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This paper outlines the development of a multi-satellite precipitation estimation

methodology that draws on techniques from machine learning and morphology

to produce high-resolution, short-duration rainfall estimates in an automated

fashion. First, cloud systems are identified from geostationary infrared imagery

using morphology based watershed segmentation algorithm. Second, a novel

pattern recognition technique, growing hierarchical self-organizing map

(GHSOM), is used to classify clouds into a number of clusters with hierarchical

architecture. Finally, each cloud cluster is associated with co-registered passive

microwave rainfall observations through a cumulative histogram matching

approach. The network was initially trained using remotely sensed geostationary

infrared satellite imagery and hourly ground-radar data in lieu of a dense

constellation of polar-orbiting spacecraft such as the proposed global precipita-

tion measurement (GPM) mission. Ground-radar and gauge rainfall measure-

ments were used to evaluate this technique for both warm (June 2004) and cold

seasons (December 2004–February 2005) at various temporal (daily and

monthly) and spatial (0.04u and 0.25u) scales. Significant improvements of

estimation accuracy are found classifying the clouds into hierarchical sub-layers

rather than a single layer. Furthermore, 2-year (2003–2004) satellite rainfall

estimates generated by the current algorithm were compared with gauge-

corrected Stage IV radar rainfall at various time scales over continental United

States. This study demonstrates the usefulness of the watershed segmentation and

the GHSOM in satellite-based rainfall estimations.

1. Introduction

Precipitation is the key variable linking the atmosphere with hydrology. It is

produced by atmospheric processes, which are highly nonlinear and interact at a

wide range of scales. Better understanding of the spatial and temporal distribution

of precipitation is critical to climatic, hydrologic, and ecological applications.

However, lack of reliable precipitation observation in remote and developing

regions poses a major challenge in the above studies. To meet the requirement of
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hydrological applications, satellite-based technologies clearly have the potential to

provide precipitation information at high spatial and temporal resolutions for large

portions of the world where gauge observations are limited or nonexistent. During

the last decade, satellite sensor technology has facilitated the development of

innovative approaches to global precipitation observations. Recently, many

satellite-based precipitation algorithms have been developed (Hsu et al. 1997,

Vicente et al. 1998, Sorooshian et al. 2000, Ba and Gruber 2001, Huffman et al.

2002, Negri et al. 2002, Tapiador et al. 2002, Turk et al. 2002, Weng et al. 2003,

Joyce et al. 2004, Hong et al. 2004). Evaluation of recently developed precipitation

products over various regions is still ongoing (Ebert 2004, Kidd 2004, Janowiak

2004).

This study describes an automated technique consisting of image segmentation

and pattern recognition algorithms. It is used to estimate precipitation from

geostationary infrared satellites and low-orbiting passive microwave satellites. Two

major stages are involved in processing satellite images into surface rainfall. First,

clouds are delimited from clear sky and further segmented into cloud patches from

geostationary IR images using the watershed transformation approach, followed by

extraction of the patch features. Secondly, a novel pattern recognition algorithm,

growing hierarchical self-organizing map (GHSOM), is used to classify cloud

patches into a number of cloud patterns. Then each pattern is associated with

surface rainfall rates. The network was initially calibrated from gauge-corrected

radar rainfall and passive microwave rainfall estimates. Later the cloud-precipita-

tion mapping relationships have been recursively adjusted by coincident satellite-

based passive microwave rainfall observations.

1.1 Watershed segmentation

To segment images into meaningful regions (i.e. objects) is the very first step in

classifying or tracking the motion of objects. Clouds are dynamical with ever-

changing size, height, shape, and texture. How to capture and identify these cloud

organizations from satellite images is particularly important to estimate precipita-

tion. In the case of cloud segmentation, the major problem is separating touching

clouds. The conventional thresholding method is good when distinguishing clouds

from the clear sky, but impossible when separating touching cloud systems in

satellite infrared images (Hong et al. 2005). There are other approaches for image

segmentation, including edge-based and morphology-based methods, often used to

segment touching objects. The morphological operator such as watershed

transformation (Vincent and Soille 1991, Dobrin et al. 1994) is a powerful tool

for image segmentation in grey scale mathematical morphologies. The basic concept

of the watershed algorithm starts with finding the altitude local minima (figure 1a;

Hsu et al. 2005), followed by filling the basins from the bottom (figure 1b). The

water then continues to fill all basins. When two basins merge from the rising water

level, a (water basin edge line) reservoir is set to separate them (figure 1c). While the

water level continues to rise, individual basins are formed. The process stops when a

designed water table is reached (figure 1d). Likewise, the watershed algorithm

regards the intensity of infrared cloud image as a topographic surface and water seep

through from the local minimum of cloud-top temperature until water from two

different sources meet, which is called a watershed. In addition to its accuracy, the

watershed algorithm stands out as a powerful morphological crest-line extractor and

results in closed contours, which serve as water basin edge line when separating
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touching clouds. Thus, the morphology-based watershed transform is used in the

current study. For more details on the watershed algorithm please refer to Dobrin et

al. 1994.

1.2 Self-organizing map and growing hierarchical self-organizing map

The self-organizing map (SOM) is one of the most popular artificial neural network

architectures used in a variety of fields, such as precipitation estimations (Hsu et al.

1997, Cavazos 2000, Hong et al. 2005), image processing (Laaksonen et al. 2001,

Villmann et al. 2003), ocean circulation (Liu and Weisberg 2005, Liu et al. 2006

a,b,c), and water resource applications (Abrahart and See 2000, Bowden et al. 2005).

The SOM has shown to be a stable neural network model of high-dimensional data

analysis. However, its capability is limited by some limitations when using SOM.

The first drawback is its static network architecture. The number and arrangement

of nodes has to be pre-defined even without a priori knowledge of the data. Second,

the SOM model has limited capabilities for the representation of hierarchical

relations of the data. To overcome the inherent deficiencies of the SOM, a novel

network architecture of growing hierarchical SOM (GHSOM; Dittenbach et al.

2002, Rauber et al. 2002) was used in this study to address the two issues within one

framework. The key idea of GHSOM is to use a hierarchical structure of multiple

layers where each layer consists of a number of independent SOM. For every unit in

a GHSOM layer, a SOM might be added to the next layer of the hierarchy. As

shown in figure 2, one SOM at layer-1 expands into three SOMs at layer-2.

According to the different distributions of the input data, the size of these sub-layers

was dynamically growing during the network learning phase, i.e. the size of each

individual sub-layer adapted itself by the requirements of input space. This growth

process further continued to form a layered architecture so that hierarchical

Figure 2. Growing hierarchical self-organizing map.

Figure 1. Watershed-based segmentation approach.
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relations between input data were explicitly detailed. Therefore, the hierarchical

structure imposed on the data results in a separation of clusters mapped onto

different branches, which is a desirable characteristic helping to understand the

cluster structure of the input data (Rauber et al. 2002). The advantages of the

GHSOM provide a convenient procedure for processing a large amount of satellite

image data and increasing the accuracy of classifications (Liu et al. 2006a).

1.3 Scope of this study

The purpose of this study is to demonstrate the usefulness of the watershed

algorithm and GHSOM in the development and use of multi-sensor multiplatform

satellite precipitation monitoring techniques to provide such data. To our

knowledge, these techniques have not been applied to this field. In this study, we

first use the watershed method to segment cloud images and then use the GHSOM

to classify cloud images into a number of patterns. Afterwards, we establish

different cloud–precipitation relationships, calibrated by co-registered IR brightness

temperatures (Tb) and passive microwave rainfall observations, for precipitation

estimation. By way of simplicity, this methodology has only been applied to regional

study. However, the approach embodied by the techniques could readily be

extended quasi-globe.

The remainder of this paper is organized as follows. §2 describes the data used in

this paper. §3 provides the details of the watershed segmentation method and the

GHSOM neural network for cloud classification. Then, the cumulative histogram

matching approach is described for satellite-based precipitation estimations. §4

validates the application results and §5 summarizes this study.

2. Data

The study area in this paper is within the region of 25u–45uN and 100u–125uW. The

temporal domain of the calibration data set is the year 2002. The validation data sets

are during the summer season of 2004 and during the winter season of 2004/2005

(December 2004 and January/February 2005). Primarily remote sensing data sets

used are from two different sets of sensors. First, infrared (IR) data are collected by

the international constellation of geosynchronous-Earth-orbit satellites. The

National Oceanic and Atmospheric Administration (NOAA) Climate Prediction

Center (CPC) provided the international complement of GEO-IR data at half-

hourly 464 km grid scale. The Geo-IR brightness temperatures (Tb) are corrected

for geometric mis-navigation of high clouds, large zenith-angle viewing effects, and

inter-satellite calibration differences (Janowiak et al. 2001). Passive microwave data

are being collected by several low earth orbit (LEO) satellites, including the TRMM

Microwave Imager (TMI) on Tropical Rainfall Measuring Mission (TRMM),

Advanced Microwave Scanning Radiometer for the Earth Observing System

(AMSR-E) on Aqua, Special Sensor Microwave/Imager (SSMI) on Defense

Meteorological Satellite Program (DMSP) satellites, and the Advanced

Microwave Sounding Unit B (AMSU-B) on the NOAA satellite series. In the

current study, passive microwave pixels from TMI, AMSR-E, and SSM/I are

converted to precipitation estimates at the TRMM Science Data and Information

System (TSDIS) with sensor-specific versions of the Goddard Profiling Algorithm

(GPROF; Kummerow et al. 1996, Olson et al. 1999). Passive microwave pixels from

AMSU-B are converted to precipitation estimates at the National Environmental
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Satellite Data and Information Service (NESDIS) with operational versions of the

Zhao and Weng (2002) and Weng et al. (2003) algorithm. Compared to GEO-IR

data, LEO PM data have a strong physical connection to the hydrometeors that

result in surface precipitation, but much sparse sampling of the time-space

occurrence of precipitation.

Ground radar and gauge rainfall data are also used as reference data in the model

calibration and validation. Specifically, the National Center for Environmental

Prediction (NCEP) Stage IV analysis is generated over the continental United States

after manual quality control performed at the twelve River Forecasting Centers. The

high spatial and temporal resolution ground rainfall analysis (hourly/daily and

4 km/25 km grids) provides data useful for testing of satellite rainfall estimation

algorithms. Additional information about the NCEP Stage IV analysis can be found

at http://wwwt.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/.

3. Methodology

Figure 3 shows the flow chart of the proposed multiplatform satellite-based system

for precipitation estimations. This system first uses the watershed transformation

method to segment the IR cloud images, and then classifies these cloud patches into

clusters with the novel GHSOM pattern recognition tool. After classification, it

associates the IR cloud-top brightness temperature (Tb) with the co-registered

passive microwave rainfall estimates (R) by matching the probability distribution of

Tb–R for each classified cluster. Finally, these Tb–R relationships are used to

estimate precipitation while passive microwave data are not available.

3.1 Watershed segmentation method

Segmentation of satellite infrared imagery is an important topic of the computer

vision, remote sensing, and image analysis. It can be considered a pre-process step

before description and recognition of cloud patches. The segmentation based on the

Watershed algorithm is followed by three steps, namely pre-processes which

includes noise reduction and gradient calculation, a watershed transformation, and

Figure 3. The conceptual flowchart of hybrid rainfall estimation system.
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post processes. In these procedures, the pre-processing of gradient calculation is

essential: Images should be low-pass filtered first to avoid over-segmentation. Our

previous study (Hong et al. 2004) has reported that a low-pass filter of 3 K is usually

useful to suppress IR images to avoid over-segmentation and speed up the

segmentation as well. The post processes are based on general heuristics and

decrease the number of small regions (e.g. less than 4 pixels) in the segmented image

that cannot be merged with any adjacent region. The output is a new image in which

each basin is given a different numerical value.

Figure 4 shows the cloud image (0045 UTC, 9 July 1999) segmentation results

using thresholding (253 K) and watershed methods, respectively. Note that one

colour represents a cloud patch in figure 4a while the circles in figure 4b indicate the

coldest centre of each patch. The performances clearly show the large difference

between the two methods. The single threshold cannot separate several distinctive

clouds effectively. Nevertheless, by applying the watershed-based segmentation,

‘basins’ are filled and separated gradually, and Figure 4b shows those mixed cloud

patches in figure 4a are clearly separated.

After segmentation, an empirical statistic analysis is conducted to investigate

different sets of feature combinations in terms of precipitation relevance,

classification impact, and computation efficiency. Additionally, the interrelation-

ships among the features help to determine the importance of the features in

discriminating classes. Finally, six features are extracted from each cloud patch

according to three categories, that is, coldness, geometry, and texture. These features

are minimum temperature of a cloud patch (Tmin), mean temperature of a cloud

patch (Tmean), cloud patch size (size), cloud patch shape index (SI), standard

deviation of cloud patch temperature (Tstd), and standard deviation of local

standard deviation (STD5, the subscript 5 indicating the 565 sliding window). More

details about the selection of these features can be found in Hong et al. (2004). The

cloud patch segmentation and the feature extraction prepare the input for

classifications.

3.2 Growing hierarchal self-organizing feature map

In this study, a novel clustering algorithm, the growing hierarchal SOM (GHSOM),

is used to classify the cloud-patch features into hierarchical layers. Each layer consists

of one or more multiple self-organizing maps (SOM). The SOM is a nonlinear,

ordered, smooth mapping of high-dimensional input data into a regular, low-

dimensional (usually 2D) array (Kohonen 2001), which consists of a set of i units

arranged in a 2D grid with a weight vector mi attached to each unit. Input vectors x

are first normalized and the Euclidian distance between the weight vector mi and

input vector x are calculated. The formula at the learning iteration t is as follows:

Ck tð Þ~arg min x tð Þ{mi tð Þk kf g ð1Þ

The Ck represents the winning unit, then the weight vector of the winner as well as

the weights vectors in the vicinity of the winner are adapted. The modifications of

weights are according to a spatial temporal neighbourhood function hci(t), which is

time decreasing and also decreasing spatially away from the winner. The weights

learning rule are expressed as

mi tz1ð Þ~mi tð Þza tð Þhci tð Þ x tð Þ{mi tð Þ½ � ð2Þ
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where a(t) denotes the time-decreasing learning rate. The learning procedure leads to

a topologically ordered mapping of the presented input vectors. Similar patterns are

classified into neighbouring groups, otherwise farther apart.

Figure 4. The cloud patches segmented by different methods: (a) 253 K threshold and (b)
watershed algorithm.

Satellite-basedprecipitationestimationusingwatershedsegmentationandGHSOM 5171



In this study, the GHSOM enhances the capabilities of the basic SOM in two

ways. The first is to use an incrementally growing version of the SOM, which does

not require the user to specify the size of the map beforehand. The second

improvement is its ability to adapt to hierarchical structures in the input data

(Dittenbach et al. 2002, Rauber et al. 2002, Pampalk et al. 2004). For every neuron

in the first layer of GHSOM, a SOM might be added to the next layer of the

hierarchy. This principle is repeated with the second and any further layers of

GHSOM. The learning rule for the GHSOM is the same as the one presented for the

simple SOM, while the weight vector of the unit is initialized as the mean of all input

vectors, and its mean quantization error (MQE) is computed. The MQE of unit i is

computed as

MQEi~
1

Uij j
XX

k[Ui

xk{mik k, Ui~ k ck~ijf g ð3Þ

A mean of all MQEi is obtained as <MQE>. The starting point for the GHSOM

training process is the calculation of an <MQE>above of the unit forming the above

layer map, <MQE>above. If the following inequality is fulfilled, a new row/column of

map units are inserted in the GHSOM

SMQET > t1SMQETabove ð4Þ

where t1 is a control parameter. In the GHSOM array, the unit i with the largest

MQEi is defined as an error unit. Then the unit is selected and a new row/column is

inserted between these. If the inequality above is no longer satisfied, the next step is

to examine whether some units should be expanded on the next hierarchical layer or

not. If the unit i still has a large error, i.e.

MQEi > t2SMQETabove ð5Þ

where t2 is another control parameter, then a new map will be added at a subsequent

layer. Generally speaking, the parameters of t1 and t2 are chosen as 1.t1&t2.0.

In the application of GHSOM, following Liu et al. (2006a), all the parameters are

set to the default values except t1 and t2, the breadth- and depth-controlling

parameters. Different (t1, t2) values are used to test the GHSOM performance (see

table 1). As shown in table 1, generally smaller values of (t1, t2) result in larger SOM

arrays at sub-layer1. We start with the sub-layer0 consisting of only one single

Table 1. Performance of the GHSOM with different values of controlling parameters.

t1 t2 SOM# at sub-layer1 SOM# at sub-layer2

0.1 0.01 105 0
0.2 0.02 56 0
0.3 0.03 28 0
0.4 0.04 6 140, 166, 99, 0, 114, 88
0.5 0.05 5 95, 101, 0, 78, 112
0.6 0.06 4 15, 24, 8, 12
0.7 0.07 4 4, 4, 4, 4
0.8 0.08 4 4, 3, 2, 4
0.9 0.09 4 2, 0, 1, 3

SOM, self-organizing map.
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neuron (161), and then determine the structure by optimizing the objective

function. It is used to evaluate the mapping quality of a SOM based on the mean

quantization error of all neurons in the map.

In this study, we chose the case of (t150.7, t250.07) to analyse simply because the

SOM arrays are large enough to represent characteristic cloud features and small

enough to be visualized. Therefore the number of GHSOM topology layers is 3,

while the growing size of each neuron is 262. This means that the sub-layer0

arranges one neuron (161), the sub-layer1 arranges four neurons (262), and the

sub-layer2 arranges sixteen neurons (464) (as shown in figure 5a).

Figure 5b illustrates the classified performances of the cloud features in each sub-

layer. Features classified into sub-layer0 have similar weights that all fall between

0.2 and 0.5 which means that the six features are of equal importance and there are

no dominated features classified in this layer. However, the variations of different

features are more obvious with increasing sub-layer. For example, the highest

weights of all features are more than 0.7 in sub-layer2, especially the weights of size

and SI in certain patterns are higher than 0.9. This result indicates that the impact of

each feature was classified in different clusters in sub-layer2. Figure 5c shows the

distribution of normalized value of the six feature components at sub-layer2. The

detailed weights of each pattern in each sub-layer are shown in table 2.

Figure 6 illustrates the histogram of average weights of the cloud patch features as

well as the number of data classified into each sub-layer. The map in sub-layer0

(figure 6a) provides a rough organization of the main clusters in the input data. It

has slightly better performance in sub-layer1 (figure 6b), while the four independent

maps in the sub-layer2 (figure 6c) offer a more detailed view on the input data.

Figure 6b also shows that there are 29.8%, 28.6%, 26.0%, and 15.6% of the total

samples (16 748) classified into pattern 1-1, 1-2, 1-3, and 1-4, respectively. It should

be noted that all these four patterns are further broken down into sub-layer2, for

instance, the four patterns 2-1-6 that located on the upper left corner came from

pattern 1-1. Therefore, the major trend of patterns 2-1-6 was correspondent with

pattern 1-1 which has higher values on the features of size, Tstd, and STD5. We can

Figure 5. (a) The three sub-layers display of GHSOM; (b) the average weights of six features
from different sub-layers; (c) the distribution of normalized value of the six feature
components at sub-layer2.
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also refer to the patterns 2-2-6, which have higher values on Tmin, Tmean, and size

that still agree with pattern 1-2. The same situations also occurred on two other

clusters. This reveals that the capability of the hierarchical structure of GHSOM

enables itself to have detailed classifications when large amounts of input data with

similar characteristics. It is not unusual that a single-layer SOM classifies zero (too

many) inputs into certain nodes if the predefined sizes of the topology layer are too
large (two small). Thus, the GHSOM avoids arranging unnecessary clusters in

topology layer, which would be costly in terms of classification accuracy and

memory requirements.

3.3 Probability match of co-registered passive microwave estimates and IR data

After the GHSOM classification, the coincident PM rainfall estimates under certain

cloud coverage are also assigned into the cluster. Thus, the database for each cluster

stores observations of IR cloud-top temperature (Tb) and PM rainfall rates (R).

Therefore, we assign different Tb–R relationships to various cloud patches based on
the classified results from the GHSOM clustering. In each classified cloud patch

cluster, the Tb–R pairs are first redistributed using the probability matching method

(Atlas et al. 1990). This method matches histograms of Tb and PM observations so

that the proportion of the PM rain rates distribution above a given rain rate is equal

to the proportion of the Tb distribution below the associated Tb threshold value.

This procedure generates different Tb–R relationships for each classified cloud

cluster, which can be used to convert the cloud patch infrared data into passive

microwave calibrated rainfall retrievals. Note that the GHSOM classified the input
data into three sub-layers and each layer organizes its own nonlinear mapping

functions in a 2D co-ordinate. Therefore three layers (161, 262, and 464) of Tb–R

Table 2. The average weights of each pattern in each sub-layer.

Sub-layer Pattern Tmin Tmean Size Tstd STD5 SI

0 1 0.414 0.500 0.410 0.331 0.363 0.242

1

1-1 0.117 0.187 0.414 0.734 0.476 0.074
1-2 0.592 0.703 0.694 0.237 0.133 0.154
1-3 0.396 0.471 0.134 0.283 0.544 0.210
1-4 0.693 0.795 0.342 0.066 0.272 0.835

2

2-1-1 0.044 0.106 0.384 0.855 0.429 0.064
2-1-2 0.083 0.156 0.814 0.768 0.288 0.055
2-1-3 0.138 0.191 0.118 0.725 0.856 0.100
2-1-4 0.203 0.296 0.340 0.588 0.353 0.078
2-2-1 0.353 0.432 0.920 0.393 0.153 0.099
2-2-2 0.584 0.690 0.873 0.127 0.083 0.215
2-2-3 0.421 0.508 0.522 0.317 0.179 0.114
2-2-4 0.612 0.712 0.462 0.109 0.116 0.189
2-3-1 0.381 0.465 0.601 0.428 0.839 0.168
2-3-2 0.399 0.487 0.216 0.368 0.357 0.118
2-3-3 0.559 0.659 0.074 0.195 0.709 0.358
2-3-4 0.593 0.686 0.185 0.140 0.271 0.195
2-4-1 0.662 0.763 0.352 0.068 0.170 0.540
2-4-2 0.733 0.832 0.707 0.040 0.086 0.922
2-4-3 0.677 0.779 0.071 0.105 0.672 0.931
2-4-4 0.701 0.805 0.240 0.051 0.158 0.945

STD, standard deviation; SI, shape index.
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Figure 6. Cloud patch features classification into (a) sub-layer0, (b) sub-layer1, (c) sub-
layer2 by using GHSOM. Note the percentage shows how many samples being classified into
respective cluster.
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relationships are calibrated, and all the curves are plotted on a Tb–R display plane

(figure 7). The black, red, and blue lines indicate as sub-layer0, sub-layer1, and sub-

layer2 of GHSOM. Steep curves represent convective clouds that are capable of

producing significant rainfall. Undoubtedly the figure shows more variation of

different cloud-rainfall (Tb–R) pattern along with increasing number of layers.

Notably, this designed feature enables the system to generate varied rain rates at the

same brightness temperature (Tb) within different cloud patterns.

4. Evaluation of the application results

Rainfall is estimated in half-hour intervals and then accumulated to daily and

monthly scales. Two rainfall observation datasets were used in validation: high

temporal-spatial resolution NCEP radar data and high quality rain-gauge data.

Several evaluation criteria were selected to validate the hybrid system for

precipitation estimates. The quantitative accuracy of estimates is evaluated by

using root mean square error (RMSE), mean absolute error (MAE), correlation

coefficient (CC), critical successful index (CSI), and Heidke skill score (HSS). For

more information, please refer to Ebert (1996) for more information on these

statistical measures and definition. In addition, maximum satellite rainfall

accumulation (MaxS) and maximum (radar) rainfall accumulation (MaxR) are

defined to indicate the peak values of rainfall data.

4.1 Evaluation of storm events

As shown in table 3, three storm events in southern California (25u–45uN, 115u–
125uW) were simulated at half-hour temporal scale and accumulated to event total

for evaluation. Table 3 also shows the performances of a system with two or three

sub-layers compared with that of one layer only, the first layer (sub-layer0), as

shown in figure 6. Note that the criterion of MaxR in table 3 means the total rainfall

accumulations from radar. The estimates from sub-layer2 show a good fit with

RMSE of approximately 12,21 (mm), MAE of 1–3 (mm), CC of 0.74–0.81, HSS of

0.69–0.96. The MaxS from the sub-layer2 is close to MaxR, but slightly smaller than

the MaxR in both event 1 and event 3; however, all of the simulated rainfall

accumulations are better than those from one single layer, sub-layer0. Figure 8

illustrates the scatter plots of system estimates with its three sub-layers, respectively,

Figure 7. Different types of Tb–R curves from each sub-layer.
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against radar observations. It clearly shows that the performances of the model from

sub-layer2 are better than that from sub-layer1, while estimates from sub-layer0

present the worst results. It should be noted that the estimations of sub-layer2 are

close to observations, even at high rainfall.

Next we examine the accumulated daily peak rainfall to test the capability and

accuracy of the system during extreme situations. The peak days in the three months

are 28 December 2004, 10 January 2005, and 17 February 2005, respectively. As

shown in table 4, the performances of sub-layer2 are significantly better in terms of

MAE and MaxS, compared with sub-layer0, while both show poor HSS in 10

January 2005 and 17 February 2005. The three peak-day rainfalls are also shown in

figure 9 with reference of NCEP radar. It indicates that the system can effectively

catch the major trend of the rainfall in each peak day. Generally speaking, the

system exhibits the ability to effectively capture the spatial distribution of

Table 3. Comparison of event-based rainfall estimates from single layer and three sub-layers.

Event Model RMSE MAE CC HSS
MaxR

(mm/event)
MaxS

(mm/event)

28–31,
December
2004

Sub-layer0 20.61 11.24 0.77 0.91 296 207
Sub-layer1 20.03 5.43 0.78 0.95 296 236
Sub-layer2 19.86 2.57 0.80 0.96 296 257

7–11,
January
2005

Sub-layer0 18.11 10.02 0.67 0.52 281 228
Sub-layer1 14.45 4.27 0.71 0.61 281 265
Sub-layer2 12.07 1.18 0.74 0.69 281 287

14–22,
February
2005

Sub-layer0 23.82 13.88 0.79 0.59 317 198
Sub-layer1 22.20 6.43 0.79 0.60 317 223
Sub-layer2 21.26 2.20 0.81 0.74 317 258

RMSE, root mean square index; MAE, mean absolute error; CC, correlation coefficient;
HSS, Heidke skill score; MaxR, maximum (radar) rainfall accumulation; MaxS, maximum
satellite rainfall accumulation.

Figure 8. Event-based rainfall accumulations at spatial resolution of 0.04u60.04u. Refer to
Table 3 for the time period of the three events.
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precipitation at extreme storm events, particularly the rainfall produced by storm

centres.

4.2 California winter season

In order to assess the stability of the system performance, three months (December

2004, January and February 2005) of rainfall estimations were accumulated within

southern California. The comparison of monthly rainfall accumulated from

Table 4. Model statistical performance from the peak day of each month.

Peak day Model RMSE MAE CC HSS
MaxR

(mm/day)
MaxS

(mm/day)

28 December 2004 Sub-layer0 14.92 6.63 0.61 0.92 201 167
Sub-layer2 12.82 1.68 0.67 0.93 201 198

10 January 2005 Sub-layer0 5.79 2.34 0.77 0.39 87 104
Sub-layer2 3.67 1.28 0.81 0.42 87 80

17 February 2005 Sub-layer0 5.61 1.99 0.81 0.44 119 84
Sub-layer2 4.94 1.02 0.87 0.49 119 116

Figure 9. Three peak daily rainfall estimates from satellite vs. radar. Note the date is
described as yymmdd and unit is mm/day.
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estimates and from gauge and radar observations at 0.25u grid scale are displayed in

figure 10(a). The scatter plots of the monthly rainfall total for each month and all

months are shown in figure 10(b). The estimates give an impressive performance

with RMSE of 47, 41, and 34 (mm/month) and CC of 0.70, 0.88, and 0.75 in the

three months, respectively. However, it also shows underestimation of 99 (mm) in

December 2004. Overall, the results demonstrate that the satellite-based system

performs acceptable rainfall estimates.

4.3 Long-term evaluation over continental United States

Two year (2003–2004) satellite rainfall estimates generated by the current algorithm

were validated at a range of time scales by using gauge-corrected Stage IV radar

rainfall over continental United States. The hourly, daily, monthly, and yearly

results are presented in table 5. The CC and CSI show low score at hourly scale but

increasingly improved values along with temporal integration, ranging from

0.35,0.61 at hourly scale up to 0.71,0.95 at yearly scale. Satellite rainfall estimates

and Stage IV rainfall data were also gridded into the same resolution (daily 0.25u)
over continental United States and the daily statistics were computed for the 2 years

(2003–2004). Figure 11(a)–(b) shows the daily time series of RMSE and CC,

respectively. Note that red thick lines are the 10-day running averages of daily time

series. Both the CC and RMSE show seasonality. In general, higher CC and larger

RMSE show in summer season. Reasonably, the high value of RMSE is due to more

heavy rainfall occurring in summer season.

5. Summary and conclusions

Various researches are working on the applications of artificial neural networks to

solve large-scale problems and have provided impressive performances over

conventional techniques. In this study, watershed transformation algorithm

(figure 1) is used to segment satellite infrared images instead of thresholding

method. A novel clustering algorithm, the GHSOM, is able to classify input data

into hierarchical layers, and each layer consists of one or multiple SOM (figure 2).

The SOM is a nonlinear, ordered, smooth mapping of high-dimensional input data

into a regular, low-dimensional (usually 2D) array (Kohonen 2001). The GHSOM

enhances the capabilities of the basic SOM in two ways. The first is to use an

incrementally growing version of the SOM, which does not require the user to

specify the size of the map beforehand. The second improvement is its ability to

adapt to hierarchical structures in the input data (Dittenbach et al. 2002, Rauber

et al. 2002, Pampalk et al. 2004).

Based up the merits of the above techniques, a methodology of remote sensing

precipitation estimations was developed by combining the images from geosta-

tionary satellites and low-orbiting passive microwave satellites (figure 3). This

method utilizes the watershed transformation technique from morphology and the

GHSOM from machine learning to produce high-resolution short-duration rainfall

estimates at automated fashion. First, cloud systems are identified from geosta-

tionary infrared imagery by using morphology based watershed segmentation

algorithm instead of the conventional thresholding method (figure 4). Second, a

novel pattern recognition technique, GHSOM, is used to classify clouds into a

number of clusters with hierarchical architecture (tables 1–2 and figure 5–6). Finally

each cloud cluster is associated with co-registered passive microwave rainfall
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Figure 10. (a) Monthly rainfall of gauge, radar, and satellite at 0.25u spatial scale and (b) the
scatter plots of satellite estimates vs gauge rainfall and its statistics. Note the MaxG means the
maximum rainfall accumulations from gauge.
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observations through a cumulative histogram matching approach (figure 7).

Therefore, variable cloud–rainfall (Tb–R) histogram matching curves are con-

structed for different clouds, classified into hierarchical architecture by GHSOM

according to their coldness, size, and texture. This designed feature overcomes the

limitation of the SOM that can only project input data to a single layer mapping.

The network was initially trained using remotely sensed geostationary infrared

satellite imagery and hourly ground-radar data in lieu of a dense constellation of

polar-orbiting spacecrafts such as the proposed global precipitation measurement

(GPM) mission. Ground-radar and gauge rainfall measurements were used to

evaluate this technique for both warm (June 2004) and cold seasons (December

2004–February 2005) at various temporal (daily and monthly) and spatial (0.04u and

0.25u) scales. Results show significant improvements of estimation accuracy from

the technique by classifying clouds into hierarchical sub-layers relative to a single

layer (figure 8 and table 3). The extreme rainfall test indicates that it effectively

captured the spatial distribution of the storm (figure 9 and table 4). The validation

also shows that this system produces rainfall estimates with a relatively high

correlation coefficient and Heidke Skill Score, and low root mean square error

(figure 10). Furthermore, two year (2003–2004) satellite rainfall estimates generated

by the current algorithm were validated at a range of time scales by using NCEP

Stage IV data over Continental United States (figure 11 and table 5). However, the

accuracy of rainfall estimation also largely depends on the quality of the

Table 5. Range of values for root-mean-square error (RMSE), bias, correlation coefficient
(CC), and critical successful index (CSI) for the 2-year (2003–2004) evaluation over

continental US.

RMSE (mm) Bias ratio CC CSI/skill

Mean of
satellite-based

estimates (mm) Count

Hourly 0.95,1.36 1.05,1.65 0.35,0.61 0.41,0.67 0.078 .1.86108

Daily 3.69,5.67 1.05,1.65 0.53,076 0.65,0.75 1.830 .7.86106

Monthly 27.05,41.65 1.05,1.65 0.70,0.88 0.81,1.00 55.510 257 472
Yearly 45.53,254.15 1.05,1.65 0.71,0.95 0.85,1.00 675.970 21 456

Figure 11. Validation by Continental US Stage IV gauge-corrected radar rainfall over year
2003–2004 at spatial resolution of 0.25u60.25u: (a) the root-mean-square error and (b) the
correlation coefficient. Thick red line indicates 10-day running average.
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geostationary IR data and low-orbiting passive microwave rainfall estimates since

this system is exclusively updated by these two datasets.

This study demonstrates the usefulness of watershed segmentation and GHSOM

toward satellite-based precipitation estimation. The results indicate the technique

has the capability to address the variability of rainfall distributions in different cloud

patches by constructing variable Tb–R curves. By way of simplicity, this

methodology has been applied to continental US. Further examination is needed

to adapt this technique to extended regions, an important feature for developing

operational precipitation estimation system which requires online recursively

adjustment. However, the approach embodied by the techniques could readily be

extended quasi-globe.
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