domain wall, which also admits the following parametrization as a “height function”,

y : [x1, x2] → [−T, 0],

x 7→ y(x), (4.19)

where y(x1) = y(x2) = 0. With this parameterization, we are neglecting all “overhangs” and

“bubbles” that might be present in the relevant configurations; these have a finite typical size in

the low-temperature phase, and will eventually disappear under coarse-graining. This reasoning

leads to the following approximation for the entanglement entropy,

S(ρA=[x1,x2])

=− ln
Zcircuit[A]

Zcircuit

≈− ln

∫
D[y(x)] exp

[
−βσ

∫ x2

x1

dx

√
1 + (∂xy)

2

]
, (4.20)

where β is the “inverse temperature”, and σ the “surface tension”. This resulting “capillary-wave

theory” partition function is the canonical ensemble of all domain walls (i.e. height functions

y(x) defined in Eq. (4.19)), where the energy of each domain wall is the product of the surface

tension and its surface area.

After expanding the square root and dropping higher-order irrelevant terms, Eq. (4.20)

becomes a Gaussian theory, and can be readily evaluated. With details in Appendix D, we
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find,

S(ρA)

≈ FCW(A)

= βσ|A|+ 3

2
ln |A|, when T �

√
L�

√
|A|, (4.21)

for |A| � 1. Here the first term is the surface energy, and the second term is “entropic”,

coming from transverse, thermal fluctuations of y(x), with a universal coefficient 3/2, as found

in Ref. [22] within a quantized regularization of the Ising model. Notice that we have reserved

the notation S(ρA) for the entanglement entropy of A, and FCW(A) for the free energy of the

domain wall due to a change of b.c. in A.

In Fig. 4.2 we have not specified boundary conditions on the lower-, left-, and right-sides of

the circuit, as it is a “zoomed-in” view. In this way, we are assuming implicitly that |A| � L,

and also that the circuit depth is large compared to the vertical extent of the domain wall,

T �
√
|A|. It is within this regime that the approximation of S(ρA) with FCW(A) in Eq. (4.21)

is established, and is valid regardless of the other boundary conditions (as the domain wall is

sufficiently far away from the other boundaries).

The subleading “entropic” correction of S(ρA) was found to be characteristic of the mixed

phase 0 < p < pc of hybrid circuits [59, 21], and is now shown to be present generically whenever

the fluctuating domain wall picture is valid, though its analytic form (32 ln |A|) here is special

to capillary-wave theory. Its importance will be made clear in the next subsection.

We conclude this subsection by mentioning the limit p = 0, which corresponds to a random

unitary circuit without measurements. In this case, the entanglement domain walls are directed

in the temporal direction of the circuit (as opposed to the case here with p > 0, in Fig. 4.2,

where the domain wall is directed in the spatial direction of the circuit). This domain wall

can now fluctuate in the transverse (spatial) direction, and these fluctuations leads to a similar

entropic term 1
2 ln t when t � L [29], where the coefficient 1

2 is universal, and also comes from
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a
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(a)

R
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a

b

(b)

R

Q

T

Figure 4.3: Illustrations of boundary conditions for FCW(Q) with open b.c. (left) and periodic
b.c. (right). It is understood that both FCW(Q) are obtained by subtracting the background
free energy with both Q and R fixed to have b.c. a (not plotted), from the free energy of the
configuration plotted (with Q in b and R in a).

the diffusion equation (see Appendix D). However, this term will disappear as t = poly(L) � L,

the regime we focus on in this Chapter.11

4.2.3 The maximally-mixed initial state

We have seen in Sec. 4.1.3 that the hybrid circuit dynamics with the maximally-mixed initial

state can be formulated as the dynamics of the correpsonding QECC. The entropy of the entire

system Q, S(ρQ), is monotonically decreasing, corresponding to a monotonically decreasing

“code rate”. On the other hand, according to the prescriptions summarized at the beginning of

this section (for mapping to a spin model), the corresponding circuit partition function Zcircuit is

defined by the fixed b.c. a on both the upper and lower edges of the circuit [31, 60]; whereas the

entropy S(ρQ) is the change in free energy upon changing the b.c. of the upper edge (i.e. qubits

in Q) to a different, fixed one, b. The b.c. relevant to this calculation is illustrated in Fig. 4.3.

Since the maximally-mixed initial state admits a natural purification in terms of |Q| = L Bell

pairs where Q consists of one qubit from each pair, the upper and lower edges can be naturally

viewed as Q (the system, that is acted upon by the circuit), and R (the “reference”, consisting

of the other half of the Bell pairs, that is left un-evolved by the circuit), respectively [60]. We

will henceforth adopt this labelling, for we find it intuitive to have a concrete reference R at
11We thank Tianci Zhou and Adam Nahum for explaining to us Ref. [29] on these points.
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the far end of the circuit that Q is trying to disentangle itself from, even if this choice of R is

not unique.

The dominant contribution to S(ρQ) comes from a single domain wall separating the upper

and lower edges, going around the “waist” of the circuit (again compare Fig. 4.3):

• With open spatial b.c., the domain wall endpoints are “free”, and can independently take

any vertical coordinate y(x = 0) ∈ [−T, 0] and y(x = L) ∈ [−T, 0].

• With periodic spatial b.c., the domain wall is periodic, but otherwise “free” to take any

position along the vertical direction, leading to y(x = 0) = y(x = L) ∈ [−T, 0].

The free energies can then be calculated within capillary-wave theory (Appendix D),

S(ρQ)

=− ln
Zcircuit[Q]

Zcircuit

≈ FCW(Q)

=


βσL− lnT, open b.c.

βσL− ln T√
L
, periodic b.c.

when T �
√
L. (4.22)

The − lnT term comes from the “center of mass entropy” of the “waist domain wall”, whose

form is consistent with an exponentially long purification time within the mixed phase [21] (see

Sec. 4.2.5). The ln
√
L difference between open and periodic b.c. is attributed to the additional

endpoint entropy with open b.c., as mentioned above.

We see also that the quantity βσ can be identified as (ln 2 times) the code rate,

lim
|Q|→∞

k ln 2

|Q|
= lim

L→∞

S(ρQ)

L
= βσ, (4.23)

for T = poly(L).
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(b)

A—
AA—

Q
(a)

AA—

R

Q

T

(c)
|A|*

S(ρQ)

Figure 4.4: (a,b) Illustrations of boundary conditions for FCW(A) with periodic spatial
boundary conditions. The partition function Zcircuit[A] is the sum of the two contributions,
Zcircuit[A] = Z

(1)
circuit[A] +Z

(2)
circuit[A]. (c) The resulting entanglement entropy S(ρA) and (half)

the mutual information IA,R, as computed from capillary-wave theory (specifically Eqs. (4.21,
4.22, 4.26)). We have taken |Q| = L = 1024, T = 8L, and βσ = 0.1 in this plot. We emphasize
the non-monotonicity in S(ρA) as |A| → L. Moreover, there is a linearly decreasing segment
of the 1

2IA,R versus |A| plot, with horizontal extent L−2|A|∗ and vertical extent S(ρQ). Since
its slope must be bounded between [− ln 2, ln 2], we have (ln 2)−1S(ρQ) ≤ L− 2|A|∗.

4.2.4 Decoupling of domain walls

We are now ready to investigate the entropy of a contiguous subregion A of Q with arbitrary

length. Notice that the previous result in Eq. (4.21) was obtained for |A| � |Q| = L, and that

Eq. (4.22) accounts for the limiting case |A| = |Q| = L. These two regimes must then be

interpolated by some intermediate behavior. For convenience, below, we will instead study the

entropy S(ρA), defined on the complement of A.

Consider first the limit with small A, |A| � |Q|. In this regime, the partition function

Zcircuit[A] (defined by a on AR and b on A) receives two possibly comparable contributions (see

Fig. 4.4 with periodic b.c.):

1. A single domain wall separating A from AR as before. There are then two domains, with
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spins aligned along a and b, respectively (see Fig. 4.4(a)). The corresponding partition

function is approximated within capillary wave theory as

Z
(1)
circuit[A] ≈ Zcircuit e

−FCW(A). (4.24)

2. Two “decoupled” domain walls, one separating A from A, and the other, a “waist domain

wall”, separating Q = AA from R. There are now three domains, as shown in Fig. 4.4(b),

and to go from A to R two domain walls must be crossed. The corresponding partition

function is approximated within capillary wave theory as

Z
(2)
circuit[A] ≈ Zcircuit e

−FCW(A)−FCW(Q). (4.25)

After summing these contributions, we have, according to Eq. (4.18),

S(ρA) ≈ − ln
[
e−FCW(A) + e−FCW(A)−FCW(Q)

]
. (4.26)

The first contribution F
(1)
CW = FCW(A) is always energetically more favorable than F

(2)
CW =

FCW(A) +FCW(Q), but is not necessarily entropically so. The competition is only present due

to fluctuations of the domain walls.12

To illustrate this, we evaluate Eq. (4.26) with periodic b.c. (using Eqs. (4.21, 4.22)), where

FCW is simply a function of the size of the region, and plot the result in Fig. 4.4(c). Notice

the striking non-monotonic behavior in S(ρA), which has a width labelled as |A|∗. The non-

monotonicity comes from a competition between the two contributions, which we can readily
12A similar competition between domain wall topologies is also present in the limit p = 0 [29], which leads to

an O(1) “Page correction” to the entanglement entropy.
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understand for large |Q| = L,

S(ρA)

≈− ln
[
e−FCW(A) + e−FCW(A)−FCW(Q)

]
≈ min

{
FCW(A), FCW(A) + FCW(Q)

}
≈


FCW(A), 0 ≤ |A| < L− |A|∗

FCW(A) + FCW(Q), L− |A|∗ < |A| ≤ L.

(4.27)

Here |A|∗ is the length scale when the entropic and energetic terms are comparable, and may

be defined as follows,

FCW(L− |A|∗) = FCW(|A|∗) + FCW(L)

⇒ |A|∗ ≈ 1

2βσ

(
3

2
lnL+ ln

T√
L

)
, (4.28)

to leading order for large T and L. The length scale |A|∗ is thus inversely proportional to

the code rate βσ, and grows with both L and T logarithmically. For any circuit depth T =

O(poly(L)), |A|∗ is proportional to lnL.

In the regime with L − |A|∗ < |A| ≤ L (i.e. 0 ≤ |A| < |A|∗), we recognize that the free

energies FCW(A) and FCW(Q) in Eq. (4.27) represent the corresponding entanglement entropies

S(ρA) and S(ρQ) according to Eqs. (4.21, 4.22). The last line in Eq. (4.27) can then be rewritten

as,

0 ≤ |A|
|A|∗

< 1 ⇒ S(ρA) ≈ S(ρA) + S(ρQ)

⇔ S(ρAR) ≈ S(ρA) + S(ρR)

⇔ IA,R ≈ 0. (4.29)

We thereby conclude that if |A|
|A|∗ < 1, the subsystems A and R decouple. This decoupling
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corresponds to the regime where the configuration in Fig. 4.4(b) dominates, i.e. when the

domain wall decouples, with two domain walls separating A and R.

In Fig. 4.4(c) we have also plotted (half) the mutual information between A and R, IA,R, as

computed from capillary-wave theory using Eqs. (4.14, 4.21, 4.26). Notice the (near) vanishing

of IA,R for 0 ≤ |A| < |A|∗, consistent with Eq. (4.29).

A more detailed calculation shows that,

IA,R

≈ ln
[
1 + eFCW(A)+FCW(Q)−FCW(A)

]
≈ ln

[
1 + e−2βσ(|A|∗−|A|)

]

≈


e−2βσ(|A|∗−|A|), 0 ≤ |A| < |A|∗;

2βσ(|A| − |A|∗), |A| > |A|∗.
. (4.30)

Here we have used Eq. (4.28), and only kept the leading linear terms in FCW. Since |A|∗

diverges in the thermodynamic limit (see Eq. (4.28)), for |A|
|A|∗ ∈ [0, 1) the mutual information

IA,R vanishes exactly. On the other hand, IA,R is strictly positive if |A|
|A|∗ > 1.

Upon combining with Theorem 1 in Sec. 4.1.4, we conclude that ℓA = 0 if and only if

|A| < |A|∗. We can then make the important identification between the code distance dcont and

|A|∗,

dcont = |A|∗. (4.31)

With this equality, we may deduce from Fig. 4.4(c) (see the figure caption) that

k = (ln 2)−1S(ρQ) ≤ L− 2|A|∗ = |Q| − 2dcont. (4.32)

This is essentially the quantum Singleton bound [129], with d→ dcont � 1.

To summarize, capillary-wave theory predicts that the dynamically generated QECC has
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code distance that diverges with system size on relevant time scales, while also keeping a finite

code rate. Qubit segments with length smaller than |A|∗ = dcont are protected from undetectable

errors by thermodynamic fluctuations of the entanglement domain walls.

4.2.5 Crossover to late times

In this subsection, we deviate from our main focus on polynomial time scales T = O(poly(L)),

and briefly discuss how the domain wall picture can account for the late time crossover behav-

ior when T is exponential in L. On these time scales, the entropy of the code state S(ρQ) is

expected to decay to zero [21], i.e. the state is completely purified.

Previously, when computing S(ρQ) from Fig. 4.3 obtaining the result in Eq. (4.22), we only

took into account configurations with a single waist domain wall – valid since the energy term

βσL is always dominant over the entropy term − lnT when T = O(poly(L)), and single-domain

wall configurations have the lowest energy. This simplification eventually breaks down when

T � exp [βσL], and we have to consider the possibility of multiple waist domain walls. In

particular, Zcircuit will now receive contributions from all configuration with an even number of

waist domain walls, and Zcircuit[Q] from those with an odd number. Here we are again assuming

the Ising nature of these domain walls. Moreover, the vertical (i.e. time direction) extent of

each domain wall scales as
√
L (see Appendix D), much smaller than either L or T . These

domain walls are therefore effectively “local” along the time direction, and the only interaction

between the domain walls is onsite repulsion (i.e. the domain walls cannot overlap/cross, but

otherwise non-interacting). We thus have a picture of a “(waist) domain wall gas”, and can

128



Capillary wave theory of dynamically generated quantum error correcting codes in the volume law phase
Chapter 4

readily compute the corresponding partition functions using Eq. (4.22),

S(ρQ)

=− ln
Zcircuit[Q]

Zcircuit

≈− ln

∑
n odd (1/n!) exp [−nFCW(Q)]∑
n even(1/n!) exp [−nFCW(Q)]

≈− ln tanh
(
e−FCW(Q)

)

≈


− ln tanh

(
Te−βσL

)
open b.c.

− ln tanh
(

T√
L
e−βσL

)
periodic b.c.

. (4.33)

Notice that

lim
T→∞

S(ρQ) = 0, (4.34)

as expected for a pure state.

The same reasoning leads to a similar modification of S(ρA) in Eq. (4.26),

S(ρA) ≈ − ln
[
e−FCW(A) + e−FCW(A) tanh

(
e−FCW(Q)

)]
, (4.35)

which implies,

lim
T→∞

S(ρA)

≈− ln
[
e−FCW(A) + e−FCW(A)

]
≈ min

{
FCW(A), FCW(A)

}
, (4.36)

again as expected for the pure state ρQ that is dynamically generated on exponentially long

times.

Inclusion of multiple domain walls also introduces some crossover time dependence in dcont,
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(a) |A|* (b)

(c)

Figure 4.5: (a) S(ρA) and 1
2IA,R from random Clifford circuit numerics, where we observe

qualitative agreements with capillary-wave theory (Fig. 4.4(c)). (b) A closer look at IA,R on a
log-log scale, where we find qualitative agreement, within accessible numerical resolutions, with
the capillary-wave theory result (inset), computed from Eqs. (4.21, 4.22, 4.30) at βσ = 0.1. (c)
The scaling of the code distance (obtained from (a,b) upon setting ϵ = ln 2) with the system
size for p = 0.04, 0.08, 0.12, where we find dcont ∝ Lγ1 with γ1 ≈ 0.38.

accounting for its eventual linear scaling in L when T � exp [βσL]. Indeed, the decoupling

conditions Eqs. (4.29, 4.30) retain their forms in this limit, and dcont can still be identified with

|A|∗, which approaches L/2 in the long time limit.

4.3 Numerical results

In this section, we compare our capillary-wave theory results with numerical computations

in the random Clifford circuit (Fig. 4.1) for the observables explored in the previous section.

Overall, we find qualitative agreement between the two, but as we shall see, a complete quan-

titative agreement is lacking. We interpret the former as support for the general entanglement

domain wall picture, and the latter as an indication of a more complex nature of these domain

walls for the random Clifford circuit.
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4.3.1 Code distance for Clifford QECCs

The most striking qualitative prediction of the domain wall picture from Sec. 4.2 is the

phenomenon of decoupled domain walls as illustrated in Fig. 4.4. To explore this for random

Clifford circuits, we compute S(ρA) and IA,R with varying |A|, taking a maximally-mixed

initial state and averaging over the random ensemble of circuits, as well as over a time window

6L < T < 8L. Within this time window, we have T � L1/2, so that Eqs. (4.21, 4.22) should

apply.

Our numerical results are shown in Fig. 4.5(a) for L = 1024 and p = 0.08 ≈ 0.5pc. Strikingly,

we observe the same non-monotonicity in S(ρA), decreasing with A in the range L − |A|∗ <

|A| ≤ L, in accordance with the capillary-wave theory results in Fig. 4.4. Moreover, within

this range, IA,R is very small, showing a plateau with height ≈ 0. The Clifford numerical

results for both S(ρA) and IA,R are thus fully consistent with the domain wall decoupling

results in Fig. 4.4. Evidently, the domain wall picture holds for random Clifford circuits, being

qualitatively consistent with capillary-wave theory.

Our particular choice of p = 0.08 was unimportant. Indeed, for the Clifford circuit we

find consistency with Fig. 4.4 for a wide range of p with 0 < p < pc (not shown). This is

as expected, since the domain wall picture should be valid at any “temperature” p below the

“critical temperature” pc of the spin model, i.e. throughout the “ordered phase”.

We also explore finite size effects on IA,R (see Fig. 4.5(b)). For a fixed |A| < |A|∗, we find

that IA,R decreases with increasing system size L, consistent with Eq. (4.30). We therefore

expect that in the thermodynamic limit, IA,R = 0 if and only if |A| < |A|∗; the identification

between |A|∗ and dcont can then be made. In a finite system, we define |A|∗ as the size of A for

which IA,R ≈ ϵ, where ϵ is a small number independent of L.

With this identification, we may now examine how dcont = |A|∗ depends on the system

size (as obtained from Fig. 4.5(a,b)). As shown in Fig. 4.5(c), we find that the code distance

dcont increases with increasing p, qualitatively consistent with capillary-wave theory. The code

distance also grows with L, but as a power-law function, dcont ∝ Lγ1 . The exponent is estimated
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(a) (b)

Figure 4.6: (a) The difference between entropies of the entire system as computed for the
random Clifford circuit with periodic and open boundary conditions. We observe a logarithmic
dependence on the system size, Spbc(ρQ) − Sobc(ρQ) = ζ lnL, with ζ ≈ 0.56. This difference
has a weak time depedence, but not displayed here. (b) The halfcut mutual information IA,A

for |A| = |A| = L/2 as a function of L, with periodic b.c., where we find IA,A ∝ Lγ2 with
γ2 ≈ 0.36.

to be γ1 ≈ 0.38, in agreement with a direct computation (from the algebraic definition of dcont)

in Ref. [21]. The power-law scaling of dcont quantitatively differs from capillary-wave theory in

Eq. (4.28), where a logarithmic scaling was found.

4.3.2 Clifford dynamics versus (generalized) capillary-wave theory

We next numerically compute a few more quantities that we can compare with capillary-

wave theory, as shown in Fig. 4.6. Once again, these results were obtained for the random

Clifford circuit with a maximally-mixed initial state, upon averaging over both circuit realiza-

tions and the time window 6L < T < 8L.

In Fig. 4.6(a), we plot the difference between S(ρQ) with periodic and open boundary con-

ditions, ∆S(ρQ) := Spbc(ρQ) − Sobc(ρQ). Capillary-wave theory (Eqs. (4.21, 4.22)) predicts

cancellations of the time dependence as well as of the “surface energy” term, leaving only the

extra endpoint entropy term, (1/2) lnL. This logarithimic scaling is indeed observed numeri-

cally, with the coefficient of lnL given by ≈ 0.56, close in value to that of capillary-wave theory.

We have also confirmed a very weak T -dependence of ∆S(ρQ) on intermediate time scales, but

the data is not displayed here.

In Fig. 4.6(b), we plot the “halfcut mutual information” [21], IA,A with |A| = |A| = L/2
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versus L with periodic b.c.. Upon varying L, we find IA,A ∝ Lγ2 with γ2 ≈ 0.36, and the

overall amplitude having a weak dependence on p. As for the code distance in Fig. 4.5(c) which

grows with a similar power γ1 ≈ γ2, this power-law scaling is quantitatively different from

capillary-wave theory. The latter predicts a logarithmic scaling, IA,A = (7/2) lnL for T ∝ L.

To account for the power-laws in Fig. 4.5(c) and Fig. 4.6(b), we introduce a phenomenologi-

cal description, which we call “generalized capillary-wave” (GCW), with the following (minimal)

modifications of the free energies for “pinned” and “waist” domain walls (Eqs. (4.21, 4.22)),

respectively

FGCW(A)

= βσ|A|+ χ|A|γ , when T � Lζ � |A|ζ , (4.37)

FGCW(Q)

=


βσL− lnT, open b.c.

βσL− ln T
Lζ , periodic b.c.

when T � Lζ . (4.38)

Here 0 ≤ γ < 1 is the exponent characterizing domain wall free energies in GCW, and 0 < ζ < 1

is the exponent of vertical extent of the domain walls.13 The constant χ is expected to be

independent of |A|, L, T, βσ. Capillary-wave theory thus has γCW = 0 and ζCW = 1
2 ; compare

Eqs. (4.21, 4.22). This generalization of capillary-wave theory remains qualitatively consistent

with Fig. 4.5(a,b) and Fig. 4.6(a), where we found ζ ≈ 0.56.

Eqs. (4.37, 4.38), together with the definition of |A|∗ in Eq. (4.28),14 lead to the following
13Notice that with 0 < ζ < 1, we still have T ≫ Lζ for 6L < T < 8L, the time window we took in the

numerics. As we saw in Fig. 4.6(a), the exponent ζ ≈ 0.56 falls within this range, and seems to be close in value
to ζCW = 1/2.

14We note that the form of Eq. (4.30) is identical for capillary-wave theory and its generalization in Eqs. (4.37,
4.38), since in its derivation we only kept the leading linear term, which is common for both cases. Thus the
identification between |A|∗ and dcont can still be made for GCW.
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scaling behaviors for the code distance and half-cut mutual information,

dcont = |A|∗ ≈ χ

2βσ
Lγ , (4.39)

IA,A ∝ Lγ . (4.40)

These are both consistent with our Clifford numerics in Fig. 4.5(c) and Fig. 4.6(b), provided

we take γ = γ1 = γ2.

We emphasize that Eqs. (4.37, 4.38) are phenomenological, motivated by both capillary-

wave theory and our Clifford numerics (specifically Fig. 4.5(c) and Fig. 4.6(b)). At this moment

we do not have a theory from which these free energies can be derived.

We note that direct numerical computations of S(ρA) (for |A| � L) and S(ρQ) are quali-

tatively consistent with both capillary wave theory (Eqs. (4.21, 4.22)) and its generalization in

Eqs. (4.37, 4.38), as established in Refs. [59, 21]. In particular,

• For the approximation S(ρA) ≈ FCW(A) when |A| � L, the “linear plus log” form of

FCW(A) is consistent with the stabilizer length distribution [59];

• For the approximation S(ρQ) ≈ FCW(Q), the − lnT dependence on circuit depth is con-

sistent with an exponentially long purification time [21].

On the other hand, a quantitative comparison between capillary-wave theory and GCW is

tricky, due to the difficulty in distinguishing a logarithimic function from a small power-law

in the presence of a background linear term. Thus, we will not here attempt to compare

capillary-wave theory and GCW for the quantities S(ρA) (with |A| � L) and S(ρQ).

4.4 Discussion

4.4.1 Summary

In this Chapter we established a correspondence between QECCs generated by random

hybrid Clifford circuit dynamics, and the statistical mechanics of fluctuating “entanglement
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domain walls”. The number of encoded logical qubits k of the QECC maps to the “surface

energy” that is extensive in the number of physical qubits |Q|, and the code distance maps

to a crossover length scale proportional to the “entropy” of transverse fluctuations, that is

subextensive in |Q|. Fluctuations of entanglement domain walls are entirely responsible for the

diverging code distance, which protects the state against local (undetectable/uncorrectable)

errors, a characteristic property of QECCs.

Our results rest upon two well-motivated assumptions, namely the validity of the entangle-

ment domain wall picture, and the “linear plus sublinear” form of their free energies. The former

has been analytically established in the context of hybrid random Haar circuits [30, 31], and the

latter follows from the former within capillary-wave theory. We expect that both assumptions

are also valid for Clifford circuits, as supported by the Clifford numerics in Refs. [59, 21], as

well as those in Sec. 4.3.

We emphasize that the qualitative properties of the QECC do not depend crucially on the

specific form of the entropic term, which diverges logarithmically with |Q| in capillary-wave

theory, and as a small power-law in our Clifford numerics. The latter is possibly described by

a certain generalization of capillary-wave theory. In some sense, one can view capillary-wave

theory as a “mean-field theory” of the entanglement domain walls.

4.4.2 The diverging code distance as a self-consistency condition

The error correcting nature of the dynamically generated state, as exemplified by the di-

verging code distance, is consistent with the resilience of this finite entropy-density (and code

rate) state to repeated local measurements. Indeed, a measurement decreases the entropy only

if the measured operator is a nontrivial logical operator (see Sec. 4.1.3), and with a diverging

code distance the probability of each local measurement in the circuit (Fig. 4.1) being a logical

operator (denoted plogical) vanishes in the thermodynamic limit (equivalently, each qubit in Q

decouples from the reference state R with probability one). We can estimate plogical by setting

|A| = 1 in Eq. (4.30), giving plogical ∝ ℓA = IA,R ≈ exp [−2βσdcont], leading to plogical ∝ L−2
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Figure 4.7: The circuit, when dynamically evolving an initial pure state, can also be incor-
porated in the QECC framework by taking an extensive subsystem Q as the QECC, and the
complement of Q as the reference R, with |Q| < |R|. When A > dcont, the dominant domain
wall configuration is shown in (a), and in this regime, A and R have nonvanishing correlation.
On the other hand, when A < dcont the dominant domain wall configuration is the “rainbow
diagram” shown in (b), implying that A and R should fully decouple (for |Q| large), with
vanishing mutual information. In this regime, an error on A will have no effect on S(ρQ).

within capillary-wave theory for T ∝ L, and plogical ∝ exp [−χLγ ] within a generalized capillary-

wave description. In either case, this leads to a vanishing rate of purification in the mixed phase

when O(L) measurements are made in each time step [21], and subsequently to the stability of

the finite code rate.15

Our discussion above is not an explanation of the stability of the mixed phase, but a

requirement of self-consistency, since the diverging code distance is itself computed from the

steady state within the mixed phase. The domain wall picture itself also requires the assumption

of an ordered phase.

Moreover, a quantum Hamming bound [147, 44] on pc, as in Ref. [22], cannot be inferred

from our discussion. Besides the code distance being subextensive rather than extensive, here

we are viewing the one-qubit measurements within one circuit time step as a sequence of one-

qubit errors, rather than a single p|Q|-qubit error. With respect to these single qubit errors,

the code is highly degenerate, and the Hamming bound does not apply.

Finally, we mention that QECCs can also be dynamically generated for circuits with a pure

initial state in the volume law entangled phase when p < pc [20, 22], if we take the “system”
15When T is allowed to be independent of and longer than L, capillary-wave theory gives,

plogical ∝ (LT )−1 ⇒ dS(ρQ)

dT
≈ −(pL)plogical ∝ T−1,

consistent with Eq. (4.22) and an exponentially long purification time (see Sec. 4.2.5).
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Q to be an extensive subsystem, R to be the complement of Q with |R| > |Q|, and consider

the decoupling of A ⊆ Q from R (see Fig. 4.7). Indeed, in this case our Clifford numerics

(not shown) demonstrate the presence of these decoupling conditions (e.g. a vanishing IA,R for

|A| < |A|∗ = dcont), qualitatively consistent with capillary-wave theory. Other results within

this setup should be similar to those obtained in Refs. [59, 20, 22].

4.4.3 The role of disorder

As for random Haar circuits [30, 31] and random tensor networks [85], the identification

in Eq. (4.18) is between free energies in the stat. mech. model and entanglement entropies

averaged over an ensemble of circuits. Thus we have been studying the averaged entropies,

and comparing them with (generalized) capillary-wave theory. Capillary-wave theory assumes

translational symmetry by construction, with no reference to sample-to-sample fluctuations or

the role of disorder.

In Fig. 4.8, we present the statistical sample-to-sample fluctuation of S(ρA) over an ensem-

ble of random Clifford circuits, versus the subregion size |A|, for 0 ≤ |A| ≤ L/2. Previously

in Ref. [59], the distribution of S(ρA) was found to be Gaussian-like. Here, we find the follow-

ing power-law scaling for the standard deviation (square root of the variance) of the entropy,√
var[S(ρA)] ∝ |A|0.33, with an amplitude that depends weakly on p. This power-law behavior

is interesting, yet beyond any generalization of capillary-wave theory, as the latter always de-

scribes a clean system, for which the notion of an ensemble of disorder realizations is irrelevant.

This result suggests that disorder could dramatically modify the structure of the domain walls,

possibly accounting for the power-law dependences in dcont and IA,A in Sec. 4.3.

We remark that the exponent for the standard deviation 0.33, as well as the exponent

γ ≈ 0.36, are both close to the exponent 1/3 for subextensive corrections to free energies of a

directed polymer in random media (DPRM) [148, 149, 150, 151] that falls within the Kardar–

Parisi–Zhang (KPZ) universality class [152]. Such corrections are due to quenched disorder.

We note that similar scaling behaviors have been found in random unitary circuits without
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Figure 4.8: The sample-to-sample fluctuation of S(ρA) as a function of |A|, obtained from an
ensemble of random Clifford circuits. We take L = 1024 and 0 ≤ |A| ≤ L/2.

measurements [72, 28, 29, 137]. This picture was recently confirmed in Ref. [35], that the

entanglement domain walls are indeed DPRM-like. In this context, it could be interesting

to find “clean” circuit models, for which effects of quenched disorder are absent, so that the

subleading “entropic” term only receives contribution from thermal fluctuations, just like simple

Ising domain walls. These open issues are left for future work.
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Linear cross entropy benchmark for

experimental observation of the

phase transition

Open quantum dynamics host a rich phenomenology, including a family of measurement-

induced phase transitions (MIPT) in the scaling of entanglement along quantum trajectories

in monitored systems [16, 18, 17, 20, 21, 30, 31]. While the MIPT occurs generically in a

number of different models (see for example [63, 59, 153, 154, 36, 155, 38, 39, 37, 156, 157,

41, 158, 159, 160, 161, 162, 51, 52], among others), its verification can be challenging even on

an error-corrected quantum computer, due to the so-called “postselection problem”. Quantum

trajectories are labeled by the measurement history m, whose length is extensive in the space-

time volume V of the circuit; thus, the number of possible trajectories m is exponential in V ,

but they each occur with roughly the same probability. On the other hand, one needs multiple

copies of the same m in order to verify any quantum entanglement; and then many different

m to perform a proper statistical average. On a quantum simulator there is no general recipe

for producing such copies other than running the quantum circuit many times and waiting

until the measurement results coincide (“postselection”). In other words, the prepration of the
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output state is not readily “repeatable”, and O(eV ) runs of the circuit are required to generate

multiple copies, thus severely restricting the scalability of such experiments. Nevertheless, in

an impressive recent experiment that carries out postselection [163], the MIPT is observed for

small system sizes.

More generally, the postselection problem can be avoided in two cases. First, when only

Clifford circuits are considered, the entanglement can be verified by “decoding” the circuit,

either through a full classical simulation within the stabilizer formalism [164] or via machine

learning [165]. With machine learning the authors claim that “decoding” is possbile also beyond

Clifford circuits, although they did not explore this in detail. Second, when the non-unitary

(monitored) dynamics is a spacetime dual of a unitary one [166, 167, 168], postselection is

partially ameliorated, the output state preparation becomes repeatable, and correspondences

between unitary dynamics and monitored dynamics can be made.

Here we propose another experimental protocol for verifying the MIPT in random circuits,

by estimating the “linear cross-entropy” (denoted χ) between the probability distribution of

(bulk-circuit) measurement outcomes m in two samples with the same bulk but different initial

states, ρ and σ. This quantity was previously discussed by Bao et. al. [31], and is closely related

to the order parameter proposed by Gullans and Huse [21, 113]. In terms of the spin model

description of the MIPT [31, 30], χ can be interpreted as a boundary correlation function.

Moreover, as we establish both numerically and analytically, in the thermodynamic limit χ = 1

in the volume law phase. However, even though all samples of m would contribute to χ — since

no postselection is involved — measuring the difference between the probability distributions

of the two initial states to estimate χ in a generic circuit to a constant precision ε still requires

O(eV ) samples of m, and is thus unfeasible (see Eq. (5.6) below). In Sec. 5.1, we show that

this issue can be resolved (again) in Clifford ciruits, where χ can be efficiently sampled by

running the ρ-circuit on a quantum simulator, aided by a classical simulation of the σ-circuit.

In particular, for a fixed circuit we estimate the number of samples of m scales as poly(1/ε).

We provide numerical evidence that χ is an order parameter for the MIPT (i.e. χ = 1 in the
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volume law phase and χ < 1 in the area law phase), and simulate the effect of depolarizing

noise.

We note that a comparison between two circuits is necessary, and it is likely very difficult

to locate the transition by looking at the distribution over measurement outcomes in a single

circuit. The Shannon entropy of the distribution can be mapped to the free energy of an

underlying spin model [169], whose leading term is extensive in the spacetime volume of the

circuit. An exponential number of runs of the circuit seems necessary in order too learn anything

from the measurements.

By choosing the circuit bulk to be composed of Clifford operations and σ to be a stabilizer

state, the protocol is scalable on both the quantum and the classical sides. Nevertheless,

unless ρ is also a stabilizer state, the circuit output state is still highly nontrivial and hard to

represent classically. In Appendix F, we consider one nontrivial aspect of the output state in

the volume law phase, and show that with a generic (non-stabilizer) choice of ρ the probability

distribution over the output bitstrings obeys a nontrivial distribution with a long tail, similar

to, but different in detail than, the Porter-Thomas distribution from purely unitary random

circuits. We discuss possible implications of this result.

5.1 Linear cross-entropy and an order parameter

We consider the “hybrid” circuit shown in Fig. 5.1, composed of both unitary gates on

nearest-neighbor qubits and single-site measurements in the bulk, performed with probability p

at each qubit within each time step. By convention, each time step contains L/2 unitary gates.

Different from the usual setup [59], we have an additional “encoding” stage before the hybrid

evolution for time tencoding = 2L, following Ref. [21]. The reason for this somewhat unusual

choice is practical, to get a clearer experimental signal of the MIPT; see Sec. 5.1.3. We call the

evolution after the encoding stage the “circuit bulk”, which lasts for another tbulk = 2L. The

total circuit time is T = tencoding + tbulk = 4L.

For concreteness, we take all the measurements to be of the Pauli Z operator. Given a
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Figure 5.1: The layout of the hybrid circuit considered in this Chaper. Different from the
usual setup [59], we have an additional “encoding” stage before the hybrid evolution for time
tencoding = 2L, following Ref. [21]. We call the evolution after the encoding stage the “circuit
bulk”, which last for another tbulk = 2L. The total circuit time is T = tencoding + tbulk = 4L.
We will compare two different initial states ρ and σ (left unspecified for the moment) under-
going the same circuit evolution.

circuit layout (i.e. the locations of unitary gates and measurements) and the unitary gates in

the bulk – which we denote collectively as C – the unnormalized output state is defined by C

and the measurement record m = {m1,m2, . . . ,mN} as

ρm = CmρC
†
m, (5.1)

where Cm is the time-ordered product of all the unitaries and projectors in the circuit, written

schematically as

Cm = PmNPmN−1 . . . PmN−NT+1 · UT

· PmN−NT
. . . PmN−NT−NT−1+1 · UT−1

· PmN−NT−NT−1
. . . PmN−NT−NT−1−NT−2+1 · UT−2

. . . (5.2)

Here each line contains all quantum operations in one circuit time step, and N is the total

number of measurements, which is proportional to the spacetime volume of the circuit, N ∝
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pV = pLT . The corresponding probability of obtaining m is given by

pρm = tr ρm. (5.3)

We define similar quantities for a different initial state σ,

σm = CmσC
†
m, (5.4)

pσm = trσm. (5.5)

With these, we define the (normalized) linear cross-entropy of the circuit between the two initial

states as

χC =

∑
m pρmpσm∑
m (pσm)2

. (5.6)

Here, after averaging over m, χC only depends on the circuit C, and we have explicitly included

this dependence in our notation. Finally, we take its average over C,

χ := ECχC = EC

∑
m pρmpσm∑
m (pσm)2

. (5.7)

It was previously pointed out [31] that χ corresponds to the free energy cost after fixing a

boundary condition in a (replicated) spin model [28, 29, 30, 31]; in Appendix E we provide a

similar calculation for our circuit with the “encoding” stage. From this derivation we expect

1− χ = e−L for large L in the volume law phase (p < pc), and 1− χ > 0 in the area law phase

(p > pc), even as L→ ∞.

The physical meaning of χ should be clear: it quantifies the difference between the probabil-

ity distributions over measurement histories for the two initial states. In the volume law phase,

χ = 1 implies the impossibility of distinguishing different initial states from bulk measurements,

due to the “coding” properties of this phase (i.e. the dynamics in the volume law phase gener-

ates a “dynamical quantum memory” [21, 20, 22, 61, 23, 24]). The code breaks down when p is
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Figure 5.2: (a) Numerical results for χC when averaged over Clifford circuits in the bulk
(denoted by EC), with the initial states ρ = 1

2L
1 and σ = (|0〉 〈0|)⊗L. Here, for each C, the

calculation is exact, and M can be thought of as infinity in Eq. (5.11). (Inset) Collapsing
the data to a scaling form, with parameters pc and ν close to those found near the MIPT in
entanglement entropy [17, 59]. (b,c) The bahavior of χ when depolarizing noise is present in
the ρ-circuit. As we see, at noise rate q = 0.1% (b), there is still evidence for a phase transition,
although the location of the transition has shifted from pc ≈ 0.16 to pc ≈ 0.14. At noise rate
1% (c), there is no crossing, and any signature of the phase transition is completely washed
out. (d) The fluctuation in χ from a finite number M of samples, as defined in Eq. (5.12).

increased past the transition, and χ saturates to a finite, nonuniversal constant strictly smaller

than 1. In this phase, information about the initial state leaks into the measurement outcomes.

5.1.1 Typical-case hardness of estimating χ

We first briefly outline a protocol for estimating χ, in close analogy with the linear cross-

entropy benchmark (“linear XEB”) for random unitary circuits; then we discuss its limitations

when applied to the MIPT.

Consider running the circuit with initial state ρ (“the ρ-circuit”) on a quantum simulator.

From the simulation we obtain a measurement record m, an event that occurs with probability

pρm. Given m we can perform a classical simulation with the initial state σ, and calculate the

corresponding probablity pσm. Repeating this M times, we obtain a sequence of probabilities

{pσm1
, pσm2

, . . . pσmM
}. Their mean converges to the numerator of Eq. (5.6),

lim
M→∞

〈
pσmM

j=1

〉
ρ
:= lim

M→∞

1

M

M∑
j=1

pσmj
=
∑
m
pρmp

σ
m. (5.8)

The denominator of Eq. (5.6) can be estimated similarly with a separate classical simulation,
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by running the σ-circuit M ′ times, and computing the mean of probabilities {pσmj
}. This way

we get

lim
M ′→∞

〈
pσmM′

j=1

〉
σ

:= lim
M ′→∞

1

M ′

M ′∑
j=1

pσmj
=
∑
m

(pσm)2 . (5.9)

Although both equations above are well-defined, and in this protocol each run of the circuit

is used (i.e. no postselection is required), obtaining these estimates is not practical. Each

of Eq. (5.8) and Eq. (5.9) are of the order O(e−N ), and an accurate estimate of them would

require M,M ′ = O(eN ), to avoid numerical uncertainty in the ratio. As such, one still needs

O(eN ) runs of both the quantum and the classical simulation — a complexity similar to the

postselection problem. This might be one reason why this quantity has not been considered

much in the context of MIPT after Ref. [31].

5.1.2 Numerical methods and results

Here we focus on the case where σ is a stabilizer state, and the circuit bulk Cm is composed

of stabilizer operations (Clifford gates and Pauli measurements) [45, 67, 68]. In this special

case, the denominator of Eq. (5.6) can be computed exactly in polynomial time, without doing

any sampling as in Eq. (5.9) (see Appendix E.3 for details). Thus, we may rewrite Eq. (5.6) as

χC =
∑
m
pρm

pσm∑
m (pσm)2

, (5.10)

and in analogy with Eq. (5.8),

χC = lim
M→∞

〈
pσmM

j=1∑
m (pσm)2

〉
ρ

. (5.11)

For each run of the ρ-circuit, we can compute
pσmj∑

m(pσm)2
in polynomial time, and take its mean

over runs. The new “observable”
pσmj∑

m(pσm)2
should be typically of O(1), and this average con-

verges much more quickly with increasing M (than in the generic case, by taking the ratio of

145



Linear cross entropy benchmark for experimental observation of the phase transition Chapter 5

Eq. (5.8) and Eq. (5.9) for large but finite M and M ′).

Now we provide numerical results for χ across the transition. We consider two types of

choices for the state ρ, but take σ to be a stabilizer state in both cases.

Stabilizer state ρ versus stabilizer state σ

We first take ρ to be a stabilizer state, while keeping σ another stabilizer state. As we

explain in Appendix E.3, now χC in Eq. (5.10) admits a closed form expression that does not

involve any summation over m, see Eq. (E.18). This allows an exact calculation of χC without

the need of performing any sampling, at the cost of introducing N extra qubits that records

the measurement history. These qubits are usually called “registers”.

A further simplification occurs when ρ is obtainable from σ via erasure or dephasing chan-

nels, so that the N register qubits can also be dispensed with; see Eq. (E.22). We will focus

on this case below, where the numerical simulation is most scalable so that we can confidently

extrapolate the results to more general choices of ρ.

In Fig. 5.2(a), we plot χ = ECχC for ρ = 1
2L

1 and σ = (|0〉 〈0|)⊗L, which satisfies the

condition above. The data shows a clear “crossing” of χ near the transition, confirming our

expectation that χ can be used to determine the location and the nature of the MIPT. Indeed,

in the large L limit and for p < pc, χ approaches unity, demonstrating that the measurement

distribution functions become equal, independent of the initial state. Moreover, data collapse

in Fig. 5.2(d) shows good agreement to a standard scaling form, with numerical values of the

location of the transition pc and of the critical exponent ν close to previous characterizations

of the MIPT [59].

Although in the exact method for Fig. 5.2(a) no sampling of the measurement results is

needed in the numerics (and we have essentially taken the limit M → ∞ in Eq. (5.11)), we nev-

ertheless simulate the sampling process for a finite M and compute the mean in Eq. (5.11). By
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Figure 5.3: Numerical results of χ for initial states ρ = (|0〉 〈0|)⊗L/2 ⊗ (|T 〉 〈T |)⊗L/2 (see
Eq. (5.13)) and σ = (|0〉 〈0|)⊗L, following the procedure in Eq. (E.24). Despite a differ-
ent choice of initial state and smaller system sizes, the results are qualitatively similar to
Fig. 5.2(a).

comparing this to the exact result, we calculate the following measure of statistical fluctuations,

εχ := EC

∣∣∣∣∣∣
〈

pσmM
j=1∑

m (pσm)2

〉
ρ

− χC

∣∣∣∣∣∣
 . (5.12)

As we increase M we find εχ ∝ M−1/2, as shown in Fig. 5.2(d). This is consistent with the

samples
{

pσ
mM

j=1∑
m(pσm)2

}
being bounded and having weak correlations.

We also consider the effect of depolarizing noise, occuring randomly in the ρ-circuit with

probability q per qubit per time step; whereas the σ-circuit is still taken to be noiseless. The

setup is to mimic an experimental sampling procedure, where we run the ρ-circuit on a quantum

processor subject to noise, whereas our supplementary classical simulation of the σ-circuit

is noiseless. The depolarizing noise acts as a symmetry-breaking field in the effective spin

model [30, 31, 60, 35, 170, 166, 167],1 and in its presence the MIPT is no longer sharply

defined. Nevertheless, evidence of the MIPT may still be observable if the error rate is small

compared to the inverse spacetime volume of the circuit, as we see in Fig. 5.2(b,c).
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Magic state ρ versus stabilizer state σ

We take ρ to be a non-stabilizer state, and σ to be a stabilizer state. In particular, we

choose a state with |0〉 and |T 〉 on alternating sites,

ρ =

L/2⊗
i=1

(|0〉 〈0|2i−1 ⊗ |T 〉 〈T |2i), (5.13)

where |T 〉 = 1√
2

(
|0〉+ eiπ/4 |1〉

)
is a magic state. We still take the other initial state to be

σ = (|0〉 〈0|)⊗L.

Based on our calculation in Appendix E, we expect χC to exhibit similar behavior as in

Sec. 5.1.2. This is confirmed in Fig. 5.3, where we follow the sampling procedure in Eq. (5.11).

In particular, for a given C, we take L ∈ {8, 12, 16}, and sample M = 100 measurement

trajectories, and compute
〈

pσ
mM

j=1∑
m(pσm)2

〉
ρ

≈ χC . We then take the average over many different

choices of C, namely EC

〈
pσ

mM
j=1∑

m(pσm)2

〉
ρ

≈ ECχC . We observe a crossing of χ near p ≈ pc ≈ 0.16.

It is interesting to notice that though the classical side of the computation (the σ-circuit)

can be carried out efficiently, the quantum side (the ρ-circuit) is still classically hard [174]. This

limits the system sizes that we can access classically in Fig. 5.3, but we hope larger system sizes

can be achieved on near-term quantum processors.

5.1.3 Necessity of the encoding stage

Here we briefly discuss the choice of the circuit architecture in Fig. 5.1, in particular the

inclusion of an encoding stage. In the usual setup [59] without the encoding stage, and when

the two initial states differ on an extensive number of qubits, χ should vanish as L → ∞ for

all values of p, and thus cannot be used to probe the transition (see Appendix E.2). When ρ

and σ differ only on a constant number of qubits [21, 31], χ would be instead related to a local
1See also Refs. [171, 172, 173] for related discusssion in random unitary circuits.

148



Linear cross entropy benchmark for experimental observation of the phase transition Chapter 5

spontaneous magnetization [113], having the following scaling form near the transition,

χ ≈


|p− pc|β + χ0, p < pc

χ0, p > pc

,

see Appendix E.2 for a detailed discussion. In this case, we do not expect a crossing as in

Fig. 5.2, but instead a collapse of the curves for different system sizes L. In experiments, a

collapse is likely harder to detect than a crossing. Moreover, the collapse will be more susceptible

to noise for a given system size; compare Fig. 5.2(b,c). For this reason, we have chosen to focus

on the circuit with an encoding stage throughout the Chapter.

Moreover, for the purpose of observing MIPT, including the encoding stage should only in-

troduce minor experimental overhead. For example, noise in the encoding stage t ∈ [0, tencoding]

would not affect the signal for MIPT in any important way as its effect can be accounted for

by a different choice of ρ, which is not essential (see discussions in Appendix E); only noise in

the circuit bulk t ∈ [tencoding, tencoding + tbulk] is important (see Fig. 5.2(b,c)).

5.2 Discussions

Our protocol requires a simulation of many instances of the random hybrid circuit with mid-

circuit measurements, and for each instance O(1/ε2) trajectories to estimate the cross-entropy

to accuracy ε. This should be a task of similar complexity to Google’s simulation of random

unitary circuits [14], except that here we do not make measurements on the output state but

in the bulk. However, different from that experiment, for observing the MIPT it suffices to

focus on Clifford circuits, for which the classical simulation is not hard. This protocol is thus as

scalable as the quantum processors. Our protocol does not require extra quantum operations,

and is flexible in the choice of the initial state. The signal for the phase transition persists at

L = 40 for sufficiently weak (≈ 0.1%) depolarizing noise. Thus, we hope this protocol might be

achievable on existing or near-term devices.
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We emphasize that if the circuit is not composed of Clifford gates, our protocol is expected

to require exponential classical resources. It is presently unclear whether it is in fact possible

to probe the MIPT beyond Clifford circuits with polynomial resources [165].

Although the classical simulation is chosen to be easy for practical purposes, in our protocol

the quantum simulation is classically hard for a generic choice of the initial state, which would

result in a highly nontrivial output state. Our numerical results in Appendix F suggest that

sampling measurement outcomes on the output state of the quantum simulation is classically

hard in the volume law phase. Whether this can be used in practice for demonstrating quantum

advantage is not known, due to apparent need of postselection of sampling from this distribution.

Another interesting question is the (classical) sampling complexity of the bulk measurement

outcomes in a hybrid Clifford circuit with magic initial states. We have shown that the bulk

measurement history in the volume law phase does not depend on the initial state, and thus may

be reproduced in polynomial time for a Clifford circuit with a stabilizer initial state. Similarly,

in the area law phase and at the critical point, a classical simulation using matrix product

states can (also) serve as a polynomial-time sampler, due to low entanglement entropy. Thus,

in one spatial dimension, sampling classically from the bulk measurement outcome distribution

should, in principle, always be easy. The situation is much less clear in the area law phase of

two dimensional hybrid circuits [160, 175].
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Appendix A

Brief review of the stabilizer

formalism and gauge fixing

A.1 Basics

In this subsection we review the stabilizer formalism and Clifford circuits. The references

for this subsection are Refs. [44, 67, 69, 68, 72].

A.1.1 Codewords, stabilizers, and gauge freedom

The defining property of the Clifford circuit is that the pure state wavefunction |ψ〉 at

any time is a codeword, the simultaneous +1 eigenstate of L mutually commuting and linear

independent (under multiplication) Pauli string operators

G = {g1, . . . , gL} ⊂ P+(L), P+(L) = {g ∈ P(L) : g2 = 1}, (A.1)

among which none of the gi’s is proportional to the identity. These Pauli string operators

generate the stabilizer group [44, 132] of the codeword, denoted S(|ψ〉) = 〈G〉, or simply S. The

codeword is uniquely determined given the stabilizer group, and the stabilizer group is uniquely
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determined given the codeword |ψ〉,

S = {g ∈ P+(L) : g |ψ〉 = |ψ〉}. (A.2)

One can explicitly write down all elements of S given G,

S =
{
gp11 g

p2
2 . . . gpLL : (p1, . . . , pL) ∈ {0, 1}L

}
. (A.3)

In this case, we also write G = G(S), which means the same thing as S = 〈G(S)〉. Because of

the linear indepence of G, each element of S has a unique representation in this form, hence

there is a one-to-one mapping between {0, 1}L and S. It follows that S is a finite abelian group

of order |S| = 2L.

Being a finite abelian group, and with each element of order 2, S can be viewed as an

L-dimensional vector space on Z2, and group multiplication can be viewed as addition in this

vector space (ignoring phase factors). Thus, an independent generating set G(S) corresponds to

a choice of basis for this vector space. Such a choice is not unique, and the freedom in choosing

G(S) is referred to as the gauge freedom in this paper.

For the rest of this appendix, we will always take G(S) to be an independent generating

basis (thus has L elements), and use the word stabilizer for elements of G(S). When we talk

about a codeword state, we mostly work with its stabilizers, G(S).

A.1.2 Simulating Clifford circuits

We briefly review our simulation of the Clifford circuits with Pauli measurements. The

main result we use is the Gottesman-Knill theorem.

First consider the action of a unitary operator, U . For a state |ψ〉 whose stabilizer group is

S = {g1, . . . , g|S|}, the state evolves as |ψ〉 7→ U |ψ〉, while the stabilizer group evolves as

S 7→ SU = {gU1 , . . . , gU|S|} = {Ug1U †, . . . , Ug|S|U
†}. (A.4)
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For the state to remain a codeword under unitary time evolution, the unitaries must be taken

from the Clifford group, which transforms a Pauli string operator g into gU = UgU † that is

still a Pauli string operator. Thus, SU remains a group of Pauli string operators, hence the

wavefunction remains a codeword. To simulate a circuit under Clifford unitary evolution, one

only needs to keep track of S, or equivalently (and more conveniently) its generating set G(S).

Such a simulation only takes polynomial time in L.

It is common knowledge that the Clifford group on two-qubits is generated by {CNOT, SWAP, H, P},

where in the standard bases

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, SWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


, (A.5)

H =
1√
2

1 1

1 −1

 , P =

1 0

0 i

 . (A.6)

The CNOT gate defined here is also known as CNOTL, whereas CNOTR = SWAP · CNOTL ·

SWAP.

Next we consider Pauli measurements, that is, measuring a Pauli string operator g. Let

G = {g1, . . . , gk, gk+1, . . . , gL} be the stabilizers of |ψ〉 and suppose that [gj , g] = 0 for j ≤ k,

and {gj , g} = 0 for j > k. After the measurement, there are two possible outcomes (1 or −1),

hence two possibilities of the measured wavefunction,

|ψ〉± ∝ 1± g

2
|ψ〉 . (A.7)

Their corresponding probabilities can be computed, as detailed in [68]. Remarkbly, the mea-

sured state is still a codeword, and its corresponding stabilizer group is generated by the fol-
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lowing stabilizers [69]

G± = {g1, . . . , gk, gk+1gk+2, . . . , gL−1gL,±g}. (A.8)

Such a simulation can also be performed in polynomial time.

We use the particular algorithm in [68] for our simulation of the Clifford circuits, where we

take the unitary and measurement gates to be local.

A.1.3 Generating random Clifford unitaries

In the random Clifford circuit, the local unitaries are taken from the uniform distribution on

the two-qubit Clifford group. Here we explain the sampling process from the L-qubit Clifford

group C(L) [176]. It applies to L = 2 as a special case.

First we notice that the Clifford group acts on the Pauli group transitively, and that a Clif-

ford unitary U is determined (up to a sign) by images of the generators of P+(L), conveniently

taken to be {X1, Z1, . . . , XL, ZL}. Thus, sampling a random Clifford unitary is equivalent to

sampling random images of the generators. We proceed by induction, and start with assuming

that one is able to sample from the uniform distribution on C(k). Now consider the action

of a random Clifford unitary on {Xk+1, Zk+1}. Since the random unitary is taken from the

uniform distribution, it maps Xk+1 to all the non-identity elements of P+(k + 1) with equal

probability. XU
k+1 is essentially a random non-trivial Pauli string operator of length k+1; there

are 2(4k+1− 1) choices, where the factor of 2 comes from the sign. ZU
k+1 is also almost random,

except that it must also square to 1, and anticommute with XU
k+1; there are 2

(
2× 4k

)
choices.

Having randomly chosen XU
k+1 and ZU

k+1, we can find one unitary U ′ (again represented by

its action on the generators of P+(k + 1)) such that XU ′
k+1 = XU

k+1 and ZU ′
k+1 = ZU

k+1 satisfying

the following relations,

(U ′)†XU
k+1U

′ = Xk+1, (A.9)

(U ′)†ZU
k+1U

′ = Zk+1. (A.10)
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To preserve the commutation relations, we must have for i ≤ k,

(U ′)†XU
i U

′ = (. . .)⊗ Ik+1, (A.11)

(U ′)†ZU
i U

′ = (. . .)⊗ Ik+1, (A.12)

which is equivalent to

XV
i = (. . .)⊗ Ik+1, (A.13)

ZV
i = (. . .)⊗ Ik+1, (A.14)

where V = (U ′)†U is now shown to be in the Clifford group of the first k qubits. Thus to

sample U from C(k + 1), we just need to sample V from C(k), and multiply it by U ′ (which

is determined by XU
k+1 and ZU

k+1, which are also random), to get a random U from C(k + 1).

Since it is easy to generate elements in C(1), we know how to generate elements in C(k+1), by

induction.

From the above, we get the following recurrence relation

|C(L+ 1)| = 2(4L+1 − 1)× (4L+1)× |C(L)|, (A.15)

where the first factor corresponds to the number of choices of the image of XL+1, and the

second factor corresponds to that of ZL+1.

A.1.4 Entanglement entropy for pure stabilizer states

Given a pure state wavefunction |ψ〉, the n-th Rényi entanglement entropy with respect to

a given bipartition (A,A) is defined to be (c.f. Eq. (2.5))

Sn
A =

1

1− n
log2Tr (ρA)

n , where ρA = TrA |ψ〉 〈ψ| .
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When |ψ〉 is a codeword, the Rényi entropies are independent of the Rényi index n, and is

related to its stabilizers through the following relation [82, 83, 72]

SA = |A| − log2 |SA|, (A.16)

where SA is the subgroup of S of all elements that have trivial content (I) on A. Equivalently,

SA = |A| − |G(SA)|, (A.17)

where G(SA) is an arbitrary generating set of SA.

We recall an alternative formula as derived in Ref. [72]. Define the linear operator projA such

that projA(S) contains all elements from S with their contents on A set to identity (“projected

out”). In this notation we have |G(SA)| = dimKer(projA). By a theorem in linear algebra we

have dimKer(projA) + dim Im(projA) = dimS = L, so that

SA = |A| − dimKer(projA)

= |A| −
(
L− dim Im(projA)

)
= dim Im(projA)− |A|, (A.18)

or, interchanging the roles of A and A,

SA = SA = dim Im(projA)− |A|

= rank(projA(S))− |A|. (A.19)

Given the entanglement entropy, the computation of the bipartite mutual information is

immediate.
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A.1.5 Entanglement entropies of mixed stabilizer states

Let the stabilizer group S be an abelian subgroup of P(Q) as defined in Eq. (4.4). Let

ρQ(S) be the corresponding stabilizer code state as in Eq. (4.6) [81],

ρQ(S) = 2−|Q|
∑
g∈S

g. (A.20)

We can directly compute its Rényi entropies [81],

(ln 2)−1S(n)(ρQ(S))

=
1

1− n
log2Tr [(ρQ(S))

n]

=
1

1− n
log2Tr

[(
2−|Q||S|

)n−1
ρQ(S)

]
= |Q| − log2 |S|. (A.21)

Since this result is independent of the Rényi index n, we will suppress it henceforth. As in

Sec. 4.1, we take

|S| = 2m (A.22)

and define

k := |Q| −m = (ln 2)−1S(ρQ(S)). (A.23)

Given a bipartition of the system, A ⊆ Q, A = Q − A, we define the following group

homomorphism

projA : P(Q) → P(A)

gA ⊗ gA 7→ gA (A.24)
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We take the following reduced density matrix on A,

ρA(S)

=TrA [ρQ(S)]

= 2−|Q|
∑
g∈S

TrA(g)

= 2−|A|
∑

g∈S∩Ker projA

g

=2−|A|
∑
g∈SA

g, (A.25)

where we noticed that TrA(g) is nonzero only if projA(g) = 1A, and defined SA to be the

following subgroup of S,

SA := S ∩Ker projA. (A.26)

Thus, we have

projA(S) ∼= S/SA,

|projA(S)| = |S|/|SA|, (A.27)

and from Eqs. (A.21, A.25),

(ln 2)−1S(ρA(S))

=|A| − log2 |SA|

=|A| − log2 |S|+ log2 |projA(S)|. (A.28)
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A.1.6 Computing Pauli correlation function

Consider the following ZZ correlator for the state ψ,

cxy = 〈ψ|ZxZy |ψ〉 , (A.29)

which can be written as a difference,

cxy = 〈ψ| 1 + ZxZy

2
|ψ〉 − 〈ψ| 1− ZxZy

2
|ψ〉 (A.30)

= p+ − p−, (A.31)

where the first term is the probability of measuring the Pauli operator g = ZxZy and getting

+, and the second of getting −. Since the probabilities can be computed [68], the computation

of correlation functions of Pauli string operators is straightforward.

A.2 The clipped gauge

In this subsection we review the clipped gauge and the clipping algorithm introduced in

Ref. [72], and slightly extend the computation of entanglement entropy within this gauge.

Consider an L-qubit codeword |ψ〉 with stabilizer group S, where S = 〈G(S)〉. For a

stabilizer g ∈ G(S), we define l(g) to be the position of the left endpoint, and r(g) to be the

position of the right endpoint, as in Eqs. (2.7, 2.8),

l(g) = min{x : g acts non-trivially on site x}, (A.32)

r(g) = max{x : g acts non-trivially on site x}, (A.33)

where x is the coordinate of the site, which takes values in {1, 2, . . . , L}. For systems with open

spatial boundary conditions, there is a natural coordinate system: we label the sites sequencially,

from the left boundary to the right one. For systems with periodic spatial boundary conditions,
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there is an arbitrariness in choosing the origin of the coordinate system, and there is no absolute

distinction between left and right. To resolve this arbitrariness we will assume that the origin

is chosen and fixed (by hand), so that the functions l(g) and r(g) are well-defined.

We further define ρl and ρr, the densities of left and right endpoints, to be

ρl(x) =

L∑
x=1

δl(gi),x, (A.34)

ρr(x) =

L∑
x=1

δr(gi),x. (A.35)

The total number of left and right endpoints are conserved, and
∑

x ρl(x) =
∑

x ρr(x) = L.

It was shown in Ref. [72] that it is always possible to “gauge fix” a stabilizer basis G in an

arbitrary gauge into the clipped gauge, where

• ρl(x) + ρr(x) = 2, for all sites x.

• For each site with ρl(x) = 2 or ρr(x) = 2, the two stabilizers that end at x must have

different content on x.

A.2.1 Clipping algorithm

We here give an explicit algorithm for gauge fixing an arbitrary stabilizer basis G into the

clipped gauge Gc, such that 〈G〉 = 〈Gc〉. We use the word “clipping” for this process. Such a

process was given in Ref. [72].

Clipping algorithm part 1. Given a stabilizer group S, there exists an generating set G

of S such that

• ∀x, ρl(x) ≤ 2;

• If ρl(x) = 2, the two Pauli operators at the left endpoints must be different.

We call this the pre-gauge condition. It is different from the gauge condition in that it does not

refer to the right endpoints of the stabilizers.
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[Sketch: Recall that elements of G can be viewed as basis vectors of the L-dimensional

vector space, S. For concreteness, we construct an L× 2L matrix M on Z2, for which the i-th

row corresponds to gi, where each Pauli matrix is represented by two bits,

I 7→ 00, X 7→ 10, Y 7→ 11, Z 7→ 01. (A.36)

Then we perform Gaussian elimination (row reduction) on M to reduce it into the row ech-

elon form. The resultant matrix, with each row viewed as a stabilizer, satisfy the pre-gauge

condition.]

Clipping algorithm part 2. A generating set G that satisfies the pre-gauge constraint in

part 1 can be transformed into the clipped gauge while preserving ρl.

[Sketch: This is achieved by performing another Gaussian elimination based on the resulting

matrix of the previous algorithm, focusing the right endpoints, from the right to the left. In

doing so, one has to always eliminate the longer stabilizer by the shorter one. One can check that

ρl is not changed under this process. That the stabilizers commute with each other guarantees

that after the algorithm terminates, each site has no more than 2 endpoints, and both left and

right endpoints satisfy the pre-gauge constraint in part 1. It follows that the resultant G is in

the clipped gauge.]

A.2.2 From clipped gauge to B(G)

Consider the following quantity (which we call bigrams) defined for the generating set G

in the clipped gauge,

B(G) ≡ {(l(g1), r(g1)) , . . . , (l(gL), r(gL))}. (A.37)

B(G) is a set of L ordered pairs.

Proposition 1. If 〈G〉 = 〈G′〉, where G and G′ are both independent and in the clipped

gauge, then B(G) = B(G′).
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Figure A.1: Illustration of the two cases in the proof of the Lemma.

But before we prove Proposition 1, it is helpful to state the following

Lemma. Let G be in the clipped gauge. For an arbitrary product of the stabilizers,

g = gi1 . . . gik , (A.38)

where gij ∈ G, and {i1, . . . , ik} are mutually distinct, we have

l(g) = min {l(gi1), . . . , l(gik)}, (A.39)

r(g) = max{r(gi1), . . . , r(gik)}. (A.40)

Intuitively, this is saying that the “span” of the product would be the outer envelope of its

factors.

Proof of the Lemma: Without loss of generality, let l(gi1) ≤ l(gi2) ≤ . . . ≤ l(gik). According

to the clipped gauge condition we have two possibilities (see Fig. A.1),

1. x = l(gi1) = l(gi2) < l(gi3) ≤ l(gi4) ≤ . . . ≤ l(gik). In this case, the clipped gauge

condition guarantees that the gi1 and gi2 have different but nontrivial (X, Y , or Z)

contents on x, and gij has trivial content (I) on site x, for j ≥ 3. The product g would

then have nontrivial content on x, but trivial content for y < x.

2. x = l(gi1) < l(gi2) ≤ l(gi3) ≤ l(gi4) ≤ . . . ≤ l(gik). In this case, only gi1 has nontrivial

(X, Y , or Z) content on x, and gij has trivial content (I) on site x, for j ≥ 2. The product
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g would then have nontrivial content on x, but trivial content for y < x.

Thus l(g) = l(gi1) as claimed. A similar reasoning gives r(g). □

Proof of Proposition 1: First recall that ρl/r in the clipped gauge are completely fixed by

the entanglement entropy (which is a gauge invariant quantity) through the following relation

[72],

SA(x) =
∑
y≤x

(ρl(y)− 1) =
∑
y>x

(ρr(y)− 1) . (A.41)

To reach our conclusion, we are going to show that, for two arbitrary generating sets G and

G′ (both in the clipped gauge), the lengths of the ρl(x) stabilizers that start at site x are the

same for G and G′, for all sites x.

1. First, the case ρl(x) = 0 is trivial.

2. Second, consider the case where ρl(x) = 1. Let gi ∈ G and g′i ∈ G′, where l(gi) = l(g′i) =

x. Since both G and G′ are independent generating sets, gi has a unique representation as

products of elements from G′, and conversely, g′i has a unique representation as products

of elements from G. That is,

gi =

L∏
j=1

(
g′j
)p′j , g′i =

L∏
j=1

(gj)
pj , (A.42)

where pj , p′j take values in {0, 1}. Since l(gi) = l(g′i), we know pi = p′i = 1 from the

Lemma. Then, again from the Lemma,

r(gi) ≥ r(g′i), (A.43)

r(g′i) ≥ r(gi). (A.44)

Hence r(gi) = r(g′i), and gi and g′i have the same lengths.

3. Finally, consider the case where ρl(x) = 2, and let gi, gj ∈ G, g′i, g′j ∈ G′, where l(gi) =
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l(gj) = l(g′i) = l(g′j) = x. We again have

gi =
L∏

k=1

(
g′k
)p′k , gj =

L∏
k=1

(
g′k
)q′k , (A.45)

g′i =

L∏
k=1

(gk)
pk , g′j =

L∏
k=1

(gk)
qk . (A.46)

Without loss of generality, assume r(gi) ≤ r(gj) and r(g′i) ≤ r(g′j). From the Lemma, we

know that

p′i + p′j ≥ 1, pi + pj ≥ 1, (A.47)

q′i + q′j ≥ 1, qi + qj ≥ 1. (A.48)

That is, gi must has a least one factor of either g′i or g′j , to have its left endpoint at x. So

from the Lemma we have

r(gi) ≥ min{r(g′i), r(g′j)} = r(g′i). (A.49)

Similarly,

r(g′i) ≥ min{r(gi), r(gj)} = r(gi). (A.50)

Hence r(gi) = r(g′i).

Again, without loss of generality, assume r(gj) ≤ r(g′j), thus r(gi) ≤ r(gj) ≤ r(g′j).

We observe that p′j + q′j ≥ 1; otherwise p′j = q′j = 0, and we must have p′i = q′i = 1, which

implies that gi and gj have the same content on x, in contradiction with the clipping

condition. Thus, from the Lemma, we must have at least one of the following,

164



Brief review of the stabilizer formalism and gauge fixing Chapter A

(a) r(gi) ≥ r(g′j), in which case

r(gi) = r(g′i) = r(gj) = r(g′j). (A.51)

(b) r(gj) ≥ r(g′j), in which case

r(gi) = r(g′i), r(gj) = r(g′j). (A.52)

Therefore, the stabilizers starting at x have the same length in G and in G′.

The above arguments work for every site x. We have thus proven the Proposition. □

We immediately have the

Corollary. Let len(g) ≡ r(g)− l(g), and

DG(ℓ) =
1

L

L∑
i=1

δlen(gi),ℓ, (A.53)

where G = {g1, . . . , gL}. For G and G′ satisfying the conditions in the Proposition, we have

DG = DG′ . (A.54)

Thus, the length distribution of stabilizers in the clipping gauge is well defined.

A.2.3 From B(G) to entanglement entropy

Define the following subset of G:

GA = {g ∈ G : g is supported only on A}. (A.55)

Proposition 2. Let G be a generating set of S in the clipped gauge, and A be a contiguous

subregion of the system. Then SA, defined in Eq. (A.16) as the subgroup of S of all the

stabilizers that are only supported on A, is generated by GA.
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Figure A.2: The 4 types of stabilizers.

Proof : Let gA be an arbitrary element of SA. It has the following represention,

gA =

L∏
i=1

(gi)
pi , (A.56)

where we recall that G = {g1, . . . , gL}, and pi = 0, 1. Suppose gi is supported on both A and

A. Either l(gi) ∈ A or r(gi) ∈ A. From the Lemma, we see that pi = 0, otherwise gA will have

support on A, in contradiction with the assumption that gA ∈ SA. Thus, pi = 1 implies that gi

is supported only on A.

We have shown that SA = 〈GA〉. □

Noticing that GA is also independent, from Eq. (A.17) we have the following

Corollary. The entanglement of a contiguous subregion A is given by SA = |A| − |GA|.

From now on, we will assume that A is contiguous, unless otherwise specified 1.

All the stabilizers in G can be divided into 4 types (see Fig. A.2),

(A) Those that are contained in A. These constitute GA. Let there be a = |GA| of them.
1In stating these results, the requirement that A is contiguous is important. Consider the following example

of L = 3,

G = {XXI, IXZ, Y ZY }. (A.57)

This set is in the clipped gauge. Let A = {1, 3}. SA can be shown to be 1, while |GA| = 0 ̸= |A| −SA = 1. Thus,
this simple formula cannot be readily used for computation of the mutual information,

IA,B = SA + SB − SA∪B , (A.58)

where A and B are qubits that could be far away.
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(B) Those that have their right endpoint in A, but left endpoint outside A. Let there be b of

them.

(C) Those that have their left endpoint in A, but right endpoint outside A. Let there be c of

them.

(D) Those that have their left and endpoints outside A. Let there be d of them.

Counting the number of endpoints in subregion A, we have

2|A| = 2a+ b+ c. (A.59)

Thus

SA = |A| − |GA| = |A| − a =
1

2
(b+ c). (A.60)

When A contains the first site, b = 0, it reduces to the familiar formula Eq. (A.41). Surprisingly,

the entanglement entropy of A depends only on the endpoints of the stabilizers, but not the

contents of the stabilizers, as in the more general formulae Eqs. (A.16, A.17, A.19). This

simplicity is only present in the clipped gauge.

Several comments are in order.

1. This formula works for any G that is in the clipped gauge. It provides another proof that

B(G), hence DG , are well-defined in the clipped gauge.

Here is an algorithm for getting B(G) from SA for all contiguous subregions (segments) A.

At the beginning of the algorithm, we define the variables a[l,r] = |G[l,r]| for all segments

[l, r], and let B = {}. In the w-th stage of the algorithm, we look at all segments [x, y] of

length w (w = y − x + 1). a[x,y] > 0 means that there are a[x,y] stabilizers that start at

x and end at y, and we add a[x,y] copies of (x, y) to B. Then we subtract a[x′,y′] by the

amount of a[x,y], for all [x′, y′] ⊃ [x, y]. This marks the end of the w-th stage.
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The algorithm terminates after L stages. The resultant B gives the correct B(G). Hence,

it is a quantity that is uniquely determined by entanglement entropy (assuming clipped

gauge).

2. It has the intuitive interpretation that the entanglement is half the number of stabilizers

that span the boundaries of the subregion. In certain limits the formula reduces to

simply counting the number of entangled Bell pairs across the boundary, which is an

example we know and like. However, the Bell pair picture fails to characterize multipartite

entanglement because of the trivial internal structure of the stabilizers.

A.3 Proof of Theorem 1 in Sec. 4.1.4

Recall that C(S) ⊆ P(Q) is the abelianized centralizer of S in P(Q). Recall also that the

group of logical operators is defined as the quotient group L = C(S)/S (see Sec. 4.1.2). The

homomorphism projA naturally induces the following homomorphism between quotient groups,

p̃rojA : L →
projA(C(S))
projA(S)

g · S 7→ projA(g) · projA(S) (A.61)

It can be straightforwardly verified that this homomorphism is well defined, and is in fact

surjective,

p̃rojA(L) =
projA(C(S))
projA(S)

. (A.62)

Recall that the group LA is defined in Sec. 4.1.2 as follows

LA :=

{
g ∈ C(S) | projA(g) ∈ projA(S)

}
S

, (A.63)

where projA is understood as from P(Q) to P(A), as in Eq. (A.24). It follows from the definitions
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that

LA = Ker p̃rojA ⊆ L, (A.64)

thus

|LA|

=|Ker p̃rojA|

=
|L|

|p̃rojA(L)|

=
|C(S)| · |projA(S)|
|S| · |projA(C(S))|

. (A.65)

In the following, we associate these factors with entanglement entropies, using Eq. (A.28).

We state without proof that an arbitrary generating set of S can be extended into one of

C(S) [132, 68]:

GS = {g1, . . . , gm}, (A.66)

GC(S) = {g1, . . . , gm, hX1 , . . . , hXk , hZ1 , . . . , hZk }. (A.67)

Each of GS and GC(S) is a set of independent operators in P(Q); thus

|S| = 2|GS | = 2m, (A.68)

|C(S)| = 2|GC(S)| = 2m+2k = 2|Q|+k. (A.69)

Each of {g1...m}, {hX1...k} ,{hZ1...k} is a set of mutually commuting operators in P(Q). In addition,

the g’s commute with the hX ’s as well as with the hZ ’s; and hXi h
Z
j = (−1)δijhZj h

X
i . The h

operators can be thought of the so-called “representative logical X- and Z-operators”.

Next, we construct a purification of the state ρQ(S). Let R be a system of k qubits, and

let S̃ ⊆ P(QR) be generated by the following set G̃, obtained from GC(S) by “extending” its
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elements to QR,

G̃ =
{
(gj)Q ⊗ 1R

∣∣∣j = 1 . . .m
}
∪
{(
hXj
)
Q
⊗ (Xj)R

∣∣∣j = 1 . . . k
}
∪
{(
hZj
)
Q
⊗ (Zj)R

∣∣∣j = 1 . . . k
}
,

(A.70)

where (Xj)R is the Pauli X-operator on the j-th qubit of R; and similarly for (Zj)R. It is clear

that G̃ is a set of independent, mutually commuting elements of P(QR), and thus defines a

physical state on QR,

ρQR(S̃) = 2−|QR|
∑
g∈S̃

g. (A.71)

Since |G̃| = |GC(S)| = |Q|+ k = |QR|, we have |S̃| = 2|QR|, and from Eq. (A.21)

(ln 2)−1S(ρQR(S̃)) = 0. (A.72)

Moreover, by construction,

ρQ(S̃) :=TrR

[
ρQR(S̃)

]
=2−|QR|

∑
g∈S̃

TrR(g)

= 2−|Q|
∑
g∈S

g

= ρQ(S). (A.73)

Therefore, ρQR(S̃) is a purification of ρQ(S) on QR, as claimed.
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On the other hand, let us compute the reduced density matrix on R,

ρR(S̃)

=TrQ

[
ρQR(S̃)

]
=2−|QR|

∑
g∈S̃

TrQ(g)

= 2−|R|
1R, (A.74)

i.e. the maximally-mixed state on R, as expected. Thus we have

(ln 2)−1S(ρR(S̃)) = |R| = k. (A.75)

It is easy to verify that for A ⊆ Q and A := Q−A,

projA(C(S)) = projA(S̃), (A.76)

where projA on the LHS is understood as from P(Q) to P(A), and that on the RHS from

P(QR) to P(A). Thus, using Eq. (A.28), but now for AR ⊆ QR, A = Q−A = QR−AR, and

S̃, we have

(ln 2)−1S(ρAR(S̃))

=|AR| − log2 |S̃|+ log2 |projA(S̃)|

=|AR| − log2 |S̃|+ log2 |projA(C(S))|. (A.77)
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Combining this equation with Eqs. (A.28, A.65), we have (compare Eq. (4.13))

ℓA

= log2 |LA|

= log2 |C(S)| − log2 |S|+ log2 |projA(S)| − log2 |projA(C(S))|

= log2 |C(S)| − log2 |S|+
[
(ln 2)−1S(ρA(S))− |A|+ log2 |S|

]
−
[
(ln 2)−1S(ρAR(S̃))− |AR|+ log2 |S̃|

]
=
[
log2 |C(S)| − log2 |S̃|

]
+
[
log2 |S| − log2 |S|

]
+
[
(ln 2)−1S(ρA(S))− |A| − (ln 2)−1S(ρAR(S̃)) + |AR|

]
=(ln 2)−1S(ρA(S))− (ln 2)−1S(ρAR(S̃)) + |R|

=(ln 2)−1
[
S(ρA(S̃))− S(ρAR(S̃)) + S(ρR(S̃))

]
=(ln 2)−1IA,R. (A.78)

Thus, we have proven the result stated in Sec. 4.1.4, by constructing a particular purification

of ρQ(S) using a particular generating set of C(S). But this choice is really arbitrary, and there

is no surprise that it should work. In fact, any purification of ρQ(S) on QR with |R| = k has a

generating set of the form in Eq. (A.70), and thus gives a generating set of C(S).
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Appendix B

Entanglement dynamics under

Clifford unitary-projective evolution

In this section, we try to give a simple picture for the entanglement entropy for contiguous

subregions starting from the 1st site, which we define as the height function,

h(x) := SA={1,...,x}. (B.1)

This is the same function considered in Ref. [72] and shown in Fig. 2.22.

Alternatively, based on Eq. (A.41), we can also consider dynamics of ρl within the clipped

gauge, which encodes the same information as the height function. We will use the pictorial

representation in Fig. B.1, where each blue dot represents a left endpoint, and each white dot

represents a right endpoint. We will view the left endpoints as “particles” and the right ones as

“holes”. Recall that the clipped gauge requires that the total number of dots on each site is 2.

For the convenience of discussion, we consider systems with open boundary condition in

this appendix.
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U U

late times

Initial  un-entangled state

Maximally-entangled state

Figure B.1: Schematic illustration of the particle movement under purely unitary evolution,
from a trivial product state to a maximally entangled state.

B.1 Unitary dynamics

Consider a local unitary on qubits x and x+ 1, as in Fig. B.1. According to Eq. (A.41),

ρl(x) + ρl(x+ 1)− 2 = h(x+ 1)− h(x− 1). (B.2)

The local unitary on the bond (x, x+1) does not change h(x+1) or h(x− 1), thus, restricting

to the clipped gauge before and after the gate, the quantity ρl(x)+ ρl(x+1) remains the same

as before the unitary gate. Moreover, ρl(y) is left invariant by Ux,x+1 for y 6= x, x + 1 for a

similar reason. Hence the following

Observation: a local unitary gate on qubits (x, x + 1) can only redistribute particles on

sites x and x+ 1, while leaving particles on other sites untouched, as illustrated in Fig. B.1.

If the unitary is taken from the Haar measure, and we take the local Hilbert space dimension

q to infinity, the entanglement growth is governed by the following equation [72]

h(x, t+ 1) = min{h(x− 1, t), h(x+ 1, t)}+ 1. (B.3)

This is the crystal growth model. Since ρl is the derivative of h(x), under the action of a

random Haar unitary, the particles within the range of action will drift to the left as much as

they can with the filling constraint ρl(x) ≤ 2, while particles outside the range of action stay

where they are.
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The difference between Clifford unitaries and random Haar unitaries is that instead of

ballistic movement, the particles experience the biased diffusion with filling constraint. This is

captured by the KPZ equation derived in Ref. [72]. Without further justification, we assume

that this is the correct picture for entanglement growth under Clifford dynamics.

At long times t→ ∞, all the particles will clump to the left half of the system, corresponding

to a maximally entangled state (see Fig. B.1). The fluctuation of h(x) around the maximal

value is expected to be small [72].

B.2 Measurement dynamics

Here we consider one-qubit Pauli-Z measurements and their effects on ρl.

First recall the transformation of G under the effect of a measurement of Zx in Eq. (A.8).

Let G = {g1, . . . , gk, gk+1, . . . , gL} be in the clipped gauge and suppose that [gj , Zx] = 0 for

j ≤ k, and {gj , Zx} = 0 for j > k. The stabilizer group of the measured wavefunction is

generated by

G′ = {g1, . . . , gk, gk+1gk+2, . . . , gL−1gL, Zx}. (B.4)

This set does not necessarily respects the clipped gauge; some clipping is necessary. In Ap-

pendix A we see that ρl is determined by just the pre-gauge condition, and is left invariant by

the second Gaussian elimination. Since we are focusing on the ρl dynamics, it suffices to check

only the pre-gauge condition.

Observe that since x is disentangled from the rest of the system after the measurement, Zx

will remain in G′ after clipping.

In Eq. (B.4), the ordering of the stabilizers is not essential; different orderings correspond

to the same wavefunction. For convenience, we assume that gk+1, gk+2, . . . , gL are ordered in
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measure Zx

measure ZxlmaxG

rminG

measure Zx rminGlmaxG

Figure B.2: Illustration of the hopping processes of the particles under a local measurement at site x.

such a way that their left endpoints are non-decreasing,

l(gk+1) ≤ l(gk+2) ≤ . . . ≤ l(gL). (B.5)

The clipped gauge guarantees that gjgj+1 has the same left endpoint as gj , for j > k. Thus,

comparing ρl for G and G′, the net effect of a measurement Zx is the following,

ρl(l(gL)) → ρl(l(gL))− 1, ρl(x) → ρl(x) + 1. (B.6)

If we now run the clipping algorithm and check for the pre-gauge (i.e. the first Gaussian

elimination), it will find that the pre-gauge constraints are satisfied for all y < x. The first site

that might violate this constraint is x. The clipping algorithm would then check the constraint

and move the left-endpoints to the right of x (the row elimination process), if necessary.

The coordinate l(gL) where a particle gets removed is the right-most left-endpoint among

stabilizers that anticommute with Zx, which we define to be

lGmax := max{l(g) : g ∈ G,G clipped, and {g, Zx} = 0.}

(B.7)
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We define a similar quantity which will prove to be useful,

rGmin := min{r(g) : g ∈ G,G clipped, and {g, Zx} = 0.}

(B.8)

Using this notation, we can further deduce the change of ρl under a local measurement. There

are three cases (see Fig. B.2),

1. ρl(x) = 0 before measurement. It follows that lGmax < x, and ρl(lGmax) ≥ 1. After the

operation in Eq. (B.6), the pre-gauge constraint is satisfied everywhere, and the algorithm

terminates. The height h(w) is reduced by 1 for w ∈ [lGmax, x).

2. ρl(x) = 2 before measurement. It follows that lGmax = x. After clipping, ρl(x) is reduced

by 1, and that reduction is compensated by the increase of ρl(y) for some y > x, for

which ρl(y) ≤ 1 before the measurement.

If we view this processes from the perspective of ρr, it would have the particle-hole

symmetric dynamics, where the symmetry operation is

x→ L− x, ρ→ 2− ρ. (B.9)

Consequently, the position y is equal to rGmin, and the height h(w) is reduced by 1 for

w ∈ [x, rGmin).

3. ρl(x) = 1 before measurement. If this stabilizer has X or Y on site x, the measurement

has no effect on ρl(x). If this stabilizer has Z on site x, the measurement will first hop a

particle from site lGmax < x to x, then hop a particle from x to rGmin > x, as described in

the previous two cases. The height h(w) is reduced by 1 for w ∈ [lGmax, rGmin).

Given these observations, we see that the effect of a local measurement at x, in the particle

picture, is to hop exactly one particle across x via clipping. Thus we have an apparently simple

picture for the entanglement dynamics in the unitary-measurement Clifford circuit in terms of
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Figure B.3: The normalized distribution funciton of R, on a log-log scale.

the particles, which are drifted to the left in a local fashion under unitary gates, and “hopped”

to the right under measurements in a non-local fashion.

What remains unspecified is the hopping distance, R, that is, the distance between the

initial and final positions of the moving particle. This quantity takes the values x − lGmax,

rGmin − x, and rGmin − lGmax in the three cases above, respectively. For concreteness, consider the

following function,

H :=
∑
w

h(w). (B.10)

From the discussion above, it is easy to see that the change in H after a time cycle is

∆H = O(L) +

pL∑
k=1

(−Rk), (B.11)

where Rk is the distance of the hopping in the k-th measurement, and the O(L) terms comes

from the unitary gates. We replace the second term by its mean value,

∆H = O(L)− pL 〈R〉 . (B.12)

Within the steady state, the two terms must cancel out, so that 〈R〉 = O(1).

In Fig. B.3, we plot the normalized distribution function of R, denoted P(R), for several

different values of p within a system of size L = 128, within the random Clifford circuit. Within
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the volume law phase p < pc, the distribution function takes the form of a power law decaying

function whose magnitude does not depend on the system size (as we verify but not shown),

P(R) ∼ R−γ up to R ∼ L/2. Within the area law phase the distribution is short ranged.

Schematically,

P (R) ∼


1
Rγ , p < pc,

e−R/R0

Rγ , p > pc,

(B.13)

where γ, which varies throughout the volume phase, always satisfies γ > 2, and R0 is a finite

length scale. As of now, we have not understood this power law distribution, and leave it

for future work. Nevertheless, the expectation values of the hopping distance can be readily

computed, 〈R〉 =
∫ L/2

dRRP(R). In the volume law phase, the mean value of R is finite (as

L→ ∞) since γ > 2, while in the area law phase this value is finite regardless.

Notice that the quantity δMh, defined in Sec. 2.6, is proportional to the hopping distance

R within the Clifford context, δMh = −R/L, so that 〈δM h̄〉 = O(1/L).

B.3 Toy particle traffic-flow model

The apparent simplicity of the dynamical rules governing the particles motion in the Clifford

circuit studied in the previous subsection is somewhat misleading; to faithfully simulate the

particle dynamics, the knowledge of particle densities are not enough, and one has to specify

the internal contents of the stabilizers (so as to obtain lGmax and rGmin). In this subsection, we

design an effective toy model which we term the “traffic-flow model”, that aims to capture the

essence of the Clifford particle dynamics without resorting to a full stabilizer simulation. As we

shall see, the particles motion is designed to mimic the motion of the stabilizers left-endpoints

under both unitaries and measurements, as described in detail in the previous subsection.

Specifically, we start with a one dimensional system of L sites with open boundary condition,

and initially put in L particles (mimicking the left endpoints of the stabilizers), one on each site,
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Figure B.4: (a) The average steady state particle density for different values of p with fixed
L = 512. As seen in Eq. (A.41), the volume law phase corresponds to a plateau in ρl(x) with
height greater than 1, while the transition is signified by a continuous decrease of this height
to 1. There is clearly a particle hole symmetry in ρl(x) (see Eq. (B.9)) at all values of p. (b)
Collapse of the entanglement entropy using the scaling form in Eq. (2.20), where we choose
ν = 1.33 and pc = 0.56. (c) The particle density at the critical point. The data can be fit
to a slope −1 on a log-log scale, suggesting logarithmic scaling of entanglement entropy (see
Eq. (A.41)), reproducing the result of the full Clifford dynamics.

as in a product state; the total number of particles is conserved. At all times, we impose the

constraint that on any site there are at most two particles, equivalent to the clipping condition.

To imitate the random Clifford circuit, we choose the particle motion under unitary gates

to be ballistic and uni-directional (to the left), instead of diffusive. The particle motion under

“measurements” is chosen to satisfy the following simple rules:

1. When ρl(x) = 0, choose the closest particle to the left of x at y < x, and hop it from y

to x.

2. When ρl(x) = 2, choose the closest hole to the right of x at z > x, and hop one particle

from x to z.

3. When ρl(x) = 1, leave the particle density untouched.
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4. After each measurement, the measured qubit is taken out of the system, until the layer

(with pL measurements) terminates. This is because the measurements within the same

layer commute with each other, so that a site that is already measured cannot serve

as lGmax or rGmin for subsequent measurements. Moreover, the temporal ordering of the

measurements is inessential given this rule, as expected.

In effect, we are replacing lGmax and rGmin above with possibilities that are closest to x.

This choice is of course an over-simplification, and is not faithful to real Clifford dynamics.

In particular, the hopping distance distribution is strictly short-ranged (data not shown), and

does not have the power law form. However, as we will see below, this toy model captures some

universal features of the random Clifford circuit.

We numerically simulate this classical model and present the results in Fig. B.4. The

function ρl shows a volume law to area law transition, with similar critical exponents and loga-

rithmic scaling of entanglement at the critical point (although the coefficient of the logarithmic

function is significantly smaller than α(pc) we found in earlier sections). Thus the rules of our

toy model are partially justified.

The traffic-flow model provides a different perspective for studying entanglement dynam-

ics. While our “traffic rules” are over-simplified, one might still hope to design a set of rules

that faithfully represents the particle dynamics under the full Clifford evolution. In fact, this

framework could be more versatile than what is already envisioned, and tweaking with the

rules might result in a whole class of different entanglement dynamics, not necessarily within

the same universality class as the Clifford ones. We leave these studies to future works.
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Appendix C

Conformal invariance

C.1 Review of some elementary results in CFT

In this Appendix we summarize very briefly a number of very basic properties pertaining to

correlation functions and the operator product expansion (OPE) of primary fields in CFT [177].

Notice that in a boundary CFT, only the (say) holomorphic part of an operator appears, and

all correlation functions below are holomorphic.

• Two-point function:

〈ϕ1(w1)ϕ2(w2)〉 =


c12w

−2h
12 , if h1 = h2 = h.

0, if h1 6= h2.

(C.1)

• Three-point function:

〈ϕ1(w1)ϕ2(w2)ϕ3(w3)〉

= c123w
−(h1+h2−h3)
12 w

−(h2+h3−h1)
23 w

−(h3+h1−h2)
13 . (C.2)
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• Four-point function:

〈ϕ1(w1)ϕ2(w2)ϕ3(w3)ϕ4(w4)〉

= F (η)
∏
i<j

w
h/3−hi−hj

ij , (C.3)

where h =
∑

i hi, and η = w12w34
w13w24

is the cross ratio. In the case when h1 = h4, h2 = h3, it

simplifies to

〈ϕ1(w1)ϕ2(w2)ϕ3(w3)ϕ4(w4)〉

= F̃ (η)w−2h1
14 w−2h2

23 . (C.4)

• Correlation functions are covariant under conformal mappings (in this case w(z)),

〈ϕ1(z1) . . . ϕn(zn)〉

=

 n∏
j=1

(
∂w

∂z

)
zj

hj

〈ϕ1(w1) . . . ϕn(wn)〉 . (C.5)

• The operator product expansion accounts for the short-distance behavior of two operators.

It usually takes the following form,

lim
w2→w1

ϕi(w1)ϕj(w2)

∝ (w12)
−hi−hj

∑
k

(w12)
hk Cijk ϕk(w1), (C.6)

where both sides have the same dimension under global scale transformations (dilations).

The numbers Cijk are “boundary OPE coefficients”. The operators ϕk are usually orga-

nized in increasing order of their scaling dimensions hk. Throughout the paper we have
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being using the following shorthand notation

ϕi(w1)ϕj(w2) ∼ (w12)
−hi−hj

∑
k

(w12)
hk ϕk(w1). (C.7)

C.2 Purification dynamics of reference qubits in the Clifford

Circuit

In this Appendix we consider yet another boundary condition on the Clifford circuit dis-

cussed in the main part this paper, which is similar to the circuit introduced in Ref. [113]. The

setup is as follows.

• One starts with a chain of L qubits in a product state.

• One picks a contiguous segment A containing a number of |A| qubits from this chain, and

entangles each of them with an extra, additional “reference qubit” with which it forms

a maximally entangled Bell pair. There are therefore |A| Bell pairs, each containing one

“reference qubit” and one “system qubit”, in addition to the remaining L − |A| “system

qubit” of the original chain of L qubits. In Ref. [113], |A| is always taken to be unity,

|A| = 1.

t

x
1 2 3 4 5 6 7 8 9 10

5

4

3

2

1

0

a
z1 z4

ff

a
z2 z3

(a)

z5 z6

(b)

a
1 4

5

ff

b
2 3

6

Figure C.1: (a) The circuit considered in Appendix C.2, where the description is given in the
text. This is an generalization of one setup introduced in Ref. [113]. (b) Collapsing S([z5, z6])
to the cross ratio, following Eqs. (C.8, C.10). The data is obtained for various z56 and various
circuit depths.
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(a)

a
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ff
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T

(a)

(b)

a
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ff
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T

(b)

(c)
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ff

b
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6

T

(c)

(d)

a
1 4

5

ff

b
2 3

6

T

(d)

Figure C.2: Early time data of S(A = [z5, z6]), with |A| = z56 in {4, 6, 8, 16}. The data
matches well with Eq. (C.17) at intermediate times z56 � T � L, which we fit for h(1)f |f = 0.41.
As |A| increases, the allowed time window for fitting to the powerlaw shrinks.

• One then evolves the “system”, by which we mean the original chain of L qubits (i.e. the

|A| “system qubits” as well as the remaining L− |A| qubits of the original chain, but not

the “reference qubits”) with the critical hybrid circuit.1

• The quantity of interest is the entanglement entropy between “the reference qubits” and

“the system”, a quantity denoted by SQ in Ref. [113].

This circuit is illustrated Fig. C.1(a). Following our conventions in Fig. 3.2(c), we postulate

that there are now |A| physical qubits living on the lower edge of the rectangle (on A = [z5, z6] ⊂

[z2, z3]), indicated by solid blue dots, and L qubits living on the top (on [z1, z4]), also indicated
1Note that the case where |A| = L, i.e. where the “system qubits” are all the L qubits of the original chain,

was the fafa circuit previously discussed in Fig. 3.2(c) and Sec. 3.2.3. In that previous discussion the “system
qubits” were referrred to as “the system”, whereas the “reference qubits” were referred to as “the environment”.
The current situation is thus a generalization of this previously considered setup, and everything said in this
Appendix is a natural extension of the discussion of that previous discussion in the main text.
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by solid blue dots, implying the b.c. shown in the same figure. Note that this is again the b.c. of

type fafa (as in Fig. 3.2(c)), whereas the entanglement between “the system” and “the reference

qubits” is again given by the difference in free energy between boundary conditions of types

fafb and fafa, completely analogous to the discussion in Sec. 3.2.3. In fact, when |A| = L, this

is exactly the circuit discussed in in Sec. 3.2.3 (as already mentioned in the previous footnote).

Explicitly, S(A = [z5, z6]) is given by

exp[−S(A = [z5, z6])]

=

〈
ϕf |a(z1)ϕa|f (z4)ϕf |b(z6)ϕb|f (z5)

〉〈
ϕf |a(z1)ϕa|f (z4)ϕf |a(z6)ϕa|f (z5)

〉
=

Ffafb(η)

Ffafa(η)
, (C.8)

where the F functions are those defined in Eq. (3.62), and

η =
w15w64

w16w54
(C.9)

is the relevant cross ratio. The data collapse of S(A = [z5, z6]) against η, computed by varying

z56 and the circuit depth, is shown in Fig. C.1(b). The quality of the collapse supports our

assumption about the b.c., and the behavior of the collapsed function in the two limits (η → 0

and η → 1) are consistent with Eqs. (3.50, 3.63), namely,

S([z5, z6]) =


−ha|b ln η, η → 0,

(1− η)
h
(1)
f |f , η → 1.

(C.10)

In particular, the numerical estimates for the exponents ha|b and h
(1)
f |f , extracted from this

analyis, are fully consistent with those obtained previously for the same exponents in the main

text.

We can now use this result to obtain an analytic understanding of the behavior of S(A =

[z5, z6]). We focus on the regime, |A| = z56 � Y � L. In order to simplify the calculation of
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η, we adopt a different convention for the conformal mapping, where

w1 = w(z1) = −m−1/2, (C.11)

w2 = w(z2) = −1, (C.12)

w3 = w(z3) = +1, (C.13)

w4 = w(z4) = +m−1/2. (C.14)

This is related to the previous convention defined in Fig. 3.4 by a global (“fractional linear”)

conformal transformation, under which η is invariant. We further focus on the case when z5

sits at the center of the system, where

w5 = w(z5) = 0,

w6 = w(z6) ≈
(
∂w

∂z

)
z5

z56 =
K(1−m)

Y
z56. (C.15)

Given z56 � Y � L, the cross ratio can be shown to be (using Eq. (3.20))

1− η ∝ πz15
Y

,
z56
L

� τ � 1. (C.16)

Therefore, at early times,

S([z5, z6]) ∝ (1− η)
h
(1)
f |f ∝ Y

−h
(1)
f |f ∝ T

−h
(1)
f |f . (C.17)

This behavior is directly observed in Fig. C.2, where |A| = z56 takes values in {4, 6, 8, 16},

where we find h(1)f |f = 0.41. In this particular case, it is preferable to keep z56 small, while going

to rather large system sizes, because of the constraint z56 � Y � L. When Y is comparable to

L, the decay is exponential, as the circuit starts to crossover to a quasi-one-dimensional system

(similar to Sec. 3.2.3). 2

2Notice that the powerlaw form T
−h

(1)
f |f in Eq. (C.17) does not depend on Y/T , and therefore should be

regarded as an estimation of h(1)

f |f independent of that in Fig. C.1. Off the critical point, there should still be a
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Extending Eq. (C.17) into the volume law phase p < pc in the late time limit when T � ξ

(the correlation length), the time T should be replaced by ξ. Therefore, Eq. (C.17) gives steady

state value of S([z5, z6]),

lim
T→∞

S([z5, z6]) ∝ ξ
−h

(1)
f |f ∝ |p− pc|

ν×h
(1)
f |f . (C.18)

This means that the reference qubit can only purify to a finite nonzero value when measurements

are below the critical rate, i.e. p < pc. In Ref. [113], h(1)f |f is identified with η∥
2 , therefore ν×h(1)f |f

can be identifed with β∥, following a standard hyperscaling relation β∥ = 1
2

(
d− 2 + η∥

)
ν in

d = 2. Therefore, S([z5, z6]) acquires the meaning of an order parameter.

In Ref. [113], a different value of h(1)f |f ≈ 0.33 is extracted from S([z5, z6]) with z56 = 1, for a

slightly different location of the transition (pc ≈ 0.1590) and with periodic spatial b.c.. Within

our setup, we also find h
(1)
f |f ≈ 0.33 to be a reasonable fit for z56 = 1, but not so for z56 > 1.

This is possibly due to the following subtleties with the one-qubit-purification data:

• Statistical error. In a Clifford circuit, all the entanglement entropies (when measured

in units of ln 2) are integers, and when z56 = 1, the entropy S([z5, z6]) jumps discretely

between 1 and 0 in a single realization of disorder of the circuit. Therefore, one must

sample a large number of disorder realizations in order to arrive at a good resolution for

the expectation value of the entropy. The smallness of this quantity at small values of z56

also makes it more susceptible to satistical fluctuations.

• Effects arising from finite subsystem size. S([z5, z6]) always starts for small circuit depth

with the value ln 2, as given by the number of reference qubits. Numerically, this initial

value is below the predicted form in Eq. (C.17), therefore one must wait for a while (T ∗)

before S([z5, z6]) matches on to Eq. (C.17). Before T ∗, the purification will be slower

than predicted, thereby giving a smaller estimation of h(1)f |f . T ∗ presumably depends on

time window z56 ≪ T ≪ ξ for which Eq. (C.17) applies, and therefore this estimation of h(1)

f |f is also expected
to be insensitive to the choice of pc. This expectation is numerically confirmed but the results are not displayed
here.

188



Conformal invariance Chapter C

the details of the model, as well as on z56.

Due to these subtleties, we are hesitant to extract h(1)f |f from S([z5, z6]) with z56 = 1, and are

instead more comfortable using values when z56 ≥ 4. These issues, however, should be resolved

with a larger disorder ensemble and even larger system sizes, but this is beyond the scope of

the current work. Despite these issues, S([z5, z6]) (or SQ) should still be viewed as an order

parameter, which will represent a possible experimental probe of the transition.

Ref. [113] also presents results of growth of mutual information between two disjoint refer-

ence qubits. In the current framework, these would correspond to 6- or higher-point functions,

for which the calculations require detailed knowledge of the CFT (although in certain limits

they reduce to simpler, 4-point functions). We have not attempted to analyze these.

C.3 The scaling dimension h
(1)
f |f from “localizable entanglement”

In this Appendix, we present another method for extracting the scaling dimension h
(1)
f |f ,

using a quantity similar to the so-called “localizable entanglement” [178]. In this set up, the

circuit initial state is taken to be a product state, corresponding to the boundary condition

f (see e.g. Fig. 3.2(a)). In the final state of the circuit, we choose two disjoint subregions

A = [z1, z2] and B = [z3, z4], and perform a projective measurement on every qubit outside

A ∪B. The projective measurements create a product state in A ∪B, thus also correspond to

the boundary condition f , as we posit.3 The boundary conditions are shown in the insets of

Fig. C.3(a,b).

For the circuit with periodic boundary condition, we focus on the steady state (τ = Y/L�

1) and collapse the mutual information I(A = [z1, z2], B = [z3, z4]) against the cross ratio η,

following the conformal mapping in Eq. (3.77) from the semi-infinite cylinder to the LHP. The

results are shown in Fig. C.3(a). In particular, in the limit of small η, the OPE channel of two
3In the random Haar circuit, it can be shown that projective measurements do indeed create the free boundary

condition, following the mapping developed in Refs. [30, 31].
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ϕf |a fields is relevant (see Eq. (3.58)), and we expect

I([z1, z2], [z3, z4]) ∝ η
h
(1)
f |f , η → 0. (C.19)

From Fig. C.3(a), we fit for h(1)f |f ≈ 0.41, in excellent agreement with Figs. (3.8, C.1, C.2).

Recall that in Figs. (3.8, C.1) the estimate of h(1)f |f relies on the fitting parameter Y/T , and in

Fig. C.2 the estimate is restricted to an intermediate time scale. The method here avoids both

issues, and gives us an independent, consistent estimate of h(1)f |f , lending strong support that

the Clifford CFT is distinct from percolation (see Table 3.2).

For the circuit with open boundary condition, the mutual information I(A = [z1, z2], B =

[z3, z4]) is again given by the difference in free energy between boundary conditions of types

fafb and fafa, completely analogous to the discussion in Sec. 3.2.3. In particular, we find, using

the OPE in Eq. (3.58), that

I([z1, z2], [z3, z4]) ∝ η
h
(1)
f |f , η → 0. (C.20)

Fitting for h(1)f |f in Fig. C.3(b), we again find h
(1)
f |f ≈ 0.41, consistent with all previous results.

C.4 Parallel results for the Hartley entropy in Haar circuits

from minimal cuts in critical first-passage percolation

In this Appendix we apply the same CFT formalism introduced in the main text to the

analysis of the Hartley (0th Rényi) entropy in Haar random unitary circuits with measurements,

following Ref. [16].

The goal of this Appendix is to further justify our conjectures presented in the main part

of this paper for the Clifford hybrid quantum circuits, by analyzing corresponding setups for

the Hartley entropy in Haar random hybrid quantum circuits. While the ability to describe the

latter in terms of “minimal cuts” in the theory of critical percolation has been established [16],
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here we aim at showing that various boundary condition setups discussed in the main text for

Clifford circuits can be analyzed in a completely analogous way for the Hartley entropy in the

Haar circuits, and we obtain corresponding critical exponents for this case.

We consider two different possibilities for performing the required “minimal cuts” on the

underlying “brickwall” lattice as illustrated in Fig. C.4. In both cases, the lattice geometry

is that of a rectangular hybrid circuit as in Fig. 3.2: the horizontal links are arranged in an

even-odd fashion and represent two-qubit unitary gates, and the vertical links represent qubit

propagation in time, which are interupted by hollow circles that break the link, representing

the single-qubit measurements. To make connections with the bond percolation problem on a

square lattice, one can view the lattices in Fig. C.4 as obtained from a perfect square lattice,

by breaking the vertical bonds at random (with probability p) and by erasing every other

horizontal bond (i.e. in an alternating but regular fashion), which could be thought of as

eliminating (or “breaking”) with probability = 1/2 exactly a fraction 1/2 of all the horizontal

bond (a regular version of the process that is implemented on the vertical bonds in a random

fashion at criticality with the same probability p = 1/2.)4 The “minimal cut” is defined to be

the path that begins at the point on the boundary where the two differently colored (red and

blue) boundary segments join (possibly at infinity), and which crosses a minimal number of

unbroken links in the bulk. In other words, the “minimal cut” path is one which minimizes the

“cost” defined to be number of unbroken links crosses by the path. The “cost” of the “minimal

cut” path is proportional to the Hartley (0-th Rényi) entropy [16]. It is evident from this

setup that the coloring pattern is a crucial input in defining the minimal cut.

• In the first case (Fig. C.4(a)), we label a segment (left) of the upper edge with red color,

and the rest (right) of the upper edge blue, while the other three edges are uncolored

(denoting “free” b.c.s ‘f ’). In the figure, the minimal cut starts from the interface between

red and blue segments, and can terminate anywhere on the three uncolored “free” edges.
4Notice that the microscopic details of this construction differs slightly from that in Ref. [16], but can be

exactly mapped to the latter by “shrinking” the two endpoints of each horizontal link (representing the unitary
gate) to a single lattice site, thereby obtaining a square lattice rotated by 45◦. Details of this construction should
not affect the universal critical properties, as we have verified numerically, but chose not to display here.
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When the lattice has zero depth, the minimal cut has zero “cost”, and its “cost” grows

as the lattice grows in depth.

• In the second case (Fig. C.4(b)), we label the lower edge blue and the upper edge red,

where a cut separating them must start from the left edge and terminate at the right edge,

which are both “free”. Initially, the minimal cut must go through all vertical links, so is

infinite in the thermodynamic limit; however, as the circuit grows deeper, the minimal

cut path can make use of broken links in the bulk (of which there will be more as the

depth increases) to lower its “cost”. Therefore the “cost” of the minimal cut path will

decrease monotonically as the depth increases, and so will the Hartley entropy which this

“cost” respresents.

Recall that the “cost” of the minimal cut path in Fig. C.4(a) exactly describes the Hartley

(zeroth Renyi) entropy in a random Haar circuit (Ref. [16]), where the initial state is a trivial

product state (the situation is exactly like fffa in Fig. 3.3(c)); while for Fig. C.4(b), the minimal

cut is exactly SBell for the fafa boundary condition (see Fig. 3.7(b)). The boundary conditions

are also entirely similar: we follow the same coloring scheme, identifying “blue” with a, “red”

with b, and “uncolored” with f .

From Fig. C.4(b), the symmetry between the upper and the lower edge is evident. As

emphasized in Sec. 3.2.3, the symmetry is only possible due to unitarity-breaking measurements

that induce entanglement swapping (see a similar discussion in Ref. [36]).

Recognizing that minimal cuts have the meaning of (Hartley) entanglement entropy, we

numerically compute “entanglement entropies” and “mutual information” at the critical point

pc = 0.5 as in Ref. [16], making use of well-known algorithms for minimal cuts in graph the-

ory [179, 180]. The results are shown in Fig. C.5. We also consider similar setups with periodic

boundary condition, where the results are shown in Fig. C.6. In fitting the data, we have taken

Y = T for both open and periodic b.c. (see Sec. 3.1 for definitions), due to the rotational

symmetry of the percolation problem.

The extracted scaling dimensions are summarized in Table 3.2, and they match well with
192



Conformal invariance Chapter C

those from the existing literature, where available. This further supports our strategy of ex-

tracting scaling dimensions from the Clifford CFT. Comparing Clifford and percolation, we

notice that the difference between the corresponding scaling dimensions are small but discern-

able under the present framework. We also observe that the scaling dimensions in the Clifford

CFT are consistently larger than or equal to their percolation counterparts.
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a

a

ff

(a)

f

a

1 2 3 4

a

f

f

f

(b)

Figure C.3: The mutual information between A = [z1, z2] and B = [z3, z4], after all qubits
outside A ∪ B are projected out in the final state of the circuit. For both (a) periodic and
(b) open boundary conditions, we find I([z1, z2], [z3, z4]) ∝ η

h
(1)

f |f as η → 0, where the value of
h
(1)
f |f ≈ 0.41 is in excellent agreement with previous results (see Figs. (3.8, C.1, C.2)) and is

markedly different from percolation (see Table 3.2).

(a) T = 0, MinCut = 0

MinCut ~ ha|b ln T

(b) T = 0, MinCut = ∞

MinCut ~ ha|b π / τ

Figure C.4: Minimal cuts for two sets of different boundary conditions. (a) should be
compared with the fffa circuit in Fig. 3.3, and (b) with the fafa circuit in Fig. 3.7. The finite
time behavior follows from data collapse in Fig. C.5 and calculations in the main text.
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b a
1 4

5

ff

f
2 3

(a)

b a
1 4

5

ff

f
2 3

b

6

(b)

b1 4
ff

a2 3

(c)

b
1 4

ff

a2 3

Figure C.5: (a,b) Numerical results of minimal cuts as in the setup of Fig. C.4(a), and should
be compared with Fig. 3.5. (c) Numerical results as in the setup of Fig. C.4(b), and should
be compared with Fig. 3.8. The extracted scaling dimensions are summarized in Table 3.2.

(a)

a

b

b

a

(b)

b

a

Figure C.6: Numerical results for the Hartley (0-th Rényi) entropy in Haar random circuits
with measurements, in a geometry of the type of Fig. C.4(b), but with periodic spatial b.c.
This figure should be compared with Fig. 3.11 in the main text.
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Appendix D

Capillary-wave theory calculations

We compute within capillary-wave theory the free energies of two types of domain walls: those

with pinned endpoints, as in Fig. 4.2(b); and those with free endpoints that wrap around the

“waist” of the circuit, as in Fig. 4.3.

D.1 Domain walls with pinned endpoints

For the case in Fig. 4.2(b), we have (compare Eq. (4.20))

FCW(A) (D.1)

=− ln

∫
D[y(x)] exp

[
−βσ

∫ x2

x1

dx

√
1 + (∂xy)

2

]
, (D.2)

where the functional integral over y(x) is over the following class of “height functions”,

y : [x1, x2] → [−T, 0],

x 7→ y(x), (D.3)

with the additional constraint that the endpoints are “pinned”, y(x1) = y(x2) = 0. To regularize

the path integral, we will however take y(x1) = y(x2) = ϵ to be a small constant, which can be
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understood as the lattice spacing.

We first expand the square root,

√
1 + (∂xy)

2 = 1 +
1

2
(∂xy)

2 +O
(
(∂xy)

4
)
, (D.4)

and neglect quartic and higher order terms in (∂xy); these are irrelevant under a renormalization

group transformation. Thus we have a Gaussian theory,

FCW(A)

=− ln

∫
D[y(x)] exp

[
−βσ

∫ x2

x1

dx

(
1 +

1

2
(∂xy)

2

)]
=βσ|A| − ln

∫
D[y(x)] exp

[
−βσ

2

∫ x2

x1

dx (∂xy)
2

]
. (D.5)

The second term in this equation is the summation over all admissible configurations of paths/height

functions y(x), and can be viewed as a “random walk” with “diffusion constant” (βσ)−1. It

is thus regarded as the “thermal entropy” of transverse fluctuations of the domain walls. The

magnitude of the fluctuation scales with x12 identically to that of a random walker, and can,

for example, be quantified by the following quantity,

√〈
[y (x)− y(x1)]

2
〉
∝

√
|A|
βσ

, (D.6)

where x := (x1 + x2)/2.

In the following we will, for convenience, treat the path integral in Eq. (D.5) as a quantum

mechanical transition amplitude, from which Eq. (D.6) can also be deduced. However, we note

that there are other ways to evaluate this integral, e.g. by solving the diffusion equation subject

to the constraint y(x) ∈ [−T, 0].

We now “quantize” the path integral, with the spatial direction x viewed as “imaginary

time”. We then have an imaginary time path integral of a free quantum particle with mass βσ,
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confined within a potential well y ∈ [−T, 0],

exp [−FCW(A) + βσ|A|]

=

∫
y(x)∈[−T,0],y(x1)=y(x2)=ϵ

D[y(x)] exp

[
−βσ

2

∫ x2

x1

dx (∂xy)
2

]
=
〈
y(x2)

∣∣∣ exp [−Ĥx12] ∣∣∣y(x1)〉 , (D.7)

where the Hamiltonian is that of a “particle in box” problem,

Ĥ =
p̂2y
2M

+ V (ŷ), where V (y) =


0, −T ≤ y ≤ 0;

∞, otherwise.
(D.8)

The eigenstates and their corresponding energies are

ϕn(y) = 〈y|n〉 =
√

2

T
sin
(nπy
T

)
, y ∈ [−T, 0],

En =
1

2βσ

(nπ
T

)2
, n = 1, 2, 3, . . . (D.9)

We expand Eq. (D.7) in the eigenbasis,

exp [−FCW(A) + βσ|A|]

=

∞∑
n=1

〈y(x2)|n〉 〈n|y(x1)〉 exp [−Enx12]

=
2

T

∞∑
n=1

sin2
(nπϵ
T

)
exp

[
− 1

2βσ

(
nπ

√
x12

T

)2
]
. (D.10)

When π
√
x12/T � 1, we may approximate the summation with the following integral over
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u =
nπ

√
x12

T ,

exp [−FCW(A) + βσ|A|]

≈ 2

T

∫ ∞

π
√
x12/T

Tdu

π
√
x12

sin2
(

uϵ
√
x12

)
exp

(
− u2

2βσ

)
≈ 2

π
√
x12

∫ ∞

0
du sin2

(
uϵ

√
x12

)
exp

(
− u2

2βσ

)
≈ 2ϵ2

π(x12)3/2

∫ ∞

0
duu2 exp

(
− u2

2βσ

)
=

2ϵ2

π|A|3/2

∫ ∞

0
duu2 exp

(
− u2

2βσ

)
=

√
2

π
ϵ2(βσ)3/2|A|−3/2, (D.11)

and thus (compare Eq. (4.21))

FCW(A)

=βσ|A|+ 3

2
ln |A|+ const., when

√
|A| � T. (D.12)

In arriving at this result, we made the following replacement in the integrand

sin2
(

uϵ
√
x12

)
exp

(
− u2

2βσ

)
→

(
uϵ

√
x12

)2

exp

(
− u2

2βσ

)
; (D.13)

this is valid when

ϵ
√
βσ

√
x12

� 1 ⇔ ϵ�

√
|A|
βσ

. (D.14)

Physically, it means that the temperature cannot be too low, so that the transverse fluctuation

of the domain wall is large compared to the “lattice spacing”, ϵ. This is consistent with the p = 0

limit of the circuit (now without measurements), corresponding to the zero-temperature limit

of capillary-wave theory, where the subleading logarithmic term is absent in the entanglement

entropy (see discussions near footnote 11).
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D.2 “Waist” domain walls

As shown in Fig. 4.3, the “waist” domain wall for open b.c. has two independent free

endpoints; whereas for periodic b.c. the two endpoints must coincide, but otherwise free.

In the case of open b.c., let y1 = y(x1 = 0), and y2 = y(x2 = L). The analog to Eq. (D.7)

reads

exp [−FCW(Q) + βσ|Q|]

=

∫
y(x)∈[−T,0]

D[y(x)] exp

[
−βσ

2

∫ L

0
dx (∂xy)

2

]
=

∫ 0

−T
dy1

∫ 0

−T
dy2

〈
y2

∣∣∣ exp [−ĤL] ∣∣∣y1〉
=

∫ 0

−T
dy1

∫ 0

−T
dy2

∞∑
n=1

〈y2|n〉 〈n|y1〉 exp [−EnL]

=
2

T

∫ 0

−T
dy1

∫ 0

−T
dy2

∞∑
n=1

sin
(nπy1

T

)
sin
(nπy2

T

)
exp

− 1

2βσ

(
nπ

√
L

T

)2


=
∑
n odd

8T

n2π2
exp

− 1

2βσ

(
nπ

√
L

T

)2


≈ 1

2

∫ ∞

π
√
L/T

Tdu

π
√
L

8L

Tu2
exp

[
− u2

2βσ

]
=

4
√
L

π

∫ ∞

π
√
L/T

duu−2 exp

[
− u2

2βσ

]
=

4
√
L

π

{[
−u−1 exp

[
− u2

2βσ

]] ∣∣∣∣∣
∞

π
√
L/T

−
∫ ∞

π
√
L/T

du (−u−1)

(
− u

βσ

)
exp

[
− u2

2βσ

]}

≈ 4

π2
T, (D.15)

where we assumed T �
√
L throughout.
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For periodic b.c., letting y = y(x1 = 0) = y(x2 = L), we have

exp [−FCW(Q) + βσ|Q|]

=

∫
y(x)∈[−T,0],y(0)=y(L)

D[y(x)] exp

[
−βσ

2

∫ L

0
dx (∂xy)

2

]
=

∫ 0

−T
dy
〈
y
∣∣∣ exp [−ĤL] ∣∣∣y〉

=

∫ 0

−T
dy

∞∑
n=1

〈y|n〉 〈n|y〉 exp [−EnL]

=
∞∑
n=1

exp

− 1

2βσ

(
nπ

√
L

T

)2


≈
∫ ∞

π
√
L/T

Tdu

π
√
L
exp

[
− u2

2βσ

]
≈ T

π
√
L

∫ ∞

0
du exp

[
− u2

2βσ

]
=

√
βσ

2π

T√
L
, (D.16)

where we again assumed T �
√
L throughout.

Summarizing, we have (compare Eq. (4.22))

FCW(Q)

=


βσL− lnT + const., open b.c.

βσL− ln T√
L
+ const., periodic b.c.

when T �
√
L. (D.17)

Similarly to domain walls with pinned endpoints, the subleading logarithmic term can again be

understood as coming from thermal entropies of transverse fluctuations. The ln
√
L difference

is the extra endpoint entropy in open b.c..
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D.3 Point-to-line (pl) domain walls

We consider domain walls in the upper half plane, with one endpoint pinned. That is,

y(x1) = ϵ, but y(x2) ∈ [−T, 0] unconstrained (a free endpoint). We have

exp
[
−F pl

CW(Q) + βσ|Q|
]

=

∫
y(x)∈[−T,0],y(x1)=ϵ

D[y(x)] exp

[
−βσ

2

∫ x2

x1

dx (∂xy)
2

]
=

∫ 0

−T
dy
〈
y
∣∣∣ exp [−Ĥx12] ∣∣∣ϵ〉

=

∫ 0

−T
dy

∞∑
n=1

〈y|n〉 〈n|ϵ〉 exp [−Enx12]

=

∫ 0

−T
dy

∞∑
n=1

(
2

T

)
sin
(nπy
T

)
sin
(nπϵ
T

)
exp

[
− 1

2βσ

(
nπ

√
x12

T

)2
]

=

∞∑
n=1

(
2

T

)[∫ 0

−T
dy sin

(nπy
T

)]
sin
(nπϵ
T

)
exp

[
− 1

2βσ

(
nπ

√
x12

T

)2
]

=
∞∑
n=1

(
2

T

)[
2T

nπ
δn odd

]
sin
(nπϵ
T

)
exp

[
− 1

2βσ

(
nπ

√
x12

T

)2
]

≈
(
4ϵ

T

) ∑
n≥1,n odd

exp

[
− 1

2βσ

(
nπ

√
x12

T

)2
]

≈
(
4ϵ

T

)
1

2

∫ ∞

π
√
x12/T

Tdu

π
√
x12

exp

[
− u2

2βσ

]
≈
(

2ϵ

π
√
x12

)∫ ∞

0
du exp

[
− u2

2βσ

]
≈
(

2ϵ

π
√
x12

)√
πβσ

2

≈
√

2βσ

π
ϵ · (x12)−1/2 . (D.18)

where we again assumed T �
√
L throughout.

202



Appendix E

Cross entropy as boundary

correlation function

E.1 Bulk cross entropy

We unpack the circuit averaged linear cross-entropy χ defined in Eq. (5.7),

χ := ECχC

= EC

∑
m pρmpσm∑
m (pσm)2

= EC

∑
m

(
trCmρC

†
m
)(

trCmσC
†
m
)

∑
m

(
trCmσC

†
m
)2

= EC

∑
m trC⊗2

m · (ρ⊗ σ) · C†⊗2
m∑

m trC⊗2
m · (σ ⊗ σ) · C†⊗2

m
. (E.1)

Recall that the letter C encodes the circuit layout (i.e. the locations of unitary gates and

measurements) and the unitary gates, but not the measurement outcomes. The summation over

m is taken inside the average, in both the numerator and denominator, independently. Thus,

χ is different from the trajectory-averaged entanglement entropies that are used previously for

identifying the MIPT. Nevertheless, in Fig. 5.2 we see that the location of the transition and
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Figure E.1: (a) Pictorial representation of the partition function ratio Zρσ/Zσσ in Eq. (E.8),
for p = 0 in the encoding stage and p < pc in the circuit bulk. (b) Pictorial representation of
the partition function ratio in Eq. (E.10). Here we do not have an encoding stage, and there
is a uniform, finite magnetic field of strength h (represented with a dashed line) applied at
the t = 0 boundary. (c) Pictorial representation of the partition function ratio in Eq. (E.11),
Here we do not have an encoding stage, and there is a local, finite magnetic field of strength
h applied at the t = 0 boundary. In all figures the blue color represents spins pointing in the
“+” direction, the yellow color represents spins pointing in the “−” direction, and the black
color represents a “free” boundary condition, where the spins can point in either direction.

the critical exponent ν do not change much when we use χ as an order parameter.

A proper treatment of the quenched average leads to a replicated spin model.1 For our

purposes here, we can instead consider the annealed average [22, 61], while keeping in mind

that this is only a illustrative tool. In particular, consider

χ =
EC
∑

m trC⊗2
m · (ρ⊗ σ) · C†⊗2

m

EC
∑

m trC⊗2
m · (σ ⊗ σ) · C†⊗2

m
. (E.2)

After the average over C, the numerator and the denominator each becomes an Ising partition

function on a triangular lattice. They have bulk weights Jp(si, sj ; sk) for each downward-

pointing triangle [30, 31] (see also Refs. [28, 29, 137]), and only differ in their boundary condi-
1Due to the difference we stressed above, this leads to a stat mech model that differs from those obtained in

Refs. [30, 31]. In particular, the spins here take values in the permutation group SQ=2n with the replica limit
n→ 0, and which has a different symmetry.
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tions. We denote them Zρσ and Zσσ, respectively.

We take ρ and σ to be products of local density matrices, i.e.

ρ =
L∏

x=1

ρx, σ =
L∏

x=1

σx, where tr ρx = trσx = 1 ∀x. (E.3)

Moreover, we also have trσ2x = 1 since σ is a pure product state. Thus,

Zσσ =
∑

{si=±1}

∏
⟨i,j,k⟩∈▽

Jp(si, sj ; sk) ·
∏

x∈∂MT

δsx=+1 ·
∏

x∈∂M0

(
δsx=+1(trσx)

2 + δsx=−1 tr
(
σ2x
))

=
∑

{si=±1}

∏
⟨i,j,k⟩∈▽

Jp(si, sj ; sk) ·
∏

x∈∂MT

δsx=+1, (E.4)

and

Zρσ =
∑

{si=±1}

∏
⟨i,j,k⟩∈▽

Jp(si, sj ; sk) ·
∏

x∈∂MT

δsx=+1 ·
∏

x∈∂M0

(δsx=+1(tr ρx)(trσx) + δsx=−1 tr(ρx · σx))

=
∑

{si=±1}

∏
⟨i,j,k⟩∈▽

Jp(si, sj ; sk) ·
∏

x∈∂MT

δsx=+1 ·
∏

x∈∂M0

(δsx=+1 + δsx=−1 tr(ρx · σx))

=
∑

{si=±1}

∏
⟨i,j,k⟩∈▽

Jp(si, sj ; sk) ·
∏

x∈∂MT

δsx=+1 ·
∏

x∈∂M0

ehx(sx−1). (E.5)

Here, we use ∂M0 to denote the t = 0 boundary of the circuit, and ∂MT to denote the final

time (t = T ) boundary. We see that at t = 0, Zσσ has a “free” boundary condition, and Zρσ has

a magnetic field with strength hx = −1
2 ln [tr(ρx · σx)]. At t = T , in both partition functions

spins are fixed to be sx = +1.

Our circuit in Fig. 5.1 has an “encoding” stage without measurements (p = 0) up until

tencoding = 2L. This makes the lower half of the circuit a pure unitary one, where domain walls

with both endpoints on the t = 0 boundary are disallowed by the microscopics of the stat mech

model [28, 29]. In this case, the finite-strength field at the t = 0 boundary of Zρσ becomes
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essentially infinite, putting a hard boundary condition at t = 0:

Zρσ ≈
∑

{si=±1}

∏
⟨i,j,k⟩∈▽

Jp(si, sj ; sk)

·
∏

x∈∂MT

δsx=+1 ·
∏

x∈∂M0

δsx=+1

:= Z++, (E.6)

where Z++ denotes the partition function with + boundary condition at t = 0 and + boundary

condition at t = T . By the same reasonining and the same notation, we can rewrite

Zσσ ≈ Z++ + Z−+. (E.7)

We represent these partition functions diagrammatically in Fig. E.1, where the boundary

conditions are highlighted with color: blue for + and orange for −. (In the figure, we only

illustrated the case where p < pc after the initial encoding stage; these two stages are separated

by a gray, dashed line.) We have

χ =
Zρσ

Zσσ
=

1

1 + Z−+/Z++
. (E.8)

In the volume law phase, we expect Z−+/Z++ ∝ exp(−L+ o(L)), because a domain wall with

finite line tension of length L must be inserted between t ∈ [tencoding, T ], to accommodate the

boundary conditions change from − to + in time; see Fig. E.1. On the other hand, in the area

law phase, the domain wall line tension vanishes, and we have Z−+/Z++ = O(1). Thus,

χ =


1 + exp(−L), p < pc

O(1), p > pc

. (E.9)

Despite the fact that we are adopting an annealed average in χ, it captures the qualitative

behavior of the quenched avarege χ in Sec. 5.1 in the two phases (but presumably not the
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critical properties).

E.2 Bulk cross entropy without encoding

Here we extend our discussion in Sec. 5.1.3 on χ in the absence of the encoding stage, so

that the entire two-dimensional magnet is now at finite temperature; see Fig. E.1(b). Here,

the partition functions Zρρ and Zρσ have boundary conditions that are identical to those in

Eqs. (E.4, E.5). However, the spins at the t = 0 boundary now need not be completely aligned,

and small domain walls can be created at the cost of a finite free energy per unit length.

Using the same graphical notation as in Fig. E.1(a), with an additional color, black, repre-

senting the “free” boundary condition f , and dashed blue line representing the finite strength

boundary magnetic field hx in the “+” direction at t = 0, we represent χ =
Zρσ

Zσσ
again with

partition functions of appropriate boundary conditions in Fig. E.1(b). First consider a case

where the boundary magnetic field hx = −1
2 ln [tr(ρx · σx)] is uniform and independent of x.

This would be the case when, say, ρ = 1
2L

1 and σ = (|0〉 〈0|)⊗L. Let the free energy cost of a

domain wall with unit length be δF and define the fugacity to be y = e−δF , we have (compare

Fig. E.1(b))

χ =
Zρσ

Zσσ

=
1 +

(
L
1

)
e−2hy +

(
L
2

)
e−4hy2 + . . .

1 +
(
L
1

)
y +

(
L
2

)
y2 + . . .

≈ (1 + e−2hy)L

(1 + y)L
. (E.10)

Both Zρσ and Zσσ numerator are now a series of terms, with the i-th leading term having

i domain walls each of unit length (neglecting their interactions). Thus, χ is exponentially

suppressed by L for any h > 0, thus negligible throughout the phase diagram.

We can also generalize Eq. (E.10) to the case where ρ and σ only differ on one site, as
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discussed in Sec. 5.1.3. The partition functions are shown in Fig. E.1(c), where we obtain

χ ≈ 1 + e−2h

2
+

1− e−2h

2
〈sx∈∂M0〉sx∈∂MT

=+1 . (E.11)

Here 〈sx∈∂M0〉sx∈∂MT
=+1 is the expectation value of a boundary spin. Thus, we expect the

following behavior of χ near the critical point:

χ ≈


|p− pc|β + χ0, p < pc

χ0, p > pc

. (E.12)

Here, χ0 ≈ 1+e−2h

2 is a nonuniversal constant between 0 and 1.

E.3 Numerical algorithm for cross entropy in Clifford circuits

We first recall a “purified” representation of the hybrid circuit. As pointed out in Refs. [21,

31], the dynamics of the hybrid circuit can be purified by introducing one “register” qubit for

each single site measurement. In particular, each measurement can be replaced by a controlled-

NOT (CNOT) gate from the measured qubit to the register, followed by a dephasing channel

on the register.2 With these, at the end of the time evolution we have the following joint state
2To see this, it is sufficient to consider the case of one qubit and one register. Initially, let the qubit be in the

state |ψ⟩ = α |0⟩+ β |1⟩, and the register be in the state |0⟩, so the joint state is

ρQR = |ψ⟩ ⟨ψ|Q ⊗ |0⟩ ⟨0|R . (E.13)

After the CNOT cate, we have

ρ′QR = CNOTQ→R · ρQR · CNOTQ→R

= (α |00⟩+ β |11⟩) (α∗ ⟨00|+ β∗ ⟨11|)QR . (E.14)

Under the dephasing channel on R,

ρ′′QR =
1

2

(
ρ′QR + ZRρ

′
QRZR

)
= |α|2 |0⟩ ⟨0|Q ⊗ |0⟩ ⟨0|R + |β|2 |1⟩ ⟨1|Q ⊗ |1⟩ ⟨1|R
= (P0 |ψ⟩ ⟨ψ|P0)Q ⊗ |0⟩ ⟨0|R + (P1 |ψ⟩ ⟨ψ|P1)Q ⊗ |1⟩ ⟨1|R . (E.15)

The result ρ′′QR is a mixture of different trajectories, with the measurement outcome stored in R. Generalization
to many qubits and many registers can be carried out in a similar fashion.
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on physical qubits Q and register qubits R,

ρQR =
∑
m
CmρC

†
m ⊗ |m〉 〈m|R . (E.16)

And similarly for the initial state σ,

σQR =
∑
m
CmσC

†
m ⊗ |m〉 〈m|R . (E.17)

The cross-entropy will then have the following representation

χC =

∑
m pρmpσm∑
m (pσm)2

=
tr ρRσR
trσ2R

, (E.18)

where ρR is the reduced state of ρQR on R, and similarly for σR.

We now focus on the case where ρ and σ are both stabilizer states and the circuit is a

Clifford circuit, so that ρQR, σQR, ρR, σR are all stabilizer states. Moreover, we will choose the

state ρ to be obtainable from σ via erasure and dephasing channels. Equivalently, we choose

states ρ and σ such that the stabilizer group Sρ is a subgroup of Sσ. Whenever this condition

is satisfied for the initial state, it follows that SρQR ⊆ SσQR and SρR ⊆ SσR at any point of the

purified circuit evolution. With this property, Eq. (E.18) can be greatly simplified. We have

ρR =
1

2|R|

∑
g∈SρR

g, σR =
1

2|R|

∑
h∈SσR

h, (E.19)

and

tr ρRσR =
1

22|R|

∑
g∈SρR

∑
h∈SσR

tr gh

=
1

22|R|

∑
g∈SρR

∑
h∈SρR

tr gh

= tr ρ2R. (E.20)
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Figure E.2: Numerical results of χ for initial states ρ = (|0〉 〈0|)⊗L/2 ⊗ (|+〉 〈+|)⊗L/2 and
σ = (|0〉 〈0|)⊗L, following the procedure in Eq. (E.24). Despite a different choice of initial
state, the results are comparable to Fig. 5.2(a) and Fig. 5.3.

Here, we noticed that tr gh = 2|R|δgh for Pauli strings g and h, and used SρR ⊆ SσR . Thus, the

cross-entropy is simply the ratio between the second Renyi purity of the probability distributions

{pρm} and {pσm},

χC =
tr ρ2R
trσ2R

=

∑
m (pρm)

2∑
m (pσm)2

. (E.21)

For Clifford circuit evolution, the second Renyi purity equals 2−Nrand , where Nrand is the number

of measurements (out of the total N) whose outcome is randomly ±1.3 This number Nrand can

be obtained by running the circuit once for each initial state [68]. We have

χC = 2−Nrand(C,ρ)+Nrand(C,σ). (E.22)

More generally, for initial states ρ and σ that may not satisfy the condition Sρ ⊆ Sσ,

Eq. (E.20) takes the form

tr ρRσR =
1

22|R|

∑
g∈SρR

∑
h∈SσR

tr gh =
|SρR ∩ SσR |

2|R| . (E.23)

Computing |SρR ∩ SσR | without further simplifications can take time O(L3 · T 3). In practice
3Recall that for Cliffford circuits a measurement either has a deterministic outcome, or has random outcomes

±1 with equal probabilities 1/2 [68]. There are 2Nrand possible trajectories in total, and they occur with equal
probability 2−Nrand .
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it would be most convenient to carry out the sampling procedure outlined at the beginning of

Sec. 5.1.2, which, as we have shown, converges in poly(1/ε) time. In particular, we can rewrite

Eq. (5.11) as

χC = lim
M→∞

〈
pσmM

j=1∑
m (pσm)2

〉
ρ

=
1

trσ2R
lim

M→∞

〈
pσmM

j=1

〉
ρ
. (E.24)

That is, we run the ρ-circuit and obtain an ensemble of measurement histories {mj}, and

take the average of their corresponding probabilities pσmj
in the σ-circuit, divided by trσ2R =∑

m (pσm)2. Each pσmj
/ trσ2R can be computed in polynomial time by running a σ-circuit in

parallel.

To verify the validity of this method, we consider initial states ρ = (|0〉 〈0|)⊗L/2⊗(|+〉 〈+|)⊗L/2

and σ = (|0〉 〈0|)⊗L. Both are stabilizer states, but Sρ 6⊆ Sσ, and Eq. (E.22) does not apply.

We carry out the sampling procedure in Eq. (E.24), and plot the results in Fig. E.2, which we

find comparable to Fig. 5.2(a) despite a more involved numerical calculation. Thus, to estimate

χ we have the freedom of choosing ρ, as consistent with the picture developed in Appendix E.
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Appendix F

Bitstring distribution in the output

state

As we discussed in the main text, the linear cross-entropy χ for the MIPT is most conveniently

estimated numerically for Clifford circuits with a stabilizer initial state ρ, and can be extended

to Clifford circuit with a non-stabilizer ρ (and scaled up) given access to a quantum processor.

In either case χ admits the same interpretation in the stat mech language, and should contain

the same universal data, e.g. the critical exponent ν. Thus, one natural question is whether

considering a non-stabilizer initial state on a quantum processor reveals anything new about

the physics surrounding the MIPT.

As we have shown, in the volume law phase, χ = 1 almost identically for sufficiently large

L; and it follows that it is impossible – in an information-theoretic sense – to distinguish two

different initial states from infrequent (p < pc) bulk measurements. The information about the

initial state must therefore be contained in the output state of the circuit.

The difference between the two initial states may be detected using various measures [181,

182]. Here we consider the probability distribution over bitstrings when each qubit of the output

state of the ρ-circuit (namely ρm = CmρC
†
m in Eq. (5.1)) is measured in the computational

basis, where the input state ρ is taken to be the one from Eq. (5.13). For a fixed bitstring
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Figure F.1: (a) The bitstring distribution defined in Eq. (F.2), for a typical instance of Cm
with a generic (nonstabilizer) initial state ρ in Eq. (5.13). We see a broad distribution, in
sharp contrast to the bitstring distribution from a stabilizer initial state in Eq. (F.3). (b)
The bitstring distribution defined in Eq. (F.4), when the data in (a) is averaged over Cm.
The Porter-Thomas distribution Pr(z) = e−z is reproduced in the unitary limit p = 0, and a
qualitatively different (powerlaw) distribution is observed for p > 0 (see Eq. (F.6)).

x ∈ {0, 1}L, the probability for this outcome to occur in the output state of Cm is

µ(x;Cm, ρ) = 〈x| ρm |x〉 , (F.1)

where ρm = ρm/ tr ρm is the normalized output state. In Fig. F.1(a) we plot the fraction of

bistrings with probability µ = z/D in a typical instance of Cm, where z is a random variable

and D = 2L is the dimension of the L-qubit Hilbert space,

Pr(z;Cm, ρ) =
1

D

∑
x∈{0,1}L

δ(z − µ(x;Cm, ρ) ·D). (F.2)

As we can see, in a typical circuit at p > 0 the output distribution is already notably broader

than at p = 0.

On the other hand, for the output of the σ-circuit, namely σm = CmσC
†
m/ trCmσC

†
m where

σ is a stabilizer state, the distribution function Pr(z;Cm, σ) is much simpler:

Pr(z;Cm, σ) =

(
1− 1

2L−n

)
δ(z) +

1

2L−n
δ(z − 2L−n). (F.3)

Here, n is an integer between 0 and L. The broad distribution in Fig. F.1(a) is markedly

different from this, and is due to the fact that ρ is a non-stabilizer state.
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We focus on the non-stabilizer state ρm henceforth. In analogy with random unitary circuits,

we consider the circuit average of Pr(z;Cm),

Pr(z) := ECmPr(z;Cm)

=
1

D

∑
x∈{0,1}L

ECmδ(z − µ(x;Cm, ρ) ·D)

= ECmδ(z − µ(x;Cm, ρ) ·D). (F.4)

Here, after circuit averaging Pr(z) does not depend on the bitstring x despite the notation, and

we can choose |x〉 = |0〉⊗L, for concreteness.

In the unitary limit p = 0, there are no measurements, and ECm = EU . Here Pr(z) should

be the Porter-Thomas distribution since the Clifford group forms a unitary 2-design,

Pr(z) = EUδ(z − µ(x;U, ρ) ·D) = e−z. (F.5)

For p > 0, we observe numerically that (see Fig. F.1(b))

Pr(z) ∝ αδ(z) + βz−γ , γ ≈ 4. (F.6)

Since this function z−γ diverges as z → 0, the asymptotics is only valid for z greater than some

(possibly L-dependent, see below) cutoff λ. We suspect that the exponent γ is universal (as we

have checked for a few values of p), while the constants of proportionality α, β are λ-dependent

(to keep Pr(z) normalized) and nonuniversal.

Since the distributions in Fig. F.1(a,b) have long tails – meaning that in a given Cm the

bitstrings occur with rather uneven probabilities – predicting which ones occur more commonly

should be hard, and it is tempting to conjecture the classical hardness of sampling x from the

probability distribution µ(x;Cm, ρ), for a generic (non-stabilizer) initial state ρ. Given that on

a noiseless quantum computer we can simulate the hybrid circuit and produce the state ρm,

such hybrid circuits may serve the purpose of demonstrating quantum advantage.
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However, there is an important caveat here. As evident from the definition of µ, for a fixed

C the bitstring distribution as obtained from measuring ρm still has an explicit dependence on

m. In each run of the circuit, one gets a new m, and the bitstring distribution µ changes from

run to run. Thus, even the circuit itself cannot effiently sample µ(x;Cm, ρ) for any given m, for

we have no control over m, and cannot repeatedly prepare ρm. To sample x from µ(x;Cm, ρ)

for a given m, it seems that we must again resort to postselection.

It might be possible to avoid the need of postselection by focusing on a particular subset of

non-stabilizer initial states ρ, for which the bitstring distributions µ(x;Cm, ρ) for different m

can be related to each other by a change of variable in x. Characterizations of such ρ is beyond

the scope of this work, which we will discuss elsewhere.
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